WO2005051755A2 - Buoyancy can for offshore oil and gas riser - Google Patents

Buoyancy can for offshore oil and gas riser Download PDF

Info

Publication number
WO2005051755A2
WO2005051755A2 PCT/US2004/038302 US2004038302W WO2005051755A2 WO 2005051755 A2 WO2005051755 A2 WO 2005051755A2 US 2004038302 W US2004038302 W US 2004038302W WO 2005051755 A2 WO2005051755 A2 WO 2005051755A2
Authority
WO
WIPO (PCT)
Prior art keywords
riser
buoyancy
ofthe
axial
support feature
Prior art date
Application number
PCT/US2004/038302
Other languages
French (fr)
Other versions
WO2005051755A3 (en
Inventor
James Elvin Daily
Metin Karayaka
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France filed Critical Technip France
Publication of WO2005051755A2 publication Critical patent/WO2005051755A2/en
Publication of WO2005051755A3 publication Critical patent/WO2005051755A3/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • E21B17/012Risers with buoyancy elements

Definitions

  • This invention relates, in general, to methods and apparatus for offshore oil and gas production, and in particular, to a buoyancy can for tensioning, or supporting, the upper end of an offshore oil and gas riser that can be coupled to and decoupled from the riser without disassembling the upper terminal end portion thereof.
  • top-tensioned riser for offshore oil and gas production (see, e.g., U.S. Pat. No. 4,702,321 to E. E. Horton) use passive "buoyancy cans" to support the risers independently of an associated floating production platform.
  • the riser extends vertically upward from the sea floor through the keel ofthe platform, and thence, to the well deck thereof, where it connects to a "stem” pipe, to which the buoyancy can is attached.
  • the stem pipe extends vertically upward through an axial bore in the can and exits through its upper surface, where it may support a "work platform” to which the riser and its associated surface tree or "goose neck” are attached.
  • a flexible, high pressure jumper then connects the outlet ofthe surface tree or goose neck to the production deck ofthe platform.
  • a “hybrid" riser system typically comprises three main parts: A foundation anchor and flow-line interface unit, a single- or multi-bore riser string, and a top end buoyancy can, which may be deployed on either the surface ofthe water or submerged below it.
  • the riser string is typically fabricated onshore as a complete, single- piece unit for tow-out and installation with a minimum of offshore work.
  • the flexible jumpers are installed separately as part ofthe commissioning work, and the flow-lines are pulled in to the foundation and flowline interface unit. foundation and flowline interface unit.
  • the buoyancy can be sufficient buoyancy to provide the required top tension in the riser, as well as support for the weight ofthe can, the stem pipe and at least part ofthe weight ofthe jumpers.
  • buoyancy can that can be coupled to and decoupled from a riser either on or below the surface ofthe water without the need for removing the upper terminal end portion ofthe riser.
  • the utilization of two spaced-apart support features on the riser and corresponding sockets in the can ensures that loads caused by lateral wave or surge movements ofthe can are applied to the upper end ofthe riser in the form of a couple that is distributed throughout substantially the length ofthe can, rather than at a single point therein, which substantially reduces the stresses and strains imposed on the riser by lateral movements ofthe can.
  • the buoyancy can includes at least one buoyant compartment that has a buoyancy that can be adjusted, e.g., with ballast water, to enable precise control ofthe vertical position ofthe can in the water.
  • keel joint riser ball (or other type of riser support feature) has a diameter or other cross-sectional profile that is greater than that ofthe riser 100 itself, and because such feature is positioned, when installed, between the upper and lower ends ofthe buoyancy can 10, it cannot pass laterally through the radio-axial slot 14 ofthe can in the manner described below without some modification ofthe slot.
  • the vertical position of at least one ofthe can and the riser is adjusted, e.g., by varying the buoyancy ofthe can, as above, or by raising or lowering the upper end of the riser with the crane 4, or both, until the first riser support feature 106 is positioned above the upper end 16 ofthe can, and the radial bore 24 ofthe can faces toward and is aligned with the second riser support feature 108, as illustrated in Figs. 1 and 5C.

Abstract

A buoyancy can for supporting an offshore oil and gas riser includes an axial bore through which the riser extends coaxially, and a radio-axial slot extending through a side of the can and into the axial bore. A pair of spaced-apart support features are disposed coaxially on the riser, and the can includes a pair of corresponding sockets in the axial bore thereof. The sockets are adapted to receive and vertically support respective ones of the support features in a complementary, axial engagement. The can is placed in the water and moved laterally relative to a fully assembled, vertically supported riser such that the riser passes through the radio-axial slot of the can and into the axial bore thereof without the need for disassembly of the upper portion of the riser. The relative vertical positions of the can and riser are then adjusted such that the support features engage and seat within respective ones of their com-plementary sockets.

Description

TITLE OF THE INVENTION Buoyancy Can for Offshore Oil and Gas Riser
CROSS-REFERENCE TO RELATED APPLICATIONS (Not Applicable)
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT (Not Applicable)
REFERENCE TO APPENDIX (Not Applicable)
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates, in general, to methods and apparatus for offshore oil and gas production, and in particular, to a buoyancy can for tensioning, or supporting, the upper end of an offshore oil and gas riser that can be coupled to and decoupled from the riser without disassembling the upper terminal end portion thereof.
2. Related Art Top-tensioned riser ("TTR") systems for offshore oil and gas production (see, e.g., U.S. Pat. No. 4,702,321 to E. E. Horton) use passive "buoyancy cans" to support the risers independently of an associated floating production platform. In such a system, the riser extends vertically upward from the sea floor through the keel ofthe platform, and thence, to the well deck thereof, where it connects to a "stem" pipe, to which the buoyancy can is attached. The stem pipe extends vertically upward through an axial bore in the can and exits through its upper surface, where it may support a "work platform" to which the riser and its associated surface tree or "goose neck" are attached. A flexible, high pressure jumper then connects the outlet ofthe surface tree or goose neck to the production deck ofthe platform. By comparison, a "hybrid" riser system typically comprises three main parts: A foundation anchor and flow-line interface unit, a single- or multi-bore riser string, and a top end buoyancy can, which may be deployed on either the surface ofthe water or submerged below it. In such systems, the riser string is typically fabricated onshore as a complete, single- piece unit for tow-out and installation with a minimum of offshore work. The flexible jumpers are installed separately as part ofthe commissioning work, and the flow-lines are pulled in to the foundation and flowline interface unit. foundation and flowline interface unit. Since the riser is independently tensioned, or supported, by the buoyancy can relative to the production platform, the platform can move relative to the riser, and indeed, may even temporarily depart from the production location, such that the riser is thereby independent of and isolated from the motions ofthe platform. However, in such an arrangement, the buoyancy can must have sufficient buoyancy to provide the required top tension in the riser, as well as support for the weight ofthe can, the stem pipe and at least part ofthe weight ofthe jumpers. When a buoyancy can is initially deployed on a riser, or alternatively, when a de- ployed can is replaced with another can for repair or maintenance reasons, in some cases it is necessary to temporarily support the riser at a point below the can, and to remove the upper end, or terminal, portion ofthe riser, including the tree and any goose neck thereon, so that the "old" can, if any, may be slid up and off of the riser, and the "new" can may be slid down and over the riser. The upper terminal end portion ofthe riser must then be replaced and cou- pled to the new can for support. Alternatively, the installation procedure must be reversed. This results in a fairly complex, time-consuming, expensive, and potentially risky operation, particularly if effected in moderate or heavy seas. A long felt but as yet unsatisfied need therefore exists for a buoyancy can that can be coupled to and decoupled from a riser either on or below the surface ofthe water without the need for removing the upper terminal end portion ofthe riser.
BRIEF SUMMARY OF THE INVENTION In accordance with the present invention, a buoyancy can for supporting the upper end of an elongated vertical offshore oil and gas riser, and a method for its use, are provided that enable the can to be coupled to and decoupled from the riser without the need for removing the upper end portion ofthe riser. The novel can comprises at least one conventional vertical axial bore through which the riser extends coaxially, and a radio-axial slot having a width slightly greater than the diameter ofthe riser extending through a side of he can and into the axial bore. In one exemplary embodiment thereof the riser includes at least one support feature, e.g., a hang-off plug, disposed coaxially thereon adjacent to the upper end ofthe riser, and the buoyancy can comprises a corresponding socket disposed at the upper end ofthe axial bore thereof. The socket is adapted to receive the support feature in a complementary, axial engagement, and thereby support the support feature in the vertical direction. In another, more advantageous embodiment, the riser further includes a second support feature, e.g., a riser ball of a given diameter, disposed coaxially thereon at a selected distance below the first support feature, and the buoyancy can further comprises a corresponding second socket, e.g., a conventional keel joint socket, disposed in the axial bore thereof. The second socket is spaced below the first socket the same distance as the second support feature is spaced below the first support feature, and is adapted to receive the second support feature in a complementary, axial engagement, and thereby support it in the vertical direction. In this embodiment, the radio-axial slot is modified to include a radial bore that extends through the side ofthe can and into the axial bore, and the radial bore includes a cross-sectional profile that is slightly larger than the corresponding cross-sectional profile ofthe riser ball or other second support feature. In another possible embodiment, the first support feature and corresponding first socket may respectively comprise a conventional flex joint and a complementary receptacle therefor. In yet another possible embodiment, the second socket may be disposed at a lower end of the buoyancy can and comprise a conventional keel joint sleeve. In still yet another embodiment, the second support feature may comprise a conventional stab-in connector. In these embodiments, the utilization of two spaced-apart support features on the riser and corresponding sockets in the can ensures that loads caused by lateral wave or surge movements ofthe can are applied to the upper end ofthe riser in the form of a couple that is distributed throughout substantially the length ofthe can, rather than at a single point therein, which substantially reduces the stresses and strains imposed on the riser by lateral movements ofthe can. Advantageously, the buoyancy can includes at least one buoyant compartment that has a buoyancy that can be adjusted, e.g., with ballast water, to enable precise control ofthe vertical position ofthe can in the water. Additional ones ofthe compartments may be pressurized, e.g., with compressed air, to offset large hydrostatic pressures acting on them at greater water depths. A method for coupling the novel buoyancy can to the riser without removing the upper terminal end portion ofthe riser comprises suspending the upper end portion ofthe riser, e.g. , with a floating crane, such that the lower end ofthe riser extends vertically below the surface. The can is then disposed in the water adjacent to the riser, with the radio-axial slot aligned toward the riser. The can and the riser are then moved together laterally in the water, which can be effected completely below the surface ofthe water without the use of divers by use of a remotely operated vehicle ("ROV"), such that the riser passes through the radio-axial slot in the can and is disposed coaxially in the axial bore thereof. When the riser is positioned in the axial bore ofthe can, the vertical position of at least one ofthe riser and the can are adjusted, i.e., the can is de-ballasted such that it rises, and/or the upper end ofthe riser is lowered, such that the support features on the riser laterally and axially engage and are positioned in respective ones of their corresponding sockets in the bore ofthe can. A buoyancy can in accordance with the invention can be configured to support a plurality of risers in a so-called "riser tower" arrangement. A better understanding ofthe above and many other features and advantages ofthe present invention may be obtained from a consideration ofthe detailed description thereof below, particularly if such consideration is made in conjunction with the several views ofthe appended drawings.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS Figure 1 is perspective view of an exemplary embodiment of a buoyancy can in accordance with the present invention being deployed in a body of water and coupled to the up- per end portion of an associated offshore oil and gas riser; Figs. 2a - 2d illustrate possible exemplary cross-sectional views ofthe buoyancy can; Fig. 3 is a perspective view of an exemplary buoyancy can containing compartments in which the level of water ballast and/or the internal pressure can be varied with a pressurized fluid; Fig. 4 is a perspective view of an exemplary buoyancy can incorporating a goose neck at its upper terminal end; Figs. 5A-5D are sequential perspective elevation views of a method of deploying a buoyancy can and associated riser in a body of water in accordance with the present invention. Fig. 6 is a perspective view of a buoyancy can in accordance with the invention having a socket at its upper end and a keel joint at its lower end; Fig. 7 is an enlarged partial cross-sectional view ofthe keel joint ofthe buoyancy can of Fig. 6, as seen along the section lines 7-7 taken therein; Fig. 8 is a cross-sectional elevation view of a buoyancy can incorporating a flex joint and stab-in connector at its lower end; Fig. 9 is a cross-sectional schematic elevation view of a buoyancy can in accordance with the present invention shown supporting the upper end of an offshore riser; and, Fig. 10 is perspective elevation view of an exemplary embodiment of a buoyancy can in accordance with the present invention that is capable of supporting a plurality of risers.
DETAILED DESCRIPTION OF THE INVENTION A perspective view of an exemplary embodiment of a buoyancy can 10 in accordance with the present invention being deployed in a body of water and coupled to the upper end portion of an associated offshore oil and gas riser 100 is illustrated in Fig. 1. The buoyancy can comprises a single vertical axial bore 12 through which the riser extends coaxially in a conventional manner, and a radio-axial slot 14 that extends through a side ofthe can and into the axial bore. The slot 14 has a width that is greater than the diameter ofthe riser 100 to en- able the riser to pass through the slot laterally and into the axial bore 12. For simplicity of description, the particular embodiment of buoyancy can 10 and riser 100 described and illustrated herein is shown to include only a single axial bore 12 and corresponding single riser. However, a typical hybrid riser "tower" may include a buoyancy can 10, such as that illustrated in Fig. 10, which supports several such risers simultaneously, each seated in its own corresponding respective axial bore 12, and accordingly, it should be understood that this invention is equally applicable to such multi-riser systems. In the exemplary embodiment illustrated, the riser 100 comprises a cylindrical pipe of a given diameter that extends vertically upward from a foundation 5 (see, Fig. 5) on the sea floor 1 and through the axial bore 12 ofthe can 10 such that its upper end 102 exits through the upper end 16 ofthe can. The particular riser illustrated includes a recurvate goose neck section 104 at its upper end, as well as a first riser support feature 106, viz., a conventional, frusto-conical "hang-off plug," disposed coaxially thereon adjacent to the upper end thereof. The buoyancy can 10 further comprises a corresponding first receptacle, or frusto-conical "socket" 18, disposed at the upper end ofthe axial bore 12 ofthe can. The socket 18 is adapted to receive the hang-off plug in a complementary, slide-in, axial engagement, and to support the hang-off plug, and hence, the riser, in the axial, or vertical, direction when the plug is seated therein. The exemplary riser 100 advantageously further includes a second support feature 108 disposed coaxially thereon at a selected distance D below the first support feature 102, as illustrated in Fig. 1, and a corresponding second socket 20, which is spaced below the first socket 18 by the selected distance D, is disposed in the axial bore 12 ofthe buoyancy can 10. Like the first socket 18, the second socket 20 is adapted to receive the second riser support feature 108 in a complementary, slide-in, axial engagement, and to support the second sup- port feature, and hence, the riser, in the vertical direction when the latter support feature is seated therein. In the particular embodiment illustrated in Fig. 1 , the second riser support feature 108 comprises a conventional keel joint riser ball having a given diameter, and the second socket 20 comprises a conventional keel joint sleeve disposed in the axial bore ofthe can at its lower end, as is also illustrated in Figs. 6 and 7, respectively. Alternatively, as illustrated in Fig. 8, the second riser support feature 108 and corresponding second socket 20 disposed at the lower end ofthe can 10 may comprise a conventional stab-in connector 110 and flex joint receptacle 22, instead ofthe keel joint ball and sleeve illustrated in Figs. 6 and 7. However, as will be appreciated by those of skill in the art, since a keel joint riser ball (or other type of riser support feature) has a diameter or other cross-sectional profile that is greater than that ofthe riser 100 itself, and because such feature is positioned, when installed, between the upper and lower ends ofthe buoyancy can 10, it cannot pass laterally through the radio-axial slot 14 ofthe can in the manner described below without some modification ofthe slot. Accordingly, to accommodate the second riser support feature 108, the radio-axial slot is provided with a radial bore 24 having a cross-sectional profile that is slightly larger than the corresponding cross-sectional profile ofthe second riser support feature 108, and which extends through the side ofthe can and into the axial bore 12 thereof, as illustrated in Figs. 1 and 4, so that the riser, with a riser ball, stab-in connector, or other type of second riser support feature installed thereon, can both pass transversely through the radio-axial slot and into the axial bore ofthe can simultaneously, in the manner described below. As will be further appreciated by those of skill in this art, the present invention's use of two axially spaced-apart support features 106, 108 on the riser 100, operating in conjunction with two corresponding spaced-apart sockets 18 and 20 in the buoyancy can 10, provides advantages over prior art buoyancy cans employing only one set of such supports and sock- ets. As illustrated in Fig. 9, it may be seen that, as the buoyancy can 10 is subjected to lateral sea motions caused by wave or surge forces acting upon it, the resulting loads imposed on the upper end portion ofthe riser 100, which is tethered at its lower end to a foundation 5 on the sea floor 1, are transferred through two transfer points, rather than only one point, as with conventional buoyancy cans. This results in a riser curvature that conforms more gently to the vertical axis ofthe buoyancy can, and thereby reduces the bending stresses and resulting fatigue acting on the riser caused by such motions, relative to those of conventional, single- point buoyancy can riser support systems. This effect can be further enhanced by the provision of back-to-back stress joints 109 to accommodate localized bending stresses in the vicinity ofthe riser ball 108, as illustrated in Figs. 7 and 9. In a preferred embodiment, the buoyancy can 10 includes at least one floatation compartment 26 having a buoyancy that is selectably adjustable, so that the vertical position and angular orientation ofthe can in the water can be controlled relatively precisely. This com- partmentalization can be effected by the provision of conventional horizontal and vertical bulklieads 28 and 30, as illustrated in Figs. 2a-2d and 3. As illustrated in Figs. 2a-2d, the can itself may comprise a variety of cross-sectional shapes, including elliptical, oval, square, or round. Additionally, the vertical bulkheads 30 can be arranged in various ways to accommodate and/or define the axial bore 12 and radio-axial slot 14 ofthe can. As illustrated in Fig. 3, the buoyancy ofthe compartments 26 ofthe can 10 can be ad- justed by means of a pressurized fluid, e.g., compressed air, that is fed into or vented from them by individual conduits 32 that extend into the compartments from, e.g., the upper end 16 ofthe can. Some ofthe compartments may include side openings 34 through which sea water ballast can be admitted or expelled by venting or pressurizing the compartment, while others can be completely closed, to enable them to be internally pressurized in an amount suf- ficient to offset the hydrostatic pressure acting on them at greater water depths. The pressuri- zation can be remotely effected, for example, with the use of a Remotely Operated Vehicle ("ROV") 2 (see, Fig. 1). The foregoing arrangement advantageously enables the buoyancy of the can, and hence, its orientation and vertical position in the water, to be adjusted with precision during the coupling and de-coupling ofthe can to the riser 100, as described below. A method by which the novel buoyancy can 10 may be coupled to and decoupled from a riser 100 without removing the upper terminal end portion ofthe riser is illustrated in Figs. 1 and 5A-5D. The method begins by suspending the upper end portion ofthe riser 100, e.g., with a floating vessel-mounted crane 4, such that the lower end ofthe riser, including any second riser support feature 108 mounted thereon, such as the riser ball illustrated, ex- tends downward toward the sea floor 1. A buoyancy can 10 in accordance with the present invention is disposed in the water adjacent to the riser 100, either floating on the surface 3 ofthe water or submerged below it, and then manipulated, e.g., with an ROV 2 in a fully submerged deployment, such that the radio-axial slot 14 ofthe can faces toward and is aligned with the riser, as illustrated in Figs. 5A, 5B. Additionally, the vertical position of at least one ofthe can and the riser is adjusted, e.g., by varying the buoyancy ofthe can, as above, or by raising or lowering the upper end of the riser with the crane 4, or both, until the first riser support feature 106 is positioned above the upper end 16 ofthe can, and the radial bore 24 ofthe can faces toward and is aligned with the second riser support feature 108, as illustrated in Figs. 1 and 5C. The can 10 and the riser 100 are then urged together laterally in the water, which again, in a fully submerged coupling, may be effected with the ROV 2, such that the riser and second riser support feature 108 respectively pass through the radio-axial slot 14 and the radial bore 24 ofthe can and are disposed coaxially in the axial bore 12 thereof. The vertical position of at least one of the can and the riser are then adjusted again, as above, i. e. , by raising the can and/or lowering the riser, until the first and second riser support features 106 and 108 are axially seated in respective ones of their corresponding sockets 18 and 20 in the can, as illustrated in Fig. 5D. The method whereby the buoyancy can 10 is decoupled from the riser 100 is generally the reverse ofthe foregoing procedure. Thus, it may be seen that the coupling and decoupling ofthe buoyancy can to and from the riser is easily effected without the need for removing the upper terminal portion ofthe riser or for divers in the water, whether the coupling or decoupling is effected on or below the surface 3 ofthe water. By now, those of skill in the art will appreciate that many modifications and substitu- tions can be made to the materials, methods and configurations ofthe present invention without departing from its scope. For example, as illustrated in Fig. 10, the buoyancy can 10 may include a plurality of axial bores 12, each capable of supporting a corresponding riser 100 coaxially therein, and in which each ofthe risers can be coupled to and decoupled from the can independently ofthe others without removing its respective upper terminal end portion. Accordingly, the scope ofthe present invention should not be limited to the particular embodiments illustrated and described herein, as these are merely exemplary in nature. Rather, the scope ofthe present invention should be commensurate with that ofthe claims appended hereafter, and their functional equivalents.

Claims

CLAIMSWHAT IS CLAIMED IS:
1. For supporting an upper end of an elongated vertical offshore oil and gas riser of a given diameter in a body of water, an improved buoyancy can ofthe type that includes a ver- tical axial bore through which the riser extends coaxially, the improvement comprising: a radio-axial slot extending through a side ofthe can and into the axial bore thereof, the slot having a width greater than the diameter ofthe riser.
2. The buoyancy can of claim 1, wherein the riser includes a first support feature disposed coaxially thereon adjacent to an upper end thereof, and wherein the buoyancy can fur- ther comprises: a first socket disposed at an upper end ofthe axial bore thereof, the first socket being adapted to receive the first support feature in a complementary, axial engagement, and to support the first support feature vertically.
3. The buoyancy can of claim 2, wherein the riser further includes a second support feature disposed coaxially thereon at a selected distance below the first support feature, and wherein the buoyancy can further comprises: a second socket disposed in the axial bore thereof, the second socket being spaced below the first socket by the selected distance and adapted to receive the second support feature in a complementary, axial engagement, and to support the second support feature vertically.
4. The buoyancy can of claim 2, wherein the first support feature comprises a hang- off plug.
5. The buoyancy can of claim 3, wherein the second support feature comprises a riser ball having a given diameter, and wherein the radio-axial slot further comprises: a radial bore extending through the side ofthe can and into the axial bore thereof, the radial bore having a diameter greater than the diameter ofthe riser ball.
6. The buoyancy can of claim 5, wherein the second support feature further comprises a pair of stress joints disposed back-to-back on the riser ball.
7. The buoyancy can of claim 3, wherein the second support feature comprises a stab- in connector having a cross-sectional profile, and wherein the radio-axial slot further comprises; a radial bore extending through the side ofthe can and into the axial bore thereof, the radial bore having a cross-sectional profile larger than the cross-sectional profile ofthe stab- in connector.
8. The buoyancy can of claim 2, wherein the first support feature comprises a flex joint, and the first socket comprises a flex joint receptacle.
9. The buoyancy can of claim 5, wherein the second socket is disposed at a lower end of the buoyancy can and comprises a keel joint sleeve.
10. The buoyancy can of claim 7, wherein the second socket is disposed at a lower end ofthe buoyancy can and comprises a flex joint receptacle.
11. The buoyancy can of claim 1, wherein the can comprises at least one buoyant compartment, and wherein the buoyancy ofthe at least one compartment is adjustable.
12. The buoyancy can of claim 1 , wherein the can further comprises a plurality of vertical axial bores, each capable of receiving and supporting a riser therein.
13. A method for supporting an upper end of an elongated vertical offshore oil and gas riser of a given diameter in a body of water, the method comprising: suspending the upper end ofthe riser such that the lower end ofthe riser extends ver- tically below the surface ofthe water; providing a buoyancy can in the water and adjacent to the riser, the can having a vertical axial bore and a radio-axial slot extending through a side ofthe can and into the axial bore, the slot having a width greater than the diameter ofthe riser; and, urging the can and the riser together laterally in the water such that the riser passes through the radio-axial slot in the can and is disposed coaxially in the axial bore thereof.
14. The method of claim 13, wherein the riser includes at least one support feature disposed coaxially thereon adjacent to the upper end thereof, and further comprising: providing at least one socket in the axial bore ofthe buoyancy can, the at least one socket being adapted to receive the at least one support feature in a complementary, axial engagement, and to support the first support feature vertically; and, adjusting the vertical position of at least one ofthe riser and the buoyancy can such that the at least one support feature ofthe riser is axially seated in the at least one socket of the can.
PCT/US2004/038302 2003-11-21 2004-11-17 Buoyancy can for offshore oil and gas riser WO2005051755A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/719,780 2003-11-21
US10/719,780 US7059416B2 (en) 2003-11-21 2003-11-21 Buoyancy can for offshore oil and gas riser

Publications (2)

Publication Number Publication Date
WO2005051755A2 true WO2005051755A2 (en) 2005-06-09
WO2005051755A3 WO2005051755A3 (en) 2005-12-01

Family

ID=34591425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/038302 WO2005051755A2 (en) 2003-11-21 2004-11-17 Buoyancy can for offshore oil and gas riser

Country Status (2)

Country Link
US (1) US7059416B2 (en)
WO (1) WO2005051755A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967451A1 (en) * 2010-11-17 2012-05-18 Technip France FLUID OPERATING TOWER IN WATER EXTEND AND ASSOCIATED INSTALLATION METHOD

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784041B2 (en) * 2004-04-15 2017-10-10 National Oilwell Varco L.P. Drilling rig riser identification apparatus
US7458425B2 (en) * 2004-09-01 2008-12-02 Anadarko Petroleum Corporation System and method of installing and maintaining an offshore exploration and production system having an adjustable buoyancy chamber
US7571772B2 (en) * 2005-09-19 2009-08-11 Vetco Gray Inc. System, method, and apparatus for a radially-movable line termination system for a riser string on a drilling rig
NO333841B1 (en) 2006-10-06 2013-09-30 Framo Eng As Loading System
US20090044950A1 (en) * 2007-08-13 2009-02-19 Boudreau Paul R Buoyancy tensioning systems for offshore marine risers and methods of use
FR2933124B1 (en) * 2008-06-27 2010-08-13 Technip France METHOD FOR INSTALLING A HYBRID TOWER IN A WATER EXTEND, HYBRID TOWER AND ASSOCIATED FLUID OPERATING FACILITY
GB0819734D0 (en) * 2008-10-28 2008-12-03 Acergy France Sa Guide frame for riser tower
GB0820395D0 (en) * 2008-11-07 2008-12-17 Acergy France Sa Buoyancy device for marine structures
AU2009312647B2 (en) * 2008-11-05 2016-01-14 Technip France Method for assembling an operating rig for a fluid in a body of water and associated operating rig
GB2467938A (en) * 2009-02-20 2010-08-25 Mooring Systems Ltd Deep water and ultra deep water mooring system
ES2617665T3 (en) * 2009-07-31 2017-06-19 Excelerate Energy Limited Partnership System, method and apparatus for underwater installation of buoyancy modules
GB2473018A (en) * 2009-08-26 2011-03-02 2H Offshore Engineering Limited Hydrocarbon production system
GB2475108A (en) * 2009-11-05 2011-05-11 Acergy Us Inc Methods of constructing and installing rigid riser structures and associated apparatus
US20110280668A1 (en) * 2009-11-16 2011-11-17 Rn Motion Technologies Hang-Off Adapter for Offshore Riser Systems and Associated Methods
FR2973064B1 (en) * 2011-03-23 2013-03-29 Technip France METHOD OF ASSISTED INSTALLATION OF AN UPLINK SUB-MARINE COLUMN
US9038730B2 (en) * 2011-03-31 2015-05-26 Deep Down, Inc. Marine riser adjustable buoyancy modules
FR2981721B1 (en) * 2011-10-21 2013-11-08 Technip France METHOD OF INSTALLING A SELF-PROPELLED HYDROCARBON EXTRACTION TOWER
US20140374117A1 (en) * 2012-05-17 2014-12-25 Geir Aune Methods and Means for Installing, Maintaining and Controlling a Self-Standing Riser System
US20150096760A1 (en) * 2013-10-03 2015-04-09 Atlantis Offshore Holding Ltd. Modular Exploration and Production System Including an Extended Well Testing Service Vessel
WO2016056918A1 (en) * 2014-10-10 2016-04-14 Maritime Promeco As A marine riser
WO2019007975A2 (en) * 2017-07-03 2019-01-10 Subsea 7 Norway As Offloading hydrocarbons from subsea fields
WO2019104366A1 (en) * 2017-11-29 2019-06-06 Matrix Composites & Engineering Ltd Buoyancy module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176986A (en) * 1977-11-03 1979-12-04 Exxon Production Research Company Subsea riser and flotation means therefor
US4657439A (en) * 1985-12-18 1987-04-14 Shell Offshore Inc. Buoyant member riser tensioner method and apparatus
US6786679B2 (en) * 1999-04-30 2004-09-07 Abb Lummus Global, Inc. Floating stability device for offshore platform

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3992735A (en) * 1974-11-01 1976-11-23 Mccarthy Edward P Flotation ring for dredge pipe lines
US4240840A (en) * 1975-10-28 1980-12-23 Imperial Chemical Industries Limited Cementitious compositions
NO151209C (en) * 1976-05-20 1985-02-27 Doris Dev Richesse Sous Marine FOREIGN BUILDINGS AND PROCEDURE FOR ITS MANUFACTURING
US4102142A (en) * 1976-12-30 1978-07-25 Hitco Underwater riser buoyancy
US4559881A (en) * 1983-08-19 1985-12-24 Diebold, Incorporated Burglary resistant steel fiber reinforced concrete construction for vault walls and doors and manufacture thereof
US4646840A (en) * 1985-05-02 1987-03-03 Cameron Iron Works, Inc. Flotation riser
DK271386D0 (en) * 1986-06-09 1986-06-09 Aalborg Portland Cement COMPACT ARMED STRUCTURE
JPS62297265A (en) * 1986-06-14 1987-12-24 大成建設株式会社 Carbon fiber composite high strength refractories
US4780141A (en) * 1986-08-08 1988-10-25 Cemcom Corporation Cementitious composite material containing metal fiber
US4902347A (en) * 1988-03-28 1990-02-20 Board Of Trustees Operating Michigan State University Polyamide fibers, microsilica and Portland cement composites and method for production
US5224774A (en) * 1990-08-07 1993-07-06 W. R. Grace & Co.-Conn. Concrete additive product and method of use
US6585455B1 (en) * 1992-08-18 2003-07-01 Shell Oil Company Rocker arm marine tensioning system
US5330293A (en) * 1993-02-26 1994-07-19 Conoco Inc. Floating production and storage facility
US5916361A (en) * 1993-10-12 1999-06-29 Henry J. Molly & Associates, Inc. Glass fiber reinforced cement composites
US5792252A (en) * 1995-06-07 1998-08-11 Mbt Holding Ag Cement compositions and admixtures thereof
JP3510728B2 (en) * 1996-02-26 2004-03-29 ディップソール株式会社 Admixture for cement
US5722340A (en) * 1996-12-11 1998-03-03 Mobil Oil Corporation Fairing for marine risers
NO304082B1 (en) * 1996-12-16 1998-10-19 Abb Offshore Technology As A buoyancy device
US6030145A (en) * 1997-12-10 2000-02-29 Lucent Technologies Inc. Articulated underwater cable riser system
US6004074A (en) * 1998-08-11 1999-12-21 Mobil Oil Corporation Marine riser having variable buoyancy
US6296698B1 (en) * 1999-05-25 2001-10-02 Showa Denko K.K. Cement admixture and cement composition
US6435775B1 (en) * 2000-05-22 2002-08-20 Edo Corporation, Fiber Science Division Buoyancy system with buoyancy module seal
US20020142683A1 (en) * 2001-02-05 2002-10-03 Campbell R. Brad Nonstructural buoyancy can

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176986A (en) * 1977-11-03 1979-12-04 Exxon Production Research Company Subsea riser and flotation means therefor
US4657439A (en) * 1985-12-18 1987-04-14 Shell Offshore Inc. Buoyant member riser tensioner method and apparatus
US6786679B2 (en) * 1999-04-30 2004-09-07 Abb Lummus Global, Inc. Floating stability device for offshore platform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967451A1 (en) * 2010-11-17 2012-05-18 Technip France FLUID OPERATING TOWER IN WATER EXTEND AND ASSOCIATED INSTALLATION METHOD
WO2012066250A1 (en) * 2010-11-17 2012-05-24 Technip France Tower for exploiting fluid in an expanse of water and associated installation method

Also Published As

Publication number Publication date
US20050109513A1 (en) 2005-05-26
US7059416B2 (en) 2006-06-13
WO2005051755A3 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
US7059416B2 (en) Buoyancy can for offshore oil and gas riser
AU2005202612B2 (en) Dry tree subsea well communications apparatus and method using variable tension large offset risers
RU2198815C2 (en) System for production of hydrocarbons
AU2006202208B2 (en) Subsea well communications apparatus and method using variable tension large offset risers
US7934560B2 (en) Free standing riser system and method of installing same
US8136599B2 (en) Marine riser tower
NO20190762A1 (en) Hybrid riser tower and procedure for installing this
US6884003B2 (en) Multi-cellular floating platform with central riser buoy
US8690480B2 (en) Freestanding hybrid riser system
US9074428B2 (en) Connector for steel catenary riser to flexible line without stress-joint or flex-joint
US7975769B2 (en) Field development with centralised power generation unit
US6210075B1 (en) Spar system
US20050158126A1 (en) Flexible riser system
CN102452461B (en) For the system of supplementary tensioning of Platform Designing strengthened and correlation technique
US6431284B1 (en) Gimbaled table riser support system
US20060056918A1 (en) Riser system connecting two fixed underwater installations to a floating surface unit
US20040182297A1 (en) Riser pipe support system and method
US8231308B2 (en) Hybrid riser tower and method of installation thereof
US20040052586A1 (en) Offshore platform with vertically-restrained buoy and well deck
US5575592A (en) TLP tension adjust system
US7713104B2 (en) Apparatus and method for connection and disconnection of a marine riser
US6685519B1 (en) System for transferring fluids and methods for installing, modifying and operating system
US20190284912A1 (en) Buoyant system and method with buoyant extension and guide tube
EP0916006B1 (en) Tlp tension adjust system
US20040244985A1 (en) Production riser with pre-formed curves for accommodating vessel motion

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase