WO2005012857A1 - Apparatus for simultaneous or consecutive characterization of multiple solid material samples by photoluminescence - Google Patents

Apparatus for simultaneous or consecutive characterization of multiple solid material samples by photoluminescence Download PDF

Info

Publication number
WO2005012857A1
WO2005012857A1 PCT/ES2004/070061 ES2004070061W WO2005012857A1 WO 2005012857 A1 WO2005012857 A1 WO 2005012857A1 ES 2004070061 W ES2004070061 W ES 2004070061W WO 2005012857 A1 WO2005012857 A1 WO 2005012857A1
Authority
WO
WIPO (PCT)
Prior art keywords
samples
photoluminescence
support
detection
radiation
Prior art date
Application number
PCT/ES2004/070061
Other languages
Spanish (es)
French (fr)
Inventor
Avelino CORMA CANÓS
Hermenegildo GARCÍA GÓMEZ
José Manuel SERRA ALFARO
Original Assignee
Consejo Superior De Investigaciones Científicas
Universidad Politécnica De Valencia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas, Universidad Politécnica De Valencia filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2005012857A1 publication Critical patent/WO2005012857A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates

Definitions

  • the present invention belongs to the field of photoluminescence techniques and is particularly applicable to the sector of solid material sample characterization, and especially to the analysis of solid catalysts, in order to determine the presence and distribution of luminescent elements. in different positions of the solid structure.
  • characterization techniques based on spectroscopic techniques are of great importance both in the field of fundamental research and in that of applied research.
  • the information provided by spectroscopic techniques to determine the composition and properties of solid materials may be related to the activity of these solids in many fields such as the catalysis of chemical reactions and their ability to act as semiconductors.
  • the characterization of the surface and of the total of the particle of materials is of great help at the time of the design, development and optimization of new catalysts of industrial interest and of materials with applications in photonics, semiconductors, solar cells and electroluminescence.
  • Photoluminescence is a spectroscopic characterization technique that consists of recording the light that is emitted by a substance when it is previously excited by electromagnetic radiation from the region. visible ultraviolet (200-800 n). This phenomenon is based on the fact that the absorption of a quantum of light energy produces the excitation of the substance from the electronic level of the fundamental state to electronic levels of greater energy, which have an extremely short life time and relax until the first state excited singlet. This excited singlet state has a typical life time on the nanosecond scale and can suffer deactivation in several ways.
  • deactivation consists in the non-emissive internal conversion in which the excited state of the lowest energy singlet reverts to the fundamental state through intermolecular collisions and / or link vibrations dissipating electronic energy such as mechanical energy and heat.
  • Another alternative form called 'intersystem crossing' consists in the transformation of the singlet state into a triplet state of lower relative energy, which due to the violation of the conservation of the spin, has a much longer life time.
  • a third deactivation pathway occurs when bonds are broken and the excited group is transformed into another chemical species.
  • it is a fourth deactivation mechanism consisting of the emissive deactivation of the excited states, both singlet and triplet, to the fundamental state.
  • Photoluminescence as a material characterization technique provides information on the presence of certain functional groups "lumó forums" in the substance, allowing to determine their presence, quantify their number, establish their distribution in different populations and determine the chemical and structural environment of these groups .
  • Photoluminescence has generally been applied to characterize molecular substances in solution, but more recently [Corma et. al, Chem.
  • the object of the present invention is to provide an apparatus for the multiple characterization of large libraries of solid materials by means of photoluminescence measurements, which do not alter at all the properties of the solid of which small quantities are necessary, which allows increasing the number of new materials to characterize.
  • Another object of the invention is to provide a high capacity characterization technique for solid materials with application such as catalysts, photonic materials, semiconductors, electroluminescent or solar cells etc., based on photoluminescence measurements.
  • an apparatus for the characterization by photoluminescence techniques of multiple samples of solid materials which comprises at least irradiation means to apply at least one controlled radiation to the samples, at least one support for housing a plurality of medium samples for detecting and recording photoluminescence radiation produced by the samples arranged in the support as a result of their previous irradiation.
  • the irradiation means may be designed to apply a simultaneous or consecutive excitation irradiation of a sample library, at least one light source being among these means, such as a lamp or a laser device, the presence of means for selecting a wavelength or a determined range of wavelengths of the spectrum produced by the light source; and of means to properly focus the excitation radiation, previously conditioned, on one or more solid samples.
  • the system also comprises means for the simultaneous detection of a given range of wavelengths of the emission radiation of the excited samples; system to separate the emission in the wavelengths that compose it (monochromator); means for focusing the radiation from the samples on the detector device.
  • the means for generating the radiation will preferably be composed of a mercury lamp, with a range of lengths of 200-800 nm wave, or by one several lasers of fixed or variable wavelengths in a certain range. These lasers can be continuous or pulsed and will preferably emit UV light, among these may be gaseous lasers such as those of different nitrogen or solid excimers such as Nd-YAG or liquids such as dyes.
  • the radiation that reaches the samples should be in the range of 250-350 nm. This may require the use of bandpass filters.
  • rays of the electromagnetic waves have parallel directions, that is, that it is a collimated radiation.
  • collimating devices are: quartz or pyrex biconvex glass lenses.
  • Optical means can also be useful for focusing the radiation on a given surface, which must include at least one sample of the set of samples arranged in the support.
  • a support for multiple luminescence characterization of solid materials comprises a plurality of locations for the deposit of at least one sample at each location, a support, preferably flat, with a sample holder surface comprising the locations for the samples, each location being defined in a predetermined position, and At least part of the locations may be distributed on the sample holder surface, in parallel, sectorially or spirally or concentrically around an axis. Also, in one embodiment of the support, at least part of the samples is deposited in the locations on the sample holder surface in the form of thin solids film.
  • the material of which the sample holder is constituted must withstand, without deforming or undergoing changes in its structure, at the temperatures that are applied when analyzing the samples deposited therein and transparent to UV-visible radiation, in the range both of excitation radiation as emission in photoluminescence.
  • a useful support for almost all of the temperature ranges that are applied in tests and characterizations of this type can be manufactured in a heat-resistant material at temperatures between -200 to 600 ° C and transparent to UV-visible radiation.
  • the support and the apparatus of the invention make it possible to make an advantageous system that allows efficient characterization of solid materials, based on simultaneous or successive photoluminescence measurements.
  • the support can accommodate a plurality of material samples on its surface, these being in the form of bonded films of different thicknesses, powders of varied granulometry or pellets, the surface being suitably shaped to accommodate the plurality of solids.
  • the materials are in the form of a film
  • the different materials can be manufactured / deposited continuously, so that the support is covered by a film whose composition varies depending on the position.
  • the support can also be inside a sealed chamber, in order to keep the samples arranged in contact with a medium, preferably gaseous, fully controlled, as well as being able to perform measurements at pressures higher or lower than atmospheric pressure. .
  • the camera must be totally transparent or have transparent windows to radiation, both excitation and emission, conveniently located.
  • control means comprise thermal regulation means capable of maintaining the samples at a temperature in a range from -200 ° C to 600 ° C, for regulating the pressure and chemical composition of the atmosphere in contact with the samples.
  • thermal regulation means capable of maintaining the samples at a temperature in a range from -200 ° C to 600 ° C, for regulating the pressure and chemical composition of the atmosphere in contact with the samples.
  • Matrices of photomultipliers can also be used. These devices allow the detection, that is to say, the transformation of the photons, of the radiation coming from a surface, into electrical impulses in a resolved way both spatially and temporarily, being therefore possible the simultaneous registration (CCDs and arrays of photomultipliers) or consecutive (photomultiplier) of the intensity for one of the locations where the excited samples are found, over the time during which the photoluminescence occurs Also, the registration of the photoluminescence spectrum of each sample is relevant, that is, the recording of the light intensities for each of the wavelengths that integrate the photoluminescence radiation of a material.
  • - means to decompose the radiation in its different wavelengths and its subsequent detection.
  • An example is the use of an optical prism or a diffraction network, which decomposes the beam emitted spatially in each component that integrates it and then these components are detected simultaneously using a CCD device.
  • the CCD device measures the light intensity at each point (pixel) of the screen.
  • This system performs a separation of the emission wavelengths through their spatial separation.
  • - Means in which a narrow range of wavelengths is selected in a period of time, that is to say, for monochromarx the radiation beam and subsequently detect it, so that by varying the selected wavelength over time, this system performs a separation of the components of the temporarily resolved beam.
  • CCD-monochromator systems that allow obtaining the spectral information (Intensity vs. Lambda) for very short time intervals (of the order of peak seconds), compared to the total photoluminescence process time, for each pixel of the CCD camera.
  • spectral information Intensity vs. Lambda
  • optical fibers that collect, concentrate and focus the light of each location and direct and divide it into several beams of equal intensity, it is possible to develop a system that has several types of detection, so that spectra can be registered simultaneously of photoluminescence and, in another detector, perform measurements of temporal decay of the signal.
  • - means to focus the signal from the radiating sample or samples and transmit that radiation properly to other optical or detection devices. These can be lenses or optical fibers.
  • - means to collimate the photoluminescence radiation
  • - means to prevent the radiation produced by a sample from reaching the detector arranged to detect another different sample, that is, means to prevent radiation contamination between samples and the environment.
  • An example of this would be the use of a structure that absorbs or reflects the radiations of a sample that were not in the direction of the target detector for that sample and that could affect the detector of another sample, interfering with the correct measurement of this other sample.
  • - means for filtering wavelengths that are in the range of excitation radiation and must not reach the detector.
  • the configuration of the apparatus object of the invention can be varied depending on whether the characterization process is carried out simultaneously or sequentially for all samples and whether they are opaque or transparent samples. If the characterization process is carried out sequentially, that is, that the experiment is carried out in one or several different samples from time to time, means are necessary that allow irradiating and detecting alternately samples that are currently being characterized. For this, at least - mechanical and / or optical means are available that allow the movement of the irradiation system and / or detection system to perform the photoluminescence test on one or several samples.
  • CCD cameras with sufficient number of pixels to capture an image of the medium where the information of the fluorescent light intensity of each sample is captured in one or several pixels of constant coordinates.
  • the irradiation and detection means must necessarily be located on the same side of the support where the samples are, geometry of the type face face geometry. In this way, it is possible to detect photoluminescence radiation that produces the same sample surface that had been previously excited.
  • the detection means can be placed on both sides of the support, since the photoluminescence radiation can pass through the samples and the same support material.
  • the control means may also include means for regulating gaseous fluids to control the composition of gaseous fluids in contact with the surface of the support and / or the samples. They may also contain means for the control of the pressure at which the samples are located, for this purpose there will be pressure meters and vacuum pumps and / or gas pressure vessels, allowing measurements to be made under reduced pressure or overpressure. Samples may be heated or cooled simultaneously at temperatures between -200 and 600 ° C. Being able in this way to carry out the measurements at the same time that chemical reactions can be carried out in if you.
  • the apparatus of the present invention may also comprise
  • irradiation means comprising at least one laser emitting device that preferably comprises adjustment means for modifying the frequency or range of laser emission frequencies
  • a remarkable embodiment of the present invention is the possibility of carrying out the radiation process when the support with the different solid materials is in the presence of a certain atmosphere (gases, vapors), which can be static or renewed thanks to a flow of said gases or vapors, and of constant or variable composition. In this way, it is also possible to track in situ the interaction of the solid with the different molecules, and even if there is a chemical reaction, indirectly determine the catalytic activity of each of the plurality of materials.
  • the system has the necessary means to be able to control and regulate the temperature of the materials, as well as means to regulate the pressure (vacuum or overpressure) in the chamber where the support with the materials is located.
  • the means to regulate the temperature, pressure and type of atmosphere in which the materials are found can be used for different physical / chemical treatments of the set of materials prior to photoluminescence characterization.
  • the light emitted in photoluminescence which corresponds to the transition between excited states and the fundamental state, contains different wavelengths, typically between 200 and 1500 nanometers, the photoluminescence spectrum being called the determination of the relative intensity of emission versus the length of wave.
  • the illumination of the sample with a radiation of suitable wavelength is required, usually in the range of the visible ultraviolet.
  • the general way to determine the optimum excitation length is to observe the band maximums in the visible ultraviolet absorption spectrum.
  • the detector is set at an emission wavelength while scanning all excitation wavelengths.
  • the excitation wavelength always has to be shorter than the emission wavelength.
  • the record that is obtained is known as the excitation spectrum and provides information on the emission intensity for each excitation wavelength.
  • the photoluminescence time profile is constructed by detecting the time of arrival at the detector of the first emission photon and repeating the pulse (excitation / registration of the first emission photon that reaches the detector) a number of Statistically significant times, and that can generally be around 10,000 accounts.
  • the adjustment of the temporal profile of the photoluminescence to kinetic equations allows to establish the distribution of the different families that contribute to the emission (light groups).
  • Photoluminescence as a technique of structural characterization generally provides two types of information. The first of these is the presence or absence of certain luminous groups that are responsible for the appearance of photoluminescence.
  • the recording of the photoluminescence from the sample by measuring the overall intensity of photoluminescence (emission area) allows the determination of how these luminous groups are formed.
  • the temporal profile of the photoluminescence and its adjustment to kinetic equations that contain a series of exponential terms corresponding to first-order kinetics it is possible to know how many populations of the same luminous group exist in the sample, which is the relative proportion of each of them and by determining the half-life time to discuss the chemical environment in which the light group is located in the material.
  • the present invention allows a high capacity characterization technique to be developed for simultaneous or consecutive analysis of large libraries of solid materials, based on solid photoluminescence measurements, so that by analyzing the photoluminescence information of each of the Samples and through due data processing, it is possible to determine the evolution in the formation and distribution of populations of photolumoforic groups, as well as the structural information concerning the chemical environment of the different populations of said groups.
  • the present invention can be applied to a series of solids that contain in their structure chemical elements of the transition metal groups of the first and second period, heavy transition metals and rare earth metals (lanthanides and actinides), elements of the group of the terrestrial and carbon group.
  • the emission wavelengths depend on the chemical composition of the rest of the network and, therefore, indirect information about the rest of the material can be obtained from the study of the emission spectrum.
  • the maximum emission of the vanadyl group can vary from 400 nm to 650 nm, depending on the nature of the support to which it is covalently anchored (H.
  • Garc ⁇ a et. Al. App. Catal. A 2002 having established a linear relationship between the isoelectric point of the material and the wavelength of the maximum emission.
  • the system described above may also be equipped with a computer system that allows the complete automation of the excitation, acquisition, management and storage system of the photoluminescence signals, support positioning, measurement data processing and operation conditions.
  • Figure 3 is a map of emission spectra of a Ti / MCM-41 sample;
  • Figure 4 shows dexacitation kinetics of titanosylseaquioxane and a sample of Ti / MCM-41;
  • Figure 5 schematically shows an apparatus according to the present invention that allows luminescence characterization of solid transparent samples sequentially.
  • Figure 6 schematically shows an apparatus according to the present invention that allows luminescence characterization of transparent solid samples simultaneously.
  • Figure 7 schematically shows details of the apparatus according to the embodiment shown in Figure 6.
  • Figure 8 schematically shows another embodiment of the apparatus according to the present invention that allows luminescence characterization of solid opaque samples sequentially.
  • Figure 10 shows the position of the series of titanosilicate samples subjected to high-capacity photoluminescence analysis.
  • Figure 11 shows the percentage of tetrapodal titanium determined based on the intensity of a reference sample (located in position D4)
  • Figure 12 shows population distribution based on half-life of tetrapodal titanium
  • Figure 1 shows excitation (a), fluorescence (b) and phosphorescence (c) spectra.
  • the absorption spectrum (a) has the vibrational structure corresponding to the upper excited state (Si).
  • the fluorescence (b) shows a fine structure characteristic of the fundamental state (So).
  • the emission is always displaced at lower frequencies and corresponds to the mirror image of the absorption spectrum.
  • the cut-off point between the two spectra corresponds to the transition between the lowest vibrational levels of each state and is known as the 0-0 transition.
  • Phosphorescence corresponds to the emission from the triplet state (of lower energy than Si) to the fundamental state
  • the light emitted in photoluminescence which corresponds to the transition between excited states and the fundamental state, contains different wavelengths, typically between 200 and 1500 nanometers, called the photoluminescence spectrum to determine the relative intensity of emission versus wavelength.
  • Spectrum (c) corresponds to the emission into the air of the silylated Ti / MCM-41 without prior vacuum or dehydration.
  • the illumination of the sample is required with a radiation of suitable wavelength, usually in the ultraviolet range visible.
  • the general way to determine the optimum excitation length is to observe the band maximums in the visible ultraviolet absorption spectrum.
  • the detector is set at an emission wavelength while scanning all excitation wavelengths. The excitation wavelength always has to be shorter than the emission wavelength.
  • the record that is obtained is known as the excitation spectrum and provides information on what is the emission intensity for each excitation wavelength.
  • fluorescence maps fluorescence maps
  • Figure 3 shows a typical example of a photoluminescence map, corresponding to a registered Ti / MCM-41 sample, after dehydration and sealed in a quartz cell, as a function of the excitation wavelength.
  • the photoluminescence time profile is constructed by detecting the time of arrival at the detector of the first emission photon and repeating the pulse (excitation / registration of the first emission photon that reaches the detector) a number of Statistically significant times, and that can generally be around 10,000 ' accounts.
  • Figure 4 shows the dexcitation kinetics of titanosylsquioxane 1 in CH 2 C1 2 and in N 2 (a) and a sample of Ti / MCM-41 (b) recorded at 490nm.
  • the adjustment of the temporal profile of the photoluminescence to kinetic equations allows to establish the distribution of the different families that contribute to the emission (light groups).
  • 11- detection device 12- means for recording the photoluminescence radiation conditioned to the device for detecting and storing information 13- means for the movement of the sample holder holder 14- irradiation means, which allow irradiating the entire surface of the support on which they are distributed the samples 15- set comprising: sample holder, samples, protective cap and the means to prevent the radiation produced by a sample from reaching the detector or detection zone arranged to detect another different sample 16- integrated set of the media detection that includes: means for conditioning photoluminescence radiation and means for its spatially resolved detection. 17- means to prevent the radiation produced by a sample from reaching the detector or detection zone arranged to detect another sample other than 18- bifurca fiber, which allows irradiation and capture of fluorescence emission from the same point
  • Figure 5 represents an embodiment of the present invention, showing an apparatus for sequential photoluminescence characterization of transparent solid materials 1 arranged on a flat support 2.
  • the sample holder 2 is positioned between a medium 4 on which it is fixed and a cover 3.
  • the medium 4 is connected to drive means 13, such as a motorized Cartesian coordinate table (XY), by means of which the samples 1 can be moved sequentially so that the samples are arranged under conditioning means 6 of radiation conditioning radiation generated by the irradiation means 7 to apply a controlled radiation to the samples 1.
  • the irradiation means 7 are arranged above the face of the sample holder 2 which is closed by the cover 3, and controlled by the control means 8.
  • the apparatus also comprises detection and recording means 9, 10, 11, 12 of the luminescence radiation produced by the samples 1 arranged in the support 2 as a result of its previous excitation by means of the irradiation means 7.
  • the detection and recording means are composed of means 9 for focusing and conditioning the photoluminescence radiation from the excited sample, optical fiber 10 that transmits the photoluminescence conditioned by means 9 to a detection device 11 of the conditioned photoluminescence and recording means 12 that detects and stores the data of the detected photoluminescence. If the radiation medium 7 is pulsed, information on the time profile of the emission (de-excitation) of the sample can be obtained.
  • the apparatus comprises irradiation means 14 for applying radiation controlled to the entire surface of the support housing the samples, a sample holder assembly 15 comprising the sample holder in which the samples are arranged, the protective cover, screen means 17 to prevent the radiation produced by a sample from reaching the detector or detection zone arranged to detect another different sample, and a detector assembly comprising the conditioning means of the photoluminescence radiation emitted by each of the samples, as well as the detection means, is arranged below the samples and connected to the recording means 12.
  • This embodiment allows the simultaneous detection and recording of the luminescence radiation produced by all samples arranged on the support 15 as a result of their previous excitation by means of the irradiation means 14.
  • These means 14 include at least one system monochromator that allows rapid scanning, compared to the time that the luminescence process, of the different wavelengths that make up the emission, as well as a CCD device.
  • the apparatus of this embodiment allows, therefore, to irradiate a set of materials 1 simultaneously as well as to detect and record the luminescence radiation of the set of materials arranged on the support, so that simultaneous acquisition of experimental data is possible of the emission intensities at different wavelengths, over the time the luminescence lasts for each of the samples.
  • Figure 8 illustrates another embodiment of the present invention consisting of an apparatus for sequential photoluminescence characterization of samples 1 of solid opaque materials arranged on a flat support 2, whose apparatus has a front face geometry type r geometry and comprises means of irradiation 6.7 to apply at least one controlled radiation to the samples 1, detection and recording means 9, 10, 11 of the luminescence radiation produced by the samples arranged 1 on the support 2 as a result of their previous excitation by means of the irradiation means 6, 7, and actuation means 13, such as a motorized Cartesian coordinate table (XY), for conferring a controlled sequential movement to the support 2.
  • actuation means 13 such as a motorized Cartesian coordinate table (XY)
  • FIG. 9 illustrates another embodiment of the present invention consisting of an apparatus for sequential photoluminescence characterization of samples 1 of solid opaque materials arranged on a flat support 2.
  • Figure 10 shows a representation of the sample holder used in this This embodiment consists of 32 wells where quantities between 10 and 50 milligrams of solid titanosilicate samples with different titanium content and with different density of titanoles groups are placed.
  • the analysis of the tetrahedral titanium content of the samples would be carried out automatically by excitation through a bifurcated glass fiber (18) with a nitrogen laser operating at 237 nm and with a power of one millijul per pulse.
  • the width of the laser pulse is in the range of 0.5 to 1 nanosecond.
  • each of the samples arranged in succession would be excited successively. the sample holder 2.
  • the fluorescence from each sample is captured and directed towards a diffraction network of a bandwidth of 100 nm centered at 400 nm, coupled with a CCD camera that simultaneously captures all the wavelengths between 350 and 450 nm result from the diffraction network.
  • the CCD camera has a temporal resolution capability and by means of proper programming it is able to capture the spectra with a delay with respect to the laser pulse of 5, 10, 15, 25 nanoseconds after the laser pulse.
  • the time in which the emission is recorded for each sample is much less than one second, the analysis time per sample being limited by the mechanical movement of the sample holder.
  • the means used for the movement is a Cartesian coordinate table, which allows movements with an accuracy of 5 ⁇ m and positioning speeds of one cm per second.
  • the movement of the support is performed in the plane perpendicular to the laser beam.
  • an analysis time of 10 seconds per sample is used for each sample, so the frequency is 6 samples per minute.
  • Figure 11 shows a representation of the results obtained for each sample of the tetrapodal titanium content with respect to a reference sample according to the position occupied by each sample in support.
  • the homogeneity of the tetrapodal titanium in each sample and the number of different families of tetrapodal titanium is deduced from the kinetic analysis by an adjustment to a summation of first order equations.
  • different populations are identified by the average life time ( ⁇ ) they possess and the abundance of this population is obtained from the coefficient that accompanies the exponential term, see the following equation:
  • Figure 12 shows the population distribution based on the half-life of tetrapodal titanium.
  • the catalytic activity of these materials for the epoxidation of definas is directly related to the types of titanium present in its structure.
  • samples between 10 and 50 milligrams of vanadium are placed on the supported inorganic oxides.
  • another example of the present invention is the study of high capacity (high-throughput) for the supported vanadium samples.
  • high capacity high-throughput
  • vanadium samples an Nd-YAG laser with frequency triplicator operating at 355 nm is used.
  • the laser pulse is directed to the sample, collecting the emission, which after being analyzed by a diffraction network is recorded by a CCD camera.
  • the diffraction network is centered at 550 nm, the emission being recorded for a window between 500 and 600 nm.
  • the maximum emission depends on the isoelectric point of the support, this varying between 610 nm for very basic supports, such as magnesium oxide (Isoelectric point -12), and 520 nm for acidic supports such as oxide silicon (Isoelectric point ⁇ 1.8).
  • the temporary emission profile contains information on the distribution of populations among several families. This information can be achieved by adjusting the decay of the intensity for the maximum emission wavelength and adjusting it to a series of first order terms.
  • the information obtained by this fluorescence characterization technique is related to vanadium with its catalytic activity in various oxidation reactions. When the maximum emission wavelength is close to the 500 nm region, the catalytic activity for oxygen insertion reactions in hydrocarbons is maximum. In contrast, when the maximum emission wavelength is close to 600 nm, vanadium samples have a high catalytic activity for oxidative dehydrogenation of hydrocarbons.

Abstract

The invention relates to an apparatus for characterization using photoluminescence techniques of multiple solid material samples, comprising at least irradiation means (6,7,8,14) for applying at least one controlled radiation to the samples (1), at least one support (2,3,4,15) housing a plurality of samples (1) and detection and registering means (9,10,11,16) of the photoluminescence radiation produced by the samples (1) arranged on the support (2,3,4,15) as a result of the preceding irradiation. The apparatus enables multiple characterization of large libraries of solid materials by means of photoluminescence measures, particularly fluorescence, which do not alter the properties of the solids, of which only small amounts are required, thereby making it possible to increase the number of new materials that can be characterized within a given time.

Description

TITULOTITLE
UN APARATO PARA LA CARACTERIZACIÓN SIMULTANEA O CONSECUTIVA DE MÚLTIPLES MUESTRAS DE MATERIALES SÓLIDOS MEDIANTE FOTOLUMINISCENCIAAN APPLIANCE FOR THE SIMULTANEOUS OR CONSECUTIVE CHARACTERIZATION OF MULTIPLE SAMPLES OF SOLID MATERIALS BY PHOTOLUMINISCENCE
CAMPO TÉCNICO DE LA INVENCIÓN La presente invención pertenece al campo de las técnicas de fotoluminiscencia y es particularmente aplicable al sector de la caracterización de muestras de materiales sólidos, y especialmente al análisis de catalizadores sólidos, al objeto de determinar la presencia y distribución de elementos luminiscentes en diferentes posiciones de la estructura del sólido.TECHNICAL FIELD OF THE INVENTION The present invention belongs to the field of photoluminescence techniques and is particularly applicable to the sector of solid material sample characterization, and especially to the analysis of solid catalysts, in order to determine the presence and distribution of luminescent elements. in different positions of the solid structure.
ESTADO DE LA TÉCNICA ANTERIOR DE LA INVENCIÓN En el desarrollo de nuevos materiales, las técnicas de caracterización basadas en técnicas espectroscópicas son de gran importancia tanto en el campo de la investigación fundamental como en el de la investigación aplicada. La información proporcionada por las técnicas espectroscópicas para determinar la composición y propiedades de materiales sólidos, puede relacionarse con la actividad de estos sólidos en muchos campos como la catálisis de reacciones quimicas y su capacidad de actuar como semiconductores. La caracterización de la superficie y del total de la partícula de materiales es de gran ayuda a la hora del diseño, desarrollo y optimización de nuevos catalizadores de interés industrial y de materiales con aplicaciones en fotónica, semiconductores, celdas solares y electroluminiscencia. La fotoluminiscencia es una técnica espectroscópica de caracterización que consiste en registrar la luz que es emitida por una sustancia cuando previamente ésta es excitada con una radiación electromagnética de la región ultravioleta visible (200-800 n ) . Este fenómeno se basa en que la absorción de un cuanto de energía luminosa produce la excitación de la sustancia desde el nivel electrónico del estado fundamental hacia niveles electrónicos de mayor energía, los cuales tienen un tiempo de vida sumamente corto y se relajan hasta el primer estado excitado singlete. Este estado excitado singlete tiene un tiempo de vida típico en la escala de los nanosegundos y puede sufrir desactivación de varias maneras . Una forma de desactivación consiste en la conversión interna no emisiva en la cual el estado excitado singlete de más baja energía revierte al estado fundamental mediante colisiones intermoleculares y/o vibraciones de enlaces disipando la energía electrónica como energía mecánica y calor. Otra forma alternativa denominada 'cruzamiento intersistema' consiste en la transformación del estado singlete en un estado triplete de menor energía relativa, el cual debido a la violación de la conservación del spin, tiene un tiempo de vida muy superior. Una tercera vía de desactivación ocurre cuando se rompen enlaces y el grupo excitado se transforma en otra especie química. De especial relevancia en la presente invención, es un cuarto mecanismo de desactivación consistente en la desactivación emisiva de los estados excitados, tanto singlete como triplete, al estado fundamental. Estos fenómenos se conocen, en general, con el nombre de 'fotoluminiscencia' o, más específicamente, 'fluorescencia' cuando la transición electrónica es entre estados excitados singletes, o 'fosforescencia' cuando la transición electrónica es entre un estado excitado triplete y uno singlete. Las diferencias fundamentales entre fluorescencia y fosforescencia son dos: la fluorescencia es en general mucho más intensa que la fosforescencia y además el perfil temporal de la fluorescencia es mucho más rápido que el de la fosforescencia. Así, en la observación de la fosforescencia se requiere en general de temperaturas inferiores a la temperatura ambiente, siendo común el trabajar a la temperatura del nitrógeno líquido (77 K) . La disminución de la temperatura favorece la desactivación mediante un proceso emisivo de relajación frente a las desactivaciones que requieren colisiones y vibraciones. La fotoluminiscencia como técnica de caracterización de materiales proporciona información sobre la presencia de determinados grupos funcionales " lumó foros" en la sustancia, permitiendo determinar su presencia, cuantificar su número, establecer su distribución en diferentes poblaciones y determinar el entorno químico y estructural de estos grupos. La fotoluminiscencia se ha aplicado generalmente para caracterizar sustancias moleculares en disolución, pero más recientemente [Corma et. al, Chem.STATE OF THE PRIOR ART OF THE INVENTION In the development of new materials, characterization techniques based on spectroscopic techniques are of great importance both in the field of fundamental research and in that of applied research. The information provided by spectroscopic techniques to determine the composition and properties of solid materials, may be related to the activity of these solids in many fields such as the catalysis of chemical reactions and their ability to act as semiconductors. The characterization of the surface and of the total of the particle of materials is of great help at the time of the design, development and optimization of new catalysts of industrial interest and of materials with applications in photonics, semiconductors, solar cells and electroluminescence. Photoluminescence is a spectroscopic characterization technique that consists of recording the light that is emitted by a substance when it is previously excited by electromagnetic radiation from the region. visible ultraviolet (200-800 n). This phenomenon is based on the fact that the absorption of a quantum of light energy produces the excitation of the substance from the electronic level of the fundamental state to electronic levels of greater energy, which have an extremely short life time and relax until the first state excited singlet. This excited singlet state has a typical life time on the nanosecond scale and can suffer deactivation in several ways. One form of deactivation consists in the non-emissive internal conversion in which the excited state of the lowest energy singlet reverts to the fundamental state through intermolecular collisions and / or link vibrations dissipating electronic energy such as mechanical energy and heat. Another alternative form called 'intersystem crossing' consists in the transformation of the singlet state into a triplet state of lower relative energy, which due to the violation of the conservation of the spin, has a much longer life time. A third deactivation pathway occurs when bonds are broken and the excited group is transformed into another chemical species. Of particular relevance in the present invention, it is a fourth deactivation mechanism consisting of the emissive deactivation of the excited states, both singlet and triplet, to the fundamental state. These phenomena are known, in general, with the name of 'photoluminescence' or, more specifically, 'fluorescence' when the electronic transition is between singlet excited states, or 'phosphorescence' when the electronic transition is between an excited triplet state and a singlet . The fundamental differences between fluorescence and phosphorescence are two: the fluorescence is generally much more intense than the phosphorescence and in addition the temporal profile of the fluorescence is much faster than that of phosphorescence Thus, when observing phosphorescence, temperatures below room temperature are generally required, working at the temperature of liquid nitrogen (77 K). The decrease of the temperature favors the deactivation by means of an emissive process of relaxation in front of the deactivations that require collisions and vibrations. Photoluminescence as a material characterization technique provides information on the presence of certain functional groups "lumó forums" in the substance, allowing to determine their presence, quantify their number, establish their distribution in different populations and determine the chemical and structural environment of these groups . Photoluminescence has generally been applied to characterize molecular substances in solution, but more recently [Corma et. al, Chem.
Commun. 20 (2001) 2148-2149; Corrent et al. Chem. Mat. 13Commun. 20 (2001) 2148-2149; Corrent et al. Chem. Mat. 13
(2001) 715-722] se ha aplicado a la caracterización de muestras sólidas. La fotoluminiscencia como técnica de caracterización presenta asimismo amplias ventajas con respecto a otras técnicas : se trata de medidas no destructivas que no alteran ni modifican el material, con alta sensibilidad y de gran rapidez. En los últimos años, el desarrollo de nuevas técnicas aceleradas de prueba catalítica está suponiendo una revolución en el campo de la catálisis heterogénea, denominándose a este campo catálisis combinatoria (Senkan, S.M, Nature, 394 350-353; Senkan, S. ., Ange andte Chemie Int. Ed. 2001, 40, 312-329), la cual está aportando técnicas innovadoras y métodos (US-A-5.959.297, US-A- 6.004.617, WO-A-99/21957) para el test rápido y simultáneo de grandes bibliotecas de catalizadores. En vista del interés de estas metodologías de catálisis combinatoria, es conveniente encontrar nuevas técnicas aceleradas para la caracterización físico/química de estos materiales que permitan alcanzar un mayor conocimiento de su composición y propiedades, y consecuentemente, que permitan mejorar el proceso de desarrollo y optimización de estos materiales para una determinada aplicación en los campos anteriormente mencionados .(2001) 715-722] has been applied to the characterization of solid samples. Photoluminescence as a characterization technique also has wide advantages over other techniques: these are non-destructive measures that do not alter or modify the material, with high sensitivity and high speed. In recent years, the development of new accelerated catalytic test techniques is leading to a revolution in the field of heterogeneous catalysis, this field being called combinatorial catalysis (Senkan, SM, Nature, 394 350-353; Senkan, S.., Ange andte Chemie Int. Ed. 2001, 40, 312-329), which is providing innovative techniques and methods (US-A-5,959,297, US-A- 6,004,617, WO-A-99/21957) for the rapid and simultaneous test of large catalyst libraries. In view of the interest of these combinatorial catalysis methodologies, it is convenient to find new Accelerated techniques for the physical / chemical characterization of these materials that allow to achieve a greater knowledge of their composition and properties, and consequently, that allow to improve the process of development and optimization of these materials for a given application in the aforementioned fields.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención tiene por objeto proporcionar un aparato para la caracterización múltiple de grandes librerías de materiales sólidos mediante medidas de fotoluminiscencia, que no alteran en absoluto las propiedades del sólido del cual son necesarias cantidades reducidas, lo que permite aumentar el número de nuevos materiales a caracterizar. Otro objeto de la invención es el de proporcionar una técnica de caracterización de alta capacidad para materiales sólidos con aplicación como catalizadores, materiales fotónicos, semiconductores, electroluminiscentes o celdas solares etc., basada en medidas de fotoluminiscencia. De acuerdo con la invención, estos objetos se consiguen mediante un aparato para la caracterización por técnicas de fotoluminiscencia de múltiples muestras de materiales sólidos, que comprende al menos medios de irradiación para aplicar al menos una radiación controlada a las muestras, al menos un soporte para albergar una pluralidad de muestras medios de detección y registro de radiación de fotoluminiscencia producida por las muestras dispuestas en el soporte como efecto de su previa irradiación. Los medios de irradiación pueden estar diseñados para aplicar una irradiación de excitación simultánea o consecutiva, de una librería de muestras, estando entre estos medios al menos una fuente luminosa, como lo son una lámpara o un dispositivo láser, siendo preferible también la presencia de medios para seleccionar una longitud de onda ó un rango determinado de longitudes de onda del espectro producido por la fuente luminosa; y de medios para enfocar adecuadamente la radiación de excitación, previamente acondicionada, sobre una o más muestras sólidas. En una realización preferida, el sistema también comprende medios para la detección simultánea de un rango determinado de longitudes de onda de la radiación de emisión de las muestras excitadas; sistema para separar la emisión en las longitudes de onda que la componen (monocromador) ; medios para el enfoque de la radiación proveniente de las muestras sobre el dispositivo detector. - medios para registro y análisis de la información generada a través de la detección de la radiación de luminiscencia producida por la pluralidad de materiales irradiados Los medios para la generación de la radiación estarán preferiblemente compuestos por una lámpara de mercurio, con un rango de longitudes de onda 200-800 nm, o por uno varios láseres de longitudes de onda fija o variable en un cierto rango. Estos láseres pueden ser continuos o pulsados y emitirán preferiblemente luz UV, entre éstos pueden estar láseres gaseosos como los de diferentes excímeros de nitrógeno ó sólidos como los de Nd-YAG ó líquidos como los de colorantes . Preferiblemente, la radiación que llegue a las muestras debe estar en el rango de 250-350 nm. Para ello puede ser preciso el empleo de filtros del tipo pasabanda. Otro aspecto deseable de la radiación incidente sobre la muestra o muestras es que los rayos de las ondas electromagnéticas tengan direcciones paralelas, es decir, que se trate de una radiación colimada. Para este efecto, es necesario el empleo de un colimador. Ejemplos de dispositivos colimadores son: lentes de cuarzo o vidrio pyrex biconvexas . También pueden ser de utilidad medios ópticos para enfocar la radiación sobre una determinada superficie, que debe incluir al menos una muestra del conjunto de muestras dispuestas en el soporte. Un soporte para la caracterización por luminiscencia múltiple de materiales sólidos comprende una pluralidad de ubicaciones para el depósito de al menos una muestra en cada ubicación, un soporte, preferiblemente plano, con una superficie portamuestras que comprende las ubicaciones para las muestras, estando definida cada ubicación en una posición predeterminada, y Al menos parte de las ubicaciones puede estar distribuida en la superficie portamuestras, paralelamente, sectorialmente o en espiral o concéntricamente alrededor de un eje. Asimismo, En una realización del soporte, al menos parte de las muestras está depositada en las ubicaciones en la superficie portamuestras en forma de película fina de sólidos . El material del que está constituido el soporte portamuestras debe resistir, sin deformarse ni sufrir cambios en su estructura, a las temperaturas que se aplican a la hora de analizarse las muestras en él depositadas y transparente a las radiaciones UV-visible, en el rango tanto de la radiación de excitación como de emisión en fotoluminiscencia. Un soporte útil para la casi totalidad de los rangos de temperaturas que se aplican en ensayos y caracterizaciones de este tipo, puede estar fabricado en un material termorresistente a temperaturas entre -200 a 600°C y transparente a las radiaciones UV-visible. El soporte y el aparato de la invención, permiten confeccionar un sistema ventajoso que permite la caracterización eficiente de materiales sólidos, basado en medidas simultáneas o sucesivas de fotoluminiscencia. Así, el soporte puede albergar en su superficie una pluralidad de muestras de materiales, estando éstos en forma de películas adheridas de distintos grosores, polvos de granulometría variada o pellets, pudiendo estar la superficie convenientemente conformada para albergar la pluralidad de sólidos . En el caso de que los materiales estén en forma de película, los distintos materiales pueden estar fabricados/depositados en manera continua, de forma que el soporte está recubierto por una película cuya composición varía en función de la posición. En otra realización, el soporte puede estar asimismo dentro de una cámara hermética, con el fin de mantener a las muestras dispuestas en contacto con un medio, preferiblemente gaseoso, totalmente controlado, así como poder realizar medidas a presiones superiores o inferiores a la presión atmosférica. La cámara debe ser totalmente transparente o poseer ventanas transparentes a las radiaciones, tanto de excitación como de emisión, convenientemente ubicadas . En una realización del aparato de la invención, los medios de control comprenden medios de regulación térmica susceptibles de mantener las muestras a una temperatura en un rango desde -200°C hasta 600°C, de regulación de la presión y composición química de la atmósfera en contacto con las muestras . Concerniente a los medios de detección de la radiación de fotoluminiscencia, para la detección de la radiación de fotoluminiscencia se puede utilizar un fotomultiplicador o bien dispositivos CCD (charge-coupled device) (USDESCRIPTION OF THE INVENTION The object of the present invention is to provide an apparatus for the multiple characterization of large libraries of solid materials by means of photoluminescence measurements, which do not alter at all the properties of the solid of which small quantities are necessary, which allows increasing the number of new materials to characterize. Another object of the invention is to provide a high capacity characterization technique for solid materials with application such as catalysts, photonic materials, semiconductors, electroluminescent or solar cells etc., based on photoluminescence measurements. According to the invention, these objects are achieved by an apparatus for the characterization by photoluminescence techniques of multiple samples of solid materials, which comprises at least irradiation means to apply at least one controlled radiation to the samples, at least one support for housing a plurality of medium samples for detecting and recording photoluminescence radiation produced by the samples arranged in the support as a result of their previous irradiation. The irradiation means may be designed to apply a simultaneous or consecutive excitation irradiation of a sample library, at least one light source being among these means, such as a lamp or a laser device, the presence of means for selecting a wavelength or a determined range of wavelengths of the spectrum produced by the light source; and of means to properly focus the excitation radiation, previously conditioned, on one or more solid samples. In a preferred embodiment, the system also comprises means for the simultaneous detection of a given range of wavelengths of the emission radiation of the excited samples; system to separate the emission in the wavelengths that compose it (monochromator); means for focusing the radiation from the samples on the detector device. - means for recording and analyzing the information generated through the detection of the luminescence radiation produced by the plurality of irradiated materials The means for generating the radiation will preferably be composed of a mercury lamp, with a range of lengths of 200-800 nm wave, or by one several lasers of fixed or variable wavelengths in a certain range. These lasers can be continuous or pulsed and will preferably emit UV light, among these may be gaseous lasers such as those of different nitrogen or solid excimers such as Nd-YAG or liquids such as dyes. Preferably, the radiation that reaches the samples should be in the range of 250-350 nm. This may require the use of bandpass filters. Another desirable aspect of incident radiation on the sample or samples is that the rays of the electromagnetic waves have parallel directions, that is, that it is a collimated radiation. For this purpose, the use of a collimator is necessary. Examples of collimating devices are: quartz or pyrex biconvex glass lenses. Optical means can also be useful for focusing the radiation on a given surface, which must include at least one sample of the set of samples arranged in the support. A support for multiple luminescence characterization of solid materials comprises a plurality of locations for the deposit of at least one sample at each location, a support, preferably flat, with a sample holder surface comprising the locations for the samples, each location being defined in a predetermined position, and At least part of the locations may be distributed on the sample holder surface, in parallel, sectorially or spirally or concentrically around an axis. Also, in one embodiment of the support, at least part of the samples is deposited in the locations on the sample holder surface in the form of thin solids film. The material of which the sample holder is constituted must withstand, without deforming or undergoing changes in its structure, at the temperatures that are applied when analyzing the samples deposited therein and transparent to UV-visible radiation, in the range both of excitation radiation as emission in photoluminescence. A useful support for almost all of the temperature ranges that are applied in tests and characterizations of this type, can be manufactured in a heat-resistant material at temperatures between -200 to 600 ° C and transparent to UV-visible radiation. The support and the apparatus of the invention make it possible to make an advantageous system that allows efficient characterization of solid materials, based on simultaneous or successive photoluminescence measurements. Thus, the support can accommodate a plurality of material samples on its surface, these being in the form of bonded films of different thicknesses, powders of varied granulometry or pellets, the surface being suitably shaped to accommodate the plurality of solids. In the case that the materials are in the form of a film, the different materials can be manufactured / deposited continuously, so that the support is covered by a film whose composition varies depending on the position. In another embodiment, the support can also be inside a sealed chamber, in order to keep the samples arranged in contact with a medium, preferably gaseous, fully controlled, as well as being able to perform measurements at pressures higher or lower than atmospheric pressure. . The camera must be totally transparent or have transparent windows to radiation, both excitation and emission, conveniently located. In one embodiment of the apparatus of the invention, the control means comprise thermal regulation means capable of maintaining the samples at a temperature in a range from -200 ° C to 600 ° C, for regulating the pressure and chemical composition of the atmosphere in contact with the samples. Concerning the means of detecting photoluminescence radiation, for the detection of photoluminescence radiation a photomultiplier or fine CCD (charge-coupled device) (US
6,339,633, US 6,335,757 ó EP1168833) . Se pueden emplear asimismo matrices de fotomultiplicadores . Estos dispositivos permiten la detección, es decir, la transformación de los fotones, de la radiación proveniente de una superficie, en impulsos eléctricos de forma resuelta tanto espacialmente como temporalmente, siendo, por tanto, posible el registro simultáneo (CCDs y matrices de fotomultiplicadores) o consecutivo (fotomultiplicador) de la intensidad para una de las ubicaciones donde se encuentran las muestras excitadas, a lo largo del tiempo durante el que se produce la fotoluminiscencia Asimismo, es de relevancia el registro del espectro de fotoluminiscencia de cada muestra, es decir, el registro de las intensidades lumínicas para cada una de las longitudes de onda que integran la radiación de fotoluminiscencia de un material. Para ello es necesario disponer de un dispositivo específico, como: - medios para descomponer la radiación en sus distintas longitudes de onda y su posterior detección. Un ejemplo, es el empleo de un prisma óptico o una red de difracción, que descompone el haz emitido de forma espacial en cada una las componentes que lo integran y posteriormente estas componentes son detectadas de forma simultánea empleando un dispositivo CCD. El dispositivo CCD mide la intensidad luminosa en cada punto (píxel) de la pantalla. Este sistema realiza una separación de las longitudes de onda de emisión mediante su separación espacial. - Medios en los que en un intervalo de tiempo se selecciona un rango estrecho de longitudes de onda, es decir, para monocromax el haz de radiación y posteriormente detectarlo, de forma que variándose con el tiempo la longitud de onda seleccionada, este sistema realiza una separación de las componentes del haz resuelta temporalmente. A este respecto, existen sistemas integrados CCD-monocromador que permiten obtener la información de los espectros (Intensidad vs . Lambda) para intervalos de tiempo muy cortos (del orden de pico segundos) , en comparación con el tiempo total del proceso de fotoluminiscencia, para cada píxel de la cámara CCD. Mediante el empleo de fibras ópticas que recogen, concentran y enfocan la luz de cada ubicación y la dirigen y dividen en varios haces de igual intensidad, es posible desarrollar un sistema que tenga varios tipos de detección con lo que de forma simultánea se pueden registrar espectros de fotoluminiscencia y, en otro detector, realizar medidas de decaimiento temporal de la señal Asimismo se requieren: - medios para enfocar la señal proveniente de la muestra o muestras radiantes y transmitir adecuadamente esa radiación hasta otros dispositivos ópticos o de detección. Estos pueden ser lentes o fibras ópticas. - medios para colimar la radiación de fotoluminiscencia - medios para evitar que la radiación producida por una muestra llegue al detector dispuesto para detectar otra muestra distinta, es decir, medios para evitar la contaminación por radiación entre muestras y del medio ambiente. Un ejemplo de ello, sería el empleo de una estructura que absorbiera o reflejara las radiaciones de una muestra que no fueran en la dirección del detector objetivo para esa muestra y que sí podrían llegar a incidir en el detector de otra muestra, interfiriendo la correcta medida de esta otra muestra. - medios para filtrar longitudes de onda que están en el rango de la radiación de excitación y que no deben llegar al detector. Modalidades de realización de la invención y descripción del método asociado para la ejecución del proceso de caracterización mediante fotoluminiscencia. La configuración del aparato objeto de la invención puede ser variada en función de que el proceso de caracterización se realice de forma simultánea o secuencial para todas las muestras y de que se trate de muestras opacas o transparentes . Si el proceso de caracterización se realiza de forma secuencial, es decir, que cada cierto tiempo se realiza el experimento en una o varias muestras distintas, son necesarios medios que permitan irradiar y detectar alternativamente muestras que en ese momento están siendo objeto de caracterización. Para ello se dispone de al menos - medios mecánicos y/o ópticos que permitan el movimiento del sistema de irradiación y/o sistema de detección para realizar el test de fotoluminiscencia sobre una o varias muestras . - medios mecánicos que permitan el movimiento del soporte para posicionar una o varias muestras determinadas en la zona de actuación de los sistemas de irradiación y detección Para el movimiento del soporte (giratorio y/o lineal) pueden ser necesarios medios tales como motores paso a paso. Asimismo, para el movimiento del haz o haces de radiación son necesarios medios mecánicos y ópticos que aseguren el control y precisión de la posición o posiciones irradiadas en todo momento . Si el proceso de caracterización se realiza de forma simultánea para todas las muestras que alberga el soporte, es decir, todas las muestras son excitadas a la vez y la radiación de fotoluminiscencia es detectada y registrada simultáneamente para todas las muestras, es necesario que los medios de irradiación y detección puedan actuar sobre la totalidad de muestras. A este respecto existen cámaras CCD con suficiente número de píxeles para capturar una imagen del soporte donde la información de la intensidad luminosa de fluorescencia de cada muestra es capturada en uno o varios píxeles de coordenadas constantes . Desde el punto de vista de la disposición geométrica de los componentes integrantes del sistema en el caso de muestras opacas, los medios de irradiación y detección deben situarse necesariamente al mismo lado del soporte donde están las muestras, geometría del tipo front face geometry. De esta forma, es posible la detección de la radiación de fotoluminiscencia que produce la misma superficie de muestra que había sido previamente excitada. En el caso de muestras transparentes, los medios de detección pueden situarse a ambos lados del soporte, ya que la radiación de fotoluminiscencia puede atravesar las muestras y el mismo material soporte. Los medios de control pueden también incluir medios de regulación de fluidos gaseosos para controlar la composición de fluidos gaseosos en contacto con la superficie del soporte y/o de las muestras . También pueden contener medios para el control de la presión a la que se encuentran las muestras, para ello se dispondrán de medidores de presión y bombas de vacío y/o recipientes de gases a presión, permitiéndose realizar las medidas a presión reducida o a sobrepresión. Las muestras podrán ser calentadas o enfriadas simultáneamente a temperaturas entre -200 y 600°C. Pudiendo de esta manera llevar a cabo las medidas al mismo tiempo que se pueden realizar reacciones químicas in si tu . El aparato de la presente invención también puede comprender6,339,633, US 6,335,757 or EP1168833). Matrices of photomultipliers can also be used. These devices allow the detection, that is to say, the transformation of the photons, of the radiation coming from a surface, into electrical impulses in a resolved way both spatially and temporarily, being therefore possible the simultaneous registration (CCDs and arrays of photomultipliers) or consecutive (photomultiplier) of the intensity for one of the locations where the excited samples are found, over the time during which the photoluminescence occurs Also, the registration of the photoluminescence spectrum of each sample is relevant, that is, the recording of the light intensities for each of the wavelengths that integrate the photoluminescence radiation of a material. For this, it is necessary to have a specific device, such as: - means to decompose the radiation in its different wavelengths and its subsequent detection. An example is the use of an optical prism or a diffraction network, which decomposes the beam emitted spatially in each component that integrates it and then these components are detected simultaneously using a CCD device. The CCD device measures the light intensity at each point (pixel) of the screen. This system performs a separation of the emission wavelengths through their spatial separation. - Means in which a narrow range of wavelengths is selected in a period of time, that is to say, for monochromarx the radiation beam and subsequently detect it, so that by varying the selected wavelength over time, this system performs a separation of the components of the temporarily resolved beam. In this regard, there are integrated CCD-monochromator systems that allow obtaining the spectral information (Intensity vs. Lambda) for very short time intervals (of the order of peak seconds), compared to the total photoluminescence process time, for each pixel of the CCD camera. By using optical fibers that collect, concentrate and focus the light of each location and direct and divide it into several beams of equal intensity, it is possible to develop a system that has several types of detection, so that spectra can be registered simultaneously of photoluminescence and, in another detector, perform measurements of temporal decay of the signal. Also required are: - means to focus the signal from the radiating sample or samples and transmit that radiation properly to other optical or detection devices. These can be lenses or optical fibers. - means to collimate the photoluminescence radiation - means to prevent the radiation produced by a sample from reaching the detector arranged to detect another different sample, that is, means to prevent radiation contamination between samples and the environment. An example of this would be the use of a structure that absorbs or reflects the radiations of a sample that were not in the direction of the target detector for that sample and that could affect the detector of another sample, interfering with the correct measurement of this other sample. - means for filtering wavelengths that are in the range of excitation radiation and must not reach the detector. Modes of realization of the invention and description of the associated method for the execution of the characterization process by photoluminescence. The configuration of the apparatus object of the invention can be varied depending on whether the characterization process is carried out simultaneously or sequentially for all samples and whether they are opaque or transparent samples. If the characterization process is carried out sequentially, that is, that the experiment is carried out in one or several different samples from time to time, means are necessary that allow irradiating and detecting alternately samples that are currently being characterized. For this, at least - mechanical and / or optical means are available that allow the movement of the irradiation system and / or detection system to perform the photoluminescence test on one or several samples. - mechanical means that allow the movement of the support to position one or several specific samples in the area of action of the irradiation and detection systems For the movement of the support (rotating and / or linear) means such as stepper motors may be necessary . Likewise, mechanical and optical means are required for the movement of the radiation beam or beams to ensure the control and accuracy of the position or positions irradiated at all times. If the characterization process is carried out simultaneously for all the samples that the support houses, that is, all the samples are excited at the same time and the photoluminescence radiation is detected and recorded simultaneously for all the samples, it is necessary that the media of irradiation and detection can act on All samples. In this regard there are CCD cameras with sufficient number of pixels to capture an image of the medium where the information of the fluorescent light intensity of each sample is captured in one or several pixels of constant coordinates. From the point of view of the geometric arrangement of the components of the system in the case of opaque samples, the irradiation and detection means must necessarily be located on the same side of the support where the samples are, geometry of the type face face geometry. In this way, it is possible to detect photoluminescence radiation that produces the same sample surface that had been previously excited. In the case of transparent samples, the detection means can be placed on both sides of the support, since the photoluminescence radiation can pass through the samples and the same support material. The control means may also include means for regulating gaseous fluids to control the composition of gaseous fluids in contact with the surface of the support and / or the samples. They may also contain means for the control of the pressure at which the samples are located, for this purpose there will be pressure meters and vacuum pumps and / or gas pressure vessels, allowing measurements to be made under reduced pressure or overpressure. Samples may be heated or cooled simultaneously at temperatures between -200 and 600 ° C. Being able in this way to carry out the measurements at the same time that chemical reactions can be carried out in if you. The apparatus of the present invention may also comprise
* medios magnetizadores para poder someter a las muestras a un campo magnético, ya sea constante o variable; y/o* magnetizing means to be able to subject the samples to a magnetic field, either constant or variable; I
* medios para someter a las muestras a un campo eléctrico, ya sea constante o variable; y/o* means to subject the samples to an electric field, either constant or variable; I
* medios de irradiación que comprenden al menos un dispositivo emisor de rayos láser que preferentemente comprende medios de ajuste para modificar la frecuencia o el rango de frecuencias de emisión de rayos láser; y/o* irradiation means comprising at least one laser emitting device that preferably comprises adjustment means for modifying the frequency or range of laser emission frequencies; I
* medios generadores de luz polarizada. La señal de lectura de la respuesta a la irradiación de los distintos materiales puede ser corregida con blancos para evitar la influencia del material del soporte portamuestras . Una modalidad destacable de la presente invención, es la posibilidad de efectuar el proceso de radiación cuando el soporte con los distintos materiales sólidos se encuentra en presencia de una atmósfera determinada (gases, vapores) , que puede ser estática o renovada gracias a un flujo de dichos gases o vapores, y de composición constante o variable. De esta forma es posible realizar también un seguimiento in situ de la interacción del sólido con las distintas moléculas, e incluso si existe reacción química, determinar indirectamente la actividad catalítica de cada uno de la pluralidad de materiales. Para este efecto, el sistema dispone de los medios necesarios para poder controlar y regular la temperatura de los materiales, así como de medios para regular la presión (vacío o sobrepresión) en la cámara donde está ubicado el soporte con los materiales. De esta forma, es posible el uso de moléculas sonda, que permite el estudio de la interacción de los distintos sólidos con ellas . Asimismo, los medios para regular la temperatura, presión y tipo de atmósfera en la que se encuentran los materiales, pueden ser de uso para diferentes tratamientos físico/químicos del conjunto de materiales previamente a la caracterización por fotoluminiscencia. La luz emitida en fotoluminiscencia, que corresponde a la transición entre estados excitados y el estado fundamental, contiene diferentes longitudes de onda, típicamente entre 200 y 1500 nanómetros, denominándose espectro de fotoluminiscencia a la determinación de la intensidad relativa de emisión frente a la longitud de onda. Para conseguir la excitación electrónica y por tanto la aparición de la fotoluminiscencia se requiere la iluminación de la muestra con una radiación de longitud de onda adecuada, por lo general en el rango del ultravioleta visible. La manera general para determinar la longitud de excitación óptima consiste en la observación de los máximos de banda en el espectro de absorción de ultravioleta visible. Relacionado con la selección de la longitud de excitación óptima existe una variante de la fotoluminiscencia en la que se fija el detector a una longitud de onda de emisión mientras que se hace un barrido de todas las longitudes de onda de excitación. La longitud de onda de excitación siempre tiene que ser más corta que la longitud de onda de emisión. El registro que se obtiene se conoce como espectro de excitación y proporciona información sobre cuál es la intensidad de emisión para cada longitud de onda de excitación. Por otra parte, existen variantes (mapas de fluorescencia) en los que se disponen en un eje de forma paralela espectros de emisión registrados para todas las longitudes de excitación, correspondiendo la intensidad de emisión al eje Z, y en el eje perpendicular se disponen los espectros de excitación. Estos mapas de fotoluminiscencia contienen la máxima información posible en cuanto a emisión y excitación. La determinación de la longitud de onda óptima para la excitación de una muestra sólida se realiza en otro dispositivo, no objeto de la presente invención. Para realizar el test múltiple en el dispositivo objeto de la presente invención se selecciona aquélla longitud de onda que más se adecué al conjunto de los distintos materiales a caracterizar. Con respecto al perfil temporal de la emisión existe una técnica de fotoluminiscencia denominada recuento de un único fotón (single photon counting) en la cual la excitación ocurre mediante un pulso de luz proveniente de una lámpara de destello (flash) o un láser, siendo la duración del pulso muy inferior al tiempo de vida del estado excitado. Duraciones de pulsos típicas están en la zona del picosegundo (10~12 segundo) . Esta excitación de la muestra provoca la emisión y lo que se registra es como disminuye la intensidad de luz proveniente de la fotoluminiscencia frente al tiempo transcurrido desde el pulso. En la técnica de recuento de un único fotón, el perfil temporal de fotoluminiscencia se construye detectando el tiempo de llegada al detector del primer fotón de emisión y repitiendo el pulso (excitación/registro del primer fotón de emisión que llegue al detector) un número de veces estadísticamente significativo, y que puede estar generalmente entorno a 10.000 cuentas. El ajuste del perfil temporal de la fotoluminiscencia a ecuaciones cinéticas permite establecer la distribución de las diferentes familias que contribuyen a la emisión (grupos lumóforos) . La fotoluminiscencia como técnica de caracterización estructural proporciona en general dos tipos de información. La primera de ellas es la presencia o ausencia de determinados grupos lumofóricos que son los responsables de la aparición de la fotoluminiscencia. Mediante esta primera información es posible el seguimiento de la aparición/desaparición de estos grupos durante la síntesis de un material o tratamiento posterior, su evolución temporal y la llegada a un estado estacionario. Por ejemplo, durante la formación de un material, el registro de la fotoluminiscencia proveniente de la muestra mediante la medida de la intensidad global de fotoluminiscencia (área de emisión) permite la determinación de cómo van formándose estos grupos lumofóricos . Por otro lado, mediante la determinación del perfil temporal de la fotoluminiscencia y de su ajuste a ecuaciones cinéticas que contengan una serie de términos exponenciales correspondientes a cinéticas de primer orden es posible conocer cuantas poblaciones del mismo grupo lumofórico existen en la muestra, cual es la proporción relativa de cada una de ellas y mediante la determinación del tiempo de vida media discutir el entorno químico en el que se encuentra situado el grupo lumofórico en el material . A modo de ejemplo, que ilustra las posibilidades de la fotoluminiscencia en la caracterización de sólidos con aplicación como catalizadores, se comenta a continuación el caso del material Ti/MCM-41. En este caso, cuando el sólido es excitado se observa una emisión cuyo espectro presenta un máximo a 490 manómetros y que es debido exclusivamente a la emisión proveniente de átomos de titanio tetrapodalmente coordinado a las paredes del silicato. Cuando esta muestra es manipulada de manera que la población de estos átomos de titanio tetraédricamente coordinados con la red del silicato disminuye, la intensidad de la emisión decrece proporcionalmente, pudiendo eventualmente llegar a desaparecer y observándose una fotoluminiscencia comparativamente de varios órdenes de magnitud más débil a longitudes de onda de emisión más larga (entorno a 600 nm) . Por tanto, se puede decir que la presencia de titanio tetrapodal es responsable de la emisión a 490 nm. Y si por el contrario, mediante un tratamiento se consigue restablecer la coordinación tetrapodal de los átomos de titanio a partir de los grupos titanoles, la intensidad de la fotoluminiscencia a 490 nm se recupera. Una forma de conseguir la regeneración de titanio tetrapodal es por sililación de los grupos titanoles. Por otra parte, el análisis del decaimiento de la intensidad de la fotoluminiscencia demuestra la existencia de dos poblaciones importantes de grupos ≡Ti-O- presentes en la estructura. La presente invención permite desarrollar una técnica de caracterización de alta capacidad destinada al análisis simultáneo o consecutivo de grandes librerías de materiales sólidos, basada en medidas de fotoluminiscencia de sólidos, de manera que mediante el análisis de la información de la fotoluminiscencia de cada una de las muestras y mediante el debido procesamiento de datos, se pueda determinar la evolución en la formación y la distribución de poblaciones de grupos fotolumofóricos, así como la información estructural concerniente al entorno químico de las distintas poblaciones de los citados grupos . La presente invención puede ser aplicada a una serie de sólidos que contengan en su estructura elementos químicos de los grupos de metales de transición del primer y segundo periodo, metales de transición pesados y metales de tierras raras (lantánidos y actínidos) , elementos del grupo de los térreos y del grupo del carbono. La presente invención es de especial interés para aquellos elementos en los que se ha descrito que la emisión de fotoluminiscencia es de una intensidad elevada, entre los que se encuentran el titanio tetraédrico, vanadio y fundamentalmente el grupo vanadilo, cromo, manganeso, hierro, cobalto, cobre, níquel, molibdeno (especialmente el grupo Mo=0) , rutenio, paladio, cadmio, indio, estaño, wolframio, renio, osmio, cerio, europio, gadolinio, terbio, disprosio, holmio, erbio, uranio, neptunio y plutonio. Muchos de estos grupos presentan una emisión cuando se encuentran ocupando posiciones de red, tanto si poseen un doble enlace formal con el oxígeno como si sólo hay enlaces simples, mientras que en muchos casos la unión del metal con grupos hidroxilo o con agua de coordinación inhibe la fotoluminiscencia debido al mecanismo de relajación consistente en el acoplamiento de la desexcitación electrónica con el aumento de la vibración de los grupos OH. Por otra parte, se ha descrito que las longitudes de onda de emisión dependen de la composición química del resto de la red y, por tanto, del estudio del espectro de emisión se pueden conseguir informaciones indirectas acerca del resto del material. Así, por ejemplo, el máximo de emisión del grupo vanadilo puede variar desde 400 nm hasta 650 nm, dependiendo de la naturaleza del soporte al que se encuentra anclado covalente ente (H. García et. al. App. Catal. A 2002), habiéndose establecido una relación lineal entre el punto isoeléctrico del material y la longitud de onda del máximo de emisión. El sistema anteriormente descrito puede estar dotado además de un sistema informático que permita la automatización completa del sistema de excitación, adquisición, gestión y almacenamiento de las señales de fotoluminiscencia, posicionamiento del soporte, tratamiento de datos de la medida y de las condiciones de la operación* polarized light generating means. The reading signal of the response to irradiation of the different materials can be corrected with targets to avoid the influence of the sample holder material. A remarkable embodiment of the present invention is the possibility of carrying out the radiation process when the support with the different solid materials is in the presence of a certain atmosphere (gases, vapors), which can be static or renewed thanks to a flow of said gases or vapors, and of constant or variable composition. In this way, it is also possible to track in situ the interaction of the solid with the different molecules, and even if there is a chemical reaction, indirectly determine the catalytic activity of each of the plurality of materials. For this purpose, the system has the necessary means to be able to control and regulate the temperature of the materials, as well as means to regulate the pressure (vacuum or overpressure) in the chamber where the support with the materials is located. In this way, the use of probe molecules is possible, which allows the study of the interaction of the different solids with them. Likewise, the means to regulate the temperature, pressure and type of atmosphere in which the materials are found, can be used for different physical / chemical treatments of the set of materials prior to photoluminescence characterization. The light emitted in photoluminescence, which corresponds to the transition between excited states and the fundamental state, contains different wavelengths, typically between 200 and 1500 nanometers, the photoluminescence spectrum being called the determination of the relative intensity of emission versus the length of wave. To obtain the electronic excitation and therefore the appearance of the photoluminescence, the illumination of the sample with a radiation of suitable wavelength is required, usually in the range of the visible ultraviolet. The general way to determine the optimum excitation length is to observe the band maximums in the visible ultraviolet absorption spectrum. Related to the selection of the optimum excitation length there is a variant of the photoluminescence in which the detector is set at an emission wavelength while scanning all excitation wavelengths. The excitation wavelength always has to be shorter than the emission wavelength. The record that is obtained is known as the excitation spectrum and provides information on the emission intensity for each excitation wavelength. On the other hand, there are variants (fluorescence maps) in which emission spectra recorded for all excitation lengths are arranged in a parallel axis, the emission intensity corresponding to the Z axis, and in the perpendicular axis the excitation spectra. These photoluminescence maps contain the maximum possible information regarding emission and excitation. The determination of the optimal wavelength for the excitation of a solid sample is performed in another device, not object of the present invention. To perform the multiple test on the device object of the present invention, the wavelength that best suits the set of different materials to be characterized is selected. With respect to the temporal profile of the emission there is a photoluminescence technique called single photon counting in which the excitation occurs by means of a light pulse coming from a flash lamp or a laser, being the Pulse duration much shorter than the lifetime of the excited state. Typical pulse durations are in the PS area (10 ~ 12 seconds). This excitation of the sample causes the emission and what is recorded is how the intensity of light from the photoluminescence decreases compared to the time elapsed since the pulse. In the single photon counting technique, the photoluminescence time profile is constructed by detecting the time of arrival at the detector of the first emission photon and repeating the pulse (excitation / registration of the first emission photon that reaches the detector) a number of Statistically significant times, and that can generally be around 10,000 accounts. The adjustment of the temporal profile of the photoluminescence to kinetic equations allows to establish the distribution of the different families that contribute to the emission (light groups). Photoluminescence as a technique of structural characterization generally provides two types of information. The first of these is the presence or absence of certain luminous groups that are responsible for the appearance of photoluminescence. Through this first information it is possible to monitor the appearance / disappearance of these groups during the synthesis of a material or subsequent treatment, its temporal evolution and the arrival to a stationary state. For example, during the formation of a material, the recording of the photoluminescence from the sample by measuring the overall intensity of photoluminescence (emission area) allows the determination of how these luminous groups are formed. On the other hand, by determining the temporal profile of the photoluminescence and its adjustment to kinetic equations that contain a series of exponential terms corresponding to first-order kinetics it is possible to know how many populations of the same luminous group exist in the sample, which is the relative proportion of each of them and by determining the half-life time to discuss the chemical environment in which the light group is located in the material. As an example, which illustrates the possibilities of photoluminescence in the characterization of solids with application as catalysts, the case of the Ti / MCM-41 material is discussed below. In this case, when the solid is excited, an emission is observed whose spectrum has a maximum of 490 manometers and which is due exclusively to the emission from tetrapodally coordinated titanium atoms to the silicate walls. When this sample is manipulated so that the population of these titanium atoms tetrahedrally coordinated with the silicate network decreases, the intensity of the emission decreases proportionally, eventually being able to disappear and observing a comparative photoluminescence of several orders of magnitude weaker at longer emission wavelengths (around 600 nm). Therefore, it can be said that the presence of tetrapodal titanium is responsible for the emission at 490 nm. And if on the contrary, through a treatment you get restore the tetrapodal coordination of titanium atoms from the titanoles groups, the intensity of the photoluminescence at 490 nm is recovered. One way to achieve tetrapodal titanium regeneration is by silylation of the titanium groups. On the other hand, the analysis of the photoluminescence intensity decay demonstrates the existence of two important populations of ≡Ti-O- groups present in the structure. The present invention allows a high capacity characterization technique to be developed for simultaneous or consecutive analysis of large libraries of solid materials, based on solid photoluminescence measurements, so that by analyzing the photoluminescence information of each of the Samples and through due data processing, it is possible to determine the evolution in the formation and distribution of populations of photolumoforic groups, as well as the structural information concerning the chemical environment of the different populations of said groups. The present invention can be applied to a series of solids that contain in their structure chemical elements of the transition metal groups of the first and second period, heavy transition metals and rare earth metals (lanthanides and actinides), elements of the group of the terrestrial and carbon group. The present invention is of special interest for those elements in which it has been described that the emission of photoluminescence is of a high intensity, among which are tetrahedral titanium, vanadium and fundamentally the vanadyl, chromium, manganese, iron, cobalt group , copper, nickel, molybdenum (especially the group Mo = 0), ruthenium, palladium, cadmium, indium, tin, tungsten, rhenium, osmium, cerium, europium, gadolinium, terbium, dysprosium, holmium, erbium, uranium, neptunium and plutonium. Many of these groups present an emission when they are occupying network positions, whether they have a formal double bond with oxygen or if there are only simple bonds, while in many cases the union of the metal with hydroxyl groups or with coordination water inhibits the photoluminescence due to the relaxation mechanism consisting in the coupling of the electronic de-excitation with the increase of the vibration of the OH groups. On the other hand, it has been described that the emission wavelengths depend on the chemical composition of the rest of the network and, therefore, indirect information about the rest of the material can be obtained from the study of the emission spectrum. Thus, for example, the maximum emission of the vanadyl group can vary from 400 nm to 650 nm, depending on the nature of the support to which it is covalently anchored (H. García et. Al. App. Catal. A 2002), having established a linear relationship between the isoelectric point of the material and the wavelength of the maximum emission. The system described above may also be equipped with a computer system that allows the complete automation of the excitation, acquisition, management and storage system of the photoluminescence signals, support positioning, measurement data processing and operation conditions.
(temperatura, flujos, presión), análisis de los espectros de fluorescencia y comparación con una base de datos, ajuste a modelos cinéticos de los perfiles temporales de la señal de fotoluminiscencia y representación de resultados. REALIZACIONES DE LA INVENCIÓN A continuación, se describirán aspectos prácticos de la invención en base a unos dibujos, en los que la figura 1 es un diagrama que muestra espectros de excitación, fluorescencia y fosforescencia; la figura 2 muestra un espectro de fotoluminiscencia registrado en una muestra de Ti/MCM-41. la figura 3 es un mapa de espectros de emisión de una muestra Ti/MCM-41; la figura 4 muestra unas cinéticas de desexcitación del titanosilseaquioxano y una muestra de Ti/MCM-41; la figura 5 muestra esquemáticamente un aparato conforme a la presente invención que permite la caracterización por luminiscencia de muestras transparentes sólidas de manera secuencial. la figura 6 muestra esquemáticamente un aparato conforme a la presente invención que permite la caracterización por luminiscencia de muestras sólidas transparentes de manera simultánea. la figura 7 muestra esquemáticamente detalles del aparato según la realización mostrada en la figura 6. la figura 8 muestra esquemáticamente otra realización del aparato conforme a la presente invención que permite la caracterización por luminiscencia de muestras opacas sólidas de manera secuencial. La figura 10 muestra la posición de la serie de muestras de titanosilicatos sometidas al análisis de alta capacidad por fotoluminescencia La figura 11 muestra el porcentaje de titanio tetrapodal determinado en base ala intensidad de una muestra de referencia (ubicada en la posición D4) La figura 12 muestra la distribución de población en base a los tiempos de vida media de titanio tetrapodal La figura 1 muestra espectros de excitación (a) , de fluorescencia (b) y de fosforescencia (c) . El espectro de absorción (a) posee la estructura vibracional correspondiente al estado excitado superior (Si) . La fluorescencia (b) muestra una estructura fina característica del estado fundamental (So) . La emisión siempre se encuentra desplazada a frecuencias menores y corresponde a la imagen especular del espectro de absorción. El punto de corte entre los dos espectros corresponde a la transición entre los niveles vibracionales más bajos de cada estado y se conoce como transición 0-0. La fosforescencia corresponde a la emisión desde el estado triplete (de menor energía que el Si) al estado fundamental La luz emitida en fotoluminiscencia, que corresponde a la transición entre estados excitados y el estado fundamental, contiene diferentes longitudes de onda, típicamente entre 200 y 1500 nanómetros, denominándose espectro de fotoluminiscencia a la determinación de la intensidad relativa de emisión frente a la longitud de onda. La figura 2 muestra un ejemplo típico de un espectro de fotoluminiscencia registrado una muestra de titanio/MCM- 41, concretamente un espectro de emisión (EM) cuando la λex= 250 nm de las muestras Ti/MCM-41 a vacío y deshidratadas previamente para muestras Ti/MCM-41 calcinada (a) , Ti/MCM-41 sililada (b) . El espectro (c) corresponde a la emisión al aire de la Ti/MCM-41 sililada sin previo vacío ni deshidratación. El espectro de excitación registrado a λem= 390 nm (EX) corresponde a la muestra Ti/MCM-41 sililada. Para conseguir la excitación electrónica y por tanto la aparición de la fotoluminiscencia se requiere la iluminación de la muestra con una radiación de longitud de onda adecuada, por lo general en el rango del ultravioleta visible . La manera general para determinar la longitud de excitación óptima consiste en la observación de los máximos de banda en el espectro de absorción de ultravioleta visible. Relacionado con la selección de la longitud de excitación óptima existe una variante de la fotoluminiscencia en la que se fija el detector a una longitud de onda de emisión mientras que se hace un barrido de todas las longitudes de onda de excitación. La longitud de onda de excitación siempre tiene que ser más corta que la longitud de onda de emisión. El registro que se obtiene se conoce como espectro de excitación y proporciona información sobre cual es la intensidad de emisión para cada longitud de onda de excitación. Por otra parte, existen variantes (mapas de fluorescencia) en los que se disponen en un eje de forma paralela espectros de emisión registrados para todas las longitudes de excitación, correspondiendo la intensidad de emisión al eje Z, y en el eje perpendicular se disponen los espectros de excitación. La figura 3 muestra un ejemplo típico de un mapa de fotoluminiscencia, correspondiente a una muestra Ti/MCM-41 registrado, tras deshidratación y sellado en una celda de cuarzo, en función de la longitud de onda de excitación. Estos mapas de fotoluminiscencia contienen la máxima información posible en cuanto a emisión y excitación. Con respecto al perfil temporal de la emisión existe una técnica de fotoluminiscencia denominada recuento de un único fotón (single photon counting) en la cual la excitación ocurre mediante un pulso de luz proveniente de una lámpara de destello (flash) o un láser, siendo la duración del pulso muy inferior al tiempo de vida del estado excitado. Duraciones de pulsos típicas están en la zona del picosegundo (10-12 segundo) . Esta excitación de la muestra provoca la emisión y lo que se registra es como disminuye la intensidad de luz proveniente de la fotoluminiscencia frente al tiempo transcurrido desde el pulso. En la técnica de recuento de un único fotón, el perfil temporal de fotoluminiscencia se construye detectando el tiempo de llegada al detector del primer fotón de emisión y repitiendo el pulso (excitación/registro del primer fotón de emisión que llegue al detector) un número de veces estadísticamente significativo, y que puede estar generalmente entorno a 10.000 'cuentas. La figura 4 muestra las cinéticas de desexcitación del titanosilsesquioxano 1 en CH2C12 y en N2 (a) y una muestra de Ti/MCM-41 (b) registrado a 490nm. El ajuste del perfil temporal de la fotoluminiscencia a ecuaciones cinéticas permite establecer la distribución de las diferentes familias que contribuyen a la emisión (grupos lumóforos) . En las realizaciones mostradas en las figuras 5 a 8 aparecen unas referencias numéricas cuyos significados son los que se especifican seguidamente: 1- muestras de sólidos 2- soporte portamuestras 3- tapa de protección del soporte portamuestras y las muestras 4- medio sobre el que se fija el soporte portamuestras 5- cámara vacía en contacto con las muestras sólidas 6- medios para acondicionar (filtrar, colimar, etc.) y enfocar la radiación de excitación sobre una muestra determinada 7- medios de generación de la radiación 8- medio de control de la fuente de excitación 9- medios para enfocar y acondicionar la radiación de fotoluminiscencia procedente de la muestra excitada(temperature, flows, pressure), analysis of the fluorescence spectra and comparison with a database, adjustment to kinetic models of the temporal profiles of the photoluminescence signal and representation of results. EMBODIMENTS OF THE INVENTION Next, practical aspects of the invention will be described based on drawings, in which Figure 1 is a diagram showing excitation, fluorescence and phosphorescence spectra; Figure 2 shows a photoluminescence spectrum recorded in a sample of Ti / MCM-41. Figure 3 is a map of emission spectra of a Ti / MCM-41 sample; Figure 4 shows dexacitation kinetics of titanosylseaquioxane and a sample of Ti / MCM-41; Figure 5 schematically shows an apparatus according to the present invention that allows luminescence characterization of solid transparent samples sequentially. Figure 6 schematically shows an apparatus according to the present invention that allows luminescence characterization of transparent solid samples simultaneously. Figure 7 schematically shows details of the apparatus according to the embodiment shown in Figure 6. Figure 8 schematically shows another embodiment of the apparatus according to the present invention that allows luminescence characterization of solid opaque samples sequentially. Figure 10 shows the position of the series of titanosilicate samples subjected to high-capacity photoluminescence analysis. Figure 11 shows the percentage of tetrapodal titanium determined based on the intensity of a reference sample (located in position D4) Figure 12 shows population distribution based on half-life of tetrapodal titanium Figure 1 shows excitation (a), fluorescence (b) and phosphorescence (c) spectra. The absorption spectrum (a) has the vibrational structure corresponding to the upper excited state (Si). The fluorescence (b) shows a fine structure characteristic of the fundamental state (So). The emission is always displaced at lower frequencies and corresponds to the mirror image of the absorption spectrum. The cut-off point between the two spectra corresponds to the transition between the lowest vibrational levels of each state and is known as the 0-0 transition. Phosphorescence corresponds to the emission from the triplet state (of lower energy than Si) to the fundamental state The light emitted in photoluminescence, which corresponds to the transition between excited states and the fundamental state, contains different wavelengths, typically between 200 and 1500 nanometers, called the photoluminescence spectrum to determine the relative intensity of emission versus wavelength. Figure 2 shows a typical example of a recorded photoluminescence spectrum of a titanium / MCM-41 sample, specifically an emission spectrum (MS) when the λ ex = 250 nm of the Ti / MCM-41 samples under vacuum and previously dehydrated for samples Ti / MCM-41 calcined (a), Ti / MCM-41 silylated (b). Spectrum (c) corresponds to the emission into the air of the silylated Ti / MCM-41 without prior vacuum or dehydration. The excitation spectrum recorded at λ em = 390 nm (EX) corresponds to the silylated Ti / MCM-41 sample. To obtain the electronic excitation and therefore the appearance of the photoluminescence, the illumination of the sample is required with a radiation of suitable wavelength, usually in the ultraviolet range visible. The general way to determine the optimum excitation length is to observe the band maximums in the visible ultraviolet absorption spectrum. Related to the selection of the optimum excitation length there is a variant of the photoluminescence in which the detector is set at an emission wavelength while scanning all excitation wavelengths. The excitation wavelength always has to be shorter than the emission wavelength. The record that is obtained is known as the excitation spectrum and provides information on what is the emission intensity for each excitation wavelength. On the other hand, there are variants (fluorescence maps) in which emission spectra recorded for all excitation lengths are arranged in a parallel axis, the emission intensity corresponding to the Z axis, and in the perpendicular axis the excitation spectra. Figure 3 shows a typical example of a photoluminescence map, corresponding to a registered Ti / MCM-41 sample, after dehydration and sealed in a quartz cell, as a function of the excitation wavelength. These photoluminescence maps contain the maximum possible information regarding emission and excitation. With respect to the temporal profile of the emission there is a photoluminescence technique called single photon counting in which the excitation occurs by means of a light pulse coming from a flash lamp or a laser, being the Pulse duration much shorter than the lifetime of the excited state. Typical pulse durations are in the PS area ( 10-12 seconds). This excitation of the sample causes the emission and what is recorded is how the intensity of light from the photoluminescence decreases to the time elapsed since the pulse. In the single photon counting technique, the photoluminescence time profile is constructed by detecting the time of arrival at the detector of the first emission photon and repeating the pulse (excitation / registration of the first emission photon that reaches the detector) a number of Statistically significant times, and that can generally be around 10,000 ' accounts. Figure 4 shows the dexcitation kinetics of titanosylsquioxane 1 in CH 2 C1 2 and in N 2 (a) and a sample of Ti / MCM-41 (b) recorded at 490nm. The adjustment of the temporal profile of the photoluminescence to kinetic equations allows to establish the distribution of the different families that contribute to the emission (light groups). In the embodiments shown in Figures 5 to 8 there are numerical references whose meanings are as follows: 1- samples of solids 2- sample holder 3- cover of sample holder support and samples 4- medium on which fix the sample holder 5- empty chamber in contact with the solid samples 6- means to condition (filter, collimate, etc.) and focus the excitation radiation on a given sample 7- radiation generation means 8- control medium of the excitation source 9- means for focusing and conditioning the photoluminescence radiation from the excited sample
10- fibra óptica para transmitir la radiación de fotoluminiscencia acondicionada al dispositivo de detección10- optical fiber to transmit conditioned photoluminescence radiation to the detection device
11- dispositivo de detección 12- medios para el registro de la radiación de fotoluminiscencia acondicionada al dispositivo de detección y almacenamiento de la información 13- medios para el movimiento del soporte portamuestras 14- medios de irradiación, que permiten irradiar la totalidad de la superficie del soporte sobre el que están distribuidas las muestras 15- conjunto que comprende: soporte portamuestras, muestras, tapa de protección y los medios para evitar que la radiación producida por una muestra llegue al detector o zona de detección dispuesta para detectar otra muestra distinta 16- conjunto integrado de los medios de detección que incluye: medios para acondicionar la radiación de fotoluminiscencia y medios para su detección resuelta espacialmente . 17- medios para evitar que la radiación producida por una muestra llegue al detector o zona de detección dispuesta para detectar otra muestra distinta 18- fibra bifurca, que permite irradiar y coger la emisión de fluorescencia desde un mismo punto11- detection device 12- means for recording the photoluminescence radiation conditioned to the device for detecting and storing information 13- means for the movement of the sample holder holder 14- irradiation means, which allow irradiating the entire surface of the support on which they are distributed the samples 15- set comprising: sample holder, samples, protective cap and the means to prevent the radiation produced by a sample from reaching the detector or detection zone arranged to detect another different sample 16- integrated set of the media detection that includes: means for conditioning photoluminescence radiation and means for its spatially resolved detection. 17- means to prevent the radiation produced by a sample from reaching the detector or detection zone arranged to detect another sample other than 18- bifurca fiber, which allows irradiation and capture of fluorescence emission from the same point
La figura 5 representa una realización de la presente invención, mostrando un aparato para la caracterización secuencial por fotoluminiscencia de materiales sólidos transparentes 1 dispuestos en un soporte plano 2. El soporte portamuestras 2 está posicionado entre un medio 4 sobre el que va fijado y una tapa 3. El medio 4 está conectado a unos medios de accionamiento 13, como por ejemplo una mesa de coordenadas cartesianas (X-Y) motorizada, mediante cuya acción las muestras 1 puede desplazarse secuencialmente de tal forma que las muestras queden dispuestas debajo de unos medios acondicionadores 6 de radiación que acondicionan radiación generada por los medios de irradiación 7 para aplicar una radiación controlada a las muestras 1. Los medios de irradiación 7 están dispuestos encima de la cara del soporte portamuestras 2 que está cerrada por la tapa 3, y controlados por los medios de control 8. El aparato también comprende medios de detección y registro 9, 10, 11, 12 de la radiación de luminiscencia producida por las muestras 1 dispuestas en el soporte 2 como efecto de su previa excitación mediante los medios de irradiación 7. Puede observarse que, en la realización mostrada en la figura 5, los medios de detección y registro están compuestos por medios 9 para enfocar y acondicionar la radiación de fotoluminiscencia procedente de la muestra excitada, fibra óptica 10 que transmite la fotoluminiscencia acondicionada por los medios 9 a un dispositivo de detección 11 de la fotoluminiscencia acondicionada y medios de registro 12 que detecta y almacena los datos de la fotoluminiscencia detectada. Si el medio de radiación 7 es pulsado, se puede conseguir información sobre el perfil temporal de la emisión (desexcitación) de la muestra. Mediante el diseño del aparato mostrado en la figura 5, es posible irradiar un material, detectar y registrar la radiación de luminiscencia de este primer material dispuesto en el soporte en una primera posición, después de lo cual se mueve el soporte hasta que un segundo material queda ubicado bajo el haz de la radiación de excitación, y el proceso es repetido de nuevo hasta completarse la caracterización para todas las muestras dispuestas . En la realización del aparato mostrada en las figuras 6 y 7, idónea para la caracterización simultánea por fotoluminiscencia de materiales sólidos transparentes dispuestos en un soporte plano, el aparato comprende medios de irradiación 14 para aplicar una radiación controlada a la totalidad de superficie del soporte que alberga las muestras, un conjunto portamuestras 15 que comprende el soporte portamuestras en el que están dispuestas las muestras, la tapa de protección, medios de pantalla 17 para evitar que la radiación producida por una muestra llegue al detector o zona de detección dispuesta para detectar otra muestra distinta, y un conjunto detector que comprende los medios acondicionadores de la radiación de fotoluminiscencia emitida por cada una de las muestras, así como los medios de detección, está dispuesto debajo de las muestras y conectado a los medios de registro 12. Esta realización permite la detección y el registro simultáneo de la radiación de luminiscencia producida por todas muestras dispuestas en el soporte 15 como efecto de su previa excitación mediante los medios de irradiación 14. Estos medios 14 incluyen al menos un sistema monocromador que permite el barrido rápido, en comparación con el tiempo que dura el proceso de luminiscencia, de las distintas longitudes de onda que integran la emisión, así como un dispositivo CCD. El aparato de esta realización permite, por lo tanto, irradiar un conjunto de materiales 1 de manera simultánea así como detectar y registrar la radiación de luminiscencia del conjunto de materiales dispuestos sobre el soporte, de tal modo que es posible la adquisición simultánea de datos experimentales de las intensidades de emisión a distintas longitudes de onda, a lo largo del tiempo que dura la luminiscencia para cada una de las muestras. La figura 8 ilustra otra realización de la presente invención que consiste en un aparato para la caracterización secuencial por fotoluminiscencia de muestras 1 de materiales opacos sólidos dispuestos en un soporte plano 2, cuyo aparato tiene una geometría del tipo front face geometryr y comprende medios de irradiación 6,7 para aplicar al menos una radiación controlada a las muestras 1, medios de detección y registro 9, 10, 11 de la radiación de luminiscencia producida por las muestras dispuestas 1 en el soporte 2 como efecto de su previa excitación mediante los medios de irradiación 6,7, y medios de accionamiento 13, como por ejemplo una mesa de coordenadas cartesianas (X-Y) motorizada, para conferir un movimiento secuencial controlado al soporte 2. Este aparato permite irradiar un material 1, detectar y registrar la radiación de luminiscencia de este primer material di dispuesto en el soporte 2 en una primera posición, después de lo cual se mueve el soporte 2 hasta que un segundo material 1 queda ubicado bajo el haz de la radiación de excitación, y el proceso es repetido de nuevo hasta completarse la caracterización para todas las muestras dispuestas. La figura 9 se ilustra otra realización de la presente invención que consiste en un aparato para la caracterización secuencial por fotoluminiscencia de muestras 1 de materiales opacos sólidos dispuestos en un soporte plano 2. Asimismo, la figura 10 muestra una representación del soporte portamuestras empleado en esta realización que consta de 32 pozuelos donde se colocan cantidades entre 10 y 50 miligramos de muestras sólidas de titanosilicatos con diferente contenido en titanio y con diferente densidad de grupos titanoles. El análisis del contenido de titanio tetraédrio de las muestras se realizaría de forma automática mediante excitación a través de una fibra de vidrio bifurcada (18) con un láser de nitrógeno operando a 237 nm y con una potencia de un milijulio por pulso. La anchura del pulso del láser está en el rango de 0.5 a 1 nanosegundo. Mediante la fibra óptica y empleando el sistema mostrado en la figura 9, se excitaría de manera sucesiva cada una de las muestras dispuestas en el portamuestras 2. Para cada muestra la excitación produce la emisión de fluorescencia del átomo de titanio, donde la longitud de onda del máximo de emisión y la intensidad del mismo son función del contenido de átomos de titanio tetrapodales (μe = 390 nm) o titanoles tripodales que poseen una emisión mucho más débil (μ6m = 500nm) . En el ejemplo de esta realización mediante la fibra bifurcada se captura la fluorescencia proveniente de cada muestra y se dirige hacia una red de difracción de una anchura de banda de 100 nm centrada a 400 nm, acoplada con una cámara CCD que captura de forma simultánea todas las longitudes de onda comprendidas entre 350 y 450 nm resultas por la red de difracción. La cámara CCD además de resolución espectral tiene capacidad de resolución temporal y mediante la programación adecuada es capaz de capturar los espectros con una demora con respecto al pulso del láser de 5, 10, 15, 25 nanosegundos después del pulso del láser. Mediante esta serie de espectros es posible determinar el perfil temporal de la emisión de la muestra y del análisis cinético del mismo deducir la distribución de poblaciones de átomos de titanio tetrapodal . El tiempo en el que se registra la emisión para cada muestra es muy inferior a un segundo, viniendo limitado el tiempo de análisis por muestra por el movimiento mecánico del portamuestras. Los medios empleados para el movimiento es una mesa de coordenadas cartesianas, que permiten movimientos con una precisión de 5 μm y velocidades de posicionamiento de un cm por segundo. El movimiento del soporte es realizado en el plano perpendicular al haz del láser. Típicamente, para cada muestra se dedica un tiempo de análisis de 10 segundos por muestra, con lo que la frecuencia es de 6 muestras por minuto. Mediante programación adecuada es posible registrar para cada una de las muestras los espectros de emisión a tiempos de demora diferentes de los anteriores, de manera que el conjunto de dos o más series de medidas dé lugar por intercalación a un perfil temporal de decaimiento de la emisión que tenga cuatro por N puntos, siendo N el número de veces en el que se dispara un pulso de láser sobre cada muestra. Un ejemplo de los espectros que se obtienen se muestra en la figura 2. El análisis de los datos obtenidos se realiza en un ordenador distinto al que controla la adquisición de datos, disparo del láser, sincronización de experimentos, movimiento de muestras, etc. Este análisis permite determinar la cantidad relativa de titanio tetrapodal mediante la intensidad de emisión a 390 nm medida a 5 nanosegundos tras el pulso para cada una de las muestras. La figura 11 muestra una representación de los resultados obtenidos para cada muestra del contenido de titanio tetrapodal respecto a una muestra de referencia según en función de la posición que ocupa cada muestra en soporte. La homogeneidad del titanio tetrapodal en cada muestra y el número de familias diferentes de titanio tetrapodal se deduce del análisis cinético mediante un ajuste a un sumatorio de ecuaciones de primer orden. Así, se identifican diferentes poblaciones por el tiempo de vida media (μ) que poseen y la abundancia de esta población se obtiene del coeficiente que acompaña al término exponencial, véase la ecuación siguiente:Figure 5 represents an embodiment of the present invention, showing an apparatus for sequential photoluminescence characterization of transparent solid materials 1 arranged on a flat support 2. The sample holder 2 is positioned between a medium 4 on which it is fixed and a cover 3. The medium 4 is connected to drive means 13, such as a motorized Cartesian coordinate table (XY), by means of which the samples 1 can be moved sequentially so that the samples are arranged under conditioning means 6 of radiation conditioning radiation generated by the irradiation means 7 to apply a controlled radiation to the samples 1. The irradiation means 7 are arranged above the face of the sample holder 2 which is closed by the cover 3, and controlled by the control means 8. The The apparatus also comprises detection and recording means 9, 10, 11, 12 of the luminescence radiation produced by the samples 1 arranged in the support 2 as a result of its previous excitation by means of the irradiation means 7. It can be seen that, in the embodiment shown in FIG. 5, the detection and recording means are composed of means 9 for focusing and conditioning the photoluminescence radiation from the excited sample, optical fiber 10 that transmits the photoluminescence conditioned by means 9 to a detection device 11 of the conditioned photoluminescence and recording means 12 that detects and stores the data of the detected photoluminescence. If the radiation medium 7 is pulsed, information on the time profile of the emission (de-excitation) of the sample can be obtained. By design of the apparatus shown in Figure 5, it is possible to irradiate a material, detect and record the luminescence radiation of this first material disposed on the support in a first position, after which the support is moved until a second material it is located under the beam of the excitation radiation, and the process is repeated again until the characterization for all the samples arranged is completed. In the embodiment of the apparatus shown in Figures 6 and 7, suitable for simultaneous photoluminescence characterization of transparent solid materials arranged on a flat support, the apparatus comprises irradiation means 14 for applying radiation controlled to the entire surface of the support housing the samples, a sample holder assembly 15 comprising the sample holder in which the samples are arranged, the protective cover, screen means 17 to prevent the radiation produced by a sample from reaching the detector or detection zone arranged to detect another different sample, and a detector assembly comprising the conditioning means of the photoluminescence radiation emitted by each of the samples, as well as the detection means, is arranged below the samples and connected to the recording means 12. This embodiment allows the simultaneous detection and recording of the luminescence radiation produced by all samples arranged on the support 15 as a result of their previous excitation by means of the irradiation means 14. These means 14 include at least one system monochromator that allows rapid scanning, compared to the time that the luminescence process, of the different wavelengths that make up the emission, as well as a CCD device. The apparatus of this embodiment allows, therefore, to irradiate a set of materials 1 simultaneously as well as to detect and record the luminescence radiation of the set of materials arranged on the support, so that simultaneous acquisition of experimental data is possible of the emission intensities at different wavelengths, over the time the luminescence lasts for each of the samples. Figure 8 illustrates another embodiment of the present invention consisting of an apparatus for sequential photoluminescence characterization of samples 1 of solid opaque materials arranged on a flat support 2, whose apparatus has a front face geometry type r geometry and comprises means of irradiation 6.7 to apply at least one controlled radiation to the samples 1, detection and recording means 9, 10, 11 of the luminescence radiation produced by the samples arranged 1 on the support 2 as a result of their previous excitation by means of the irradiation means 6, 7, and actuation means 13, such as a motorized Cartesian coordinate table (XY), for conferring a controlled sequential movement to the support 2. This apparatus allows irradiating a material 1, detecting and recording the luminescence radiation of this first material di arranged on the support 2 in a first position, after which the support 2 is moved until a second material 1 is located under the beam of the excitation radiation, and the process is repeated again until the characterization for all is completed the samples arranged. Figure 9 illustrates another embodiment of the present invention consisting of an apparatus for sequential photoluminescence characterization of samples 1 of solid opaque materials arranged on a flat support 2. Also, Figure 10 shows a representation of the sample holder used in this This embodiment consists of 32 wells where quantities between 10 and 50 milligrams of solid titanosilicate samples with different titanium content and with different density of titanoles groups are placed. The analysis of the tetrahedral titanium content of the samples would be carried out automatically by excitation through a bifurcated glass fiber (18) with a nitrogen laser operating at 237 nm and with a power of one millijul per pulse. The width of the laser pulse is in the range of 0.5 to 1 nanosecond. Using the fiber optic and using the system shown in Figure 9, each of the samples arranged in succession would be excited successively. the sample holder 2. For each sample the excitation produces the fluorescence emission of the titanium atom, where the wavelength of the maximum emission and its intensity are a function of the content of tetrapodal titanium atoms (μ e = 390 nm) or tripodal titanoles that have a much weaker emission (μ 6m = 500nm). In the example of this embodiment, by means of the bifurcated fiber, the fluorescence from each sample is captured and directed towards a diffraction network of a bandwidth of 100 nm centered at 400 nm, coupled with a CCD camera that simultaneously captures all the wavelengths between 350 and 450 nm result from the diffraction network. In addition to spectral resolution, the CCD camera has a temporal resolution capability and by means of proper programming it is able to capture the spectra with a delay with respect to the laser pulse of 5, 10, 15, 25 nanoseconds after the laser pulse. Through this series of spectra it is possible to determine the temporal profile of the emission of the sample and of the kinetic analysis of the sample, to deduce the distribution of populations of tetrapodal titanium atoms. The time in which the emission is recorded for each sample is much less than one second, the analysis time per sample being limited by the mechanical movement of the sample holder. The means used for the movement is a Cartesian coordinate table, which allows movements with an accuracy of 5 μm and positioning speeds of one cm per second. The movement of the support is performed in the plane perpendicular to the laser beam. Typically, an analysis time of 10 seconds per sample is used for each sample, so the frequency is 6 samples per minute. Through proper programming it is possible to record the emission spectra for each of the samples Delay times different from the previous ones, so that the set of two or more series of measures gives rise by intercalation to a temporary decay profile of the emission that has four times N points, where N is the number of times in which fires a laser pulse on each sample. An example of the spectra that are obtained is shown in Figure 2. The analysis of the data obtained is performed on a computer other than the one that controls data acquisition, laser firing, experiment synchronization, sample movement, etc. This analysis allows to determine the relative amount of tetrapodal titanium by means of the emission intensity at 390 nm measured at 5 nanoseconds after the pulse for each of the samples. Figure 11 shows a representation of the results obtained for each sample of the tetrapodal titanium content with respect to a reference sample according to the position occupied by each sample in support. The homogeneity of the tetrapodal titanium in each sample and the number of different families of tetrapodal titanium is deduced from the kinetic analysis by an adjustment to a summation of first order equations. Thus, different populations are identified by the average life time (μ) they possess and the abundance of this population is obtained from the coefficient that accompanies the exponential term, see the following equation:
Figure imgf000029_0001
La figura 12 muestra la distribución de población en base a los tiempos de vida media de titanio tetrapodal La actividad catalítica de estos materiales para la epoxidación de definas está directamente relacionado con los tipos de titanios presentes en su estructura. Efectivamente, la mejor actividad y selectividad catalítica en esta reacción se obtienen con altos contenidos de titano tetrapodal (μem=390nm) , estando constituido mayoritariamente este tipo de especies de titanio por una población cuyo un tiempo de vida media es inferior a 5 nanosegundos . En otro ejemplo de la presente invención se colocan en el portamuestras cantidades entre 10 y 50 miligramos de vanadio sobre óxidos inorgánicos soportados. De acuerdo con el ejemplo anterior donde se describen los resultados para muestras de titanosilicatos, otro ejemplo de la presente invención consiste en el estudio de alta capacidad (high-throughput) para las muestras de vanadio soportado. Teniendo en cuenta la diferente absorción de estas muestras con respecto a las de titanio, en el caso de las muestras de vanadio se utiliza un láser de Nd-YAG con triplicador de frecuencia operando a 355 nm. Mediante una fibra bifurcada el pulso de láser se dirige a la muestra recogiéndose la emisión, que tras ser analizada por una red de difracción se registra mediante una cámara CCD. La red de difracción se centra a 550 nm, registrándose la emisión para una ventana entre 500 y 600 nm. En estos materiales conteniendo vanadio, el máximo de emisión depende del punto isoeléctrico del soporte, variando éste entre 610 nm para soportes muy básicos, como por ejemplo el óxido de magnesio (Punto isoeléctrico -12) , y 520 nm para soportes ácidos como el óxido de silicio (Punto isoeléctrico ~1.8). Al igual que el caso del titanio, el perfil temporal de la emisión contiene información de la distribución de poblaciones entre varias familias. Esta información se puede conseguir ajustando el decaimiento de la intensidad para la longitud de onda de máxima emisión y ajustándola a una serie de términos de primer orden. La información que se consigue mediante esta técnica de caracterización por fluorescencia está relacionada para el vanadio con su actividad catalítica en varias reacciones de oxidación. Cuando la longitud de onda de máxima emisión se encuentra próxima a la región de 500 nm la actividad catalítica para reacciones de inserción de oxígeno en hidrocarburos es máxima. En contraste, cuando la longitud de onda de máxima emisión está próxima a los 600 nm las muestras de vanadio poseen una alta actividad catalítica para la deshidrogenación oxidativa de hidrocarburos .
Figure imgf000029_0001
Figure 12 shows the population distribution based on the half-life of tetrapodal titanium. The catalytic activity of these materials for the epoxidation of definas is directly related to the types of titanium present in its structure. In fact, the best activity and catalytic selectivity in this reaction are obtained with high tetrapodal titanium contents (μ em = 390 nm), with this type of titanium species being mainly constituted by a population whose half-life is less than 5 nanoseconds. In another example of the present invention, samples between 10 and 50 milligrams of vanadium are placed on the supported inorganic oxides. According to the previous example where the results for titanosilicate samples are described, another example of the present invention is the study of high capacity (high-throughput) for the supported vanadium samples. Taking into account the different absorption of these samples with respect to those of titanium, in the case of vanadium samples an Nd-YAG laser with frequency triplicator operating at 355 nm is used. By means of a bifurcated fiber, the laser pulse is directed to the sample, collecting the emission, which after being analyzed by a diffraction network is recorded by a CCD camera. The diffraction network is centered at 550 nm, the emission being recorded for a window between 500 and 600 nm. In these materials containing vanadium, the maximum emission depends on the isoelectric point of the support, this varying between 610 nm for very basic supports, such as magnesium oxide (Isoelectric point -12), and 520 nm for acidic supports such as oxide silicon (Isoelectric point ~ 1.8). As in the case of titanium, the temporary emission profile contains information on the distribution of populations among several families. This information can be achieved by adjusting the decay of the intensity for the maximum emission wavelength and adjusting it to a series of first order terms. The information obtained by this fluorescence characterization technique is related to vanadium with its catalytic activity in various oxidation reactions. When the maximum emission wavelength is close to the 500 nm region, the catalytic activity for oxygen insertion reactions in hydrocarbons is maximum. In contrast, when the maximum emission wavelength is close to 600 nm, vanadium samples have a high catalytic activity for oxidative dehydrogenation of hydrocarbons.

Claims

REIVINDICACIONES
1. Un aparato para la caracterización por técnicas de fotoluminiscencia de múltiples muestras de materiales sólidos, caracterizado porque comprende al menos medios de irradiación (6,7,8,14) para aplicar al menos una radiación controlada a las muestras (1) , al menos un soporte (2,3,4,15) que alberga una pluralidad de muestras (1) medios de detección y registro (9,10,11,16) de la radiación de fotoluminiscencia producida por las muestras (1) dispuestas en el soporte (2,3,4,15) como efecto de su previa irradiación.1. An apparatus for the characterization by photoluminescence techniques of multiple samples of solid materials, characterized in that it comprises at least irradiation means (6,7,8,14) to apply at least one controlled radiation to the samples (1), to the minus a support (2,3,4,15) that houses a plurality of samples (1) detection and recording means (9,10,11,16) of the photoluminescence radiation produced by the samples (1) arranged in the support (2,3,4,15) as a result of its previous irradiation.
2. Un aparato conforme a la reivindicación 1, caracterizado porque comprende además medios de control para controlar al menos un parámetro del aparato seleccionado entre temperatura, presión y composición química de la atmósfera en contacto con las muestras (1) .2. An apparatus according to claim 1, characterized in that it further comprises control means for controlling at least one parameter of the apparatus selected from temperature, pressure and chemical composition of the atmosphere in contact with the samples (1).
3. Un aparato conforme a una de las reivindicaciones 1 y 2, caracterizado porque los medios de irradiación (6,7,8,14) generan una radiación con longitudes de onda en el rango del ultravioleta-visible.3. An apparatus according to one of claims 1 and 2, characterized in that the irradiation means (6,7,8,14) generate radiation with wavelengths in the ultraviolet-visible range.
4. Un aparato conforme a una de las reivindicaciones de 1 a 3, caracterizado porque que además incluye medios de accionamiento (13) para conferir un movimiento controlado a al menos un soporte (4,16).4. An apparatus according to one of claims 1 to 3, characterized in that it also includes drive means (13) for conferring a controlled movement to at least one support (4.16).
5. Un aparato conforme a una de las reivindicaciones de 1 a 3, caracterizado porque que además incluye medios de accionamiento (13) para conferir un movimiento controlado a los medios de irradiación (6,7,8,14) y medios de detección y registro (9,10,11,16). An apparatus according to one of claims 1 to 3, characterized in that it also includes actuation means (13) for conferring a controlled movement to the irradiation means (6,7,8,14) and detection means and registration (9,10,11,16).
6. Un aparato de acuerdo con la reivindicación 2, caracterizado porque los medios de control comprenden medios de regulación térmica susceptibles de mantener las muestras a una temperatura en un rango desde -200°C hasta 600°C.An apparatus according to claim 2, characterized in that the control means comprise thermal regulation means capable of keeping the samples at a temperature in a range from -200 ° C to 600 ° C.
7. Un aparato de acuerdo con una de las reivindicaciones de 2 y 6, caracterizado porque los medios de control comprenden medios de regulación de fluidos gaseosos para regular la composición de fluidos gaseosos en contacto con la superficie portamuestras del soporte y/o de las muestras .An apparatus according to one of claims 2 and 6, characterized in that the control means comprise means for regulating gaseous fluids to regulate the composition of gaseous fluids in contact with the sample holder surface of the support and / or the samples .
8. Un aparato de acuerdo con una cualquiera de las reivindicaciones 1 a 7, caracterizado porque comprende medios magnetizadores y/o generadores de campos eléctricos para poder someter a las muestras a un campo magnético y/o eléctrico.8. An apparatus according to any one of claims 1 to 7, characterized in that it comprises magnetizing means and / or generators of electric fields to be able to subject the samples to a magnetic and / or electric field.
9. Un aparato de acuerdo con la reivindicación 1, caracterizado porque los medios de irradiación (6,7,8,14) comprenden al menos un dispositivo emisor de rayos láser.An apparatus according to claim 1, characterized in that the irradiation means (6,7,8,14) comprise at least one laser emitting device.
10. Un aparato según la reivindicación 9 caracterizado porque el dispositivo emisor de rayos láser comprende medios de ajuste para variar la frecuencia o el rango de frecuencias de emisión de rayos láser.10. An apparatus according to claim 9 characterized in that the laser emitting device comprises adjustment means for varying the frequency or range of laser emission frequencies.
11. Un aparato según la reivindicación 1, caracterizado porque los medios de irradiación (6,7,8,14) son medios generadores de luz monocromática.11. An apparatus according to claim 1, characterized in that the irradiation means (6,7,8,14) are monochromatic light generating means.
12. Un aparato según la reivindicación 1, caracterizado porque los medios de irradiación (6,7,8,14) son medios generadores de luz polarizada.12. An apparatus according to claim 1, characterized in that the irradiation means (6,7,8,14) are means polarized light generators.
13. Un aparato de acuerdo con la reivindicación 1, caracterizado porque los medios de detección y registro (9,10,11,16) comprenden al menos un sistema óptico para descomponer luz en distintas longitudes de onda.13. An apparatus according to claim 1, characterized in that the detection and recording means (9,10,11,16) comprise at least one optical system for decomposing light in different wavelengths.
14. Un aparato de acuerdo con la reivindicación 1, caracterizado porque los medios de detección y registro (9,10,11,16) comprenden al menos un filtro para seleccionar un determinado rango de longitudes de onda de la radiación de fotoluminiscencia.14. An apparatus according to claim 1, characterized in that the detection and recording means (9,10,11,16) comprise at least one filter for selecting a certain wavelength range of the photoluminescence radiation.
15. Un aparato de acuerdo con la reivindicación 1, caracterizado porque los medios de detección y registro (9,10,11,16) comprenden al menos un dispositivo CCD de detección.15. An apparatus according to claim 1, characterized in that the detection and recording means (9,10,11,16) comprise at least one CCD detection device.
16. Un aparato de acuerdo con la reivindicación 1, caracterizado porque los medios de detección y registro (9,10,11,16) comprenden al menos un fotomultiplicador.16. An apparatus according to claim 1, characterized in that the detection and recording means (9,10,11,16) comprise at least one photomultiplier.
17. Un aparato de acuerdo con la reivindicación 1, caracterizado porque los medios de detección y registro (9,10,11,16) comprenden al menos una matriz integrada de fotomultiplicadores .17. An apparatus according to claim 1, characterized in that the detection and recording means (9,10,11,16) comprise at least one integrated array of photomultipliers.
18. Un aparato según la reivindicación 1, caracterizado porque los medios de irradiación (6,7,8,14) son capaces de producir pulsos precisos de radiación con una duración determinada en el rango de feruto-, pico- y nanosegundos y con una frecuencia de repetición controlable desde 0,1 hasta 2000 Hz . 18. An apparatus according to claim 1, characterized in that the irradiation means (6,7,8,14) are capable of producing precise pulses of radiation with a determined duration in the range of feruto-, peak- and nanoseconds and with a repeatable frequency controllable from 0.1 to 2000 Hz.
19. Un aparato según la reivindicación 1 o 2, caracterizado porque los medios de irradiación (6,7,8,14) permiten irradiar varias muestras simultáneamente.19. An apparatus according to claim 1 or 2, characterized in that the irradiation means (6,7,8,14) allow several samples to be irradiated simultaneously.
20. Un aparato según la reivindicación 1, caracterizado porque los medios de detección y registro (9,10,11,16) permiten detectar simultáneamente la emisión de fotoluminiscencia procedente varias muestras.20. An apparatus according to claim 1, characterized in that the detection and recording means (9,10,11,16) allow to simultaneously detect the emission of photoluminescence from several samples.
21. Un aparato según la reivindicación 1, caracterizado porque el soporte portamuestras (2,4) comprende una pluralidad de ubicaciones para el depósito directo de al menos una muestra (1) en cada ubicación, un soporte plano (4) con una superficie portamuestras (2) que comprende las ubicaciones para las muestras, estando definida cada ubicación en una posición predeterminada, y medios de acoplamiento reversible del soporte a medios de accionamiento (13) para conferir un movimiento controlado al soporte (4) .21. An apparatus according to claim 1, characterized in that the sample holder (2,4) comprises a plurality of locations for the direct deposit of at least one sample (1) in each location, a flat support (4) with a sample holder surface (2) comprising the locations for the samples, each location being defined in a predetermined position, and reversible coupling means of the support to drive means (13) to confer a controlled movement to the support (4).
22. Un aparato según la reivindicación 21, caracterizado porque al menos parte de las ubicaciones están distribuidas sectorialmente en la superficie portamuestras (2) .22. An apparatus according to claim 21, characterized in that at least part of the locations are sectorally distributed on the sample holder surface (2).
23. Un aparato según una cualquiera de las reivindicaciones 20 a 22, caracterizado porque al menos parte de las ubicaciones está definida por depresiones en la superficie portamuestras (4) .23. An apparatus according to any one of claims 20 to 22, characterized in that at least part of the locations is defined by depressions in the sample holder surface (4).
24. Un aparato según una cualquiera de las reivindicaciones 20 a 23, caracterizado porque al menos parte de las ubicaciones está definida entre tabiques (17) sobresalientes de la superficie portamuestras (2) . 24. An apparatus according to any one of claims 20 to 23, characterized in that at least part of the locations is defined between partitions (17) protruding from the sample holder surface (2).
25. Un aparato según una cualquiera de las reivindicaciones 20 a 24, caracterizado porque al menos parte de las muestras (1) está depositada en las ubicaciones en la superficie portamuestras (2) en forma de película fina de sólidos.25. An apparatus according to any one of claims 20 to 24, characterized in that at least part of the samples (1) is deposited in the locations on the sample holder surface (2) in the form of a thin film of solids.
26. Un aparato según una cualquiera de las reivindicaciones 21 a 25, caracterizado porque el soporte (4) consiste al menos parcialmente de un material trasparente a determinadas ondas electromagnéticas .26. An apparatus according to any one of claims 21 to 25, characterized in that the support (4) consists at least partially of a material transparent to certain electromagnetic waves.
27. Un aparato según una cualquiera de las reivindicaciones 21 a 26, caracterizado porque el soporte (4) consiste al menos parcialmente de un material reflectante.27. An apparatus according to any one of claims 21 to 26, characterized in that the support (4) consists at least partially of a reflective material.
28. Un aparato según una cualquiera de las reivindicaciones 21 a 27, caracterizado porque el soporte (4) es un soporte circular plano.28. An apparatus according to any one of claims 21 to 27, characterized in that the support (4) is a flat circular support.
29. Un aparato según una cualquiera de las reivindicaciones 21 a 28, caracterizado porque está fabricado en un material termorresistente a temperaturas entre -200 a 600°C.29. An apparatus according to any one of claims 21 to 28, characterized in that it is made of a heat-resistant material at temperatures between -200 to 600 ° C.
30. Un aparato según la reivindicación 1, caracterizado porque los medios de irradiación (6,7,8,14) irradian las muestras (1) con una radiación en el rango de 250-350 nm.30. An apparatus according to claim 1, characterized in that the irradiation means (6,7,8,14) irradiate the samples (1) with a radiation in the range of 250-350 nm.
31. Un aparato según la reivindicación 1, caracterizado porque los medios de detección y registro (9,10,11,16) detectan radiaciones emitidas por las muestras irradiadas, en el rango de 200 a 1500 nm. 31. An apparatus according to claim 1, characterized in that the detection and recording means (9,10,11,16) detect radiations emitted by the irradiated samples, in the range of 200 to 1500 nm.
32. Un aparato según la reivindicación 1, caracterizado porque los medios de irradiación (6,7,8,14) y los medios detección y registro (9, 10, 11, 16) disponen de al menos una fibra óptica bifurcada.32. An apparatus according to claim 1, characterized in that the irradiation means (6,7,8,14) and the detection and recording means (9, 10, 11, 16) have at least one bifurcated optical fiber.
33. Un aparato de acuerdo con una cualquiera de las reivindicaciones 1 a 7, caracterizado porque los materiales sólidos dispuestos en el soporte portamuestras están en contacto íntimo con moléculas orgánicas o inorgánicas, las cuales poseen propiedades luminiscentes por sí mismas o por efecto de su interacción con el material sólido. 33. An apparatus according to any one of claims 1 to 7, characterized in that the solid materials arranged in the sample holder are in intimate contact with organic or inorganic molecules, which possess luminescent properties on their own or as a result of their interaction With the solid material.
PCT/ES2004/070061 2003-08-01 2004-07-27 Apparatus for simultaneous or consecutive characterization of multiple solid material samples by photoluminescence WO2005012857A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200301935A ES2223296B1 (en) 2003-08-01 2003-08-01 AN APPLIANCE FOR THE SIMULTANEOUS OR CONSECUTIVE CHARACTERIZATION OF MULTIPLE SAMPLES OF SOLID MATERIALS BY PHOTOLUMINISCENCE.
ESP200301935 2003-08-01

Publications (1)

Publication Number Publication Date
WO2005012857A1 true WO2005012857A1 (en) 2005-02-10

Family

ID=34112527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2004/070061 WO2005012857A1 (en) 2003-08-01 2004-07-27 Apparatus for simultaneous or consecutive characterization of multiple solid material samples by photoluminescence

Country Status (2)

Country Link
ES (1) ES2223296B1 (en)
WO (1) WO2005012857A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260885A (en) * 1978-02-24 1981-04-07 Albert Richard D Selectable wavelength X-ray source, spectrometer and assay method
US4300834A (en) * 1980-05-22 1981-11-17 Baird Corporation Inductively coupled plasma atomic fluorescence spectrometer
US5959297A (en) * 1996-10-09 1999-09-28 Symyx Technologies Mass spectrometers and methods for rapid screening of libraries of different materials
US6004617A (en) * 1994-10-18 1999-12-21 The Regents Of The University Of California Combinatorial synthesis of novel materials
EP1174706A2 (en) * 2000-07-21 2002-01-23 I.S.S. (U.S.A.) Inc. Rapid high throughput spectrometer and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260885A (en) * 1978-02-24 1981-04-07 Albert Richard D Selectable wavelength X-ray source, spectrometer and assay method
US4300834A (en) * 1980-05-22 1981-11-17 Baird Corporation Inductively coupled plasma atomic fluorescence spectrometer
US6004617A (en) * 1994-10-18 1999-12-21 The Regents Of The University Of California Combinatorial synthesis of novel materials
US5959297A (en) * 1996-10-09 1999-09-28 Symyx Technologies Mass spectrometers and methods for rapid screening of libraries of different materials
EP1174706A2 (en) * 2000-07-21 2002-01-23 I.S.S. (U.S.A.) Inc. Rapid high throughput spectrometer and method

Also Published As

Publication number Publication date
ES2223296A1 (en) 2005-02-16
ES2223296B1 (en) 2005-12-16

Similar Documents

Publication Publication Date Title
de Bettencourt-Dias Luminescence of lanthanide ions in coordination compounds and nanomaterials
US6930314B2 (en) Light detection device
US20170098145A1 (en) Methods for optically encoding an object with upconverting materials and compositions used therein
US8927892B2 (en) Rare earth downconverting phosphor compositions for optically encoding objects and methods and apparatus relating to same
Lou et al. Fluorescence-based thermometry: principles and applications
US8675192B2 (en) Method and device for high speed quantitative measurement of biomolecular targets on or in biological analysis medium
JP2004264312A (en) Multiparameter scanner
ES2719588T3 (en) Fluorescence Measurement System
ES2327813T3 (en) ELEMENTAL ANALYSIS DEVICE BY PLASMA OPTICAL ISSUANCE SPECTROMETRY PRODUCED BY LASER.
JP6895463B2 (en) Devices and methods for detecting and / or characterization suspended particles in fluids
US9080976B2 (en) Measuring device for measuring singlet oxygen luminescence
JP2024052866A (en) Infrared analysis chip and infrared imaging device
CN106066317A (en) Optical chopper using method in delayed luminescence measurement system
KR101710090B1 (en) Portable fluorescence measurement device based upon uv-led light source and fluorescence measurement method using uv-led light source
Fau et al. Time-resolved Raman and luminescence spectroscopy of synthetic REE-doped hydroxylapatites and natural apatites
Bøtter-Jensen et al. Enhancements in luminescence measurement techniques
Bøtter-Jensen et al. Optically stimulated luminescence techniques in retrospective dosimetry
ES2223296B1 (en) AN APPLIANCE FOR THE SIMULTANEOUS OR CONSECUTIVE CHARACTERIZATION OF MULTIPLE SAMPLES OF SOLID MATERIALS BY PHOTOLUMINISCENCE.
CN205786325U (en) System is measured in the delayed luminescence of a kind of optically-based chopper
Harding Synchrotron radiation–new opportunities for chemical crystallography
US7064893B2 (en) Optical microscope with modifiable lighting and operating process of such a microscope
WO2004010147A1 (en) Rotary support and apparatus used for the multiple spectroscopic characterisation of samples of solid materials
Svanberg Chemical sensing with laser spectroscopy
Jain et al. Luminescence instrumentation
Galkin et al. Thermal lens spectrometry for the synthesis and study of nanocomposites on the basis of silver salts absorbed by a polyacrylate matrix

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase