WO2005051044A1 - Electroluminescent devices and methods of making electroluminescent devices including a color conversion element - Google Patents

Electroluminescent devices and methods of making electroluminescent devices including a color conversion element Download PDF

Info

Publication number
WO2005051044A1
WO2005051044A1 PCT/US2004/038449 US2004038449W WO2005051044A1 WO 2005051044 A1 WO2005051044 A1 WO 2005051044A1 US 2004038449 W US2004038449 W US 2004038449W WO 2005051044 A1 WO2005051044 A1 WO 2005051044A1
Authority
WO
WIPO (PCT)
Prior art keywords
color conversion
electroluminescent
conversion elements
electroluminescent element
substrate
Prior art date
Application number
PCT/US2004/038449
Other languages
French (fr)
Inventor
Erika Bellmann
Vadim Savvateev
Martin B. Wolk
Yong Hsu
Fred B. Mccormick
John S. Staral
Khanh Huynth
Original Assignee
3M Innovative Properties Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Company filed Critical 3M Innovative Properties Company
Priority to JP2006541330A priority Critical patent/JP2007511890A/en
Priority to EP04811233A priority patent/EP1685746B1/en
Priority to DE602004011257T priority patent/DE602004011257T2/en
Priority to KR1020117030109A priority patent/KR101193201B1/en
Priority to MXPA06005649A priority patent/MXPA06005649A/en
Publication of WO2005051044A1 publication Critical patent/WO2005051044A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/265Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used for the production of optical filters or electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/40Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used characterised by the base backcoat, intermediate, or covering layers, e.g. for thermal transfer dye-donor or dye-receiver sheets; Heat, radiation filtering or absorbing means or layers; combined with other image registration layers or compositions; Special originals for reproduction by thermography
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/34Multicolour thermography
    • B41M5/345Multicolour thermography by thermal transfer of dyes or pigments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/382Contact thermal transfer or sublimation processes
    • B41M5/38207Contact thermal transfer or sublimation processes characterised by aspects not provided for in groups B41M5/385 - B41M5/395
    • B41M5/38214Structural details, e.g. multilayer systems

Definitions

  • the present disclosure relates to electroluminescent devices.
  • the present disclosure relates to electroluminescent devices and methods of forming electroluminescent devices that include an electroluminescent element and at least one color conversion element .
  • Background Light emitting devices such as organic or inorganic electroluminescent devices, are useful in a variety of display, lighting, and other applications.
  • these light emitting devices include one or more devices layers, including at least one light emitting layer, disposed between two electrodes (an anode and a cathode). A voltage drop or current is provided between the two electrodes, thereby causing a light emitting material, which can be organic or inorganic, in the light emitting layer to luminesce.
  • one or both of the electrodes is transparent so that light can be transmitted through the electrode to a viewer or other light receiver.
  • An electroluminescent device may be constructed such that it is either a top emitting device or a bottom emitting device.
  • a top emitting electroluminescent device the light emitting layer or layers are positioned between the substrate and a viewer.
  • a transparent or semitransparent substrate is positioned between the light emitting layer or layers and the viewer.
  • one or more electroluminescent devices can be formed on a single substrate and arranged in groups or arrays.
  • Several approaches exist for producing a color electroluminescent display For example, one approach includes an array having red, green, and blue electroluminescent device subpixels placed next to each other. Another approach, for example, uses color conversion to produce a color electroluminescent display.
  • Displays that utilize color conversion can include electroluminescent devices that emit light in a narrow band, e.g., blue light.
  • Each color conversion electroluminescent device also includes one or more color conversion elements in optical association with the electroluminescent device such that the emitted light (e.g., blue light) is converted, e.g., to red light by a red color conversion element and green light by a green color conversion element.
  • the present disclosure provides methods of making electroluminescent devices that include color conversion elements in optical association with an electroluminescent element.
  • the present disclosure provides techniques that include selective thermal transfer (e.g., Laser induced Thermal Imaging (Lrri)) of color conversion elements for use in electroluminescent devices. Patterning of red-, green-, and blue-emitting primary organic light emitting diode
  • OLED organic light-emitting diode
  • OLED organic light-emitting diode
  • Many techniques have been described for such patterning, including laser thermal patterning, inkjet patterning, shadow mask patterning, and photolithographic patterning.
  • Alternative techniques of providing a full color display without patterning the emitting materials include the use of color conversion as described herein.
  • the use of these alternative techniques with the traditional bottom emitting electroluminescent device construction is limited by physical and optical factors.
  • the color conversion elements must be patterned either on a separate piece of glass or on the substrate. In this case, the effect of the distance between the light emitting layer and the filter layer leads to parallax problems.
  • top emitting electroluminescent devices may allow for more complex pixel control circuitry as well as more flexibility in the choice of semiconductor and substrate.
  • the electroluminescent device layers can be deposited onto a substrate, followed by the formation of a thin, transparent metal electrode, and a protective layer.
  • the present disclosure provides selective thermal transfer (e.g., L ⁇ T) techniques for forming top emitting electroluminescent devices that include color conversion elements that are formed on the top electrode of an electroluminescent element or on a protective layer formed over the electroluminescent element.
  • the present disclosure also provides selective thermal transfer (e.g., LlTi) techniques for forming bottom emitting electroluminescent devices that include color conversion elements formed on a substrate surface opposite an electroluminescent element.
  • Providing color conversion elements directly on the top electrode or on a protective layer may help to eliminate alignment difficulties and parallax problems.
  • selective thermal transfer patterning may be more compatible with the materials used, e.g., for organic electroluminescent devices. Because it is a dry technique, selective thermal transfer may also allow for patterning of multiple layers on a single substrate without concern for the relative solubility of each layer.
  • selective thermal transfer patterning of color conversion elements may provide a technique that is more easily reversible. For example, if the pattern of the color conversion elements does not pass quality control inspection, the elements can be washed off and formed again without undue harm to the electroluminescent element.
  • the present disclosure provides a method of making an electroluminescent device.
  • the method includes forming an electroluminescent element on a substrate, where the electroluminescent element is capable of emitting, and preferably emits light in a narrow band.
  • the method further includes selectively thermally transferring a plurality of color conversion elements to the electroluminescent element.
  • the present disclosure provides a method of making an electroluminescent device. The method includes forming an electroluminescent element on a first major surface of a substrate, where the electroluminescent element capable of emitting, and preferably emits light in a narrow band.
  • the method further includes selectively thermally transferring a plurality of color conversion elements to a second major surface of the substrate.
  • the present disclosure provides a method of making an electroluminescent device.
  • the method includes forming an electroluminescent element on a substrate, where the electroluminescent element is capable of emitting, and preferably emits light in a narrow band.
  • the method further includes forming a protective layer over at least a portion of the electroluminescent element; and selectively thermally transferring a plurality of color conversion elements to the protective layer.
  • the present disclosure provides a method of making an electroluminescent color display including at least one electroluminescent device. The method includes forming the at least one electroluminescent device on a substrate.
  • Forming the at least one electroluminescent device includes forming an electroluminescent element on the substrate, where the electroluminescent element is capable of emitting, and preferably emits light in a narrow band; and selectively thermally transferring a plurality of color conversion elements to the electroluminescent element.
  • the present disclosure provides a method of making an electroluminescent device. The method includes forming an electroluminescent element on a substrate, where the electroluminescent element is capable of emitting, and preferably emits UV light. The method further includes selectively thermally transferring a plurality of color conversion elements to the electroluminescent element.
  • the present disclosure provides an electroluminescent device.
  • the device includes: a substrate; an electroluminescent element on the substrate, where the electroluminescent element is capable of emitting , and preferably emits light in a narrow band; a plurality of color conversion elements on the electroluminescent element; and at least one color filter on at least one color conversion element of the plurality of color conversion elements.
  • a "an,” “the,” “at least one,” and “one or more” are used interchangeably.
  • FIG. 1 is a schematic diagram of one embodiment of a top emitting electroluminescent device that includes color conversion elements formed on an electroluminescent element.
  • FIG. 2 is a schematic diagram of another embodiment of a top emitting electroluminescent device that includes color conversion elements formed on a protective layer.
  • FIG. 3 is a schematic diagram of another embodiment of a top emitting electroluminescent device that includes color conversion elements formed on an electroluminescent element and color filters formed on one or more of the color conversion elements.
  • FIG. 4 is a schematic diagram of an embodiment of a bottom emitting electroluminescent device that includes color conversion elements formed on a substrate.
  • Electroluminescent devices can include organic or inorganic light emitters or combinations of both types of light emitters.
  • An organic electroluminescent (OEL) display or device refers to an electroluminescent display or device that includes at least one organic emissive material, whether that emissive material is a small molecule (SM) emitter (e.g., nonpolymeric emitter), a SM doped polymer, a SM blended polymer, a light emitting polymer (LEP), a doped LEP, a blended LEP, or another organic emissive material whether provided alone or in combination with any other organic or inorganic materials that are functional or non- functional in the OEL display or devices.
  • SM small molecule
  • LEP light emitting polymer
  • Inorganic light emissive materials include phosphors, semiconductor nanocrystals, etc.
  • electroluminescent devices have one or more device layers, including at least one light emitting layer, disposed between two electrodes (an anode and a cathode). A voltage drop or current is provided between the two electrodes, thereby causing the light emitter to luminesce. Electroluminescent devices can also include thin film electroluminescent displays or devices.
  • a thin film electroluminescent device includes an emissive material sandwiched between transparent dielectric layers and a matrix of row and column electrodes.
  • Such thin film electroluminescent displays may include those described, e.g., in U.S. Patent Nos. 4,897,319 (Sun) and 5,652,600 (Khormaei et al).
  • FIG. 1 is a schematic diagram of one embodiment of an electroluminescent device
  • the electroluminescent device 10 includes a substrate 12, an electroluminescent element 20 formed on a major surface 14 of the substrate 12, and color conversion elements 30a and 30b (hereinafter referred to collectively as color conversion elements 30) formed on the electroluminescent element 20.
  • the electroluminescent element 20 includes a first electrode 22, a second electrode 26, and one or more device layers 24 positioned between the first electrode 22 and the second electrode 26.
  • the substrate 12 of device 10 can be any substrate suitable for electroluminescent device or display applications.
  • the substrate 12 can be made of glass, clear plastic, or other suitable material(s) that are substantially transparent to visible light.
  • the substrate 12 can also be opaque to visible light, for example stainless steel, crystalline silicon, poly-silicon, or the like.
  • the first electrode 22 can be the substrate 12. Because materials used in at least some electroluminescent devices can be particularly susceptible to damage due to exposure to oxygen or water, a suitable substrate can be selected to provide an adequate environmental barrier, or is supplied with one or more layers, -coatings, or laminates that provide an adequate environmental barrier.
  • the substrate 12 can also include any number of devices or components suitable in electroluminescent devices and displays, such as transistor arrays and other electronic devices; color filters, polarizers, wave plates, diffusers, and other optical devices; insulators, barrier ribs, black matrix, mask work, and other such components; and the like.
  • the substrate 12 may also include a plurality of independently addressable active devices as is described, e.g., in European Patent Application No.
  • the electroluminescent device 10 also includes an electroluminescent element 20 formed on major surface 14 of the substrate 12.
  • FIG. 1 illustrates electroluminescent element 20 as being formed on and in contact with major surface 14 of substrate 12, one or more layers or devices may be included between the electroluminescent element 20 and the major surface 14 of substrate 12.
  • the electroluminescent element 20 includes a first electrode 22, a second electrode 26, and one or more device layers 24 positioned between the first electrode 22 and the second electrode 26.
  • the first electrode 22 can be the anode and the second electrode 26 can be the cathode, or the first electrode 22 can be the cathode and the second electrode 26 can be the anode.
  • the first electrode 22 and the second electrode 26 are typically formed using electrically conducting materials such as metals, alloys, metallic compounds, metal oxides, conductive ceramics, conductive dispersions, and conductive polymers.
  • electrically conducting materials such as metals, alloys, metallic compounds, metal oxides, conductive ceramics, conductive dispersions, and conductive polymers.
  • suitable materials include, for example, gold, platinum, palladium, aluminum, calcium, titanium, titanium nitride, indium tin oxide (ITO), fluorine tin oxide (FTO), and polyaniline.
  • the first and second electrodes 22 and 26 can be single layers of conducting materials or they can include multiple layers.
  • either one or both of the- first electrode 22 and the second electrode 26 can include a layer of aluminum and a layer of gold, a layer of calcium and a layer of aluminum, a layer of aluminum and a layer of lithium fluoride, or a metal layer and a conductive organic layer.
  • the one or more device layers 24 include a light emitting layer.
  • the one or more device layers 24 can include one or more additional layers such as, for example, a hole transport layer or layers, an electron transport layer or layers, a hole injection layer or layers, an electron injection layer or layers, a hole blocking layer or layers, an electron blocking layer or layers, a buffer layer or layers, or any combination thereof.
  • the light emitting layer includes light emitting material. Any suitable light emitting material may be used in the light emitting layer.
  • the light emitters include, for example, fluorescent and phosphorescent materials.
  • suitable LEP materials include poly(phenylenevinylene)s (PPVs), poly-para-phenylenes (PPPs), polyfluorenes (PFs), other LEP materials now known or later developed,, and co-polymers or blends thereof.
  • Suitable LEPs can also be molecularly doped, dispersed with fluorescent dyes or other materials, blended with active or non-active materials, dispersed with active or non-active materials, and the like.
  • LEP materials are described in Kraft, et al., Angew. Chem. Int. Ed., 37, 402-428 (1998); U.S. Patent Nos. 5,621,131 (Kreuder et al.); 5,708,130 (Woo et al); 5,728,801 (Wu et al.); 5,840,217 (Lupo et al.); 5,869,350 (Heeger et al.); 5,900,327 (Pei et al.); 5,929,194 (Woo et al); 6,132,641 (Rietz et al.); and 6,169,163 (Woo et al.); and PCT Patent Application Publication No.
  • SM materials are generally non-polymeric organic or organometallic molecular materials that can be used in OEL displays and devices as emitter materials, charge transport materials, as dopants in emitter layers (e.g., to control the emitted color) or charge transport layers, and the like.
  • Commonly used SM materials include metal chelate compounds, such as tris(8-hydroxyquinoline) aluminum (A1Q), and N,N'-bis(3- methylphenyl)-N,N'-diphenylbenzidine (TPD).
  • metal chelate compounds such as tris(8-hydroxyquinoline) aluminum (A1Q)
  • TPD N,N'-bis(3- methylphenyl)-N,N'-diphenylbenzidine
  • Other SM materials are disclosed in, for example, CH. Chen, et al., Macromol.
  • the one or more device layers 24 may also include a hole transport layer.
  • the hole transport layer facilitates the injection of holes from an anode into the electroluminescent element 20 and their migration towards a recombination zone.
  • the hole transport layer can further act as a barrier for the passage of electrons to the anode.
  • Any suitable material or materials may be used for the hole transport layer, e.g., those materials described in Nalwa et al., Handbook of Luminescence, Display Materials and Devices, Stevens Collins, CA, American Scientific Publishers, 2003, p.
  • the one or more device layers 24 can also include an electron transport layer.
  • the electron transport layer facilitates the injection of electrons and their migration towards the recombination zone.
  • the electron transport layer can further act as a barrier for the passage of holes to a cathode if desired.
  • any suitable material or materials may be used for the electron transport layer, e.g., those materials described in Nalwa et al., Handbook of Luminescence, Display Materials and Devices, Stevens Collins, CA, American Scientific Publishers, 2003, p. 132-195; Chen et al., Recent Developments in Molecular Organic Electroluminescent Materials, Macromol. Symp., 1:125 (1997); and Shinar, Joseph, ed.,
  • the electroluminescent element 20 be capable of emitting light in a narrow band.
  • the term "light in a narrow band” refers to a light spectrum that has a spectral width (measured at the half-power points of the spectrum) of no more than about 100 nm.
  • a narrow band emitter therefore, is a light source that emits light having a spectral width of no more than 100 nm.
  • the electroluminescent element 20 be capable of emitting blue light.
  • materials for the light emitting layer of the electroluminescent element 20 may be selected such that the electroluminescent element 20 is capable of emitting light in a narrow band, e.g., blue light.
  • the electroluminescent element 20 be capable of emitting ultraviolet (UV) light. Both UV and blue light can be "down-converted" to light of a lower frequency by use of downconverting phosphors.
  • UV emitting electroluminescent elements it may be preferred that at least three color conversion elements 30 be formed on the electroluminescent element 20 as further described herein.
  • the one or more device layers 24 can be formed between the first electrode 22 and the second electrode 26 by a variety of methods, e.g., coating (e.g., spin coating), printing (e.g., screen printing or inkjet printing), physical or chemical vapor deposition, photolithography, and thermal transfer methods (e.g., methods described in U.S. Patent
  • the one or more device layers 24 can be formed sequentially, or two or more of the layers can be disposed simultaneously. After formation of the one or more device layers 24 or simultaneously with deposition of the device layers 24, the second electrode 26 is formed or otherwise disposed on the one or more device layers 24.
  • the electroluminescent element 20 may be formed using LITI techniques that include a multilayer donor sheet as described, e.g., in U.S. Patent No.
  • Electroluminescent element 20 may also include a protective layer or layers formed over the electroluminescent element 20 (not shown) as is further described herein.
  • the electroluminescent device 10 also includes color conversion elements 30 formed on the electroluminescent element 20. Although color conversion elements 30 are illustrated as being formed on the second electrode 26, one or more layers or devices may be included between the color conversion elements 30 and the second electrode 26. One, two, or more color conversion elements 30 may be formed on the electroluminescent element 20 such that at least a portion of light emitted from the electroluminescent element 20 is incident upon one or more color conversion elements 30. In other words, the color conversion elements 30 are in optical association with the electroluminescent element 20.
  • color conversion elements 30 absorb light incident thereon and reemit light in a selected narrow band.
  • color conversion element 30a may convert incident light into red light
  • color conversion element 30b may convert incident light into green light.
  • red light refers to light having a spectrum predominantly in an upper portion of the visible spectrum.
  • green light refers to light having a spectrum predominantly in a middle portion of the visible spectrum.
  • blue light refers to light having a spectrum predominantly in a lower portion of the visible spectrum.
  • color conversion elements 30 may also include a color conversion element that converts incident light into blue light.
  • color filters In contrast to color conversion elements, color filters (as further described herein) attenuate particular wavelengths or frequencies while passing others with relatively no change in wavelength.
  • one or more color conversion elements may be formed on one or more other color conversion elements.
  • a red color conversion element may be formed on a green color conversion element such that the red color conversion element absorbs green light emitted from the green color conversion element and reemits red light.
  • Color conversion elements 30 may include any suitable material or materials.
  • color conversion elements 30 may include any suitable color conversion material, e.g., fluorescent dyes, fluorescent pigments phosphors, semiconducting nanocrystals, etc.
  • Color conversion materials may be dispersed in any suitable binder material, e.g., monomeric, oligomeric, polymeric, etc.
  • Color conversion elements 30 may be formed on electroluminescent element 20 using any suitable technique, e.g., coating (e.g., spin coating), printing (e.g., screen printing or inkjet printing), physical or chemical vapor deposition, photolithography, and thermal transfer methods (e.g., methods described in U.S. Patent No. 6,114,088 (Wolk et al.))). It may be preferred that color conversion elements 30 are formed on electroluminescent element 20 using LITI techniques as further described herein.
  • emissive materials including light emitting polymers (LEPs) or other materials, color conversion elements, and color filters, can be selectively transferred from the transfer layer of a donor sheet to a receptor substrate by placing the transfer layer of the donor element adjacent to the receptor (e.g., the electroluminescent element 20) and selectively heating the donor element.
  • LEPs light emitting polymers
  • the transfer layer of the donor element adjacent to the receptor (e.g., the electroluminescent element 20) and selectively heating the donor element.
  • the donor element can be selectively heated by irradiating the donor element with imaging radiation that can be absorbed by light-to-heat converter (LTHC) material disposed in the donor, often in a separate LTHC layer, and converted into heat.
  • LTHC light-to-heat converter
  • light-to-heat conversion can occur in any one or more of the layers in either the donor element or the receptor substrate.
  • the donor can be exposed to imaging radiation through the donor substrate, through the receptor, or both.
  • the radiation can include one or more wavelengths, including visible light, infrared radiation, or ultraviolet radiation, for example from a laser, lamp, or other such radiation source.
  • thermal hot stamp e.g., a patterned thermal hot stamp such as a heated silicone stamp that has a relief pattern that can be used to selectively heat a donor.
  • Material from the thermal transfer layer can be selectively transferred to a receptor in this manner to imagewise form patterns of the transferred material on the receptor.
  • thermal transfer using light from, for example, a lamp or laser, to patternwise expose the donor can be advantageous because of the accuracy and precision that can often be achieved.
  • the size and shape of the transferred pattern can be controlled by, for example, selecting the size of the light beam, the exposure pattern of the light beam, the duration of directed beam contact with the donor sheet, or the materials of the donor sheet.
  • the transferred pattern can also be controlled by irradiating the donor element through a mask.
  • a thermal print head or other heating element patterned or otherwise
  • the light-to-heat converter material in the donor sheet is optional.
  • Thermal print heads or other heating elements may be particularly suited for making lower resolution patterns of material or for patterning elements whose placement need not be precisely controlled.
  • Transfer layers can also be transferred in their entirety from donor sheets.
  • a transfer layer can be formed On a donor substrate that, in essence, acts as a temporary liner that can be released after the transfer layer is contacted to a receptor substrate, typically with the application of heat or pressure.
  • lamination transfer can be used to transfer the entire transfer layer, or a large portion thereof, to the receptor.
  • the mode of thermal transfer can vary depending on the type of selective heating employed, the type of irradiation if used to expose the donor, the type of materials and properties of the optional LTHC layer, the type of materials in the transfer layer, the overall construction of the donor, the type of receptor substrate, and the like.
  • transfer generally occurs via one or more mechanisms, one or more of which may be emphasized or de-emphasized during selective transfer depending on imaging conditions, donor constructions, and so forth.
  • One mechanism of thermal transfer includes thermal melt-stick transfer whereby heating at the interface between the thermal transfer layer and the rest of the donor element results in adherence to the receptor more strongly than to the donor so that when the donor element is removed, the selected portions of the transfer layer remain on the receptor.
  • Another mechanism of thermal transfer includes ablative transfer whereby localized heating can be used to ablate portions of the transfer layer off of the donor element, thereby directing ablated material toward the receptor.
  • Yet another mechanism of thermal transfer includes sublimation whereby material dispersed in the transfer layer can be sublimated by heat generated in the donor element.
  • a portion of the sublimated material can condense on the receptor.
  • the present invention contemplates transfer modes that include one or more of these and other mechanisms whereby selective heating of a donor sheet can be used to cause the transfer of materials from a transfer layer to receptor surface.
  • a variety of radiation-emitting sources can be used to heat donor sheets.
  • high-powered light sources e.g., xenon flash lamps and lasers
  • digital imaging techniques infrared, visible, and ultraviolet lasers are particularly useful.
  • Suitable lasers include, for example, high power ( > 100 mW) single mode laser diodes, fiber-coupled laser diodes, and diode-pumped solid state lasers (e.g., Nd:YAG and Nd:YLF).
  • Laser exposure dwell times can vary widely from, for example, a few hundredths of microseconds to tens of microseconds or more, and laser fluences can be in the range from, for example, about 0.01 to about 5 J/cm or more.
  • Other radiation sources and irradiation conditions can be suitable based on, among other things, the donor element construction, the transfer layer material, the mode of thermal mass transfer, and other such factors.
  • a laser can be particularly useful as the radiation source.
  • Laser sources are also compatible with both large rigid substrates (e.g., I m x l m x l.l mm glass) and continuous or sheeted film substrates (e.g., 100 ⁇ m thick polyimide sheets).
  • the donor sheet can be brought into intimate contact with a receptor (as might typically be the case for thermal melt-stick transfer mechanisms) or the donor sheet can be spaced some distance from the receptor (as can be the case for ablative transfer mechanisms or material sublimation transfer mechanisms).
  • pressure or vacuum can be used to hold the donor sheet in intimate contact with the receptor.
  • a mask can be placed between the donor sheet and the receptor. Such a mask can be removable or can remain on the receptor after transfer. If a light-to-heat converter material is present in the donor, radiation source can then be used to heat the LTHC layer (or other layer(s) containing radiation absorber) in an imagewise fashion (e.g., digitally or by analog exposure through a mask) to perform imagewise transfer or patterning of the transfer layer from the donor sheet to the receptor. Typically, selected portions of the transfer layer are transferred to the receptor without transferring significant portions of the other layers of the donor sheet, such as an optional interlayer or LTHC layer as is further described herein.
  • the presence of the optional interlayer may eliminate or reduce the transfer of material from an LTHC layer or other proximate layers (for example, other interlayers) to the receptor or reduce distortion in the transferred portion of the transfer layer.
  • the adhesion of the optional interlayer to the LTHC layer is greater than the adhesion of the interlayer to the transfer layer.
  • the interlayer can be transmissive, reflective, or absorptive to imaging radiation, and can be used to attenuate or otherwise control the level of imaging radiation transmitted through the donor or to manage temperatures in the donor, for example to reduce thermal or radiation-based damage to the transfer layer during imaging. Multiple interlayers can be present. Large donor sheets can be used, including donor sheets that have length and width dimensions of a meter or more.
  • a laser can be rastered or otherwise moved across the large donor sheet, the laser being selectively operated to illuminate portions of the donor sheet according to a desired pattern.
  • the laser may be stationary and the donor sheet or receptor substrate moved beneath the laser.
  • multiple layer devices can be formed by transferring separate layers or separate stacks of layers from different donor sheets. Multilayer stacks can also be transferred as a single transfer unit from a single donor element as is described, e.g., in U.S. Patent No. 6,114,088 (Wolk et al.)).
  • a hole transport layer and a LEP layer can be co-transferred from a single donor.
  • a semiconductive polymer and an emissive layer can be co-transferred from a single donor.
  • Multiple donor sheets can also be used to form separate components in the same layer on the receptor.
  • three different donors that each have a transfer layer including a color conversion element capable of emitting a different color can be used to form RGB color conversion electroluminescent devices for a full color polarized light emitting electronic display.
  • a conductive or semiconductive polymer can be patterned via thermal transfer from one donor, followed by selective thermal transfer of emissive layers from one or more other donors to form a plurality of OEL devices in a display.
  • layers for organic transistors can be patterned by selective thermal transfer of electrically active organic materials (oriented or not), followed by selective thermal transfer patterning of one or more pixel or sub-pixel elements such as color conversion elements, color filters, emissive layers, charge transport layers, electrode layers, and the like. Materials from separate donor sheets can be transferred adjacent to other materials on a receptor to form adjacent devices, portions of adjacent devices, or different portions of the same device.
  • materials from separate donor sheets can be transferred directly on top of, or in partial overlying registratiou with, other layers or materials previously patterned onto the receptor by thermal transfer or some other method (e.g., photolithography, deposition through a shadow mask, etc.).
  • thermal transfer or some other method e.g., photolithography, deposition through a shadow mask, etc.
  • a variety of other combinations of two or more donor sheets can be used to form a device, each donor sheet used to form one or more portions of the device. It will be understood that other portions of these devices, or other devices on the receptor, may be formed in whole or in part by any suitable process including photolithographic processes, inkjet processes, and various other printing or mask-based processes, whether conventionally used or newly developed.
  • the donor substrate can be a polymer film.
  • One suitable type of polymer film is a polyester film, for example, polyethylene terephthalate (PET) or polyethylene naphthalate
  • the donor substrate in at least some instances, is flat so that uniform coatings can be formed thereon.
  • the donor substrate is also typically selected from materials that remain stable despite heating of one or more layers of the donor.
  • the inclusion of an underlayer between the substrate and an LTHC layer can be used to insulate the substrate from heat generated in the LTHC layer during imaging.
  • the typical thickness of the donor substrate ranges from 0.025 to 0.15 mm, preferably 0.05 to 0.1 mm, although thicker or thinner donor substrates may be used.
  • the materials used to form the donor substrate and an optional adjacent underlayer can be selected to improve adhesion between the donor substrate and the underlayer, to control heat transport between the substrate and the underlayer, to control imaging radiation transport to the LTHC layer, to reduce imaging defects and the like.
  • An optional priming layer can be used to increase uniformity during the coating of subsequent layers onto the substrate and also increase the bonding strength between the donor substrate and adjacent layers.
  • An optional underlayer may be coated or otherwise disposed between a donor substrate and the LTHC layer, for example to control heat flow between the substrate and the LTHC layer during imaging or to provide mechanical stability to the donor element for storage, handling, donor processing, or imaging. Examples of suitable underlayers and techniques of providing underlayers are disclosed in U.S. Patent No.
  • the underlayer can include materials that impart desired mechanical or thermal properties to the donor element.
  • the underlayer can include materials that exhibit a low specific heat x density or low thermal conductivity relative to the donor substrate. Such an underlayer may be used to increase heat flow to the transfer layer, for example to improve the imaging sensitivity of the donor.
  • the underlayer may also include materials for their mechanical properties or for adhesion between the substrate and the LTHC. Using an underlayer that improves adhesion between the substrate and the LTHC layer may result in less distortion in the transferred image. As an example, in some cases an underlayer can be used that reduces or eliminates delamination or separation of the LTHC layer, for example, that might otherwise occur during imaging of the donor media.
  • underlayers that promote at least some degree of separation between or among layers during imaging, for example to produce an air gap between layers during imaging that can provide a thermal insulating function. Separation during imaging may also provide a channel for the release of gases that may be generated by heating of the LTHC layer during imaging. Providing such a channel may lead to fewer imaging defects.
  • the underlayer may be substantially transparent at the imaging wavelength, or may also be at least partially absorptive or reflective of imaging radiation. Attenuation or reflection of imaging radiation by the underlayer may be used to control heat generation during imaging.
  • An LTHC layer can be included in donor sheets of the present invention to couple irradiation energy into the donor sheet.
  • the LTHC layer preferably includes a radiation absorber that absorbs incident radiation (e.g., laser light) and converts at least a portion of the incident radiation into heat to enable transfer of the transfer layer from the donor sheet to the receptor.
  • incident radiation e.g., laser light
  • the radiation absorber(s) in the LTHC layer absorb light in the infrared, visible, or ultraviolet regions of the electromagnetic spectrum and convert the absorbed radiation into heat.
  • the radiation absorber(s) are typically highly absorptive of the selected imaging radiation, providing an LTHC layer with an optical density at the wavelength of the imaging radiation in the range of about 0.2 to 3 or higher.
  • Optical density of a layer is the absolute value of the logarithm (base 10) of the ratio of the intensity of light transmitted through the layer to the intensity of light incident on the layer.
  • Radiation absorber material can be uniformly disposed throughout the LTHC layer or can be non-homogeneously distributed.
  • non-homogeneous LTHC layers can be used to control temperature profiles in donor elements. This can give rise to donor sheets that have improved transfer properties (e.g., better fidelity between the intended transfer patterns and actual transfer patterns).
  • Suitable radiation absorbing materials can include, for example, dyes (e.g., visible dyes, ultraviolet dyes, infrared dyes, fluorescent dyes, and radiation-polarizing dyes), pigments, metals, metal compounds, metal films, black body absorbers, and other suitable absorbing materials.
  • suitable radiation absorbers include carbon black, metal oxides, and metal sulfides.
  • a suitable LTHC layer can include a pigment, such as carbon black, and a binder, such as an organic polymer.
  • Another suitable LTHC layer includes metal or metal/metal oxide formed as a thin film, for example, black aluminum (i.e., a partially oxidized aluminum having a black visual appearance).
  • Metallic and metal compound films may be formed by techniques, such as, for example, sputtering and evaporative deposition.
  • Particulate coatings may be formed using a binder and any suitable dry or wet coating techniques.
  • LTHC layers can also be formed by combining two or more LTHC layers containing similar or dissimilar materials.
  • an LTHC layer can be formed by vapor depositing a thin layer of black aluminum over a coating that contains carbon black disposed in a binder.
  • Dyes suitable for use as radiation absorbers in a LTHC layer may be present in particulate form, dissolved in a binder material, or at least partially dispersed in a binder material.
  • the particle size can be, at least in some instances, about 10 ⁇ m or less, and may be about 1 ⁇ m or less.
  • Suitable dyes include those dyes that absorb in the IR region of the spectrum. A specific dye may be chosen based on factors such as, solubility in, and compatibility with, a specific binder or coating solvent, as well as the wavelength range of absorption. Pigmentary materials may also be used in the LTHC layer as radiation absorbers. Examples of suitable pigments include carbon black and graphite, as well as phthalocyanines, nickel dithiolenes, and other pigments described in U.S. Patent Nos.
  • black azo pigments based on copper or chromium complexes of, for example, pyrazolone yellow, dianisidine red, and nickel azo yellow can be useful.
  • Inorganic pigments can also be used, including, for example, oxides and sulfides of metals such as aluminum, bismuth, tin, indium, zinc, titanium, chromium, molybdenum, tungsten, cobalt, iridium, nickel, palladium, platinum, copper, silver, gold, zirconium, iron, lead, and tellurium.
  • Metal borides carbides, nitrides, carbonitrides, bronze-structured oxides, and oxides structurally related to the bronze family (e.g., WO 2. ) may also be used.
  • Metal radiation absorbers may be used, either in the form of particles, as described for instance in U.S. Patent No. 4,252,671 (Smith), or as films, as disclosed in U.S. Patent No. 5,256,506 (Ellis et al.).
  • Suitable metals include, for example, aluminum, bismuth, tin, indium, tellurium and zinc.
  • Suitable binders for use in the LTHC layer include film-forming polymers, such as, for example, phenolic resins (e.g., novolak and resole resins), polyvinyl butyral resins, polyvinyl acetates, polyvinyl acetals, polyvinylidene chlorides, polyacrylates, cellulosic ethers and esters, nitrocelluloses, and polycarbonates.
  • Suitable binders may include monomers, oligomers, or polymers that have been, or can be, polymerized or crosslinked.
  • Additives such as photoinitiators may also be included to facilitate crosslinking of the LTHC binder.
  • the binder is primarily formed using a coating of crosslinkable monomers or oligomers with optional polymer.
  • a thermoplastic resin e.g., polymer
  • the inclusion of a thermoplastic resin may improve, in at least some instances, the performance (e.g., transfer properties or coatability) of the LTHC layer. It is thought that a thermoplastic resin may improve the adhesion of the LTHC layer to the donor substrate.
  • the binder includes 25 to 50 wt.% (excluding the solvent when calculating weight percent) thermoplastic resin, and, preferably, 30 to 45 wt.% thermoplastic resin, although lower amounts of thermoplastic resin may be used (e.g., 1 to 15 wt.%).
  • the thermoplastic resin is typically chosen to be compatible (i.e., form a one-phase combination) with the other materials of the binder.
  • a thermoplastic resin that has a solubility parameter in the range of 9 to 13 (cal/cm 3 ) 1/2 , preferably, 9.5 to 12 (cal/cm 3 ) 1 2 is chosen for the binder.
  • thermoplastic resins examples include polyacrylics, styrene-acrylic polymers and resins, and polyvinyl butyral.
  • Conventional coating aids such as surfactants and dispersing agents, may be added to facilitate the coating process.
  • the LTHC layer may be coated onto the donor substrate using a variety of coating methods known in the art.
  • a polymeric or organic LTHC layer can be coated, in at least some instances, to a thickness of 0.05 ⁇ m to 20 ⁇ m, preferably, 0.5 ⁇ m to 10 ⁇ m, and, more preferably, 1 ⁇ m to 7 ⁇ m.
  • An inorganic LTHC layer can be coated, in at least some instances, to a thickness in the range of 0.0005 to 10 ⁇ m, and preferably, 0.001 to 1 ⁇ m.
  • At least one optional interlayer may be disposed between the LTHC layer and transfer layer.
  • the interlayer can be used, for example, to minimize damage and contamination of the transferred portion of the transfer layer and may also reduce distortion in or mechanical damage of the transferred portion of the transfer layer.
  • the interlayer may also influence the adhesion of the transfer layer to the rest of the donor sheet.
  • the interlayer has high thermal resistance.
  • the interlayer does not distort or chemically decompose under the imaging conditions, particularly to an extent that renders the transferred image non-functional.
  • interlayer typically remains in contact with the LTHC layer during the transfer process and is not substantially transferred with the transfer layer.
  • Suitable interlayers include, for example, polymer films, metal layers (e.g., vapor deposited metal layers), inorganic layers (e.g., sol-gel deposited layers and vapor deposited layers of inorganic oxides (e.g., silica, titania, and other metal oxides)), and organic/inorganic composite layers.
  • Organic materials suitable as interlayer materials include both thermoset and thermoplastic materials. Suitable thermoset materials include resins that may be crosslinked by heat, radiation, or chemical treatment including, but not limited to, crosslinked or crosslinkable polyacrylates, polymethacrylates, polyesters, epoxies, and polyurethanes.
  • thermoset materials may be coated onto the LTHC layer as, for example, thermoplastic precursors and subsequently crosslinked to form a crosslinked interlayer.
  • Suitable thermoplastic materials include, for example, polyacrylates, polymethacrylates, polystyrenes, polyurethanes, polysulfones, polyesters, and polyimides. These thermoplastic organic materials may be applied via conventional coating techniques (for example, solvent coating, spray coating, or extrusion coating).
  • the glass transition temperature (T g ) of thermoplastic materials suitable for use in the interlayer is 25 °C or greater, preferably 50 °C or greater.
  • the interlayer includes a thermoplastic material that has a T g greater than any temperature attained in the transfer layer during imaging.
  • the interlayer may be either transmissive, absorbing, reflective, or some combination thereof, at the imaging radiation wavelength.
  • Inorganic materials suitable as interlayer materials include, for example, metals, metal oxides, metal sulfides, and inorganic carbon coatings, including those materials that are highly transmissive or reflective at the imaging light wavelength. These materials may be applied to the light-to-heat-conversion layer via conventional techniques (e.g., vacuum sputtering, vacuum evaporation, or plasma jet deposition).
  • the interlayer may provide a number of benefits.
  • the interlayer may be a barrier against the transfer of material from the light-to-heat conversion layer.
  • the interlayer may also act as a barrier to prevent any material or contamination exchange to or from layers proximate thereto.
  • the interlayer can act as a thermal diffuser to control the temperature at the interface between the interlayer and the transfer layer relative to the temperature attained in the LTHC layer. This may improve the quality (i.e., surface roughness, edge roughness, etc.) of the transferred layer.
  • the presence of an interlayer may also result in improved plastic memory in the transferred material.
  • the interlayer may contain additives, including, for example, photoinitiators, surfactants, pigments, plasticizers, and coating aids.
  • the thickness of the interlayer may depend on factors such as, for example, the material of the interlayer, the material and properties of the LTHC layer, the material and properties of the transfer layer, the wavelength of the imaging radiation, and the duration of exposure of the donor sheet to imaging radiation.
  • the thickness of the interlayer typically is in the range of 0.05 ⁇ m to 10 ⁇ m.
  • the thickness of the interlayer typically is in the range of 0.005 ⁇ m to 10 ⁇ m.
  • Multiple interlays can also be used; for example, an organic-based interlayer can be covered by an inorganic-based interlayer to provide additional protection to the transfer layer during the thermal transfer process.
  • a thermal transfer layer is included in the donor sheet.
  • the transfer layer can include any suitable material or materials, disposed in one or more layers, alone or in combination with other materials.
  • the transfer layer is capable of being selectively transferred as a unit or in portions by any suitable transfer mechanism when the donor element is exposed to direct heating or to imaging radiation that can be absorbed by light- to-heat converter material and converted into heat.
  • the thermal transfer layer can be used to form, for example, color conversion elements, color filters, electronic circuitry, resistors, capacitors, diodes, rectifiers, electroluminescent lamps, memory elements, field effect transistors, bipolar transistors, unijunction transistors, MOS transistors, metal-insulator-semiconductor transistors, charge coupled devices, insulator-metal-insulator stacks, organic conductor-metal-organic conductor stacks, integrated circuits, photodetectors, lasers, lenses, waveguides, gratings, holographic elements, filters (e.g., add-drop filters, gain-flattening filters, cut-off filters, and the like), mirrors, splitters, couplers, combines, modulators, sensors (e.g., evanescent sensors, phase modulation sensors, interferometric sensors, and the like), optical cavities, piezoelectric devices, ferroelectric devices, thin film batteries, or combinations thereof; for example, the combination of field effect transistors and organic electroluminescent lamps as an
  • the transfer layer can be selectively thermally transferred from the donor element to a proximately located receptor substrate. There can be, if desired, more than one transfer layer so that a multilayer construction is transferred using a single donor sheet.
  • the receptor substrate may be any item suitable for a particular application including, but not limited to, glass, transparent films, reflective films, metals, semiconductors, and plastics.
  • receptor substrates may be any type of substrate or display element suitable for display applications, e.g., emissive displays, transmissive displays, transflective displays, electropheretic displays, and the like.
  • Receptor substrates suitable for use in displays such as liquid crystal displays or emissive displays include rigid or flexible substrates that are substantially transmissive to visible light.
  • suitable rigid receptors include glass and rigid plastic that are coated or patterned with indium tin oxide or are circuitized with low temperature poly-silicon (LTPS) or other transistor structures, including organic transistors.
  • Suitable flexible substrates include substantially clear and transmissive polymer films, reflective films, transflective films, polarizing films, multilayer optical films, metallic films, metallic sheets, metallic foils, and the like.
  • Flexible substrates can also be coated or patterned with electrode materials or transistors, for example transistor arrays formed directly on the flexible substrate or transferred to the flexible substrate after being formed on a temporary carrier substrate.
  • Suitable polymer substrates include polyester base (e.g., polyethylene terephthalate, polyethylene naphthalate), polycarbonate resins, polyolefin resins, polyvinyl resins (e.g., polyvinyl chloride, polyvinylidene chloride, polyvinyl acetals, etc.), cellulose ester bases (e.g., cellulose triacetate, cellulose acetate), and other conventional polymeric films used as supports.
  • polyester base e.g., polyethylene terephthalate, polyethylene naphthalate
  • polycarbonate resins e.g., polyolefin resins
  • polyvinyl resins e.g., polyvinyl chloride, polyvinylidene chloride, polyvinyl acetals, etc.
  • cellulose ester bases e.g., cellulose triacetate, cellulose acetate
  • Receptor substrates can be pre-patterned with any one or more of electrodes, transistors, capacitors, insulator ribs, spacers, color filters, black matrix, hole transport layers, electron transport layers, and other elements useful for electronic displays or other devices.
  • a method of making an electroluminescent device will now be described in reference to the electroluminescent device 10 of FIG. 1.
  • the electroluminescent element 20 of device 10 is formed on the major surface 14 of the substrate 12 using any suitable technique, e.g., LITI patterning as described herein.
  • Color conversion elements 30 are selectively thermally transferred to the electroluminescent element 20 as is also described herein.
  • the color conversion elements 30 may be transferred to the electroluminescent element 20 such that the color conversion elements 30 are on the second electrode 26.
  • FIG. 2 is a schematic diagram of another embodiment of an electroluminescent device 100.
  • the electroluminescent device 100 is similar in many respects to electroluminescent device 10 of FIG. 1. In the embodiment shown in FIG.
  • electroluminescent device 100 includes a substrate 112, an electroluminescent element 120 formed on a major surface 114 of substrate 112, and color conversion elements 130a and 130b (hereinafter referred to collectively as color conversion elements 130) formed on a protective layer 140.
  • the electroluminescent element 120 includes a first electrode 122, a second electrode 126, and one or more device layers 124 positioned between the first electrode 122 and the second electrode 126. All of the design considerations and possibilities described herein with respect to the substrate 12, the electroluminescent element 20, and the color conversion elements 30 of the embodiment illustrated in FIG. 1 apply equally to the substrate 112, the electroluminescent element 120, and the color conversion elements 130 of the embodiment illustrated in FIG. 2.
  • Electroluminescent device 100 also includes a protective layer 140 formed over at least a portion of the electroluminescent element 120.
  • the protective layer 140 may be formed on and in contact with the electroluminescent element 120. Alternatively, an optional layer or layers may be included between the electroluminescent element 120 and the protective layer 140.
  • the protective layer 140 may be any suitable type of layer or layers that protect the electroluminescent element 120, e.g., barrier layers, encapsulant layers, etc.
  • the protective layer 140 may be formed using any suitable material or materials, e.g., as described in U.S. Patent Application Publication No. 2004/0195967 (Padiyath et al.) and U.S. Patent No. 6,522,067 (Graff et al.).
  • the color conversion elements 130 are transferred to a major surface 142 of the protective layer 140.
  • the color conversion elements 130 of electroluminescent device 100 may be formed using any suitable technique, e.g., coating (e.g., spin coating), printing (e.g., screen printing or inkjet printing), physical or chemical vapor deposition, photolithography, and thermal transfer methods (e.g., methods described in U.S. Patent No. 6,114,088 (Wolk et al.))). It may be preferred that the color conversion elements 130 are transferred to the protective layer 140 using LITI techniques as described herein.
  • FIG. 3 is a schematic diagram of another embodiment of an electroluminescent device 200.
  • Electroluminescent device 200 is similar in many respects to electroluminescent device 10 of FIG. 1 and electroluminescent device 100 of FIG. 2.
  • Electroluminescent device 200 includes a substrate 212, an electroluminescent element 220 formed on a major surface 214 of the substrate 212, and color conversion elements 230a and 230b (hereinafter referred to collectively as color conversion elements 230) formed on the electroluminescent element
  • Electroluminescent element 220 includes a first electrode 222, a second electrode 226, and one or more device layers 224 positioned between the first electrode 222 and the second electrode 226. All of the design considerations and possibilities described herein with respect to the substrate 12, the electroluminescent element 20, and the color conversion elements 30 of the embodiment illustrated in FIG. 1 apply equally to the substrate 212, the electroluminescent element 220, and the color conversion elements 230 of the embodiment illustrated in FIG. 3. Electroluminescent device 200 further includes an optional black matrix 260 formed on the electroluminescent element 220. Black matrix 260 includes a plurality of apertures 262a, 262b, and 262c (hereinafter referred to collectively as apertures 262). Although the embodiment illustrated in FIG. 3 includes three apertures 262a, 262b, and
  • the black matrix 260 can include any suitable number of apertures 262. Each aperture 262 may take any suitable shape, e.g., oval, rectangular, polygonal, etc.
  • black matrix coatings are used in many display applications to absorb ambient light, improve contrast, and protect TFTs.
  • the black matrix 260 (typically including absorbing or non-reflecting metals, metal oxides, metal sulfides, dyes or pigments) is formed around individual pixels, color conversion elements, or color filters of the display.
  • the black matrix 260 is a 0.1 to 0.2 ⁇ m coating of black chromium oxide on a display substrate.
  • Resin black matrix (a pigment in a resin matrix) is an alternative to black chromium oxide.
  • the resin black matrix can be coated onto the display substrate or electroluminescent device and then patterned using photolithography.
  • the black matrix 260 can be transferred from a donor sheet to the device using a thermal transfer method, such as described in U.S. Patent No. 6,461,775 (Pokorny et al.).
  • the color conversion elements 230 may be transferred to the electroluminescent element 220 such that each color conversion element 230 is transferred to an aperture 262 of optional black matrix 260 using any suitable technique as described herein.
  • color conversion element 230a can be transferred to aperture 262a of black matrix 260.
  • Electroluminescent device 200 further includes color filters 250a, 250b, and 250c (hereinafter referred to collectively as color filters 250).
  • Color filters 250 may be formed on one or more color conversion elements 230.
  • color filter 250a is formed on color conversion element 230a such that color filter 250a is in optical association with color conversion element 230a.
  • one or more color filters 250 are shown as being formed on one or more color conversion elements 230, one or more layers or devices may be included between such color filters 250 and the color conversion elements 230.
  • At least a portion of light emitted by color conversion element 230a is incident on color filter 250a such that the light is filtered through color filter 230a.
  • color filter 250b is formed on color conversion element 230b.
  • providing color filters in conjunction with color conversion elements may provide emitted light that is more saturated.
  • one or more color filters 250 may be formed on electroluminescent device 220.
  • color filter 250c is formed on second electrode 226 of electroluminescent element 220 in aperture 262c of optional black matrix 260 such that it is in optical association with the electroluminescent element 220.
  • a color filter element that is capable of providing filtered blue light may be formed on an electroluminescent element that emits blue light such that the blue light emitted by the electroluminescent device is more saturated.
  • the use of both color conversion elements and color filters may reduce or eliminate fluorescence from ambient blue light and, therefore, increase display contrast.
  • color filters 250 Any suitable material or materials may be used to form color filters 250, e.g., those described in U.S. Patent No. 5,521,035 (Wolk et al.).
  • electroluminescent element 220 is formed such that it is capable of emitting UV light
  • color filters 250 include one or more UV absorbers to aid in preventing UV light from being emitted by the electroluminescent device 200.
  • color filters 250 may be formed used any suitable technique, e.g., coating (e.g., spin coating), printing (e.g., screen printing or inkjet printing), physical or chemical vapor deposition, photolithography, and thermal transfer methods (e.g., methods described in U.S. Patent No.
  • color filters 250 are formed using LITI techniques as further described herein.
  • one or more of the substrate 212, the one or more device layers 224, the color conversion elements 230, and the color filters 250 may be configured to provide polarized light as is further described, e.g., in U.S. Patent Nos. 6,485,884 (Wolk et al.) and 5,693,446 (Stand et al.).
  • electroluminescent devices may be either top emitting (e.g., electroluminescent device 10 of FIG. 1) or bottom emitting. One such embodiment of a bottom emitting device is illustrated in FIG.
  • Electroluminescent device 300 is similar in many respects to electroluminescent device 10 of FIG. 1.
  • Electroluminescent device 300 includes a substrate 312 and an electroluminescent element 320 formed on a first major surface 314 of the substrate 312.
  • the electroluminescent element 320 includes a first electrode 322, a second electrode 326, and one or more device layers 324 positioned between the first electrode 322 and the second electrode 326.
  • One difference between electroluminescent device 300 and electroluminescent device 10 of FIG. 1 is that device 300 is a bottom emitting electroluminescent device.
  • the color conversion elements 330a and 330b are formed on a second major surface 316 of the substrate 312 such that the color conversion elements 330 are in optical association with the electroluminescent element 320.
  • the color conversion elements 330 are in optical association with the electroluminescent element 320.
  • electroluminescent device 300 may include any suitable number of color conversion elements, e.g., red and green; red, green, blue, etc.
  • electroluminescent device 300 may include at least one color filter in optical association with one or more color conversion elements or with the electroluminescent element as is described herein in reference, e.g., to electroluminescent device 200 of FIG. 3. Further, electroluminescent device 300 may include a black matrix formed on the second major surface 316 of substrate 312 as is further described herein. All of the design considerations and possibilities described herein with respect to the substrate 12, the electroluminescent element 20, and the color conversion elements 30 f of FIG. 1 apply equally to similar elements of the embodiment illustrated in FIG. 4. Illustrative embodiments of this invention are discussed and reference has been made to possible variations within the scope of this invention.

Abstract

An electroluminescent device, and a method of making an electroluminescent device that includes one or more color conversion elements is disclosed. In one embodiment, the method includes forming an electroluminescent element on a substrate, where the electroluminescent element is capable of emitting light in a narrow band. The method further includes selectively thermally transferring a plurality of color conversion elements to the electroluminescent element. In another embodiment, the method includes forming an electroluminescent element on a substrate, where the electroluminescent element is capable of emitting UV light. The method further includes selectively thermally transferring a plurality of color conversion elements to the electroluminescent element.

Description

ELECTROLUMINESCENT DEVICES AND METHODS OF MAKING ELECTROLUMINESCENT DEVICES INCLUDING A COLOR CONVERSION ELEMENT
Field of the Invention Generally, the present disclosure relates to electroluminescent devices. In particular, the present disclosure relates to electroluminescent devices and methods of forming electroluminescent devices that include an electroluminescent element and at least one color conversion element .
Background Light emitting devices, such as organic or inorganic electroluminescent devices, are useful in a variety of display, lighting, and other applications. Generally, these light emitting devices include one or more devices layers, including at least one light emitting layer, disposed between two electrodes (an anode and a cathode). A voltage drop or current is provided between the two electrodes, thereby causing a light emitting material, which can be organic or inorganic, in the light emitting layer to luminesce. Typically, one or both of the electrodes is transparent so that light can be transmitted through the electrode to a viewer or other light receiver. An electroluminescent device may be constructed such that it is either a top emitting device or a bottom emitting device. In a top emitting electroluminescent device, the light emitting layer or layers are positioned between the substrate and a viewer. In a bottom emitting electroluminescent device, a transparent or semitransparent substrate is positioned between the light emitting layer or layers and the viewer. In a typical color electroluminescent display, one or more electroluminescent devices can be formed on a single substrate and arranged in groups or arrays. Several approaches exist for producing a color electroluminescent display. For example, one approach includes an array having red, green, and blue electroluminescent device subpixels placed next to each other. Another approach, for example, uses color conversion to produce a color electroluminescent display. Displays that utilize color conversion can include electroluminescent devices that emit light in a narrow band, e.g., blue light. Each color conversion electroluminescent device also includes one or more color conversion elements in optical association with the electroluminescent device such that the emitted light (e.g., blue light) is converted, e.g., to red light by a red color conversion element and green light by a green color conversion element.
Summary The present disclosure provides methods of making electroluminescent devices that include color conversion elements in optical association with an electroluminescent element. In particular, the present disclosure provides techniques that include selective thermal transfer (e.g., Laser induced Thermal Imaging (Lrri)) of color conversion elements for use in electroluminescent devices. Patterning of red-, green-, and blue-emitting primary organic light emitting diode
(OLED) materials for full color devices has proven to be difficult. Many techniques have been described for such patterning, including laser thermal patterning, inkjet patterning, shadow mask patterning, and photolithographic patterning. Alternative techniques of providing a full color display without patterning the emitting materials include the use of color conversion as described herein. However, the use of these alternative techniques with the traditional bottom emitting electroluminescent device construction is limited by physical and optical factors. For practical reasons, the color conversion elements must be patterned either on a separate piece of glass or on the substrate. In this case, the effect of the distance between the light emitting layer and the filter layer leads to parallax problems. In other words, Lambertian emission from the electroluminescent device allows the light to reach the corresponding color conversion element as well as a number of adjacent color conversion elements. As a result, the color saturation level of the electroluminescent display is reduced. On the other hand, top emitting electroluminescent devices may allow for more complex pixel control circuitry as well as more flexibility in the choice of semiconductor and substrate. In a typical top emitting device, the electroluminescent device layers can be deposited onto a substrate, followed by the formation of a thin, transparent metal electrode, and a protective layer. In some embodiments, the present disclosure provides selective thermal transfer (e.g., LΠT) techniques for forming top emitting electroluminescent devices that include color conversion elements that are formed on the top electrode of an electroluminescent element or on a protective layer formed over the electroluminescent element. The present disclosure also provides selective thermal transfer (e.g., LlTi) techniques for forming bottom emitting electroluminescent devices that include color conversion elements formed on a substrate surface opposite an electroluminescent element. Providing color conversion elements directly on the top electrode or on a protective layer may help to eliminate alignment difficulties and parallax problems. Further, selective thermal transfer patterning (e.g., LITI patterning, which is a dry, digital method), may be more compatible with the materials used, e.g., for organic electroluminescent devices. Because it is a dry technique, selective thermal transfer may also allow for patterning of multiple layers on a single substrate without concern for the relative solubility of each layer. In addition, selective thermal transfer patterning of color conversion elements may provide a technique that is more easily reversible. For example, if the pattern of the color conversion elements does not pass quality control inspection, the elements can be washed off and formed again without undue harm to the electroluminescent element. hi one aspect, the present disclosure provides a method of making an electroluminescent device. The method includes forming an electroluminescent element on a substrate, where the electroluminescent element is capable of emitting, and preferably emits light in a narrow band. The method further includes selectively thermally transferring a plurality of color conversion elements to the electroluminescent element. In another aspect, the present disclosure provides a method of making an electroluminescent device. The method includes forming an electroluminescent element on a first major surface of a substrate, where the electroluminescent element capable of emitting, and preferably emits light in a narrow band. The method further includes selectively thermally transferring a plurality of color conversion elements to a second major surface of the substrate. In another aspect, the present disclosure provides a method of making an electroluminescent device. The method includes forming an electroluminescent element on a substrate, where the electroluminescent element is capable of emitting, and preferably emits light in a narrow band. The method further includes forming a protective layer over at least a portion of the electroluminescent element; and selectively thermally transferring a plurality of color conversion elements to the protective layer. In another aspect, the present disclosure provides a method of making an electroluminescent color display including at least one electroluminescent device. The method includes forming the at least one electroluminescent device on a substrate. Forming the at least one electroluminescent device includes forming an electroluminescent element on the substrate, where the electroluminescent element is capable of emitting, and preferably emits light in a narrow band; and selectively thermally transferring a plurality of color conversion elements to the electroluminescent element. In another aspect, the present disclosure provides a method of making an electroluminescent device. The method includes forming an electroluminescent element on a substrate, where the electroluminescent element is capable of emitting, and preferably emits UV light. The method further includes selectively thermally transferring a plurality of color conversion elements to the electroluminescent element. In another aspect, the present disclosure provides an electroluminescent device. The device includes: a substrate; an electroluminescent element on the substrate, where the electroluminescent element is capable of emitting , and preferably emits light in a narrow band; a plurality of color conversion elements on the electroluminescent element; and at least one color filter on at least one color conversion element of the plurality of color conversion elements. As used herein, "a," "an," "the," "at least one," and "one or more" are used interchangeably. The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures and the detailed description that follow more particularly exemplify illustrative embodiments. Brief Description of the Drawings FIG. 1 is a schematic diagram of one embodiment of a top emitting electroluminescent device that includes color conversion elements formed on an electroluminescent element. FIG. 2 is a schematic diagram of another embodiment of a top emitting electroluminescent device that includes color conversion elements formed on a protective layer. FIG. 3 is a schematic diagram of another embodiment of a top emitting electroluminescent device that includes color conversion elements formed on an electroluminescent element and color filters formed on one or more of the color conversion elements. FIG. 4 is a schematic diagram of an embodiment of a bottom emitting electroluminescent device that includes color conversion elements formed on a substrate. Detailed Description In the following detailed description of illustrative embodiments, reference is made to the accompanying drawings that form a part hereof, and in which are shown, by way of illustration, specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention. The present disclosure is believed to be applicable to electroluminescent devices and methods of making electroluminescent devices. Electroluminescent devices can include organic or inorganic light emitters or combinations of both types of light emitters. An organic electroluminescent (OEL) display or device refers to an electroluminescent display or device that includes at least one organic emissive material, whether that emissive material is a small molecule (SM) emitter (e.g., nonpolymeric emitter), a SM doped polymer, a SM blended polymer, a light emitting polymer (LEP), a doped LEP, a blended LEP, or another organic emissive material whether provided alone or in combination with any other organic or inorganic materials that are functional or non- functional in the OEL display or devices. Inorganic light emissive materials include phosphors, semiconductor nanocrystals, etc. Generally, electroluminescent devices have one or more device layers, including at least one light emitting layer, disposed between two electrodes (an anode and a cathode). A voltage drop or current is provided between the two electrodes, thereby causing the light emitter to luminesce. Electroluminescent devices can also include thin film electroluminescent displays or devices. A thin film electroluminescent device includes an emissive material sandwiched between transparent dielectric layers and a matrix of row and column electrodes. Such thin film electroluminescent displays may include those described, e.g., in U.S. Patent Nos. 4,897,319 (Sun) and 5,652,600 (Khormaei et al). FIG. 1 is a schematic diagram of one embodiment of an electroluminescent device
10. The electroluminescent device 10 includes a substrate 12, an electroluminescent element 20 formed on a major surface 14 of the substrate 12, and color conversion elements 30a and 30b (hereinafter referred to collectively as color conversion elements 30) formed on the electroluminescent element 20. The electroluminescent element 20 includes a first electrode 22, a second electrode 26, and one or more device layers 24 positioned between the first electrode 22 and the second electrode 26. The substrate 12 of device 10 can be any substrate suitable for electroluminescent device or display applications. For example, the substrate 12 can be made of glass, clear plastic, or other suitable material(s) that are substantially transparent to visible light. The substrate 12 can also be opaque to visible light, for example stainless steel, crystalline silicon, poly-silicon, or the like. In some instances, the first electrode 22 can be the substrate 12. Because materials used in at least some electroluminescent devices can be particularly susceptible to damage due to exposure to oxygen or water, a suitable substrate can be selected to provide an adequate environmental barrier, or is supplied with one or more layers, -coatings, or laminates that provide an adequate environmental barrier. The substrate 12 can also include any number of devices or components suitable in electroluminescent devices and displays, such as transistor arrays and other electronic devices; color filters, polarizers, wave plates, diffusers, and other optical devices; insulators, barrier ribs, black matrix, mask work, and other such components; and the like. The substrate 12 may also include a plurality of independently addressable active devices as is described, e.g., in European Patent Application No. 1,220,191 (Kwon). The electroluminescent device 10 also includes an electroluminescent element 20 formed on major surface 14 of the substrate 12. Although FIG. 1 illustrates electroluminescent element 20 as being formed on and in contact with major surface 14 of substrate 12, one or more layers or devices may be included between the electroluminescent element 20 and the major surface 14 of substrate 12. The electroluminescent element 20 includes a first electrode 22, a second electrode 26, and one or more device layers 24 positioned between the first electrode 22 and the second electrode 26. The first electrode 22 can be the anode and the second electrode 26 can be the cathode, or the first electrode 22 can be the cathode and the second electrode 26 can be the anode. The first electrode 22 and the second electrode 26 are typically formed using electrically conducting materials such as metals, alloys, metallic compounds, metal oxides, conductive ceramics, conductive dispersions, and conductive polymers. Examples of suitable materials include, for example, gold, platinum, palladium, aluminum, calcium, titanium, titanium nitride, indium tin oxide (ITO), fluorine tin oxide (FTO), and polyaniline. The first and second electrodes 22 and 26 can be single layers of conducting materials or they can include multiple layers. For example, either one or both of the- first electrode 22 and the second electrode 26 can include a layer of aluminum and a layer of gold, a layer of calcium and a layer of aluminum, a layer of aluminum and a layer of lithium fluoride, or a metal layer and a conductive organic layer. Formed between the first electrode 22 and the second electrode 26 are the one or more device layers 24. The one or more device layers 24 include a light emitting layer. Optionally, the one or more device layers 24 can include one or more additional layers such as, for example, a hole transport layer or layers, an electron transport layer or layers, a hole injection layer or layers, an electron injection layer or layers, a hole blocking layer or layers, an electron blocking layer or layers, a buffer layer or layers, or any combination thereof. The light emitting layer includes light emitting material. Any suitable light emitting material may be used in the light emitting layer. A variety of light emitting materials, including LEP and SM light emitters, can be used. The light emitters include, for example, fluorescent and phosphorescent materials. Examples of classes of suitable LEP materials include poly(phenylenevinylene)s (PPVs), poly-para-phenylenes (PPPs), polyfluorenes (PFs), other LEP materials now known or later developed,, and co-polymers or blends thereof. Suitable LEPs can also be molecularly doped, dispersed with fluorescent dyes or other materials, blended with active or non-active materials, dispersed with active or non-active materials, and the like. Examples of suitable LEP materials are described in Kraft, et al., Angew. Chem. Int. Ed., 37, 402-428 (1998); U.S. Patent Nos. 5,621,131 (Kreuder et al.); 5,708,130 (Woo et al); 5,728,801 (Wu et al.); 5,840,217 (Lupo et al.); 5,869,350 (Heeger et al.); 5,900,327 (Pei et al.); 5,929,194 (Woo et al); 6,132,641 (Rietz et al.); and 6,169,163 (Woo et al.); and PCT Patent Application Publication No. 99/40655 (Kreuder et al.). SM materials are generally non-polymeric organic or organometallic molecular materials that can be used in OEL displays and devices as emitter materials, charge transport materials, as dopants in emitter layers (e.g., to control the emitted color) or charge transport layers, and the like. Commonly used SM materials include metal chelate compounds, such as tris(8-hydroxyquinoline) aluminum (A1Q), and N,N'-bis(3- methylphenyl)-N,N'-diphenylbenzidine (TPD). Other SM materials are disclosed in, for example, CH. Chen, et al., Macromol. Symp., 125:1 (1997); Japanese Laid Open Patent Application 2000-195673 (Fujii); U.S. Patent Nos. 6,030,715 (Thompson et al.); 6,150,043 (Thompson et al.); and 6,242,115 (Thomson et al.); and PCT Patent Application Publication Nos. WO 00/18851 (Shipley et al.) (divalent lanthanide metal complexes),
WO 00/70655 (Forrest et al.) (cyclometallated iridium compounds and others), and WO 98/55561 (Christou). The one or more device layers 24 may also include a hole transport layer. The hole transport layer facilitates the injection of holes from an anode into the electroluminescent element 20 and their migration towards a recombination zone. The hole transport layer can further act as a barrier for the passage of electrons to the anode. Any suitable material or materials may be used for the hole transport layer, e.g., those materials described in Nalwa et al., Handbook of Luminescence, Display Materials and Devices, Stevens Ranch, CA, American Scientific Publishers, 2003, p. 132-195; Chen et al., Recent Developments in Molecular Organic Electroluminescent Materials, Macromol. Symp., 1:125 (1997); and Shinar, Joseph, ed., Organic Light-Emitting Devices, Berlin, Springer Verlag, 2003, p. 43- 69. The one or more device layers 24 can also include an electron transport layer. The electron transport layer facilitates the injection of electrons and their migration towards the recombination zone. The electron transport layer can further act as a barrier for the passage of holes to a cathode if desired. Any suitable material or materials may be used for the electron transport layer, e.g., those materials described in Nalwa et al., Handbook of Luminescence, Display Materials and Devices, Stevens Ranch, CA, American Scientific Publishers, 2003, p. 132-195; Chen et al., Recent Developments in Molecular Organic Electroluminescent Materials, Macromol. Symp., 1:125 (1997); and Shinar, Joseph, ed.,
Organic Light-Emitting Devices, Berlin, Springer Verlag, 2003, p. 43-69. It may be preferred that the electroluminescent element 20 be capable of emitting light in a narrow band. As used herein, the term "light in a narrow band" refers to a light spectrum that has a spectral width (measured at the half-power points of the spectrum) of no more than about 100 nm. A narrow band emitter, therefore, is a light source that emits light having a spectral width of no more than 100 nm. For example, it may be preferred that the electroluminescent element 20 be capable of emitting blue light. Those skilled in the art will understand that materials for the light emitting layer of the electroluminescent element 20 may be selected such that the electroluminescent element 20 is capable of emitting light in a narrow band, e.g., blue light. Alternatively, in some embodiments, it may be preferred that the electroluminescent element 20 be capable of emitting ultraviolet (UV) light. Both UV and blue light can be "down-converted" to light of a lower frequency by use of downconverting phosphors. For UV emitting electroluminescent elements, it may be preferred that at least three color conversion elements 30 be formed on the electroluminescent element 20 as further described herein. The one or more device layers 24 can be formed between the first electrode 22 and the second electrode 26 by a variety of methods, e.g., coating (e.g., spin coating), printing (e.g., screen printing or inkjet printing), physical or chemical vapor deposition, photolithography, and thermal transfer methods (e.g., methods described in U.S. Patent
No. 6,114,088 (Wolk et al.)). The one or more device layers 24 can be formed sequentially, or two or more of the layers can be disposed simultaneously. After formation of the one or more device layers 24 or simultaneously with deposition of the device layers 24, the second electrode 26 is formed or otherwise disposed on the one or more device layers 24. Alternatively, the electroluminescent element 20 may be formed using LITI techniques that include a multilayer donor sheet as described, e.g., in U.S. Patent No.
6,114,088 (Wolk et al.)). Electroluminescent element 20 may also include a protective layer or layers formed over the electroluminescent element 20 (not shown) as is further described herein. The electroluminescent device 10 also includes color conversion elements 30 formed on the electroluminescent element 20. Although color conversion elements 30 are illustrated as being formed on the second electrode 26, one or more layers or devices may be included between the color conversion elements 30 and the second electrode 26. One, two, or more color conversion elements 30 may be formed on the electroluminescent element 20 such that at least a portion of light emitted from the electroluminescent element 20 is incident upon one or more color conversion elements 30. In other words, the color conversion elements 30 are in optical association with the electroluminescent element 20. The color conversion elements 30 absorb light incident thereon and reemit light in a selected narrow band. For example, color conversion element 30a may convert incident light into red light, and color conversion element 30b may convert incident light into green light. As used herein, the term "red light" refers to light having a spectrum predominantly in an upper portion of the visible spectrum. As further used herein, the term "green light" refers to light having a spectrum predominantly in a middle portion of the visible spectrum. And "blue light" refers to light having a spectrum predominantly in a lower portion of the visible spectrum. In some embodiments, color conversion elements 30 may also include a color conversion element that converts incident light into blue light. In contrast to color conversion elements, color filters (as further described herein) attenuate particular wavelengths or frequencies while passing others with relatively no change in wavelength. Although not shown in FIG. 1, one or more color conversion elements may be formed on one or more other color conversion elements. For example, a red color conversion element may be formed on a green color conversion element such that the red color conversion element absorbs green light emitted from the green color conversion element and reemits red light. Color conversion elements 30 may include any suitable material or materials. For example, color conversion elements 30 may include any suitable color conversion material, e.g., fluorescent dyes, fluorescent pigments phosphors, semiconducting nanocrystals, etc. These color conversion materials may be dispersed in any suitable binder material, e.g., monomeric, oligomeric, polymeric, etc. Color conversion elements 30 may be formed on electroluminescent element 20 using any suitable technique, e.g., coating (e.g., spin coating), printing (e.g., screen printing or inkjet printing), physical or chemical vapor deposition, photolithography, and thermal transfer methods (e.g., methods described in U.S. Patent No. 6,114,088 (Wolk et al.))). It may be preferred that color conversion elements 30 are formed on electroluminescent element 20 using LITI techniques as further described herein. In processes of the present disclosure, emissive materials, including light emitting polymers (LEPs) or other materials, color conversion elements, and color filters, can be selectively transferred from the transfer layer of a donor sheet to a receptor substrate by placing the transfer layer of the donor element adjacent to the receptor (e.g., the electroluminescent element 20) and selectively heating the donor element. See, for example, copending U.S. application Serial No. (Attorney Docket No. 59025US007, entitled "A METHOD OF MAKING AN ELECTROLUMINESCENT
DEVICE INCLUDING A COLOR FILTER" and filed the same day herewith) for examples of selective transfer of a color filter. Illustratively, the donor element can be selectively heated by irradiating the donor element with imaging radiation that can be absorbed by light-to-heat converter (LTHC) material disposed in the donor, often in a separate LTHC layer, and converted into heat. Alternatively, light-to-heat conversion can occur in any one or more of the layers in either the donor element or the receptor substrate. The donor can be exposed to imaging radiation through the donor substrate, through the receptor, or both. The radiation can include one or more wavelengths, including visible light, infrared radiation, or ultraviolet radiation, for example from a laser, lamp, or other such radiation source. Other selective heating techniques can also be used, such as using a thermal print head or using a thermal hot stamp (e.g., a patterned thermal hot stamp such as a heated silicone stamp that has a relief pattern that can be used to selectively heat a donor). Material from the thermal transfer layer can be selectively transferred to a receptor in this manner to imagewise form patterns of the transferred material on the receptor. In many instances, thermal transfer using light from, for example, a lamp or laser, to patternwise expose the donor can be advantageous because of the accuracy and precision that can often be achieved. The size and shape of the transferred pattern (e.g., a line, circle, square, or other shape) can be controlled by, for example, selecting the size of the light beam, the exposure pattern of the light beam, the duration of directed beam contact with the donor sheet, or the materials of the donor sheet. The transferred pattern can also be controlled by irradiating the donor element through a mask. As mentioned, a thermal print head or other heating element (patterned or otherwise) can also be used to selectively heat the donor element directly, thereby pattern- wise transferring portions of the transfer layer. In such cases, the light-to-heat converter material in the donor sheet is optional. Thermal print heads or other heating elements may be particularly suited for making lower resolution patterns of material or for patterning elements whose placement need not be precisely controlled. Transfer layers can also be transferred in their entirety from donor sheets. For example, a transfer layer can be formed On a donor substrate that, in essence, acts as a temporary liner that can be released after the transfer layer is contacted to a receptor substrate, typically with the application of heat or pressure. Such a method, referred to as lamination transfer, can be used to transfer the entire transfer layer, or a large portion thereof, to the receptor. The mode of thermal transfer can vary depending on the type of selective heating employed, the type of irradiation if used to expose the donor, the type of materials and properties of the optional LTHC layer, the type of materials in the transfer layer, the overall construction of the donor, the type of receptor substrate, and the like. Without wishing to be bound by any theory, transfer generally occurs via one or more mechanisms, one or more of which may be emphasized or de-emphasized during selective transfer depending on imaging conditions, donor constructions, and so forth. One mechanism of thermal transfer includes thermal melt-stick transfer whereby heating at the interface between the thermal transfer layer and the rest of the donor element results in adherence to the receptor more strongly than to the donor so that when the donor element is removed, the selected portions of the transfer layer remain on the receptor. Another mechanism of thermal transfer includes ablative transfer whereby localized heating can be used to ablate portions of the transfer layer off of the donor element, thereby directing ablated material toward the receptor. Yet another mechanism of thermal transfer includes sublimation whereby material dispersed in the transfer layer can be sublimated by heat generated in the donor element. A portion of the sublimated material can condense on the receptor. The present invention contemplates transfer modes that include one or more of these and other mechanisms whereby selective heating of a donor sheet can be used to cause the transfer of materials from a transfer layer to receptor surface. A variety of radiation-emitting sources can be used to heat donor sheets. For analog techniques (e.g., exposure through a mask), high-powered light sources (e.g., xenon flash lamps and lasers) are useful. For digital imaging techniques, infrared, visible, and ultraviolet lasers are particularly useful. Suitable lasers include, for example, high power ( > 100 mW) single mode laser diodes, fiber-coupled laser diodes, and diode-pumped solid state lasers (e.g., Nd:YAG and Nd:YLF). Laser exposure dwell times can vary widely from, for example, a few hundredths of microseconds to tens of microseconds or more, and laser fluences can be in the range from, for example, about 0.01 to about 5 J/cm or more. Other radiation sources and irradiation conditions can be suitable based on, among other things, the donor element construction, the transfer layer material, the mode of thermal mass transfer, and other such factors. When high spot placement accuracy is desired (e.g., when patterning elements for high information content displays and other such applications) over large substrate areas, a laser can be particularly useful as the radiation source. Laser sources are also compatible with both large rigid substrates (e.g., I m x l m x l.l mm glass) and continuous or sheeted film substrates (e.g., 100 μm thick polyimide sheets). During imaging, the donor sheet can be brought into intimate contact with a receptor (as might typically be the case for thermal melt-stick transfer mechanisms) or the donor sheet can be spaced some distance from the receptor (as can be the case for ablative transfer mechanisms or material sublimation transfer mechanisms). In at least some instances, pressure or vacuum can be used to hold the donor sheet in intimate contact with the receptor. In some instances, a mask can be placed between the donor sheet and the receptor. Such a mask can be removable or can remain on the receptor after transfer. If a light-to-heat converter material is present in the donor, radiation source can then be used to heat the LTHC layer (or other layer(s) containing radiation absorber) in an imagewise fashion (e.g., digitally or by analog exposure through a mask) to perform imagewise transfer or patterning of the transfer layer from the donor sheet to the receptor. Typically, selected portions of the transfer layer are transferred to the receptor without transferring significant portions of the other layers of the donor sheet, such as an optional interlayer or LTHC layer as is further described herein. The presence of the optional interlayer may eliminate or reduce the transfer of material from an LTHC layer or other proximate layers (for example, other interlayers) to the receptor or reduce distortion in the transferred portion of the transfer layer. Preferably, under imaging conditions, the adhesion of the optional interlayer to the LTHC layer is greater than the adhesion of the interlayer to the transfer layer. The interlayer can be transmissive, reflective, or absorptive to imaging radiation, and can be used to attenuate or otherwise control the level of imaging radiation transmitted through the donor or to manage temperatures in the donor, for example to reduce thermal or radiation-based damage to the transfer layer during imaging. Multiple interlayers can be present. Large donor sheets can be used, including donor sheets that have length and width dimensions of a meter or more. In operation, a laser can be rastered or otherwise moved across the large donor sheet, the laser being selectively operated to illuminate portions of the donor sheet according to a desired pattern. Alternatively, the laser may be stationary and the donor sheet or receptor substrate moved beneath the laser. In some instances, it may be necessary, desirable, or convenient to sequentially use two or more different donor sheets to form electronic devices on a receptor. For example, multiple layer devices can be formed by transferring separate layers or separate stacks of layers from different donor sheets. Multilayer stacks can also be transferred as a single transfer unit from a single donor element as is described, e.g., in U.S. Patent No. 6,114,088 (Wolk et al.)). For example, a hole transport layer and a LEP layer can be co-transferred from a single donor. As another example, a semiconductive polymer and an emissive layer can be co-transferred from a single donor. Multiple donor sheets can also be used to form separate components in the same layer on the receptor. For example, three different donors that each have a transfer layer including a color conversion element capable of emitting a different color (for example, red, green, and blue) can be used to form RGB color conversion electroluminescent devices for a full color polarized light emitting electronic display. As another example, a conductive or semiconductive polymer can be patterned via thermal transfer from one donor, followed by selective thermal transfer of emissive layers from one or more other donors to form a plurality of OEL devices in a display. As still another example, layers for organic transistors can be patterned by selective thermal transfer of electrically active organic materials (oriented or not), followed by selective thermal transfer patterning of one or more pixel or sub-pixel elements such as color conversion elements, color filters, emissive layers, charge transport layers, electrode layers, and the like. Materials from separate donor sheets can be transferred adjacent to other materials on a receptor to form adjacent devices, portions of adjacent devices, or different portions of the same device. Alternatively, materials from separate donor sheets can be transferred directly on top of, or in partial overlying registratiou with, other layers or materials previously patterned onto the receptor by thermal transfer or some other method (e.g., photolithography, deposition through a shadow mask, etc.). A variety of other combinations of two or more donor sheets can be used to form a device, each donor sheet used to form one or more portions of the device. It will be understood that other portions of these devices, or other devices on the receptor, may be formed in whole or in part by any suitable process including photolithographic processes, inkjet processes, and various other printing or mask-based processes, whether conventionally used or newly developed. The donor substrate can be a polymer film. One suitable type of polymer film is a polyester film, for example, polyethylene terephthalate (PET) or polyethylene naphthalate
(PEN) films. However, other films with sufficient optical properties, including high transmission of light at a particular wavelength, or sufficient mechanical and thermal stability properties, depending on the particular application, can be used. The donor substrate, in at least some instances, is flat so that uniform coatings can be formed thereon. The donor substrate is also typically selected from materials that remain stable despite heating of one or more layers of the donor. However, as described herein, the inclusion of an underlayer between the substrate and an LTHC layer can be used to insulate the substrate from heat generated in the LTHC layer during imaging. The typical thickness of the donor substrate ranges from 0.025 to 0.15 mm, preferably 0.05 to 0.1 mm, although thicker or thinner donor substrates may be used. The materials used to form the donor substrate and an optional adjacent underlayer can be selected to improve adhesion between the donor substrate and the underlayer, to control heat transport between the substrate and the underlayer, to control imaging radiation transport to the LTHC layer, to reduce imaging defects and the like. An optional priming layer can be used to increase uniformity during the coating of subsequent layers onto the substrate and also increase the bonding strength between the donor substrate and adjacent layers. An optional underlayer may be coated or otherwise disposed between a donor substrate and the LTHC layer, for example to control heat flow between the substrate and the LTHC layer during imaging or to provide mechanical stability to the donor element for storage, handling, donor processing, or imaging. Examples of suitable underlayers and techniques of providing underlayers are disclosed in U.S. Patent No. 6,284,425 (Staral et al.). The underlayer can include materials that impart desired mechanical or thermal properties to the donor element. For example, the underlayer can include materials that exhibit a low specific heat x density or low thermal conductivity relative to the donor substrate. Such an underlayer may be used to increase heat flow to the transfer layer, for example to improve the imaging sensitivity of the donor. The underlayer may also include materials for their mechanical properties or for adhesion between the substrate and the LTHC. Using an underlayer that improves adhesion between the substrate and the LTHC layer may result in less distortion in the transferred image. As an example, in some cases an underlayer can be used that reduces or eliminates delamination or separation of the LTHC layer, for example, that might otherwise occur during imaging of the donor media. This can reduce the amount of physical distortion exhibited by transferred portions of the transfer layer. In other cases, however it may be desirable to employ underlayers that promote at least some degree of separation between or among layers during imaging, for example to produce an air gap between layers during imaging that can provide a thermal insulating function. Separation during imaging may also provide a channel for the release of gases that may be generated by heating of the LTHC layer during imaging. Providing such a channel may lead to fewer imaging defects. The underlayer may be substantially transparent at the imaging wavelength, or may also be at least partially absorptive or reflective of imaging radiation. Attenuation or reflection of imaging radiation by the underlayer may be used to control heat generation during imaging. An LTHC layer can be included in donor sheets of the present invention to couple irradiation energy into the donor sheet. The LTHC layer preferably includes a radiation absorber that absorbs incident radiation (e.g., laser light) and converts at least a portion of the incident radiation into heat to enable transfer of the transfer layer from the donor sheet to the receptor. Generally, the radiation absorber(s) in the LTHC layer absorb light in the infrared, visible, or ultraviolet regions of the electromagnetic spectrum and convert the absorbed radiation into heat. The radiation absorber(s) are typically highly absorptive of the selected imaging radiation, providing an LTHC layer with an optical density at the wavelength of the imaging radiation in the range of about 0.2 to 3 or higher. Optical density of a layer is the absolute value of the logarithm (base 10) of the ratio of the intensity of light transmitted through the layer to the intensity of light incident on the layer. Radiation absorber material can be uniformly disposed throughout the LTHC layer or can be non-homogeneously distributed. For example, as described in U.S. Patent No. 6,228,555 (Hoffend, Jr., et al.), non-homogeneous LTHC layers can be used to control temperature profiles in donor elements. This can give rise to donor sheets that have improved transfer properties (e.g., better fidelity between the intended transfer patterns and actual transfer patterns). Suitable radiation absorbing materials can include, for example, dyes (e.g., visible dyes, ultraviolet dyes, infrared dyes, fluorescent dyes, and radiation-polarizing dyes), pigments, metals, metal compounds, metal films, black body absorbers, and other suitable absorbing materials. Examples of suitable radiation absorbers include carbon black, metal oxides, and metal sulfides. One example of a suitable LTHC layer can include a pigment, such as carbon black, and a binder, such as an organic polymer. Another suitable LTHC layer includes metal or metal/metal oxide formed as a thin film, for example, black aluminum (i.e., a partially oxidized aluminum having a black visual appearance). Metallic and metal compound films may be formed by techniques, such as, for example, sputtering and evaporative deposition. Particulate coatings may be formed using a binder and any suitable dry or wet coating techniques. LTHC layers can also be formed by combining two or more LTHC layers containing similar or dissimilar materials. For example, an LTHC layer can be formed by vapor depositing a thin layer of black aluminum over a coating that contains carbon black disposed in a binder. Dyes suitable for use as radiation absorbers in a LTHC layer may be present in particulate form, dissolved in a binder material, or at least partially dispersed in a binder material. When dispersed particulate radiation absorbers are used, the particle size can be, at least in some instances, about 10 μm or less, and may be about 1 μm or less. Suitable dyes include those dyes that absorb in the IR region of the spectrum. A specific dye may be chosen based on factors such as, solubility in, and compatibility with, a specific binder or coating solvent, as well as the wavelength range of absorption. Pigmentary materials may also be used in the LTHC layer as radiation absorbers. Examples of suitable pigments include carbon black and graphite, as well as phthalocyanines, nickel dithiolenes, and other pigments described in U.S. Patent Nos. 5,166,024 (Bugner et al.) and 5,351,617 (Williams et al.). Additionally, black azo pigments based on copper or chromium complexes of, for example, pyrazolone yellow, dianisidine red, and nickel azo yellow can be useful. Inorganic pigments can also be used, including, for example, oxides and sulfides of metals such as aluminum, bismuth, tin, indium, zinc, titanium, chromium, molybdenum, tungsten, cobalt, iridium, nickel, palladium, platinum, copper, silver, gold, zirconium, iron, lead, and tellurium. Metal borides, carbides, nitrides, carbonitrides, bronze-structured oxides, and oxides structurally related to the bronze family (e.g., WO2. ) may also be used. Metal radiation absorbers may be used, either in the form of particles, as described for instance in U.S. Patent No. 4,252,671 (Smith), or as films, as disclosed in U.S. Patent No. 5,256,506 (Ellis et al.). Suitable metals include, for example, aluminum, bismuth, tin, indium, tellurium and zinc. Suitable binders for use in the LTHC layer include film-forming polymers, such as, for example, phenolic resins (e.g., novolak and resole resins), polyvinyl butyral resins, polyvinyl acetates, polyvinyl acetals, polyvinylidene chlorides, polyacrylates, cellulosic ethers and esters, nitrocelluloses, and polycarbonates. Suitable binders may include monomers, oligomers, or polymers that have been, or can be, polymerized or crosslinked.
Additives such as photoinitiators may also be included to facilitate crosslinking of the LTHC binder. In some embodiments, the binder is primarily formed using a coating of crosslinkable monomers or oligomers with optional polymer. The inclusion of a thermoplastic resin (e.g., polymer) may improve, in at least some instances, the performance (e.g., transfer properties or coatability) of the LTHC layer. It is thought that a thermoplastic resin may improve the adhesion of the LTHC layer to the donor substrate. In one embodiment, the binder includes 25 to 50 wt.% (excluding the solvent when calculating weight percent) thermoplastic resin, and, preferably, 30 to 45 wt.% thermoplastic resin, although lower amounts of thermoplastic resin may be used (e.g., 1 to 15 wt.%). The thermoplastic resin is typically chosen to be compatible (i.e., form a one-phase combination) with the other materials of the binder. In at least some embodiments, a thermoplastic resin that has a solubility parameter in the range of 9 to 13 (cal/cm3)1/2, preferably, 9.5 to 12 (cal/cm3)1 2, is chosen for the binder. Examples of suitable thermoplastic resins include polyacrylics, styrene-acrylic polymers and resins, and polyvinyl butyral. Conventional coating aids, such as surfactants and dispersing agents, may be added to facilitate the coating process. The LTHC layer may be coated onto the donor substrate using a variety of coating methods known in the art. A polymeric or organic LTHC layer can be coated, in at least some instances, to a thickness of 0.05 μm to 20 μm, preferably, 0.5 μm to 10 μm, and, more preferably, 1 μm to 7 μm. An inorganic LTHC layer can be coated, in at least some instances, to a thickness in the range of 0.0005 to 10 μm, and preferably, 0.001 to 1 μm. At least one optional interlayer may be disposed between the LTHC layer and transfer layer. The interlayer can be used, for example, to minimize damage and contamination of the transferred portion of the transfer layer and may also reduce distortion in or mechanical damage of the transferred portion of the transfer layer. The interlayer may also influence the adhesion of the transfer layer to the rest of the donor sheet. Typically, the interlayer has high thermal resistance. Preferably, the interlayer does not distort or chemically decompose under the imaging conditions, particularly to an extent that renders the transferred image non-functional. The interlayer typically remains in contact with the LTHC layer during the transfer process and is not substantially transferred with the transfer layer. Suitable interlayers include, for example, polymer films, metal layers (e.g., vapor deposited metal layers), inorganic layers (e.g., sol-gel deposited layers and vapor deposited layers of inorganic oxides (e.g., silica, titania, and other metal oxides)), and organic/inorganic composite layers. Organic materials suitable as interlayer materials include both thermoset and thermoplastic materials. Suitable thermoset materials include resins that may be crosslinked by heat, radiation, or chemical treatment including, but not limited to, crosslinked or crosslinkable polyacrylates, polymethacrylates, polyesters, epoxies, and polyurethanes. The thermoset materials may be coated onto the LTHC layer as, for example, thermoplastic precursors and subsequently crosslinked to form a crosslinked interlayer. , Suitable thermoplastic materials include, for example, polyacrylates, polymethacrylates, polystyrenes, polyurethanes, polysulfones, polyesters, and polyimides. These thermoplastic organic materials may be applied via conventional coating techniques (for example, solvent coating, spray coating, or extrusion coating). Typically, the glass transition temperature (Tg) of thermoplastic materials suitable for use in the interlayer is 25 °C or greater, preferably 50 °C or greater. In some embodiments, the interlayer includes a thermoplastic material that has a Tg greater than any temperature attained in the transfer layer during imaging. The interlayer may be either transmissive, absorbing, reflective, or some combination thereof, at the imaging radiation wavelength. Inorganic materials suitable as interlayer materials include, for example, metals, metal oxides, metal sulfides, and inorganic carbon coatings, including those materials that are highly transmissive or reflective at the imaging light wavelength. These materials may be applied to the light-to-heat-conversion layer via conventional techniques (e.g., vacuum sputtering, vacuum evaporation, or plasma jet deposition). The interlayer may provide a number of benefits. The interlayer may be a barrier against the transfer of material from the light-to-heat conversion layer. The interlayer may also act as a barrier to prevent any material or contamination exchange to or from layers proximate thereto. It may also modulate the temperature attained in the transfer layer so that thermally unstable materials can be transferred. For example, the interlayer can act as a thermal diffuser to control the temperature at the interface between the interlayer and the transfer layer relative to the temperature attained in the LTHC layer. This may improve the quality (i.e., surface roughness, edge roughness, etc.) of the transferred layer. The presence of an interlayer may also result in improved plastic memory in the transferred material. The interlayer may contain additives, including, for example, photoinitiators, surfactants, pigments, plasticizers, and coating aids. The thickness of the interlayer may depend on factors such as, for example, the material of the interlayer, the material and properties of the LTHC layer, the material and properties of the transfer layer, the wavelength of the imaging radiation, and the duration of exposure of the donor sheet to imaging radiation. For polymer interlayers, the thickness of the interlayer typically is in the range of 0.05 μm to 10 μm. For inorganic interlayers (e.g., metal or metal compound interlayers), the thickness of the interlayer typically is in the range of 0.005 μm to 10 μm. Multiple interlays can also be used; for example, an organic-based interlayer can be covered by an inorganic-based interlayer to provide additional protection to the transfer layer during the thermal transfer process. A thermal transfer layer is included in the donor sheet. The transfer layer can include any suitable material or materials, disposed in one or more layers, alone or in combination with other materials. The transfer layer is capable of being selectively transferred as a unit or in portions by any suitable transfer mechanism when the donor element is exposed to direct heating or to imaging radiation that can be absorbed by light- to-heat converter material and converted into heat. The thermal transfer layer can be used to form, for example, color conversion elements, color filters, electronic circuitry, resistors, capacitors, diodes, rectifiers, electroluminescent lamps, memory elements, field effect transistors, bipolar transistors, unijunction transistors, MOS transistors, metal-insulator-semiconductor transistors, charge coupled devices, insulator-metal-insulator stacks, organic conductor-metal-organic conductor stacks, integrated circuits, photodetectors, lasers, lenses, waveguides, gratings, holographic elements, filters (e.g., add-drop filters, gain-flattening filters, cut-off filters, and the like), mirrors, splitters, couplers, combines, modulators, sensors (e.g., evanescent sensors, phase modulation sensors, interferometric sensors, and the like), optical cavities, piezoelectric devices, ferroelectric devices, thin film batteries, or combinations thereof; for example, the combination of field effect transistors and organic electroluminescent lamps as an active matrix array for an optical display. Other items may be formed by transferring a multicomponent transfer unit and/or a single layer. The transfer layer can be selectively thermally transferred from the donor element to a proximately located receptor substrate. There can be, if desired, more than one transfer layer so that a multilayer construction is transferred using a single donor sheet. The receptor substrate may be any item suitable for a particular application including, but not limited to, glass, transparent films, reflective films, metals, semiconductors, and plastics. For example, receptor substrates may be any type of substrate or display element suitable for display applications, e.g., emissive displays, transmissive displays, transflective displays, electropheretic displays, and the like. Receptor substrates suitable for use in displays such as liquid crystal displays or emissive displays include rigid or flexible substrates that are substantially transmissive to visible light. Examples of suitable rigid receptors include glass and rigid plastic that are coated or patterned with indium tin oxide or are circuitized with low temperature poly-silicon (LTPS) or other transistor structures, including organic transistors. Suitable flexible substrates include substantially clear and transmissive polymer films, reflective films, transflective films, polarizing films, multilayer optical films, metallic films, metallic sheets, metallic foils, and the like. Flexible substrates can also be coated or patterned with electrode materials or transistors, for example transistor arrays formed directly on the flexible substrate or transferred to the flexible substrate after being formed on a temporary carrier substrate. Suitable polymer substrates include polyester base (e.g., polyethylene terephthalate, polyethylene naphthalate), polycarbonate resins, polyolefin resins, polyvinyl resins (e.g., polyvinyl chloride, polyvinylidene chloride, polyvinyl acetals, etc.), cellulose ester bases (e.g., cellulose triacetate, cellulose acetate), and other conventional polymeric films used as supports. For making organic electroluminescent devices on plastic substrates, it is often desirable to include a barrier film or coating on one or both surfaces of the plastic substrate to protect the organic light emitting devices and their electrodes from exposure to undesired levels of water, oxygen, and the like. Receptor substrates can be pre-patterned with any one or more of electrodes, transistors, capacitors, insulator ribs, spacers, color filters, black matrix, hole transport layers, electron transport layers, and other elements useful for electronic displays or other devices. A method of making an electroluminescent device will now be described in reference to the electroluminescent device 10 of FIG. 1. The electroluminescent element 20 of device 10 is formed on the major surface 14 of the substrate 12 using any suitable technique, e.g., LITI patterning as described herein. Color conversion elements 30 are selectively thermally transferred to the electroluminescent element 20 as is also described herein. The color conversion elements 30 may be transferred to the electroluminescent element 20 such that the color conversion elements 30 are on the second electrode 26. Alternatively, the color conversion elements 30 may be transferred to a protective layer (not shown) that is formed over at least a portion of the electroluminescent element 20 as is further described herein. In some embodiments, a black matrix may be formed on the electroluminescent element 20 and the color conversion elements 30 then transferred to apertures in the black matrix as is further described herein. FIG. 2 is a schematic diagram of another embodiment of an electroluminescent device 100. The electroluminescent device 100 is similar in many respects to electroluminescent device 10 of FIG. 1. In the embodiment shown in FIG. 2, electroluminescent device 100 includes a substrate 112, an electroluminescent element 120 formed on a major surface 114 of substrate 112, and color conversion elements 130a and 130b (hereinafter referred to collectively as color conversion elements 130) formed on a protective layer 140. The electroluminescent element 120 includes a first electrode 122, a second electrode 126, and one or more device layers 124 positioned between the first electrode 122 and the second electrode 126. All of the design considerations and possibilities described herein with respect to the substrate 12, the electroluminescent element 20, and the color conversion elements 30 of the embodiment illustrated in FIG. 1 apply equally to the substrate 112, the electroluminescent element 120, and the color conversion elements 130 of the embodiment illustrated in FIG. 2. Electroluminescent device 100 also includes a protective layer 140 formed over at least a portion of the electroluminescent element 120. The protective layer 140 may be formed on and in contact with the electroluminescent element 120. Alternatively, an optional layer or layers may be included between the electroluminescent element 120 and the protective layer 140. The protective layer 140 may be any suitable type of layer or layers that protect the electroluminescent element 120, e.g., barrier layers, encapsulant layers, etc. The protective layer 140 may be formed using any suitable material or materials, e.g., as described in U.S. Patent Application Publication No. 2004/0195967 (Padiyath et al.) and U.S. Patent No. 6,522,067 (Graff et al.). The color conversion elements 130 are transferred to a major surface 142 of the protective layer 140. As described herein in regard to color conversion elements 30 of electroluminescent device 10 of FIG. 1, the color conversion elements 130 of electroluminescent device 100 may be formed using any suitable technique, e.g., coating (e.g., spin coating), printing (e.g., screen printing or inkjet printing), physical or chemical vapor deposition, photolithography, and thermal transfer methods (e.g., methods described in U.S. Patent No. 6,114,088 (Wolk et al.))). It may be preferred that the color conversion elements 130 are transferred to the protective layer 140 using LITI techniques as described herein. Other elements may be formed on the electroluminescent element or protective layer, e.g., black matrix, color filter elements, etc. For example, FIG. 3 is a schematic diagram of another embodiment of an electroluminescent device 200. Electroluminescent device 200 is similar in many respects to electroluminescent device 10 of FIG. 1 and electroluminescent device 100 of FIG. 2. Electroluminescent device 200 includes a substrate 212, an electroluminescent element 220 formed on a major surface 214 of the substrate 212, and color conversion elements 230a and 230b (hereinafter referred to collectively as color conversion elements 230) formed on the electroluminescent element
220. Electroluminescent element 220 includes a first electrode 222, a second electrode 226, and one or more device layers 224 positioned between the first electrode 222 and the second electrode 226. All of the design considerations and possibilities described herein with respect to the substrate 12, the electroluminescent element 20, and the color conversion elements 30 of the embodiment illustrated in FIG. 1 apply equally to the substrate 212, the electroluminescent element 220, and the color conversion elements 230 of the embodiment illustrated in FIG. 3. Electroluminescent device 200 further includes an optional black matrix 260 formed on the electroluminescent element 220. Black matrix 260 includes a plurality of apertures 262a, 262b, and 262c (hereinafter referred to collectively as apertures 262). Although the embodiment illustrated in FIG. 3 includes three apertures 262a, 262b, and
262c, the black matrix 260 can include any suitable number of apertures 262. Each aperture 262 may take any suitable shape, e.g., oval, rectangular, polygonal, etc. In general, black matrix coatings are used in many display applications to absorb ambient light, improve contrast, and protect TFTs. The black matrix 260 (typically including absorbing or non-reflecting metals, metal oxides, metal sulfides, dyes or pigments) is formed around individual pixels, color conversion elements, or color filters of the display. In many displays, the black matrix 260 is a 0.1 to 0.2 μm coating of black chromium oxide on a display substrate. Resin black matrix (a pigment in a resin matrix) is an alternative to black chromium oxide. The resin black matrix can be coated onto the display substrate or electroluminescent device and then patterned using photolithography.
To achieve a high optical density in a thin resin black matrix coating, it is typically necessary to use relatively high pigment loadings, which can be difficult to pattern using photolithography. Alternatively, the black matrix 260 can be transferred from a donor sheet to the device using a thermal transfer method, such as described in U.S. Patent No. 6,461,775 (Pokorny et al.). In some embodiments, the color conversion elements 230 may be transferred to the electroluminescent element 220 such that each color conversion element 230 is transferred to an aperture 262 of optional black matrix 260 using any suitable technique as described herein. For example, color conversion element 230a can be transferred to aperture 262a of black matrix 260. Electroluminescent device 200 further includes color filters 250a, 250b, and 250c (hereinafter referred to collectively as color filters 250). Color filters 250 may be formed on one or more color conversion elements 230. For example, color filter 250a is formed on color conversion element 230a such that color filter 250a is in optical association with color conversion element 230a. Although one or more color filters 250 are shown as being formed on one or more color conversion elements 230, one or more layers or devices may be included between such color filters 250 and the color conversion elements 230. At least a portion of light emitted by color conversion element 230a is incident on color filter 250a such that the light is filtered through color filter 230a. Similarly, color filter 250b is formed on color conversion element 230b. In some embodiments, providing color filters in conjunction with color conversion elements may provide emitted light that is more saturated. Further, one or more color filters 250 may be formed on electroluminescent device 220. For example, color filter 250c is formed on second electrode 226 of electroluminescent element 220 in aperture 262c of optional black matrix 260 such that it is in optical association with the electroluminescent element 220. hi some embodiments, a color filter element that is capable of providing filtered blue light may be formed on an electroluminescent element that emits blue light such that the blue light emitted by the electroluminescent device is more saturated. Further, the use of both color conversion elements and color filters may reduce or eliminate fluorescence from ambient blue light and, therefore, increase display contrast. Any suitable material or materials may be used to form color filters 250, e.g., those described in U.S. Patent No. 5,521,035 (Wolk et al.). In some embodiments, if electroluminescent element 220 is formed such that it is capable of emitting UV light, it may be preferred that color filters 250 include one or more UV absorbers to aid in preventing UV light from being emitted by the electroluminescent device 200. Further, color filters 250 may be formed used any suitable technique, e.g., coating (e.g., spin coating), printing (e.g., screen printing or inkjet printing), physical or chemical vapor deposition, photolithography, and thermal transfer methods (e.g., methods described in U.S. Patent No. 6,114,088 (Wolk et al.))). It may be preferred that color filters 250 are formed using LITI techniques as further described herein. I In some embodiments, one or more of the substrate 212, the one or more device layers 224, the color conversion elements 230, and the color filters 250 may be configured to provide polarized light as is further described, e.g., in U.S. Patent Nos. 6,485,884 (Wolk et al.) and 5,693,446 (Stand et al.). As described herein, electroluminescent devices may be either top emitting (e.g., electroluminescent device 10 of FIG. 1) or bottom emitting. One such embodiment of a bottom emitting device is illustrated in FIG. 4, which is a schematic diagram of another embodiment of an electroluminescent device 300. Electroluminescent device 300 is similar in many respects to electroluminescent device 10 of FIG. 1. Electroluminescent device 300 includes a substrate 312 and an electroluminescent element 320 formed on a first major surface 314 of the substrate 312. The electroluminescent element 320 includes a first electrode 322, a second electrode 326, and one or more device layers 324 positioned between the first electrode 322 and the second electrode 326. One difference between electroluminescent device 300 and electroluminescent device 10 of FIG. 1 is that device 300 is a bottom emitting electroluminescent device. In this embodiment, the color conversion elements 330a and 330b (hereinafter referred to collectively as color conversion elements 330) are formed on a second major surface 316 of the substrate 312 such that the color conversion elements 330 are in optical association with the electroluminescent element 320. In other words, at least a portion of light emitted by electroluminescent element 320 passes through substrate 312 and is incident on at least one color conversion element 330. Although only two color conversion elements 330 are illustrated, electroluminescent device 300 may include any suitable number of color conversion elements, e.g., red and green; red, green, blue, etc. Further, electroluminescent device 300 may include at least one color filter in optical association with one or more color conversion elements or with the electroluminescent element as is described herein in reference, e.g., to electroluminescent device 200 of FIG. 3. Further, electroluminescent device 300 may include a black matrix formed on the second major surface 316 of substrate 312 as is further described herein. All of the design considerations and possibilities described herein with respect to the substrate 12, the electroluminescent element 20, and the color conversion elements 30 f of FIG. 1 apply equally to similar elements of the embodiment illustrated in FIG. 4. Illustrative embodiments of this invention are discussed and reference has been made to possible variations within the scope of this invention. These and other variations and modifications in the invention will be apparent to those skilled in the art without departing from the scope of the invention, and it should be understood that this invention is not limited to the illustrative embodiments set forth herein. Accordingly, the invention is to be limited only by the claims provided below.

Claims

What is claimed is:
1. A method of making an electroluminescent device, the method comprising: forming an electroluminescent element on a substrate, wherein the electroluminescent element is capable of emitting light in a narrow band; and selectively thermally transferring a plurality of color conversion elements to the electroluminescent element.
2. The method of claim 1, wherein selectively thermally transferring the plurality of color conversion elements comprises: providing a donor sheet comprising a base layer, a light to heat conversion layer, and a transfer layer; positioning the donor sheet such that the transfer layer is proximate the electroluminescent element; and selectively irradiating portions of the donor sheet to thermally transfer portions of the transfer layer from the donor sheet to the electroluminescent element.
3. The method of claim 2, wherein the transfer layer comprises at least one color conversion material.
4. The method of claim 3, wherein the at least one color conversion material comprises a phosphor.
5. The method of claim 1, further comprising forming a black matrix on the electroluminescent element.
6. The method of claim 5, wherein forming the black matrix comprises selectively thermally transferring the black matrix to the electroluminescent element.
7. The method of claim 5, wherein the black matrix comprises a plurality of apertures.
8. The method of claim 7, wherein selectively thermally transferring a plurality of color conversion elements comprises selectively thermally transferring a plurality of color conversion elements to the electroluminescent element such that each color conversion element of the plurality of color conversion elements is transferred to an aperture of the plurality of apertures of the black matrix.
9. The method of claim 1, wherein the substrate comprises a plurality of independently addressable active devices.
10. The method of claim 1, wherein the electroluminescent element comprises an organic emissive material.
11. The method of claim 10, wherein the organic emissive material comprises a light emitting polymer.
12. The method of claim 1, wherein the electroluminescent element is capable of emitting blue light.
13. The method of claim 1, further comprising selectively thermally transferring at least one color filter to at least one color conversion element of the plurality of color conversion elements.
14. The method of claim 13, wherein the at least one color filter comprises a pigment or dye.
15. The method of claim 1, wherein at least one color conversion element of the plurality of color conversion elements comprises a phosphor.
16. The method of claim 1, wherein at least one color conversion element of the plurality of color conversion elements is capable of converting light emitted from the electroluminescent element into red light, and further wherein at least one color conversion element of the plurality of color conversion elements is capable of converting light emitted from the electoluminescent element into green light.
17. A method of making an electroluminescent device, the method comprising: forming an electroluminescent element on a first major surface of a substrate, wherein the electroluminescent element is capable of emitting light in a narrow band; and selectively thermally transferring a plurality of color conversion elements to a second major surface of the substrate.
18. The method of claim 17, wherein selectively thermally transferring a plurality of color conversion elements comprises: providing a donor sheet comprising a base layer, a light to heat conversion layer, and a transfer layer; positioning the donor sheet such that the transfer layer is proximate the second major surface of the substrate; and selectively irradiating portions of the donor sheet to thermally transfer portions of the transfer layer from the donor sheet to the second major surface of the substrate.
19. The method of claim 17, further comprising forming a black matrix on the second major surface of the substrate.
20. The method of claim 19, wherein the black matrix comprises a plurality of apertures.
21. The method of claim 20, wherein selectively thermally transferring a plurality of color conversion elements comprises selectively thermally transferring a plurality of color conversion elements to the second major surface of the substrate such that each color conversion element of the plurality of color conversion elements is transferred to an aperture of the plurality of apertures of the black matrix.
22. The method of claim 17, wherein the substrate comprises a plurality of independently addressable active devices.
23. The method of claim 17, wherein the electroluminescent element comprises an organic emissive material.
24. The method of claim 23, wherein the organic emissive material comprises a light emitting polymer.
25. The method of claim 17, wherein the electroluminescent element is capable of emitting blue light.
26. The method of claim 17, further comprising selectively thermally transferring at least one color filter to at least one color conversion element of the plurality of color conversion elements.
27. The method of claim 26, wherein the at least one color filter comprises a pigment or dye.
28. The method of claim 17, wherein at least one color conversion element of the plurality of color conversion elements comprises a phosphor.
29. The method of claim 17, wherein at least one color conversion element of the plurality of color conversion elements is capable of converting light emitted from the electroluminescent element into red light, and further wherein at least one color conversion element of the plurality of color conversion elements is capable of converting light emitted from the electoluminescent element into green light.
30. A method of making an electroluminescent device, the method comprising: forming an electroluminescent element on a substrate, wherein the electroluminescent element is capable of emitting light in a narrow band; forming a protective layer over at least a portion of the electroluminescent element; and selectively thermally transferring a plurality of color conversion elements to the protective layer.
31. The method of claim 30, wherein the protective layer comprises a dielectric material.
32. A method of making an electroluminescent color display comprising at least one electroluminescent device, the method comprising: forming the at least one electroluminescent device on a substrate, wherein forming the at least one electroluminescent device comprises: forming an electroluminescent element on the substrate, wherein the electroluminescent element is capable of emitting light in a narrow band; and selectively thermally transferring a plurality of color conversion elements to the electroluminescent element.
33. A method of making an electroluminescent device, the method comprising: forming an electroluminescent element on a substrate, wherein the electroluminescent element is capable of emitting UV light; and selectively thermally transferring a plurality of color conversion elements to the electroluminescent element.
34. An electroluminescent device comprising: a substrate; an electroluminescent element on the substrate, wherein the electroluminescent element is capable of emitting light in a narrow band; a plurality of color conversion elements on the electroluminescent element; and at least one color filter on at least one color conversion element of the plurality of color conversion elements.
35. The electroluminescent device of claim 34 wherein at least one color conversion element of the plurality of color conversion elements comprises a phosphor.
36. The electroluminescent device of claim 34 further comprising a black matrix on the electroluminescent element.
37. The electroluminescent device of claim 36 wherein the black matrix comprises a plurality of apertures.
38. The electroluminescent device of claim 34 wherein the substrate comprises a plurality of independently addressable active devices.
39. The electroluminescent device of claim 34 wherein the electroluminescent element comprises an organic emissive material.
40. The electroluminescent device of claim 39 wherein the organic emissive material comprises a light emitting polymer.
41. The electroluminescent device of claim 34 wherein the electroluminescent element is capable of emitting blue light.
42. The electroluminescent device of claim 34 wherein the at least one color filter comprises a pigment or dye.
PCT/US2004/038449 2003-11-18 2004-11-16 Electroluminescent devices and methods of making electroluminescent devices including a color conversion element WO2005051044A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006541330A JP2007511890A (en) 2003-11-18 2004-11-16 Electroluminescent device and method for manufacturing electroluminescent device comprising color conversion element
EP04811233A EP1685746B1 (en) 2003-11-18 2004-11-16 Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
DE602004011257T DE602004011257T2 (en) 2003-11-18 2004-11-16 ELECTROLUMINESCENCE COMPONENTS AND METHOD FOR PRODUCING ELECTROLUMINESCENCE COMPONENTS WITH A COLOR CHANGING ELEMENT
KR1020117030109A KR101193201B1 (en) 2003-11-18 2004-11-16 Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
MXPA06005649A MXPA06005649A (en) 2003-11-18 2004-11-16 Electroluminescent devices and methods of making electroluminescent devices including a color conversion element.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52099703P 2003-11-18 2003-11-18
US60/520,997 2003-11-18

Publications (1)

Publication Number Publication Date
WO2005051044A1 true WO2005051044A1 (en) 2005-06-02

Family

ID=34619552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/038449 WO2005051044A1 (en) 2003-11-18 2004-11-16 Electroluminescent devices and methods of making electroluminescent devices including a color conversion element

Country Status (10)

Country Link
US (1) US7892382B2 (en)
EP (1) EP1685746B1 (en)
JP (2) JP2007511890A (en)
KR (2) KR20060113734A (en)
CN (1) CN1898993A (en)
AT (1) ATE383733T1 (en)
DE (1) DE602004011257T2 (en)
MX (1) MXPA06005649A (en)
TW (1) TW200520607A (en)
WO (1) WO2005051044A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023716A1 (en) * 2006-08-25 2008-02-28 Idemitsu Kosan Co., Ltd. Transfer substrate for organic electroluminescent display device
WO2009094994A1 (en) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Optoelectronic module and projection device comprising the optoelectronic module
DE102010044985A1 (en) * 2010-09-10 2012-03-15 Osram Opto Semiconductors Gmbh Method for applying a conversion agent to an optoelectronic semiconductor chip and optoelectronic component
KR20170127508A (en) * 2015-03-09 2017-11-21 코닌클리케 필립스 엔.브이. Variable point light emitting device

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005051048A1 (en) * 2003-11-18 2005-06-02 3M Innovative Properties Company A method of making an electroluminescent device including a color filter
US7892382B2 (en) 2003-11-18 2011-02-22 Samsung Mobile Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
TWI243625B (en) * 2004-05-04 2005-11-11 Toppoly Optoelectronics Corp Organic light-emitting display structure
KR20060020030A (en) * 2004-08-30 2006-03-06 삼성에스디아이 주식회사 Fabricating method of donor device
BRPI0519478A2 (en) * 2004-12-27 2009-02-03 Quantum Paper Inc addressable and printable emissive display
US8569948B2 (en) * 2004-12-28 2013-10-29 Samsung Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including an optical spacer
US20060152830A1 (en) * 2005-01-12 2006-07-13 John Farah Polyimide deformable mirror
TWI341420B (en) * 2005-10-26 2011-05-01 Epistar Corp Flat light emitting apparatus
US8330348B2 (en) * 2005-10-31 2012-12-11 Osram Opto Semiconductors Gmbh Structured luminescence conversion layer
TW200727467A (en) * 2005-11-23 2007-07-16 Ifire Technology Corp Colour conversion and optical enhancement layers for electroluminescent displays
US8835941B2 (en) * 2006-02-09 2014-09-16 Qd Vision, Inc. Displays including semiconductor nanocrystals and methods of making same
US20070201056A1 (en) * 2006-02-24 2007-08-30 Eastman Kodak Company Light-scattering color-conversion material layer
US7791271B2 (en) * 2006-02-24 2010-09-07 Global Oled Technology Llc Top-emitting OLED device with light-scattering layer and color-conversion
JP2007234232A (en) * 2006-02-27 2007-09-13 Hitachi Displays Ltd Image display device
WO2007143197A2 (en) 2006-06-02 2007-12-13 Qd Vision, Inc. Light-emitting devices and displays with improved performance
GB0605369D0 (en) * 2006-03-16 2006-04-26 Univ Brunel Powder phosphor electroluminescent devices with a novel architecture
WO2007117668A2 (en) * 2006-04-07 2007-10-18 Qd Vision, Inc. Methods and articles including nanomaterial
WO2008111947A1 (en) 2006-06-24 2008-09-18 Qd Vision, Inc. Methods and articles including nanomaterial
WO2008105792A2 (en) * 2006-06-24 2008-09-04 Qd Vision, Inc. Methods for depositing nanomaterial, methods for fabricating a device, methods for fabricating an array of devices and compositions
WO2008108798A2 (en) 2006-06-24 2008-09-12 Qd Vision, Inc. Methods for depositing nanomaterial, methods for fabricating a device, and methods for fabricating an array of devices
US20080042146A1 (en) * 2006-08-18 2008-02-21 Cok Ronald S Light-emitting device having improved ambient contrast
US7969085B2 (en) * 2006-08-18 2011-06-28 Global Oled Technology Llc Color-change material layer
WO2008085210A2 (en) * 2006-09-12 2008-07-17 Qd Vision, Inc. Electroluminescent display useful for displaying a predetermined pattern
WO2008033388A2 (en) * 2006-09-12 2008-03-20 Qd Vision, Inc. A composite including nanoparticles, methods, and products including a composite
JP5773646B2 (en) 2007-06-25 2015-09-02 キユーデイー・ビジヨン・インコーポレーテツド Compositions and methods comprising depositing nanomaterials
DE102008015941A1 (en) 2007-12-21 2009-06-25 Osram Opto Semiconductors Gmbh lighting device
WO2009099425A2 (en) * 2008-02-07 2009-08-13 Qd Vision, Inc. Flexible devices including semiconductor nanocrystals, arrays, and methods
US9525148B2 (en) 2008-04-03 2016-12-20 Qd Vision, Inc. Device including quantum dots
KR101995369B1 (en) 2008-04-03 2019-07-02 삼성 리서치 아메리카 인코포레이티드 Light-emitting device including quantum dots
US10434804B2 (en) 2008-06-13 2019-10-08 Kateeva, Inc. Low particle gas enclosure systems and methods
US8383202B2 (en) 2008-06-13 2013-02-26 Kateeva, Inc. Method and apparatus for load-locked printing
KR100953656B1 (en) * 2009-01-09 2010-04-20 삼성모바일디스플레이주식회사 Organic light emitting diode display
CN102597848B (en) 2009-10-17 2016-06-01 Qd视光有限公司 Optical element, include its product and the method for manufacturing it
KR101843559B1 (en) * 2010-11-05 2018-03-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device with imaging function and method for driving the same
US9899329B2 (en) 2010-11-23 2018-02-20 X-Celeprint Limited Interconnection structures and methods for transfer-printed integrated circuit elements with improved interconnection alignment tolerance
US10095016B2 (en) 2011-01-04 2018-10-09 Nlight, Inc. High power laser system
US9409255B1 (en) 2011-01-04 2016-08-09 Nlight, Inc. High power laser imaging systems
US9429742B1 (en) 2011-01-04 2016-08-30 Nlight, Inc. High power laser imaging systems
TWI444944B (en) * 2011-03-29 2014-07-11 E Ink Holdings Inc Color display and method for manufacturing color display
US8934259B2 (en) 2011-06-08 2015-01-13 Semprius, Inc. Substrates with transferable chiplets
US9034674B2 (en) 2011-08-08 2015-05-19 Quarkstar Llc Method and apparatus for coupling light-emitting elements with light-converting material
US9120344B2 (en) 2011-08-09 2015-09-01 Kateeva, Inc. Apparatus and method for control of print gap
KR101903921B1 (en) 2011-08-09 2018-10-02 카티바, 인크. Face-down printing apparatus and method
US9720244B1 (en) 2011-09-30 2017-08-01 Nlight, Inc. Intensity distribution management system and method in pixel imaging
WO2013085611A1 (en) 2011-12-08 2013-06-13 Qd Vision, Inc. Solution-processed sol-gel films, devices including same, and methods
NL2009147C2 (en) * 2012-07-06 2014-01-07 Fico Bv DEVICE AND METHOD FOR SEPARATING, AT LEAST PARTIAL DRYING AND INSPECTION OF ELECTRONIC COMPONENTS.
US9310248B2 (en) 2013-03-14 2016-04-12 Nlight, Inc. Active monitoring of multi-laser systems
KR20150007837A (en) * 2013-07-12 2015-01-21 삼성디스플레이 주식회사 Donor substrate and method for manufacturing organic light emitting diode display
CN107264083B (en) * 2013-10-02 2019-11-19 科迪华公司 For controlling the device and method of printing interval
EP3087623B1 (en) 2013-12-26 2021-09-22 Kateeva, Inc. Thermal treatment of electronic devices
WO2015112454A1 (en) 2014-01-21 2015-07-30 Kateeva, Inc. Apparatus and techniques for electronic device encapsulation
KR102099722B1 (en) 2014-02-05 2020-05-18 엔라이트 인크. Single-emitter line beam system
KR101963489B1 (en) 2014-04-30 2019-07-31 카티바, 인크. Gas cushion apparatus and techniques for substrate coating
KR102179953B1 (en) 2014-06-18 2020-11-18 엑스-셀레프린트 리미티드 Micro assembled led displays
KR102275615B1 (en) 2014-08-26 2021-07-09 엑스-셀레프린트 리미티드 Micro assembled hybrid displays and lighting elements
US9948539B2 (en) 2014-08-29 2018-04-17 The Nielsen Company (Us), Llc Methods and apparatus to predict end of streaming media using a prediction model
US9991163B2 (en) 2014-09-25 2018-06-05 X-Celeprint Limited Small-aperture-ratio display with electrical component
US9537069B1 (en) 2014-09-25 2017-01-03 X-Celeprint Limited Inorganic light-emitting diode with encapsulating reflector
US9799261B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Self-compensating circuit for faulty display pixels
US9818725B2 (en) 2015-06-01 2017-11-14 X-Celeprint Limited Inorganic-light-emitter display with integrated black matrix
US9799719B2 (en) 2014-09-25 2017-10-24 X-Celeprint Limited Active-matrix touchscreen
KR101686715B1 (en) * 2014-12-24 2016-12-14 엘지전자 주식회사 Display device
JP6497128B2 (en) * 2015-02-26 2019-04-10 住友金属鉱山株式会社 Donor sheet
US9871345B2 (en) 2015-06-09 2018-01-16 X-Celeprint Limited Crystalline color-conversion device
US10133426B2 (en) 2015-06-18 2018-11-20 X-Celeprint Limited Display with micro-LED front light
US11061276B2 (en) 2015-06-18 2021-07-13 X Display Company Technology Limited Laser array display
US10255834B2 (en) 2015-07-23 2019-04-09 X-Celeprint Limited Parallel redundant chiplet system for controlling display pixels
US9640108B2 (en) 2015-08-25 2017-05-02 X-Celeprint Limited Bit-plane pulse width modulated digital display system
US10380930B2 (en) 2015-08-24 2019-08-13 X-Celeprint Limited Heterogeneous light emitter display system
US10230048B2 (en) 2015-09-29 2019-03-12 X-Celeprint Limited OLEDs for micro transfer printing
US10066819B2 (en) 2015-12-09 2018-09-04 X-Celeprint Limited Micro-light-emitting diode backlight system
US10091446B2 (en) 2015-12-23 2018-10-02 X-Celeprint Limited Active-matrix displays with common pixel control
US9930277B2 (en) 2015-12-23 2018-03-27 X-Celeprint Limited Serial row-select matrix-addressed system
US9786646B2 (en) 2015-12-23 2017-10-10 X-Celeprint Limited Matrix addressed device repair
US9928771B2 (en) 2015-12-24 2018-03-27 X-Celeprint Limited Distributed pulse width modulation control
US10361677B2 (en) 2016-02-18 2019-07-23 X-Celeprint Limited Transverse bulk acoustic wave filter
US10200013B2 (en) 2016-02-18 2019-02-05 X-Celeprint Limited Micro-transfer-printed acoustic wave filter device
US10109753B2 (en) 2016-02-19 2018-10-23 X-Celeprint Limited Compound micro-transfer-printed optical filter device
EP3420582A1 (en) 2016-02-25 2019-01-02 X-Celeprint Limited Efficiently micro-transfer printing micro-scale devices onto large-format substrates
US10150325B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid banknote with electronic indicia
US10193025B2 (en) 2016-02-29 2019-01-29 X-Celeprint Limited Inorganic LED pixel structure
US10150326B2 (en) 2016-02-29 2018-12-11 X-Celeprint Limited Hybrid document with variable state
US10153256B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-transfer printable electronic component
US10153257B2 (en) 2016-03-03 2018-12-11 X-Celeprint Limited Micro-printed display
US10199546B2 (en) 2016-04-05 2019-02-05 X-Celeprint Limited Color-filter device
US10008483B2 (en) 2016-04-05 2018-06-26 X-Celeprint Limited Micro-transfer printed LED and color filter structure
US10198890B2 (en) 2016-04-19 2019-02-05 X-Celeprint Limited Hybrid banknote with electronic indicia using near-field-communications
US9997102B2 (en) 2016-04-19 2018-06-12 X-Celeprint Limited Wirelessly powered display and system
US10360846B2 (en) 2016-05-10 2019-07-23 X-Celeprint Limited Distributed pulse-width modulation system with multi-bit digital storage and output device
US9997501B2 (en) 2016-06-01 2018-06-12 X-Celeprint Limited Micro-transfer-printed light-emitting diode device
US10453826B2 (en) 2016-06-03 2019-10-22 X-Celeprint Limited Voltage-balanced serial iLED pixel and display
US11137641B2 (en) 2016-06-10 2021-10-05 X Display Company Technology Limited LED structure with polarized light emission
US10756141B2 (en) * 2016-07-28 2020-08-25 Universal Display Corporation Very high resolution stacked OLED display
US9980341B2 (en) 2016-09-22 2018-05-22 X-Celeprint Limited Multi-LED components
US10782002B2 (en) 2016-10-28 2020-09-22 X Display Company Technology Limited LED optical components
US10347168B2 (en) 2016-11-10 2019-07-09 X-Celeprint Limited Spatially dithered high-resolution
US10395966B2 (en) 2016-11-15 2019-08-27 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10600671B2 (en) 2016-11-15 2020-03-24 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10224231B2 (en) 2016-11-15 2019-03-05 X-Celeprint Limited Micro-transfer-printable flip-chip structures and methods
US10438859B2 (en) 2016-12-19 2019-10-08 X-Celeprint Limited Transfer printed device repair
US10832609B2 (en) 2017-01-10 2020-11-10 X Display Company Technology Limited Digital-drive pulse-width-modulated output system
US10396137B2 (en) 2017-03-10 2019-08-27 X-Celeprint Limited Testing transfer-print micro-devices on wafer
US11024608B2 (en) 2017-03-28 2021-06-01 X Display Company Technology Limited Structures and methods for electrical connection of micro-devices and substrates
CN109103231B (en) * 2018-08-27 2021-08-24 京东方科技集团股份有限公司 Display substrate, manufacturing method thereof and display device
CN112993131B (en) * 2019-12-17 2023-03-31 群创光电股份有限公司 Method for manufacturing display device
CN112928230A (en) * 2021-02-08 2021-06-08 安徽熙泰智能科技有限公司 Preparation method of color silicon-based OLED

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358664B1 (en) * 2000-09-15 2002-03-19 3M Innovative Properties Company Electronically active primer layers for thermal patterning of materials for electronic devices
WO2002022374A1 (en) * 2000-09-15 2002-03-21 3M Innovative Properties Company Thermal transfer of light-emitting polymers
US20020160296A1 (en) * 2001-04-27 2002-10-31 3M Innovative Properties Company Method for patterning oriented materials for organic electronic displays and devices
US20030124265A1 (en) * 2001-12-04 2003-07-03 3M Innovative Properties Company Method and materials for transferring a material onto a plasma treated surface according to a pattern

Family Cites Families (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252671A (en) * 1979-12-04 1981-02-24 Xerox Corporation Preparation of colloidal iron dispersions by the polymer-catalyzed decomposition of iron carbonyl and iron organocarbonyl compounds
US4897319A (en) * 1988-07-19 1990-01-30 Planar Systems, Inc. TFEL device having multiple layer insulators
US5171650A (en) 1990-10-04 1992-12-15 Graphics Technology International, Inc. Ablation-transfer imaging/recording
US5256506A (en) * 1990-10-04 1993-10-26 Graphics Technology International Inc. Ablation-transfer imaging/recording
US5166024A (en) * 1990-12-21 1992-11-24 Eastman Kodak Company Photoelectrographic imaging with near-infrared sensitizing pigments
US5408109A (en) * 1991-02-27 1995-04-18 The Regents Of The University Of California Visible light emitting diodes fabricated from soluble semiconducting polymers
US5650435A (en) * 1991-04-01 1997-07-22 Madara; James L. Modulation of inflammation related to columnar epithelia
US5351617A (en) * 1992-07-20 1994-10-04 Presstek, Inc. Method for laser-discharge imaging a printing plate
US5307438A (en) * 1992-08-13 1994-04-26 Minnesota Mining And Manufacturing Company Index matching compositions with improved DNG/DT
US5278023A (en) * 1992-11-16 1994-01-11 Minnesota Mining And Manufacturing Company Propellant-containing thermal transfer donor elements
JP2797883B2 (en) 1993-03-18 1998-09-17 株式会社日立製作所 Multicolor light emitting device and its substrate
US5308737A (en) * 1993-03-18 1994-05-03 Minnesota Mining And Manufacturing Company Laser propulsion transfer using black metal coated substrates
EP0676461B1 (en) * 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiro compounds and their application as electroluminescence materials
US6057067A (en) 1994-07-11 2000-05-02 3M Innovative Properties Company Method for preparing integral black matrix/color filter elements
US5521035A (en) * 1994-07-11 1996-05-28 Minnesota Mining And Manufacturing Company Methods for preparing color filter elements using laser induced transfer of colorants with associated liquid crystal display device
DE4436773A1 (en) * 1994-10-14 1996-04-18 Hoechst Ag Conjugated polymers with spirocenters and their use as electroluminescent materials
US5652600A (en) * 1994-11-17 1997-07-29 Planar Systems, Inc. Time multiplexed gray scale approach
CN1229415C (en) * 1995-07-28 2005-11-30 陶氏环球技术公司 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
US5708130A (en) * 1995-07-28 1998-01-13 The Dow Chemical Company 2,7-aryl-9-substituted fluorenes and 9-substituted fluorene oligomers and polymers
JPH0980434A (en) 1995-09-12 1997-03-28 Idemitsu Kosan Co Ltd Color display device
JP2838063B2 (en) 1995-09-20 1998-12-16 出光興産株式会社 Organic electroluminescence device
AU7693396A (en) * 1995-12-01 1997-06-27 Ciba Specialty Chemicals Holding Inc. Poly(9,9'-spiro-bisfluorenes), the production and use of same
US5929194A (en) * 1996-02-23 1999-07-27 The Dow Chemical Company Crosslinkable or chain extendable polyarylpolyamines and films thereof
JP4112007B2 (en) * 1996-03-04 2008-07-02 デュポン ディスプレイズ, インコーポレイテッド Polyfluorene as a material for photoluminescence and electroluminescence
US5725989A (en) 1996-04-15 1998-03-10 Chang; Jeffrey C. Laser addressable thermal transfer imaging element with an interlayer
US5693446A (en) * 1996-04-17 1997-12-02 Minnesota Mining And Manufacturing Company Polarizing mass transfer donor element and method of transferring a polarizing mass transfer layer
DE19623881A1 (en) 1996-06-05 1997-12-11 Hertz Inst Heinrich Self illuminating electro luminescent display panel
US5998085A (en) 1996-07-23 1999-12-07 3M Innovative Properties Process for preparing high resolution emissive arrays and corresponding articles
US5728801A (en) * 1996-08-13 1998-03-17 The Dow Chemical Company Poly (arylamines) and films thereof
JPH1092580A (en) 1996-09-19 1998-04-10 Fuji Electric Co Ltd Thin film electroluminescent element and manufacture thereof
JPH10162952A (en) 1996-11-27 1998-06-19 Sharp Corp Thin film el panel and manufacture thereof
US6117529A (en) * 1996-12-18 2000-09-12 Gunther Leising Organic electroluminescence devices and displays
JPH10223367A (en) 1997-02-04 1998-08-21 Mitsubishi Chem Corp Organic electric field luminescence element
ATE308224T1 (en) 1997-03-19 2005-11-15 Fuji Photo Film Co Ltd ELECTROLUMINescent DEVICE
GB9711237D0 (en) 1997-06-02 1997-07-23 Isis Innovation Organomettallic Complexes
US5920080A (en) * 1997-06-23 1999-07-06 Fed Corporation Emissive display using organic light emitting diodes
US5973405A (en) * 1997-07-22 1999-10-26 Dytak Corporation Composite electrical contact structure and method for manufacturing the same
US6242115B1 (en) * 1997-09-08 2001-06-05 The University Of Southern California OLEDs containing thermally stable asymmetric charge carrier materials
US6030715A (en) * 1997-10-09 2000-02-29 The University Of Southern California Azlactone-related dopants in the emissive layer of an OLED
US6150043A (en) * 1998-04-10 2000-11-21 The Trustees Of Princeton University OLEDs containing thermally stable glassy organic hole transporting materials
JPH11195488A (en) 1997-12-26 1999-07-21 Kansai Shingijutsu Kenkyusho:Kk El-pl composite element
EP1053578B1 (en) 1998-02-04 2002-05-08 Covion Organic Semiconductors GmbH Use of spiro compounds as laser dyes
JPH11251059A (en) * 1998-02-27 1999-09-17 Sanyo Electric Co Ltd Color display device
JPH11329742A (en) 1998-05-18 1999-11-30 Idemitsu Kosan Co Ltd Organic electroluminescent(el) element and light emitting device
US6329058B1 (en) * 1998-07-30 2001-12-11 3M Innovative Properties Company Nanosize metal oxide particles for producing transparent metal oxide colloids and ceramers
US6563263B1 (en) * 1998-09-07 2003-05-13 Fuji Electric Co., Ltd. Multi-colored organic EL device with protective layer
EP1042775A2 (en) 1998-09-22 2000-10-11 Fed Corporation Inorganic-based color conversion matrix element for organic color display devices and method of fabrication
JP2000096033A (en) * 1998-09-24 2000-04-04 Mitsubishi Pencil Co Ltd Ink follow-up body composition for aqueous ballpoint pen
GB9820805D0 (en) 1998-09-25 1998-11-18 Isis Innovation Divalent lanthanide metal complexes
US6268695B1 (en) * 1998-12-16 2001-07-31 Battelle Memorial Institute Environmental barrier material for organic light emitting device and method of making
JP2000195673A (en) 1998-12-25 2000-07-14 Sanyo Electric Co Ltd Organic electroluminescent element and luminous element
US6114088A (en) 1999-01-15 2000-09-05 3M Innovative Properties Company Thermal transfer element for forming multilayer devices
DE60003281T2 (en) 1999-01-15 2004-05-06 3M Innovative Properties Co., Saint Paul Thermal transfer process.
JP4136185B2 (en) 1999-05-12 2008-08-20 パイオニア株式会社 Organic electroluminescent multicolor display and method for manufacturing the same
CN100407448C (en) 1999-05-13 2008-07-30 普林斯顿大学理事会 Very high efficiency organic light emitting devices based on electrophosphorescence
US6221543B1 (en) 1999-05-14 2001-04-24 3M Innovatives Properties Process for making active substrates for color displays
US6461775B1 (en) * 1999-05-14 2002-10-08 3M Innovative Properties Company Thermal transfer of a black matrix containing carbon black
US6552488B1 (en) 1999-08-24 2003-04-22 Agilent Technologies, Inc. Organic electroluminescent device
US6284425B1 (en) 1999-12-28 2001-09-04 3M Innovative Properties Thermal transfer donor element having a heat management underlayer
US6228555B1 (en) * 1999-12-28 2001-05-08 3M Innovative Properties Company Thermal mass transfer donor element
US20010043043A1 (en) * 2000-01-07 2001-11-22 Megumi Aoyama Organic electroluminescent display panel and organic electroluminescent device used therefor
JP2002008257A (en) 2000-06-21 2002-01-11 Sankyo Seiki Mfg Co Ltd Optical head device
JP2002075636A (en) 2000-08-25 2002-03-15 Sharp Corp Donor film presented for manufacturing display device, manufacturing method of display device and display device
JP2002071931A (en) 2000-08-28 2002-03-12 Nippon Hoso Kyokai <Nhk> Color filter device
US6696177B1 (en) 2000-08-30 2004-02-24 Eastman Kodak Company White organic electroluminescent devices with improved stability and efficiency
JP2002084705A (en) 2000-09-07 2002-03-22 Hitachi Ltd Data recording device, magnetic disk device, and spindle motor therefor
JP4318455B2 (en) 2000-10-12 2009-08-26 三洋電機株式会社 Color filter forming method, light emitting element layer forming method, color display device manufacturing method using the same, or color display device
US7053255B2 (en) * 2000-11-08 2006-05-30 Idemitsu Kosan Co., Ltd. Substituted diphenylanthracene compounds for organic electroluminescence devices
JP2002151262A (en) 2000-11-08 2002-05-24 Idemitsu Kosan Co Ltd Color conversion filter and manufacturing method
KR100370286B1 (en) 2000-12-29 2003-01-29 삼성에스디아이 주식회사 circuit of electroluminescent display pixel for voltage driving
JP2002260845A (en) 2001-03-02 2002-09-13 Matsushita Electric Ind Co Ltd Organic electroluminescence element, display device or light-emitting source using the same
JP2002260866A (en) 2001-03-06 2002-09-13 Matsushita Electric Ind Co Ltd Organic electroluminescence element and its manufacturing method, and display device and portable terminal using the same
US6642652B2 (en) * 2001-06-11 2003-11-04 Lumileds Lighting U.S., Llc Phosphor-converted light emitting device
KR100834342B1 (en) * 2001-12-29 2008-06-02 엘지디스플레이 주식회사 an active matrix organic electroluminescence display and a manufacturing method of the same
JP2003229271A (en) 2002-02-05 2003-08-15 Dainippon Printing Co Ltd Organic electroluminescent image display device and manufacturing method of the same
CN101336022A (en) * 2002-02-12 2008-12-31 出光兴产株式会社 Organic EL display device and method for manufacturing the same
JP3594018B2 (en) * 2002-02-18 2004-11-24 富士電機ホールディングス株式会社 Organic EL display
JP4240893B2 (en) 2002-03-06 2009-03-18 大日本印刷株式会社 Organic EL display
CN1666576A (en) * 2002-05-08 2005-09-07 泽奥勒克斯公司 Display devices using feedback enhanced light emitting diode
TW576124B (en) * 2002-05-28 2004-02-11 Ritdisplay Corp Full color organic light-emitting display device
US7012364B2 (en) * 2002-10-01 2006-03-14 Dai Nippon Printing Co., Ltd. Organic electroluminescent display
US7986087B2 (en) * 2002-10-08 2011-07-26 Dai Nippon Printing Co., Ltd. Color conversion media and EL-display using the same
JP2004185219A (en) * 2002-12-02 2004-07-02 Fujitsu Ltd Program for electronic document check in trade transaction (bank)
JP2004207065A (en) 2002-12-25 2004-07-22 Fuji Electric Holdings Co Ltd Color conversion light emitting device, its manufacturing method and display using color conversion light emitting device
US7018713B2 (en) * 2003-04-02 2006-03-28 3M Innovative Properties Company Flexible high-temperature ultrabarrier
US7230374B2 (en) * 2003-09-22 2007-06-12 Samsung Sdi Co., Ltd. Full color organic light-emitting device having color modulation layer
US20050093435A1 (en) * 2003-09-22 2005-05-05 Suh Min-Chul Full color organic light-emtting device having color modulation layer
KR20050029426A (en) * 2003-09-22 2005-03-28 삼성에스디아이 주식회사 Full color oled having color filter layer or color conversion medium
US7892382B2 (en) 2003-11-18 2011-02-22 Samsung Mobile Display Co., Ltd. Electroluminescent devices and methods of making electroluminescent devices including a color conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358664B1 (en) * 2000-09-15 2002-03-19 3M Innovative Properties Company Electronically active primer layers for thermal patterning of materials for electronic devices
WO2002022374A1 (en) * 2000-09-15 2002-03-21 3M Innovative Properties Company Thermal transfer of light-emitting polymers
US20020160296A1 (en) * 2001-04-27 2002-10-31 3M Innovative Properties Company Method for patterning oriented materials for organic electronic displays and devices
US20030124265A1 (en) * 2001-12-04 2003-07-03 3M Innovative Properties Company Method and materials for transferring a material onto a plasma treated surface according to a pattern

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023716A1 (en) * 2006-08-25 2008-02-28 Idemitsu Kosan Co., Ltd. Transfer substrate for organic electroluminescent display device
WO2009094994A1 (en) * 2008-01-31 2009-08-06 Osram Opto Semiconductors Gmbh Optoelectronic module and projection device comprising the optoelectronic module
US8585246B2 (en) 2008-01-31 2013-11-19 OSRAM Optosemiconductors GmbH Optoelectronic module and projection apparatus comprising the optoelectronic module
DE102010044985A1 (en) * 2010-09-10 2012-03-15 Osram Opto Semiconductors Gmbh Method for applying a conversion agent to an optoelectronic semiconductor chip and optoelectronic component
US8932888B2 (en) 2010-09-10 2015-01-13 Osram Opto Semiconductors Gmbh Method of applying a conversion means to an optoelectronic semiconductor chip and an optoelectronic component
DE102010044985B4 (en) 2010-09-10 2022-02-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Method for applying a conversion agent to an optoelectronic semiconductor chip and optoelectronic component
KR20170127508A (en) * 2015-03-09 2017-11-21 코닌클리케 필립스 엔.브이. Variable point light emitting device
KR102437550B1 (en) 2015-03-09 2022-08-29 코닌클리케 필립스 엔.브이. color point variable light emitting device

Also Published As

Publication number Publication date
EP1685746A1 (en) 2006-08-02
KR20120003500A (en) 2012-01-10
DE602004011257T2 (en) 2009-01-08
KR20060113734A (en) 2006-11-02
US7892382B2 (en) 2011-02-22
EP1685746B1 (en) 2008-01-09
ATE383733T1 (en) 2008-01-15
TW200520607A (en) 2005-06-16
MXPA06005649A (en) 2006-08-17
CN1898993A (en) 2007-01-17
JP2012043805A (en) 2012-03-01
US20050116621A1 (en) 2005-06-02
KR101193201B1 (en) 2012-10-19
DE602004011257D1 (en) 2008-02-21
JP2007511890A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
EP1685746B1 (en) Electroluminescent devices and methods of making electroluminescent devices including a color conversion element
US9918370B2 (en) Electroluminescent devices and methods of making electroluminescent devices including an optical spacer
EP1318918B1 (en) Thermal transfer of light-emitting polymers
EP1330364B1 (en) Use of electronically active primer layers in thermal patterning of materials
US20030124265A1 (en) Method and materials for transferring a material onto a plasma treated surface according to a pattern
US20050118923A1 (en) Method of making an electroluminescent device including a color filter
EP1694511A1 (en) Thermal transfer of light-emitting dendrimers

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038795.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006541330

Country of ref document: JP

Ref document number: PA/a/2006/005649

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004811233

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020067011895

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004811233

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067011895

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004811233

Country of ref document: EP