WO2005042822A1 - Method of producing a nonwoven material - Google Patents

Method of producing a nonwoven material Download PDF

Info

Publication number
WO2005042822A1
WO2005042822A1 PCT/SE2004/001517 SE2004001517W WO2005042822A1 WO 2005042822 A1 WO2005042822 A1 WO 2005042822A1 SE 2004001517 W SE2004001517 W SE 2004001517W WO 2005042822 A1 WO2005042822 A1 WO 2005042822A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
fibrous web
entangling
filaments
weight
Prior art date
Application number
PCT/SE2004/001517
Other languages
French (fr)
Inventor
Thomas Billgren
Mats Söderberg
Hein Lindtstedt
Mees Versteeg
Original Assignee
Sca Hygiene Products Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sca Hygiene Products Ab filed Critical Sca Hygiene Products Ab
Publication of WO2005042822A1 publication Critical patent/WO2005042822A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/492Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • D04H18/04Needling machines with water jets
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/03Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random
    • D04H3/033Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments at random reorientation immediately after yarn or filament formation
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/11Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • D04H5/03Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling by fluid jet
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H15/00Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution
    • D21H15/02Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration
    • D21H15/04Pulp or paper, comprising fibres or web-forming material characterised by features other than their chemical constitution characterised by configuration crimped, kinked, curled or twisted fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/10Fibres of continuous length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2317/00Animal or vegetable based
    • B32B2317/10Natural fibres, e.g. wool, cotton

Definitions

  • the present invention refers to a method of producing a nonwoven material, wherein a fibrous web containing continuous filaments and natural fibers and/or synthetic staple fibers is formed on a forming member and subsequently hydroentangled to form said nonwoven material.
  • Hydroentangling or spunlacing is a technique introduced during the 1970'ies, see e g CA patent no. 841 938.
  • the method involves forming a fiber web which is either drylaid or wetlaid, after which the fibers are entangled by means of very fine water jets under high pressure. The water jets twist the fibers around each other giving the web strength. Several rows of water jets are directed against the fiber web which is supported by a movable wire. The entangled fiber web is then dried.
  • the fibers that are used in the material can be synthetic or regenerated staple fibers, e g polyester, polyamide, polypropylene, rayon or the like, pulp fibers or mixtures of pulp fibers and staple fibers.
  • Spunlace materials can be produced in high quality to a reasonable cost and have a high absorption capacity. They can e g be used as wiping material for household or industrial use, as disposable materials in medical care and for hygiene purposes etc.
  • the base material i e the fibrous material which is exerted to hydroentangling, either consists of at least two preformed fibrous layer where one layer is composed of meltblown fibers or of a "coform material" where an essentially homogeneous mixture of meltblown fibers and other fibers is airlaid on a wire and after that is exerted to hydroentangling.
  • EP-A-0 308 320 it is known to bring together a web of continuous filaments with a wetlaid fibrous material containing pulp fibers and staple fibers and hydroentangle together the separately formed fibrous webs to a laminate.
  • the fibers of the different fibrous webs will not be integrated with each other since the fibers already before the hydroentangling are bonded to each other and only have a very limited mobility.
  • EP-A-0 938 601 discloses a method of producing a nonwoven material by hydroentangling a fiber mixture containing continuous filaments, e g meltblown and/or spunbond fibers, and other fibers The method is characterized by foamforming a fibrous web of natural fibers and/or synthetic staple fibers and hydroentangling together the foamed fiber dispersion with the continuous filaments for forming a composite material, in which the continuous filaments are well integrated with the rest of the fibers.
  • the object of the present invention is to provide a method for producing a hydroentangled nonwoven material of a fibrous mixture of continuous filaments, for example in the form of meltblown and/or spunbond fibers and natural fibers and/or synthetic or regenerated staple fibers, in which there is given a high freedom in the choice of fibers and fiber lengths and where the continuous filaments are well integrated with the rest of the fibers.
  • Fig. 1 shows schematically an embodiment of a process for producing a hydroentangled nonwoven material according to the invention.
  • the hydroentangled composite material according to the invention comprises a mixture of continuous filaments and natural fibers and/or synthetic staple fibers. These different types of fibers are defined as follows.
  • Continuous filaments are fibers that in proportion to their diameter are very long, in principle endless. They can be produced by extruding a molten thermoplastic polymer through fine nozzles, whereafter the polymer will be cooled and drawn, preferably by the action of an air flow blown at and along the polymer streams, and solidified into strands that can be treated by drawing, stretching or crimping. Chemicals for additional functions can be added to the surface.
  • Filaments can also be regenerated fibers produced by chemical reaction of a solution of fiber-forming reactants entering a reagent medium, for example by spinning of regenerated cellulose fibers from a cellulose xanthate solution into sulphuric acid.
  • regenerated cellulose fibers are rayon, viscose or lyocell fibers.
  • Continuous filaments may be in the form of spunlaid filaments or meltblown filaments.
  • Spunlaid filaments are produced by extruding a molten polymer, cool and stretch to an appropriate diameter. The fiber diameter is usually above 10 ⁇ m, e g between 10 and 100 ⁇ m. Production of spunlaid filaments is e g described in US patents 4,813,864 and 5,545,371.
  • meltblown filaments are formed by means of a meltblown equipment 10, for example of the kind shown in the US patents 3,849,241 or 4,048,364.
  • the method shortly involves that a molten polymer is extruded through a nozzle in very fine streams and converging hot air streams are directed towards the polymer streams so that they are drawn out into continuous filaments with a very small diameter.
  • the filaments can be microfibers or macrofibers depending on their dimension. Microfibers have a diameter of up to 20 ⁇ m, but usually are in the interval between 2 and 12 ⁇ m in diameter. Macrofibers have a diameter of over 20 ⁇ m, e g between 20 and 100 ⁇ m.
  • thermoplastic polymers can in principle be used for producing spunlaid and meltblown filaments.
  • useful polymers are polyolefins, such as polyethylene and polypropylene, polyamides, polyesters and polylactides. Copolymers of these polymers may of course also be used.
  • Tow is another type of filaments, which normally are the starting material in the production of staple fibers, but which also is sold and used as a product of its own.
  • tow is produced from fine polymer streams that are drawn out and stretched, but instead of being laid down on a moving surface to form a web, they are kept in a bundle to finalize drawing and stretching.
  • this bundle of filaments is then treated with spin finish chemicals, are often crimped and then fed into a cutting stage where a wheel with knives will cut the filaments into distinct fiber lengths that are packed into bales to be shipped and used as staple fibers.
  • the filament bundles are packed, with or without spin finish chemicals, into bales or boxes.
  • continuous filaments will in the following be described as spunlaid fibers, but it is understood that also other types of continuous filaments, e g meltblown fibers, can be used.
  • the natural fibers are usually cellulose fibers, such as pulp fibers or fibers from grass or straw. Pulp fibers are the most commonly used natural fibers and are used in the material for their tendency to absorb water and for their tendency to create a coherent sheet. Both softwood fibers and hardwood fibers are suitable, and also recycled fibers can be used. The fiber lengths will vary from around 2-3 mm for softwood fibers and around 1-1.5 mm for hardwood fibers, and even shorter for recycled fibers as well as blends of these. Other natural fibers that are commonly used in nonwoven materials are cotton and hemp.
  • the staple fibers used can be produced from the same substances and by the same processes as the filaments discussed above. They may either be synthetic fibers or regenerated cellulose fibers, such as rayon, viscose or lyocell.
  • the cutting of the fiber bundles is normally done to result in a single cut length, which can be altered by varying the distances between the knives of the cutting wheel.
  • the fiber lengths of conventional wetlaid hydroentangled nonwovens are usually in the interval 12-18 mm. However according to the present invention also shorter fiber lengths, from about 2-3 mm, can be used.
  • continuous filaments 11 in the form of spunlaid fibers are produced by extruding a molten polymer, cool and stretch to an appropriate diameter.
  • the fiber diameter is usually above 10 ⁇ m, e g between 10 and 100 ⁇ m.
  • the spunlaid filaments are laid down directly on a forming wire 12 where they are allowed to form a relatively loose, open web structure in which the fibers are relatively free from each other. This is achieved either by making the distance between the spunlaying nozzle and the wire relatively large, so that the filaments are allowed to cool down before they land on the wire 12, at which their stickiness is reduced.
  • meltblown fibers are formed by means of a meltblown equipment.
  • the meltblown technique shortly involves that a molten polymer is extruded through a nozzle in very fine streams and converging air streams are directed towards the polymer streams so that they are drawn out into continuous filaments with a very small diameter.
  • the fibers can be microfibers or macrofibers depending on their dimension. Microfibers have a diameter of up to 20 ⁇ m, but usually are in the interval between 2 and 12 ⁇ m in diameter. Macrofibers have a diameter of over 20 ⁇ m, e g between 20 and 100 ⁇ m.
  • aqueous or a foamed fibrous dispersion 13 from a headbox 14 is laid on top of the spunlaid filaments.
  • the fibers are dispersed in water, with optional additives, and the fiber dispersion is dewatered on a forming fabric to form a wet laid fibrous web.
  • foam forming technique a fibrous web is formed from a dispersion of fibers in a foamed liquid containing water and a tenside.
  • the foamforming technique is described in for example GB 1,329,409 , US 4,443,297, WO 96/02701 and EP-A-0 938 601.
  • a foam- formed fibrous web has a very uniform fiber formation.
  • the spunlaid filaments Prior to the headbox 14 the spunlaid filaments are according to one embodiment wetted in a spraybar 23 or gentle shower.
  • the wettening of the filaments takes place at a very low pressure so that no substantial bonding of sideways displacement of the fibers take place.
  • the surface tension of the water will adhere the filaments to the wire so the formation will not distort while entering the headbox.
  • a tenside may be added in the spraybar 23 to wet the fibers.
  • Fibers of many different kinds and in different mixing proportions can be used for making the wet laid or foam formed fibrous web.
  • pulp fibers or mixtures of pulp fibers and synthetic staple fibers e g polyester, polyethylene, polypropylene, polyamide, polylactide, rayon, viscose, lyocell etc.
  • Other natural fibers than pulp fibers may further be used, such as seed hair fibers, e g cotton, kapok and milkweed; leaf fibers e g sisal, abaca, pineapple, New Zealand hamp, or bast fibers, e g. flax, hemp, ramie, jute, kenaf. Varying fiber lengths can be used.
  • Long fibers can be used than what is possible with wetlaying technique.
  • Long fibers ca. 18-30 mm, may be an advantage in hydroentangling, since they increase the strength of the material in dry as well as in wet condition.
  • the fibrous web contains between 5 and 50% by weight, preferably between 5 and 20% by weight staple fibers, As said above it is for many applications advantageous to use short staple fibers, between 3 and 7 mm.
  • a major part have a length in the interval 3 to 7 mm, wherein a major part refers to at least 50, preferably at least 70, more preferably at least 90 and most preferably at least 100% by weight of the staple fibers present in the material have a length in said interval.
  • pulp fibers As a substitute for pulp fibers other natural fibers with a short fiber length may be used, e g esparto grass, phalaris arundinacea and straw from crop seed.
  • the fibrous web comprises between 20 and 85% by weight, preferably between 40 and 75% by weight natural fibers, such as pulp fibers or substitutes therefore.
  • the fibrous web contains between 0.5 and 50% by weight, preferably between 15 and 30% by weight, continuous filaments, especially in the form of spunlaid or meltblown filaments.
  • the fiber dispersion laid on top of the spunlaid filaments is dewatered by suction boxes arranged under the wire 12. This provides the possibility to control the moisture content of the web before entering the subsequent foreshortening step. A higher moisture content increases the mobility of the fibers and their ability to rearrange and vice versa.
  • a spray station 15 may according to one embodiment be a pre-enta ⁇ gling station including one or several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide a pre- entangling of the fibrous web.
  • This pre-entangling binds the fibrous web to a certain degree, which should however not be higher than to allow a certain rearrangement of the structure in the subsequent foreshortening step.
  • the pre- entangling step may in an alternative embodiment be eliminated.
  • the fibrous web is then transferred to an entangling wire 16 via a transfer wire 17.
  • the entangling wire 16 is driven at a lower speed than the forming wire 12, and the transfer wire 17 is preferably driven at a speed intermediate that of the forming and entangling wires.
  • Suction boxes 21 and 22 are arranged at the points of transfer between the wires.
  • the fibrous web will in some sense be stuffed into the second wire. Because of the suction box 21 the fibrous web will be drained from water at the same time as it is stuffed in the surface of the transfer wire
  • the transfer fabric 17 may be replaced by a transfer roll.
  • the angles between the wires in the points of transfer should preferably be adjustable.
  • the type of foreshortening the fibrous web is exerted to by transferring it between wires driven at different speeds as described above, may be replaced by any other appropriate type of foreshortening a fibrous web, such as creping or micro creping, which e g is disclosed in US-A-3,260,778 and US-A- 4,432,927, or through the so called ⁇ , Clupak"-method, according to which a wet paper web is compacted by being placed on a rubber belt and be exerted to a varying tensile stress as is disclosed in US-A-2, 264,245.
  • creping or micro creping which e g is disclosed in US-A-3,260,778 and US-A- 4,432,927
  • ⁇ , Clupak ⁇ , Clupak
  • the fibrous web After having been transferred to the entangling wire 16 the fibrous web is hydroentangled in an entangling station 18 including several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide an entangling of the web.
  • an entangling station 18 including several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide an entangling of the web.
  • the entangling wire may optionally be patterned in order to form a patterned nonwoven material.
  • the foreshortening of the fibrous web creates a structure that more easily will mix and entangle in the subsequent hydroentangling step, which results in a composite nonwoven having a good integration between the spunlaid filaments, pulp and staple fibers.
  • a part of the short pulp fibers and staple fibers will take a position oriented more in the z-direction of the web than would otherwise be obtained. This will result in improved absorption characteristics of the material. It will also improve the textile feeling of the material due to an increased amount of fiber ends sticking out.
  • the forming wire 12 and/or the entangling wire 16 may of course be substituted for another appropriate forming and entangling member respectively, such as an apertured belt, an apertured drum etc.
  • the material 19 is dried and wound up.
  • the material is then converted in a known manner to a suitable format and is packed.

Abstract

Method of producing a nonwoven material, wherein a fibrous web containing continuous filaments and natural fibers and/or staple fibers is formed on a forming member (12) and subsequently hydroentangled to form said nonwoven material. The fibrous web is transferred to an entangling member (16) while subjecting said fibrous web to foreshortening and subsequently hydroentangling the foreshortened fibrous web, thus forming a composite material (19) wherein the continuous filaments are well integrated with the rest of the fibers.

Description

Method of producing a nonwoven material
Technical field
The present invention refers to a method of producing a nonwoven material, wherein a fibrous web containing continuous filaments and natural fibers and/or synthetic staple fibers is formed on a forming member and subsequently hydroentangled to form said nonwoven material.
Background of the invention Hydroentangling or spunlacing is a technique introduced during the 1970'ies, see e g CA patent no. 841 938. The method involves forming a fiber web which is either drylaid or wetlaid, after which the fibers are entangled by means of very fine water jets under high pressure. The water jets twist the fibers around each other giving the web strength. Several rows of water jets are directed against the fiber web which is supported by a movable wire. The entangled fiber web is then dried. The fibers that are used in the material can be synthetic or regenerated staple fibers, e g polyester, polyamide, polypropylene, rayon or the like, pulp fibers or mixtures of pulp fibers and staple fibers. Spunlace materials can be produced in high quality to a reasonable cost and have a high absorption capacity. They can e g be used as wiping material for household or industrial use, as disposable materials in medical care and for hygiene purposes etc.
Through e g EP-A-0 333 211 and EP-A-0 333 228 it is known to hydroentangle a fiber mixture in which one of the fiber components is meltblown fibers. The base material, i e the fibrous material which is exerted to hydroentangling, either consists of at least two preformed fibrous layer where one layer is composed of meltblown fibers or of a "coform material" where an essentially homogeneous mixture of meltblown fibers and other fibers is airlaid on a wire and after that is exerted to hydroentangling.
Through EP-A-0 308 320 it is known to bring together a web of continuous filaments with a wetlaid fibrous material containing pulp fibers and staple fibers and hydroentangle together the separately formed fibrous webs to a laminate. In such a material the fibers of the different fibrous webs will not be integrated with each other since the fibers already before the hydroentangling are bonded to each other and only have a very limited mobility.
EP-A-0 938 601 discloses a method of producing a nonwoven material by hydroentangling a fiber mixture containing continuous filaments, e g meltblown and/or spunbond fibers, and other fibers The method is characterized by foamforming a fibrous web of natural fibers and/or synthetic staple fibers and hydroentangling together the foamed fiber dispersion with the continuous filaments for forming a composite material, in which the continuous filaments are well integrated with the rest of the fibers.
Object and most important features of the invention
The object of the present invention is to provide a method for producing a hydroentangled nonwoven material of a fibrous mixture of continuous filaments, for example in the form of meltblown and/or spunbond fibers and natural fibers and/or synthetic or regenerated staple fibers, in which there is given a high freedom in the choice of fibers and fiber lengths and where the continuous filaments are well integrated with the rest of the fibers. This has according to the invention been obtained by transferring the fibrous web to an entangling member while subjecting said fibrous web to foreshortening and subsequently hydroentangling the foreshortened fibrous web, thus forming a composite material wherein the continuous filaments are well integrated with the rest of the fibers.
Other features of the invention are disclosed in the dependent claims and in the description below.
Description of the drawings
The invention will below be closer described with reference to an embodiment shown in the accompanying drawings.
Fig. 1 shows schematically an embodiment of a process for producing a hydroentangled nonwoven material according to the invention.
Description of some embodiments The hydroentangled composite material according to the invention comprises a mixture of continuous filaments and natural fibers and/or synthetic staple fibers. These different types of fibers are defined as follows.
Continuous filaments The continuous filaments are fibers that in proportion to their diameter are very long, in principle endless. They can be produced by extruding a molten thermoplastic polymer through fine nozzles, whereafter the polymer will be cooled and drawn, preferably by the action of an air flow blown at and along the polymer streams, and solidified into strands that can be treated by drawing, stretching or crimping. Chemicals for additional functions can be added to the surface.
Filaments can also be regenerated fibers produced by chemical reaction of a solution of fiber-forming reactants entering a reagent medium, for example by spinning of regenerated cellulose fibers from a cellulose xanthate solution into sulphuric acid. Examples of regenerated cellulose fibers are rayon, viscose or lyocell fibers.
Continuous filaments may be in the form of spunlaid filaments or meltblown filaments. Spunlaid filaments are produced by extruding a molten polymer, cool and stretch to an appropriate diameter. The fiber diameter is usually above 10 μm, e g between 10 and 100 μm. Production of spunlaid filaments is e g described in US patents 4,813,864 and 5,545,371.
Meltblown filaments are formed by means of a meltblown equipment 10, for example of the kind shown in the US patents 3,849,241 or 4,048,364. The method shortly involves that a molten polymer is extruded through a nozzle in very fine streams and converging hot air streams are directed towards the polymer streams so that they are drawn out into continuous filaments with a very small diameter. The filaments can be microfibers or macrofibers depending on their dimension. Microfibers have a diameter of up to 20 μm, but usually are in the interval between 2 and 12 μm in diameter. Macrofibers have a diameter of over 20 μm, e g between 20 and 100 μm.
All thermoplastic polymers can in principle be used for producing spunlaid and meltblown filaments. Examples of useful polymers are polyolefins, such as polyethylene and polypropylene, polyamides, polyesters and polylactides. Copolymers of these polymers may of course also be used.
Tow is another type of filaments, which normally are the starting material in the production of staple fibers, but which also is sold and used as a product of its own. In the same way as in the production of spunlaid fibers, tow is produced from fine polymer streams that are drawn out and stretched, but instead of being laid down on a moving surface to form a web, they are kept in a bundle to finalize drawing and stretching. When staple fibers are produced, this bundle of filaments is then treated with spin finish chemicals, are often crimped and then fed into a cutting stage where a wheel with knives will cut the filaments into distinct fiber lengths that are packed into bales to be shipped and used as staple fibers. When tow is produced, the filament bundles are packed, with or without spin finish chemicals, into bales or boxes.
The continuous filaments will in the following be described as spunlaid fibers, but it is understood that also other types of continuous filaments, e g meltblown fibers, can be used.
Natural fibers
The natural fibers are usually cellulose fibers, such as pulp fibers or fibers from grass or straw. Pulp fibers are the most commonly used natural fibers and are used in the material for their tendency to absorb water and for their tendency to create a coherent sheet. Both softwood fibers and hardwood fibers are suitable, and also recycled fibers can be used. The fiber lengths will vary from around 2-3 mm for softwood fibers and around 1-1.5 mm for hardwood fibers, and even shorter for recycled fibers as well as blends of these. Other natural fibers that are commonly used in nonwoven materials are cotton and hemp.
Staple fibers
The staple fibers used can be produced from the same substances and by the same processes as the filaments discussed above. They may either be synthetic fibers or regenerated cellulose fibers, such as rayon, viscose or lyocell. The cutting of the fiber bundles is normally done to result in a single cut length, which can be altered by varying the distances between the knives of the cutting wheel. The fiber lengths of conventional wetlaid hydroentangled nonwovens are usually in the interval 12-18 mm. However according to the present invention also shorter fiber lengths, from about 2-3 mm, can be used.
The process
According to the embodiment shown in Fig. 1 continuous filaments 11 in the form of spunlaid fibers are produced by extruding a molten polymer, cool and stretch to an appropriate diameter. The fiber diameter is usually above 10 μm, e g between 10 and 100 μm. The spunlaid filaments are laid down directly on a forming wire 12 where they are allowed to form a relatively loose, open web structure in which the fibers are relatively free from each other. This is achieved either by making the distance between the spunlaying nozzle and the wire relatively large, so that the filaments are allowed to cool down before they land on the wire 12, at which their stickiness is reduced. The basis weight of the formed spunlaid layer should be between 2 and 50 g/m2 and the bulk between 5 and 15 cm /g- In an alternative embodiment meltblown fibers are formed by means of a meltblown equipment. The meltblown technique shortly involves that a molten polymer is extruded through a nozzle in very fine streams and converging air streams are directed towards the polymer streams so that they are drawn out into continuous filaments with a very small diameter. The fibers can be microfibers or macrofibers depending on their dimension. Microfibers have a diameter of up to 20 μm, but usually are in the interval between 2 and 12 μm in diameter. Macrofibers have a diameter of over 20 μm, e g between 20 and 100 μm.
An aqueous or a foamed fibrous dispersion 13 from a headbox 14 is laid on top of the spunlaid filaments. In wet laying technique the fibers are dispersed in water, with optional additives, and the fiber dispersion is dewatered on a forming fabric to form a wet laid fibrous web. In foam forming technique a fibrous web is formed from a dispersion of fibers in a foamed liquid containing water and a tenside. The foamforming technique is described in for example GB 1,329,409 , US 4,443,297, WO 96/02701 and EP-A-0 938 601. A foam- formed fibrous web has a very uniform fiber formation. For a more detailed description of the foamforming technique reference is made to the above mentioned documents.
Prior to the headbox 14 the spunlaid filaments are according to one embodiment wetted in a spraybar 23 or gentle shower. The wettening of the filaments takes place at a very low pressure so that no substantial bonding of sideways displacement of the fibers take place. The surface tension of the water will adhere the filaments to the wire so the formation will not distort while entering the headbox. In some cases, when hydrophobic polymers are used for forming the spunlaid filaments, a tenside may be added in the spraybar 23 to wet the fibers.
Fibers of many different kinds and in different mixing proportions can be used for making the wet laid or foam formed fibrous web. Thus there can be used pulp fibers or mixtures of pulp fibers and synthetic staple fibers, e g polyester, polyethylene, polypropylene, polyamide, polylactide, rayon, viscose, lyocell etc. Other natural fibers than pulp fibers may further be used, such as seed hair fibers, e g cotton, kapok and milkweed; leaf fibers e g sisal, abaca, pineapple, New Zealand hamp, or bast fibers, e g. flax, hemp, ramie, jute, kenaf. Varying fiber lengths can be used. However, according to the invention, it is of advantage to use relatively short staple fibers, below 10 mm, preferably in the interval 2 to 8 mm and more preferably 3 to 7 mm. This is because short fibers will more easily mix and integrate with the spunlaid filaments than longer fibers. There will also be more fiber ends sticking out form the material, which increases softness and textile feeling of the material. For short staple fibers both wet laying and foam forming techniques may be used.
In foam forming technique longer fibers can be used than what is possible with wetlaying technique. Long fibers, ca. 18-30 mm, may be an advantage in hydroentangling, since they increase the strength of the material in dry as well as in wet condition.
It is preferred that the fibrous web contains between 5 and 50% by weight, preferably between 5 and 20% by weight staple fibers, As said above it is for many applications advantageous to use short staple fibers, between 3 and 7 mm. In one embodiment a major part have a length in the interval 3 to 7 mm, wherein a major part refers to at least 50, preferably at least 70, more preferably at least 90 and most preferably at least 100% by weight of the staple fibers present in the material have a length in said interval.
As a substitute for pulp fibers other natural fibers with a short fiber length may be used, e g esparto grass, phalaris arundinacea and straw from crop seed.
It is preferred that the fibrous web comprises between 20 and 85% by weight, preferably between 40 and 75% by weight natural fibers, such as pulp fibers or substitutes therefore.
It is further preferred that the fibrous web contains between 0.5 and 50% by weight, preferably between 15 and 30% by weight, continuous filaments, especially in the form of spunlaid or meltblown filaments.
The fiber dispersion laid on top of the spunlaid filaments is dewatered by suction boxes arranged under the wire 12. This provides the possibility to control the moisture content of the web before entering the subsequent foreshortening step. A higher moisture content increases the mobility of the fibers and their ability to rearrange and vice versa.
A spray station 15 may according to one embodiment be a pre-entaπgling station including one or several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide a pre- entangling of the fibrous web. This pre-entangling binds the fibrous web to a certain degree, which should however not be higher than to allow a certain rearrangement of the structure in the subsequent foreshortening step. The pre- entangling step may in an alternative embodiment be eliminated.
The fibrous web is then transferred to an entangling wire 16 via a transfer wire 17. The entangling wire 16 is driven at a lower speed than the forming wire 12, and the transfer wire 17 is preferably driven at a speed intermediate that of the forming and entangling wires. Suction boxes 21 and 22 are arranged at the points of transfer between the wires.
Due to the speed difference, which normally is below 20%, the fibrous web is braked at the transfer between the wires, resulting in a foreshortening or compacting effect. This technique, sometimes called rush transfer, of transferring a fibrous web between wires driven with different speed, in order to provide a foreshortening effect of the fibrous web, is known from the papermaking field, especially tissue paper making. It is for example referred to
US-A-5,607,551.
At this so called rush transfer the fibrous web will in some sense be stuffed into the second wire. Because of the suction box 21 the fibrous web will be drained from water at the same time as it is stuffed in the surface of the transfer wire
17. Free from water the short fibers will to a certain degree rearrange to a more three-dimensional structure and the spunlaid filaments will catch some curls, bights and loops. The formation of curls will be eased if a three- dimensional structure is created already by the forming wire 12. These curls will ease the formation of loops in the entangling process and increase the penetration of the pulp into the spunlaid web. The increased mobility of the fibers will facilitate the intertwining of the fibers and will result in a structure where the pulp fibers are more firmly caught in the material.
The transfer fabric 17 may be replaced by a transfer roll.
The angles between the wires in the points of transfer should preferably be adjustable.
The type of foreshortening the fibrous web is exerted to by transferring it between wires driven at different speeds as described above, may be replaced by any other appropriate type of foreshortening a fibrous web, such as creping or micro creping, which e g is disclosed in US-A-3,260,778 and US-A- 4,432,927, or through the so called Λ,Clupak"-method, according to which a wet paper web is compacted by being placed on a rubber belt and be exerted to a varying tensile stress as is disclosed in US-A-2, 264,245.
After having been transferred to the entangling wire 16 the fibrous web is hydroentangled in an entangling station 18 including several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide an entangling of the web. For a further description of the hydroentangling technique or, as it is also called, the spunlace technique, reference is made to e g CA patent 841,938. The entangling wire may optionally be patterned in order to form a patterned nonwoven material.
The foreshortening of the fibrous web creates a structure that more easily will mix and entangle in the subsequent hydroentangling step, which results in a composite nonwoven having a good integration between the spunlaid filaments, pulp and staple fibers. During the foreshortening when the web is compacted a part of the short pulp fibers and staple fibers will take a position oriented more in the z-direction of the web than would otherwise be obtained. This will result in improved absorption characteristics of the material. It will also improve the textile feeling of the material due to an increased amount of fiber ends sticking out.
The forming wire 12 and/or the entangling wire 16 may of course be substituted for another appropriate forming and entangling member respectively, such as an apertured belt, an apertured drum etc.
After the hydroentangling the material 19 is dried and wound up. The material is then converted in a known manner to a suitable format and is packed.

Claims

Claims
1. Method of producing a nonwoven material, wherein a fibrous web containing continuous filaments and natural fibers and/or staple fibers is formed on a forming member (12) and subsequently hydroentangled to form said nonwoven material, c h a r a c t e r i z e d i n transferring the fibrous web to an entangling member (16) while subjecting said fibrous web to foreshortening and subsequently hydroentangling the foreshortened fibrous web, thus forming a composite material (19) wherein the continuous filaments are well integrated with the rest of the fibers.
2. Method as claimed in claim 1, ch a ra cte rize d i n that the fibrous web is exerted to a pre-hydroentangling step (15) before being foreshortened.
3. Method as claimed in claim 1 or 2, ch a ra cte rized i n driving the forming member (12) at a higher speed than the entangling member (16) thus providing a foreshortening effect of the fibrous web when transferring the web between said members.
4. Method as claimed in claim 3, ch a ra cte ri ze d i n that the fibrous web is transferred to the entangling member (16) via a transfer member (17), that the entangling member (16) is driven at a lower speed than the forming member (12), and the transfer member (17) is driven at a speed intermediate that of the forming and entangling members.
5. Method as claimed in any of the preceding claims, ch aracterized in that the fibrous web is wet-formed or foam-formed.
6. Method as claimed in any of the preceding claims, cha racterized i n that the fibrous web comprises between 20 and 85% by weight, preferably between 40 and 75% by weight natural fibers.
7. Method as claimed in claims 1-6, ch a r a c t e r i z e d i n that said natural fibers are pulp fibers.
8. Method as claimed in any of the preceding claims, cha racterized i that the fibrous web contains between 5 and 50% by weight, preferably between 5 and 20% by weight synthetic or regenerated staple fibers.
9. Method as claimed in claim 8, ch a ra cte rize d i n that at least a major part of said synthetic staple fibers have a fiber length between 3 and 7 mm.
10. Method as claimed in any of the preceding claims, cha racterized i n that the fibrous web contains between 0.5 and 50% by weight, preferably between 15 and 30% by weight, continuous filaments.
11. Method as claimed in claim 10, c h a r a c t e r i z e d i n that the continuous filaments are in the form of spunlaid or meltblown filaments.
PCT/SE2004/001517 2003-10-31 2004-10-21 Method of producing a nonwoven material WO2005042822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0302873-5 2003-10-31
SE0302873A SE0302873D0 (en) 2003-10-31 2003-10-31 Method of producing a nonwoven material

Publications (1)

Publication Number Publication Date
WO2005042822A1 true WO2005042822A1 (en) 2005-05-12

Family

ID=29580174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2004/001517 WO2005042822A1 (en) 2003-10-31 2004-10-21 Method of producing a nonwoven material

Country Status (2)

Country Link
SE (1) SE0302873D0 (en)
WO (1) WO2005042822A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478463B2 (en) 2005-09-26 2009-01-20 Kimberly-Clark Worldwide, Inc. Manufacturing process for combining a layer of pulp fibers with another substrate
WO2013165287A1 (en) * 2012-05-03 2013-11-07 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
CN109629110A (en) * 2018-12-10 2019-04-16 杭州诺邦无纺股份有限公司 A kind of preparation method of wood pulp mixing spunlace non-woven material
US10519606B2 (en) 2016-12-22 2019-12-31 Kimberly-Clark Wordlwide, Inc. Process and system for reorienting fibers in a foam forming process

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308320A2 (en) * 1987-09-15 1989-03-22 Fiberweb North America, Inc. High strength nonwoven fabric
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5935880A (en) * 1997-03-31 1999-08-10 Wang; Kenneth Y. Dispersible nonwoven fabric and method of making same
EP1091035A1 (en) * 1999-10-05 2001-04-11 J.W. Suominen Oy Hydroentangled nonwoven, method for its manufacture and its use
EP0938601B1 (en) * 1997-10-24 2001-12-19 SCA Hygiene Products AB Method of manufacturing a nonwoven material
US6375889B1 (en) * 1998-04-17 2002-04-23 Polymer Group, Inc. Method of making machine direction stretchable nonwoven fabrics having a high degree of recovery upon elongation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0308320A2 (en) * 1987-09-15 1989-03-22 Fiberweb North America, Inc. High strength nonwoven fabric
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5935880A (en) * 1997-03-31 1999-08-10 Wang; Kenneth Y. Dispersible nonwoven fabric and method of making same
EP0938601B1 (en) * 1997-10-24 2001-12-19 SCA Hygiene Products AB Method of manufacturing a nonwoven material
US6375889B1 (en) * 1998-04-17 2002-04-23 Polymer Group, Inc. Method of making machine direction stretchable nonwoven fabrics having a high degree of recovery upon elongation
EP1091035A1 (en) * 1999-10-05 2001-04-11 J.W. Suominen Oy Hydroentangled nonwoven, method for its manufacture and its use

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478463B2 (en) 2005-09-26 2009-01-20 Kimberly-Clark Worldwide, Inc. Manufacturing process for combining a layer of pulp fibers with another substrate
WO2013165287A1 (en) * 2012-05-03 2013-11-07 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
US9194084B2 (en) 2012-05-03 2015-11-24 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
US10519606B2 (en) 2016-12-22 2019-12-31 Kimberly-Clark Wordlwide, Inc. Process and system for reorienting fibers in a foam forming process
CN109629110A (en) * 2018-12-10 2019-04-16 杭州诺邦无纺股份有限公司 A kind of preparation method of wood pulp mixing spunlace non-woven material

Also Published As

Publication number Publication date
SE0302873D0 (en) 2003-10-31

Similar Documents

Publication Publication Date Title
US20050091811A1 (en) Method of producing a nonwoven material
US7422660B2 (en) Method of producing a nonwoven material
US7331091B2 (en) Method of producing a nonwoven material
US9194084B2 (en) Method of producing a hydroentangled nonwoven material
US8763219B2 (en) Method of producing a hydroentangled nonwoven material
US6163943A (en) Method of producing a nonwoven material
US6592713B2 (en) Method of producing a nonwoven material
US20070178795A1 (en) Hydroentangled split-fibre nonwoven material
WO2008066417A1 (en) A hydroentangled nonwoven material
EP1215325A1 (en) Method of producing a nonwoven material
EP1678361B1 (en) Method of producing a nonwoven material
WO2005042822A1 (en) Method of producing a nonwoven material
MXPA06009285A (en) Method of producing a nonwoven material
CZ20001428A3 (en) Process for producing nonwoven material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase