WO2005031283A1 - Device and method for measuring the level of glass in a vitrification furnace for radioactive wastes - Google Patents

Device and method for measuring the level of glass in a vitrification furnace for radioactive wastes Download PDF

Info

Publication number
WO2005031283A1
WO2005031283A1 PCT/EP2004/010508 EP2004010508W WO2005031283A1 WO 2005031283 A1 WO2005031283 A1 WO 2005031283A1 EP 2004010508 W EP2004010508 W EP 2004010508W WO 2005031283 A1 WO2005031283 A1 WO 2005031283A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
level
opening
glass
gas
Prior art date
Application number
PCT/EP2004/010508
Other languages
German (de)
French (fr)
Inventor
Winfried Tobie
Wolfgang GRÜNEWALD
Günther Roth
Original Assignee
Forschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe Gmbh filed Critical Forschungszentrum Karlsruhe Gmbh
Publication of WO2005031283A1 publication Critical patent/WO2005031283A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/16Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
    • G01F23/161Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid for discrete levels
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/033Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by using resistance heaters above or in the glass bath, i.e. by indirect resistance heating
    • C03B5/0336Shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/24Automatically regulating the melting process
    • C03B5/245Regulating the melt or batch level, depth or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/16Indicating, recording, or alarm devices being actuated by mechanical or fluid means, e.g. using gas, mercury, or a diaphragm as transmitting element, or by a column of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • G01F23/18Indicating, recording or alarm devices actuated electrically
    • G01F23/185Indicating, recording or alarm devices actuated electrically for discrete levels

Definitions

  • the present invention relates to a method for glass level control in a glazing furnace for radioactive waste according to the first and a device for carrying out the aforementioned level control according to the fifth claim.
  • One of these technologies is based on the glazing of radioactive waste [2]. It involves cnemic separation of the fission products from the reusable part of the fuel elements. In a first step, the fuel elements with boiling nitric acid are dissolved, followed by multi-stage extraction processes in which .vie uranium and plutonium are extracted from the solution. Let the remaining nitric acid, ie aqueous solution, be concentrated with the highly radioactive fission products and the non-volatile radioactive components incorporated in glass, ie by glazing in a solid form that is suitable for transport and disposal - bergeschreibt.
  • Glass not only has an extremely good solubility for the radioactive fission products, but also a solidification area without a sudden phase change during the transition between the liquid and solid phases, which practically prevents re-excretion of fission products already dissolved in the glass.
  • the glazing takes place shielded in a remote-controlled glazing furnace.
  • a glass melt is heated to a temperature above the solidification range in a closed melting vessel by the flow of electrical current.
  • the solution with the highly radioactive fission products is continuously fed into the melting vessel via a feed line, specifically into the gas space above the glass melt.
  • the non-radioactive aqueous solution components evaporate on the surface of the melting bath and can escape from the melting vessel via an exhaust line, the non-evaporable radioactive components after previous chemical calcination in a process zone in the area of the melt pool surface integrated into the glass melt.
  • the melting vessel At the lower end of the melting vessel there is also an outlet channel for continuous removal of the now radioactive glass melt, the so-called tapping of the glass melt. Furthermore, a feed line for filling glass into the melting vessel is required. When a predetermined glass level is displayed, the removal from the melting furnace is initiated into a mold. Knowledge of the full glass level is therefore an important process parameter when glazing radioactive substances.
  • An electrical system for glass fullness control is described as an example in [3]. It includes a separately heated bed tenhunt of the melting vessel, in which the glass melt surface vc of the process zone is decoupled and in which three electrodes are inserted. Depending on the height of the glass full level, the side chamber and therefore the electrodes are more or less immersed in the glass melt, the level being determined by a simple resistance measurement between c
  • An optical system is described as an example in [4]. It comprises a neutron source and a neutron receiver, which are positioned at the height of the glass melt.
  • the connecting neutron beam is immersed in the molten glass as the fill level increases, where the neutrons are increasingly absorbed by the molten glass.
  • installation and operation are prone to failure and comparatively expensive, given the risk of contamination of the transmitter and receiver alone.
  • Another object of the invention relates to a device for level measurement, which also has a simple structure.
  • the object is achieved by a method with the features of the first patent claim and a device with the features of the fifth patent claim. Subclaims indicate preferred executions of the method and the device.
  • the invention relates to a method and an apparatus for
  • Glass level control in a glazing furnace for radioactive waste based on a pneumatic differential pressure measurement ar two places in the glazing furnace.
  • a first gas stream is introduced via a line into the melting vessel of the glazing furnace just below a maximum permissible fill level
  • a second gas stream is fed via a reference line into the gas chamber of the melting vessel in the glazing furnace, i.e. always above the specified maximum permissible fill level, ideally at the upper end of the sealed melting vessel.
  • Both gas streams are continuous and are preferably set to a constant, equally large flow rate.
  • the pressure in the line and the reference line are measured in cold areas outside the glazing furnace on the first and second gas streams.
  • the differential pressure can be determined by simply subtracting the two measurement signals.
  • the opening is completely immersed, i.e. the exit opening of the first gas stream into the glass melt, thus interrupting and backing up the first gas stream.
  • the increasing differential pressure signal can be easily recognized by setting a limit for the pressure differential measurement signal and a corresponding reaction, e.g. an opening of the drain channel for the removal of the gas melt from the melting vessel (tapping the glass melt) can be initiated.
  • An opening that is open towards the bottom is advantageous, ie the end of the line for the first gas stream, which also has a horizontally oriented edge region. In this way, the entire opening is completely immersed riding with a very low level difference. In addition, this design makes it more difficult for glass melt or reaction products to penetrate the opening, thereby considerably reducing the risk of the opening gradually becoming clogged. It also proves to be particularly advantageous if the cross-section of the opening has an enlarged cross-section compared to that of the line or if the end of the line has a bell shape in the melting vessel, for example.
  • the aforementioned enlarged cross-section of the opening has the following advantageous effects: on the one hand, this significantly reduces the risk of clogging of the opening by viscous intermediate reaction products of the glazing process, which form in a glazing furnace as a layer on the entire liquid glass surface and for the glazing process, ie. H. in the case of incorporation of fission products in the glass with simultaneous controlled evaporation of the non-radioactive volatile components are absolutely necessary.
  • the larger cross-section makes the glass full level check more sensitive. Since a differential printer is only increased by completely closing the opening, i.e. by completely immersing or wetting the edge of the opening, an influence of the topography differences of the above-mentioned layer can be significantly reduced simply by extending the circular immersion line.
  • the portions of the line and reference line located in the melting vessel consist of a material which is corrosion-resistant and high-temperature-resistant and which prevails there.
  • Static pressures in the line and reference line ie apart from the gas streams in flow-free areas, are preferably used for the differential pressure measurement.
  • the differential pressure between the first and second gas stream is as a static differential pressure, which influences the flow on the
  • Differential pressure eliminated.
  • a technical implementation of this feature is proposed by positioning the pressure sensors at the end of a branch from the line and reference line.
  • a gas cushion is also formed in the branch, which acts as a filter between the gas and the pressure transducer, for example, buffering short-term pressure peaks.
  • This filter effect can also be optimized depending on the application, whereby an increasingly large volume of the branch not only buffers increasingly larger pressure jumps, but also extends the time between the occurrence and the detection of a pressure change.
  • FIG. 1 a and b are schematic representations of a glazing furnace for radioactive waste with a device for checking the glass fullness at different glass fullness heights
  • Fig. 2 is a detailed view of the line with a downward opening in the melting vessel
  • Fig. 3 shows the time course of the differential pressure signal during the increase of the glass full level with subsequent tapping of the glass melt.
  • a glazing furnace of the type mentioned at the outset consists, as shown in FIGS. A and b, of a melting vessel 1 with Joule heating 2 for a glass melt 3 and a gas space lying thereover.
  • the glass full level 5 of the glass melt 2 is heated during glazing. solution process between a minimum and a maximum level ⁇ or 7. This is done by appropriately controlling the inflow of the solution with the highly radioactive fission products sc such as glass and the tapping of the glass melt.
  • a heated outlet channel 9 is provided for tapping the glass melt.
  • an exhaust gas line 10 from the gas space 4 is additionally inserted into the melting vessel 1.
  • the device for checking the fill level of the glass protrudes into the gas space 4 from above. It comprises a line 11 and a reference line 12, which flows into the melting vessel 1 of the glazing furnace. While the reference line merges into the gas space near the highest point, the lower open end of the line ends just below or in the area of maximum level 7.
  • the opening has a horizontally aligned edge area, so: the process of completely immersing the opening in the melt as the glass full level rises in the shortest possible time and, on the other hand, lowering the glass full level to below the opening also releases the full cross section of the opening in the shortest possible time.
  • the exact positioning of the opening relative to the maximum le vei 7 can be optimized. It is to be determined in such a way that the upper level 7 is reliably exceeded by the melt even at the maximum possible rate of increase of the glass full level and taking into account the abovementioned generally described buffer effect in the branches 17 in front of the pressure transducers 16 and the reaction times for tapping the glass melt is avoidable.
  • the opening is arranged approximately 10 mm below the maximum level permitted.
  • the lower end of line 11 consists of a bell-shaped extension 13.
  • all metals and ceramics resistant to high-temperature corrosion are suitable as materials for line 11, reference line 12 and bell-shaped extension 13.
  • a nickel-based alloy in the As part of the exemplary embodiment, a nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel-based nickel
  • Line 11 and reference line 12 serve to introduce a gas flow into the gas space 4, both gas flows in the sense of high accuracy and reproducibility of the method with comparative pressure measurement ideally being identical in composition, volume flow and pressure with the aid of a suitable center.
  • These means include a gas supply unit for the provision of a constant and iso ble gas volume flow with connection to the line and the reference line.
  • An inert gas is particularly suitable, but also a Ga which has a neutral effect on the glazing process, e.g. Nitrogen, argon, but also compressed air, with the volume flows being adjustable via flow limiting valves 14 and the pressure via corresponding pressure reducers 15 within the gas supply unit outside the glazing furnace.
  • a compressed air stream with an identical composition was selected as the first and second gas stream, which was in each case introduced into the line and into the reference line at a pressure of 0.5 bar and 20 Nl / 1 volume flow.
  • the line and reference line are each equipped with a pressure sensor 16, which at the end is connected to the line and reference line in each case by a branch 17 which is decoupled from the gas flow.
  • Pressure transducers and branches are representative of general means for determining the internal pressures in line 11 and reference line 12 as well as the pressure difference and for compensating for the differential pressure.
  • the gas supply line consists of a high-temperature resistant INCONEL 690 nickel-based alloy
  • 1 a shows the glazing furnace in a state in which the glass full height is below the opening of the bell-shaped extension 13. The opening is not closed by the glass melt. Since both the first and the second gas stream can escape unhindered from the exhaust pipe from the melting vessel, the differential pressure ⁇ p is approximately zero.
  • the time course of the differential pressure ⁇ p when the glass level rises with subsequent tapping of the glass is shown in the context of the advantageous embodiment as a ⁇ p / t diagram in FIG. 3. If the full glass level is below the opening, this will not be closed by the glass melt; the differential pressure ⁇ p is approximately zero (range I, noise). After the glass full level has risen, the opening closes briefly but gradually, leading to a moderate increase in the differential pressure ⁇ p (area II). If the opening is completely closed by the glass melt, the differential pressure ⁇ p increases continuously (area III) in order to initiate a tapping of the glass melt at a limit (here around 7.5 mbar). When tapping, the glass level drops rapidly to the initial state (area IV).

Abstract

The invention relates to a method for measuring the level of glass in a vitrification furnace for radioactive wastes. The aim of the invention is to provide a corresponding method that is uncomplicated while being more reliable. To this end, the inventive method consists of leading a first flow of gas via an opening of a line into the vitrification furnace just beneath a maximally permitted filling level, and a second flow of gas via a reference line into the gas chamber of the vitrification furnace above the predetermined maximally permitted filling level, and consists of measuring a pressure difference between the first and the second flow of gas, whereby a rising glass level completely closes the opening starting from a predetermined filling level, and after the opening has been closed, a predetermined pressure difference level indicates that the maximally permitted filling level has been reached, whereby the end of the line inside the vitrification furnace is downwardly open and has a horizontally oriented edge area.

Description

Vorrichtung und Verfahren zur Glas-Fullstandsmessung in einem Verglasungsofen für radioaktive AbfalleDevice and method for glass level measurement in a glazing furnace for radioactive waste
Die vorliegende Erfindung betrifft ein Verfahren zur Glas- Fullstandskontrolle in einem Verglasungsofen für radioaktiver Abfalle gemäß des ersten sowie eine Vorrichtung zur Durchfuhrung der vorgenannten Fullstandskontrolle gemäß des fünften Patentanspruchs .The present invention relates to a method for glass level control in a glazing furnace for radioactive waste according to the first and a device for carrying out the aforementioned level control according to the fifth claim.
Die kommerzielle Anwendung der Kerntechnik zur Energieerzeugung wirft das Problem der Entsorgung hochradioaktiver Abfallstoffe auf. Als Folge der Kernumwandlung durch Spaltung und Neutroneneinfang entsteht in einem Reaktor aus dem Kernbrennstoff eine Vielzahl von hochradioaktiven Spaltprodukten wie kunstliche I- sotope oder Aktimde. Die sich im Zuge des Brennstoffverbrauchs allmählich anreichernden Spaltprodukte sind für den Prozess αer Energieerzeugung ohne Nutzen und stellen m der verbliebenen Brennstoffmatrix einen radioaktiven Ballast dar, der nach Entnahme der Brennelemente aus dem Reaktor entsorgt werden muss . Für die Entsorgung der im abgebrannten Kernbrennstoffe angereicherten hochradioaktiven Spaltprodukte wurden mehrere Technologien entwickelt.The commercial application of nuclear technology for energy generation poses the problem of the disposal of highly radioactive waste. As a result of the nuclear conversion through fission and neutron capture, a large number of highly radioactive fission products such as artificial isotopes or actimides are generated from the nuclear fuel in a reactor. The fission products gradually accumulating in the course of fuel consumption are of no use for the process of energy generation and represent a radioactive ballast in the remaining fuel matrix, which must be disposed of after the fuel elements have been removed from the reactor. Several technologies have been developed for the disposal of the highly radioactive fission products enriched in the spent nuclear fuel.
Bezüglich der Entsorgung von abgebrannten Kernbrennstoffen w_rd allgemein auf [1] verwiesen.With regard to the disposal of spent nuclear fuel, general reference is made to [1].
Eine dieser Technologien basiert auf einer Verglasung von radioaktiven Abfallen [2], Sie umfasst eine cnemische Abtrennung der Spaltprodukte von dem wieder verwendbaren Teil der Brennelemente. In einem ersten Schritt werden die Brennelemente m siedender Salpetersaure aufgelost, gefolgt von mehrstufigen Extrahierungsprozessen, bei der Wertstoffe .vie Uran und Plutonium der Losung entzogen werden. Let ztenαiich wird αie verbleibende salpetersaurehaltige, d. h. wassrige Losung mit den hoch- radioaktiven Spaltprodukten aufkonzentriert und die nichtfluch- tigen radioaktiven Bestandteile in Glas eingebunden, d.h. durch Verglasung in eine transport- und endlager fähige feste Form - bergefuhrt. Glas weist nicht nur eine ausgesprochen gute Los- lichkeit für die radioaktive Spaltprodukte auf, sondern auch einen Erstarrungsbereich ohne sprunghafte Phasenumwandlung bei Übergang zwischen flussiger und fester Phase, wodurch ein Wiederausscheiden bereits im Glas gelöster Spaltprodukte praktisc vermieden wird.One of these technologies is based on the glazing of radioactive waste [2]. It involves cnemic separation of the fission products from the reusable part of the fuel elements. In a first step, the fuel elements with boiling nitric acid are dissolved, followed by multi-stage extraction processes in which .vie uranium and plutonium are extracted from the solution. Let the remaining nitric acid, ie aqueous solution, be concentrated with the highly radioactive fission products and the non-volatile radioactive components incorporated in glass, ie by glazing in a solid form that is suitable for transport and disposal - bergefuhrt. Glass not only has an extremely good solubility for the radioactive fission products, but also a solidification area without a sudden phase change during the transition between the liquid and solid phases, which practically prevents re-excretion of fission products already dissolved in the glass.
Die Verglasung findet aufgrund der hohen auftretenden radioaktiven Strahlung abgeschirmt in einem fernbedienbaren Verglasungsofen statt. Im Verglasungsofen wird eine Glasschmelze in einem abgeschlossenen Schmelzgefaß durch elektrischen Strom- fluss auf eine Temperatur oberhalb des Erstarrungsbereichs auf geheizt. Die Losung mit den hochradioaktiven Spaltprodukten wird über eine Zuleitung kontinuierlich in das Schmelzgefaß eingeleitet, und zwar in den Gasraum oberhalb der Glasschmelze Wahrend die nicht radioaktiven wassrigen Losungsanteile auf de Schmelzbadoberflache verdampfen und über eine Abgasleitung aus dem Schmelzgefaß entweichen können, werden die nicht verdampfbaren radioaktiven Bestandteile nach vorangegangener chemische Kalzinierung in einer Prozesszone im Bereicn der Schmelzbadoberflache in die Glasschmelze eingebunden. Am unteren Ende de Schmelzgefaßes befindet sich zudem ein Auslaufkanal für eine dis ontinuierliche Entnahme der nunmehr radioaktiven Glasschmelze, dem sog. Abstechen der Glasschmelze. Ferner ist eine Zuleitung für das Einfüllen von Glas in das Schmelzgefaß erfor derlich. Bei Anzeige eines vorgegebenen Glasfullstandes wird die Entnahme vom Schmelzofen in eine Kokille eingeleitet. Die Kenntnis des Glas-Fullstands ist daher ein wichtiger Prozesspa rameter bei einer Verglasung radioaktiver Substanzen.Due to the high level of radioactive radiation, the glazing takes place shielded in a remote-controlled glazing furnace. In the glazing furnace, a glass melt is heated to a temperature above the solidification range in a closed melting vessel by the flow of electrical current. The solution with the highly radioactive fission products is continuously fed into the melting vessel via a feed line, specifically into the gas space above the glass melt.While the non-radioactive aqueous solution components evaporate on the surface of the melting bath and can escape from the melting vessel via an exhaust line, the non-evaporable radioactive components after previous chemical calcination in a process zone in the area of the melt pool surface integrated into the glass melt. At the lower end of the melting vessel there is also an outlet channel for continuous removal of the now radioactive glass melt, the so-called tapping of the glass melt. Furthermore, a feed line for filling glass into the melting vessel is required. When a predetermined glass level is displayed, the removal from the melting furnace is initiated into a mold. Knowledge of the full glass level is therefore an important process parameter when glazing radioactive substances.
Aufgrund der extremen thermischen und korrosiven Bedingungen 1 Schmelzgefaß ist eine zuverlässige Glas-Fullstandsmessung in einei Verglasungsofen für radioaktiver Abfalle bislang trotz verschiedene Ansätze immer noch ein ungelöstes Problem.Due to the extreme thermal and corrosive conditions 1 melting vessel, reliable glass full level measurement in a glazing furnace for radioactive waste has so far been an unsolved problem despite various approaches.
In [3] wird beispielhaft ein elektrisches System zur Glas-Full- standskontrolle beschrieben. Es umfasst eine separat beheizbare Sei tenkammer des Schmelzgefaßes, in der die Glasschmelzenoberflache vc der Prozesszone abgekoppelt ist und in der drei Elektroden eingeset sind. Je nach Hohe des Glas-Fullstandes tauchen Seitenkammer und da mit die Elektroden mehr oder weniger in die Glasschmelze ein, wobei der Füllstand sich über eine einfache Widerstandsmessung zwischen cAn electrical system for glass fullness control is described as an example in [3]. It includes a separately heated bed tenkammer of the melting vessel, in which the glass melt surface vc of the process zone is decoupled and in which three electrodes are inserted. Depending on the height of the glass full level, the side chamber and therefore the electrodes are more or less immersed in the glass melt, the level being determined by a simple resistance measurement between c
Elektroden ermitteln und überwachen lasst .Have electrodes determined and monitored.
Dieses System ist jedoch sehr aufwendig, da eine besondere Gestalte des Schmelzgefaßes sowie eine eigene Heizung für die Seitenkammer e forderlich sind. Ferner erwies sich die Losungsansatz aufgrund eine erhöhten Neigung der Schmelze zur Schlackenbildung sowie aufgrund c sich ändernden Zusammensetzung der Glasschmelze besonders in der Ne benkammer als vergleichsweise storungsanfallig . Auch die Re roduzie barkeit ist hierdurch erheblich beeinträchtigt.However, this system is very complex, since a special shape of the melting vessel and its own heating for the side chamber e are required. Furthermore, the solution proved to be comparatively prone to failure due to an increased tendency of the melt to form slags and due to the changing composition of the glass melt, especially in the secondary chamber. Reproducibility is also significantly affected.
Ein optisches System wird beispielhaft in [4] beschrieben. Sie um- fasst eine Neutronenquelle und einen Neutronenempfanger, welche in Hohe der Glasschmelze positioniert sind. Der verbindende Neutronenstrahl taucht mit zunehmendem Füllstand in die Glasschmelze ein, wc bei die Neutronen zunehmend durch die Glasschmelze absorbiert werde Auch hier sind Installation und Betrieb unter cen vorgegebenen Rahmenbedingungen allein in Hinblick auf die Verscnmutzungsgefahr von Sender und Empfanger störanfällig und vergleichsweise aufwendig.An optical system is described as an example in [4]. It comprises a neutron source and a neutron receiver, which are positioned at the height of the glass melt. The connecting neutron beam is immersed in the molten glass as the fill level increases, where the neutrons are increasingly absorbed by the molten glass. Here too, installation and operation are prone to failure and comparatively expensive, given the risk of contamination of the transmitter and receiver alone.
Ausgehend hiervon ist es Aufgabe der Erfindung, eine Verfahren zur Glas-Fullstandsmessung in einem Verglasungsofen für radioaktive Abfalle vorzuschlagen, welches mit geringem Aufwand eine ernohte Zu verlassigkeit aufweist. Eine weitere Aufgabe der Erfindung betrifft eine Vorrichtung zur Fullstandsmessung, welche zudem ei nen einfachen Aufbau aufweist.Proceeding from this, it is an object of the invention to propose a method for glass full level measurement in a glazing furnace for radioactive waste, which has a reduced reliability with little effort. Another object of the invention relates to a device for level measurement, which also has a simple structure.
Die Aufgabe wird durch ein Verfahren mit den Merkmalen des erε ten Patenanspruchs sowie einer Vorrichtung mit den Merkmalen des fünften Patentanspruchs gelost. Unteranspruche geben bevor zugte Ausfuhrungen des Verfahrens und der Vorrichtung an. Die Erfindung betrifft ein Verfahren und eine Vorrichtung zurThe object is achieved by a method with the features of the first patent claim and a device with the features of the fifth patent claim. Subclaims indicate preferred executions of the method and the device. The invention relates to a method and an apparatus for
Glas-Fullstandskontrolle in einem Verglasungsofen für radioaktiver Abfalle, basierend auf einer pneumatischen Differenzdruckmessung ar zwei Stellen im Verglasungsofen. Hierbei wird ein erster Gasstrom i ber eine Leitung in das Schmelzgefaß des Verglasungsofens knap unterhalb eines maximal zulassigen Füllstandes eingeleitet unc ein zweiter Gasstroms über eine Referenzlei tung in den Gasraun des Schmelzgefaßes im Verglasungsofen, d.h. stets oberhalb des vorgegebenen maximal zulassigen Füllstands, idealer weise am oberen Ende des abgeschlossenen Schmelzgefaßes. Beide Gasstron sind kontinuierlich und werden vorzugsweise auf eine konstante gleichgroße Durchflussmenge eingestellt. Die Messung der Drucl- in Leitung und Referenzleitung erfolgen in kalten Bereichen au ßerhalb des Verglasungsofens an dem ersten und zweiten Gasstrom. Der Differenzdruck ist in der einfachsten Ausfuhrungsform durch einfaches Subtrahieren der beiden Messsignale ermittelbar .Glass level control in a glazing furnace for radioactive waste, based on a pneumatic differential pressure measurement ar two places in the glazing furnace. Here, a first gas stream is introduced via a line into the melting vessel of the glazing furnace just below a maximum permissible fill level, and a second gas stream is fed via a reference line into the gas chamber of the melting vessel in the glazing furnace, i.e. always above the specified maximum permissible fill level, ideally at the upper end of the sealed melting vessel. Both gas streams are continuous and are preferably set to a constant, equally large flow rate. The pressure in the line and the reference line are measured in cold areas outside the glazing furnace on the first and second gas streams. In the simplest embodiment, the differential pressure can be determined by simply subtracting the two measurement signals.
Steigt der Glas-Fullstand im Verglasungsofen in die Nahe des maximal zulassigen Füllstandes, kommt es zu einem vollständige Eintauchen der Öffnung, d.h. der Austrittsoffnung des ersten Gasstromes, in die Glasschmelze, damit zu einer Unterbrechung und einem Aufstauen des ersten Gasstromes. In Folge dessen kommt es im ersten Gasstrom zu einem messbaren Anstieg des sta tischen Druckes und damit zu einer signifikanten Anαerung des gemessenen Differenzdruckes, welcher bis dahin idealer weise nahe Null lag. Das ansteigende Differenzdrucksignal kann in einfacher Weise durch Setzen eines Limits f r das Druckdifferenzmesssignal erkannt und eine entsprechende Reaktion, wie z.B. ein Offnen des Ablaufkanals für die Entnahme der Gasschmelze aus dem Schmelzgefaß (Abstechen der Glasschmelze), eingeleitet werden.If the glass full level in the glazing furnace rises close to the maximum permissible level, the opening is completely immersed, i.e. the exit opening of the first gas stream into the glass melt, thus interrupting and backing up the first gas stream. As a result, there is a measurable increase in the static pressure in the first gas stream and thus a significant change in the measured differential pressure, which until then had ideally been close to zero. The increasing differential pressure signal can be easily recognized by setting a limit for the pressure differential measurement signal and a corresponding reaction, e.g. an opening of the drain channel for the removal of the gas melt from the melting vessel (tapping the glass melt) can be initiated.
Vorteilhaft ist eine nach unten hin offene Öffnung, d.h. das Ende der Leitung für den ersten Gasstrom, welche zudem einen waagerecht ausgerichteten Randbereich aufweist. Auf diese Weis erfolgt ein vollständiges Eintauchen der gesamten Öffnung be- reits bei einem sehr geringen Fullstandsniveauunterschied . Außerdem wird durch diese Gestaltung ein Eindringen von Glasschmelze oder Reaktionsprodukten in die Öffnung erschwert und damit die Gefahr eines allmählichen Zusetzens der Öffnung erheblich reduziert. Es erweist sich zudem als besonders vorteil haft, wenn der Querschnitt der Öffnung gegenüber dem der Leitung einen erweiterten Querschnitt aufweist oder das Ende der Leitung in dem Schmelzgefaß beispielsweise eine Glockenform aufweist .An opening that is open towards the bottom is advantageous, ie the end of the line for the first gas stream, which also has a horizontally oriented edge region. In this way, the entire opening is completely immersed riding with a very low level difference. In addition, this design makes it more difficult for glass melt or reaction products to penetrate the opening, thereby considerably reducing the risk of the opening gradually becoming clogged. It also proves to be particularly advantageous if the cross-section of the opening has an enlarged cross-section compared to that of the line or if the end of the line has a bell shape in the melting vessel, for example.
Der vorgenannte erweiterte Querschnitt der Öffnung hat die fo] genden vorteilhaften Wirkungen: Zum einen senkt dieser signifj kant die Verstopfungsgefahr der Öffnung durch zähflüssige Zwischenreaktionsprodukte des Verglasungsprozesses , die sich in einem Verglasungsofen als Schicht auf der gesamten flussigen Glasoberflache ausbilden und für den Verglasungsprozess , d. h. bei einer Einbindung von Spaltprodukten in das Glas bei gleic zeitigem kontrollierten Verdampfen der nicht radioaktiven fluch tigen Anteile zwingend erforderlich sind. Zum anderen bewirkt der größere Querschnitt eine höhere Empfmclichkeit der Glas- Fullstandsuberprufung . Da eine Differenzdruckerhohur.g erst durch ein vollständiges Verschließen der Öffnung, d.h. durch ein vollständiges Eintauchen oder Benetzen des Of fnungsrandes stattfindet, kann ein Einfluss von sich einstellende Topographieunterschiede der vorgenannten Schicht allein durch eine Verlängerung der kreisförmigen Eintauchlinie signifikant reduziert werden.The aforementioned enlarged cross-section of the opening has the following advantageous effects: on the one hand, this significantly reduces the risk of clogging of the opening by viscous intermediate reaction products of the glazing process, which form in a glazing furnace as a layer on the entire liquid glass surface and for the glazing process, ie. H. in the case of incorporation of fission products in the glass with simultaneous controlled evaporation of the non-radioactive volatile components are absolutely necessary. On the other hand, the larger cross-section makes the glass full level check more sensitive. Since a differential printer is only increased by completely closing the opening, i.e. by completely immersing or wetting the edge of the opening, an influence of the topography differences of the above-mentioned layer can be significantly reduced simply by extending the circular immersion line.
Es ist selbstverständlich, dass die in dem Schmelzgefaß befmc liehen Anteile von Leitung und Referenzleitung aus einem untei den dort herrschenden Bedingungen korrosionsbest ndigen und hochtemperaturfesten Material bestehen.It goes without saying that the portions of the line and reference line located in the melting vessel consist of a material which is corrosion-resistant and high-temperature-resistant and which prevails there.
Vorzugsweise werden statischen Drucke in der Leitung und Referenzleitung, d.h. abseits der Gasstrome in Stromungsfreien Bereichen, für die Differenzdruckmessung herangezogen. Der Diffe renzdruck zwischen dem ersten und dem zweiten Gasstrom ist als ein statischer Differenzdruck, was Stromungseinflusse auf demStatic pressures in the line and reference line, ie apart from the gas streams in flow-free areas, are preferably used for the differential pressure measurement. The differential pressure between the first and second gas stream is as a static differential pressure, which influences the flow on the
Differenzdruck eliminiert. Im Rahmen der Erfindung wird als technische Umsetzung dieses Merkmals durch eine Positionierunc der Drucksensoren am Ende jeweils einer Abzweigung von der Lei tung und Referenzleitung vorgeschlagen. In der Abzweigung bildet sich zudem ein Gaspolster, welches als Filter zwischen Gas ström und Druckaufnehmer wirkend beispielsweise kurzzeitige Druckspitzen abpuffert. Diese Filterwirkung lasst sich auch je nach Anwendungsfall optimieren, wobei ein zunehmend großes Volumen der Abzweigung nicht nur zunehmend größere Drucksprunge abpuffert, sondern auch die Zeit zwischen dem Auftreten und de Erkennen einer Druckanderung verlängert.Differential pressure eliminated. Within the scope of the invention, a technical implementation of this feature is proposed by positioning the pressure sensors at the end of a branch from the line and reference line. A gas cushion is also formed in the branch, which acts as a filter between the gas and the pressure transducer, for example, buffering short-term pressure peaks. This filter effect can also be optimized depending on the application, whereby an increasingly large volume of the branch not only buffers increasingly larger pressure jumps, but also extends the time between the occurrence and the detection of a pressure change.
Die Erfindung wird im Folgenden anhand eines Ausfuhrungsbeispiels 6 läutert. Es zeigenThe invention is explained below using an exemplary embodiment 6. Show it
Fig. 1 a und b schematische Darstellungen eines Verglasungsofens fu radioaktive Abfalle mit einer Vorrichtung zur Glas-Fullstands- kontrolle bei unterschiedlichen Glas-Fullstandshohen,1 a and b are schematic representations of a glazing furnace for radioactive waste with a device for checking the glass fullness at different glass fullness heights,
Fig. 2 eine Detailansicht der Leitung mit einer nach unten gerichteten Öffnung im Bereich des Schmelzgefaßes, sowieFig. 2 is a detailed view of the line with a downward opening in the melting vessel, and
Fig. 3 den zeitlichen Verlauf des Differenzdrucksignals wahrend eir Anstiegs des Glas-Fullstandes mit anschließendem Abstechen der Glas schmelze .Fig. 3 shows the time course of the differential pressure signal during the increase of the glass full level with subsequent tapping of the glass melt.
Ein Verglasungsofen der eingangs genannten Art besteht, wie in Fig. a und b dargestellt, aus einem Schmelzgefaß 1 mit Joule'sche Heizun 2 für eine Glasschmelze 3 sowie einen über diese liegenden Gasraum Der Glas-Fullstand 5 der Glasschmelze 2 wird wahrend eines Vergla- sungsvorgangs zwischen einem minimalen und einem maximalen Level β bzw. 7 einreguliert. Die erfolgt durch eine entsprechende Steuerung des Zuflusses der Losung mit den hochradioaktiven Spaltprodukten sc wie von Glas sowie des Abstechen der Glasschmelze. Hierzu ist am o- bersten Punkt des Schmelzgefaßes ein entsprechendes Zulaufrohr 8 fu die Losung und Glas (in Praxi meist zwei separate Zuleitungen in deA glazing furnace of the type mentioned at the outset consists, as shown in FIGS. A and b, of a melting vessel 1 with Joule heating 2 for a glass melt 3 and a gas space lying thereover. The glass full level 5 of the glass melt 2 is heated during glazing. solution process between a minimum and a maximum level β or 7. This is done by appropriately controlling the inflow of the solution with the highly radioactive fission products sc such as glass and the tapping of the glass melt. For this purpose, there is a corresponding feed pipe 8 fu at the uppermost point of the melting vessel the solution and glass (in practice two separate supply lines in the de
Gasraum) sowie am untersten Punkt des Schmelzgefaßes ein beheizter Ablaufkanal 9 zum Abstechen der Glasschmelze vorgesehen. Um die vei dampfenden nicht radioaktiven Bestandteile der Losung als Prozessabgas abzuleiten, ist zusatzlich eine Abgasleitung 10 aus den Gasraum 4 führend in das Schmelzgefaß 1 eingesetzt.Gas space) and at the lowest point of the melting vessel, a heated outlet channel 9 is provided for tapping the glass melt. In order to derive the vei vaporizing non-radioactive constituents of the solution as process exhaust gas, an exhaust gas line 10 from the gas space 4 is additionally inserted into the melting vessel 1.
Die Vorrichtung zur Glas-Fullstandskontrolle ragt, wie in Fig. 1 a und b dargestellt, von oben her in den Gasraum 4. Sie umfasst eine Leitung 11 sowie eine Referenzleitung 12, welche in das Schmelzgefaß 1 des Verglasungsofens einmundet. Wahrend die Referenzleitung in der Nahe des höchsten Punktes in den Gasraum einmundet, endet das untere offene Ende der Leitung knapp unterhalb oder im Bereich des maximalen Levels 7. Dabei weist d Öffnung einen waagerecht ausgerichteten Randbereich auf, soda: der Vorgang des vollständigen Eintauchens der Öffnung in die Schmelze bei ansteigendem Glas-Fullstand in möglichst kurzer Zeit verlauft und andererseits ein Absenken des Glas- Fullstandes bis unter die Öffnung diese in möglichst kurzer Zeit im vollen Of fnungsquerschnitt auch wieder freigibt.As shown in FIGS. 1 a and b, the device for checking the fill level of the glass protrudes into the gas space 4 from above. It comprises a line 11 and a reference line 12, which flows into the melting vessel 1 of the glazing furnace. While the reference line merges into the gas space near the highest point, the lower open end of the line ends just below or in the area of maximum level 7. The opening has a horizontally aligned edge area, so: the process of completely immersing the opening in the melt as the glass full level rises in the shortest possible time and, on the other hand, lowering the glass full level to below the opening also releases the full cross section of the opening in the shortest possible time.
Die exakte Positionierung der Öffnung relativ zum maximalen Le vei 7 ist optimierbar. Sie ist so festzulegen, dass ein Überschreiten des oberen Levels 7 durch die Schmelze selbst bei eJ ner maximal möglichen Anstiegsgeschwindigkeit des Glas- Fullstands und unter Berücksichtigung der vorgenannten allgemein beschriebenen Pufferwirkung in den Abzweigungen 17 vor de Druckaufnehmern 16 sowie der Reaktionszeiten zum Abstechen dei Glasschmelze zuverlässig vermeidbar ist. In einer erprobten Ausfuhrungsform ist die Öffnung ca. 10 mm unterhalb des maxim≤ zulassigen Füllstandes angeordnet.The exact positioning of the opening relative to the maximum le vei 7 can be optimized. It is to be determined in such a way that the upper level 7 is reliably exceeded by the melt even at the maximum possible rate of increase of the glass full level and taking into account the abovementioned generally described buffer effect in the branches 17 in front of the pressure transducers 16 and the reaction times for tapping the glass melt is avoidable. In a tried-and-tested embodiment, the opening is arranged approximately 10 mm below the maximum level permitted.
In einer vorteilhaften Ausfuhrungsform besteht das untere Ende der Leitung 11 aus einer glockenförmigen Erweiterung 13. Als Materialien für Leitung 11, Referenzleitung 12 und glockenförmige Erweiterung 13 eignen sich prinzipiell alle gegen Hochtemperaturkorrosion bestandigen Metalle und Keramiken. Im Rahmen des Ausfuhrungsbeispieles wurde eine Nickel-Basis-In an advantageous embodiment, the lower end of line 11 consists of a bell-shaped extension 13. In principle, all metals and ceramics resistant to high-temperature corrosion are suitable as materials for line 11, reference line 12 and bell-shaped extension 13. in the As part of the exemplary embodiment, a nickel-based
Legierung INCONEL 690 mit gutem Ergebnis eingesetzt.Alloy INCONEL 690 used with good result.
Leitung 11 und Referenzleitung 12 dienen der Einleitung ]eweι eines Gasstromes in den Gasraum 4, wobei beide Gasstrome im Sinne einer hohen Genauigkeit und Reproduzierbar keit des Verfahrens mit vergleichenden Druckmessung idealer weise in Zusai mensetzung, Volumenstrom und Druck mit Hilfe geeigneter Mitte identisch sein sollten. Diese Mittel umfassen eine Gasversorgungseinheit für die Bereitstellung eines konstanten und iso baren Gas-Volumenstroms mit Anschluss an die Leitung und die Referenzleitung. Als Gas eignet sich insbesondere ein inertes aber auch ein auf den Verglasungsprozess neutral wirkendes Ga wie z.B. Stickstoff, Argon, aber auch Pressluft, wobei die Vo lumenstrome über Durchflussbegrenzungsventile 14 und die Druc über entsprechende Druckminderer 15 im Rahmen der Gasversorgungseinheit außerhalb des Verglasungsofens einstellbar sind.Line 11 and reference line 12 serve to introduce a gas flow into the gas space 4, both gas flows in the sense of high accuracy and reproducibility of the method with comparative pressure measurement ideally being identical in composition, volume flow and pressure with the aid of a suitable center. These means include a gas supply unit for the provision of a constant and iso ble gas volume flow with connection to the line and the reference line. An inert gas is particularly suitable, but also a Ga which has a neutral effect on the glazing process, e.g. Nitrogen, argon, but also compressed air, with the volume flows being adjustable via flow limiting valves 14 and the pressure via corresponding pressure reducers 15 within the gas supply unit outside the glazing furnace.
Im Rahmen des Ausfuhrungsbeispiels wurde als erster und zweit« Gasstrom jeweils ein Pressluftstrom mit identischer Zusammensetzung gewählt, welcher eweils mit 0,5 bar Druck und 20 Nl/1 Volumenstrom in die Leitung und in die Referenzleitung eingeleitet wurde .In the exemplary embodiment, a compressed air stream with an identical composition was selected as the first and second gas stream, which was in each case introduced into the line and into the reference line at a pressure of 0.5 bar and 20 Nl / 1 volume flow.
Leitung und Referenzleitung sind außerhalb des Verglasungsofei mit je einem Druckaufnehmer 16 ausgestattet, welcher am Ende jeweils einer von der Gasstromung abgekoppelten Abzweigung 17 an die Leitung und Referenzleitung angeschlossen sind. Druckaufnehmer und Abzweigungen stehen hier stellvertretend für al gemeine Mittel zur Ermittlung der Innendrucke in Leitung 11 ui Referenzleitung 12 sowie der Druckdifferenz sowie zum Vergleit des Differenzdrucks.Outside of the glazing unit, the line and reference line are each equipped with a pressure sensor 16, which at the end is connected to the line and reference line in each case by a branch 17 which is decoupled from the gas flow. Pressure transducers and branches are representative of general means for determining the internal pressures in line 11 and reference line 12 as well as the pressure difference and for compensating for the differential pressure.
In Fig. 2 ist als Beispiel einer Leitungsdurchfuhrung eine Durchfuhrung der Leitung 11 mit glockenförmiger Erweiterung 1." in die neue Fullstandsmessung als detaillierte Konstruktionszeichnung in Schnittdarstellung wiedergegeben. Die Einrichtunc ist durch eine keramische Durchfuhrung 19 elektrisch isoliert auf einem Schmelzofenstutzen 20 gasdicht und fernbedienbar auf der Schmelzofendecke 21 aufgesetzt. Die Gaszuleitung besteht wie die glockenförmige Erweiterung 13 aus einer hochtemperatur bestandigen Nickelbasislegierung INCONEL 6902 shows, as an example of a line lead-through, a lead-through of line 11 with bell-shaped extension 1. " into the new fullness measurement as a detailed construction drawing in a sectional view. The device is placed in a gas-tight and remote-controlled manner on the furnace top 21 by a ceramic bushing 19 in an electrically insulated manner on a furnace neck 20. Like the bell-shaped extension 13, the gas supply line consists of a high-temperature resistant INCONEL 690 nickel-based alloy
Fig. 1 a zeigt den Verglasungsofen in einem Zustand, bei dem die Glas-Fullstandshohe unterhalb der Öffnung der glockenförmigen Erweiterung 13 liegt. Die Öffnung wird also nicht durch die Glasschmelze verschlossen. Da sowohl der erste als auch der zweite Gasstrom aus der Abgasleitung aus dem Schmelzgefaß ungehindert entweichen kann, liegt der Differenzdruck Δp ungefähr gleich Null.1 a shows the glazing furnace in a state in which the glass full height is below the opening of the bell-shaped extension 13. The opening is not closed by the glass melt. Since both the first and the second gas stream can escape unhindered from the exhaust pipe from the melting vessel, the differential pressure Δp is approximately zero.
Fig. 1 b zeigt dagegen den Verglasungsofen in einem Zustand, bei dem die Glasfullstandshohe oberhalb der Öffnung der glockenförmigen Erweiterung 13 liegt. Die Öffnung ist somit durch die Glasschmelze verschlossen, sodass der erste Gasstrom unter brochen und in der Leitung 11 aufgestaut wird; der Differenzdruck Δp steigt also an, und ist im Betrag großer Null.1b, on the other hand, shows the glazing furnace in a state in which the glass level is above the opening of the bell-shaped extension 13. The opening is thus closed by the glass melt, so that the first gas flow is interrupted and accumulated in line 11; the differential pressure .DELTA.p thus increases and is of great magnitude zero.
Der zeitliche Verlauf des Differenzdrucks Δp bei einem Ansteigen des Glasfullstands mit anschließendem Abstechen des Glases ist im Rahmen der vorteilhaften Ausfuhrungsform als Δp/t-Diagramm in Fig. 3 wiedergegeben. Befindet sich der der Glas-Fullstand unterhalb der Öffnung, wird diese durch die Glasschmelze nicht verschlossen; der Differenzdruck Δp betragt ungefähr Null (Bereich I, Rauschen). Nach Ansteigen des Glas- Fullstands erfolgt ein kurzes, aber allmähliches Verschließen der Öffnung und damit zu einem moderaten Anstieg des Differenz drucks Δp (Bereich II) . Ist die Öffnung ganz durch die Glasschmelze verschlossen, steigt der Differenzdruck Δp kontinuier lieh an (Bereich III), um bei einem Limit (hier bei ca. 7,5 mbar) ein Abstechen der Glasschmelze einzuleiten. Beim Abstechen sink der Glasfullstand rapide zum Ausgangszustand wieder ab (Bereich IV) . BezugszeichenThe time course of the differential pressure Δp when the glass level rises with subsequent tapping of the glass is shown in the context of the advantageous embodiment as a Δp / t diagram in FIG. 3. If the full glass level is below the opening, this will not be closed by the glass melt; the differential pressure Δp is approximately zero (range I, noise). After the glass full level has risen, the opening closes briefly but gradually, leading to a moderate increase in the differential pressure Δp (area II). If the opening is completely closed by the glass melt, the differential pressure Δp increases continuously (area III) in order to initiate a tapping of the glass melt at a limit (here around 7.5 mbar). When tapping, the glass level drops rapidly to the initial state (area IV). reference numeral
1 Schmelzgefaß1 melting pot
2 joule'sche Heizung2 joule heating
3 Glasschmelze3 glass melt
4 Gasraum4 gas space
5 Glas-Fullstand5 glass fullstand
6 minimaler Level6 minimum levels
7 maximaler Level7 maximum level
8 Zulaufrohr8 inlet pipe
9 Ablaufkanal9 drain channel
10 Abgasleitung10 exhaust pipe
11 Leitung11 line
12 Referenzleitung12 reference line
13 glockenförmige Erweiterung13 bell-shaped extension
14 Durchflussbegrenzungsventil14 flow limiting valve
15 Druckminderer15 pressure reducers
16 Druckaufnehmer16 pressure transducers
17 Abzweigung17 junction
18 Gasstrom18 gas flow
19 keramische Durchfuhrung19 ceramic bushing
20 Schmelzofenstutzen20 furnace nozzles
21 Schmelzofendecke 21 furnace ceiling

Claims

Patentansprüche : Claims:
1. Verfahren zur Glas-Fullstandskontrolle in einem Verglasungsofei für radioaktiver Abfalle, umfassend die folgenden Verfahrensschritte : a) Einleiten eines ersten Gasstroms über eine Öffnung einer Leitung in den Verglasungsofen knapp unterhalt eines maximal zulassigen Füllstandes, b) Einleiten eines zweiten Gasstroms über eine Referenzleitung in den Gasraum des Verglasungsofens obe: halb des vorgegebenen maximal zulassigen Füllstands, sowie c) Messung eines Differenzdruckes zwischen dem ersten und dem zweiten Gasstrom, wobei ein ansteigender Glas-Fullstand ab einer vorgegebenen Fullstandshohe die Öffnung vollständig verschließt und nach Verschließen der Öffnung ein vorgegebenes Differenzdruckniveau das Erreichen des maximal zulassigen Füllstands anzeigt, wobei d) das Ende der Leitung im Verglasungsofen nach unten hin offen ist und einen waagerecht ausgerichteten Randbereich aufweist.1.Procedure for checking the glass level in a glazing furnace for radioactive waste, comprising the following process steps: a) introducing a first gas stream via an opening of a line into the glazing furnace just below a maximum permissible fill level, b) introducing a second gas stream via a reference line into the gas space of the glazing furnace above: half of the specified maximum permissible fill level, and c) measurement of a differential pressure between the first and the second gas stream, an increasing glass fill level completely closing the opening from a specified full level and a predetermined differential pressure level after closing the opening When the maximum permissible fill level is reached, d) the end of the line in the glazing furnace is open at the bottom and has a horizontally aligned edge area.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass de erste und zweite Gasstrom jeweils ein Pressluft ström mit i dentischer Zusammensetzung ist sowie über je ein Ventil um ein Druckminderer auf 0,5 bar Druck und 20 Nl/h Volumenstr« eingestellt wird.2. The method according to claim 1, characterized in that each of the first and second gas streams is a compressed air stream having an i dentic composition and is set via a valve by a pressure reducer to 0.5 bar pressure and 20 Nl / h volume flow.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Messung des Differenzdrucks zwischen dem ersten ui dem zweiten Gasstrom abseits der Gasstrome in stromungsfre en Bereichen erfolgt.3. The method according to claim 1 or 2, characterized in that the measurement of the differential pressure between the first and the second gas stream is carried out apart from the gas streams in current-free areas.
4. Verfahren nach einem der vorangegangenen Ansprüche, dadurci gekennzeichnet, dass die Öffnung ca. 10 mm unterhalb des m< ximal zulassigen Füllstandes angeordnet ist.4. The method according to any one of the preceding claims, dadurci characterized in that the opening about 10 mm below the m < maximum permissible fill level is arranged.
5. Vorrichtung zur Glas-Fullstandskontrolle in einem Verglasungsofen für radioaktiver Abfalle, umfassend a) eine Leitung, welche in den Verglasungsofen einmünd« und knapp unterhalb eines maximal zulassigen Füllstandes endet, zum Einleiten eines Gasstromes, b) eine Referenzleitung, welche in den Verglasungsofen einmundet und oberhalb des vorgegebenen maximal zulassigen Füllstands endet, zum Einleiten eines Gasstromes , c) eine Gasversorgungseinheit für die Bereitstellung e nes konstanten und isobaren Gas-Volumenstrom mit An schluss an die die Leitung und die Referenzleitung, sowie d) Mittel zur Ermittlung der Innendrucke in Leitung um Referenzleitung sowie der Druckdifferenz sowie zum Vergleich des Differenzdrucks, wobei e) das Ende der Leitung im Verglasungsofen nach unten hin offen ist und einen waagerecht ausgerichteten Randbereich aufweist.5. Device for checking the level of glass in a glazing furnace for radioactive waste, comprising a) a line which opens into the glazing furnace and ends just below a maximum permissible fill level, for introducing a gas stream, b) a reference line which merges into the glazing furnace and ends above the specified maximum permissible fill level for introducing a gas flow, c) a gas supply unit for providing a constant and isobaric gas volume flow with connection to the line and the reference line, and d) means for determining the internal pressures in the line around the reference line and the pressure difference and for comparing the differential pressure, e) the end of the line in the glazing furnace being open at the bottom and having a horizontally oriented edge region.
6. Vorrichtung nach Anspruch 5, dadurch ge ennzeichnet, dass das Ende der Leitung im Verglasungsofen eine Öffnung mit e nem erweiterten Leitungsquerschnitt aufweist.6. The device according to claim 5, characterized in that the end of the line in the glazing furnace has an opening with an enlarged line cross-section.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet dass das Ende der Leitung glockenförmig gestaltet ist und Bereich der Öffnung aus einer hochtemperaturbestandigen Ni ckelbasislegierung gefertigt ist.7. The device according to claim 5 or 6, characterized in that the end of the line is bell-shaped and the area of the opening is made of a high-temperature resistant nickel base alloy.
8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Öffnung ca . 10 mm unterhalb des max mal zulassigen Füllstandes angeordnet ist. Vorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Mittel zur Ermittlung der Innendrüc Druckmessaufnehmer zur Erfassung von statischen Drücken um fassen, welche abseits der Gasströme an Leitungsstutzen an geordnet sind, welche außerhalb des Verglasungsofens von d Leitung oder der Referenzleitung abzweigen. 8. Device according to one of claims 5 to 7, characterized in that the opening is approx. 10 mm below the maximum permitted level. Device according to one of claims 5 to 8, characterized in that the means for determining the internal pressure include pressure transducers for detecting static pressures which, apart from the gas streams, are arranged at pipe sockets which branch off from the pipe or the reference pipe outside the glazing furnace.
PCT/EP2004/010508 2003-09-23 2004-09-18 Device and method for measuring the level of glass in a vitrification furnace for radioactive wastes WO2005031283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10343852.1 2003-09-23
DE2003143852 DE10343852A1 (en) 2003-09-23 2003-09-23 Apparatus and method for glass level measurement in a vitrification furnace for radioactive waste

Publications (1)

Publication Number Publication Date
WO2005031283A1 true WO2005031283A1 (en) 2005-04-07

Family

ID=34384222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/010508 WO2005031283A1 (en) 2003-09-23 2004-09-18 Device and method for measuring the level of glass in a vitrification furnace for radioactive wastes

Country Status (2)

Country Link
DE (1) DE10343852A1 (en)
WO (1) WO2005031283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557669A (en) * 2022-10-28 2023-01-03 中核四川环保工程有限责任公司 Operation maintenance method for tail gas pipe of glass-cured ceramic electric melting furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2722862C1 (en) * 2019-04-16 2020-06-04 Общество с ограниченной ответственностью "РадиоТех" Automated liquid level monitoring method and device for implementation thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891686A (en) * 1952-09-09 1959-06-23 Owens Corning Fiberglass Corp Level indicator and controller
US3444737A (en) * 1966-11-25 1969-05-20 Pilkington Brothers Ltd Liquid level indicating device
GB1170491A (en) * 1967-02-23 1969-11-12 Gen Electric & English Elect Improvements in or relating to a method and apparatus for Indicating the Level of a Liquid in a Container
FR2005597A1 (en) * 1968-04-05 1969-12-12 Corning Glass Works
US4422326A (en) * 1980-08-26 1983-12-27 Doryokuro Kakunenryo Kaihatsu Jigyodan Method of ascertaining the state inside melting furnace for radioactive waste
US5319172A (en) * 1991-01-08 1994-06-07 Kabushiki Kaisha Kobe Seiko Sho Microwave melting furnace for treating liquid
US5953954A (en) * 1997-06-02 1999-09-21 Compagnie Generale Des Matieres Nucleaires Installation and method for determining the level and density of a liquid in a tank, using a single immersed bubble probe

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3200971A (en) * 1961-08-01 1965-08-17 Owens Corning Fiberglass Corp Apparatus and method for controlling liquid level
CA1036240A (en) * 1975-01-31 1978-08-08 Wladimir Janssen Apparatus for determining interface levels in ground cavities or containers containing liquid or gel-like material
FR2816706B1 (en) * 2000-11-13 2003-01-10 Cogema LEVEL MEASUREMENT ROD OF A MELTING BATH

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2891686A (en) * 1952-09-09 1959-06-23 Owens Corning Fiberglass Corp Level indicator and controller
US3444737A (en) * 1966-11-25 1969-05-20 Pilkington Brothers Ltd Liquid level indicating device
GB1170491A (en) * 1967-02-23 1969-11-12 Gen Electric & English Elect Improvements in or relating to a method and apparatus for Indicating the Level of a Liquid in a Container
FR2005597A1 (en) * 1968-04-05 1969-12-12 Corning Glass Works
US4422326A (en) * 1980-08-26 1983-12-27 Doryokuro Kakunenryo Kaihatsu Jigyodan Method of ascertaining the state inside melting furnace for radioactive waste
US5319172A (en) * 1991-01-08 1994-06-07 Kabushiki Kaisha Kobe Seiko Sho Microwave melting furnace for treating liquid
US5953954A (en) * 1997-06-02 1999-09-21 Compagnie Generale Des Matieres Nucleaires Installation and method for determining the level and density of a liquid in a tank, using a single immersed bubble probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557669A (en) * 2022-10-28 2023-01-03 中核四川环保工程有限责任公司 Operation maintenance method for tail gas pipe of glass-cured ceramic electric melting furnace
CN115557669B (en) * 2022-10-28 2024-02-13 中核四川环保工程有限责任公司 Operation and maintenance method for tail gas pipe of glass-cured ceramic electric melting furnace

Also Published As

Publication number Publication date
DE10343852A1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
EP2804964B1 (en) Process and apparatus for vacuum distillation of high-purity magnesium
WO2002036509A1 (en) Method and device for refining a glass melt using negative pressure
DE69917551T2 (en) The vacuum degassing
EP0598789B1 (en) Process and device for obtaining samples from the atmosphere in a closed gastight container, especially from the reactor safety vessel of a nuclear power station
DE3049053C2 (en) Method and device for separating slag and for pouring molten steel from a container
WO2005031283A1 (en) Device and method for measuring the level of glass in a vitrification furnace for radioactive wastes
EP0747103B1 (en) Soxhlet extractor for solid/liquid extraction
DE2311993A1 (en) DEVICE FOR MEASURING THE GAS CONCENTRATION IN A FLUID
DE2846826C3 (en) Process and device for determining the proportion of non-condensable gases in vapors
DE19856343B4 (en) Method and device for the early detection of slag flow in the shadow tube of a ladle
EP0071802A2 (en) Process and device to close the gap between devices moving relatively with respect to one another
DE2435011C2 (en) Device for air-free filling and closing of transport containers for beer, in particular beer bottles
DE2361344B2 (en) Process for pouring metal into a continuous casting mold
DE3201812A1 (en) &#34;NUCLEAR NUCLEAR REACTOR&#34;
EP0129113B1 (en) Device for sampling gaseous radioactive elements in the atmosphere
DE2828995C2 (en) Measuring device for gas concentration measurement in gas suction and collecting lines
DE19622291C1 (en) Overfill-monitoring method for vessel containing molten metal
DE10055967A1 (en) Device for the low pressure refining of a glass melt comprises an overflow wall inserted between a riser pipe and a downpipe into the glass flow of the refining bench
EP0726113B1 (en) Inflow system for a continuous aluminium casting installation
WO2010130330A1 (en) Method for operating a floor drain for use in a tank for metal melts
DE3022387A1 (en) METHOD AND DEVICE FOR ELIMINATING THE SUCTION TUBE OF A GLASS-FILLED DISPOSAL CONTAINER
EP0931317A1 (en) Method and device for obtaining a fluid sample
DE1764618C (en) Nuclear fuel element with a gap gas vent
DE8426129U1 (en) CASTING DEVICE FOR METALS
DE1176375B (en) Device for refining reactor metals by melting electrolysis, in particular uranium and plutonium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase