WO2005022032A1 - 発光装置及び蛍光体 - Google Patents

発光装置及び蛍光体 Download PDF

Info

Publication number
WO2005022032A1
WO2005022032A1 PCT/JP2004/012304 JP2004012304W WO2005022032A1 WO 2005022032 A1 WO2005022032 A1 WO 2005022032A1 JP 2004012304 W JP2004012304 W JP 2004012304W WO 2005022032 A1 WO2005022032 A1 WO 2005022032A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
phosphor
emitting device
light emitting
luminous body
Prior art date
Application number
PCT/JP2004/012304
Other languages
English (en)
French (fr)
Inventor
Masahiko Yoshino
Naoto Kijima
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to EP04772260A priority Critical patent/EP1659335A4/en
Publication of WO2005022032A1 publication Critical patent/WO2005022032A1/ja
Priority to US11/361,981 priority patent/US7332106B2/en
Priority to US11/754,648 priority patent/US7704410B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • C09K11/641Chalcogenides
    • C09K11/642Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present invention relates to a light-emitting device, and more specifically, a first light-emitting body that emits light in a blue region by a power source, and a second light-emitting body that contains the wavelength conversion material that absorbs the emitted light and emits yellow light.
  • the present invention relates to a light emitting device and a phosphor that can generate highly efficient white light emission by combining the light emitting device and the phosphor.
  • LEDs Light emitting diodes
  • LDs laser diodes
  • Display devices that combine these multicolored LEDs are used as displays and traffic signals.
  • a light-emitting device in which the color of light emitted from an LED or LD is converted by a phosphor has been proposed.
  • Japanese Patent Publication No. 49-1221 discloses that a laser beam emitting a radiation beam having a wavelength of 300 to 530 nm is used as a phosphor (Ln Ce Gd M Ga O (Ln is Y, Lu or La, M is Al, Al_In or Al_Sc
  • a white light-emitting device obtained by combining and mixing blue light and yellow light generated from a phosphor is shown.
  • Japanese Patent Application Laid-Open No. 10-247750 discloses that yttrium activated by cerium having at least one element component selected from the group consisting of Ba, Sr, Mg, Ca, and Zn and / or a Si element component can be used for aluminum oxide.
  • color conversion mold members combining various fluorescent materials, LED lamps, and the like.
  • Japanese Patent Application Laid-Open No. 10-242513 discloses a cerium-activated yttrium 'aluminum' gar. A phosphor in which a part of Y of the net phosphor is replaced with Sm is disclosed. Further, Japanese Patent Application Laid-Open No. 2003-5055582 and Japanese Patent Application Laid-Open No. 2003-55853 disclose the effect of a phosphor obtained by adding Tb to a cerium-activated yttrium-anoreminium-garnet-based phosphor.
  • the temperature characteristics when the LED or LD, which is the first light emitter, is turned on, the ambient temperature of the chip rises, and the efficiency of the LED or LD tends to decrease.
  • the contained phosphor may also have a significant decrease in luminance due to an increase in temperature.
  • the quality of the matrix varies depending on the composition of the matrix and the type and amount of the activator. Therefore, there is a need for a material having a high emission intensity and a small decrease in the emission intensity due to a temperature rise.
  • the afterglow characteristic particularly when the display or the backlight is illuminated by pulse driving using the LED or LD as the first light emitter, the afterglow time of the phosphor contained in the second light emitter is extremely large. If the length is short, there is a problem that a frit force is generated, and sufficient image characteristics cannot be obtained, and improvement is required.
  • the present invention has been made to develop a brighter light-emitting device in the light-emitting system in which a yellow phosphor is emitted by a blue LED or LD to generate white light, in view of the above-mentioned conventional technology.
  • an object of the present invention is to provide a high-luminance light-emitting device and a high-luminance phosphor by developing a high-efficiency yellow phosphor.
  • the present inventors have studied the improvement of the luminous efficiency with a focus on the conventional cerium-activated yttrium 'aluminum' garnet phosphor, and have found that the same composition, Even with the same crystal-based phosphor, the object color greatly changes and the phosphor object color has a strong correlation with the brightness when mounted on the LED, and the object color has a specific tendency.
  • the present invention was reached.
  • the conditions are optimized mainly for the temperature and atmosphere during firing, so that a phosphor having a more preferable object color than before can be obtained.
  • the inventors have found that a light emitting device using the same has high luminance and further has high temperature characteristics and high afterglow characteristics, and has reached the present invention.
  • the present invention includes a first luminous body that emits light having a wavelength of 420 to 500 nm, and a second luminous body that generates visible light by irradiating light from the first luminous body.
  • the second light emitting body contains a phosphor, and the object color of the phosphor is L * ⁇ 90, -22 ⁇ a * ⁇ -10, b * in the L *, a *, b * color system.
  • the gist of the present invention is a phosphor that satisfies the above condition 5, and comprises a crystal phase having a chemical composition represented by the following general formula [1].
  • Ln is at least one element selected from group forces of Y, Gd, Sc, Lu, and La
  • M is at least one element selected from group forces of Al, Ga, In.
  • A, b are , Respectively, which satisfies 0.0 01 ⁇ a ⁇ 0.3 and 0 ⁇ b ⁇ 0.5.
  • a light-emitting device with high luminance and a phosphor with high luminance can be provided.
  • FIG. 1 Light emission spectrum of the phosphor of Example 1 at 465 nm excitation
  • FIG. 2 is a view showing an example of a light emitting device in which a film-shaped second light emitting body is contacted or molded with a surface emitting GaN-based diode.
  • FIG. 3 In the present invention, it is composed of a first luminous body (420-500 nm luminous body) and a second luminous body
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a light emitting device to be used.
  • FIG. 4 is a schematic cross-sectional view showing one example of the surface emitting lighting device of the present invention.
  • the present invention is a light emitting device in which a first luminous body that emits light having a wavelength of 420 to 500 nm and a second luminous body containing a phosphor are combined.
  • L * generally does not exceed 100 because it treats objects that do not emit light with irradiation light, but the phosphor of the present invention exceeds 100 because light emission is superimposed on reflected light when excited by the irradiation light source.
  • the upper limit is usually L * ⁇ 110.
  • a * preferably satisfies a * ⁇ -14, and more preferably a * ⁇ _16.
  • b * preferably satisfies b * ⁇ 65, and more preferably b * ⁇ 68.
  • the present invention is characterized in that the value of b * is high, and the value of b * is preferably high.
  • the upper limit is theoretically b * ⁇ 200, usually f * b * ⁇ 120.
  • the phosphor contained in the light emitting device of the present invention is not particularly limited as long as its object color satisfies the above range, but it is preferable to use an oxide as a base in terms of stability of the substance. It is more preferable that the oxide has a preferable garnet structure. Further, the phosphor preferably contains Ce or Ce and Tb.
  • a phosphor containing a crystal phase having a chemical composition represented by the following general formula [1] is preferable.
  • Ln is at least selected from the group force of Y, Gd, Sc, Lu, and La It is a kind of element, and among them, it is preferably at least one kind of element selected from Y and Gd.
  • M is at least one element selected from the group forces of Al, Ga, and In, and among them, A1 is preferable.
  • A which represents the Ce molar ratio, is a number that satisfies 0.001 ⁇ a ⁇ 0.3, but from the viewpoint of increasing the emission intensity
  • the lower limit is preferably a ⁇ 0.01 force S, and a> 0 . more preferably 01 force, preferably in A ⁇ 0. 02 Gasa et al
  • the upper limit, A ⁇ 0. 2 force S preferably, a ⁇ 0. more preferably 18 force S, a ⁇ 0. 15 force S more preferred.
  • b which represents the molar ratio of Tb, is a number that satisfies 0 ⁇ b ⁇ 0.5. A direction in which the force Tb is included. Since the luminescence intensity tends to increase, the lower limit of the range of b Is preferably b ⁇ 0.01, more preferably b> 0.01 more preferably b ⁇ 0.02, and particularly preferably b> 0.02 preferable.
  • the temperature characteristics tend to decrease. Therefore, as the upper limit of the range of b, b ⁇ 0.5 force S is preferable, and b ⁇ 0.4 is more preferable. Boundary b ⁇ 0.2 is more preferred b ⁇ 0.17 force S is particularly preferred, and b ⁇ 0.17 is most preferred.
  • the temperature characteristics are higher as the luminous intensity of the phosphor in a heated state is maintained with respect to the luminous intensity of the phosphor at room temperature, but the temperature characteristics of the phosphor used in the light emitting device of the present invention are higher.
  • the phosphor used in the light emitting device of the present invention usually has an emission intensity at 100 ° C. of 90% or more of an emission intensity at 25 ° C.
  • the monoble of the Tb is preferably b ⁇ 0.02, more preferably By setting b ⁇ 0.04, more preferably b ⁇ 0.1, and particularly preferably b ⁇ 0.2, the afterglow characteristics are improved.
  • the afterglow characteristics are defined as the time (tl) between the emission intensity immediately after the excitation of the phosphor and the emission intensity immediately after the stop of the excitation until the emission intensity of the afterglow after the stop of the excitation, and the emission intensity of the afterglow.
  • the time (t2) until lZl00 is obtained. The longer the tl or the larger the value of t2Ztl, the higher the characteristic.
  • the tl of the phosphor used in the light emitting device of the present invention is usually 155 ns or more, preferably 160 ns or more, more preferably 170 ns or more, and still more preferably 190 ns or more.
  • the upper limit is not particularly limited, but is too long. Also, since chromaticity characteristics tend to be reduced due to afterimages and color mixing, it is preferably 10 ms or less.
  • the value of t2 / tl is usually 2.05 or more, preferably 2.07 or more, more preferably 2.15 or more, and still more preferably 2.5 or more. It is about 10. Further, it is preferable that both of the above ranges of tl and t2 / tl are satisfied.
  • the phosphor of the present invention has the same chemical composition and crystal structure as the conventional phosphor, the values of L *, a *, and b * are different due to delicate manufacturing conditions.
  • each of the phosphors containing a crystal phase represented by the above formula [1] contained in the second luminous body includes an Ln source, a Ce source, a Tb source, and an M source.
  • the raw material compounds of the elements include oxides, hydroxides, carbonates, nitrates, sulfates, oxalates, carboxylate salts, and halides of the respective elements. The selection is made in consideration of reactivity, non-generation of halogen, N ⁇ x, S ⁇ x, and the like during firing.
  • raw material compound of Ln include Y O, Y (OH),
  • Gd source compounds include Gd ⁇ , Gd (OH), GdCl, Gd (NO) ⁇ 5 ⁇ , Gd
  • La source compounds such as La O, La (OH), LaCl, LaBr,
  • Lu source compounds Lu O, LuCl, Lu (NO) ⁇ 8
  • element source compounds of Ce and Tb include Ce ⁇ , Ce (SO), Ce (CO) 5 ⁇ O, Ce (NO) as Ce source compounds. ⁇ 6 ⁇ 0, Ce (
  • Tb source compounds TbSO, Tb (SO)
  • Tb (NO) ⁇ ⁇ 0, Tb (C O) -10H ⁇ , TbCl, etc. can be used.
  • these materials are sufficiently mixed so as to be uniform before firing.
  • the compound of Y, Gd, Lu, La, Sc, Ce, Tb, Al, Ga, In is converted to a dry grinder such as a grinder, stamping knoller, ball mill, jet mill, etc., if necessary.
  • a mixer such as a V-type blender or conical blender
  • the mixture is sufficiently mixed.
  • a dry pulverization using a pulverizer or a wet pulverizer in a medium such as water is used. It is also possible to use a method in which the slurry is pulverized and mixed and then dried, or a method in which the prepared slurry is dried by spray drying or the like.
  • the element source compound of the luminescent center ion it is preferable to use a liquid medium because a small amount of the compound needs to be uniformly mixed and dispersed throughout.
  • the wet method is also preferable from the viewpoint of obtaining uniform mixing of the other element source compounds as a whole.
  • the material sufficiently mixed uniformly by any of the operations is fired in a heat-resistant container such as a crucible or a tray made of alumina or quartz at a firing temperature of usually 1000-1700 ° C for 10 minutes to 24 hours.
  • the lower limit of the firing temperature is preferably 1100 ° C or higher, more preferably 1200 ° C or higher, and the upper limit is preferably 1600 ° C or lower, more preferably 1550 ° C or lower.
  • the firing atmosphere is appropriately selected from air, nitrogen, argon or the like, carbon monoxide or hydrogen alone, or a gas obtained by mixing and adjusting nitrogen, argon or the like.
  • material and composition ratio, batch Optimal conditions for firing vary depending on the size.Reduction firing is generally preferred.
  • the degree of reduction is weak or too strong, it does not fall within the range of the object color of the phosphor of the present invention.
  • a phosphor having an object color defined by the present invention tends to be obtained.
  • an appropriate flux such as BaF or A1F, higher brightness fluorescent
  • the body may be obtained. After the heat treatment, washing, dispersion treatment, drying, classification and the like are performed as necessary.
  • the particle size of the phosphor used in the light emitting device of the present invention is usually 0.1 ⁇ m 20 ⁇ m.
  • the first luminous body that irradiates the phosphor with light has a wavelength of 420 500 ⁇ . Generates m light.
  • a luminous body that generates light having a peak wavelength in the range of 450 to 485 nm is used.
  • Specific examples of the first light emitter include a light emitting diode (LED) and a laser diode (LD). Laser diodes are more preferred in that they consume less power.
  • GaN-based LEDs and LDs using GaN-based compound semiconductors are preferred.
  • GaN-based LEDs and LDs are extremely low power and very low in power by combining them with the phosphors whose emission output and external quantum efficiency are much higher than SiC-based LEDs that emit light in this region. This is because bright light emission can be obtained. For example, for a current load of 20 mA, GaN-based materials usually have emission intensity more than 100 times that of SiC-based materials. In GaN-based LEDs and LDs, Al GaN light-emitting layer, GaN light-emitting layer, or In
  • GaN-based LEDs those having a GaN light emitting layer are preferred.
  • those having an InGaN light-emitting layer among them have a very high emission intensity.
  • the one with a multiple quantum well structure of an InGaN layer and a GaN layer is particularly preferable because the emission intensity is very high.
  • the value of x + y is usually in the range of 0.8.1.2.
  • those in which these light emitting layers are doped with Zn or Si or those in which there is no dopant are preferable in terms of adjusting the light emitting characteristics.
  • a GaN-based LED is based on these light-emitting layers, p-layers, n-layers, electrodes, and substrates, and the light-emitting layers are n- type and p-type AlGaN layers, GaN layers, or InGa Those having a heterostructure sandwiched by an N layer or the like have a high luminous efficiency, and those having a quantum well structure in the heterostructure are more preferable because the luminous efficiency is further higher.
  • a surface-emitting type luminous body is a luminous body that emits strong light in the direction of the surface of the film.
  • light emission in the surface direction can be made stronger than in the edge direction of the light emitting layer.
  • the emission cross-sectional area per unit light emission amount can be increased compared to the type that emits light from the edge of the light-emitting layer.
  • the second phosphor emits the light.
  • the irradiation area can be made very large with the same light amount, and the irradiation efficiency can be improved, so that stronger light emission can be obtained from the phosphor as the second light emitter.
  • the phosphor of the second luminous body contains not only the phosphor having the specific composition described in the general formula [1], but also a plurality of phosphors having different composition ratios, or a combination of other phosphors.
  • a wide white area and a high color rendering index can be realized even if mixed well.
  • Other phosphors are not particularly limited. For example, (Sr, Ca, Mg) GaS: Eu as a green phosphor,
  • ZnCa Cu, Al, etc.
  • (Ca, Sr) S: Eu, etc. can be used as the red phosphor.
  • a white substance such as BaSO, MgO, or CaHPO is used as a reflecting agent or a diffusing agent according to the present invention.
  • a method of laminating each phosphor in a film form in the form of a powder a method of mixing in a resin and laminating in a film form, a method of mixing in a form of a powder, A method of dispersing in a resin, a method of laminating a thin film in a crystalline form, and the like can be used, but a method of mixing and managing and using in a powder form is preferred because it is the easiest and can obtain white light at low cost.
  • the second illuminant is preferably formed in a film shape.
  • the light from the surface-emitting luminous body has a sufficiently large cross-sectional area. Therefore, if the second luminous body is formed into a film in the direction of the cross-section, the irradiation cross-sectional area from the first luminous body to the phosphor is reduced. Is increased per unit amount of the phosphor, so that it is possible to further increase the intensity of light emission from the phosphor.
  • a surface-emitting type light emitting device is used as the first light emitting member, and a film-shaped second light emitting member is used as the second light emitting member.
  • a luminous element it is preferable that the luminous surface of the first luminous body is directly contacted with a second luminous body in a film form.
  • contact refers to creating a state in which the first illuminant and the second illuminant are in direct contact with each other without passing through air or gas.
  • FIG. 2 is a schematic perspective view showing a positional relationship between the first light emitter and the second light emitter in an example of the light emitting device of the present invention.
  • reference numeral 1 denotes a film-shaped second light emitter having the phosphor
  • 2 denotes a surface-emitting GaN-based LD as the first light emitter
  • 3 denotes a substrate.
  • the LD 2 and the second luminous body 1 may be separately formed, and their surfaces may be brought into contact with each other by an adhesive or other means.
  • a second luminous body may be formed (molded) on the surface. As a result, the LD 2 and the second luminous body 1 can be brought into contact with each other.
  • the weight ratio of the powder of the second luminous body to the whole resin is usually 10 to 95%, preferably 20 to 90%, More preferably, it is 30-80%. If the amount of the phosphor is too large, the luminous efficiency may decrease due to the aggregation of the powder, and if the amount is too small, the luminous efficiency may decrease due to the absorption or scattering of light by the resin.
  • the light emitting device of the present invention comprises the phosphor as a wavelength conversion material and a light emitting element that emits light of 420 to 500 nm, and the phosphor emits light from the light emitting element.
  • a light-emitting device that absorbs 500 nm light and can generate high-intensity white light regardless of the usage environment.It is a light source for backlights, traffic lights, and other image display devices such as color liquid crystal displays. It is suitable for a light source such as a lighting device for surface light emission or the like.
  • FIG. 3 is a schematic view showing one embodiment of a light-emitting device having a first light emitter (420 50 Onm light emitter) and a second light emitter.
  • 4 is a light emitting device
  • 5 is a mount lead
  • 6 is an inner lead
  • 7 is a first luminous body (420-1500 nm luminous body)
  • 8 is a phosphor-containing resin as a second luminous body
  • 9 is a conductive wire
  • 10 is a mold member.
  • the light emitting device as an example of the present invention has a general shell shape, and a first lead made of a GaN-based light emitting diode or the like is provided in the upper cup of the mount lead 5.
  • a phosphor (420-500 nm light emitter) 7 is formed thereon as a second phosphor by mixing and dispersing the phosphor in a binder such as an epoxy resin or an acrylic resin and pouring the mixture into a cup. It is fixed by being covered with the phosphor-containing resin portion 8.
  • the first luminous body 7 and the mount lead 5 and the first luminous body 7 and the inner lead 6 are electrically connected by the conductive wire 9, respectively. Coated, protected.
  • the surface-emitting lighting device 11 incorporating the light-emitting element 13 is provided on the bottom surface of a rectangular holding case 12 whose inner surface is made light-opaque such as a white smooth surface.
  • a large number of light emitting devices 13 are provided with a power supply and a circuit (not shown) for driving the light emitting devices 13 provided outside the light emitting devices 13.
  • a diffusion plate 14 such as a metal plate is fixed for uniform light emission.
  • the surface-emitting lighting device 11 is driven to apply a voltage to the first light-emitting body of the light-emitting element 13 to emit light of 350 to 480 nm, and a part of the light emission is converted to the second light.
  • the phosphor in the phosphor-containing resin portion as a light emitter absorbs and emits visible light, while light emission with high color rendering properties is obtained by mixing with blue light and the like not absorbed by the phosphor.
  • the light passes through the diffusion plate 14 and is emitted upward in the drawing, so that illumination light with uniform brightness can be obtained within the surface of the diffusion plate 14 of the holding case 12.
  • the object color (L *, a *, b *), emission spectrum, total luminous flux, temperature characteristic, and afterglow characteristic of the phosphor were measured by the following methods.
  • the color is measured by a colorimeter (CR-300 manufactured by Minolta) in standard light D65 irradiation mode.
  • L *, a *, b * were determined.
  • the phosphor was applied on a blue GaN-based light-emitting diode chip with a main emission wavelength of 465 nm, and the emission spectrum when this phosphor was excited was measured using a spectrometer (Ocean Photo Nitas). .
  • the measurement was performed using a spectrometer (Ocean Photo Nitas) in combination with a 1-inch integrating sphere.
  • a phosphor temperature evaluation device (manufactured by Koyo Electronics Co., Ltd.) was used. Emission intensity was measured using Otsuka Electronics MCP D-7000.
  • a nitrogen laser (pulse width: 5 ns, repetition: 10 Hz, wavelength: 337 nm) was used as the excitation light source.
  • the excitation light intensity was set to 4 microwatts / cm 2 to excite the phosphor, and emission from the phosphor was measured by a spectrometer C5094 manufactured by Hamamatsu Photonitas. After the spectroscopy, time-resolved measurement was performed using a streak camera C 4334 manufactured by Hamamatsu Photonitas.
  • the time-resolved measured value is calculated using the instrument function represented by the Gaussian function and the decay portion of the luminescence represented by the two exponential functions using the non-linear least squares method using the convolution function (convolution) + constant term.
  • Function fitting operation was performed, and the time constants Tl and ⁇ 2 of the exponential function, their strength components Al and ⁇ 2, and the constant term C were calculated.
  • Tl, ⁇ 2, Al, ⁇ 2, and C the time change of the emission intensity I (t) expressed by the following equation (1) can be obtained, and the afterglow characteristic independent of the device function is obtained.
  • I (t) A 1 * e X p (-t / T 1) + A2 * e x p (-t / T2) + C (D
  • a phosphor (Y Ce Tb) Al 2 O 3 which emits color light was manufactured.
  • the emission spectrum of the phosphor was measured. The emission spectrum is shown in FIG.
  • the value obtained by measuring the total luminous flux was 141% when the phosphor obtained in Comparative Example 1 described below was used as 100%.
  • the temperature characteristic was 99%.
  • the 1/10 persistence time (tl) was 161 ns, and t 2 / tl was 2 ⁇ 11. Table 1 shows the results.
  • Example 2 except that 0.25 mol of BaF was used as a flux, and the firing temperature was 1380 ° C.
  • Example 2 The same as in Example 1 except that 0.25 mol of BaF was used as the agent and the firing temperature was 1420 ° C.
  • a yellow light-emitting phosphor (YCe) Al2 was produced in the same manner as in Example 1 except that the firing was performed at 1400 ° C in an air current.
  • the object color was L.
  • a yellow light-emitting phosphor (Y. Ce Tb) A10 was prepared in the same manner as in Example 1 except that
  • a yellow light-emitting phosphor (Y Gd Ce) Al 2 was prepared in the same manner as in Example 1 except that 5 mol was used and firing was performed at 1400 ° C. in the air. The same evaluation as in Example 1 was performed.
  • Tb O 0.0075 monole as a Tb source compound
  • BaF 0.25 mol is used as a flux, and calcined at 1400 ° C in a nitrogen stream containing 2.5% hydrogen.
  • a yellow light-emitting phosphor (Y)
  • Tb O 0.6675 monole as Ln source compound, ⁇ _ ⁇ 1 ⁇ ; 2.5 monole as M source compound
  • a yellow light-emitting phosphor (Ce Tb) Al O was prepared in the same manner as in Example 1 except for
  • Example 4 comparing Example 4 and Comparative Example 1 having the same phosphor composition, it can be seen that the total luminous flux is increased by 20%.
  • Example 5 and Comparative Example 2 have the same phosphor composition, but it can be seen that the Example of the present invention has a significantly higher total luminous flux.
  • Japanese Patent Application No. 2003-305020 (filed with the Japan Patent Office on August 28, 2003), which is the basis of the priority claim of the present application, and Japanese Patent Application The entire contents of Japanese Patent Application No. 2003-361114 (filed with the JPO on October 21, 2003) are incorporated herein by reference.

Abstract

 420~500nmの光を発生する励起源と蛍光体を組み合わせ、かつ、高い輝度を有する発光装置を提供する。  波長420~500nmの光を発生する第1の発光体と、当該第1の発光体からの光の照射によって可視光を発生する第2の発光体とを有する発光装置において、第2の発光体が蛍光体を含有し、該蛍光体の物体色がL*、a*、b*表色系においてL*≧90、−22≦a*≦−10、b*≧55を満足することを特徴とする発光装置。

Description

明 細 書
発光装置及び蛍光体
技術分野
[0001] 本発明は発光装置に関し、詳しくは、電力源により青色領域の光を発光する第 1の 発光体と、その発光を吸収し黄色光を発する波長変換材料を含む第 2の発光体とを 組み合わせることにより、高効率の白色発光を発生させることのできる発光装置、及 び蛍光体に関する。
背景技術
[0002] 発光ダイオード(LED)やレーザーダイオード(LD)は青一赤色の可視領域から、 紫色、紫外線を発するものまで開発されている。こうした多色の LEDを組み合わせた 表示装置がディスプレイや交通信号機として用いられている。更に LEDや LDの発 光色を蛍光体で色変換させた発光装置も提案されている。例えば、特公昭 49-122 1号公報では、 300— 530nmの波長の放射ビームを発するレーザービームを燐光体 (Ln Ce Gd M Ga O (Lnは Y, Luまたは La、 Mは Al, Al_Inまたは Al_Sc
3— x— y x y 5— z z 12
を表し、 xfま 0. 001— 0. 15、 y«2. 999以下、 zfま 3. 0以下である) ίこ照射し、これ を発光させてディスプレイを形成する方法が示されている。
[0003] また、近年では、青色発光の半導体発光素子として注目されている発光効率の高 レ、窒化ガリウム(GaN)系 LEDや LDと波長変換材料としての蛍光体とを組み合わせ て構成される白色発光の発光装置が、画像表示装置や照明装置の発光源として提 案されている。特開平 10 - 190066号公報には窒化物系半導体の青色 LED又は L Dチップにセリウム付活イットリウム.アルミニウム.ガーネット系蛍光体の Yの一部を L u, Sc, Gd, La置換した蛍光体を組み合わせ、青色光と蛍光体から発生する黄色光 の混色で得られる白色発光装置が示されている。特開平 10—247750号公報には、 Ba、 Sr、 Mg、 Ca及び Znからなる群から選択される少なくとも 1種の元素成分及び/ 又は Si元素成分を有するセリウムで付活されたイットリウム 'アルミニウム酸化物系蛍 光物質を組み合わせた色変換モールド部材や、 LEDランプ等が開示されている。
[0004] また、特開平 10-242513号公報にはセリウム付活イットリウム 'アルミニウム 'ガー ネット系蛍光体の Yの一部を Smで置換した蛍光体が開示されている。また、特表 20 03— 505582号公報ゃ特表 2003— 505583号公報にはセリウム付活イットリウム.ァ ノレミニゥム ·ガーネット系蛍光体に Tbを添加した蛍光体の効果が開示されている。 し力、しながら、これらに示されるようなセリウム付活イットリウム ·アルミニウム ·ガーネッ ト系蛍光体と青色 LED又は青色レーザとの組み合わせにおいては、白色はまだ十 分な発光強度が出ているとはいえず、青色 LEDの効率向上が求められてきたが、蛍 光体に関しても発光強度はまだ十分ではなぐ省エネ照明を実用化するにあたって は更なる効率の向上が求められている。
[0005] また、温度特性に関しては、第一の発光体である LEDや、 LDが点灯するとチップ の周囲温度が上昇し、 LEDや LDの効率が低下する傾向がある力 第 2の発光体に 含有される蛍光体もまた温度の上昇により輝度が大きく低下する場合がある。一般に 母体組成と付活剤の種類、量でその良否が変化することから、発光強度が高ぐ温度 上昇による発光強度の低下の少ない材料が求められている。
[0006] 残光特性については特にディスプレイやバックライトに第 1の発光体である LEDや LDを用いてパルス駆動で点灯させる場合、第 2の発光体が含有する蛍光体の残光 時間が極めて短いと、フリツ力を生じ、十分な画像特性が得られないという問題があり 、改良が求められている。
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、青色の LEDや LDで黄色蛍光体を発光させて白色光とする発光システ ムにおいて、前述の従来技術に鑑み、更に明るい発光装置を開発すべくなされたも のであり、特に高効率の黄色蛍光体を開発することによって輝度の高い発光装置、 及び高輝度の蛍光体を提供することを目的とする。
課題を解決するための手段
[0008] 本発明者は、前記課題を解決すべく鋭意検討した結果、従来のセリウム付活イット リウム 'アルミニウム 'ガーネット蛍光体を中心に発光効率の改善を検討する中で、全 く同じ組成,同じ結晶系の蛍光体であっても物体色が大きく変化することと、蛍光体 の物体色が LEDに実装したときの輝度と強い相関があり、特定傾向の物体色を有す る蛍光粉体、即ち、従来の蛍光体に比べて、 L a*は同じレベルであるが、 b*をあ る一定値以上に高くした蛍光粉体を用いると LEDの輝度が高くなる傾向があることを 見出し本発明に到達した。さらに、蛍光粉体の物体色を特定の色範囲になるようにす るためには、焼成時の温度と雰囲気を中心に条件を最適化することで、従来以上の 好ましい物体色を持つ蛍光体となり、これを用いた発光装置は高輝度となり、さらに 温度特性や残光特性の高い発光装置となることを見出し、本発明に到達した。
[0009] 即ち、本発明は、波長 420— 500nmの光を発生する第 1の発光体と、当該第 1の 発光体からの光の照射によって可視光を発生する第 2の発光体とを有する発光装置 において、第 2の発光体が蛍光体を含有し、該蛍光体の物体色が L*、 a*、 b*表色 系において L*≥90、— 22≤a*≤-10、 b*≥55を満足することを特徴とする発光装 置、及び、物体色が L*、 a*、 b*表色系において L*≥90、— 22≤a*≤— 10、 b*≥5 5を満足する蛍光体であって、下記一般式 [1]の化学組成の結晶相を含有してなる ことを特徴とする蛍光体をその要旨とする。
[化 1]
(L n n— b C e aT b b) 3M S1 2 式 [ 1 ]
(但し、 Lnは、 Y, Gd, Sc, Lu, Laの群力 選ばれる少なくとも一種の元素であり、 M は Al, Ga, Inの群力 選ばれる少なくとも一種の元素を示す。 a、 bは、それぞれ 0. 0 01≤a≤0. 3、 0≤b≤0. 5を満足する数である。)
発明の効果
[0010] 本発明によれば、輝度の高い発光装置、及び輝度の高い蛍光体を提供することがで きる。
図面の簡単な説明
[0011] [図 1]実施例 1の蛍光体の 465nm励起時の発光スぺクトノレ
[図 2]面発光型 GaN系ダイオードに膜状の第 2の発光体を接触又は成型させた発光 装置の一例を示す図。
[図 3]本発明中の、第 1の発光体 (420— 500nm発光体)と第 2の発光体とから構成 される発光装置の一実施例を示す模式的断面図である。
[図 4]本発明の面発光照明装置の一例を示す模式的断面図。
符号の説明
[0012] 1 第 2の発光体
2 面発光型 GaN系 LD
3 基板
4 発光装置
5 マウントリード
6 インナーリード
7 第 1の発光体(420— 500nmの発光体)
8 本発明中の蛍光体を含有させた樹脂部
9 導電性ワイヤー
10 モールド部材
11 発光素子を組み込んだ面発光照明装置
12 保持ケース
13 発光素子
14 拡散板
発明を実施するための最良の形態
[0013] 本発明は、波長 420— 500nmの光を発生する第 1の発光体と、蛍光体を含有する 第 2の発光体とを組み合わせた発光装置であるが、前記蛍光体の物体色が、 L*、 a* 、 b *表色系において L*≥ 90、 -22≤a*≤_10、 b *≥ 55を満足することにより、蛍光 体の発光強度が高くなり、輝度の高い発光装置となる。 L*は、一般的に照射光で発 光しない物体を扱うので 100を超える事は無いが、本発明の蛍光体は照射光源で励 起されて発光が反射光に重畳されるので 100を超えることもあり、上限としては通常 L *≤ 110である。また、輝度が高くなる点で、 a*は、 a*≤— 14であることが好ましぐ a* ≤_16がより好ましい。 b*は、 b*≥65であることが好ましぐ b*≥68がより好ましい。 本発明では、 b*の値が高い点が特徴であり、 b*値は高い方が好ましい。上限は、理 論上 ίま b*≤200であり、通常 fま b*≤120である。 [0014] 本発明の発光装置に含まれる蛍光体は、その物体色が上記範囲を満たしているも のであれば特に制限は無いが、物質の安定性の点で酸化物を母体とすることが好ま しぐガーネット構造の酸化物であることがより好ましい。また、 Ceまたは Ceと Tbを含 有してレ、る蛍光体であることが好ましレ、。
特に、下記一般式 [1]の化学組成の結晶相を含有している蛍光体が好ましい。
[0015] [化 2]
(L n i一 ab C e aT b b) 3M 51 2 式 [ 1 ] 式 [1]中の、 Lnは、 Y, Gd, Sc, Lu, Laの群力ら選ばれる少なくとも一種の元素で あり、中でも、 Y, Gdの中から選ばれる少なくとも一種の元素であることが好ましい。
[0016] 式 [1]中の、 Mは Al, Ga, Inの群力 選ばれる少なくとも一種の元素であり、中でも 、 A1であることが好ましい。
Ceモル比を表す aは、 0. 001≤a≤0. 3を満足する数であるが、発光強度が高くな る点で、下限としては、 a≥0. 01力 S好ましく、 a > 0. 01力より好ましく、 a≥0. 02がさ らに好ましく、上限としては、 a≤0. 2力 S好ましく、 a≤0. 18力 Sより好ましく、 a≤0. 15 力 Sさらに好ましい。
[0017] Tbのモル比を表す bは、 0≤b≤0. 5を満足する数である力 Tbが含まれている方 力 発光強度が高くなる傾向にあるため、 bの範囲の下限としては、 b≥0. 01である ことが好ましく、 b > 0. 01であることがより好ましぐ b≥0. 02であることが更に好まし く、 b >0. 02であることが特に好ましい。
一方、温度特性の観点からは、 Tbの比率が増加すると温度特性が低下する傾向 にあるため、 bの範囲の上限としては、 b< 0. 5力 S好ましく、 b≤0. 4がより好ましぐ b ≤0. 2が更に好ましぐ b≤0. 17力 S特に好ましく、 b< 0. 17が最も好ましい。なお、 室温での蛍光体の発光強度に対して、加熱された状態における蛍光体の発光強度 が維持されているほど、温度特性が高いが、本発明の発光装置で用いられる蛍光体 の温度特性は、蛍光体を 100°Cとした状態で、 465nmの光で励起し、その発光を測 定して蛍光体の発光スペクトルのピークトップの値 (発光強度)を求め、その値につい て、 25°Cで同様に測定して得られた蛍光体の発光スペクトルのピークトップの値を基 準値として比較することにより評価した。本発明の発光装置で用いられる蛍光体は、 通常、 100°Cでの発光強度が、 25°Cでの発光強度の 90%以上となっている。
[0018] また、残光特性の観点からは、 Tbが含まれているものは残光特性がよくなる傾向に あること力ら、 Tbのモノレ itbは、好ましくは b≥0. 02、より好ましくは b≥0. 04、更に 好ましくは b≥0. 1、特に好ましくは b≥0. 2とすることにより残光特性が向上する。な お、残光特性は、蛍光体を励起した後、励起停止直前の発光強度に対する、励起停 止後の残光の発光強度力 になるまでの時間(tl)と、残光の発光強度が lZl 00になるまでの時間(t2)を求め、 tlが長いほど、あるいは、 t2Ztlの値が大きいほ どその特性が高いといえる。本発明の発光装置で用いられる蛍光体の tlは、通常 15 5ns以上、好ましくは 160ns以上、より好ましくは 170ns以上、更に好ましくは 190ns 以上であり、上限としては特に制限はないが、長すぎても残像や混色による色度特性 の低減を招く傾向にあるため、 10ms以下が好ましい。また、 t2/tlの値は、通常 2. 05以上、好ましくは 2. 07以上、より好ましくは 2. 15以上、更に好ましくは 2. 5以上 であり、上限としては特に制限はないが、通常 10程度である。更に、 tl及び t2/tl の上記範囲を両方とも満たしていることが好ましい。
なお、本発明の蛍光体は、従来の蛍光体と化学組成や結晶構造は同一でも、製造 上の微妙な条件の違いにより、 L*、 a*、 b*の値は異なるものとなる。
[0019] 本発明で第 2の発光体に含有される、上記式 [1]に示されるような結晶相を含有す る蛍光体のそれぞれ、 Ln源、 Ce源、 Tb源、 M源の各元素の原料化合物としては、 各元素の各酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、蓚酸塩、カルボン酸塩、 ハロゲン化物等が挙げられ、これらの中から、複合酸化物への反応性、及び、焼成 時におけるハロゲン、 N〇x、 S〇x等の非発生性等を考慮して選択される。
[0020] Lnの原料化合物を具体的に例示すれば、 Y源化合物としては、 Y O, Y(OH) ,
2 3 3
YC1, YBr, Y (CO ) · 3Η〇, Υ (ΝΟ ) · 6Η〇, Υ (SO ) , Υ (C〇) · 9Η
3 3 2 3 3 2 3 3 2 2 4 3 2 2 4 3 2
〇等が、 Gd源化合物としては、 Gd〇, Gd (OH) , GdCl, Gd (NO ) · 5Η〇, Gd
2 3 3 3 3 3 2
(C O ) · 10Η〇等が、 La源化合物としては、 La O, La (OH) , LaCl, LaBr,
2 2 4 3 2 2 3 3 3 3
La (CO ) ·Η〇、 La (NO ) · 6Η〇, La (SO ) , La (C〇) · 9Η〇等が、 Sc ¾、ィ匕合物としては、 Sc〇, Sc (OH) , ScCl , Sc (NO ) ·ηΗ〇, Sc (SO ) ·ηΗ
2 3 3 3 3 3 2 2 4 3
O, Sc (C O ) -nH〇等が、 Lu源化合物としては、 Lu O , LuCl , Lu (NO ) · 8
2 2 2 4 3 2 2 3 3 3 3
H O, Lu (OCO) - 6H〇等がそれぞれ挙げられる。
2 2 3 2
[0021] 又、 M源化合物を具体的に例示すれば、 A1については、 ひ一 Al O , γ -A1 O , などの Al O , Al (OH) , AIOOH, Α1 (ΝΟ ) · 9Η O, Al (SO ) , A1C1等力 G
2 3 3 3 3 2 2 4 3 3 aについては、 Ga O, Ga (OH) , Ga (N〇 ) ·ηΗ O, Ga (SO ) , GaCl等力 ま
2 3 3 3 3 2 2 4 3 3 た Inについては In O , In (OH) , In (NO ) ·ηΗ〇, In (SO ) , InCl等がそれ
2 3 3 3 3 2 2 4 3 3 ぞれ挙げられる。
[0022] 更に、 Ce及び Tbについて、その元素源化合物を具体的に例示すれば、 Ce源化 合物としては、 Ce〇, Ce (SO ) , Ce (CO ) · 5Η O, Ce (NO ) · 6Η 0, Ce (
2 2 4 3 2 3 3 2 3 3 2 2
C O ) · 9Η 0, Ce (OH) CeCl等が、 Tb源化合物としては、 Tb〇, Tb (SO )
2 4 3 2 3, 3 4 7 2 4 3
, Tb (NO ) ·ηΗ 0, Tb (C O ) - 10H〇, TbCl等が使用できる。
3 3 2 2 2 4 3 2 3
[0023] これらの材料は焼成前に均一になるように十分混合される。具体的には、 Y, Gd, L u, La, Sc, Ce, Tb, Al, Ga, Inの化合物を、必要に応じてらいかい機、スタンプミ ノレ、ボールミル、ジェットミル等の乾式粉砕機を用いて粉砕した後、 V型ブレンダー、 コニカルプレンダ一等の各種の混合機により十分混合するが、混合した後で粉碎機 を用いて乾式粉碎する方法、水等の媒体中で湿式粉碎機を用いて粉砕及び混合し た後乾燥する方法、或いは調製されたスラリーを、噴霧乾燥等により乾燥させる方法 等も可能である。これらの粉砕混合法の中で、特に、発光中心イオンの元素源化合 物においては、少量の化合物を全体に均一に混合、分散させる必要があることから 液体媒体を用いるのが好ましぐ又、他の元素源化合物において全体に均一な混合 が得られる面からも、湿式法が好ましい。
[0024] 何れかの操作により十分均一混合された材料は、アルミナや石英製の坩堝ゃトレイ 等の耐熱容器中で、通常 1000— 1700°Cの焼成温度で、 10分一 24時間加熱焼成 される。焼成温度の下限としては、 1100°C以上が好ましぐ 1200°C以上がより好まし く、上限としては 1600°C以下が好ましぐ 1550°C以下がより好ましい。焼成雰囲気 は空気や窒素、アルゴン等や一酸化炭素や水素を単独、或いは、窒素、アルゴン等 を混合調整した気体、等の中から適宜選択される。なお、材料や組成比,作成バッチ サイズにより焼成の最適条件は異なってくる力 概ね還元焼成が好ましぐ還元度が 弱くても、強すぎても本発明の蛍光体の物体色の範囲に入らないが、通常、比較的 強い還元雰囲気とすることで、本発明で規定する物体色の蛍光体が得られる傾向に ある。また、 BaFや A1F等適当な融剤を選定して使用することでさらに高輝度蛍光
2 3
体が得られる場合がある。加熱処理後、必要に応じて、洗浄、分散処理、乾燥、分級 等がなされる。
本発明の発光装置で使用される蛍光体の粒径は、通常、 0. 1 μ m 20 μ mである 本発明において、前記蛍光体に光を照射する第 1の発光体は、波長 420 500η mの光を発生する。好ましくは波長 450 485nmの範囲にピーク波長を有する光を 発生する発光体を使用する。第 1の発光体の具体例としては、発光ダイオード (LED )またはレーザーダイオード(LD)等を挙げることができる。消費電力が少ない点でレ 一ザ一ダイオードがより好ましい。その中で、 GaN系化合物半導体を使用した GaN 系 LEDや LDが好ましレ、。なぜなら、 GaN系 LEDや LDは、この領域の光を発する Si C系 LED等に比し、発光出力や外部量子効率が格段に大きぐ前記蛍光体と組み 合わせることによって、非常に低電力で非常に明るい発光が得られるからである。例 えば、 20mAの電流負荷に対し、通常 GaN系は SiC系の 100倍以上の発光強度を 有する。 GaN系 LEDや LDにおいては、 Al Ga N発光層、 GaN発光層、または In
Ga N発光層を有しているものが好ましい。 GaN系 LEDにおいては、それらの中で I n Ga N発光層を有するものが発光強度が非常に強いので、特に好ましぐ GaN系 L
Dにおいては、 In Ga N層と GaN層の多重量子井戸構造のものが発光強度が非常 に強いので、特に好ましレ、。なお、上記において x + yの値は通常 0. 8- 1. 2の範囲 の値である。 GaN系 LEDにおいて、これら発光層に Znや Siをドープしたものやドー パント無しのものが発光特性を調節する上で好ましいものである。 GaN系 LEDはこ れら発光層、 p層、 n層、電極、および基板を基本構成要素としたものであり、発光層 を n型と p型の Al Ga N層、 GaN層、または In Ga N層などでサンドイッチにしたへテ 口構造を有しているものが発光効率が高ぐ好ましぐさらにへテロ構造を量子井戸構 造にしたものが発光効率がさらに高ぐより好ましい。 [0026] 本発明においては、面発光型の発光体、特に面発光型 GaN系レーザーダイオード を第 1の発光体として使用することは、発光装置全体の発光効率を高めることになる ので、特に好ましい。面発光型の発光体とは、膜の面方向に強い発光を有する発光 体であり、面発光型 GaN系レーザーダイオードにおいては、発光層等の結晶成長を 制御し、かつ、反射層等をうまく工夫することにより、発光層の縁方向よりも面方向の 発光を強くすることができる。面発光型のものを使用することによって、発光層の縁か ら発光するタイプに比べ、単位発光量あたりの発光断面積が大きくとれる結果、第 2 の発光体の蛍光体にその光を照射する場合、同じ光量で照射面積を非常に大きく することができ、照射効率を良くすることができるので、第 2の発光体である蛍光体か らより強い発光を得ることができる。
[0027] 第 2の発光体の蛍光体には一般式 [1]に記載の特定組成の蛍光体のみならず、異 なる組成比の複数の蛍光体を含有させたり、他の蛍光体を組み合わせて混合しても 良ぐより広い白色領域と高い演色性指数を実現することが出来る。他の蛍光体とし ては、特に制限は無いが、例えば、緑色蛍光体として(Sr, Ca, Mg) Ga S : Euや、
2 4
ZnS : Cu, Al等、赤色蛍光体として(Ca, Sr) S : Eu等を使用することができる。さらに 、反射剤、拡散剤として BaSO , MgO, CaHPOなどの白色物質を本発明の蛍光
4 4
体と組み合わせて、使用することが出来る。
[0028] これらの蛍光体を組み合わせる方法としては、各蛍光体を粉末の形態で膜状に積 層する方法、樹脂中に混合して膜状に積層する方法、粉末の形態で混合する方法、 樹脂中に分散する方法、薄膜結晶状に積層する方法などが利用できるが、粉末の形 態で混合して管理、使用する方法が最も容易で安価に白色光を得られるので好まし レ、。
第 1の発光体として面発光型のものを使用する場合、第 2の発光体を膜状とするの が好ましい。その結果、面発光型の発光体からの光は断面積が十分大きいので、第 2の発光体をその断面の方向に膜状とすると、第 1の発光体からの蛍光体への照射 断面積が蛍光体単位量あたり大きくなるので、蛍光体からの発光の強度をより大きく すること力 Sできる。
[0029] また、第 1の発光体として面発光型のものを使用し、第 2の発光体として膜状のもの を用いる場合、第 1の発光体の発光面に、直接膜状の第 2の発光体を接触させた形 状とするのが好ましい。ここでレ、う接触とは、第 1の発光体と第 2の発光体とが空気や 気体を介さないでぴたりと接している状態をつくることを言う。その結果、第 1の発光 体からの光が第 2の発光体の膜面で反射されて外にしみ出るという光量損失を避け ること力 Sできるので、装置全体の発光効率を良くすることができる。
[0030] 本発明の発光装置の一例における第 1の発光体と第 2の発光体との位置関係を示 す模式的斜視図を図 2に示す。図 2中の 1は、前記蛍光体を有する膜状の第 2の発 光体、 2は第 1の発光体としての面発光型 GaN系 LD、 3は基板を表す。相互に接触 した状態をつくるために、 LD2と第 2の発光体 1とそれぞれ別個につくっておいてそ れらの面同士を接着剤やその他の手段によって接触させても良いし、 LD2の発光面 上に第 2の発光体を製膜 (成型)させても良い。これらの結果、 LD2と第 2の発光体 1 とを接触した状態とすることができる。
[0031] 第 1の発光体からの光や第 2の発光体からの光は通常四方八方に向いているが、 第 2の発光体の蛍光体の粉を樹脂中に分散させると、光が樹脂の外に出る時にその 一部が反射されるので、ある程度光の向きを揃えられる。従って、効率の良い向きに 光をある程度誘導できるので、第 2の発光体として、前記蛍光体の粉を樹脂中へ分 散したものを使用するのが好ましい。また、蛍光体を樹脂中に分散させると、第 1の発 光体からの光の第 2の発光体への全照射面積が大きくなるので、第 2の発光体から の発光強度を大きくすることができるという利点も有する。この場合に使用できる樹脂 としては、エポキシ樹脂、ポリビュル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹 脂、ポリエステル系樹脂等各種のものが挙げられるが、蛍光体粉の分散性が良い点 で好ましくはエポキシ樹脂である。第 2の発光体の粉を樹脂中に分散させる場合、当 該第 2の発光体の粉と樹脂の全体に対するその粉の重量比は、通常 10— 95%、好 ましくは 20 90%、さらに好ましくは 30— 80%である。蛍光体が多すぎると粉の凝 集により発光効率が低下することがあり、少なすぎると今度は樹脂による光の吸収や 散乱のため発光効率が低下することがある。
[0032] 本発明の発光装置は、波長変換材料としての前記蛍光体と、 420— 500nmの光 を発生する発光素子とから構成されてなり、前記蛍光体が発光素子の発する 420 500nmの光を吸収して、使用環境によらず高強度の白色光を発生させることのでき る発光装置でありバックライト光源、信号機などの発光源、又、カラー液晶ディスプレ ィ等の画像表示装置や面発光等の照明装置等の光源に適している。
[0033] 本発明の発光装置を図面に基づいて説明すると、図 3は、第 1の発光体 (420 50 Onm発光体)と第 2の発光体とを有する発光装置の一実施例を示す模式的断面図 であり、 4は発光装置、 5はマウントリード、 6はインナーリード、 7は第 1の発光体 (420 一 500nmの発光体)、 8は第 2の発光体としての蛍光体含有樹脂部、 9は導電性ワイ ヤー、 10はモールド部材である。
[0034] 本発明の一例である発光装置は、図 3に示されるように、一般的な砲弾型の形態を なし、マウントリード 5の上部カップ内には、 GaN系発光ダイオード等からなる第 1の 発光体 (420— 500nm発光体) 7が、その上に、蛍光体をエポキシ樹脂やアクリル樹 脂等のバインダーに混合、分散させ、カップ内に流し込むことにより第 2の発光体とし て形成された蛍光体含有樹脂部 8で被覆されることにより固定されている。一方、第 1 の発光体 7とマウントリード 5、及び第 1の発光体 7とインナーリード 6は、それぞれ導 電性ワイヤー 9で導通されており、これら全体がエポキシ樹脂等によるモールド部材 1 0で被覆、保護されてなる。
[0035] 又、この発光素子 13を組み込んだ面発光照明装置 11は、図 4に示されるように、 内面を白色の平滑面等の光不透過性とした方形の保持ケース 12の底面に、多数の 発光装置 13を、その外側に発光装置 13の駆動のための電源及び回路等(図示せ ず。)を設けて配置し、保持ケース 12の蓋部に相当する箇所に、乳白色としたアタリ ル板等の拡散板 14を発光の均一化のために固定してなる。
[0036] そして、面発光照明装置 11を駆動して、発光素子 13の第 1の発光体に電圧を印加 することにより 350— 480nmの光を発光させ、その発光の一部を、第 2の発光体とし ての蛍光体含有樹脂部における前記蛍光体が吸収し、可視光を発光し、一方、蛍光 体に吸収されなかった青色光等との混色により演色性の高い発光が得られ、この光 が拡散板 14を透過して、図面上方に出射され、保持ケース 12の拡散板 14面内にお いて均一な明るさの照明光が得られることとなる。
[0037] 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を越 えない限り以下の実施例に限定されるものではない。
尚、以下の実施例において、蛍光体の物体色 (L*, a * , b * )、発光スペクトル、全 光束、温度特性、並びに残光特性は、以下の方法で測定した。
(物体色)
蛍光体の粉末を口径 10mm φのセルにつめ、 1mm厚の合成石英板を介して、色 彩色差計 (ミノルタ社製 CR— 300)により標準光 D65照射モードで色彩測定をするこ とにより、 L* , a* , b *を求めた。
(発光スペクトル)
蛍光体を主発光波長が 465nmの青色 GaN系発光ダイオードチップ上に塗布して 、この蛍光体を励起させたときの発光スペクトルをスぺクトロメーター(オーシャンフォト 二タス社製)を用いて測定した。
(全光束)
スぺクトロメーター(オーシャンフォト二タス社製)と 1インチ積分球を組み合わせて測 定した。
(温度特性)
蛍光体温度評価装置(向洋電子社製)を用いた。発光強度は大塚電子社製 MCP D—7000を用いて測定した。
(残光特性)
励起光源として窒素レーザ(パルス幅 5ns,繰り返し 10Hz,波長 337nm)を用い、 励起光強度は 4マイクロワット /cm2として蛍光体を励起し、蛍光体からの発光を浜松 ホトニタス社製分光器 C5094により分光した後、浜松ホトニタス社製ストリークカメラ C 4334により時間分解測定を行った。
この時間分解測定値を、ガウス関数で表される装置関数と、 2つの指数関数で表さ れる発光の減衰部分を、「畳み込み関数 (コンボリューシヨン) +定数項」で非線形最 小自乗法により関数フィッティング操作を行レ、、指数関数の時定数 Tl, Τ2とその強 度成分 Al , Α2および定数項 Cを算出した。この Tl , Τ2, Al , Α2, Cを用いると、下 記数式(1)で表される発光強度 I (t)の時間変化を求めることができ、装置関数に依 存しない残光特性を求められ、 1Z10残光時間(tl )は、数式 1の t = 0での値 (励起 停止直前の発光強度)の 1/10の強度になる時間 tにより求め、 1/100残光時間(t 2)は、数式 1の t = 0での値の 1/100の強度になる時間 tにより求めた。
[0039] [数 1]
I ( t) =A 1 * e X p (- t/T 1) +A2 * e x p (- t/T2) +C (D 実施例
[0040] 実施例 1
Ln源化合物として Y Ο ;1.26モノレ、 Μ源化合物として γ_Α1 Ο ;2.5モノレ、 Ce
2 3 2 3
源化合物として CeO ;0.33モル、 Tb源化合物として Tb O ;0.0375モノレ、並びに
2 4 7
融剤として BaF ;0.25モルを用い、これらの原料を充分に混合し、アルミナ製坩堝
2
中で、 4%水素含有窒素気流中、 1450°Cで 2時間焼成した。得られた焼成物を粉砕 、酸洗、水洗して BaFを除去した。その後、乾燥、及び分級処理を行うことにより黄
2
色発光の蛍光体 (Y Ce Tb ) Al O を製造した。
0.84 0. 11 0.05 3 5 12
[0041] 得られた蛍光体の物体色は、 L* = 103.1、 a*=-18.1、 b* = 73.0であった。次 に蛍光体の発光スペクトルを測定した。発光スペクトルを図 1に示す。全光束を測定 した値は、後述の比較例 1で得られた蛍光体を使用した場合を 100%として、 141% であった。また、温度特性は 99%であった。また、 1/10残光時間(tl)は 161ns、 t 2/tlは 2· 11であった。結果を表一 1に示す。
[0042] 実施例 2
Ln源化合物として Y O ;1.185モル、 M源化合物として γ_Α1 Ο ;2.5モノレ、 Ce
2 3 2 3
源化合物として CeO ;0.12モル、 Tb源化合物として Tb〇 ;0.1275モノレ、並びに
2 7
融剤として BaF ;0.25モルを用レ、、焼成温度を 1380°Cにしたこと以外は実施例 1と
2
同様の方法にて、黄色発光蛍光体 (Y Ce Tb ) Al O を作製した。得られ
0. 79 0.04 0. 17 3 5 12
た蛍光体につき、実施例 1と同様に評価を行ったところ、物体色は L* = 102.4、 a* =-17.0、 b* = 68.4、全光束 ίま 1310/0、温度特十生 ίま 970/0であった。また、 tlfま 18 3ns、 t2Ztlは 2.32であった。結果を表一 1に示す。
[0043] 実施例 3
Ln源化合物として Y O ;0.675モノレ、 M源化合物として γ_Α1 Ο ;2.5モノレ、 Ce 源化合物として CeO ;0.33モル、 Tb源化合物として Tb〇 ;0.33モル、並びに融
2 7
剤として BaF ;0.25モルを用レ、、焼成温度を 1420°Cにしたこと以外は実施例 1と同
2
様の方法にて、黄色発光蛍光体 (Y Ce Tb ) Al O を作製した。得られた
0.45 0. 11 0.44 3 5 12
蛍光体につき、実施例 1と同様の評価を行ったところ、物体色は L* = 98.9、 a*=_ 14.0、 b*=80.0、全光束 ίま 1280/0、温度特'性 fま 920/0であった。また、 tlfま 206ns 、 t2/tlは 3.29であった。結果を表一 1に示す。
[0044] 実施例 4
Ln源化合物として Y O ;1.05モノレ、 Gd〇 ;0.39モノレ、 M源化合物として γ_Α
2 3 2 3
1 Ο ;2.5モノレ、 Ce源化合物として CeO ;0.12モノレ、並びに融剤として BaF ;0.2
2 3 2 2
5モルを用いたこと以外は、実施例 1と同様の方法にて、黄色発光蛍光体 (Y Gd
0. 7 0.
Ce ) Al O を作製した。得られた蛍光体につき、実施例 1と同様の評価を行つ
26 0.04 3 5 12
たところ、物体色は! = 102.4、 a*=-12.5、 b* = 62.3、全光束は 120%、温度 特性は 90%であった。結果を表一 1に示す。
[0045] 実施例 5
Ln源化合物として Y O ;1.44モル、 M源化合物として γ— Al Ο ;2.5モノレ、 Ce
2 3 2 3
源化合物として CeO ;0.09モル、 Tb源化合物として Tb O :0.0075モノレ、並びに
2 4 7
融剤として BaF ;0.25モルを用レ、、窒素気流中 1400°Cで焼成したこと以外は実施
2
例 1と同様の方法にて、黄色発光蛍光体 (Y Ce Tb ) A10 を作製した。
0.96 0.03 0.01 3 5 12
得られた蛍光体につき、実施例 1と同様に物体色と全光束を測定したところ、物体色 ίま! = 102.7、 a*=-14.9、 b* = 58.8、全光束 ίま 1160/0であった。結果を表一 1 に示す。
[0046] 実施例 6
Ln源化合物として Y O ;1.44モノレ、 M源化合物として γ_Α1 Ο ;2.5モノレ、 Ce
2 3 2 3
源化合物として CeO ;0.12モノレ、並びに融剤として BaF ;0.25モノレを用レ、、窒素
2 2
気流中 1400°Cで焼成したこと以外は実施例 1と同様の方法にて、黄色発光蛍光体( Y Ce ) Al〇 を作製した。実施例 1と同様の評価を行ったところ、物体色は L
0.96 0.04 3 5 12
* =101.2、 a*=-14.7、 b* = 57.8、全光束 fま 110ο/ο、温度特'性 fま 980/0であつ た。また、 tlは 151ns、 t2/tlは 2.03であった。結果を表一 1に示す。 [0047] 実施例 7
Ln源化合物として Y Ο ;1.2モル、 Μ源化合物として α— Al O ;2.5モノレ、 Ce源
2 3 2 3
化合物として CeO ;0.3モル、 Tb源化合物として Tb O :0.075モノレ、並びに融剤
2 4 7
として BaF ;0.2モルを用い、 4%水素含有窒素気流中 1450°Cで 3時間焼成したこ
2
と以外は実施例 1と同様の方法にて、黄色発光蛍光体 (Y . Ce Tb ) A10 を
0 8 0. 1 0. 1 3 5 12 作製した。得られた蛍光体につき、実施例 1と同様に物体色と全光束を測定したとこ ろ、物体色 ίま L* = 105.8, a*=-15.3、b* = 95.6、全光束 ίま 1370/0であった。 結果を表一 1に示す。
[0048] 比較例 1
Ln源化合物として Y O ;1.05モノレ、 Gd〇 ;0.39モノレ、 M源化合物として γ_Α
2 3 2 3
1 Ο ;2.5モノレ、 Ce源化合物として CeO ;0.12モノレ、並びに融剤として BaF ;0.2
2 3 2 2
5モルを用レ、、大気中 1400°Cで焼成したこと以外は実施例 1と同様の方法にて、黄 色発光蛍光体 (Y Gd Ce ) Al〇 を作製した。実施例 1と同様の評価を行
0.7 0.26 0.04 3 5 12
つたところ、物体色は! = 100.0、 a*=-13.3、 b* = 51.4、全光束は 100%、温 度特性は 86%であった。また、 tlは 147ns、 t2/tlは 2.04であった。結果を表一 1 に示す。
[0049] 比較例 2
Ln源化合物として Y O ;1.44モル、 M源化合物として γ— Al Ο ;2.5モノレ、 Ce
2 3 2 3
源化合物として CeO :0.09モル、 Tb源化合物として Tb O :0.0075モノレ、並びに
2 4 7
融剤として BaF ;0.25モルを用レ、、窒素気流中 1400°Cで焼成したこと以外は実施
2
例 1と同様の方法にて、黄色発光蛍光体 (Y Ce Tb ) A10 を作製した。
0.96 0.03 0.01 3 5 12
実施例 1と同様に物体色と全光束を測定したところ、物体色は L* = 96.0、 a*=-7 .6、 b* = 38.4、全光束は 78%であった。結果を表一 1に示す。
[0050] 比較例 3
Ln源化合物として Y O ;1.44モノレ、 M源化合物として γ_Α1 Ο ;2.5モノレ、 Ce
2 3 2 3
源化合物として CeO ;0.09モル、 Tb源化合物として Tb O :0.0075モノレ、並びに
2 4 7
融剤として BaF ;0.25モルを用レ、、 2.5%水素含有窒素気流中 1400°Cで焼成し
2
たこと以外は実施例 1と同様の方法にて、黄色発光蛍光体 (Y Ce Tb ) Al
0. 96 0.03 0.01 3 5 O を作製した。実施例 1と同様に物体色と全光束を測定したところ、物体色は L* =
12
99. 0、 a* =—11. 7. b* = 53. 4、全光束は 100%であった。結果を表— 1に示す。
[0051] 比較例 4
Ln源化合物として Y O ; 1. 44モノレ、 M源化合物として γ _Α1 Ο ; 2. 5モノレ、 Ce
2 3 2 3
源化合物として CeO ; 0. 09モル、 Tb源化合物として Tb O : 0. 0075モノレ、並びに
2 4 7
融剤として BaF ; 0. 25モルを用レ、、 4%水素含有窒素気流中でカーボンビーズとと
2
もに 1400°Cで焼成したこと以外は実施例 1と同様の方法にて、黄色発光蛍光体 (Y
0
Ce Tb ) Al O を作製した。実施例 1と同様に物体色と全光束を測定したと
. 96 0. 03 0. 01 3 5 12
ころ、物体色は L* = 95. 0、 a* =-14. 7、 b* = 50. 4、全光束は 90%であった。結 果を表一 1に示す。
[0052] 比較例 5
Ln源化合物として Tb O : 0. 6675モノレ、 M源化合物として γ _Α1 Ο ; 2. 5モノレ、
4 7 2 3
Ce源化合物として Ce〇 ; 0. 33モル、並びに融剤として BaF ; 0. 25モルを用いたこ
2 2
と以外は、実施例 1と同様の方法にて、黄色発光蛍光体 (Ce Tb ) Al O を作
0. 11 0. 89 3 5 12 製した。実施例 1と同様の評価を行ったところ、物体色は L* = 95. 2、 a* =-9. 8、 b * = 77. 8、全光束は 104%、温度特性は 88%であった。結果を表一 1に示す。
[0053] [表 1]
表一 1
Figure imgf000019_0001
[0054] 表- 1の結果から、比較例 1の全光束をベース(100%)とした場合に、本発明の実 施例 1一 7は全て 100%以上であることが判る。
特に、同一蛍光体組成である実施例 4と比較例 1と対比すると、 20%も全光束がァ ップしていることが判る。また、実施例 5と比較例 2も同一蛍光体組成であるが、本発 明の実施例の方が大幅に全光束が高いことが判る。
[0055] なお、本発明の明細書の開示として、本出願の優先権主張の基礎となる日本特許 特願 2003—305020号(2003年 8月 28日に日本特許庁に出願)及び日本特許特 願 2003—361114号(2003年 10月 21日に日本特許庁に出願)の全明細書の内容 をここに引用し取り入れるものである。

Claims

請求の範囲
[1] 波長 420— 500nmの光を発生する第 1の発光体と、当該第 1の発光体からの光の 照射によって可視光を発生する第 2の発光体とを有する発光装置において、第 2の 発光体が蛍光体を含有し、該蛍光体の物体色が L*、 a*、 b*表色系において L*≥9 0、一 22≤a*≤_10、 b*≥55を満足することを特徴とする発光装置。
[2] 蛍光体の 100°Cでの発光強度が、 25°Cでの発光強度の 90%以上であることを特 徴とする請求項 1に記載の発光装置。
[3] 蛍光体の 1/10残光時間(tl)が 155ns以上、及び/又は 1/10残光時間に対す る 1/100残光時間(t2)の割合 (t2/tl)が 2. 05以上であることを特徴とする請求 項 1又は 2に記載の発光装置。
[4] 蛍光体が、酸化物を母体とすることを特徴とする請求項 1乃至 3のいずれか 1項に 記載の発光装置。
[5] 蛍光体が、ガーネット構造の酸化物であって、 Ceまたは、 Ceと Tbを含有しているこ とを特徴とする請求項 4に記載の発光装置。
[6] 蛍光体が、下記一般式 [ 1]の化学組成の結晶相を含有してなることを特徴とする請 求項 5に記載の発光装置。
[化 1]
(L n i一 ab C e aT b b) 3M 51 2 式 [ 1 ]
(但し、 Lnは、 Y, Gd, Sc, Lu, Laの群力も選ばれる少なくとも一種の元素であり、 Mは Al, Ga, Inの群力 選ばれる少なくとも一種の元素を示す。 a、 bは、それぞれ 0 . 001≤a≤0. 3、 0≤b≤0. 5を満足する数である。)
[7] 一般式 [1]において、 aが、 0. 01≤a≤0. 2を満足することを特徴とする請求項 6に 記載の発光装置。
[8] 第 1の発光体がレーザーダイオード又は発光ダイオードであることを特徴とする請 求項 1乃至 7のいずれか 1項に記載の発光装置。
[9] 第 1の発光体がレーザーダイオードであることを特徴とする請求項 8に記載の発光 装置。
[10] 第 1の発光体が GaN系化合物半導体を使用してなることを特徴とする請求項 1乃 至 9のレ、ずれか 1項に記載の発光装置。
[11] 第 1の発光体が面発光型 GaN系レーザーダイオードであることを特徴とする請求項
1乃至 10のいずれ力 4項に記載の発光装置。
[12] 第 2の発光体が膜状であることを特徴とする請求項 1乃至 11のいずれ力 4項に記載 の発光装置。
[13] 第 1の発光体の発光面に、直接、第 2の発光体の膜面を接触させてなることを特徴 とする請求項 12に記載の発光装置。
[14] 第 2の発光体が他の蛍光体を含んでなり、発光装置が白色光を発することを特徴と する、請求項 1乃至 13のいずれか 1項に記載の発光装置。
[15] 第 2の発光体が、蛍光体の粉を樹脂に分散させてなることを特徴とする請求項 1乃 至 14のいずれ力 1項に記載の発光装置。
[16] 請求項 1乃至 15のいずれ力 1項の発光装置が照明装置であることを特徴とする発 光装置。
[17] 請求項 1乃至 15のいずれか 1項の発光装置が画像表示装置であることを特徴とす る発光装置。
[18] 物体色が L*、 a*、b*表色系において、 L*≥90、— 22≤a*≤— 10、 b*≥55を満足 する蛍光体であって、下記一般式 [1]の化学組成の結晶相を含有してなることを特 徴とする蛍光体。
[化 2]
(L n i_a_b C e aT b b) 3M 50 1 2 式 [ 1 ]
(但し、 Lnは、 Y, Gd, Sc, Lu, Laの群力 選ばれる少なくとも一種の元素であり、 M は Al, Ga, Inの群力 選ばれる少なくとも一種の元素を示す。 a、 bは、それぞれ 0· 0 01≤a≤0. 3、 0≤b≤0. 5を満足する数である。)
PCT/JP2004/012304 2003-08-28 2004-08-26 発光装置及び蛍光体 WO2005022032A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04772260A EP1659335A4 (en) 2003-08-28 2004-08-26 LIGHT DISPENSER AND PHOSPHORUS
US11/361,981 US7332106B2 (en) 2003-08-28 2006-02-27 Light-emitting device and phosphor
US11/754,648 US7704410B2 (en) 2003-08-28 2007-05-29 Light-emitting device and phosphor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-305020 2003-08-28
JP2003305020 2003-08-28
JP2003-361114 2003-10-21
JP2003361114 2003-10-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/361,981 Continuation US7332106B2 (en) 2003-08-28 2006-02-27 Light-emitting device and phosphor

Publications (1)

Publication Number Publication Date
WO2005022032A1 true WO2005022032A1 (ja) 2005-03-10

Family

ID=34277647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012304 WO2005022032A1 (ja) 2003-08-28 2004-08-26 発光装置及び蛍光体

Country Status (3)

Country Link
US (2) US7332106B2 (ja)
EP (1) EP1659335A4 (ja)
WO (1) WO2005022032A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025138A1 (en) * 2006-01-27 2012-02-02 Showa Denko K.K. Fluorescent substance and process for producing the same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1659335A4 (en) * 2003-08-28 2010-05-05 Mitsubishi Chem Corp LIGHT DISPENSER AND PHOSPHORUS
US20090008663A1 (en) * 2005-02-28 2009-01-08 Mitshubishi Chemcial Phosphor and method for production thereof, and application thereof
KR101194129B1 (ko) 2005-06-15 2012-10-24 니치아 카가쿠 고교 가부시키가이샤 발광 장치
KR20080059418A (ko) * 2005-09-30 2008-06-27 더 리전츠 오브 더 유니버시티 오브 캘리포니아 고상 조명용 질화 및 산질화 세륨계 형광물질들
US7806574B2 (en) * 2006-04-16 2010-10-05 Albeo Technologies, Inc. Thermal management of LED-based lighting systems
US7920137B2 (en) * 2007-04-10 2011-04-05 John Pietrasik RGV display system
EP2180031A4 (en) * 2007-08-01 2011-05-25 Mitsubishi Chem Corp PHOSPHORUS AND METHOD OF PREPARATION THEREOF, CRYSTALLINE SILICONIUM NITRIDE AND METHOD OF PRODUCTION THEREOF, PHOSPHORUS COMPOSITION, LIGHT-EMITTING COMPONENT WITH THE PHOSPHORIC, IMAGE DISPLAY DEVICE AND LIGHTING APPARATUS
KR100937962B1 (ko) * 2008-02-01 2010-01-21 삼성에스디아이 주식회사 디스플레이 장치용 형광체 조성물
US8436526B2 (en) 2008-02-11 2013-05-07 Sensor Electronic Technology, Inc. Multiwavelength solid-state lamps with an enhanced number of rendered colors
US8163203B2 (en) * 2008-02-27 2012-04-24 The Regents Of The University Of California Yellow emitting phosphors based on Ce3+-doped aluminate and via solid solution for solid-state lighting applications
US7990045B2 (en) * 2008-03-15 2011-08-02 Sensor Electronic Technology, Inc. Solid-state lamps with partial conversion in phosphors for rendering an enhanced number of colors
US20090231832A1 (en) * 2008-03-15 2009-09-17 Arturas Zukauskas Solid-state lamps with complete conversion in phosphors for rendering an enhanced number of colors
US9076951B2 (en) 2008-08-26 2015-07-07 Albeo Technologies, Inc. Methods of integrating LED chips with heat sinks, and LED-based lighting assemblies made thereby
US8058659B2 (en) 2008-08-26 2011-11-15 Albeo Technologies, Inc. LED chip-based lighting products and methods of building
US8981629B2 (en) 2008-08-26 2015-03-17 Albeo Technologies, Inc. Methods of integrating LED chips with heat sinks, and LED-based lighting assemblies made thereby
EP2228668A1 (en) * 2009-03-09 2010-09-15 Agfa HealthCare Method of eliminating the effect of afterglow on a radiation image read out of a photostimulable phosphor screen.
KR20120039631A (ko) * 2009-06-16 2012-04-25 더 리전츠 오브 더 유니버시티 오브 캘리포니아 옥시플루오라이드 형광체들 및 옥시플루오라이드 형광체를 포함하는 고체 조명 제품용 백색 발광 다이오드들
CN102192422B (zh) * 2010-03-12 2014-06-25 四川新力光源股份有限公司 白光led照明装置
CN102194970B (zh) * 2010-03-12 2014-06-25 四川新力光源股份有限公司 脉冲电流驱动的白光led照明装置
WO2012029305A1 (ja) * 2010-08-31 2012-03-08 株式会社 東芝 Led電球
EP2814071A4 (en) * 2012-02-08 2015-01-07 Panasonic Corp LUMINESCENT DEVICE
KR102007373B1 (ko) * 2012-07-03 2019-08-06 삼성디스플레이 주식회사 나노 형광체 제조 방법, 발광 다이오드 및 발광 다이오드 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505582A (ja) * 1999-07-23 2003-02-12 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 光源用発光物質および発光物質を有する光源
JP2003505583A (ja) * 1999-07-23 2003-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光物質装置、波長変換注入成形材および光源

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL154361B (nl) * 1967-04-29 1977-08-15 Philips Nv Kathodestraalbuis voor lichtstipaftasting.
SE364160B (ja) * 1969-05-26 1974-02-11 Western Electric Co
JPS491221A (ja) 1972-04-17 1974-01-08
NL7406960A (nl) * 1974-05-24 1975-11-26 Philips Nv Werkwijze voor het bereiden van een zeldzaam- -aard-aluminiaat, in het bijzonder een lumines- cerend zeldzaam-aard-aluminaat.
NL8502025A (nl) * 1985-07-15 1987-02-02 Philips Nv Lagedrukkwikdampontladingslamp.
JPH09511358A (ja) * 1995-01-30 1997-11-11 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 照明装置
BRPI9715293B1 (pt) * 1996-06-26 2016-11-01 Osram Ag elemento de cobertura para um elemento de construção optoeletrônico
DE19638667C2 (de) * 1996-09-20 2001-05-17 Osram Opto Semiconductors Gmbh Mischfarbiges Licht abstrahlendes Halbleiterbauelement mit Lumineszenzkonversionselement
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
JP2927279B2 (ja) 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
US6608332B2 (en) * 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
US6613247B1 (en) * 1996-09-20 2003-09-02 Osram Opto Semiconductors Gmbh Wavelength-converting casting composition and white light-emitting semiconductor component
JPH10190066A (ja) 1996-12-27 1998-07-21 Nichia Chem Ind Ltd 発光ダイオード及びそれを用いたled表示装置
JP3246386B2 (ja) 1997-03-05 2002-01-15 日亜化学工業株式会社 発光ダイオード及び発光ダイオード用の色変換モールド部材
DE19934126A1 (de) 1999-07-23 2001-01-25 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Leuchtstoff für Lichtquellen und zugehörige Lichtquelle
DE19963791A1 (de) * 1999-12-30 2001-07-05 Osram Opto Semiconductors Gmbh Leuchtstoffanordnung, wellenlängenkonvertierende Vergussmasse und Lichtquelle
US6552487B1 (en) * 1999-10-27 2003-04-22 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Phosphor for light sources, and associated light source
US6538371B1 (en) * 2000-03-27 2003-03-25 The General Electric Company White light illumination system with improved color output
MY131962A (en) 2001-01-24 2007-09-28 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
US6596195B2 (en) * 2001-06-01 2003-07-22 General Electric Company Broad-spectrum terbium-containing garnet phosphors and white-light sources incorporating the same
DE10219867A1 (de) * 2002-05-03 2003-11-20 Behr Gmbh & Co Wärmetauscher, insbesondere Ladeluftkühler
EP1659335A4 (en) * 2003-08-28 2010-05-05 Mitsubishi Chem Corp LIGHT DISPENSER AND PHOSPHORUS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003505582A (ja) * 1999-07-23 2003-02-12 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング 光源用発光物質および発光物質を有する光源
JP2003505583A (ja) * 1999-07-23 2003-02-12 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 発光物質装置、波長変換注入成形材および光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1659335A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025138A1 (en) * 2006-01-27 2012-02-02 Showa Denko K.K. Fluorescent substance and process for producing the same

Also Published As

Publication number Publication date
EP1659335A4 (en) 2010-05-05
US7704410B2 (en) 2010-04-27
US20060145593A1 (en) 2006-07-06
US20070222369A1 (en) 2007-09-27
EP1659335A1 (en) 2006-05-24
US7332106B2 (en) 2008-02-19

Similar Documents

Publication Publication Date Title
US7704410B2 (en) Light-emitting device and phosphor
JP4325733B2 (ja) 蛍光体及びその製造方法並びにそれを使用した発光装置
US7358542B2 (en) Red emitting phosphor materials for use in LED and LCD applications
KR101065522B1 (ko) 발광 장치
JP4325629B2 (ja) 蛍光体及びその製造方法並びにそれを使用した発光装置
EP1484803B1 (en) Light emitting device and illuminating device using it
JP2009516774A (ja) 照明用途において使用するための電荷補償窒化物蛍光体
WO2006113656A1 (en) Red phosphor for led based lighting
JP2006265542A5 (ja)
CN101151348A (zh) 用于具有改善的色彩品质的发光应用的氧氮化物磷光体
JP4916651B2 (ja) 発光装置及び蛍光体
WO2016199406A1 (ja) 蛍光体およびその製造方法、ならびにledランプ
JP4972904B2 (ja) 蛍光体、その蛍光体の製造方法、その蛍光体を用いた発光装置、画像表示装置及び照明装置
JP4411841B2 (ja) 発光装置及びそれを用いた照明装置並びにディスプレイ
JP2007277277A (ja) 蛍光体混合物、発光装置、画像表示装置、及び照明装置
JP4165255B2 (ja) 発光装置及びそれを用いた照明装置
JP2004235546A (ja) 発光装置及びそれを用いた照明装置並びにディスプレイ
JP2006332202A (ja) 発光装置、発光装置の製造方法、及びそれを用いた照明装置、画像表示装置用バックライト並びに画像表示装置
JP2013149981A (ja) 発光素子並びにそれを用いた照明装置、画像表示装置
JP6959938B2 (ja) オキシブロミド蛍光体およびその使用
JP2010059429A (ja) 蛍光体、それを用いた発光装置、画像表示装置及び照明装置
JP4604516B2 (ja) 発光装置及びそれを用いた照明装置並びにディスプレイ
JP2010021578A (ja) 発光装置に用いる蛍光体
JP4246502B2 (ja) 発光装置及びそれを用いた照明装置並びにディスプレイ
JP4433847B2 (ja) 蛍光体、それを用いた発光装置、画像表示装置及び照明装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480024622.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004772260

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11361981

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004772260

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11361981

Country of ref document: US