WO2005032620A1 - Impeller - Google Patents

Impeller Download PDF

Info

Publication number
WO2005032620A1
WO2005032620A1 PCT/AU2004/001379 AU2004001379W WO2005032620A1 WO 2005032620 A1 WO2005032620 A1 WO 2005032620A1 AU 2004001379 W AU2004001379 W AU 2004001379W WO 2005032620 A1 WO2005032620 A1 WO 2005032620A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
pump
axial flow
blood pump
support ring
Prior art date
Application number
PCT/AU2004/001379
Other languages
French (fr)
Inventor
Geoffrey Douglas Tansley
Martin Christopher Cook
John Campbell Woodard
Original Assignee
Ventracor Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003905511A external-priority patent/AU2003905511A0/en
Application filed by Ventracor Limited filed Critical Ventracor Limited
Priority to JP2006529462A priority Critical patent/JP4889492B2/en
Priority to CA002541979A priority patent/CA2541979A1/en
Priority to US10/575,118 priority patent/US7798952B2/en
Priority to EP04761412A priority patent/EP1670524A4/en
Priority to AU2004277286A priority patent/AU2004277286B2/en
Publication of WO2005032620A1 publication Critical patent/WO2005032620A1/en
Priority to US12/860,847 priority patent/US8366599B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/178Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart drawing blood from a ventricle and returning the blood to the arterial system via a cannula external to the ventricle, e.g. left or right ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/804Impellers
    • A61M60/806Vanes or blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices

Definitions

  • the present invention relates to improvements in implantable axial flow rotary blood pumps.
  • Cardiovascular disease remains a leading cause of death in the developed world, responsible for more than 40% of deaths in Australia and in the United States.
  • Annual diagnoses of new cases of heart failure in the United States have reached 550,000, leading to a population of approximately 4.7 million people afflicted by the disease; annual cost estimates for heart failure treatment range from USD$10 billion to $38 billion.
  • Cardiac transplantation provides substantial benefit for patients with severe heart failure, however there is a gross disparity between the numbers of potential recipients (800,000 p.a. worldwide) and suitable transplant donors, approximately 3,000 p.a. worldwide. Consequently, there is a clear need for development of an effective heart support device.
  • Ventricular Assist Devices 'NADs'
  • 'LVADs' Left Ventricle Assist Devices
  • 'NADs' Ventricular Assist Devices
  • 'LVADs' Left Ventricle Assist Devices
  • VADs The initial VADs developed were pulsatile (implanted and external to the body) and these have demonstrated enhanced survival and quality of life for patients with end-stage heart failure compared with maximal medical therapy.
  • these devices are generally large, cumbersome, inefficient, prone to mechanical failure and costly.
  • continuous flow rotary VADs are generally simpler, smaller and more reliable, as well as cheaper to produce, than the earlier pulsatile systems.
  • continuous flow centrifugal devices such as the VentrAssistTM LVAD, have emerged as the definitive forms of technology in the field of cardiac assistance.
  • a prior art implantable axial flow rotary blood pump is described in US Patent 5,370,509 - Golding et al.
  • This pump includes two blade sets and a support ring.
  • the primary blade set functions as a thrust bearing to pump the blood directly from the inlet to the outlet.
  • the secondary blade set functions to divert blood around the outer surface of the impeller. This diversion of blood is forced through a radially extending restriction. The effect of which is to create a fluid bearing that suspends the impeller only in the axial direction.
  • the pump disclosed within this document has two main disadvantages.
  • the first disadvantage is that the blood paths disclosed in that document are not perfected.
  • the subsidiary blood flow around the impeller is pushed in the same direction as the primary blood flow through the middle of the impeller.
  • This type of blood path requires relatively high energy to maintain and generally lacks efficiency.
  • the second disadvantage is that secondary blade set may induce thrombogenesis and/or haemolysis within the pump due their shape.
  • US Patent 5,211,546 - Isaacson et al. discloses an axial flow rotary blood pump wherein the impeller is only hydrodynamically suspended in the radial direction relative to the axis of rotation. Additionally, the pump disclosed therein includes a hub or spider to position the impeller. Hubs and spiders typically generate a location within the pump of blood flow stagnation. Locations or points of stagnation within the channel of blood flow should not be avoided to reduce the chance or likelihood of thrombogenesis or blood clots.
  • the present invention consists in an axial flow rotary blood pump including an impeller adapted to be magnetically rotated within a housing by the interaction of magnets disposed on or in the impeller and stators disposed on or in the housing, characterised in that said impeller includes at least one support ring supporting a plurality of blades, and a hydrodynamic bearing that operates at least axially and radially in respect of an axis of rotation of the impeller.
  • said hydrodynamic bearing exclusively suspends said impeller within a cavity.
  • said hydrodynamic bearing is formed by angular pads.
  • said support ring includes the hydrodynamic bearing.
  • said support ring includes the magnets.
  • said plurality of blades extend from the support ring towards the centre of the pump.
  • said the blades have a decreasing pitch to straighten blood flowing out of the pump.
  • said pump is spider-less and sealless.
  • said impeller when in use, experiences retrograde blood flow around its periphery.
  • Fig. 1 is a perspective and cross-sectional view of a first preferred embodiment of the present invention
  • Fig. 2 is a top view of the first embodiment shown in Fig 1;
  • Fig. 3 is a cross sectional view of the first embodiment
  • Fig. 4 is a perspective view of a second embodiment
  • Fig. 5 is a side view of the second embodiment shown in Fig 4;
  • Fig. 6 is a cross-sectional view of the second embodiment
  • Fig. 7 shows an exploded perspective view of the second embodiment
  • Fig. 8 shows an enlarged and rotated view of a portion of the second embodiment.
  • the pump assemblies according to various preferred embodiments to be described below, all have particular, although not exclusive, application for implantation within a patient.
  • these pump assemblies may be used to reduce the pumping load on a patient's heart to which the pumping assembly is connected.
  • the preferred embodiments of the present invention may be performed by placing the blood pump entirely within the patient's body and connecting the pump between the apex of the left ventricle of the patient's heart and the ascending aorta so as to assist left side heart function. It may also be connected to other regions of the patient's circulation system including: the right side of the heart and/or distal regions of a patient such as the femoral arteries or limbs.
  • the blood pump 15 includes an impeller 5 which is fully sealed within the pump body or housing 23.
  • the impeller 5 has five spaced apart blades 4, extending from a central shaft 1 , and connected to a support ring 2.
  • the impeller 5 is urged to rotate, in use, by an electric motor.
  • the electric motor may include several sets of electrical coils or stators 17 mounted on or about the housing 23 and a plurality of permanent magnets 7 embedded or encased within the blades 4 of the impeller 5.
  • the electric coils sequentially energise and exert an electromagnetic force on the impeller 5 and the permanent magnets 7. If the pump is properly configured, the sequential energising of the electric coils or stators 17 will cause the impeller 5 to rotate.
  • the electric coils or stators 17 may be mounted in an axial and/or radial orientation, in relation to the axis of rotation of the impeller.
  • the support ring 2 has a generally rectangular cross section excluding the portions which form the hydrodynamic bearings 3.
  • the generally rectangular cross section allows square or rectangular cross-section permanent magnets 7 to be easily inserted within the support ring 2. The benefit is that it is easier to manufacture magnets in a square or rectangular cross-section shape than more complex shapes as provided by in the prior art.
  • the support ring 2 may also be of hollow construction to minimise weight and/or to reduce complexity of construction.
  • the impeller 5 includes four hydrodynamic bearings 3.
  • hydrodynamic bearings 3 The surface of hydrodynamic bearings 3 is generally angled between 0° and 90° relative to the axis of rotation so as to cooperate with an inner surface of the housing 23 to generate a hydrodynamic force away from the inner surface of the cavity 14.
  • the combined effect of these hydrodynamic bearings 3 is to hydrodynamically suspend the impeller 5 within the housing 23, when in use.
  • the most preferred angle for the hydrodynamic bearings 3 is approximately 45°.
  • These hydrodynamic bearings 3 produce axial and radial component vectors.
  • the hydrodynamic bearings 3 supply at least an axial component vector to suspend the impeller 5 in an axial direction, which is generally parallel to the axis of rotation of the impeller 5.
  • Fig 2 Four spaced apart permanent magnets 7 are embedded within the support ring 2 of the impeller 5. Whilst the permanent magnets 7 may be placed in any location within the support ring 2, the most optimal positions for the permanent magnets 7 are shown in Fig 2. It may be important to balance the positions of the magnets to increase impeller stability and balance.
  • the hydrodynamic bearings 3 are mounted on the upper surface and the lower surface of the support ring 2. These hydrodynamic bearings 3 provide a zero net thrust force which is capable of hydrodynamically suspending the impeller 5 in the pump housing 23, when in use.
  • the hydrodynamic bearings 3 may also be used in conjunction with other bearings means such as magnetic bearings.
  • the blood pump 15 includes an inlet 22 and an outlet 21 formed in housing 23. Between the inlet 22 and the outlet 21 is pumping cavity 14, which allows fluid communication throughout the pump, when in use. Impeller 5 rotates within cavity 14 and its blades 4 supply pumping motion to the blood, to be pumped when in use.
  • the housing 23 includes machined surface on the wall of the cavity 14.
  • This machined surface may include an upper inner surface 12, middle inner surface 13 and a lower inner surface 26.
  • the upper inner surface 12, middle inner surface 13 and/or the lower inner surface 26 cooperate with at least a portion of outer surfaces of the impeller 5 to form, in effect, hydrodynamic bearings 3.
  • these portions of the surfaces include the outer surface of the support ring 2 and/or the hydrodynamic bearings 3 mounted on the support ring 2.
  • the hydrodynamic bearings 3 When impeller 5 is rotated, the hydrodynamic bearings 3 may preferably cooperate with a proximate portion of the angular inner surfaces 12 & 26 of the cavity 14. Thereby, when blood passes through a gap 20 located between the hydrodynamic bearing 3 and inner surface 26 of the cavity 14, the impeller 5 experiences a hydrodynamic thrust force. This thrust force acts upon the impeller 5 in a direction away from the inner walls of the housing 23. The net force of all of the hydrodynamic bearings 3 may result in the impeller 5 being partially or exclusively hydrodynamically suspended within the cavity 14.
  • the blood pump 15 of the first embodiment is in an axial flow configuration.
  • the impeller 5, in use is magnetically urged to rotate by the electro-magnetic interaction between permanent magnets 7 embedded or encased within the support ring 2 and the electro-magnetic coils forming stators 17 mounted in a radial orientation in respect the axis of rotation of the impeller 5.
  • the hydrodynamic bearings 3 have a generally wedge shaped side profile so as to generate a hydrodynamic force when rotated within the complementary shaped cavity 14. Please note that the number and size of the hydrodynamic bearings 3 may be also amended without departing from the scope of the present invention.
  • Other configurations of hydrodynamic bearings 3 may include one hydrodynamic bearing mounted on each side of the impeller 15 and the bearing may run along the entire length of the support ring 2.
  • the hydrodynamic bearings 3 may be constructed to balance the hydrodynamic thrust forces and to suspend the impeller 5 away from the inner surfaces of the cavity 14.
  • the impeller 5 includes at least an axial and a radial component to the hydrodynamic thrust force generated by the angular surface of the hydrodynamic bearings 3.
  • the hydrodynamic force imparted acts simultaneously in both an axial and radial direction with respect to the orientation of the impeller 5.
  • the impeller of the preferred embodiments may include at least some amount of dimensional stability to prevent the blades and/or impeller changing their shape or configuration, in situ. Small dimensional changes in the shape or configuration of impeller 5 or housing 23 may occur due to warping or twisting through regularly use of the pump. Dimensional stability is generally increased or improved by the inclusion of support structures particularly in regard to the impeller 5. These support structures may include the support ring 2.
  • the impeller 5 may also include increased dimensional stability, which is supplied by the generally square or rectangular cross-section of the support ring 2.
  • the support ring 2 is joined to the blades 4 in this configuration to prevent or limit the amount or severity of twisting, warping and/or other undesirable dimensional deformation.
  • the shaft 1 is preferably centered within the periphery of the impeller 5 and is orientated in an axial direction.
  • the blades 4 of this first embodiment are generally thin and arcuate in shape and may incorporate features to minimise drag and/or shear forces.
  • the first embodiment preferably operates at speeds of between 1500 rpm to 4000 rpm.
  • the preferred outer blade diameter is 40mm, outer housing average diameter is 60mm and the housing axial length is 40mm.
  • An impeller 104 is provided for by the embodiment and includes a central shaft 103 and a support ring 114. Extending from the internal or interior surface of the support ring 114 towards the centre of the pump 110 are a plurality or set of blades 105. In this preferred embodiment, three blades comprise the said blade set 105. However any number of individual blades may be used to construct the blade set 105.
  • the blades 105 fully extends from the support ring 114 to abut against the central shaft 103.
  • the support ring 114 preferably includes: two sets of permanent magnets 102 & 115; hydrodynamic bearing surfaces 101 and channels 106 formed between the hydrodynamic bearing surfaces 101.
  • the upper set of permanent magnets 102 extend from the base of the channels 106 in the upper surface into the support ring 114.
  • the upper set of permanent magnets 102 comprise four permanent magnets aligned as to have the northern pole of the magnets facing up.
  • the upper set of permanent magnets 102 extends almost throughout the entire width of the support ring 114 without interfering with the hydrodynamic bearing surface 101 on the lower side of the support ring 114.
  • the lower set of permanent magnets 115 works in an inverse manner to the upper set of permanent magnets 102.
  • the northern pole of the lower set of permanent magnets 115 faces downwards.
  • the permanent magnets are disposed alternately in respect of polarity and are spaced at 45° intervals.
  • the permanent magnets 102 & 115 are jacketed beneath a thin layer of impermeable biocompatible material to prevent corrosion or bio-toxic leaking.
  • This embodiment includes an impeller 104, which is designed to be rotated clockwise, with four hydrodynamic bearing surfaces 101.
  • the hydrodynamic bearing surface 101 forms a pad which covers the upper face of the support ring 114 and extends downwardly and at an anti-clockwise angle to the lower face of the support ring 114.
  • the angular extension 107 of the hydrodynamic bearing surface 101 may generate a hydrodynamic bearing that is capable of acting at least axially and/or radially in respect of the axis of rotation of the impeller 104.
  • the hydrodynamic bearing may also act in respect of other degrees of freedom.
  • Each hydrodynamic bearing surface 101 includes a leading edge and a trailing edge.
  • the leading edge is the edge that leads the trailing edge when the impeller is rotated in a clockwise direction.
  • the leading edge is 50 ⁇ m lower than the trailing edge.
  • the angularly surface cooperates with the interior of the pump housing to form a restriction. This restriction generates a thrust force perpendicular to the bearing surface.
  • the hydrodynamic bearings suspend the impeller 104 within the pump housing 120.
  • the hydrodynamic bearing surfaces 101 have a generally wedge shaped appearance.
  • the channels 106 are approximately 0.5mm deeper than the leading edge of the hydrodynamic bearing. This channel 106 may allow retrograde blood flow over the surface of the impeller 104, when in use. This is described in greater detail further on in this specification.
  • the pump 110 pumps blood from the inlet 108 to the outlet 109 by the rotation of impeller 104, which in turn rotates a plurality of blades 105.
  • the impeller is mounted within an upper 120 and lower housing 119.
  • the housings 120 & 119 are preferably joined by laser welding at location 117.
  • the impeller 104 is urged to rotate magnetically through the synchronised activation of the stators 112 cooperating with the permanent magnets 102.
  • the preferred speed of rotation of impeller 104 is approximately 2,000 rpm. However, it will be appreciated that small changes in shape and diameter of impeller 104 will greatly effect the preferred speed of rotation.
  • the internal portions of the pump 110 are encapsulated within a casing shell 111 and two end caps 126.
  • the end caps 126 and casing shell 111 may be constructed of a biocompatible Titanium alloy which may be joined and sealed by laser welding. It includes a casing shell hole 127 to allow access to the interior of the pump by electronic leads for pump control, power and data.
  • Each blade 105 forms a screw thread configuration around the central shaft 103.
  • the pitch of the screw thread of the individual blades decreases as the blade extends away form the inlet of the pump 110. This allows some the torsional force applied to the blood being pumped to be translated into thrust in the direction of the outlet and straightens the flow of blood leaving the pump.
  • using this type of configuration may reduce or eliminate the need for flow sfraighteners in the outflow of the pump 110.
  • the retrograde blood flow in the pump 110 has an elevated pressure in outlet 109 when compared to the pressure level in the inlet 108 as a result of the rotation of impeller 104.
  • the pressure differential created between the outlet 109 and inlet 104 means that blood will, where possible, attempt to flow back to the inlet 104.
  • the blood is purposively given an opportunity to do this by the gap 113 which occurs between the outermost surface of the impeller 104 and the innermost surface of the housings 119 & 120, which forms a cavity 116 for the impeller 104 to rotate within.
  • the gap 113 is the location where a hydrodynamic bearing is created by the interaction of the hydrodynamic bearing surfaces 101 and the walls of the cavity 116.
  • the gap 113 is approximately 80 ⁇ m.
  • the gap 113 is preferably small enough so as exclude a majority of blood cells from this area by fluid forces. This exclusion of red blood cells reduces haemolysis caused by the bearing forces. Additionally, the constant flow of fresh blood across the outermost surfaces of the impeller 104 reduces the chance or likelihood of thrombogenesis in the vicinity of the impeller 104.
  • the stators 112 are in an axial configuration around the impeller 104 and are formed from twelve independent coils mounted directly onto a printed circuit board 118. When the pump 110 is assembled, the coils are inserted within twelve wells 125 formed in the outer surface of the housing 120.
  • the printed circuit board 118 forms part of the control system for the pump 110 and is backed by an iron metal yoke to improve EMF efficiency.
  • the twelve stator coils are shown at one instance in time when the coils are firing to urge the impeller 104.
  • the twelve stator coils are depicted in three groups 121, 122 & 123.
  • the three groups of coils 121, 122, & 123 cooperate with the permanent magnets 102 & 115 of the impeller 104 to rotate it.
  • the first group of coils 121 have their north poles distal from the printed circuit board 118.
  • the second group of coils 123 have an inverted polarity and the third polarity is not charged.
  • the charging sequence of the groups of coils 121, 122, & 123 rotates clockwise and induces the rotation of the impeller 104.

Abstract

An axial flow rotary blood pump including an impeller (5) adapted to be magnetically rotated within a housing by the interaction of magnets disposed on or in the impeller and stators disposed on or in the housing. The impeller includes at least one support ring (2) supporting a plurality of blades (4), and a hydrodynamic bearing (3) that operates at least axially and radially in respect of an axis of rotation of the impeller (5).

Description

IMPELLER
Field of the Invention
The present invention relates to improvements in implantable axial flow rotary blood pumps.
Background of the Invention
Cardiovascular disease remains a leading cause of death in the developed world, responsible for more than 40% of deaths in Australia and in the United States. Annual diagnoses of new cases of heart failure in the United States have reached 550,000, leading to a population of approximately 4.7 million people afflicted by the disease; annual cost estimates for heart failure treatment range from USD$10 billion to $38 billion. Cardiac transplantation provides substantial benefit for patients with severe heart failure, however there is a gross disparity between the numbers of potential recipients (800,000 p.a. worldwide) and suitable transplant donors, approximately 3,000 p.a. worldwide. Consequently, there is a clear need for development of an effective heart support device.
In the past, Ventricular Assist Devices ('NADs') or Left Ventricle Assist Devices ('LVADs') have been developed to provide support to the heart and are typically used for temporary (bridge-to-transplant and bridge-to-recovery) and permanent (alternative- to-transplant) support of patients. Generally, support for the left ventricle with an assist device (rather than a total artificial heart) is sufficient to restore cardiovascular function to normal levels for patients with terminal congestive heart failure. As a consequence of the shortage of transplants, there is a focus on long term alternative-to-transplant support in device development. The initial VADs developed were pulsatile (implanted and external to the body) and these have demonstrated enhanced survival and quality of life for patients with end-stage heart failure compared with maximal medical therapy. However these devices are generally large, cumbersome, inefficient, prone to mechanical failure and costly. It has been noted that continuous flow rotary VADs are generally simpler, smaller and more reliable, as well as cheaper to produce, than the earlier pulsatile systems. For this reason, continuous flow centrifugal devices, such as the VentrAssist™ LVAD, have emerged as the definitive forms of technology in the field of cardiac assistance.
A prior art implantable axial flow rotary blood pump is described in US Patent 5,370,509 - Golding et al. This pump includes two blade sets and a support ring. The primary blade set functions as a thrust bearing to pump the blood directly from the inlet to the outlet. The secondary blade set functions to divert blood around the outer surface of the impeller. This diversion of blood is forced through a radially extending restriction. The effect of which is to create a fluid bearing that suspends the impeller only in the axial direction. The pump disclosed within this document has two main disadvantages.
The first disadvantage is that the blood paths disclosed in that document are not perfected. The subsidiary blood flow around the impeller is pushed in the same direction as the primary blood flow through the middle of the impeller. This type of blood path requires relatively high energy to maintain and generally lacks efficiency.
The second disadvantage is that secondary blade set may induce thrombogenesis and/or haemolysis within the pump due their shape.
Another prior art pump is disclosed in US Patent 6,227,797 - Watterson et al. It is a centrifugal rotary blood pump with a hydrodynamically suspended impeller. The main disadvantage with this device is that the impeller of this pump includes complex blade geometry which increases the cost of manufacturing.
US Patent 5,211,546 - Isaacson et al., discloses an axial flow rotary blood pump wherein the impeller is only hydrodynamically suspended in the radial direction relative to the axis of rotation. Additionally, the pump disclosed therein includes a hub or spider to position the impeller. Hubs and spiders typically generate a location within the pump of blood flow stagnation. Locations or points of stagnation within the channel of blood flow should not be avoided to reduce the chance or likelihood of thrombogenesis or blood clots.
US Patent 6,100,618 - Schoeb et al. describes an axial flow pump with a simplifier motor rotor design. This pump is not suitable as an implantable blood pump design and the impeller within the pump is only radially hydrodynamically suspended.
It is an object of the present invention to address or ameliorate one or more of the abovedescribed problems of the prior art.
Brief description of the invention In a first aspect the present invention consists in an axial flow rotary blood pump including an impeller adapted to be magnetically rotated within a housing by the interaction of magnets disposed on or in the impeller and stators disposed on or in the housing, characterised in that said impeller includes at least one support ring supporting a plurality of blades, and a hydrodynamic bearing that operates at least axially and radially in respect of an axis of rotation of the impeller.
Preferably said hydrodynamic bearing exclusively suspends said impeller within a cavity.
Preferably said hydrodynamic bearing is formed by angular pads.
Preferably said support ring includes the hydrodynamic bearing. Preferably said support ring includes the magnets.
Preferably said plurality of blades extend from the support ring towards the centre of the pump.
Preferably said the blades have a decreasing pitch to straighten blood flowing out of the pump. Preferably said pump is spider-less and sealless.
Preferably said impeller, when in use, experiences retrograde blood flow around its periphery.
Brief description of the drawings
Embodiments of the present invention will now be described with reference to the accompanying drawings wherein:
Fig. 1 is a perspective and cross-sectional view of a first preferred embodiment of the present invention; Fig. 2 is a top view of the first embodiment shown in Fig 1;
Fig. 3 is a cross sectional view of the first embodiment;
Fig. 4 is a perspective view of a second embodiment;
Fig. 5 is a side view of the second embodiment shown in Fig 4;
Fig. 6 is a cross-sectional view of the second embodiment; Fig. 7 shows an exploded perspective view of the second embodiment; and
Fig. 8 shows an enlarged and rotated view of a portion of the second embodiment.
Brief description of the preferred embodiments
The pump assemblies according to various preferred embodiments to be described below, all have particular, although not exclusive, application for implantation within a patient. In particular, these pump assemblies may be used to reduce the pumping load on a patient's heart to which the pumping assembly is connected. There may be other applications suitable for use with embodiments of the present invention and these may include use as: perfusion pumps, applications requiring the pumping of fragile fluids, external short term surgical blood pumps, and/or long term implantable blood pumps.
In practice, the preferred embodiments of the present invention may be performed by placing the blood pump entirely within the patient's body and connecting the pump between the apex of the left ventricle of the patient's heart and the ascending aorta so as to assist left side heart function. It may also be connected to other regions of the patient's circulation system including: the right side of the heart and/or distal regions of a patient such as the femoral arteries or limbs.
In a first preferred embodiment depicted in Figs. 1, 2 & 3, the blood pump 15 includes an impeller 5 which is fully sealed within the pump body or housing 23. The impeller 5 has five spaced apart blades 4, extending from a central shaft 1 , and connected to a support ring 2.
Preferably the impeller 5 is urged to rotate, in use, by an electric motor. In a preferred embodiment, the electric motor may include several sets of electrical coils or stators 17 mounted on or about the housing 23 and a plurality of permanent magnets 7 embedded or encased within the blades 4 of the impeller 5. When in operation, the electric coils sequentially energise and exert an electromagnetic force on the impeller 5 and the permanent magnets 7. If the pump is properly configured, the sequential energising of the electric coils or stators 17 will cause the impeller 5 to rotate. The electric coils or stators 17 may be mounted in an axial and/or radial orientation, in relation to the axis of rotation of the impeller.
When the impeller 5 is rotated, the blades 4 push a fluid, for example blood, in an axial direction relative to the axis of rotation of the impeller 5 and generally towards an outlet 21. The support ring 2 has a generally rectangular cross section excluding the portions which form the hydrodynamic bearings 3. The generally rectangular cross section allows square or rectangular cross-section permanent magnets 7 to be easily inserted within the support ring 2. The benefit is that it is easier to manufacture magnets in a square or rectangular cross-section shape than more complex shapes as provided by in the prior art. The support ring 2 may also be of hollow construction to minimise weight and/or to reduce complexity of construction. The impeller 5 includes four hydrodynamic bearings 3. The surface of hydrodynamic bearings 3 is generally angled between 0° and 90° relative to the axis of rotation so as to cooperate with an inner surface of the housing 23 to generate a hydrodynamic force away from the inner surface of the cavity 14. The combined effect of these hydrodynamic bearings 3 is to hydrodynamically suspend the impeller 5 within the housing 23, when in use. The most preferred angle for the hydrodynamic bearings 3 is approximately 45°. These hydrodynamic bearings 3 produce axial and radial component vectors. Preferably, the hydrodynamic bearings 3 supply at least an axial component vector to suspend the impeller 5 in an axial direction, which is generally parallel to the axis of rotation of the impeller 5.
Four spaced apart permanent magnets 7 are embedded within the support ring 2 of the impeller 5. Whilst the permanent magnets 7 may be placed in any location within the support ring 2, the most optimal positions for the permanent magnets 7 are shown in Fig 2. It may be important to balance the positions of the magnets to increase impeller stability and balance.
The hydrodynamic bearings 3 are mounted on the upper surface and the lower surface of the support ring 2. These hydrodynamic bearings 3 provide a zero net thrust force which is capable of hydrodynamically suspending the impeller 5 in the pump housing 23, when in use. The hydrodynamic bearings 3 may also be used in conjunction with other bearings means such as magnetic bearings.
The blood pump 15 includes an inlet 22 and an outlet 21 formed in housing 23. Between the inlet 22 and the outlet 21 is pumping cavity 14, which allows fluid communication throughout the pump, when in use. Impeller 5 rotates within cavity 14 and its blades 4 supply pumping motion to the blood, to be pumped when in use.
The housing 23 includes machined surface on the wall of the cavity 14. This machined surface may include an upper inner surface 12, middle inner surface 13 and a lower inner surface 26. The upper inner surface 12, middle inner surface 13 and/or the lower inner surface 26 cooperate with at least a portion of outer surfaces of the impeller 5 to form, in effect, hydrodynamic bearings 3. In particular, these portions of the surfaces include the outer surface of the support ring 2 and/or the hydrodynamic bearings 3 mounted on the support ring 2.
When impeller 5 is rotated, the hydrodynamic bearings 3 may preferably cooperate with a proximate portion of the angular inner surfaces 12 & 26 of the cavity 14. Thereby, when blood passes through a gap 20 located between the hydrodynamic bearing 3 and inner surface 26 of the cavity 14, the impeller 5 experiences a hydrodynamic thrust force. This thrust force acts upon the impeller 5 in a direction away from the inner walls of the housing 23. The net force of all of the hydrodynamic bearings 3 may result in the impeller 5 being partially or exclusively hydrodynamically suspended within the cavity 14.
The blood pump 15 of the first embodiment is in an axial flow configuration. The impeller 5, in use, is magnetically urged to rotate by the electro-magnetic interaction between permanent magnets 7 embedded or encased within the support ring 2 and the electro-magnetic coils forming stators 17 mounted in a radial orientation in respect the axis of rotation of the impeller 5. Preferably, there are three electric coils forming stators 17, however the number of coils may be amended without generally affecting the functionality of this embodiment, so long as there are at least two coils. It should be noted that other coil configurations may also be used and these configurations may include axial mounting configurations.
The hydrodynamic bearings 3 have a generally wedge shaped side profile so as to generate a hydrodynamic force when rotated within the complementary shaped cavity 14. Please note that the number and size of the hydrodynamic bearings 3 may be also amended without departing from the scope of the present invention. Other configurations of hydrodynamic bearings 3 may include one hydrodynamic bearing mounted on each side of the impeller 15 and the bearing may run along the entire length of the support ring 2. The hydrodynamic bearings 3 may be constructed to balance the hydrodynamic thrust forces and to suspend the impeller 5 away from the inner surfaces of the cavity 14.
The impeller 5 includes at least an axial and a radial component to the hydrodynamic thrust force generated by the angular surface of the hydrodynamic bearings 3. The hydrodynamic force imparted, in the preferred embodiment, acts simultaneously in both an axial and radial direction with respect to the orientation of the impeller 5.
It is important to note that in order to function safely and reliably, when in use, preferred embodiments of the present invention will include features that limit thrombogenesis and haemolysis and which add to the mechanical reliability of the pump. Preferably, the impeller of the preferred embodiments may include at least some amount of dimensional stability to prevent the blades and/or impeller changing their shape or configuration, in situ. Small dimensional changes in the shape or configuration of impeller 5 or housing 23 may occur due to warping or twisting through regularly use of the pump. Dimensional stability is generally increased or improved by the inclusion of support structures particularly in regard to the impeller 5. These support structures may include the support ring 2.
The impeller 5 may also include increased dimensional stability, which is supplied by the generally square or rectangular cross-section of the support ring 2. The support ring 2 is joined to the blades 4 in this configuration to prevent or limit the amount or severity of twisting, warping and/or other undesirable dimensional deformation.
The shaft 1 is preferably centered within the periphery of the impeller 5 and is orientated in an axial direction. The blades 4 of this first embodiment are generally thin and arcuate in shape and may incorporate features to minimise drag and/or shear forces. The first embodiment preferably operates at speeds of between 1500 rpm to 4000 rpm. The preferred outer blade diameter is 40mm, outer housing average diameter is 60mm and the housing axial length is 40mm.
In Figs 4, 5, 6, 7 & 8, a second embodiment of the present invention is shown. An impeller 104 is provided for by the embodiment and includes a central shaft 103 and a support ring 114. Extending from the internal or interior surface of the support ring 114 towards the centre of the pump 110 are a plurality or set of blades 105. In this preferred embodiment, three blades comprise the said blade set 105. However any number of individual blades may be used to construct the blade set 105.
The blades 105 fully extends from the support ring 114 to abut against the central shaft 103.
The support ring 114 preferably includes: two sets of permanent magnets 102 & 115; hydrodynamic bearing surfaces 101 and channels 106 formed between the hydrodynamic bearing surfaces 101.
The upper set of permanent magnets 102 extend from the base of the channels 106 in the upper surface into the support ring 114. In this embodiment, the upper set of permanent magnets 102 comprise four permanent magnets aligned as to have the northern pole of the magnets facing up. Preferably, the upper set of permanent magnets 102 extends almost throughout the entire width of the support ring 114 without interfering with the hydrodynamic bearing surface 101 on the lower side of the support ring 114. The lower set of permanent magnets 115 works in an inverse manner to the upper set of permanent magnets 102. The northern pole of the lower set of permanent magnets 115 faces downwards. The permanent magnets are disposed alternately in respect of polarity and are spaced at 45° intervals. The permanent magnets 102 & 115 are jacketed beneath a thin layer of impermeable biocompatible material to prevent corrosion or bio-toxic leaking. This embodiment includes an impeller 104, which is designed to be rotated clockwise, with four hydrodynamic bearing surfaces 101. The hydrodynamic bearing surface 101 forms a pad which covers the upper face of the support ring 114 and extends downwardly and at an anti-clockwise angle to the lower face of the support ring 114. The angular extension 107 of the hydrodynamic bearing surface 101 may generate a hydrodynamic bearing that is capable of acting at least axially and/or radially in respect of the axis of rotation of the impeller 104. The hydrodynamic bearing may also act in respect of other degrees of freedom.
Each hydrodynamic bearing surface 101 includes a leading edge and a trailing edge. The leading edge is the edge that leads the trailing edge when the impeller is rotated in a clockwise direction. Preferably, the leading edge is 50μm lower than the trailing edge. The angularly surface cooperates with the interior of the pump housing to form a restriction. This restriction generates a thrust force perpendicular to the bearing surface. When the impeller 104 is in use, the hydrodynamic bearings suspend the impeller 104 within the pump housing 120. The hydrodynamic bearing surfaces 101 have a generally wedge shaped appearance.
The channels 106 are approximately 0.5mm deeper than the leading edge of the hydrodynamic bearing. This channel 106 may allow retrograde blood flow over the surface of the impeller 104, when in use. This is described in greater detail further on in this specification.
The pump 110 pumps blood from the inlet 108 to the outlet 109 by the rotation of impeller 104, which in turn rotates a plurality of blades 105. The impeller is mounted within an upper 120 and lower housing 119. The housings 120 & 119 are preferably joined by laser welding at location 117. When in use, the impeller 104 is urged to rotate magnetically through the synchronised activation of the stators 112 cooperating with the permanent magnets 102. The preferred speed of rotation of impeller 104 is approximately 2,000 rpm. However, it will be appreciated that small changes in shape and diameter of impeller 104 will greatly effect the preferred speed of rotation.
Preferably, the internal portions of the pump 110 are encapsulated within a casing shell 111 and two end caps 126. The end caps 126 and casing shell 111 may be constructed of a biocompatible Titanium alloy which may be joined and sealed by laser welding. It includes a casing shell hole 127 to allow access to the interior of the pump by electronic leads for pump control, power and data.
Each blade 105 forms a screw thread configuration around the central shaft 103. The pitch of the screw thread of the individual blades decreases as the blade extends away form the inlet of the pump 110. This allows some the torsional force applied to the blood being pumped to be translated into thrust in the direction of the outlet and straightens the flow of blood leaving the pump. Preferably, using this type of configuration may reduce or eliminate the need for flow sfraighteners in the outflow of the pump 110.
The retrograde blood flow in the pump 110, has an elevated pressure in outlet 109 when compared to the pressure level in the inlet 108 as a result of the rotation of impeller 104. The pressure differential created between the outlet 109 and inlet 104 means that blood will, where possible, attempt to flow back to the inlet 104. The blood is purposively given an opportunity to do this by the gap 113 which occurs between the outermost surface of the impeller 104 and the innermost surface of the housings 119 & 120, which forms a cavity 116 for the impeller 104 to rotate within. The gap 113 is the location where a hydrodynamic bearing is created by the interaction of the hydrodynamic bearing surfaces 101 and the walls of the cavity 116. Preferably the gap 113 is approximately 80μm. The gap 113 is preferably small enough so as exclude a majority of blood cells from this area by fluid forces. This exclusion of red blood cells reduces haemolysis caused by the bearing forces. Additionally, the constant flow of fresh blood across the outermost surfaces of the impeller 104 reduces the chance or likelihood of thrombogenesis in the vicinity of the impeller 104. The stators 112 are in an axial configuration around the impeller 104 and are formed from twelve independent coils mounted directly onto a printed circuit board 118. When the pump 110 is assembled, the coils are inserted within twelve wells 125 formed in the outer surface of the housing 120. The printed circuit board 118 forms part of the control system for the pump 110 and is backed by an iron metal yoke to improve EMF efficiency.
In Fig 8, the twelve stator coils are shown at one instance in time when the coils are firing to urge the impeller 104. The twelve stator coils are depicted in three groups 121, 122 & 123. The three groups of coils 121, 122, & 123 cooperate with the permanent magnets 102 & 115 of the impeller 104 to rotate it. In the instance shown, the first group of coils 121 have their north poles distal from the printed circuit board 118. The second group of coils 123 have an inverted polarity and the third polarity is not charged. The charging sequence of the groups of coils 121, 122, & 123 rotates clockwise and induces the rotation of the impeller 104.
An advantage of both the abovementioned embodiments over the prior art is that the manufacture of impellers 5 and 104 is a separate machining operation to that of the respective support rings 2 and 114. As the magnets are carried by the support rings 2 and 114 and not the blades of the impeller 5 and 104 is of less complexity and therefore less expensive manufacture than that employed in prior art blood pumps with hydrodynamic bearings where the magnets are encapsulated within the blades.
The above descriptions only describe some of the embodiments of the present inventions and modifications. It may be obvious to those skilled in the art that further modifications can be made thereto without departing from the scope and spirit of the present invention.

Claims

Claims 1. An axial flow rotary blood pump including an impeller adapted to be magnetically rotated within a housing by the interaction of magnets disposed on or in the impeller and stators disposed on or in the housing, characterised in that said impeller includes at least one support ring supporting a plurality of blades, and a hydrodynamic bearing that operates at least axially and radially in respect of an axis of rotation of the impeller. 2. The axial flow rotary blood pump of claim 1 wherein said hydrodynamic bearing exclusively suspends said impeller within a cavity. 3. The axial flow rotary blood pump of claim 1, wherein said hydrodynamic bearing is formed by angular pads. 4. The axial flow rotary blood pump of claim 1, wherein said support ring includes the hydrodynamic bearing. 5. The axial flow rotary blood pump of claim 1 , wherein said support ring includes the magnets. 6. The axial flow rotary blood pump of claim 1, wherein said plurality of blades extend from the support ring towards the centre of the pump. 7. The axial flow rotary blood pump of claim 1, wherein said the blades have a decreasing pitch to straighten blood flowing out of the pump. 8. The axial flow rotary blood pump of claim 1 , wherein said pump is spider- less and sealless. 9. The axial flow rotary blood pump of claim 1, wherein said impeller, when in use, experiences retrograde blood flow around its periphery. 10. A blood pump as previously described in the specification with reference to any one of the accompanying figures.
PCT/AU2004/001379 2003-10-09 2004-10-08 Impeller WO2005032620A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006529462A JP4889492B2 (en) 2003-10-09 2004-10-08 Impeller
CA002541979A CA2541979A1 (en) 2003-10-09 2004-10-08 Magnetic driven impeller with hyrodynamic bearing
US10/575,118 US7798952B2 (en) 2003-10-09 2004-10-08 Axial flow blood pump
EP04761412A EP1670524A4 (en) 2003-10-09 2004-10-08 Impeller
AU2004277286A AU2004277286B2 (en) 2003-10-09 2004-10-08 Impeller
US12/860,847 US8366599B2 (en) 2003-10-09 2010-08-20 Axial flow blood pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AU2003905511A AU2003905511A0 (en) 2003-10-09 Impeller
AU2003905511 2003-10-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/575,118 A-371-Of-International US7798952B2 (en) 2003-10-09 2004-10-08 Axial flow blood pump
US12/860,847 Continuation US8366599B2 (en) 2003-10-09 2010-08-20 Axial flow blood pump

Publications (1)

Publication Number Publication Date
WO2005032620A1 true WO2005032620A1 (en) 2005-04-14

Family

ID=34397675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2004/001379 WO2005032620A1 (en) 2003-10-09 2004-10-08 Impeller

Country Status (5)

Country Link
US (2) US7798952B2 (en)
EP (1) EP1670524A4 (en)
JP (2) JP4889492B2 (en)
CA (1) CA2541979A1 (en)
WO (1) WO2005032620A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1931403A1 (en) * 2005-10-05 2008-06-18 HeartWare, Inc. Axial flow pump with multi-grooved rotor
WO2008152425A1 (en) 2007-06-14 2008-12-18 Calon Cardio Technology Limited Reduced diameter axial rotary pump for cardiac assist
US8668473B2 (en) 2004-12-03 2014-03-11 Heartware, Inc. Axial flow pump with multi-grooved rotor
US8900060B2 (en) 2009-04-29 2014-12-02 Ecp Entwicklungsgesellschaft Mbh Shaft arrangement having a shaft which extends within a fluid-filled casing
US8926492B2 (en) 2011-10-11 2015-01-06 Ecp Entwicklungsgesellschaft Mbh Housing for a functional element
US8932141B2 (en) 2009-10-23 2015-01-13 Ecp Entwicklungsgesellschaft Mbh Flexible shaft arrangement
US8944748B2 (en) 2009-05-05 2015-02-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US8979493B2 (en) 2009-03-18 2015-03-17 ECP Entwicklungsgesellscaft mbH Fluid pump
US8998792B2 (en) 2008-12-05 2015-04-07 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9028216B2 (en) 2009-09-22 2015-05-12 Ecp Entwicklungsgesellschaft Mbh Rotor for an axial flow pump for conveying a fluid
US9067006B2 (en) 2009-06-25 2015-06-30 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US9089670B2 (en) 2009-02-04 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
EP2131888A4 (en) * 2007-02-26 2015-10-21 Heartware Inc Intravascular ventricular assist device
US9217442B2 (en) 2010-03-05 2015-12-22 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US9314558B2 (en) 2009-12-23 2016-04-19 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US9328741B2 (en) 2010-05-17 2016-05-03 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9339596B2 (en) 2009-12-23 2016-05-17 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US9358330B2 (en) 2009-12-23 2016-06-07 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US9416783B2 (en) 2009-09-22 2016-08-16 Ecp Entwicklungsgellschaft Mbh Compressible rotor for a fluid pump
US9416791B2 (en) 2010-01-25 2016-08-16 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US9603983B2 (en) 2009-10-23 2017-03-28 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US9611743B2 (en) 2010-07-15 2017-04-04 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US9771801B2 (en) 2010-07-15 2017-09-26 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
EP3248628A1 (en) * 2010-08-20 2017-11-29 Tc1 Llc Implantable blood pump
US9867916B2 (en) 2010-08-27 2018-01-16 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US9895475B2 (en) 2010-07-15 2018-02-20 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
EP2554191A4 (en) * 2010-03-26 2018-04-04 Thoratec Corporation Centrifugal blood pump device
US9974893B2 (en) 2010-06-25 2018-05-22 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10107299B2 (en) 2009-09-22 2018-10-23 Ecp Entwicklungsgesellschaft Mbh Functional element, in particular fluid pump, having a housing and a conveying element
US10172985B2 (en) 2009-08-06 2019-01-08 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
EP3313471A4 (en) * 2015-06-29 2019-02-20 Tc1 Llc Ventricular assist devices having a hollow rotor and methods of use
US10391278B2 (en) 2011-03-10 2019-08-27 Ecp Entwicklungsgesellschaft Mbh Push device for the axial insertion of an elongate, flexible body
US10561773B2 (en) 2011-09-05 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US10973967B2 (en) 2018-01-10 2021-04-13 Tc1 Llc Bearingless implantable blood pump

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0618053B8 (en) * 2005-11-02 2021-06-22 Medicaltree Patent Ltd artificial valve for implant
WO2011006902A1 (en) 2009-07-17 2011-01-20 Milux Holding S.A. Artificial valve for implantation
EP2298373A1 (en) 2009-09-22 2011-03-23 ECP Entwicklungsgesellschaft mbH Fluid pump with at least one turbine blade and a seating device
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
US8894387B2 (en) * 2010-06-18 2014-11-25 Heartware, Inc. Hydrodynamic chamfer thrust bearing
US9265870B2 (en) 2010-10-13 2016-02-23 Thoratec Corporation Pumping blood
AU2011338380A1 (en) * 2010-12-08 2013-05-02 Thoratec Corporation Modular driveline
WO2013056131A1 (en) 2011-10-13 2013-04-18 Reichenbach Steven H Pump and method for mixed flow blood pumping
WO2013082621A1 (en) 2011-12-03 2013-06-06 Indiana University Research And Technology Corporation Cavopulmonary viscous impeller assist device and method
WO2013134319A1 (en) 2012-03-05 2013-09-12 Justin Aron Callaway Modular implantable medical pump
US10342905B2 (en) 2012-09-13 2019-07-09 Circulite, Inc. Blood flow system with variable speed control
US20140188148A1 (en) 2012-12-27 2014-07-03 Pieter W.C.J. le Blanc Surgical tunneler
JP6339023B2 (en) 2013-01-07 2018-06-06 国立大学法人神戸大学 Axial flow blood pump
US9144638B2 (en) 2013-03-14 2015-09-29 Thoratec Corporation Blood pump rotor bearings
EP3027242B1 (en) 2013-08-02 2017-04-26 CircuLite, Inc. Implantable system with secure remote control
CN107223062B (en) 2014-10-01 2019-12-17 心脏器械股份有限公司 Standby controller system with updates
EP3223880A4 (en) 2014-11-26 2018-07-18 Tc1 Llc Pump and method for mixed flow blood pumping
US9717832B2 (en) 2015-01-06 2017-08-01 HeartWave, Inc. Axial flow rotor with downstream bearing wash flow
US10177627B2 (en) 2015-08-06 2019-01-08 Massachusetts Institute Of Technology Homopolar, flux-biased hysteresis bearingless motor
EP3173110A1 (en) 2015-11-30 2017-05-31 Fundacja Rozwoju Kardiochirurgii Im. Prof. Zbigniewa Religi Rotary pump suspension system arrangement, especially of implantable centrifugal heart assist pump
KR101840857B1 (en) * 2016-03-24 2018-03-21 서울대학교 산학협력단 Blood pump
US10441693B2 (en) * 2016-04-01 2019-10-15 Heartware, Inc. Axial flow blood pump with radially offset rotor
WO2017196271A1 (en) 2016-05-13 2017-11-16 Koc Universitesi Internal axial flow blood pump with passive magnets and hydrodynamic radial bearing
US10857273B2 (en) 2016-07-21 2020-12-08 Tc1 Llc Rotary seal for cantilevered rotor pump and methods for axial flow blood pumping
WO2018031741A1 (en) 2016-08-12 2018-02-15 Tc1 Llc Devices and methods for monitoring bearing and seal performance
CN110944689B (en) 2017-06-07 2022-12-09 施菲姆德控股有限责任公司 Intravascular fluid movement devices, systems, and methods of use
CN111556763B (en) 2017-11-13 2023-09-01 施菲姆德控股有限责任公司 Intravascular fluid movement device and system
US10833570B2 (en) 2017-12-22 2020-11-10 Massachusetts Institute Of Technology Homopolar bearingless slice motors
DE102018201030A1 (en) 2018-01-24 2019-07-25 Kardion Gmbh Magnetic coupling element with magnetic bearing function
JP7410034B2 (en) 2018-02-01 2024-01-09 シファメド・ホールディングス・エルエルシー Intravascular blood pump and methods of use and manufacture
EP3542836A1 (en) * 2018-03-23 2019-09-25 Abiomed Europe GmbH Intravascular blood pump with ceramic inner sleeve
DE102018211327A1 (en) 2018-07-10 2020-01-16 Kardion Gmbh Impeller for an implantable vascular support system
JP2021532958A (en) * 2018-07-30 2021-12-02 ジーゲンターラー マイケル Open electric pump
WO2020046940A1 (en) * 2018-08-28 2020-03-05 Boston Scientific Scimed Inc Axial flux motor for percutaneous circulatory support device
WO2021016372A1 (en) 2019-07-22 2021-01-28 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
WO2021062265A1 (en) 2019-09-25 2021-04-01 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
DE102020102474A1 (en) 2020-01-31 2021-08-05 Kardion Gmbh Pump for conveying a fluid and method for manufacturing a pump
CN115843264A (en) 2020-06-17 2023-03-24 Tc1有限责任公司 Extracorporeal blood pump assembly and method of assembly
CN112472999A (en) * 2020-12-22 2021-03-12 余顺周 Blood pump
DE102021125982A1 (en) 2021-10-06 2023-04-06 Nidec Gpm Gmbh Axial pump with axial flow motor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US5370509A (en) * 1989-05-08 1994-12-06 The Cleveland Clinic Foundation Sealless rotodynamic pump with fluid bearing
US6100618A (en) * 1995-04-03 2000-08-08 Sulzer Electronics Ag Rotary machine with an electromagnetic rotary drive
US6227797B1 (en) * 1997-09-05 2001-05-08 Ventrassist Pty Ltd And University Of Technology Rotary pump with hydrodynamically suspended impeller

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4382199A (en) * 1980-11-06 1983-05-03 Nu-Tech Industries, Inc. Hydrodynamic bearing system for a brushless DC motor
US4688998A (en) * 1981-03-18 1987-08-25 Olsen Don B Magnetically suspended and rotated impellor pump apparatus and method
US5078741A (en) * 1986-10-12 1992-01-07 Life Extenders Corporation Magnetically suspended and rotated rotor
US4944748A (en) * 1986-10-12 1990-07-31 Bramm Gunter W Magnetically suspended and rotated rotor
US4817586A (en) * 1987-11-24 1989-04-04 Nimbus Medical, Inc. Percutaneous bloom pump with mixed-flow output
US4995857A (en) * 1989-04-07 1991-02-26 Arnold John R Left ventricular assist device and method for temporary and permanent procedures
US4906226A (en) * 1989-08-08 1990-03-06 Hecker Charles R Attachable fan belt
US5112200A (en) * 1990-05-29 1992-05-12 Nu-Tech Industries, Inc. Hydrodynamically suspended rotor axial flow blood pump
US5195877A (en) * 1990-10-05 1993-03-23 Kletschka Harold D Fluid pump with magnetically levitated impeller
US5055005A (en) * 1990-10-05 1991-10-08 Kletschka Harold D Fluid pump with levitated impeller
US5470208A (en) * 1990-10-05 1995-11-28 Kletschka; Harold D. Fluid pump with magnetically levitated impeller
AU1279092A (en) 1991-02-04 1992-10-06 Kensey Nash Corporation Apparatus and method for determining viscosity of the blood of a living being
US5205721A (en) * 1991-02-13 1993-04-27 Nu-Tech Industries, Inc. Split stator for motor/blood pump
US5289821A (en) * 1993-06-30 1994-03-01 Swartz William M Method of ultrasonic Doppler monitoring of blood flow in a blood vessel
GB9405002D0 (en) * 1994-03-15 1994-04-27 Univ Manitoba Apparatus and method of use for pulsatile blood flow with return of in vivo variability of the pulse waveform
US5924848A (en) * 1995-06-01 1999-07-20 Advanced Bionics, Inc. Blood pump having radial vanes with enclosed magnetic drive components
US5938412A (en) * 1995-06-01 1999-08-17 Advanced Bionics, Inc. Blood pump having rotor with internal bore for fluid flow
US5685700A (en) * 1995-06-01 1997-11-11 Advanced Bionics, Inc. Bearing and seal-free blood pump
US6206659B1 (en) * 1995-06-01 2001-03-27 Advanced Bionics, Inc. Magnetically driven rotor for blood pump
US5840070A (en) * 1996-02-20 1998-11-24 Kriton Medical, Inc. Sealless rotary blood pump
US5695471A (en) * 1996-02-20 1997-12-09 Kriton Medical, Inc. Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings
JP4390856B2 (en) * 1996-09-10 2009-12-24 レビトロニクス エルエルシー Rotary pump and driving method thereof
US6071093A (en) * 1996-10-18 2000-06-06 Abiomed, Inc. Bearingless blood pump and electronic drive system
US5888242A (en) * 1996-11-01 1999-03-30 Nimbus, Inc. Speed control system for implanted blood pumps
DE59712162D1 (en) * 1997-09-04 2005-02-17 Levitronix Llc Waltham centrifugal pump
US6250880B1 (en) * 1997-09-05 2001-06-26 Ventrassist Pty. Ltd Rotary pump with exclusively hydrodynamically suspended impeller
US6398734B1 (en) 1997-10-14 2002-06-04 Vascusense, Inc. Ultrasonic sensors for monitoring the condition of flow through a cardiac valve
US6120537A (en) * 1997-12-23 2000-09-19 Kriton Medical, Inc. Sealless blood pump with means for avoiding thrombus formation
US6264635B1 (en) * 1998-12-03 2001-07-24 Kriton Medical, Inc. Active magnetic bearing system for blood pump
US6158984A (en) * 1998-12-28 2000-12-12 Kriton Medical, Inc. Rotary blood pump with ceramic members
US6217541B1 (en) * 1999-01-19 2001-04-17 Kriton Medical, Inc. Blood pump using cross-flow principles
AUPP995999A0 (en) * 1999-04-23 1999-05-20 University Of Technology, Sydney Non-contact estimation and control system
EP1602386A1 (en) * 1999-04-23 2005-12-07 Ventrassist Pty Ltd A rotary blood pump and control system therefor
US6234772B1 (en) * 1999-04-28 2001-05-22 Kriton Medical, Inc. Rotary blood pump
US6277078B1 (en) * 1999-11-19 2001-08-21 Remon Medical Technologies, Ltd. System and method for monitoring a parameter associated with the performance of a heart
JP2001207988A (en) 2000-01-26 2001-08-03 Nipro Corp Magnetic driving type axial flow pump
US6527699B1 (en) * 2000-06-02 2003-03-04 Michael P. Goldowsky Magnetic suspension blood pump
DE10037821A1 (en) 2000-08-03 2002-02-21 Bosch Gmbh Robert Assembly, in particular wafer assembly
JP2002070780A (en) * 2000-09-01 2002-03-08 Toshiba Corp Axial flow pump and nuclear reactor provided with it
JP4674978B2 (en) 2001-02-01 2011-04-20 Cyberdyne株式会社 Cardiac function evaluation device
JP2002349482A (en) * 2001-05-24 2002-12-04 National Institute Of Advanced Industrial & Technology Centrifugal pump for artificial heart
WO2002098296A1 (en) 2001-06-05 2002-12-12 Apex Medical, Inc. Pressure sensing endograft
US6623420B2 (en) 2001-08-16 2003-09-23 Apex Medical, Inc. Physiological heart pump control
US6991595B2 (en) 2002-04-19 2006-01-31 Thoratec Corporation Adaptive speed control for blood pump
TW200402258A (en) 2002-05-28 2004-02-01 Shipley Co Llc Process of producing printed circuit boards and the circuit boards formed thereby
AU2002951685A0 (en) 2002-09-30 2002-10-17 Ventrassist Pty Ltd Physiological demand responsive control system
JP2004278375A (en) 2003-03-14 2004-10-07 Yasuhiro Fukui Axial flow pump
US7052253B2 (en) * 2003-05-19 2006-05-30 Advanced Bionics, Inc. Seal and bearing-free fluid pump incorporating a passively suspended self-positioning impeller
US7682301B2 (en) 2003-09-18 2010-03-23 Thoratec Corporation Rotary blood pump
US7070398B2 (en) * 2003-09-25 2006-07-04 Medforte Research Foundation Axial-flow blood pump with magnetically suspended, radially and axially stabilized impeller
US20070231135A1 (en) 2006-03-31 2007-10-04 Orqis Medical Corporation Rotary Blood Pump

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370509A (en) * 1989-05-08 1994-12-06 The Cleveland Clinic Foundation Sealless rotodynamic pump with fluid bearing
US5211546A (en) * 1990-05-29 1993-05-18 Nu-Tech Industries, Inc. Axial flow blood pump with hydrodynamically suspended rotor
US6100618A (en) * 1995-04-03 2000-08-08 Sulzer Electronics Ag Rotary machine with an electromagnetic rotary drive
US6227797B1 (en) * 1997-09-05 2001-05-08 Ventrassist Pty Ltd And University Of Technology Rotary pump with hydrodynamically suspended impeller

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1670524A4 *

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668473B2 (en) 2004-12-03 2014-03-11 Heartware, Inc. Axial flow pump with multi-grooved rotor
US9956332B2 (en) 2004-12-03 2018-05-01 Heartware, Inc. Axial flow pump with multi-grooved rotor
US8790236B2 (en) 2005-10-05 2014-07-29 Heartware, Inc. Axial flow-pump with multi-grooved rotor
US9339598B2 (en) 2005-10-05 2016-05-17 Heartware, Inc. Axial flow pump with multi-grooved rotor
US10251985B2 (en) 2005-10-05 2019-04-09 Heartware, Inc. Axial flow pump with multi-grooved rotor
EP1931403A4 (en) * 2005-10-05 2013-12-04 Heartware Inc Axial flow pump with multi-grooved rotor
US9737652B2 (en) 2005-10-05 2017-08-22 Heartware, Inc. Axial flow pump with multi-grooved rotor
EP1931403A1 (en) * 2005-10-05 2008-06-18 HeartWare, Inc. Axial flow pump with multi-grooved rotor
EP2131888A4 (en) * 2007-02-26 2015-10-21 Heartware Inc Intravascular ventricular assist device
US10251986B2 (en) 2007-02-26 2019-04-09 Heartware, Inc. Intravascular ventricular assist device
US9579433B2 (en) 2007-02-26 2017-02-28 Heartware, Inc. Intravascular ventricular assist device
US9895476B2 (en) 2007-02-26 2018-02-20 Heartware, Inc. Intravascular ventricular assist device
US10052421B2 (en) 2007-02-26 2018-08-21 Heartware, Inc. Intravascular ventricular assist device
US8731664B2 (en) 2007-06-14 2014-05-20 Calon Cardio Technology Limited Reduced diameter axial rotary pump for cardiac assist
WO2008152425A1 (en) 2007-06-14 2008-12-18 Calon Cardio Technology Limited Reduced diameter axial rotary pump for cardiac assist
US11852155B2 (en) 2008-12-05 2023-12-26 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9964115B2 (en) 2008-12-05 2018-05-08 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US8998792B2 (en) 2008-12-05 2015-04-07 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US9404505B2 (en) 2008-12-05 2016-08-02 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US10495101B2 (en) 2008-12-05 2019-12-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US10662967B2 (en) 2008-12-05 2020-05-26 Ecp Entwicklungsgesellschaft Mbh Fluid pump with a rotor
US10406323B2 (en) 2009-02-04 2019-09-10 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9981110B2 (en) 2009-02-04 2018-05-29 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US11229774B2 (en) 2009-02-04 2022-01-25 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9089670B2 (en) 2009-02-04 2015-07-28 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US9649475B2 (en) 2009-02-04 2017-05-16 Ecp Entwicklungsgesellschaft Mbh Catheter device having a catheter and an actuation device
US8979493B2 (en) 2009-03-18 2015-03-17 ECP Entwicklungsgesellscaft mbH Fluid pump
US8900060B2 (en) 2009-04-29 2014-12-02 Ecp Entwicklungsgesellschaft Mbh Shaft arrangement having a shaft which extends within a fluid-filled casing
US9512839B2 (en) 2009-05-05 2016-12-06 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11278711B2 (en) 2009-05-05 2022-03-22 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US10265448B2 (en) 2009-05-05 2019-04-23 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US8944748B2 (en) 2009-05-05 2015-02-03 Ecp Entwicklungsgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US11577066B2 (en) 2009-05-05 2023-02-14 Ecp Entwicklundgesellschaft Mbh Fluid pump changeable in diameter, in particular for medical application
US10330101B2 (en) 2009-06-25 2019-06-25 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US11268521B2 (en) 2009-06-25 2022-03-08 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US9067006B2 (en) 2009-06-25 2015-06-30 Ecp Entwicklungsgesellschaft Mbh Compressible and expandable blade for a fluid pump
US10172985B2 (en) 2009-08-06 2019-01-08 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US11116960B2 (en) 2009-08-06 2021-09-14 Ecp Entwicklungsgesellschaft Mbh Catheter device having a coupling device for a drive device
US9416783B2 (en) 2009-09-22 2016-08-16 Ecp Entwicklungsgellschaft Mbh Compressible rotor for a fluid pump
US10107299B2 (en) 2009-09-22 2018-10-23 Ecp Entwicklungsgesellschaft Mbh Functional element, in particular fluid pump, having a housing and a conveying element
US11773861B2 (en) 2009-09-22 2023-10-03 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US11421701B2 (en) 2009-09-22 2022-08-23 Ecp Entwicklungsgesellschaft Mbh Compressible rotor for a fluid pump
US9028216B2 (en) 2009-09-22 2015-05-12 Ecp Entwicklungsgesellschaft Mbh Rotor for an axial flow pump for conveying a fluid
US8932141B2 (en) 2009-10-23 2015-01-13 Ecp Entwicklungsgesellschaft Mbh Flexible shaft arrangement
US10792406B2 (en) 2009-10-23 2020-10-06 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US9603983B2 (en) 2009-10-23 2017-03-28 Ecp Entwicklungsgesellschaft Mbh Catheter pump arrangement and flexible shaft arrangement having a core
US11434922B2 (en) 2009-12-23 2022-09-06 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US10806838B2 (en) 2009-12-23 2020-10-20 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US11815097B2 (en) 2009-12-23 2023-11-14 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US9314558B2 (en) 2009-12-23 2016-04-19 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US11781557B2 (en) 2009-12-23 2023-10-10 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US11266824B2 (en) 2009-12-23 2022-03-08 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US11773863B2 (en) 2009-12-23 2023-10-03 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US9795727B2 (en) 2009-12-23 2017-10-24 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US9339596B2 (en) 2009-12-23 2016-05-17 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US9903384B2 (en) 2009-12-23 2018-02-27 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US11486400B2 (en) 2009-12-23 2022-11-01 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US10561772B2 (en) 2009-12-23 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US9358330B2 (en) 2009-12-23 2016-06-07 Ecp Entwicklungsgesellschaft Mbh Pump device having a detection device
US11549517B2 (en) 2009-12-23 2023-01-10 Ecp Entwicklungsgesellschaft Mbh Conveying blades for a compressible rotor
US10557475B2 (en) 2009-12-23 2020-02-11 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a fluid pump
US10316853B2 (en) 2010-01-25 2019-06-11 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US11517739B2 (en) 2010-01-25 2022-12-06 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US9416791B2 (en) 2010-01-25 2016-08-16 Ecp Entwicklungsgesellschaft Mbh Fluid pump having a radially compressible rotor
US9217442B2 (en) 2010-03-05 2015-12-22 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US10413646B2 (en) 2010-03-05 2019-09-17 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
US9907891B2 (en) 2010-03-05 2018-03-06 Ecp Entwicklungsgesellschaft Mbh Pump or rotary cutter for operation in a fluid
EP2554191A4 (en) * 2010-03-26 2018-04-04 Thoratec Corporation Centrifugal blood pump device
US11168705B2 (en) 2010-05-17 2021-11-09 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9759237B2 (en) 2010-05-17 2017-09-12 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US10221866B2 (en) 2010-05-17 2019-03-05 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9328741B2 (en) 2010-05-17 2016-05-03 Ecp Entwicklungsgesellschaft Mbh Pump arrangement
US9974893B2 (en) 2010-06-25 2018-05-22 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10874781B2 (en) 2010-06-25 2020-12-29 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10898625B2 (en) 2010-06-25 2021-01-26 Ecp Entwicklungsgesellschaft Mbh System for introducing a pump
US10920596B2 (en) 2010-07-15 2021-02-16 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US11702938B2 (en) 2010-07-15 2023-07-18 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
US11913467B2 (en) 2010-07-15 2024-02-27 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US11844939B2 (en) 2010-07-15 2023-12-19 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US9771801B2 (en) 2010-07-15 2017-09-26 Ecp Entwicklungsgesellschaft Mbh Rotor for a pump, produced with a first elastic material
US9895475B2 (en) 2010-07-15 2018-02-20 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US10589012B2 (en) 2010-07-15 2020-03-17 Ecp Entwicklungsgesellschaft Mbh Blood pump for the invasive application within a body of a patient
US10584589B2 (en) 2010-07-15 2020-03-10 Ecp Entwicklungsgellschaft Mbh Rotor for a pump having helical expandable blades
US9611743B2 (en) 2010-07-15 2017-04-04 Ecp Entwicklungsgesellschaft Mbh Radially compressible and expandable rotor for a pump having an impeller blade
US10500321B2 (en) 2010-08-20 2019-12-10 Tc1 Llc Implantable blood pump
EP3248628A1 (en) * 2010-08-20 2017-11-29 Tc1 Llc Implantable blood pump
US11083885B2 (en) 2010-08-27 2021-08-10 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US9867916B2 (en) 2010-08-27 2018-01-16 Berlin Heart Gmbh Implantable blood conveying device, manipulating device and coupling device
US10391278B2 (en) 2011-03-10 2019-08-27 Ecp Entwicklungsgesellschaft Mbh Push device for the axial insertion of an elongate, flexible body
US11666746B2 (en) 2011-09-05 2023-06-06 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US10561773B2 (en) 2011-09-05 2020-02-18 Ecp Entwicklungsgesellschaft Mbh Medical product comprising a functional element for the invasive use in a patient's body
US8926492B2 (en) 2011-10-11 2015-01-06 Ecp Entwicklungsgesellschaft Mbh Housing for a functional element
US10702641B2 (en) 2015-06-29 2020-07-07 Tc1 Llc Ventricular assist devices having a hollow rotor and methods of use
EP3313471A4 (en) * 2015-06-29 2019-02-20 Tc1 Llc Ventricular assist devices having a hollow rotor and methods of use
US10973967B2 (en) 2018-01-10 2021-04-13 Tc1 Llc Bearingless implantable blood pump

Also Published As

Publication number Publication date
US7798952B2 (en) 2010-09-21
US20110065978A1 (en) 2011-03-17
CA2541979A1 (en) 2005-04-14
JP2010158532A (en) 2010-07-22
US20070276480A1 (en) 2007-11-29
EP1670524A4 (en) 2012-12-26
EP1670524A1 (en) 2006-06-21
US8366599B2 (en) 2013-02-05
JP2007507257A (en) 2007-03-29
JP4889492B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
US7798952B2 (en) Axial flow blood pump
JP3725027B2 (en) Rotary pump with hydrodynamically suspended impeller
US7972122B2 (en) Multiple rotor, wide blade, axial flow pump
US6394769B1 (en) Pump having a magnetically suspended rotor with one active control axis
EP0901797B1 (en) Sealless rotary blood pump
EP2145108B1 (en) Centrifugal rotary blood pump
JP5539441B2 (en) Rotary blood pump
US7699586B2 (en) Wide blade, axial flow pump
EP2582414B1 (en) Rotor for a blood pump with hydrodynamic chamfer thrust bearings
US7476077B2 (en) Rotary pump with exclusively hydrodynamically suspended impeller
US7229258B2 (en) Streamlined unobstructed one-pass axial-flow pump
US5211546A (en) Axial flow blood pump with hydrodynamically suspended rotor
AU2004277286B2 (en) Impeller
AU730235B2 (en) Sealless rotary blood pump

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004761412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006529462

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004277286

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2541979

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2004277286

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004761412

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10575118

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10575118

Country of ref document: US