WO2005038910A3 - Three-dimensional integrated circuit with integrated heat sinks - Google Patents

Three-dimensional integrated circuit with integrated heat sinks Download PDF

Info

Publication number
WO2005038910A3
WO2005038910A3 PCT/US2004/034499 US2004034499W WO2005038910A3 WO 2005038910 A3 WO2005038910 A3 WO 2005038910A3 US 2004034499 W US2004034499 W US 2004034499W WO 2005038910 A3 WO2005038910 A3 WO 2005038910A3
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat sinks
integrated circuit
dimensional
substrates
Prior art date
Application number
PCT/US2004/034499
Other languages
French (fr)
Other versions
WO2005038910A2 (en
Inventor
Pavel I Lazarev
Original Assignee
Optiva Inc
Pavel I Lazarev
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optiva Inc, Pavel I Lazarev filed Critical Optiva Inc
Publication of WO2005038910A2 publication Critical patent/WO2005038910A2/en
Publication of WO2005038910A3 publication Critical patent/WO2005038910A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05568Disposition the whole external layer protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13023Disposition the whole bump connector protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/1605Shape
    • H01L2224/16057Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16104Disposition relative to the bonding area, e.g. bond pad
    • H01L2224/16105Disposition relative to the bonding area, e.g. bond pad the bump connector connecting bonding areas being not aligned with respect to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16108Disposition the bump connector not being orthogonal to the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16238Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/81815Reflow soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06517Bump or bump-like direct electrical connections from device to substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06541Conductive via connections through the device, e.g. vertical interconnects, through silicon via [TSV]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06551Conductive connections on the side of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/648 and H10K99/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06589Thermal management, e.g. cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector

Abstract

The present invention is directed to a three-dimensional semiconducting integrated circuit comprising a heat-sink , a set of heat-conducting substrates stacked on the heat sink, the substrates heaving heat-generating Functional electronic or electrical elements mounted thereon, there being a system of heat sinks provided at the side of the stack and providing thermal contact between the substrates and the heat sink.
PCT/US2004/034499 2003-10-17 2004-10-18 Three-dimensional integrated circuit with integrated heat sinks WO2005038910A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US51225603P 2003-10-17 2003-10-17
US60/512,256 2003-10-17
US10/965,065 2004-10-13
US10/965,065 US20050104027A1 (en) 2003-10-17 2004-10-13 Three-dimensional integrated circuit with integrated heat sinks

Publications (2)

Publication Number Publication Date
WO2005038910A2 WO2005038910A2 (en) 2005-04-28
WO2005038910A3 true WO2005038910A3 (en) 2005-08-11

Family

ID=34468025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/034499 WO2005038910A2 (en) 2003-10-17 2004-10-18 Three-dimensional integrated circuit with integrated heat sinks

Country Status (2)

Country Link
US (1) US20050104027A1 (en)
WO (1) WO2005038910A2 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7198924B2 (en) * 2000-12-11 2007-04-03 Invitrogen Corporation Methods and compositions for synthesis of nucleic acid molecules using multiple recognition sites
JP2007512838A (en) 2003-12-01 2007-05-24 インヴィトロジェン コーポレーション Nucleic acid molecules containing recombination sites and methods of use thereof
US7838997B2 (en) * 2005-06-14 2010-11-23 John Trezza Remote chip attachment
US8456015B2 (en) 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US7534722B2 (en) * 2005-06-14 2009-05-19 John Trezza Back-to-front via process
US7687400B2 (en) * 2005-06-14 2010-03-30 John Trezza Side stacking apparatus and method
US7781886B2 (en) * 2005-06-14 2010-08-24 John Trezza Electronic chip contact structure
US7786592B2 (en) 2005-06-14 2010-08-31 John Trezza Chip capacitive coupling
US7560813B2 (en) * 2005-06-14 2009-07-14 John Trezza Chip-based thermo-stack
US20060278996A1 (en) * 2005-06-14 2006-12-14 John Trezza Active packaging
US20060281303A1 (en) * 2005-06-14 2006-12-14 John Trezza Tack & fuse chip bonding
US7215032B2 (en) * 2005-06-14 2007-05-08 Cubic Wafer, Inc. Triaxial through-chip connection
US7851348B2 (en) 2005-06-14 2010-12-14 Abhay Misra Routingless chip architecture
US20060278966A1 (en) * 2005-06-14 2006-12-14 John Trezza Contact-based encapsulation
US20070281460A1 (en) * 2006-06-06 2007-12-06 Cubic Wafer, Inc. Front-end processed wafer having through-chip connections
US7687397B2 (en) 2006-06-06 2010-03-30 John Trezza Front-end processed wafer having through-chip connections
CN101553903B (en) * 2006-10-17 2012-08-29 丘费尔资产股份有限公司 Wafer via formation
US7705613B2 (en) * 2007-01-03 2010-04-27 Abhay Misra Sensitivity capacitive sensor
US7598163B2 (en) * 2007-02-15 2009-10-06 John Callahan Post-seed deposition process
US7705632B2 (en) * 2007-02-15 2010-04-27 Wyman Theodore J Ted Variable off-chip drive
US7803693B2 (en) * 2007-02-15 2010-09-28 John Trezza Bowed wafer hybridization compensation
US7670874B2 (en) * 2007-02-16 2010-03-02 John Trezza Plated pillar package formation
US7763973B1 (en) * 2007-04-05 2010-07-27 Hewlett-Packard Development Company, L.P. Integrated heat sink for a microchip
US7850060B2 (en) * 2007-04-05 2010-12-14 John Trezza Heat cycle-able connection
US7748116B2 (en) * 2007-04-05 2010-07-06 John Trezza Mobile binding in an electronic connection
US7960210B2 (en) 2007-04-23 2011-06-14 Cufer Asset Ltd. L.L.C. Ultra-thin chip packaging
US20080261392A1 (en) * 2007-04-23 2008-10-23 John Trezza Conductive via formation
US20090091892A1 (en) * 2007-09-26 2009-04-09 Rohm Co., Ltd. Semiconductor Device
US11217472B2 (en) * 2010-12-16 2022-01-04 Monolithic 3D Inc. 3D semiconductor device and structure with multiple isolation layers
US11804396B2 (en) * 2010-11-18 2023-10-31 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11569117B2 (en) * 2010-11-18 2023-01-31 Monolithic 3D Inc. 3D semiconductor device and structure with single-crystal layers
US11610802B2 (en) * 2010-11-18 2023-03-21 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with single crystal transistors and metal gate electrodes
US11854857B1 (en) * 2010-11-18 2023-12-26 Monolithic 3D Inc. Methods for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11862503B2 (en) * 2010-11-18 2024-01-02 Monolithic 3D Inc. Method for producing a 3D semiconductor device and structure with memory cells and multiple metal layers
US11355380B2 (en) * 2010-11-18 2022-06-07 Monolithic 3D Inc. Methods for producing 3D semiconductor memory device and structure utilizing alignment marks
US11521888B2 (en) * 2010-11-18 2022-12-06 Monolithic 3D Inc. 3D semiconductor device and structure with high-k metal gate transistors
US11164770B1 (en) * 2010-11-18 2021-11-02 Monolithic 3D Inc. Method for producing a 3D semiconductor memory device and structure
US11094576B1 (en) * 2010-11-18 2021-08-17 Monolithic 3D Inc. Methods for producing a 3D semiconductor memory device and structure
US8963135B2 (en) * 2012-11-30 2015-02-24 Intel Corporation Integrated circuits and systems and methods for producing the same
US9449896B2 (en) 2014-01-13 2016-09-20 Stmicroelectronics Sa Device comprising a three-dimensional integrated structure with simplified thermal dissipation, and corresponding fabrication method
US10573627B2 (en) 2015-01-09 2020-02-25 Silicon Genesis Corporation Three dimensional integrated circuit
US20180175008A1 (en) 2015-01-09 2018-06-21 Silicon Genesis Corporation Three dimensional integrated circuit
KR102578576B1 (en) * 2017-12-01 2023-09-15 실리콘 제너시스 코포레이션 3D integrated circuit
US10403435B2 (en) 2017-12-15 2019-09-03 Capacitor Sciences Incorporated Edder compound and capacitor thereof
US11410984B1 (en) 2021-10-08 2022-08-09 Silicon Genesis Corporation Three dimensional integrated circuit with lateral connection layer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095039A (en) * 1981-02-10 1982-09-22 Brown David F Circuit assembly
US4894706A (en) * 1985-02-14 1990-01-16 Nippon Telegraph And Telephone Corporation Three-dimensional packaging of semiconductor device chips
FR2704690A1 (en) * 1993-04-27 1994-11-04 Thomson Csf Method for encapsulating semiconductor wafers, device obtained by this process and application to the interconnection of wafers in three dimensions.
US5497033A (en) * 1993-02-08 1996-03-05 Martin Marietta Corporation Embedded substrate for integrated circuit modules
US5719745A (en) * 1995-07-12 1998-02-17 International Business Machines Corporation Extended surface cooling for chip stack applications
US5943213A (en) * 1997-11-03 1999-08-24 R-Amtech International, Inc. Three-dimensional electronic module
US5963793A (en) * 1996-05-29 1999-10-05 Mcnc Microelectronic packaging using arched solder columns
US20030060034A1 (en) * 1999-04-02 2003-03-27 Imec Vzw, A Research Center In The Country Of Belgium Method of transferring ultra-thin substrates and application of the method to the manufacture of a multi-layer thin film device

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438691A (en) * 1964-05-14 1969-04-15 Polaroid Corp Birefringent polarizer
US3610729A (en) * 1969-06-18 1971-10-05 Polaroid Corp Multilayered light polarizer
US4525413A (en) * 1981-03-02 1985-06-25 Polaroid Corporation Optical device including birefringent polymer
KR900008647B1 (en) * 1986-03-20 1990-11-26 후지쓰 가부시끼가이샤 A method for manufacturing three demensional i.c.
US4764846A (en) * 1987-01-05 1988-08-16 Irvine Sensors Corporation High density electronic package comprising stacked sub-modules
US4896218A (en) * 1987-09-04 1990-01-23 Rockwell International Corporation Circularly polarized multi-bandpass interference contrast enhancement filter
US5016138A (en) * 1987-10-27 1991-05-14 Woodman John K Three dimensional integrated circuit package
US4983533A (en) * 1987-10-28 1991-01-08 Irvine Sensors Corporation High-density electronic modules - process and product
US5006915A (en) * 1989-02-14 1991-04-09 Ricoh Company, Ltd. Electric device and photoelectric conversion device comprising the same
US5486949A (en) * 1989-06-20 1996-01-23 The Dow Chemical Company Birefringent interference polarizer
US5113314A (en) * 1991-01-24 1992-05-12 Hewlett-Packard Company High-speed, high-density chip mounting
US5266833A (en) * 1992-03-30 1993-11-30 Capps David F Integrated circuit bus structure
US5325218A (en) * 1992-12-31 1994-06-28 Minnesota Mining And Manufacturing Company Cholesteric polarizer for liquid crystal display and overhead projector
RU2047643C1 (en) * 1993-05-21 1995-11-10 Хан Ир Гвон Material for polarizing coating
US5545924A (en) * 1993-08-05 1996-08-13 Honeywell Inc. Three dimensional package for monolithic microwave/millimeterwave integrated circuits
US5570214A (en) * 1993-12-15 1996-10-29 Ois Optical Imaging Systems, Inc. Normally white twisted nematic LCD with retardation films on opposite sides of liquid crystal material for improved viewing zone
US6025897A (en) * 1993-12-21 2000-02-15 3M Innovative Properties Co. Display with reflective polarizer and randomizing cavity
US5882774A (en) * 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US5973396A (en) * 1996-02-16 1999-10-26 Micron Technology, Inc. Surface mount IC using silicon vias in an area array format or same size as die array
US5825543A (en) * 1996-02-29 1998-10-20 Minnesota Mining And Manufacturing Company Diffusely reflecting polarizing element including a first birefringent phase and a second phase
US5783120A (en) * 1996-02-29 1998-07-21 Minnesota Mining And Manufacturing Company Method for making an optical film
US5793296A (en) * 1996-04-30 1998-08-11 Lewkowicz; Mike Apparatus for carbon monoxide detection and automatic shutoff of a heating system
SE511425C2 (en) * 1996-12-19 1999-09-27 Ericsson Telefon Ab L M Packing device for integrated circuits
US6111697A (en) * 1998-01-13 2000-08-29 3M Innovative Properties Company Optical device with a dichroic polarizer and a multilayer optical film
US6243068B1 (en) * 1998-05-29 2001-06-05 Silicon Graphics, Inc. Liquid crystal flat panel display with enhanced backlight brightness and specially selected light sources
RU2155978C2 (en) * 1998-10-28 2000-09-10 ОПТИВА, Инк. Dichroic polarizer and method for its manufacturing
US20010046086A1 (en) * 1998-12-23 2001-11-29 3M Innovative Properties Company Polymeric interference film
US6515785B1 (en) * 1999-04-22 2003-02-04 3M Innovative Properties Company Optical devices using reflecting polarizing materials
US6573565B2 (en) * 1999-07-28 2003-06-03 International Business Machines Corporation Method and structure for providing improved thermal conduction for silicon semiconductor devices
JP4438133B2 (en) * 1999-08-19 2010-03-24 シャープ株式会社 Heterojunction bipolar transistor and manufacturing method thereof
US6500694B1 (en) * 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
JP2001210763A (en) * 2000-01-27 2001-08-03 Mitsubishi Electric Corp Semiconductor module
KR20010085420A (en) * 2000-02-23 2001-09-07 기타지마 요시토시 Electroluminescence element and method manufacturing the same
US6444576B1 (en) * 2000-06-16 2002-09-03 Chartered Semiconductor Manufacturing, Ltd. Three dimensional IC package module
US6600173B2 (en) * 2000-08-30 2003-07-29 Cornell Research Foundation, Inc. Low temperature semiconductor layering and three-dimensional electronic circuits using the layering
JP4608763B2 (en) * 2000-11-09 2011-01-12 日本電気株式会社 Semiconductor device
US6686654B2 (en) * 2001-08-31 2004-02-03 Micron Technology, Inc. Multiple chip stack structure and cooling system
RU2226708C2 (en) * 2001-09-21 2004-04-10 ОПТИВА, Инк. Liquid-crystal display with reflection polarizer
US6661661B2 (en) * 2002-01-07 2003-12-09 International Business Machines Corporation Common heatsink for multiple chips and modules
US7160485B2 (en) * 2003-04-25 2007-01-09 Nitto Denko Corporation Lyotropic liquid crystal systems based on perylenetetracarboxylic acid dibenzimidazole sulfoderivatives, related anisotropic films, and methods for making
US6816378B1 (en) * 2003-04-28 2004-11-09 Hewlett-Packard Development Company, L.P. Stack up assembly
US6861664B2 (en) * 2003-07-25 2005-03-01 Xerox Corporation Device with n-type semiconductor
US7031162B2 (en) * 2003-09-26 2006-04-18 International Business Machines Corporation Method and structure for cooling a dual chip module with one high power chip

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2095039A (en) * 1981-02-10 1982-09-22 Brown David F Circuit assembly
US4894706A (en) * 1985-02-14 1990-01-16 Nippon Telegraph And Telephone Corporation Three-dimensional packaging of semiconductor device chips
US5497033A (en) * 1993-02-08 1996-03-05 Martin Marietta Corporation Embedded substrate for integrated circuit modules
FR2704690A1 (en) * 1993-04-27 1994-11-04 Thomson Csf Method for encapsulating semiconductor wafers, device obtained by this process and application to the interconnection of wafers in three dimensions.
US5719745A (en) * 1995-07-12 1998-02-17 International Business Machines Corporation Extended surface cooling for chip stack applications
US5963793A (en) * 1996-05-29 1999-10-05 Mcnc Microelectronic packaging using arched solder columns
US5943213A (en) * 1997-11-03 1999-08-24 R-Amtech International, Inc. Three-dimensional electronic module
US20030060034A1 (en) * 1999-04-02 2003-03-27 Imec Vzw, A Research Center In The Country Of Belgium Method of transferring ultra-thin substrates and application of the method to the manufacture of a multi-layer thin film device

Also Published As

Publication number Publication date
WO2005038910A2 (en) 2005-04-28
US20050104027A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
WO2005038910A3 (en) Three-dimensional integrated circuit with integrated heat sinks
WO2005018291A3 (en) Thermally enhanced electronic module with self-aligning heat sink
EP1781076A3 (en) Electronic assembly having multiple side cooling and method
EP1761114A3 (en) Circuit board
WO2008057493A3 (en) Photovoltaic connection system
WO2005059995A3 (en) Semiconductor package with integrated heatsink and electromagnetic shield
WO2008005614A3 (en) Chip module for complete power train
EP1659839A3 (en) Thermal management of surface-mount circuit devices on laminate ceramic substrate
EP1667226A3 (en) Thermal management of surface-mount circuit devices
WO2003083956A3 (en) Enhanced thermal dissipation integrated circuit package and method of manufacturing enhanced thermal dissipation integrated circuit package
WO2005036664A3 (en) Organic electronic devices with low thermal resistance and processes for forming and using the same
WO2006107365A3 (en) Heat sink for multiple semiconductor modules
WO2006063277A3 (en) Systems to cool multiple electrical components
EP0874399A4 (en)
CA2233481A1 (en) Integrated circuit device cooling structure
EP0989606A3 (en) Power module substrate, method of producing the same, and semiconductor device including the substrate
WO2006029265A3 (en) Liquid cooled heat sink with cold plate retention mechanism
TW200507212A (en) Semiconductor package with heat dissipating structure
EP1995775A3 (en) Semiconductor device with stress reducing element
EP1394857A3 (en) Semiconductor device
WO2002019424A3 (en) Electronic assembly comprising solderable thermal interface and methods of manufacture
WO2001078141A3 (en) USE OF AlN AS COPPER PASSIVATION LAYER AND THERMAL CONDUCTOR
GB2444467A (en) Stackable wafer or die packaging with enhanced thermal and device performance
EP1701380A3 (en) Semiconductor power module
WO2005104231A3 (en) Multi-substrate circuit assembly

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase