WO2004107359A1 - Metallized conducting polymer-grafted carbon material and method for making - Google Patents

Metallized conducting polymer-grafted carbon material and method for making Download PDF

Info

Publication number
WO2004107359A1
WO2004107359A1 PCT/US2004/015567 US2004015567W WO2004107359A1 WO 2004107359 A1 WO2004107359 A1 WO 2004107359A1 US 2004015567 W US2004015567 W US 2004015567W WO 2004107359 A1 WO2004107359 A1 WO 2004107359A1
Authority
WO
WIPO (PCT)
Prior art keywords
conducting polymer
metal
carbonaceous material
carbon black
composition
Prior art date
Application number
PCT/US2004/015567
Other languages
French (fr)
Inventor
Srinivas Bollepalli
Original Assignee
Columbian Chemicals Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/445,090 external-priority patent/US7175930B2/en
Priority claimed from US10/654,234 external-priority patent/US7195834B2/en
Application filed by Columbian Chemicals Company filed Critical Columbian Chemicals Company
Publication of WO2004107359A1 publication Critical patent/WO2004107359A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This invention relates generally to particulate conductive carbons.
  • the invention also relates to supported catalysts for fuel cells and proton exchange membranes.
  • a fuel cell is a device that converts energy of a chemical reaction into electrical energy (electrochemical device) without combustion.
  • a fuel cell (see e.g., Figure 1) generally comprises an anode 20, cathode 50, electrolyte 10, backing layers 30, 60, and flow fields/current collectors 40, 70. There are five types of fuel cells, as defined by their electrolytes:
  • a polymer electrolyte membrane fuel cell comprises a proton conductive polymer membrane electrolyte 10 sandwiched between electrocatalysts (a cathode 50 and an anode 20) (see, e.g., Figure 1).
  • the oxidation and reduction reactions occurring within the fuel cell are:
  • Fuel cells are a clean, low emission, highly efficient source of energy. Fuel cells can have 2-3 times greater efficiency than internal combustion engines and can use abundant and/or renewable fuels. Fuel cells produce electricity, water, and heat using fuel 90 and oxygen 80. Water (liquid and vapor) is the only emission when hydrogen is the fuel.
  • a catalyst 56 facilitates the separation of the hydrogen gas fuel into electrons and protons (hydrogen ions).
  • the hydrogen ions pass through the membrane 10 (center of fuel cell) and, again with the help of the catalyst 56, combine with an oxidant 80, such as oxygen, and electrons on the cathode side, producing water.
  • the electrons, which cannot pass through the membrane 10, flow from the anode 20 to the cathode 50 through an external circuit containing a motor or other electrical load, which consumes the power generated by the cell.
  • a catalyst 56 is used to induce the desired electrochemical reactions at the electrodes 20, 50.
  • the catalyst 56 is often incorporated at the electrode/electrolyte interface by coating a slurry of the electrocatalyst particles 56 to the electrolyte 10 surface.
  • electrochemical reaction occurs, generating protons and electrons.
  • the electrically conductive anode 20 is connected to an external circuit, which carries electrons by producing electric current.
  • the polymer electrolyte 10 is typically a proton conductor, and protons generated at the anode catalyst migrate through the electrolyte 10 to the cathode 50. At the cathode catalyst interface, the protons combine with electrons and oxygen to give water.
  • the catalyst 56 is typically a particulate metal such as platinum and is dispersed on a high surface area electronically conductive support 52.
  • the electronically conductive support material 52 in the PEMFC typically consists of carbon particles. Carbon has an electrical conductivity (10 "1 - 10 “2 S/cm) which helps facilitate the passage of electrons from the catalyst 56 to the external circuit. Proton conductive materials 54 such as National® are often added to facilitate transfer of the protons from the catalyst 56 to the membrane interface.
  • the fuel cells are operated under humidified conditions.
  • hydrogen fuel 90 and oxygen 80 gases are humidified prior to entry into the fuel cell.
  • carbon is relatively hydrophobic, and as such, the boundary contact between the reactive gases, water and the surface of the solid electrodes made of carbon contributes to high electrical contact resistance and ohmic power loss in the fuel cell resulting in lower efficiency of the fuel cell.
  • the hetero atom-containing conductive polymer-grafted carbon material shows hydrophilic character and thereby enhances the humidification process. Also, the higher electronic conductivity of these polymers facilitates the electron transfer process.
  • An ordinary electrolyte is a substance that dissociates into positively charged and negatively charged ions in the presence of water, thereby making the water solution electrically conducting.
  • the electrolyte in a PEM fuel cell is a polymer membrane 10.
  • the membrane material e.g., National®
  • Polymer electrolyte membranes 10 are somewhat unusual electrolytes in that, in the presence of water, which the membrane 10 readily absorbs, the negative ions are readily held within their structure. Only the protons contained within the membrane 10 are mobile and free to carry positive charge through the membrane 10. Without this movement within the cell, the circuit remains open and no current would flow.
  • Polymer electrolyte membranes 10 can be relatively strong, stable substances. These membranes 10 can also be effective gas separators. Although ionic conductors, PEM do not conduct electrons. The organic nature of the structure makes it an electronic insulator. Since the electrons cannot move through the membrane 10, the electrons produced at one side of the cell must travel through an external circuit to the other side of the cell to complete the circuit. It is during this external route that the electrons provide electrical power.
  • a polymer electrolyte membrane 10 can be a solid, organic polymer, usually poly(perfluorosulfonic) acid.
  • a typical membrane material, National ®, consists of three regions:
  • the negative ions, SO " are permanently attached to the side chain and cannot move.
  • the hydrogen ions become mobile. Ion movement occurs by protons, bonded to water molecules, migrating from SO 3 " site to SO 3 " site within the membrane. Because of this mechanism, the solid hydrated electrolyte is a good conductor of hydrogen ions.
  • the catalyst support 52 serves to conduct electrons and protons and to anchor the catalyst 56 (e.g., noble metal). Many efforts have been aimed at lowering the costs of fuel cells by lowering noble metal (e.g., platinum) catalyst 56 levels due to noble metal's cost. One way to lower this cost is to construct the catalyst support layer 52 with the highest possible surface area.
  • the electrodes 20, 50 of a fuel cell typically consist of carbon 52 onto which very small metal particles 56 are dispersed.
  • the electrode is somewhat porous so that gases can diffuse through each electrode to reach the catalyst 56.
  • Both metal 56 and carbon 52 conduct electrons well, so electrons are able to move freely through the electrode.
  • the small size of the metal particles 56 about 2 nm in diameter for noble metal, results in a large total surface area of metal 56 that is accessible to gas molecules. The total surface area is very large even when the total mass of metal 56 is small. This high dispersion of the catalyst 56 is one factor to generating adequate electron flow (current) in a fuel cell.
  • Conducting polymers are a class of conjugated double bond polymers whose electrical conductivities are comparable to the conductivities of semiconductors to metals, in the range of 0.1 to 100 S/cm.
  • Typical examples of conducting polymers include polyaniline, polypyrrole, polythiophene, polyfuran, and polyphenylene.
  • Both polyaniline and polypyrrole catalyst support 52 materials have shown improved fuel cell efficiency (e.g., U.S. 5,334,292 and WO 01/15253). However, the long-term stability of these materials has not been demonstrated in electrode environments in cyclic operations. Conducting polymers alone used as catalyst support 52 material have higher costs, lower surface area, and lower stability compared to those supports 52 based on carbon.
  • a conducting polymer is grafted onto the surface of a carbonaceous material thereby increasing the electrical conductivity of the carbonaceous material, and the stability of the hybrid material is expected to be enhanced.
  • the polymer grafting process also reduces the porosity of the carbon support, resulting in increased metal availability for electrode reaction.
  • the majority of the cost associated with electrodes is attributed to the high cost of the metal, which makes up the catalyst 56. Only those catalytic sites exposed on the surface of the catalytic particles contribute to the catalytic activity of the electrode and, thus, electrodes with the highest fraction of the metals accessible to the reaction should be the most effective. Carbon supports 52 with high porosity result in "trapped" metal sites that are not accessible for electrode reaction.
  • the extent of dispersion of the metal catalyst 56 on the support material 52 and the stability of such high dispersion in use, i.e., resistance of the catalyst against sintering and/or agglomeration, is directly related to the surface area and the availability of surface sites on which the dispersed metal 56 can be anchored.
  • the conducting polymer-grafted carbon material aids the uniform dispersion and stabilization of metal particles by anchoring to hetero atoms, namely, N, O, S, etc., present in the conducting polymer.
  • hetero atom- containing anchoring groups resist the agglomeration and sintering of metal (e.g., platinum (Pt)) crystallite particles.
  • the present invention provides a PEMFC electrode which can be made more cost-effective than electrodes having exclusively carbon support or exclusively conducting polymer support. For the above reasons, improvement of the supported catalyst is desired and has been achieved with the present invention.
  • this invention in one aspect, relates to conductive polymer-grafted carbons.
  • the invention includes a composition comprising a particulate carbonaceous material, and a conducting polymer containing hetero atoms wherein the conducting polymer is grafted onto the carbonaceous material.
  • the composition further comprises a metal.
  • the invention also includes a method for preparing a carbon with enhanced electronic conductivity comprising oxidatively polymerizing monomer of a conducting polymer containing hetero atoms with particulate carbonaceous material to form a conducting polymer-grafted carbonaceous material. The oxidative polymerization can take place using metal-containing oxidizing agent.
  • a device comprising a particulate carbonaceous material, and a conducting polymer containing hetero atoms, wherein the conducting polymer is grafted onto the carbonaceous material.
  • the device can further comprise a metal.
  • a fuel cell comprising an anode, a cathode, and a PEM is further included.
  • This invention relates to a process of grafting conducting polymers containing hetero atoms onto particulate carbon material (e.g., carbon black, graphite, nanocarbons, fullerenes, finely divided carbon or mixtures thereof) by in situ polymerization and the compositions resulting therefrom.
  • the conducting polymers are, for example, polyaniline and polypyrrole.
  • This invention relates to the application of conducting polymer-grafted carbons in fuel cell applications.
  • This invention particularly relates to the application of conducting polymer-grafted carbons as support material in fuel cell catalysts.
  • the invention further relates to a process of grafting conducting polymers containing hetero atoms onto particulate carbon material essentially simultaneously with metallizing the composition.
  • Figure 1 shows a "typical" PEMFC.
  • Figure 1 A shows a schematic drawing of PEMFC.
  • Figure IB shows a close up of an electrode and membrane of the PEMFC.
  • Figure 2 is an X-ray photoelectron survey spectrum (XPS) of the polyaniline- grafted carbon black of Example 1. This figure shows the presence of the Nls peak which supports that polyaniline has indeed been grafted to the carbon black surface.
  • Figure 3 is an X-ray photoelectron survey spectrum (XPS) of the polypyrrole- grafted carbon black of Example 3. This figure shows the presence of the Nls peak which supports that polypyrrole has indeed been grafted to the carbon black surface.
  • Figure 4 is an X-ray photoelectron survey spectrum (XPS) of 20% Pt/polyaniline-grafted carbon black of Example 4. This figure shows the presence of the Pt4f peak wliich supports that polyaniline-grafted carbon black has been platinized.
  • Figure 5 is an X-ray photoelectron survey spectrum (XPS) of 20% Pt/polypyrrole-grafted carbon black of Example 6. This figure shows the presence of the Pt4f peak which supports that polypyrrole-grafted carbon black has been platinized.
  • Figure 6 is an X-ray photoelectron survey spectrum (XPS) of 20%
  • FIG. 7 is a photomicrograph (TEM) of a commercial catalyst (20%Pt/XC72), A, versus a catalyst of the present invention (20%Pt/polyaniline grafted CDX-975), B.
  • the TEM shows the better Pt dispersion on the polyaniline-grafted CDX-975.
  • Figure 8 is a photomicrograph (TEM) of platinized and polypyrrole-grafted CDX-975 from Example 8.
  • Figure 8 A is on a 50 nm scale.
  • Figure 8B is on a 10 nm scale.
  • Anode humidification bottle temperature 105°C
  • Cathode humidification bottle temperature 90°C.
  • Reactant gases: Anode hydrogen 60 ml/min + 14 ml/min/A
  • Cathode oxygen 60 ml/min + 8 ml/min/A
  • Anode humidification bottle temperature 105°C
  • Cathode humidification bottle temperature 90°C.
  • Anode hydrogen 60 ml/min + 14 ml/min/A
  • Cathode oxygen 60 ml min + 8 ml/min/A
  • Ranges may be expressed herein as from “about” one particular value, and/or to "about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
  • X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound.
  • a weight percent of a component is based on the total weight of the formulation or composition in which the component is included.
  • an effective amount of a composition or property as provided herein is meant such amount as is capable of performing the function of the composition or property for which an effective amount is expressed.
  • the exact amount required will vary from process to process, depending on recognized variables such as the compositions employed and the processing conditions observed. Thus, it is not possible to specify an exact "effective amount.” However, an appropriate effective amount may be determined by one of ordinary skill in the art using only routine experimentation.
  • substituted conducting polymer is used herein to describe any chemical variation to a conducting polymer that retains the functionalities of conductivity and hetero atoms.
  • poly-3 -methyl-aniline is a "substituted" polyaniline.
  • FC Fluel cell
  • SOFC solid oxide
  • MCFC molten carbonate
  • AFC alkaline
  • PAFC phosphoric acid
  • PEM PEM
  • DMFC direct methanol
  • a “proton exchange membrane” is also known or referred to as polymer electrolyte membrane, solid polymer membrane (SPM), or solid polymer electrolyte (SPE) in the fuel cell art.
  • PEMFC is a type of fuel cell that utilizes a polymer electrolyte membrane to carry protons between two catalytic electrode layers, thus generating electrical current.
  • a PEM typically operates at temperatures up to 100 °C.
  • MEA Membrane electrode assembly
  • Metal as used herein can be, e.g., a precious metal, noble metal, platinum group metals, platinum, alloys and oxides of same, and compositions that include transition metals and oxides of same. As used herein, it is a “metal” that acts as a catalyst for the reactions occurring in the fuel cell.
  • the metal may be tolerant of CO contaminants and may also be used in direct methanol fuel cells.
  • Ionomer is an ionically conductive polymer (e.g., National®). An ionomer is also frequently used in the electrode layer to improve ionic conductivity.
  • Membrane can be known as polymer electrolyte membrane, solid polymer electrolyte, proton exchange membrane, separator, or polymer membrane.
  • the “membrane” is an ionically conductive, dielectric material against which catalytic electrodes are placed or affixed.
  • the membrane most frequently used is a perfluorosulfonated polymer (e.g., Nation®), which can be obtained in varying thicknesses, equivalent weights, etc.
  • Electrode as used herein is a nonmetallic electric conductor in which current is carried by the movement of ions or a substance that when dissolved in a suitable solvent becomes an ionic conductor.
  • the polymer membrane of a fuel cell is the electrolyte.
  • Electrode also referred to as a “catalyst,” is a metal (as defined above) which is catalytic for fuel cell reactions, typically supported on a catalyst support (defined below).
  • “Supported catalyst” is a metal (as defined above) dispersed on a support.
  • Catalyst support is a material upon which metal (as defined above) is dispersed, typically conductive (e.g., carbon black, conducting polymer, or modified carbon black).
  • Electrode is the layer of supported electrocatalyst in contact with and/or affixed to a membrane.
  • the electrode may include ionomer and other materials in addition to the electrocatalyst.
  • Oxygen reduction reaction also known as ORR, cathode reaction, or cathodic process, is a reaction in which oxygen gas is reduced in the presence of protons, producing water.
  • Haldrogen oxidation reaction is also known as HOR, anode reaction, or anodic process. This is a reaction in which hydrogen gas is converted into protons and electrons.
  • Cathode is the electrode where oxidant reduction reaction occurs.
  • Gas diffusion layer is a layer adjacent to the electrodes which aides in diffusion of gaseous reactants across the electrode surface; it is typically a carbon cloth or carbon-based/carbon-containing paper (e.g., one manufactured by Toray).
  • the GDL should be electrically conductive to carry electrons through an external circuit.
  • “Current collector” is the portion of a fuel cell adjacent to the GDL through which electrons pass to an external circuit; it may also contain channels or paths (flow field) to assist in gas distribution and is typically made of graphite or conductive composites.
  • Flow field is the scheme for distributing gaseous reactants across the electrode.
  • a flow field may be part of a current collector and/or a GDL.
  • Insulator or dielectric, is a material which is not electrically conductive.
  • Electrode conductivity is the ability of a material to conduct electrons.
  • Protonic conductivity or ionic conductivity (IC) is the ability of a material to conduct ions or protons.
  • platinization or more generically, “metallization,” is a process of depositing or precipitating metal (as defined above) onto the surface of a catalyst support. Specifically, platinization is a process of depositing or precipitating platinum (Pt) onto the surface of a catalyst support.
  • Metal-containing oxidizing agent refers to an oxidizing agent containing metal in an oxidized form (higher oxidation state) wherein the metal-containing oxidizing agent is capable of effecting oxidative polymerization of a monomer with concurrent reduction of the metal.
  • Carbon black is a conductive acmoform carbon utilized, for example, as a catalyst support (defined above).
  • Portion or permeability, can be used to refer to porosity of carbon black (i.e., difference in NSA and STS A surface area measurements), or to macroscopic porosity of an electrode structure (i.e., related to ability of diffusion of gaseous reactants through an electrode layer).
  • Carbonaceous refers to a solid material comprised substantially of elemental carbon.
  • Carbonaceous material is intended to include, without limitation, i) carbonaceous compounds having a single definable structure; or ii) aggregates of carbonaceous particles, wherein the aggregate does not necessarily have a unitary, repeating, and/or definable structure or degree of aggregation.
  • Porate means a material of separate particles.
  • Polyization curve IV curve, or current- oltage curve, is the data/results from electrochemical analysis of MEAs or catalyst materials.
  • PANI polyaniline
  • PY polypyrrole
  • X-ray diffraction is an analysis method for determining crystallographic properties of a material, specifically as used herein the size of dispersed metal particles.
  • X-ray photoelectron spectroscopy (XPS), or electron scanning chemical analysis (ESC A) is an analysis method for obtaining chemical state information on materials.
  • CO chemisorption or more simply, CO, is an analysis method for determining the available surface area of a material, specifically metal particles.
  • the present invention provides a method of grafting conducting polymers, specifically conducting polymers containing hetero atoms, on a particulate carbon substrate and the resulting composition.
  • the conducting polymer-grafted carbon serves as unique catalyst support to increase the electronic conductivity and uniform distribution of metal particles in fuel cell supported catalysts.
  • the invention includes a composition comprising a particulate carbonaceous material (substrate), and a conducting polymer containing hetero atoms, wherein the conducting polymer is grafted onto the surface of the carbonaceous material.
  • the composition can further comprise a metal.
  • the carbonaceous material is described below.
  • the carbonaceous material can be less than about 98% by weight of the composition of the present invention, for example, about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, or 97%.
  • the carbonaceous material can be about 1% to about 90% by weight of the composition, for example, about 2, 5, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, or 88%.
  • the carbonaceous material can be about 40% to about 90% by weight of the composition, for example, about 41, 44, 46, 50, 51, 54, 56, 60, 61, 64, 66, 70, 71, 74, 76, 80, 81, 84, 86, or 89%>.
  • the carbonaceous material can be about 50% to about 80% by weight of the composition, for example, about 53, 54, 55, 57, 58, 60, 63, 65, 67, 68, 70, 73, 75, 77, 78, or 79%>, of the present invention.
  • the conducting polymer is described below.
  • the conducting polymer can be greater than about 0% and less than about 100% by weight of the composition of the present invention, for example, about 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99%.
  • the conducting polymer can be about 1% to about 50% by weight, for example, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 48, or 49%.
  • the conducting polymer can be about 20% to about 50% by weight, for example, about 22, 24, 25, 30, 35, 40, 45, 47, or 48%, of the composition of the present invention.
  • the conducting polymer contains hetero atoms which are also described below.
  • the conducting polymer containing hetero atoms is grafted onto the surface of the carbonaceous material.
  • the conducting polymer can be grafted to the carbonaceous material, for example, by a method described below.
  • the conducting polymers can be formed and grafted to the carbonaceous material, for example, by oxidatively polymerizing a monomer of the conducting polymer with the carbonaceous material.
  • the composition can further comprise a metal.
  • the metal is described below.
  • the metal can be about 2% to about 80%) of the composition, for example, about 3, 5, 7, 8, 10, 12, 13, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, or 78%.
  • the metal can be about 2% to about 60% of the composition, for example, about 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 57%.
  • the metal can be about 20% to about 40% of the composition for example, about 22, 25, 30, 35, or 38%.
  • the metal can be uniformly distributed "through" the composition, i.e., on the surface of the composition or in the conducting polymer of the composition.
  • the carbonaceous material can be any particulate, substantially carbonaceous material that is an electronically conductive carbon and has a "reasonably high" surface area.
  • carbon black, graphite, nanocarbons, fullerenes, fullerenic material, finely divided carbon, or mixtures thereof can be used.
  • the carbonaceous material can be carbon black.
  • the choice of carbon black in the invention is not critical. Any carbon black can be used in the invention. Carbon blacks with surface areas (nitrogen surface area, NSA) of about 200 to about 1000 m 2 /g, for example, 200, 220, 240, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, or 950 m 2 /g can be used. Specifically, a carbon black with a surface area of 240 m 2 /g (NSA, ASTM D6556) can be used. It is preferred that the carbon black have fineness effective for metal dispersion. It is preferred that the carbon black have structure effective for gas diffusion.
  • NSA nitrogen surface area
  • the carbon black can be less than about 98%> by weight of the composition of the present invention, for example, about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, or 97%.
  • the carbon black can be about 1% to about 90% by weight of the composition, for example, about 2, 5, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, or 88%.
  • the carbon black can be about 40% to about 90% by weight of the composition, for example, about 41, 44, 46, 50, 51, 54, 56, 60, 61, 64, 66, 70, 71, 74,
  • the carbon black can be about 50% to about 80% by weight of the composition, for example, about 53, 54, 55, 57, 58, 60, 63, 65, 67, 68, 70, 73, 75,
  • carbon black particles have physical and electrical conductivity properties which are primarily determined by the particle and aggregate size, aggregate shape, degree of graphitic order, and surface chemistry of the particle. Also, the conductivity of highly crystalline or highly graphitic particles is higher than the conductivity of more amorphous particles. Generally, any of the forms of carbon black particles is suitable in the practice of the present invention and the particular choice of size, structure, and degree of grapl itic order depends upon the physical and conductivity requirements of the carbon black.
  • Carbon blacks are commercially available (e.g., Columbian Chemical Company, Atlanta, GA). Other Carbonaceous Material
  • the particulate carbonaceous material can be a material other than carbon black.
  • the choice of other carbonaceous material in the invention is not critical. Any substantially carbonaceous material that is an electronically conductive carbon and has a "reasonably high" surface area can be used in the invention.
  • graphite, nanocarbons, fuUerenes, fuUerenic material, finely divided carbon, or mixtures thereof can be used.
  • the carbonaceous material have fineness effective for metal dispersion. It is preferred that the carbonaceous material have structure effective for gas diffusion.
  • One of skill in the art could readily choose a carbonaceous material for a particular application.
  • the carbonaceous material can be less than about 98%) by weight of the composition of the present invention, for example, about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, or 97%.
  • the carbonaceous material can be about 1% to about 90%> by weight of the composition, for example, about 2, 5, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, or 88%.
  • the carbonaceous material can be about 40% to about 90% by weight of the composition, for example, about 41, 44, 46, 50, 51, 54, 56, 60, 61, 64, 66, 70, 71, 74, 76, 80, 81, 84, 86, or 89%.
  • the carbonaceous material can be about 50%) to about 80% by weight of the composition, for example, about 53, 54, 55, 57, 58, 60, 63, 65, 67, 68, 70, 73, 75, 77, 78, or 79%, of the present invention.
  • the conductive material used in the invention is any conductive material which is effective for the discussed purposes of the invention.
  • the conductive material can be a conducting polymer.
  • the conducting polymer can be any organic polymer capable of electronic conductivity attributable to extended conjugated/delocalized multiple bonds and containing unshared electron pairs as provided by die presence of hetero atoms.
  • Polyaniline, polypyrrole, polythiophene, polyfuran, poly(p-phenylene-oxide), poly(p-phenylene-sulfide), substituted conducting polymers, or mixtures thereof can be used.
  • the conducting polymer can include polyaniline, polypyrrole, polyfuran, polythiophene, or mixtures thereof. Mixtures of these polymers can include physical mixtures as well as copolymers of the monomers of the respective polymers.
  • the conducting polymer can comprise polyaniline or polypyrrole.
  • the conducting polymer is grafted to the carbonaceous material surface in a process such as oxidative polymerization.
  • the monomer(s) of the desired resulting conducting polymer is polymerized in the presence of the carbonaceous material, thus grafting the polymer to the carbonaceous material. A method for making this is described below.
  • the presence of polymers in the final composition is supported by XPS results and by the observed physical properties (e.g., ability to press films from the composition).
  • a conductive material e.g., conducting polymer
  • Conducting polymers are commercially available and are readily prepared by a person of ordinary skill in the art.
  • the conducting polymer contains hetero atoms.
  • the hetero atoms can be N, S, and O, for example.
  • the amount of hetero atoms in weight % of the resulting polymer is the same weight %> as the hetero atoms in the monomer(s) used for the polymer (e.g.,
  • the location of the hetero atoms in the conducting polymer also depends on the corresponding monomer(s).
  • the conducting polymer with hetero atoms is grafted onto the carbon black surface, for example, thereby increasing the electrical conductivity of the carbonaceous material and the stability of the hybrid (i.e., polymer + carbon) material is expected to be enhanced.
  • the polymer grafting process also reduces the porosity of the carbon black.
  • the hetero atom containing conductive polymer-grafted carbon material also shows hydrophilic character and thereby enhances the humidification process when used in a fuel cell application, for example. Also, the higher conductivity of these polymers facilitates the electron transfer process.
  • the conducting polymer can be greater than about 0%> and less than about 100% by weight of the composition of the present invention, for example, about 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99%.
  • the conducting polymer can be about 1% to about 50% by weight, for example, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 48, or 49%.
  • the conducting polymer can be about 20% to about 50% by weight, for example, about 22, 24, 25, 30, 35, 40, 45, 47, or 48%», of the composition of the present invention.
  • the grafted conducting polymer (with hetero atoms) grafted on carbonaceous material behaves differently, when used as a catalyst support, than the carbonaceous material alone or the conducting polymer alone.
  • a composition of the present invention can be utilized as a catalyst support.
  • a catalyst support of the present invention comprises a carbonaceous material and a conductive material (e.g., a conducting polymer containing hetero atoms). The conductive material is grafted to the carbonaceous material thus forming a single material rather than merely a mixture.
  • the catalyst support comprises the conducting polymer-grafted carbonaceous material. The amount of each component is described above.
  • a composition of the present invention can further comprise a metal.
  • the metal can be, for example, platinum, iridium, osmium, rhenium, ruthenium, rhodium, palladium, vanadium, chromium, or a mixture thereof, or an alloy thereof, specifically, the metal can be platinum.
  • the metal can also be alloys or oxides of metals effective as catalysts.
  • the form and/or size of the metal provide the highest surface area of the metal possible per unit mass. It is desired that the size of the metal particles be kept as small as possible to achieve this end. Generally, in the art, metal particles end up as approximately 2 to about 6 nm during use in fuel cells due to sintering. A size less than about 2 nm can provide better performance. Atomic platinum, for example, would be ideal and found in groups of about 3 atoms.
  • the amount of metal can be any amount.
  • the amount of metal can be an effective catalytic amount. One of skill in the art can determine an amount effective for the desired performance.
  • the metal can be about 2% to about 80% of the composition, for example, about 3, 5, 7, 8, 10, 12, 13, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, or 78%.
  • the metal can be about 2% to about 60% of the composition, for example, about 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 51%.
  • the metal can be about 20% to about 40% of the composition for example, about 22, 25, 30, 35, or 38%>.
  • the metal can be uniformly distributed "through" the composition, i.e., on the surface of the composition or in the conducting polymer of the composition. One of skill in the art could readily choose which metal to use in the composition for a particular application. Metals are commercially available. SUPPORTED CATALYST/ELECTRODE
  • the catalyst support above can further comprise a metal.
  • This resulting composition can be a supported catalyst (or electrode), such as in a fuel cell.
  • the catalyst support and metal are described above.
  • the metal can be uniformly distributed "through" the catalyst support.
  • the supported catalyst can be made by methods described below.
  • the supported catalyst can be made by grafting a conducting polymer containing hetero atoms to a particulate carbonaceous material and then adding the metal.
  • the conducting polymer containing hetero atoms can be formed and grafted to carbonaceous material (e.g., carbon black) by oxidative polymerization of the monomer of the conducting polymer in the presence of the carbonaceous material and then subsequently metallized (e.g., platinized).
  • the supported catalyst can be made and metallized essentially simultaneously by forming and grafting the conducting polymer containing hetero atoms to carbonaceous material (e.g., carbon black) by oxidative polymerization of the monomer of the conducting polymer in the presence of the carbonaceous material and a metal-containing oxidizing agent.
  • carbonaceous material e.g., carbon black
  • the supported catalyst can be used in various applications requiring such a supported catalyst.
  • One example of such an application is in a fuel cell, specifically as an electrode in a fuel cell.
  • the conducting polymer-grafted carbon black aids the uniform dispersion of metal such as by anchoring the metal to the hetero atoms present in the conducting polymer.
  • the hetero atom-containing anchoring groups facilitate prevention of agglomeration and sintering of platinum (Pt) (or other metal) particles.
  • the conducting polymer is grafted on the carbon black surface, for example, thereby increasing the electrical conductivity of the carbonaceous material and the stability of the hybrid material is expected to be enhanced.
  • the reduction in available porosity of the carbon black due to the polymer grafting process results in increased metal accessability for the electrode reaction.
  • Examples 16 and 17 below show a comparison of the dispersion of Pt on carbon black in the supported catalysts of the present invention relative to a HiSPECTM supported catalyst.
  • the invention includes various devices. ELECTRODE
  • An electrode of the present invention is described above.
  • An electrode of the invention can serve as either an anode, a cathode, or both.
  • MEA membrane/electrode assembly
  • the supported catalyst/electrode material is first prepared in liquid “ink” form by thoroughly mixing together appropriate amounts of supported catalyst (powder of metal, e.g., Pt, dispersed on carbon) and a solution of the membrane material (ionomer) dissolved in a solvent, e.g., alcohols.
  • a solvent e.g., alcohols.
  • the "ink” is prepared, it is applied to the surface of the solid membrane, e.g., Nafion®, in a number of different ways.
  • the simplest method involves painting the catalyst "ink” directly onto a dry, solid piece of membrane. The wet supported catalyst layer and the membrane are heated until the catalyst layer is dry.
  • the membrane is then turned over and the procedure is repeated on the other side. Supported catalyst layers are then on both sides of the membrane.
  • the dry membrane/electrode assembly is next rehydrated by immersing in dilute acid solution to also ensure that the membrane is in the H + form needed for fuel cell operation.
  • the final step is the thorough rinsing in distilled water.
  • the membrane/electrode assembly is then ready for insertion into the fuel cell hardware.
  • the membrane/electrode assembly can have a total thickness of about 200 ⁇ m, for example, and conventionally generate more than 0.5 an ampere of current for every square cm of membrane/electrode assembly at a voltage between the cathode and anode of 0.7 V, when encased within well-engineered components.
  • the supported catalyst/electrode of the present invention is described above.
  • the supported catalyst/electrode can be applied to the membrane of the MEA which is described below.
  • the supported catalyst can be added to a solvent and "painted" onto the membrane.
  • One of skill in the art could easily determine methods for applying the supported catalyst to the membrane.
  • Transfer Membrane/Electrolyte The PEM carries the necessary protons from the anode to the cathode while keeping the gases safely separate.
  • the thickness of the membrane in a membrane/electrode assembly can vary with the type of membrane.
  • the thickness of the supported catalyst layers depends on how much metal is used in each electrode. For example, for supported catalyst layers containing about 0.15 mg Pt/cm 2 , the thickness of the supported catalyst layer can be close to 10 ⁇ m.
  • the thickness of the supported catalyst layer can be, for example, about 0.1 to about 50 ⁇ m, more specifically on the order of about 20 to about 30 ⁇ m. Thicknesses above 50 ⁇ m appear to increase the mass transfer problems too much to be effective.
  • An appropriate thickness of supported catalyst can be determined by one of skill in the art.
  • the membrane of the MEA can be a dielectric, ionically-conductive material. It is desired that the membrane be sufficiently durable to withstand conditions within a fuel cell.
  • An appropriate membrane can be determined by one of skill in the art.
  • the membrane of the MEA can be an ionomer, specifically a perfluorosulfonate ionomer. More specifically, the membrane can be a poly(tetrafluoroethylene)-based cation exchange ionomer such as Nafion® (DuPont, Wilmington, DE; Fayetteville, NC). Nafion® is a perfluorinated polymer that contains small proportions of sulfonic or carboxylic ionic functional groups. Its general chemical structure can be seen below, where X is either a sulfonic or carboxylic functional group and M is either a metal cation in the neutralized form or an H + in the acid form.
  • the MEA comprises an anode, a cathode, and a membrane.
  • the anode can be an electrode of the present invention.
  • the electrode should be electrically conducting, porous enough to let reactants diffuse to the metal, and able to carry protons to the membrane.
  • the cathode can also be an electrode of the present invention.
  • FIG. 9 and 10 demonstrate the functionality of MEAs of the present invention.
  • FUEL CELL A fuel cell comprises an MEA, fuel feed, and oxidant feed.
  • a fuel cell typically comprises an MEA, backing layers, and flow fields/current collectors, fuel feed, and oxidant feed.
  • the hardware of the fuel cell can include backing layers.
  • the layers are generally one next to the anode and another next to the cathode and made of a porous carbon paper or carbon cloth. They layers are made of a material that can conduct the electrons exiting the anode and entering the cathode.
  • Backing layers are commercially available or can be prepared by one of skill in the art. Appropriate backing layers can be chosen by one of skill in the art.
  • the hardware of the fuel cell can include flow fields and current collectors. Pressed against the outer surface of each backing layer can be a piece of hardware, called a bipolar plate, which often serves the dual role of flow field and current collector.
  • the plates are generally made of a lightweight, strong, gas impermeable, electron-conducting material; graphite, metals, or composite plates are commonly used.
  • the bipolar plates can provide a gas flow field such as channels machined into the plate.
  • the channels carry the reactant gas from the point at which it enters the fuel cell to the point at which the gas exits.
  • the pattern, width, and depth have a large impact on the effectiveness of the distribution of the gases evenly across the active area of the membrane/electrode assembly.
  • the flow field also affects water supply to the membrane and water removal from the cathode.
  • the bipolar plates can also serve as current collectors. Electrons produced by the oxidation of hydrogen can be conducted through the anode, through the backing layer and through the plate before they can exit the cell, travel through an external circuit and re-enter the cell at the cathode plate.
  • Flow fields and current collectors are commercially available or can be prepared by one of skill in the art. Appropriate flow fields and current collectors can be chosen by one of skill in the art.
  • the devices and methods of the present invention are useful in preparing and using fuel cells.
  • Other applications can include electrodes and bipolar plates (or current collector plates) in energy conversion devices (such as fuel cells, batteries, or capacitors) when the current modified carbon products are used in combination with other materials.
  • energy conversion devices such as fuel cells, batteries, or capacitors
  • a method of the present invention comprises contacting a monomer of a conducting polymer containing hetero atoms and a particulate carbonaceous material in the presence of an oxidizing agent, thus effectively concurrently polymerizing the monomer and grafting the resultant polymer to the carbonaceous material.
  • the contacting can, but need not, take place in a liquid phase.
  • Any method which facilitates oxidative polymerization can be used.
  • One of skill in the art can determine a method to graft the conducting polymer (polymerize the monomer) to the carbonaceous material which maintains the purposes and characteristics of the invention.
  • the oxidizing agent can be added in stoichiometic amount/molar equivalent to the amount of monomer. For example, a 1 :1 mole ratio of monomer to oxidant was used for the Examples below.
  • the reaction can be carried out at room temperature and pressure. Specific examples of the reaction are given in the Examples below.
  • the reaction can be carried out, for example, at temperatures up to about 70°C.
  • An aqueous slurry of carbonaceous material can be used.
  • Slightly acidic conditions such as a pH of about 4 to about 5 can be used.
  • Reaction time of about 2 hours, for example, can be used.
  • the reaction can be carried out in the presence of an oxidizing agent.
  • An oxidizing agent is used to create sufficiently oxidizing conditions to facilitate polymerization of the monomer.
  • Various oxidizing agents are known in the art. These oxidizing agents are readily commercially available or readily synthesized by methods known to one of skill in the art.
  • oxidizing agents examples include ammomum persulfate, ferric chloride, hydrogen peroxide, potassium, permanganate, potassium chlorate, chloroplatinic acid, or a combination of oxidizing agents.
  • Some monomers require a stronger oxidizing agent than others.
  • the amount of oxidizing agent can be stoichiometric to the monomer, rather than being used in catalytic amounts.
  • One of skill in the art would be able to determine conditions, amount, and choice of oxidizing agent for a particular application.
  • Metal can be added to the polymer-grafted carbonaceous material subsequent to its preparation.
  • the metal can be added by metallizing. For example, if the metal is platinum, one method of platinization is described below.
  • a platinizing agent can be used to add platinum to the grafted carbonaceous material.
  • Various platinizing agents are known in the art. These platinizing agents are readily commercially available or readily synthesized by methods know to one of skill in the art. Choice of appropriate platinizing agent is readily determined by one of skill in the art for the desired application. Generally, anything containing the desired metal can be used, for example, any salt or organo-compound containing the metal.
  • platinizing agents examples include platinum salts: chloroplatinic acid, platinum nitrate, platinum halides, platinum cyanide, platinum sulf ⁇ de, organoplatinum salts, or a combination thereof.
  • the amount of platinizing agent is readily determined by one of skill in the art for a desired application.
  • the reaction can alternatively be carried out in the presence of a metal- containing oxidizing agent to essentially simultaneously form and graft the polymer and metallize the composition.
  • a metal-containing oxidizing agent is used to create sufficiently oxidizing conditions to facilitate polymerization of the monomer while including metal ions in the polymer.
  • metal-containing oxidizing agents are known in the art. These metal- containing oxidizing agents are readily commercially available or readily synthesized by methods known to one of skill in the art.
  • metal-containing oxidizing agents examples include chloroplatinic acid or a combination of metal-containing oxidizing agents.
  • Some monomers require a stronger metal-containing oxidizing agent than others.
  • the amount of metal-containing oxidizing agent can be stoichiometric to the monomer, rather than being used in catalytic amounts. However, the amount of metal- containing oxidizing agent and monomer can be selected based on the desired loading of metal in the final composition.
  • a reducing agent can be used to reduce the metal to metallic form.
  • Various reducing agents are known in the art. These reducing agents are readily commercially available or readily synthesized by methods known to one of skill in the art. The amount of reducing agent for the current method is always in excess of stoichiometric.
  • reducing agents examples include formaldehyde, formic acid, sodium borohydride, hydrogen, hydrazine, hydroxyl amine, or a combination of reducing agents.
  • Example 1 Preparation of polyaniline-grafted carbon black A slurry was made using 100 g CDX-975 carbon black (NSA surface area 240 m 2 /g and oil absorption of
  • a slurry was made using 100 g CDX-975 carbon black (NSA surface area 240 m 2 /g and oil absorption of
  • Example 4 Platinization of polyaniline-grafted carbon black 4 g of polyaniline-grafted carbon black (made in Example 1) was dispersed in 300 ml Dl water.
  • Example 5 Platinization of polyaniline-grafted carbon black 4 g of polyaniline grafted carbon black (made in Example 1) was dispersed in
  • Example 8 200 ml of 1% solution of chloroplatinic acid was added dropwise for a period of 1 hr. with continuous stirring. 200 ml of 3% solution of formaldehyde was added for a period of 1 hr., and the temperature was kept at 70°C for 1 hr. The slurry cooled to room temperature and was filtered by washing with Dl water. The carbon cake dried at 110°C for 4 hrs. and was pulverized. The resultant supported catalyst contained ⁇ 20% platinum with grafted polypyrrole on the carbon surface.
  • Example 8 200 ml of 1% solution of chloroplatinic acid was added dropwise for a period of 1 hr. with continuous stirring. 200 ml of 3% solution of formaldehyde was added for a period of 1 hr., and the temperature was kept at 70°C for 1 hr. The slurry cooled to room temperature and was filtered by washing with Dl water. The carbon cake dried at 110°C for 4 hrs. and
  • Simultaneous platinization and grafting of polypyrrole This method describes simultaneous platinization and grafting of polypyrrole to carbon black surface by using pyrrole, chloroplatinic acid, and sodium borohydride.
  • a slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m 2 /g and oil absorption of 170 ml/100 g) in 400 ml of deionized water.
  • the slurry was heated to 70°C for 1 hr with continuous stirring. 0.75 g of sodium borohydride in 80 ml of deionized water was added to the above slurry at a rate of 2 ml/min and the reaction temperature was kept at 70°C for 1 hr.
  • the reduced carbon black slurry was cooled to room temperature, filtered, washed with deionized water, dried at 100°C for 4 hr, and pulverized.
  • the resultant carbon black powder contains nano-crystalline platinum particles with polypyrrole-grafted carbon black as shown in Scheme HI.
  • Example 9 Simultaneous platinization and grafting of polyaniline This method describes simultaneous platinization and grafting of polyaniline to carbon black surface by using aniline, chloroplatinic acid, and sodium borohydride. A slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m 2 /g and oil absorption of 170 ml/100 g) in 400 ml of deionized water.
  • aniline 6 g was added to 100 ml of deionized water, and the aniline solution added to the slurry with continuous stirring for 10 min. 15.5 ml of 10%> chloroplatinic acid was diluted with 80 ml of deionized water, and the chloroplatinic acid solution was added to the carbon black slurry at a rate of 2 ml/min.
  • the slurry was heated to 70°C for 1 hr with continuous stirring.
  • a solution containing 0.75 g of sodium borohydride in 80 ml of deionized water was added to the above slurry at a rate of 2 ml/min, and the reaction temperature was kept at 70°C for 1 hr.
  • the carbon black slurry was cooled to room temperature, filtered, washed with deionized water, dried at 100°C for 4 hr, and pulverized.
  • the resultant carbon black powder contains nano-crystalline platinum particles with polyaniline-grafted carbon black as shown in Scheme HI.
  • Example 10 Simultaneous platinization and grafting of polypyrrole
  • This method describes simultaneous platinization and grafting of polypyrrole to carbon black surface by using pyrrole, chloroplatinic acid, and sodium borohydride. This method is similar to Example 8 except the reaction is carried out in ethanol.
  • a slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m 2 /g and oil absorption of 170 ml/100 g) in 400 ml of reagent ethanol.
  • the slurry was heated to 70°C for 1 hr with continuous stirring. 0.75 g of sodium borohydride in 80 ml of reagent ethanol was added to the above slurry at a rate of 2 ml/min, and the reaction temperature was kept at 70°C for 1 hr.
  • the carbon black slurry was cooled to room temperature, filtered, washed with ethanol and deionized water, dried at 100°C for 4 hr, and pulverized.
  • the resultant carbon black powder contains nano-crystalline platinum particles with polypyrrole-grafted carbon black as shown in Scheme m.
  • Example 11 Simultaneous platinization and grafting of polyaniline This method describes simultaneous platinization and grafting of polyaniline to carbon black surface by using aniline, chloroplatinic acid, and sodium borohydride. This method is similar to Example 9 except the reaction is carried out in ethanol.
  • a slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m 2 /g and oil absorption of 170 ml/100 g) in 400 ml of reagent ethanol.
  • the carbon black slurry was cooled to room temperature, filtered, washed with ethanol and deionized water, dried at 100°C for 4 hr, and pulverized.
  • the resultant carbon black powder contains nano-crystalline platinum particles with polyaniline-grafted carbon black as shown in Scheme HI.
  • Simultaneous platinization and grafting of polypyrrole This method describes simultaneous platinization and grafting of polypyrrole to carbon black surface by using pyrrole, chloroplatinic acid, and hydrogen.
  • a slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m 2 /g and oil absorption of 170 ml/100 g) in 400 ml of deionized water.
  • the carbon black slurry was cooled to room temperature, filtered, washed with deionized water, dried at 100°C for 4 hr, and pulverized.
  • the carbon black powder was reduced using 10%o hydrogen/nitrogen mixture in a tubular furnace at 250°C for 2 hr.
  • the resultant carbon black powder contains nano-crystalline platinum particles with polypyrrole-grafted carbon black as shown in Scheme HI.
  • Example 13 Simultaneous platinization and grafting of polyaniline This method describes simultaneous platinization and grafting of polyaniline to carbon black surface by using aniline, chloroplatinic acid, and hydrogen.
  • a slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m 2 /g and oil absorption of 170 ml/100 g) in 400 ml of deionized water. , 6 g of aniline was added to 100 ml of deionized water, and the aniline solution was added to the slurry with continuous stirring for 10 min.
  • carbon black CDX-975, surface area of 240 m 2 /g and oil absorption of 170 ml/100 g
  • the carbon black slurry was cooled to room temperature, filtered, washed with deionized water, dried at 100°C for 4 hr, and pulverized.
  • the carbon black powder was reduced using 10%o hydrogen/nitrogen mixture in a tubular furnace at 250°C for 2 hr.
  • the resultant carbon black powder contains nano-crystalline platinum particles with polyaniline-grafted carbon black as shown in Scheme HI.
  • the pellets of carbon black material included conductive carbon black alone, grafted material from Example 1 and Example 3 above, and CDX-975 carbon black alone.
  • Table 1 demonstrates the increase in electronic conductivity of the catalyst supports of the present invention over carbon alone.
  • the pellets of carbon black material included conductive carbon black alone, simultaneously platinized grafted material from Example 8 above, and CDX-975 carbon black alone.
  • Table 2 demonstrates the increase in electronic conductivity of the catalyst supports of the present invention over carbon alone.
  • Table 3 compares the dispersion of Pt on carbon black (bulk, average value) in the supported catalysts of the present invention relative to a HiSPECTM supported catalyst. See also Figure 7.
  • Table 3 X-ray diffraction analysis of Pt dispersion in carbon black supported catalysts.
  • Table 4 compares the dispersion of Pt on carbon black (bulk, average value) in the supported catalysts of the present invention relative to a HiSPECTM supported catalyst. See also Figure 8. Table 4. X-ra diffraction analysis of Pt dis ersion in carbon black su orted catal sts.

Abstract

A composition comprising particulate carbonaceous material and a conducting polymer containing hetero atoms. The composition can further comprise a metal. Devices comprising the composition can be constructed including supported electrocatalysts, membrane electrode assemblies, and fuel cells. A method for preparing the composition comprises oxidatively polymerizing a monomer of a conducting polymer containing hetero atoms in the presence of a carbonaceous material wherein the oxidative polymerization takes place in the presence of a metal-containing oxidizing agent. The method grafts the conducting polymer to the carbonaceous material while essentially simultaneously metallizing the composition.

Description

METALLIZED CONDUCTING POLYMER-GRAFTED CARBON MATERIAL
AND METHOD FOR MAKING
BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
This invention relates generally to particulate conductive carbons. The invention also relates to supported catalysts for fuel cells and proton exchange membranes. BACKGROUND
A fuel cell (FC) is a device that converts energy of a chemical reaction into electrical energy (electrochemical device) without combustion. A fuel cell (see e.g., Figure 1) generally comprises an anode 20, cathode 50, electrolyte 10, backing layers 30, 60, and flow fields/current collectors 40, 70. There are five types of fuel cells, as defined by their electrolytes:
Figure imgf000002_0001
** * — = Currently of most interest The current description deals with proton exchange membrane (a.k.a. polymer electrolyte membrane) (PEM) fuel cells (a.k.a. solid polymer electrolyte (SPE) fuel cell, polymer electrolyte fuel cell, and solid polymer membrane (SPM) fuel cell). A polymer electrolyte membrane fuel cell (PEMFC) comprises a proton conductive polymer membrane electrolyte 10 sandwiched between electrocatalysts (a cathode 50 and an anode 20) (see, e.g., Figure 1).
The oxidation and reduction reactions occurring within the fuel cell are:
2H2 »4H+ + 4e~ oxidation half reaction
+ O2 > 2H2O reduction half reaction This electrochemical process is a non-combustion process wliich does not generate airborne pollutants. Therefore, fuel cells are a clean, low emission, highly efficient source of energy. Fuel cells can have 2-3 times greater efficiency than internal combustion engines and can use abundant and/or renewable fuels. Fuel cells produce electricity, water, and heat using fuel 90 and oxygen 80. Water (liquid and vapor) is the only emission when hydrogen is the fuel.
Since the voltage of a typical fuel cell is small, they are usually stacked in series. The two half-reactions normally occur very slowly at the low operating temperature of the fuel cell, thus catalysts 56 are used on one or both the anode 20 and cathode 50 to increase the rates of each half reaction. Platinum (Pt) has been the most effective noble metal catalyst 56 to date because it is able to generate high enough rates of O reduction at the relatively low temperatures of the PEM fuel cells. Kinetic performance of PEM fuel cells is limited primarily by the slow rate of the O2 reduction half reaction (cathode reaction) which is more than 100 times slower than the H2 oxidation half reaction (anode reaction). The O2 reduction half reaction is also limited by mass transfer issues.
As fuel 90, such as hydrogen, flows into a fuel cell on the anode side, a catalyst 56 facilitates the separation of the hydrogen gas fuel into electrons and protons (hydrogen ions). The hydrogen ions pass through the membrane 10 (center of fuel cell) and, again with the help of the catalyst 56, combine with an oxidant 80, such as oxygen, and electrons on the cathode side, producing water. The electrons, which cannot pass through the membrane 10, flow from the anode 20 to the cathode 50 through an external circuit containing a motor or other electrical load, which consumes the power generated by the cell. A catalyst 56 is used to induce the desired electrochemical reactions at the electrodes 20, 50. The catalyst 56 is often incorporated at the electrode/electrolyte interface by coating a slurry of the electrocatalyst particles 56 to the electrolyte 10 surface. When hydrogen or methanol fuel 90 feed through the anode catalyst/electrolyte interface, electrochemical reaction occurs, generating protons and electrons. The electrically conductive anode 20 is connected to an external circuit, which carries electrons by producing electric current. The polymer electrolyte 10 is typically a proton conductor, and protons generated at the anode catalyst migrate through the electrolyte 10 to the cathode 50. At the cathode catalyst interface, the protons combine with electrons and oxygen to give water.
The catalyst 56 is typically a particulate metal such as platinum and is dispersed on a high surface area electronically conductive support 52.
The electronically conductive support material 52 in the PEMFC typically consists of carbon particles. Carbon has an electrical conductivity (10"1 - 10"2 S/cm) which helps facilitate the passage of electrons from the catalyst 56 to the external circuit. Proton conductive materials 54 such as Nation® are often added to facilitate transfer of the protons from the catalyst 56 to the membrane interface.
To promote the formation and transfer of the protons and the electrons and to prevent drying out of the membrane 10, the fuel cells are operated under humidified conditions. To generate these conditions, hydrogen fuel 90 and oxygen 80 gases are humidified prior to entry into the fuel cell. In a supported electrocatalyst (52 + 56), carbon is relatively hydrophobic, and as such, the boundary contact between the reactive gases, water and the surface of the solid electrodes made of carbon contributes to high electrical contact resistance and ohmic power loss in the fuel cell resulting in lower efficiency of the fuel cell.
In the present invention, the hetero atom-containing conductive polymer-grafted carbon material shows hydrophilic character and thereby enhances the humidification process. Also, the higher electronic conductivity of these polymers facilitates the electron transfer process. An ordinary electrolyte is a substance that dissociates into positively charged and negatively charged ions in the presence of water, thereby making the water solution electrically conducting. The electrolyte in a PEM fuel cell is a polymer membrane 10. Typically, the membrane material (e.g., Nation®) varies in thickness from 50 -175 μm. Polymer electrolyte membranes 10 are somewhat unusual electrolytes in that, in the presence of water, which the membrane 10 readily absorbs, the negative ions are readily held within their structure. Only the protons contained within the membrane 10 are mobile and free to carry positive charge through the membrane 10. Without this movement within the cell, the circuit remains open and no current would flow.
Polymer electrolyte membranes 10 can be relatively strong, stable substances. These membranes 10 can also be effective gas separators. Although ionic conductors, PEM do not conduct electrons. The organic nature of the structure makes it an electronic insulator. Since the electrons cannot move through the membrane 10, the electrons produced at one side of the cell must travel through an external circuit to the other side of the cell to complete the circuit. It is during this external route that the electrons provide electrical power.
A polymer electrolyte membrane 10 can be a solid, organic polymer, usually poly(perfluorosulfonic) acid. A typical membrane material, Nation ®, consists of three regions:
(1) the Teflon®-like, fluorocarbon backbone, hundreds of repeating -CF2-CF-CF2- units in length,
(2) the side chains, -O-CF2-CF-O-CF2-CF2-, wliich connect the molecular backbone to the third region, (3) the ion clusters consisting of sulfonic acid ions, SO3 ", H+.
The negative ions, SO ", are permanently attached to the side chain and cannot move. However, when the membrane 10 becomes hydrated by absorbing water, the hydrogen ions become mobile. Ion movement occurs by protons, bonded to water molecules, migrating from SO3 " site to SO3 " site within the membrane. Because of this mechanism, the solid hydrated electrolyte is a good conductor of hydrogen ions.
The catalyst support 52 serves to conduct electrons and protons and to anchor the catalyst 56 (e.g., noble metal). Many efforts have been aimed at lowering the costs of fuel cells by lowering noble metal (e.g., platinum) catalyst 56 levels due to noble metal's cost. One way to lower this cost is to construct the catalyst support layer 52 with the highest possible surface area.
The electrodes 20, 50 of a fuel cell typically consist of carbon 52 onto which very small metal particles 56 are dispersed. The electrode is somewhat porous so that gases can diffuse through each electrode to reach the catalyst 56. Both metal 56 and carbon 52 conduct electrons well, so electrons are able to move freely through the electrode. The small size of the metal particles 56, about 2 nm in diameter for noble metal, results in a large total surface area of metal 56 that is accessible to gas molecules. The total surface area is very large even when the total mass of metal 56 is small. This high dispersion of the catalyst 56 is one factor to generating adequate electron flow (current) in a fuel cell.
Conducting polymers are a class of conjugated double bond polymers whose electrical conductivities are comparable to the conductivities of semiconductors to metals, in the range of 0.1 to 100 S/cm. Typical examples of conducting polymers include polyaniline, polypyrrole, polythiophene, polyfuran, and polyphenylene. Both polyaniline and polypyrrole catalyst support 52 materials have shown improved fuel cell efficiency (e.g., U.S. 5,334,292 and WO 01/15253). However, the long-term stability of these materials has not been demonstrated in electrode environments in cyclic operations. Conducting polymers alone used as catalyst support 52 material have higher costs, lower surface area, and lower stability compared to those supports 52 based on carbon.
An example of a current commercial carbon-supported catalyst for fuel cells is the HiSPEC ™ series of products (Johnson Matthey, Reading, U.K.) which utilize Vulcan® XC72 (Cabot Corporation) carbon black loaded with various levels of platinum (or other metal). These commercial carbon-supported catalysts are very expensive.
Factors such as surface area and electronic conductivity have historically been viewed as important for the carbon support material. However, relatively little research has been undertaken to understand the role of or to optimize the carbon support.
In the present invention, a conducting polymer is grafted onto the surface of a carbonaceous material thereby increasing the electrical conductivity of the carbonaceous material, and the stability of the hybrid material is expected to be enhanced. The polymer grafting process also reduces the porosity of the carbon support, resulting in increased metal availability for electrode reaction.
The majority of the cost associated with electrodes is attributed to the high cost of the metal, which makes up the catalyst 56. Only those catalytic sites exposed on the surface of the catalytic particles contribute to the catalytic activity of the electrode and, thus, electrodes with the highest fraction of the metals accessible to the reaction should be the most effective. Carbon supports 52 with high porosity result in "trapped" metal sites that are not accessible for electrode reaction. The extent of dispersion of the metal catalyst 56 on the support material 52 and the stability of such high dispersion in use, i.e., resistance of the catalyst against sintering and/or agglomeration, is directly related to the surface area and the availability of surface sites on which the dispersed metal 56 can be anchored.
Jn the present invention, the conducting polymer-grafted carbon material aids the uniform dispersion and stabilization of metal particles by anchoring to hetero atoms, namely, N, O, S, etc., present in the conducting polymer. Also, the hetero atom- containing anchoring groups resist the agglomeration and sintering of metal (e.g., platinum (Pt)) crystallite particles.
It is desirable to provide a catalyst support 52 that has a higher surface area and also a higher surface density of anchoring surface sites than catalytic supports consisting exclusively of carbon. This would increase and stabilize the dispersion of the metal catalyst 56 and, thus, limit the amount of catalyst 56 needed. The present invention provides a PEMFC electrode which can be made more cost-effective than electrodes having exclusively carbon support or exclusively conducting polymer support. For the above reasons, improvement of the supported catalyst is desired and has been achieved with the present invention.
SUMMARY OF THE INVENTION In accordance with the purpose(s) of this invention, as embodied and broadly described herein, this invention, in one aspect, relates to conductive polymer-grafted carbons.
The invention includes a composition comprising a particulate carbonaceous material, and a conducting polymer containing hetero atoms wherein the conducting polymer is grafted onto the carbonaceous material. The composition further comprises a metal. The invention also includes a method for preparing a carbon with enhanced electronic conductivity comprising oxidatively polymerizing monomer of a conducting polymer containing hetero atoms with particulate carbonaceous material to form a conducting polymer-grafted carbonaceous material. The oxidative polymerization can take place using metal-containing oxidizing agent.
A device is disclosed comprising a particulate carbonaceous material, and a conducting polymer containing hetero atoms, wherein the conducting polymer is grafted onto the carbonaceous material. The device can further comprise a metal.
A fuel cell comprising an anode, a cathode, and a PEM is further included.
This invention relates to a process of grafting conducting polymers containing hetero atoms onto particulate carbon material (e.g., carbon black, graphite, nanocarbons, fullerenes, finely divided carbon or mixtures thereof) by in situ polymerization and the compositions resulting therefrom. Particularly, the conducting polymers are, for example, polyaniline and polypyrrole. This invention relates to the application of conducting polymer-grafted carbons in fuel cell applications. This invention particularly relates to the application of conducting polymer-grafted carbons as support material in fuel cell catalysts. The invention further relates to a process of grafting conducting polymers containing hetero atoms onto particulate carbon material essentially simultaneously with metallizing the composition.
Additional advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. BRIEF DESCRIPTION OF THE DRAWINGS
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the invention and together with the description, serve to explain the principles of the invention.
Figure 1 shows a "typical" PEMFC. Figure 1 A shows a schematic drawing of PEMFC. Figure IB shows a close up of an electrode and membrane of the PEMFC.
Figure 2 is an X-ray photoelectron survey spectrum (XPS) of the polyaniline- grafted carbon black of Example 1. This figure shows the presence of the Nls peak which supports that polyaniline has indeed been grafted to the carbon black surface. Figure 3 is an X-ray photoelectron survey spectrum (XPS) of the polypyrrole- grafted carbon black of Example 3. This figure shows the presence of the Nls peak which supports that polypyrrole has indeed been grafted to the carbon black surface. Figure 4 is an X-ray photoelectron survey spectrum (XPS) of 20% Pt/polyaniline-grafted carbon black of Example 4. This figure shows the presence of the Pt4f peak wliich supports that polyaniline-grafted carbon black has been platinized.
Figure 5 is an X-ray photoelectron survey spectrum (XPS) of 20% Pt/polypyrrole-grafted carbon black of Example 6. This figure shows the presence of the Pt4f peak which supports that polypyrrole-grafted carbon black has been platinized. Figure 6 is an X-ray photoelectron survey spectrum (XPS) of 20%
Pt/polypyrrole-grafted carbon black of Example 8. This figure shows the presence of the Pt4f peak which supports that polypyrrole-grafted carbon black has been platinized. Figure 7 is a photomicrograph (TEM) of a commercial catalyst (20%Pt/XC72), A, versus a catalyst of the present invention (20%Pt/polyaniline grafted CDX-975), B. The TEM shows the better Pt dispersion on the polyaniline-grafted CDX-975.
Figure 8 is a photomicrograph (TEM) of platinized and polypyrrole-grafted CDX-975 from Example 8. Figure 8 A is on a 50 nm scale. Figure 8B is on a 10 nm scale.
Figure 9 is a graph of MEA polarization curves comparing the commercial Johnson Matthey product and a platinized polyaniline-grafted carbon black of the present invention demonstrating the performance of the two materials in membrane electrode assemblies. The potential was varied across the materials and the current was measured. Electrode was prepared via the "decal transfer" method developed by Los Alamos Laboratory. For each sample, both anode and cathode were prepared to an approx Pt loading of 0.3 mg/cm2. Analysis conditions were Cell temperature = 80°C
Anode humidification bottle temperature = 105°C, and Cathode humidification bottle temperature = 90°C. Reactant gases: Anode hydrogen = 60 ml/min + 14 ml/min/A Cathode oxygen = 60 ml/min + 8 ml/min/A
Backpressure of 30 psi was maintained on the cell during analysis. Potentials depicted were not corrected for iR drop. Figure 10 is a graph of MEA polarization curves comparing the commercial Johnson Matthey product and a platinized polypyrrole-grafted carbon black of Example 8 demonstrating the performance of the two materials in membrane electrode assemblies. The potential was varied across the materials and the current was measured. Electrode was prepared via the "decal transfer" method developed by Los Alamos Laboratory. For each sample, both anode and cathode were prepared to an approx Pt loading of 0.3 mg/cm2. Analysis conditions were Cell temperature = 80°C
Anode humidification bottle temperature = 105°C, and Cathode humidification bottle temperature = 90°C. Reactant gases:
Anode hydrogen = 60 ml/min + 14 ml/min/A Cathode oxygen = 60 ml min + 8 ml/min/A
Backpressure of 30 psi was maintained on the cell during analysis. Potentials depicted were not corrected for 1R drop .
DESCRIPTION OF THE INVENTION Before the present compounds, compositions, articles, devices, and/or methods are disclosed and described, it is to be understood that this invention is not limited to specific synthetic methods; specific methods may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting.
In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:
It must be noted that, as used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "an oxidizing agent" includes mixtures of oxidizing agents, reference to "a reducing agent" includes mixtures of two or more such reducing agents, and the like.
Ranges may be expressed herein as from "about" one particular value, and/or to "about" another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
References in the specification and concluding claims to parts by weight, of a particular element or component in a composition or article, denote the weight relationship between the element or component and any other elements or components in the composition or article for which a part by weight is expressed. Thus, in a compound containing 2 parts by weight of component X and 5 parts by weight component Y, X and Y are present at a weight ratio of 2:5, and are present in such ratio regardless of whether additional components are contained in the compound. A weight percent of a component, unless specifically stated to the contrary, is based on the total weight of the formulation or composition in which the component is included.
"Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.
By the term "effective amount" of a composition or property as provided herein is meant such amount as is capable of performing the function of the composition or property for which an effective amount is expressed. As will be pointed out below, the exact amount required will vary from process to process, depending on recognized variables such as the compositions employed and the processing conditions observed. Thus, it is not possible to specify an exact "effective amount." However, an appropriate effective amount may be determined by one of ordinary skill in the art using only routine experimentation.
The term "substituted conducting polymer" is used herein to describe any chemical variation to a conducting polymer that retains the functionalities of conductivity and hetero atoms. For example, poly-3 -methyl-aniline is a "substituted" polyaniline.
"Fuel cell" (FC) as used herein is an electrochemical device that converts chemical energy into electrical energy without combustion. Various types of fuel cells include solid oxide (SOFC), molten carbonate (MCFC), alkaline (AFC), phosphoric acid (PAFC), PEM, and direct methanol (DMFC) fuel cells.
A "proton exchange membrane" (PEM), is also known or referred to as polymer electrolyte membrane, solid polymer membrane (SPM), or solid polymer electrolyte (SPE) in the fuel cell art. A PEMFC is a type of fuel cell that utilizes a polymer electrolyte membrane to carry protons between two catalytic electrode layers, thus generating electrical current. A PEM typically operates at temperatures up to 100 °C.
"Membrane electrode assembly" (MEA) is a term used for an assembly which normally comprises a polymer membrane with affixed/adjacent electrode layers. In some cases the MEA may also include gas diffusion layer/materials.
"Metal" as used herein can be, e.g., a precious metal, noble metal, platinum group metals, platinum, alloys and oxides of same, and compositions that include transition metals and oxides of same. As used herein, it is a "metal" that acts as a catalyst for the reactions occurring in the fuel cell. The metal may be tolerant of CO contaminants and may also be used in direct methanol fuel cells.
"Ionomer," is an ionically conductive polymer (e.g., Nation®). An ionomer is also frequently used in the electrode layer to improve ionic conductivity.
"Membrane," can be known as polymer electrolyte membrane, solid polymer electrolyte, proton exchange membrane, separator, or polymer membrane. The "membrane" is an ionically conductive, dielectric material against which catalytic electrodes are placed or affixed. Typically currently in the art, the membrane most frequently used is a perfluorosulfonated polymer (e.g., Nation®), which can be obtained in varying thicknesses, equivalent weights, etc. "Electrolyte" as used herein is a nonmetallic electric conductor in which current is carried by the movement of ions or a substance that when dissolved in a suitable solvent becomes an ionic conductor. The polymer membrane of a fuel cell is the electrolyte.
"Electrocatalyst," also referred to as a "catalyst," is a metal (as defined above) which is catalytic for fuel cell reactions, typically supported on a catalyst support (defined below).
"Supported catalyst" is a metal (as defined above) dispersed on a support.
"Catalyst support" is a material upon which metal (as defined above) is dispersed, typically conductive (e.g., carbon black, conducting polymer, or modified carbon black).
"Electrode," as used herein, is the layer of supported electrocatalyst in contact with and/or affixed to a membrane. The electrode may include ionomer and other materials in addition to the electrocatalyst. "Oxygen reduction reaction," also known as ORR, cathode reaction, or cathodic process, is a reaction in which oxygen gas is reduced in the presence of protons, producing water.
"Hydrogen oxidation reaction" is also known as HOR, anode reaction, or anodic process. This is a reaction in which hydrogen gas is converted into protons and electrons.
"Protons," sometimes referred to in a the fuel cell context as H+, hydrogen ions, or positive ions, are a positively charged portion of hydrogen atom which results from reaction over catalyst material. "Anode" is the electrode where fuel oxidation reaction occurs.
"Cathode" is the electrode where oxidant reduction reaction occurs.
"Gas diffusion layer," or GDL or porous backing layer, is a layer adjacent to the electrodes which aides in diffusion of gaseous reactants across the electrode surface; it is typically a carbon cloth or carbon-based/carbon-containing paper (e.g., one manufactured by Toray). The GDL should be electrically conductive to carry electrons through an external circuit.
"Current collector" is the portion of a fuel cell adjacent to the GDL through which electrons pass to an external circuit; it may also contain channels or paths (flow field) to assist in gas distribution and is typically made of graphite or conductive composites.
"Flow field" is the scheme for distributing gaseous reactants across the electrode. A flow field may be part of a current collector and/or a GDL.
"Insulator," or dielectric, is a material which is not electrically conductive.
"Electrical conductivity," or electronic conductivity, is the ability of a material to conduct electrons.
"Protonic conductivity" or ionic conductivity (IC), is the ability of a material to conduct ions or protons.
"Platinization" or more generically, "metallization," is a process of depositing or precipitating metal (as defined above) onto the surface of a catalyst support. Specifically, platinization is a process of depositing or precipitating platinum (Pt) onto the surface of a catalyst support.
"Metal-containing oxidizing agent" refers to an oxidizing agent containing metal in an oxidized form (higher oxidation state) wherein the metal-containing oxidizing agent is capable of effecting oxidative polymerization of a monomer with concurrent reduction of the metal.
"Carbon black" is a conductive acmoform carbon utilized, for example, as a catalyst support (defined above). "Porosity," or permeability, can be used to refer to porosity of carbon black (i.e., difference in NSA and STS A surface area measurements), or to macroscopic porosity of an electrode structure (i.e., related to ability of diffusion of gaseous reactants through an electrode layer).
"Carbonaceous" refers to a solid material comprised substantially of elemental carbon. "Carbonaceous material" is intended to include, without limitation, i) carbonaceous compounds having a single definable structure; or ii) aggregates of carbonaceous particles, wherein the aggregate does not necessarily have a unitary, repeating, and/or definable structure or degree of aggregation.
"Particulate" means a material of separate particles. "Polarization curve," IV curve, or current- oltage curve, is the data/results from electrochemical analysis of MEAs or catalyst materials.
"PANI," or polyaniline, is an electrically conductive polymer.
"PPY," or polypyrrole, is an electrically conductive polymer.
"X-ray diffraction" (XRD) is an analysis method for determining crystallographic properties of a material, specifically as used herein the size of dispersed metal particles.
"X-ray photoelectron spectroscopy" (XPS), or electron scanning chemical analysis (ESC A), is an analysis method for obtaining chemical state information on materials. "CO chemisorption," or more simply, CO, is an analysis method for determining the available surface area of a material, specifically metal particles.
The present invention provides a method of grafting conducting polymers, specifically conducting polymers containing hetero atoms, on a particulate carbon substrate and the resulting composition. The conducting polymer-grafted carbon serves as unique catalyst support to increase the electronic conductivity and uniform distribution of metal particles in fuel cell supported catalysts. COMPOSITION
The invention includes a composition comprising a particulate carbonaceous material (substrate), and a conducting polymer containing hetero atoms, wherein the conducting polymer is grafted onto the surface of the carbonaceous material. The composition can further comprise a metal.
The carbonaceous material is described below. The carbonaceous material can be less than about 98% by weight of the composition of the present invention, for example, about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, or 97%. The carbonaceous material can be about 1% to about 90% by weight of the composition, for example, about 2, 5, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, or 88%. The carbonaceous material can be about 40% to about 90% by weight of the composition, for example, about 41, 44, 46, 50, 51, 54, 56, 60, 61, 64, 66, 70, 71, 74, 76, 80, 81, 84, 86, or 89%>. The carbonaceous material can be about 50% to about 80% by weight of the composition, for example, about 53, 54, 55, 57, 58, 60, 63, 65, 67, 68, 70, 73, 75, 77, 78, or 79%>, of the present invention.
The conducting polymer is described below. The conducting polymer can be greater than about 0% and less than about 100% by weight of the composition of the present invention, for example, about 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99%. The conducting polymer can be about 1% to about 50% by weight, for example, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 48, or 49%. The conducting polymer can be about 20% to about 50% by weight, for example, about 22, 24, 25, 30, 35, 40, 45, 47, or 48%, of the composition of the present invention. The conducting polymer contains hetero atoms which are also described below.
The conducting polymer containing hetero atoms is grafted onto the surface of the carbonaceous material. The conducting polymer can be grafted to the carbonaceous material, for example, by a method described below. The conducting polymers can be formed and grafted to the carbonaceous material, for example, by oxidatively polymerizing a monomer of the conducting polymer with the carbonaceous material. The composition can further comprise a metal. The metal is described below. The metal can be about 2% to about 80%) of the composition, for example, about 3, 5, 7, 8, 10, 12, 13, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, or 78%. The metal can be about 2% to about 60% of the composition, for example, about 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 57%. The metal can be about 20% to about 40% of the composition for example, about 22, 25, 30, 35, or 38%. The metal can be uniformly distributed "through" the composition, i.e., on the surface of the composition or in the conducting polymer of the composition. CARBONACEOUS MATERIAL
The carbonaceous material can be any particulate, substantially carbonaceous material that is an electronically conductive carbon and has a "reasonably high" surface area. For example, carbon black, graphite, nanocarbons, fullerenes, fullerenic material, finely divided carbon, or mixtures thereof can be used. Carbon Black
The carbonaceous material can be carbon black. The choice of carbon black in the invention is not critical. Any carbon black can be used in the invention. Carbon blacks with surface areas (nitrogen surface area, NSA) of about 200 to about 1000 m2/g, for example, 200, 220, 240, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, or 950 m2/g can be used. Specifically, a carbon black with a surface area of 240 m2/g (NSA, ASTM D6556) can be used. It is preferred that the carbon black have fineness effective for metal dispersion. It is preferred that the carbon black have structure effective for gas diffusion. The carbon black can be less than about 98%> by weight of the composition of the present invention, for example, about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, or 97%. The carbon black can be about 1% to about 90% by weight of the composition, for example, about 2, 5, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, or 88%. The carbon black can be about 40% to about 90% by weight of the composition, for example, about 41, 44, 46, 50, 51, 54, 56, 60, 61, 64, 66, 70, 71, 74,
76, 80, 81, 84, 86, or 89%. The carbon black can be about 50% to about 80% by weight of the composition, for example, about 53, 54, 55, 57, 58, 60, 63, 65, 67, 68, 70, 73, 75,
77, 78, or 79%, of the present invention. Those skilled in the art will appreciate that carbon black particles have physical and electrical conductivity properties which are primarily determined by the particle and aggregate size, aggregate shape, degree of graphitic order, and surface chemistry of the particle. Also, the conductivity of highly crystalline or highly graphitic particles is higher than the conductivity of more amorphous particles. Generally, any of the forms of carbon black particles is suitable in the practice of the present invention and the particular choice of size, structure, and degree of grapl itic order depends upon the physical and conductivity requirements of the carbon black.
One of skill in the art could readily choose an appropriate carbon black for a particular application.
Carbon blacks are commercially available (e.g., Columbian Chemical Company, Atlanta, GA). Other Carbonaceous Material
The particulate carbonaceous material can be a material other than carbon black. The choice of other carbonaceous material in the invention is not critical. Any substantially carbonaceous material that is an electronically conductive carbon and has a "reasonably high" surface area can be used in the invention. For example, graphite, nanocarbons, fuUerenes, fuUerenic material, finely divided carbon, or mixtures thereof can be used.
It is preferred that the carbonaceous material have fineness effective for metal dispersion. It is preferred that the carbonaceous material have structure effective for gas diffusion. One of skill in the art could readily choose a carbonaceous material for a particular application.
These carbonaceous materials are commercially available.
The carbonaceous material can be less than about 98%) by weight of the composition of the present invention, for example, about 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, or 97%. The carbonaceous material can be about 1% to about 90%> by weight of the composition, for example, about 2, 5, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, 77, 80, 82, 85, 87, or 88%. The carbonaceous material can be about 40% to about 90% by weight of the composition, for example, about 41, 44, 46, 50, 51, 54, 56, 60, 61, 64, 66, 70, 71, 74, 76, 80, 81, 84, 86, or 89%. The carbonaceous material can be about 50%) to about 80% by weight of the composition, for example, about 53, 54, 55, 57, 58, 60, 63, 65, 67, 68, 70, 73, 75, 77, 78, or 79%, of the present invention. CONDUCTING POLYMER
The conductive material used in the invention is any conductive material which is effective for the discussed purposes of the invention. Specifically, the conductive material can be a conducting polymer. The conducting polymer can be any organic polymer capable of electronic conductivity attributable to extended conjugated/delocalized multiple bonds and containing unshared electron pairs as provided by die presence of hetero atoms.
Polyaniline, polypyrrole, polythiophene, polyfuran, poly(p-phenylene-oxide), poly(p-phenylene-sulfide), substituted conducting polymers, or mixtures thereof can be used. Specifically, the conducting polymer can include polyaniline, polypyrrole, polyfuran, polythiophene, or mixtures thereof. Mixtures of these polymers can include physical mixtures as well as copolymers of the monomers of the respective polymers.
As used herein, reference to a polymer also covers a copolymer. More specifically, the conducting polymer can comprise polyaniline or polypyrrole. The conducting polymer is grafted to the carbonaceous material surface in a process such as oxidative polymerization. The monomer(s) of the desired resulting conducting polymer is polymerized in the presence of the carbonaceous material, thus grafting the polymer to the carbonaceous material. A method for making this is described below. The presence of polymers in the final composition is supported by XPS results and by the observed physical properties (e.g., ability to press films from the composition).
One of skill in the art could readily choose a conductive material (e.g., conducting polymer) for a particular application. Conducting polymers are commercially available and are readily prepared by a person of ordinary skill in the art. The conducting polymer contains hetero atoms. The hetero atoms can be N, S, and O, for example. The amount of hetero atoms in weight % of the resulting polymer is the same weight %> as the hetero atoms in the monomer(s) used for the polymer (e.g.,
15% N for aniline/polyaniline and 21% N for pyrrole/polypyrrole). The location of the hetero atoms in the conducting polymer also depends on the corresponding monomer(s).
One of skill in the art could readily choose which hetero atoms to have in a particular conducting polymer for a particular application. Conducting polymers with hetero atoms are commercially available and are readily prepared by a person of ordinary skill in the art.
The conducting polymer with hetero atoms is grafted onto the carbon black surface, for example, thereby increasing the electrical conductivity of the carbonaceous material and the stability of the hybrid (i.e., polymer + carbon) material is expected to be enhanced. The polymer grafting process also reduces the porosity of the carbon black.
The grafting process is described below.
The hetero atom containing conductive polymer-grafted carbon material also shows hydrophilic character and thereby enhances the humidification process when used in a fuel cell application, for example. Also, the higher conductivity of these polymers facilitates the electron transfer process.
The conducting polymer can be greater than about 0%> and less than about 100% by weight of the composition of the present invention, for example, about 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 96, 97, 98, or 99%. The conducting polymer can be about 1% to about 50% by weight, for example, 2, 5, 7, 10, 12, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 48, or 49%. The conducting polymer can be about 20% to about 50% by weight, for example, about 22, 24, 25, 30, 35, 40, 45, 47, or 48%», of the composition of the present invention. The grafted conducting polymer (with hetero atoms) grafted on carbonaceous material behaves differently, when used as a catalyst support, than the carbonaceous material alone or the conducting polymer alone. CATALYST SUPPORT
A composition of the present invention can be utilized as a catalyst support. A catalyst support of the present invention comprises a carbonaceous material and a conductive material (e.g., a conducting polymer containing hetero atoms). The conductive material is grafted to the carbonaceous material thus forming a single material rather than merely a mixture.
The catalyst support comprises the conducting polymer-grafted carbonaceous material. The amount of each component is described above.
The method for making the catalyst support is described below.
Examples 14 and 15 below demonstrate the increase in electronic conductivity for the catalyst supports of the present invention over carbon alone. METAL/CATALYST
A composition of the present invention can further comprise a metal. The metal can be, for example, platinum, iridium, osmium, rhenium, ruthenium, rhodium, palladium, vanadium, chromium, or a mixture thereof, or an alloy thereof, specifically, the metal can be platinum.
As defined above, the metal can also be alloys or oxides of metals effective as catalysts.
It is desired that the form and/or size of the metal provide the highest surface area of the metal possible per unit mass. It is desired that the size of the metal particles be kept as small as possible to achieve this end. Generally, in the art, metal particles end up as approximately 2 to about 6 nm during use in fuel cells due to sintering. A size less than about 2 nm can provide better performance. Atomic platinum, for example, would be ideal and found in groups of about 3 atoms.
The amount of metal can be any amount. The amount of metal can be an effective catalytic amount. One of skill in the art can determine an amount effective for the desired performance.
The metal can be about 2% to about 80% of the composition, for example, about 3, 5, 7, 8, 10, 12, 13, 15, 17, 20, 22, 25, 27, 30, 32, 35, 37, 40, 42, 45, 47, 50, 52, 55, 57, 60, 62, 65, 67, 70, 72, 75, or 78%. The metal can be about 2% to about 60% of the composition, for example, about 5, 7, 10, 12, 15, 20, 25, 30, 35, 40, 45, 50, 55, or 51%. The metal can be about 20% to about 40% of the composition for example, about 22, 25, 30, 35, or 38%>. The metal can be uniformly distributed "through" the composition, i.e., on the surface of the composition or in the conducting polymer of the composition. One of skill in the art could readily choose which metal to use in the composition for a particular application. Metals are commercially available. SUPPORTED CATALYST/ELECTRODE
The catalyst support above can further comprise a metal. This resulting composition can be a supported catalyst (or electrode), such as in a fuel cell. The catalyst support and metal are described above. The metal can be uniformly distributed "through" the catalyst support.
The supported catalyst can be made by methods described below. For example, the supported catalyst can be made by grafting a conducting polymer containing hetero atoms to a particulate carbonaceous material and then adding the metal. More specifically, the conducting polymer containing hetero atoms can be formed and grafted to carbonaceous material (e.g., carbon black) by oxidative polymerization of the monomer of the conducting polymer in the presence of the carbonaceous material and then subsequently metallized (e.g., platinized).
Alternatively, the supported catalyst can be made and metallized essentially simultaneously by forming and grafting the conducting polymer containing hetero atoms to carbonaceous material (e.g., carbon black) by oxidative polymerization of the monomer of the conducting polymer in the presence of the carbonaceous material and a metal-containing oxidizing agent.
The supported catalyst can be used in various applications requiring such a supported catalyst. One example of such an application is in a fuel cell, specifically as an electrode in a fuel cell.
Factors such as surface area and conductivity of the supported catalyst have historically been viewed as important. Relatively little research has been undertaken until the present invention to understand the role of and optimize the carbon support portion.
In the present invention, the conducting polymer-grafted carbon black aids the uniform dispersion of metal such as by anchoring the metal to the hetero atoms present in the conducting polymer. Also, the hetero atom-containing anchoring groups facilitate prevention of agglomeration and sintering of platinum (Pt) (or other metal) particles.
The conducting polymer is grafted on the carbon black surface, for example, thereby increasing the electrical conductivity of the carbonaceous material and the stability of the hybrid material is expected to be enhanced. The reduction in available porosity of the carbon black due to the polymer grafting process results in increased metal accessability for the electrode reaction.
The current standard in the industry for carbon-supported catalysts in fuel cells is the Johnson Matthey HiSPEC™ series typically loaded with about 10-40% or 10- 60% platinum.
Examples 16 and 17 below show a comparison of the dispersion of Pt on carbon black in the supported catalysts of the present invention relative to a HiSPEC™ supported catalyst. DEVICE
The invention includes various devices. ELECTRODE
An electrode of the present invention is described above. An electrode of the invention can serve as either an anode, a cathode, or both. MEMBRANE ELECTRODE ASSEMBLY (MEA)
The combination of anode/membrane/cathode (electrode/electrolyte/electrode) in a fuel cell is referred to as the membrane/electrode assembly (MEA). The evolution of MEA in PEM fuel cells has passed through several generations. The original membrane/electrode assemblies were constructed in the 1960s for the Gemini space program and used 4 mg Pt /cm2 of membrane area, which generated about 0.5 amperes per mg Pt. Current technology varies with the manufacturer, but total Pt loading has decreased from the original 4 mg/cm2 to about 0.5 mg/cm2. Laboratory research now uses Pt loadings of 0.15 mg/cm2 which are able to generate about 15 amperes per mg Pt.
Membrane/electrode assembly construction varies greatly, but the following is one of the typical procedures. The supported catalyst/electrode material is first prepared in liquid "ink" form by thoroughly mixing together appropriate amounts of supported catalyst (powder of metal, e.g., Pt, dispersed on carbon) and a solution of the membrane material (ionomer) dissolved in a solvent, e.g., alcohols. Once the "ink" is prepared, it is applied to the surface of the solid membrane, e.g., Nafion®, in a number of different ways. The simplest method involves painting the catalyst "ink" directly onto a dry, solid piece of membrane. The wet supported catalyst layer and the membrane are heated until the catalyst layer is dry. The membrane is then turned over and the procedure is repeated on the other side. Supported catalyst layers are then on both sides of the membrane. The dry membrane/electrode assembly is next rehydrated by immersing in dilute acid solution to also ensure that the membrane is in the H+ form needed for fuel cell operation. The final step is the thorough rinsing in distilled water. The membrane/electrode assembly is then ready for insertion into the fuel cell hardware.
The membrane/electrode assembly can have a total thickness of about 200 μm, for example, and conventionally generate more than 0.5 an ampere of current for every square cm of membrane/electrode assembly at a voltage between the cathode and anode of 0.7 V, when encased within well-engineered components. Supported Catalyst/Electrode
The supported catalyst/electrode of the present invention is described above. The supported catalyst/electrode can be applied to the membrane of the MEA which is described below. For example, the supported catalyst can be added to a solvent and "painted" onto the membrane. One of skill in the art could easily determine methods for applying the supported catalyst to the membrane. Transfer Membrane/Electrolyte The PEM carries the necessary protons from the anode to the cathode while keeping the gases safely separate.
The thickness of the membrane in a membrane/electrode assembly can vary with the type of membrane. The thickness of the supported catalyst layers depends on how much metal is used in each electrode. For example, for supported catalyst layers containing about 0.15 mg Pt/cm2, the thickness of the supported catalyst layer can be close to 10 μm. The thickness of the supported catalyst layer can be, for example, about 0.1 to about 50 μm, more specifically on the order of about 20 to about 30 μm. Thicknesses above 50 μm appear to increase the mass transfer problems too much to be effective. An appropriate thickness of supported catalyst can be determined by one of skill in the art.
The membrane of the MEA can be a dielectric, ionically-conductive material. It is desired that the membrane be sufficiently durable to withstand conditions within a fuel cell. An appropriate membrane can be determined by one of skill in the art.
The membrane of the MEA can be an ionomer, specifically a perfluorosulfonate ionomer. More specifically, the membrane can be a poly(tetrafluoroethylene)-based cation exchange ionomer such as Nafion® (DuPont, Wilmington, DE; Fayetteville, NC). Nafion® is a perfluorinated polymer that contains small proportions of sulfonic or carboxylic ionic functional groups. Its general chemical structure can be seen below, where X is either a sulfonic or carboxylic functional group and M is either a metal cation in the neutralized form or an H+ in the acid form.
Figure imgf000024_0001
The MEA comprises an anode, a cathode, and a membrane.
The anode can be an electrode of the present invention. The electrode should be electrically conducting, porous enough to let reactants diffuse to the metal, and able to carry protons to the membrane. The cathode can also be an electrode of the present invention.
Figures 9 and 10 demonstrate the functionality of MEAs of the present invention. FUEL CELL A fuel cell comprises an MEA, fuel feed, and oxidant feed. A fuel cell typically comprises an MEA, backing layers, and flow fields/current collectors, fuel feed, and oxidant feed. MEA
An MEA is described above. Backing Layers
The hardware of the fuel cell can include backing layers. The layers are generally one next to the anode and another next to the cathode and made of a porous carbon paper or carbon cloth. They layers are made of a material that can conduct the electrons exiting the anode and entering the cathode. Backing layers are commercially available or can be prepared by one of skill in the art. Appropriate backing layers can be chosen by one of skill in the art. Flow Fields/Current Collectors
The hardware of the fuel cell can include flow fields and current collectors. Pressed against the outer surface of each backing layer can be a piece of hardware, called a bipolar plate, which often serves the dual role of flow field and current collector. The plates are generally made of a lightweight, strong, gas impermeable, electron-conducting material; graphite, metals, or composite plates are commonly used.
The bipolar plates can provide a gas flow field such as channels machined into the plate. The channels carry the reactant gas from the point at which it enters the fuel cell to the point at which the gas exits. The pattern, width, and depth have a large impact on the effectiveness of the distribution of the gases evenly across the active area of the membrane/electrode assembly. The flow field also affects water supply to the membrane and water removal from the cathode. The bipolar plates can also serve as current collectors. Electrons produced by the oxidation of hydrogen can be conducted through the anode, through the backing layer and through the plate before they can exit the cell, travel through an external circuit and re-enter the cell at the cathode plate.
Flow fields and current collectors are commercially available or can be prepared by one of skill in the art. Appropriate flow fields and current collectors can be chosen by one of skill in the art.
The devices and methods of the present invention are useful in preparing and using fuel cells. Other applications can include electrodes and bipolar plates (or current collector plates) in energy conversion devices (such as fuel cells, batteries, or capacitors) when the current modified carbon products are used in combination with other materials. METHOD OXIDATIVE POLYMERIZATION
A method of the present invention comprises contacting a monomer of a conducting polymer containing hetero atoms and a particulate carbonaceous material in the presence of an oxidizing agent, thus effectively concurrently polymerizing the monomer and grafting the resultant polymer to the carbonaceous material.
The contacting can, but need not, take place in a liquid phase.
Any method which facilitates oxidative polymerization can be used. One of skill in the art can determine a method to graft the conducting polymer (polymerize the monomer) to the carbonaceous material which maintains the purposes and characteristics of the invention.
Examples of this reaction scheme/method include the following:
Figure imgf000026_0001
Scheme I
Figure imgf000026_0003
Figure imgf000026_0002
Scheme II
The oxidizing agent can be added in stoichiometic amount/molar equivalent to the amount of monomer. For example, a 1 :1 mole ratio of monomer to oxidant was used for the Examples below.
The reaction can be carried out at room temperature and pressure. Specific examples of the reaction are given in the Examples below. The reaction can be carried out, for example, at temperatures up to about 70°C.
Specific examples of this method are described below in Examples 1-3.
An aqueous slurry of carbonaceous material can be used. Slightly acidic conditions, such as a pH of about 4 to about 5 can be used. Reaction time of about 2 hours, for example, can be used. CARBONACEOUS MATERIAL
The particulate carbonaceous material is described above in detail under the COMPOSITION section. CONDUCTING POLYMER
The conducting polymer containing hetero atoms and corresponding monomer are described above in detail under the COMPOSITION section. OXIDIZING AGENT
The reaction can be carried out in the presence of an oxidizing agent. An oxidizing agent is used to create sufficiently oxidizing conditions to facilitate polymerization of the monomer. Various oxidizing agents are known in the art. These oxidizing agents are readily commercially available or readily synthesized by methods known to one of skill in the art.
Choice of appropriate oxidizing agent is readily determined by one of skill in the art for the desired application.
Examples of oxidizing agents that can be used include ammomum persulfate, ferric chloride, hydrogen peroxide, potassium, permanganate, potassium chlorate, chloroplatinic acid, or a combination of oxidizing agents.
Some monomers require a stronger oxidizing agent than others.
The amount of oxidizing agent can be stoichiometric to the monomer, rather than being used in catalytic amounts. One of skill in the art would be able to determine conditions, amount, and choice of oxidizing agent for a particular application. ADDITION OF METAL METALLIZING
Metal can be added to the polymer-grafted carbonaceous material subsequent to its preparation. The metal can be added by metallizing. For example, if the metal is platinum, one method of platinization is described below.
One of skill in the art would be able to determine choice of metallizing method for a particular application. Various metallizing agents are known in the art. These metallizing agents are readily commercially available or readily synthesized by methods known to one of skill in the art. The amount of metallizing agent is readily determined by one of skill in the art for a desired application. Platinizing
A platinizing agent can be used to add platinum to the grafted carbonaceous material. Various platinizing agents are known in the art. These platinizing agents are readily commercially available or readily synthesized by methods know to one of skill in the art. Choice of appropriate platinizing agent is readily determined by one of skill in the art for the desired application. Generally, anything containing the desired metal can be used, for example, any salt or organo-compound containing the metal.
Examples of platinizing agents that can be used include platinum salts: chloroplatinic acid, platinum nitrate, platinum halides, platinum cyanide, platinum sulfϊde, organoplatinum salts, or a combination thereof.
The amount of platinizing agent is readily determined by one of skill in the art for a desired application.
ESSENTIALLY SIMULTANEOUS OXIDATIVE POLYMERIZATION AND METALLIZATION
The reaction can alternatively be carried out in the presence of a metal- containing oxidizing agent to essentially simultaneously form and graft the polymer and metallize the composition. A metal-containing oxidizing agent is used to create sufficiently oxidizing conditions to facilitate polymerization of the monomer while including metal ions in the polymer.
Various metal-containing oxidizing agents are known in the art. These metal- containing oxidizing agents are readily commercially available or readily synthesized by methods known to one of skill in the art.
Choice of appropriate metal-containing oxidizing agent is readily determined by one of skill in the art for the desired application.
Examples of metal-containing oxidizing agents that can be used include chloroplatinic acid or a combination of metal-containing oxidizing agents.
Some monomers require a stronger metal-containing oxidizing agent than others. The amount of metal-containing oxidizing agent can be stoichiometric to the monomer, rather than being used in catalytic amounts. However, the amount of metal- containing oxidizing agent and monomer can be selected based on the desired loading of metal in the final composition.
One of skill in the art would be able to determine conditions, amount, and choice of metal-containing oxidizing agent for a particular application.
Examples of this reaction scheme/method include the following: H2PtCls
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
Scheme III REDUCING AGENT
A reducing agent can be used to reduce the metal to metallic form. Various reducing agents are known in the art. These reducing agents are readily commercially available or readily synthesized by methods known to one of skill in the art. The amount of reducing agent for the current method is always in excess of stoichiometric.
Choice of appropriate reducing agent is readily determined by one of skill in the art for the desired application.
Examples of reducing agents that can be used include formaldehyde, formic acid, sodium borohydride, hydrogen, hydrazine, hydroxyl amine, or a combination of reducing agents.
EXAMPLES The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, articles, devices, and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary of the invention and are not intended to limit the scope of what the inventors regard as their invention. Efforts have been made to ensure accuracy with respect to numbers (e.g., amounts, temperature, etc.) but some errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, temperature is in °C or is at ambient temperature, and pressure is at or near atmospheric.
Example 1 Preparation of polyaniline-grafted carbon black A slurry was made using 100 g CDX-975 carbon black (NSA surface area 240 m2/g and oil absorption of
170 ml/ 100 g) (Columbian Chemical Company, Atlanta, GA) and 25 ml glacial acetic acid in
750 ml deionized (Dl) water. CDX-975 "typical" properties
Figure imgf000031_0001
20 g aniline (Aldrich, 98% purity) was added to the slurry with continuous stirring.
A solution containing 45 g of ammonium persulfate in 250 ml deionized water was added to the carbon black slurry, and the stirring continued at room temperature for 2 hrs. The carbon black slurry was filtered, washed with Dl water, dried at 110°C for 4 hrs., and pulverized. The resultant carbon powder contains grafted polyaniline (CB- HN-C6H4)n conducting polymer as shown in Scheme I as demonstrated by Figure 2.
Example 2 Preparation of polypyrrole-grafted carbon black
A slurry was made using 100 g CDX-975 carbon black (NSA surface area 240 m2/g and oil absorption of
170 ml/100 g) (Columbian Chemical Company, Atlanta, GA) and 25 ml glacial acetic acid in
750 ml deionized (Dl) water.
20 g pyrrole (Aldrich) was added to the slurry with continuous stirring. 100 ml of 3 M FeCl3 solution was added to the carbon black slurry, and the stirring continued at room temperature for 1 hr. The carbon black slurry was filtered, washed with Dl water, dried at 110°C for 4 hrs., and pulverized. The resultant carbon powder contains grafted polypyrrole (CB-HN-C H2)n conducting polymer as shown in Scheme π.
Example 3 Preparation of polypyrrole-grafted carbon black A slurry was made using
100 g CDX-975 carbon black (NSA surface area 240 m2/g and oil absorption of
170 ml/100 g) (Columbian Chemical Company, Atlanta, Georgia) and 25 ml glacial acetic acid in
750 ml deionized (Dl) water.
20 g pyrrole (Aldrich) was added to the slurry with continuous stirring. 100 ml of 10% H O2 solution was added to the carbon black slurry, and the stirring continued at room temperature for 1 hr. The carbon black slurry was filtered, washed with Dl water, dried at 110°C for 4 hrs., and pulverized. The resultant carbon powder contains grafted polypyrrole (CB-HN-C4H2)n conducting polymer as shown in Scheme II as demonstrated in Figure 3.
Example 4 Platinization of polyaniline-grafted carbon black 4 g of polyaniline-grafted carbon black (made in Example 1) was dispersed in 300 ml Dl water.
200 ml of 1% solution of chloroplatinic acid was added dropwise for a period of 1 hr. with continuous stirring. The pH of the slurry was adjusted to 8.5 using 1 M sodium bicarbonate solution. 200 ml of 3%> solution of formaldehyde was added for a period of 1 hr. and the temperature was kept at 70°C for 1 hr. The slurry cooled to room temperature and was filtered by washing with Dl water. The carbon cake dried at 110°C for 4 hrs. and was pulverized. The resultant supported catalyst contained ~20% platinum with grafted polyaniline on the carbon surface as demonstrated in Figure 4.
Example 5 Platinization of polyaniline-grafted carbon black 4 g of polyaniline grafted carbon black (made in Example 1) was dispersed in
300 ml Dl water.
200 ml of 1% solution of chloroplatinic acid was added dropwise for a period of 1 hr. with continuous stirring. 200 ml of 3% solution of formaldehyde was added for a period of 1 hr., and the temperature was kept at 70°C for 1 hr. The slurry cooled to room temperature and was filtered by washing with Dl water. The carbon cake dried at 110°C for 4 hrs. and was pulverized. The resultant supported catalyst contained ~20%> platinum with grafted polyaniline on the carbon surface.
Example 6 Platinization of polypyrrole-grafted carbon black
4 g of polypyrrole grafted carbon black (made in Example 3) was dispersed in 300 ml Dl water.
200 ml of 1% solution of chloroplatinic acid was added dropwise for a period of 1 hr. with continuous stirring. The pH of the slurry was adjusted to 8.5 using 1 M sodium bicarbonate solution. 200 ml of 3% solution of formaldehyde was added for a period of 1 hr., and the temperature was kept at 70°C for 1 hr. The slurry cooled to room temperature and was filtered by washing with Dl water. The carbon cake dried at 110°C for 4 hrs. and was pulverized. The resultant supported catalyst contained —20% platinum with grafted polypyrrole on the carbon surface as demonstrated in Figure 5. Example 7
Platinization of polypyrrole-grafted carbon black 4 g of polypyrrole-grafted carbon black (made in Example 3) was dispersed in 300 ml Dl water.
200 ml of 1% solution of chloroplatinic acid was added dropwise for a period of 1 hr. with continuous stirring. 200 ml of 3% solution of formaldehyde was added for a period of 1 hr., and the temperature was kept at 70°C for 1 hr. The slurry cooled to room temperature and was filtered by washing with Dl water. The carbon cake dried at 110°C for 4 hrs. and was pulverized. The resultant supported catalyst contained ~20% platinum with grafted polypyrrole on the carbon surface. Example 8
Simultaneous platinization and grafting of polypyrrole This method describes simultaneous platinization and grafting of polypyrrole to carbon black surface by using pyrrole, chloroplatinic acid, and sodium borohydride. A slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m2/g and oil absorption of 170 ml/100 g) in 400 ml of deionized water.
6 g of pyrrole was added to 100 ml of deionized water, and the pyrrole solution was added to the slurry with continuous stirring for 10 min. 15.5 ml of 10% chloroplatinic acid was diluted with 80 ml of deionized water, and the chloroplatinic acid solution was added to the carbon black slurry at a rate of 2 ml/min.
After complete addition, the slurry was heated to 70°C for 1 hr with continuous stirring. 0.75 g of sodium borohydride in 80 ml of deionized water was added to the above slurry at a rate of 2 ml/min and the reaction temperature was kept at 70°C for 1 hr.
The reduced carbon black slurry was cooled to room temperature, filtered, washed with deionized water, dried at 100°C for 4 hr, and pulverized. The resultant carbon black powder contains nano-crystalline platinum particles with polypyrrole-grafted carbon black as shown in Scheme HI.
Example 9 Simultaneous platinization and grafting of polyaniline This method describes simultaneous platinization and grafting of polyaniline to carbon black surface by using aniline, chloroplatinic acid, and sodium borohydride. A slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m2/g and oil absorption of 170 ml/100 g) in 400 ml of deionized water.
6 g of aniline was added to 100 ml of deionized water, and the aniline solution added to the slurry with continuous stirring for 10 min. 15.5 ml of 10%> chloroplatinic acid was diluted with 80 ml of deionized water, and the chloroplatinic acid solution was added to the carbon black slurry at a rate of 2 ml/min.
After complete addition, the slurry was heated to 70°C for 1 hr with continuous stirring. A solution containing 0.75 g of sodium borohydride in 80 ml of deionized water was added to the above slurry at a rate of 2 ml/min, and the reaction temperature was kept at 70°C for 1 hr.
The carbon black slurry was cooled to room temperature, filtered, washed with deionized water, dried at 100°C for 4 hr, and pulverized. The resultant carbon black powder contains nano-crystalline platinum particles with polyaniline-grafted carbon black as shown in Scheme HI. Example 10 Simultaneous platinization and grafting of polypyrrole
This method describes simultaneous platinization and grafting of polypyrrole to carbon black surface by using pyrrole, chloroplatinic acid, and sodium borohydride. This method is similar to Example 8 except the reaction is carried out in ethanol.
A slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m2/g and oil absorption of 170 ml/100 g) in 400 ml of reagent ethanol.
6 g of pyrrole was added to 100 ml of reagent ethanol, and the pyrrole solution was added to the slurry with continuous stirring for 10 min. 15.5 ml of 10% chloroplatinic acid was diluted with 80 ml of reagent ethanol, and the chloroplatinic acid solution was added to the carbon black slurry at a rate of 2 ml/min.
After complete addition, the slurry was heated to 70°C for 1 hr with continuous stirring. 0.75 g of sodium borohydride in 80 ml of reagent ethanol was added to the above slurry at a rate of 2 ml/min, and the reaction temperature was kept at 70°C for 1 hr.
The carbon black slurry was cooled to room temperature, filtered, washed with ethanol and deionized water, dried at 100°C for 4 hr, and pulverized. The resultant carbon black powder contains nano-crystalline platinum particles with polypyrrole-grafted carbon black as shown in Scheme m.
Example 11 Simultaneous platinization and grafting of polyaniline This method describes simultaneous platinization and grafting of polyaniline to carbon black surface by using aniline, chloroplatinic acid, and sodium borohydride. This method is similar to Example 9 except the reaction is carried out in ethanol.
A slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m2/g and oil absorption of 170 ml/100 g) in 400 ml of reagent ethanol.
6 g of aniline was added to 100 ml reagent ethanol, and the aniline solution was added to the slurry with continuous stirring for 10 min.
15.5 ml of 10% chloroplatinic acid was diluted with 80 ml reagent ethanol, and the chloroplatinic acid solution was added to the carbon black slurry at a rate of 2 ml/min. After complete addition, the slurry was heated to 70°C for 1 hr with continuous stirring.
A solution containing 0.75 g of sodium borohydride in 80 ml of reagent ethanol was added to the above slurry at a rate of 2 ml/min, and the reaction temperature was kept at 70°C for 1 hr.
The carbon black slurry was cooled to room temperature, filtered, washed with ethanol and deionized water, dried at 100°C for 4 hr, and pulverized.
The resultant carbon black powder contains nano-crystalline platinum particles with polyaniline-grafted carbon black as shown in Scheme HI. Example 12
Simultaneous platinization and grafting of polypyrrole This method describes simultaneous platinization and grafting of polypyrrole to carbon black surface by using pyrrole, chloroplatinic acid, and hydrogen.
A slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m2/g and oil absorption of 170 ml/100 g) in 400 ml of deionized water.
6 g of pyrrole was added to 100 ml of deionized water, and the pyrrole solution was added to the slurry with continuous stirring for 10 min.
15.5 ml of 10% chloroplatinic acid diluted with 80 ml of deionized water, and the chloroplatinic acid solution was added to the carbon black slurry at a rate of 2 ml/min.
The carbon black slurry was cooled to room temperature, filtered, washed with deionized water, dried at 100°C for 4 hr, and pulverized.
The carbon black powder was reduced using 10%o hydrogen/nitrogen mixture in a tubular furnace at 250°C for 2 hr. The resultant carbon black powder contains nano-crystalline platinum particles with polypyrrole-grafted carbon black as shown in Scheme HI.
Example 13 Simultaneous platinization and grafting of polyaniline This method describes simultaneous platinization and grafting of polyaniline to carbon black surface by using aniline, chloroplatinic acid, and hydrogen.
A slurry was made using 2 g of carbon black (CDX-975, surface area of 240 m2/g and oil absorption of 170 ml/100 g) in 400 ml of deionized water. , 6 g of aniline was added to 100 ml of deionized water, and the aniline solution was added to the slurry with continuous stirring for 10 min.
15.5 ml of 10% chloroplatinic acid was diluted with 80 ml of deionized water, and the chloroplatinic acid solution was added to the carbon black slurry at a rate of 2 ml/min.
After complete addition, the slurry was heated to 70°C for 1 hr with continuous stirring.
The carbon black slurry was cooled to room temperature, filtered, washed with deionized water, dried at 100°C for 4 hr, and pulverized. The carbon black powder was reduced using 10%o hydrogen/nitrogen mixture in a tubular furnace at 250°C for 2 hr.
The resultant carbon black powder contains nano-crystalline platinum particles with polyaniline-grafted carbon black as shown in Scheme HI.
Example 14 Comparative Electronic Conductivity Measurements
Electronic conductivity was measured on pressed pellets of carbon black material using a four probe resistivity meter (Loresta AP Resistivity, MCP400, Mitsubishi Petrochemical Company, Tokyo, Japan). ASTM D257 was used.
The pellets of carbon black material included conductive carbon black alone, grafted material from Example 1 and Example 3 above, and CDX-975 carbon black alone.
The following table (Table 1) demonstrates the increase in electronic conductivity of the catalyst supports of the present invention over carbon alone.
Figure imgf000037_0001
*Somewhat difficult to make a pellet out' of carbon black without a binder to be able to measure electronic conductivity Example 15 Comparative Electronic Conductivity Measurements
Electronic conductivity was measured on pressed pellets of carbon black material using a four probe resistivity meter (Loresta AP Resistivity, MCP400, Mitsubishi Petrochemical Company, Tokyo, Japan). ASTM D257 was used.
The pellets of carbon black material included conductive carbon black alone, simultaneously platinized grafted material from Example 8 above, and CDX-975 carbon black alone.
The following table (Table 2) demonstrates the increase in electronic conductivity of the catalyst supports of the present invention over carbon alone.
Figure imgf000038_0001
* Somewhat difficult to make a pellet out of carbon black without a binder to be able to measure electronic conductivity
Example 16 Comparative Metal Dispersion Measurements
Samples of a 20% Pt loaded HiSPEC™ catalyst, the catalyst of Example 4 above, and the catalyst of Example 6 above were subjected to X-ray diffraction analysis to determine the dispersion of metal (Pt) within each of them.
The following table (Table 3) compares the dispersion of Pt on carbon black (bulk, average value) in the supported catalysts of the present invention relative to a HiSPEC™ supported catalyst. See also Figure 7. Table 3. X-ray diffraction analysis of Pt dispersion in carbon black supported catalysts.
Figure imgf000038_0002
Example 17 Comparative Metal Dispersion Measurements
Samples of a 20% Pt loaded HiSPEC™ catalyst and the catalyst of Example 8 above were subjected to X-ray diffraction analysis to determine the dispersion of metal (Pt) within each of them.
The following table (Table 4) compares the dispersion of Pt on carbon black (bulk, average value) in the supported catalysts of the present invention relative to a HiSPEC™ supported catalyst. See also Figure 8. Table 4. X-ra diffraction analysis of Pt dis ersion in carbon black su orted catal sts.
Figure imgf000039_0001
Throughout this application, various publications are referenced. The disclosures of these publications in their entireties are hereby incorporated by reference throughout this application, various publications are referenced. The disclosure of these publications in there entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art to which this invention pertains.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.

Claims

WHAT IS CLAIMED IS:
1. A method for preparing a carbon with enhanced electronic conductivity comprising oxidatively polymerizing monomer of a conducting polymer containing hetero atoms with particulate carbonaceous material to form a conducting polymer- grafted carbonaceous material wherein the oxidative polymerization takes place in the presence of a metal- containing oxidizing agent.
2. The method of claim 1 wherein the carbonaceous material is carbon black, graphite, nanocarbons, fuUerenes, fullerinic material, finely divided carbon, or mixtures thereof.
3. The method of claim 1 wherein the carbonaceous material is carbon black.
4. The method of claim 1 wherein the monomer of a conducting polymer is an amino aryl or a nitrogen heterocycle.
5. The method of claim 1 wherein the metal-containing oxidizing agent is chloroplatinic acid.
6. The method of claim 1 wherein the oxidatively polymerizing comprises adding a metal-containing oxidizing agent to a mixture of the carbonaceous material and a monomer of the conducting polymer.
7. The method of claim 1 wherein the conducting polymer is polyaniline, polypyrrole, polyfuran, polythiophene, poly(p-phenylene-oxide), poly(p- phenylene-sulfi.de), substituted conducting polymers, or mixtures thereof.
8. The method of claim 1 further comprising adding a reducing agent.
9. The method of claim 8 wherein the reducing agent is formaldehyde, formic acid, sodium borohydride, hydrogen, hydrazine, hydroxyl amine, or a mixture of reducing agents.
10. A composition made by the method of claim 1.
11. A method for essentially simultaneously polymerizing and grafting monomer of a conducting polymer with carbonaceous material and metallizing the polymer comprising oxidatively polymerizing monomer of a conducting polymer containing hetero atoms with particulate carbonaceous material to form a conducting polymer- grafted carbonaceous material wherein the oxidative polymerization takes place in the presence of a metal- containing oxidizing agent..
12. A device comprising the composition of claim 10.
13. A fuel cell comprising the composition of claim 10.
14. The device of claim 12 wherein the device is a fuel cell, battery, or a capacitor.
PCT/US2004/015567 2003-05-23 2004-05-18 Metallized conducting polymer-grafted carbon material and method for making WO2004107359A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US10/445,090 2003-05-23
US10/445,090 US7175930B2 (en) 2002-05-23 2003-05-23 Conducting polymer-grafted carbon material for fuel cell applications
US10/654,234 US7195834B2 (en) 2002-05-23 2003-09-02 Metallized conducting polymer-grafted carbon material and method for making
US10/654,234 2003-09-02

Publications (1)

Publication Number Publication Date
WO2004107359A1 true WO2004107359A1 (en) 2004-12-09

Family

ID=46205224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/015567 WO2004107359A1 (en) 2003-05-23 2004-05-18 Metallized conducting polymer-grafted carbon material and method for making

Country Status (2)

Country Link
TW (1) TW200512977A (en)
WO (1) WO2004107359A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175930B2 (en) 2002-05-23 2007-02-13 Columbian Chemicals Company Conducting polymer-grafted carbon material for fuel cell applications
US7241334B2 (en) 2002-05-23 2007-07-10 Columbian Chemicals Company Sulfonated carbonaceous materials
US7708947B2 (en) 2005-11-01 2010-05-04 Therm-O-Disc, Incorporated Methods of minimizing temperature cross-sensitivity in vapor sensors and compositions therefor
US8233830B2 (en) * 2009-01-27 2012-07-31 Xerox Corporation Polypyrrole containing intermediate transfer components
US8691390B2 (en) 2007-11-20 2014-04-08 Therm-O-Disc, Incorporated Single-use flammable vapor sensor films

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102515150A (en) * 2011-12-08 2012-06-27 同济大学 Method for preparing multilayer graphene-carbon material
CN102895997A (en) * 2012-10-25 2013-01-30 天津大学 Preparation method for direct methanol fuel cell supported Pt-based anode catalyst

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334292A (en) * 1992-08-17 1994-08-02 Board Of Regents, The University Of Texas System Conducting polymer films containing nanodispersed catalyst particles: a new type of composite material for technological applications
US5498372A (en) * 1992-08-14 1996-03-12 Hexcel Corporation Electrically conductive polymeric compositions
EP1085034A1 (en) * 1999-09-20 2001-03-21 Honda Giken Kogyo Kabushiki Kaisha Proton conducting polymer, method for producing the same, solid polymer electrolyte and electrode
WO2003100884A2 (en) * 2002-05-23 2003-12-04 Columbian Chemicals Company Sulfonated conducting polymer-grafted carbon material for fuel cell applications
WO2003100883A2 (en) * 2002-05-23 2003-12-04 Columbian Chemicals Company Conducting polymer-grafted carbon material for fuel cell applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5498372A (en) * 1992-08-14 1996-03-12 Hexcel Corporation Electrically conductive polymeric compositions
US5334292A (en) * 1992-08-17 1994-08-02 Board Of Regents, The University Of Texas System Conducting polymer films containing nanodispersed catalyst particles: a new type of composite material for technological applications
EP1085034A1 (en) * 1999-09-20 2001-03-21 Honda Giken Kogyo Kabushiki Kaisha Proton conducting polymer, method for producing the same, solid polymer electrolyte and electrode
WO2003100884A2 (en) * 2002-05-23 2003-12-04 Columbian Chemicals Company Sulfonated conducting polymer-grafted carbon material for fuel cell applications
WO2003100883A2 (en) * 2002-05-23 2003-12-04 Columbian Chemicals Company Conducting polymer-grafted carbon material for fuel cell applications

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175930B2 (en) 2002-05-23 2007-02-13 Columbian Chemicals Company Conducting polymer-grafted carbon material for fuel cell applications
US7241334B2 (en) 2002-05-23 2007-07-10 Columbian Chemicals Company Sulfonated carbonaceous materials
US7708947B2 (en) 2005-11-01 2010-05-04 Therm-O-Disc, Incorporated Methods of minimizing temperature cross-sensitivity in vapor sensors and compositions therefor
US8691390B2 (en) 2007-11-20 2014-04-08 Therm-O-Disc, Incorporated Single-use flammable vapor sensor films
US8233830B2 (en) * 2009-01-27 2012-07-31 Xerox Corporation Polypyrrole containing intermediate transfer components

Also Published As

Publication number Publication date
TW200512977A (en) 2005-04-01

Similar Documents

Publication Publication Date Title
US7175930B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
US7413683B2 (en) Sulfonated conducting polymer-grafted carbon material for fuel cell applications
US7459103B2 (en) Conducting polymer-grafted carbon material for fuel cell applications
US20040109816A1 (en) Proton conductive carbon material for fuel cell applications
US7195834B2 (en) Metallized conducting polymer-grafted carbon material and method for making
US7390441B2 (en) Sulfonated conducting polymer-grafted carbon material for fuel cell applications
KR102225982B1 (en) Catalyst
Krishnan et al. Magneli phase Ti n O 2 n− 1 as corrosion-resistant PEM fuel cell catalyst support
WO2013035191A1 (en) Catalyst layer for fuel cells and use thereof
KR20060104821A (en) Catalyst for fuel cell, preparation method thereof, and fuel cell system comprising the same
Ebenezer et al. Effect of crosslinked poly (vinyl alcohol)/sulfosuccinic acid ionomer loading on PEMFC electrode performance
JP5574765B2 (en) Catalyst layer for fuel cell and use thereof
WO2004107359A1 (en) Metallized conducting polymer-grafted carbon material and method for making
JP4892811B2 (en) Electrocatalyst
Ledesma-Garcia et al. Evaluation of assemblies based on carbon materials modified with dendrimers containing platinum nanoparticles for PEM-fuel cells
KR100481591B1 (en) Polyelectrolyte nanocomposite membrane and the preparation method thereof and the fuel cell using the prepared polyelectrolyte nanocomposite membrane
JP2005174834A (en) Catalyst carried electrode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase