WO2004105826A2 - Implantate mit funktionalisierten kohlenstoffoberflächen - Google Patents

Implantate mit funktionalisierten kohlenstoffoberflächen Download PDF

Info

Publication number
WO2004105826A2
WO2004105826A2 PCT/EP2004/005785 EP2004005785W WO2004105826A2 WO 2004105826 A2 WO2004105826 A2 WO 2004105826A2 EP 2004005785 W EP2004005785 W EP 2004005785W WO 2004105826 A2 WO2004105826 A2 WO 2004105826A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
poly
implant
implants
layer
Prior art date
Application number
PCT/EP2004/005785
Other languages
English (en)
French (fr)
Other versions
WO2004105826A3 (de
Inventor
Jörg RATHENOW
Sohéil ASGARI
Andreas Bán
Jürgen Kunstmann
Bernhard Mayer
Original Assignee
Blue Membranes Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE2003124415 external-priority patent/DE10324415A1/de
Priority claimed from DE10333099A external-priority patent/DE10333099A1/de
Priority claimed from DE2003133098 external-priority patent/DE10333098A1/de
Priority to DE502004008211T priority Critical patent/DE502004008211D1/de
Priority to DE202004009061U priority patent/DE202004009061U1/de
Priority to MXPA05011231 priority patent/MXPA05011231A/es
Priority to JP2006529943A priority patent/JP2007502184A/ja
Priority to CN200480013969A priority patent/CN100594040C/zh
Priority to DK04735213T priority patent/DK1626749T3/da
Priority to EP04735213A priority patent/EP1626749B1/de
Application filed by Blue Membranes Gmbh filed Critical Blue Membranes Gmbh
Priority to EA200501561A priority patent/EA009836B1/ru
Priority to CA002519750A priority patent/CA2519750A1/en
Priority to AU2004243503A priority patent/AU2004243503A1/en
Priority to BRPI0410957-0A priority patent/BRPI0410957A/pt
Priority to PL04735213T priority patent/PL1626749T3/pl
Priority to SI200431001T priority patent/SI1626749T1/sl
Priority to US10/939,021 priority patent/US20050079201A1/en
Publication of WO2004105826A2 publication Critical patent/WO2004105826A2/de
Publication of WO2004105826A3 publication Critical patent/WO2004105826A3/de
Priority to HK06106757.4A priority patent/HK1089702A1/xx

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/303Carbon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/084Carbon; Graphite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment

Definitions

  • the present invention relates to a method of manufacturing medical implants having functionalized surfaces, by providing a medical implant having at least one carbonaceous layer on at least a portion of the surface of the implant, activating the carbonaceous layer by creating porosity, and functionalizing the activated carbonaceous layer, and subsequently available functionalized implants.
  • Medical implants such as surgical or orthopedic screws, plates, joint prostheses, artificial heart valves, vascular prostheses, stents as well as subcutaneously or intramuscularly implantable drug depots are made of a variety of materials, according to the specific biochemical and mechanical
  • the metals or metal alloys frequently used for stents and joint prostheses, for example, as well as ceramic materials often have disadvantages in terms of their biocompatibility or functionality, in particular in continuous use.
  • Implants cause by chemical and / or physical irritation inflammatory tissue and immune reactions, so that there are intolerance reactions in the sense of chronic inflammatory reactions with defense and rejection reactions, excessive scarring or tissue degradation, which in extreme cases must lead to the implant removed and or additional therapeutic interventions of invasive or noninvasive nature are indicated.
  • US Pat. No. 5,891,507 describes, for example, methods for coating the surface of metal stents with silicone, polytetrafluoroethylene and biological materials such as heparin or growth factors, which increase the biocompatibility of the metal stents.
  • carbon-based layers In addition to plastic layers, carbon-based layers have proved to be particularly advantageous.
  • U.S. Patent 6,569,107 describes carbon coated stents in which the carbon material has been applied by chemical or physical vapor deposition techniques (CND or PND). Also, U.S. Patent 5,163,958 describes tubular endoprostheses or stents having a carbon coated surface which are antithrombogenic
  • WO 02/09791 describes intravascular stents with coatings produced by CND of siloxanes.
  • implants can not only be used in their supporting function, such as stents, but can also be provided with additional functions, for example long-term delivery of drugs at the site of implantation, to the implants
  • An object of the present invention is therefore to provide a method for producing implants with additional functionality.
  • Another object of the present invention is to provide medical implants having additional functions, such as. As the release of drugs in the body or the settlement of tissues, can take over and have increased biocompatibility or biocompatibility or have a stronger functional implant effect.
  • a further object of the present invention is to provide medical implants which enable sustained release of medicinal agents in the body of a patient or have a function improved by surface modification.
  • Yet another object of the present invention is to provide medical implants, which can release applied or incorporated pharmacologically active substances after insertion of the implant into the human body in a targeted and / or controlled manner.
  • Another object of the invention is to provide implantable drug depots with a coating that can control the release of drugs from the depot.
  • a further object of the invention is to provide medical implants containing applied or incorporated microorganisms, viral vectors or cells or tissues, so that after insertion of the
  • Implant targeted into the human body a therapeutic effect can be generated or the biocompatibility can be increased.
  • the method according to the invention for producing medical implants with functionalized surfaces comprises the following steps: a) providing a medical implant with at least one carbon-containing layer on at least one part of the surface of the implant; b) activating the carbonaceous layer by creating porosity; c) functionalization of the activated, carbon-containing layer.
  • implants with carbon-containing surface coatings can be suitably modified so that a loading with therapeutically effective amounts of pharmacologically active substances is possible.
  • a loading with therapeutically effective amounts of pharmacologically active substances is possible.
  • targeted adjustment / modification of the pore size and / or pore structure, and optionally suitable release-modifying surface coating can be load, Specifically set and vary the type and rate of release as well as the biological-physiological surface properties.
  • tailor-made solutions for each type of implant and active ingredient as well as each place of application and intended use of the medical implants can be realized with simple method measures as described according to the invention.
  • carbon-containing coated implants can be functionalized.
  • implantable medical device and “implant” are used interchangeably hereinafter and include medical or therapeutic implants such as vascular endoprostheses, intraluminal endoprostheses, stents, coronary stents, peripheral stents, temporary surgical or orthopedic implants such as surgical screws, plates , Nails and other fasteners, permanent surgical or orthopedic implants such as bone or joint prostheses, for example, artificial hip or knee joints, socket inserts, screws, plates, nails, implantable orthopedic implants.
  • medical or therapeutic implants such as vascular endoprostheses, intraluminal endoprostheses, stents, coronary stents, peripheral stents, temporary surgical or orthopedic implants such as surgical screws, plates , Nails and other fasteners, permanent surgical or orthopedic implants such as bone or joint prostheses, for example, artificial hip or knee joints, socket inserts, screws, plates, nails, implantable orthopedic
  • Fixation aids for vertebral body replacement, and artificial hearts and parts thereof, artificial heart valves, pacemaker housing, electrodes, subcutaneous and / or intramuscular implants, drug depots and microchips, and the like.
  • the implants which can be used in the method according to the invention can consist of virtually any, preferably substantially temperature-stable, materials. in particular from all materials from which implants are typically made.
  • Examples of these are amorphous and / or (partially) crystalline carbon, solid carbon material, porous carbon, graphite, carbon composite materials, carbon fibers, ceramics such.
  • Metal carbides, metal oxides, metal nitrides, metal carbonitrides, metal oxycarbides, metal oxynitrides and metal oxycarbonitrides of transition metals such as titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, manganese, rhenium, iron, cobalt, nickel;
  • Metals and metal alloys in particular the precious metals gold, silver, ruthenium, rhodium, palladium, osmium, iridium, platinum;
  • the implants used are stents, in particular metal stents, preferably made of stainless steel, platinum-coated radiopaque steel alloys, PERSS (platinum-enhanced radiopaque stainless steel alloys), cobalt alloys,
  • Titanium alloys for example based on niobium, tantalum, tungsten and molybdenum, precious metal alloys, nitinol alloys, and magnesium alloys and mixtures of the foregoing.
  • Particularly preferred implants in the present invention are stents made of stainless steel, in particular Fe-18Cr-14Ni-2.5Mo ("316LVM" ASTM F138), Fe-21Cr-10Ni-3.5Mn-2.5Mo (ASTM F 1586), Fe-18Cr-14Ni-2.5Mo.
  • the implantable medical devices that can be used according to the invention can have almost any external shape; the method according to the invention is not restricted to specific structures.
  • the implants must have a carbon-containing layer on at least part of their surface.
  • This layer can be made of pyrolytically generated
  • the carbonaceous layer may be amorphous, semi-crystalline or crystalline, preferred are layers of amorphous, pyrolytic carbon, in some embodiments also diamond-like, for example vapor-deposited carbon.
  • Particularly preferred are carbonaceous implants made by applying carbon-producing materials and / or polymeric films to the implant and then carbonizing these materials with exclusion of oxygen and at elevated temperature.
  • Carbostent® (Sorin Biomedica) and the like, which contain mostly carbon coatings prepared by physical vapor deposition or sputtering processes, including sputtering.
  • the thickness of the one or more carbonaceous layer (s) may generally be from 1 nm to 1 mm, and optionally also several millimeters, e.g. up to 10 mm, preferably up to 6 mm, more preferably up to 2 mm, in particular between 10 nm and 200 ⁇ m.
  • the implantable medical devices may also include multiple carbonaceous layers of equal or different thickness and / or porosity.
  • multiple carbonaceous layers of equal or different thickness and / or porosity.
  • deeper porous layers can be combined with overlying narrow-pore layers, which can delay the release of active substances deposited in the more porous layer.
  • the physical and chemical properties of the carbon-based coating are further modified by suitable activation steps and the respectively desired
  • Conventional carbon coated implants usually have substantially closed surfaces which provide effective and durable loading with e.g. Restrict drugs or limit to very small amounts.
  • the purpose of the activation is to create a porosity in the carbonaceous layer or to form a porous carbon-containing layer on the implant so as to enable better functionalization by means of active substances, cells, proteins, microorganisms, etc., and the absorption capacity of the carbonaceous layer per Increase surface unit.
  • the activation step in the method according to the invention thus essentially consists in producing porosity in the carbon layer on the implant. There are several options for this.
  • a possible activation of the carbon layer includes, for example, reducing or oxidative treatment steps, in which the layer with suitable reducing agents and / or oxidizing agents such as hydrogen, carbon dioxide, water vapor, oxygen, air, nitrous oxide, or oxidizing acids such as nitric acid and the like and optionally mixtures thereof or treated several times.
  • suitable reducing agents and / or oxidizing agents such as hydrogen, carbon dioxide, water vapor, oxygen, air, nitrous oxide, or oxidizing acids such as nitric acid and the like and optionally mixtures thereof or treated several times.
  • the activation with air particularly preferably at elevated temperature.
  • the one or more activation steps may optionally at elevated temperature, for example from 40 ° C to 1000 ° C, preferably 70 ° C to 900 ° C, more preferably 100 ° C to 850 ° C, particularly preferably 200 ° C to 800 ° C and especially at about 700 ° C are performed.
  • the carbonaceous layer is modified reductively or oxidatively, or with a combination of these treatment steps at room temperature. Also, cooking in oxidizing acids or alkalis can be used to create a porous surface.
  • activated carbon-coated medical implants activated according to the invention can be used by targeted adjustment of the porosity of the carbon layer for the controlled release of active substances from the substrate into the external environment.
  • the coatings are preferably porous, in particular nanoporous.
  • inventive medical implants can be used as a drug carrier with depot effect, in particular even if the implant itself additionally has a porous structure, wherein the activated, carbon-based layer of the implant can be used as a release-regulating membrane.
  • the adjustment of porosity may be accomplished by washing out fillers present in the carbonaceous coating, such as polyvinylpyrrolidone, polyethylene glycol, aluminum powder, fatty acids, microwaxes or emulsions, paraffins, carbonates, dissolved gases, or water-soluble salts with water, solvents, acids or alkalis or by distillation or oxidative or non-oxidative thermal decomposition.
  • fillers present in the carbonaceous coating such as polyvinylpyrrolidone, polyethylene glycol, aluminum powder, fatty acids, microwaxes or emulsions, paraffins, carbonates, dissolved gases, or water-soluble salts with water, solvents, acids or alkalis or by distillation or oxidative or non-oxidative thermal decomposition.
  • suitable methods for this purpose are described in DE 103 22 187 or in PCT / EP2004 / 005277 of the same Applicant, the disclosure of which is hereby fully incorporated by reference.
  • the porosity can also be generated by structuring the surface with powdery substances such as metal powder, carbon black, phenolic resin powder, fibers, in particular carbon or natural fibers.
  • powdery substances such as metal powder, carbon black, phenolic resin powder, fibers, in particular carbon or natural fibers.
  • the activated coating may also be subjected to a so-called CVD process (Chemical Vapor Deposition) or CVI process (Chemical Vapor Infiltration) in a further optional process step in order to further modify the surface or pore structure and its properties.
  • CVD process Chemical Vapor Deposition
  • CVI process Chemical Vapor Infiltration
  • the carbonized coating is treated with suitable, carbon-eliminating Precursorgasen at high temperatures.
  • Preferred here is the subsequent application of diamond-like carbon.
  • Other elements can be deposited with it, for example silicon. Such methods are known in the art.
  • saturated and unsaturated hydrocarbons having sufficient volatility under CVD conditions are suitable as carbon-eliminating precursors.
  • Examples include methane, ethane, ethylene, acetylene, linear and branched alkanes, alkenes and alkynes having carbon numbers of Ci - C 20 , aromatic hydrocarbons such as benzene, naphthalene, etc., and mono- and polysubstituted alkyl, alkenyl and alkynyl-substituted aromatics such as toluene, xylene, cresol, styrene, etc.
  • a ceramic precursor can BC1 3 , NH 3 , silanes such as S1H 4 , tetraethoxysilane
  • TEOS dichlorodimethylsilane
  • DOS dichlorodimethylsilane
  • MOS methyltrichlorosilane
  • TDADB trichlorosilyl dichloroborane
  • HDMSO hexadichloromethylsilyloxide
  • the carbon-containing implant coatings can be modified by carbide or oxycarbide, for example, oxidation resistant.
  • the inventively activated, coated implants can be additionally coated or modified by means of sputtering.
  • carbon, silicon or metals or metal compounds can be applied from suitable sputtering targets by methods known per se.
  • silicon, titanium, zirconium or tantalum compounds or metals into the carbonaceous layer by CVD or PVD, carbide phases can be formed which increase the stability and oxidation resistance of the layer.
  • carbon-containing layers e.g. also sputtered C-layers
  • subsequently machined mechanically to produce porous surfaces For example, the targeted abrasion of these layers by means of suitable methods to porous layers.
  • a preferred option is the abrasion of such carbonaceous layers in the ultrasonic bath, where targeted layer defects and thus porosity can be generated by the addition of abrasive solids of different particle sizes and hardness levels by appropriate energy input and appropriate frequency of the ultrasonic bath depending on the exposure time.
  • aqueous ultrasound baths with the addition of alumina, silicates, aluminates and the like, preferably alumina dispersions.
  • any other solvent suitable for ultrasonic baths may be used instead of or in admixture with water.
  • the treatment of carbon-coated implants in an aqueous ultrasound bath with the addition of alumina, preferably 1% to 60% alumina dispersions gives nano-abraded carbon layers having an average pore size of about 5 nm to 200 nm.
  • the surface properties of the implant can be further modified;
  • nitrides, oxynitrides or carbonitrides, in particular those of the transition metals can be incorporated by nitrogen implantation.
  • ion implantation of carbon further modifies the porosity and strength of the surface materials.
  • the carbonaceous layer is porous after activation, with
  • Pore diameters in the range of 0.1 to 1000 .mu.m, preferably between 1 .mu.m to 400 .mu.m. Macroporous layers can also be achieved with the activation steps according to the invention.
  • the carbon-containing layer is particularly preferably nanoporous, with pore diameters of 1 nm to 1000 nm, preferably of 5 nm to 900 nm.
  • the activation takes place already during the production step of the carbonaceous
  • Layer for example by application of one or more porous carbonaceous layers, by carbonization of carbon-generating substances, by coating with carbon by means of CVD or PVD, and / or by application suitable layers of porous biodegradable or resorbable or non-biodegradable or absorbable polymers.
  • one or more porous carbonaceous layers are applied by coating the implant with an optionally foamed or filler-containing polymer film, and then carbonizing the polymer film at temperatures of 200 to 3500 ° C, preferably up to 2000 ° C in an oxygen-free atmosphere, optionally can be subsequently partially oxidized in the air stream.
  • an optionally foamed or filler-containing polymer film preferably up to 2000 ° C in an oxygen-free atmosphere, optionally can be subsequently partially oxidized in the air stream.
  • the addition of polyethylene glycol into the polymer film to be carbonized leads to defects in the polymer crosslinking, which leads to porous carbon layers after thermal treatment or dissolution in suitable solvents.
  • the application can be adjusted to corresponding porosities, in particular the average pore size, the pore size distribution and the degree of porosity.
  • porosities in particular the average pore size, the pore size distribution and the degree of porosity.
  • polyethylene glycols having a molecular weight of 1000 to 80,000 daltons pore sizes of 10 to 1000 nm can be produced, preferably 50 to 1000 nm.
  • porosity levels of 5% can be achieved. produce up to 80%, preferably from 20% to 60%.
  • Another example of this type of combined generation and activation of the carbonaceous layer is the incorporation of carbon black into the polymer film.
  • the average particle size and the solids content in the polymer film it is possible to produce porous matrices whose degree of porosity and mean pore size can be adjusted by the choice of suitable polymer systems, carbon black particle sizes and the solids content, depending on the application.
  • carbon black particles having an average particle size of 10 nm to 1 mm, preferably from 10 nm to 1000 nm, at a solids content of 20 to 80%, preferably from 30% to 60% an average porosity of 30-60 % produce, wherein the pore sizes produced between 10 to 1000 nm, preferably from 10 to 800 nm are adjustable.
  • the implants are first treated at elevated temperature, usually about 600 ° C with paracyclophane, wherein on the implants superficially a polymer film of poly (p-xylylene) is formed. This can be converted into carbon in a subsequent carbonation step by known methods.
  • the activated implant can be subjected to further chemical and / or physical surface modifications. Also, cleaning steps to remove any residues and impurities can be provided here.
  • acids in particular oxidizing acids, or solvents may be used, the boiling out in acids or solvents is preferred. Thus, by boiling in oxidizing acids, a carboxylation of these activated carbon layers can be produced.
  • the implants according to the invention can be sterilized by conventional methods, for example by autoclaving, ethylene oxide sterilization or gamma-therapy.
  • the implants can also be equipped with a variety of functions by suitable measures. Orthopedic and surgical implants or vascular endoprostheses can be used as drug carriers or depots.
  • the biocompatibility and the functionality of the implants according to the invention can be specifically influenced or changed by the incorporation of additives, fillers, proteins. In this way, repulsion phenomena in the body in the case of implants produced according to the invention can be reduced or completely eliminated, or the efficiency of the implant can be increased or additional effects produced.
  • Functionalization in the sense of the present invention is generally understood to mean measures, as a result of which the carbon-containing layer receives additional, additional functions.
  • Functionalisations according to the invention consist in the incorporation of substances into the carbon-containing layer or the fixation of substances on the carbon-containing layer. Suitable substances are selected from pharmacological agents, linkers, microorganisms, plant or animal including human cells or cell cultures and tissues, Minerals, salts, metals, synthetic or natural polymers, proteins, peptides, amino acids, solvents etc.
  • the suitably activated implant can be functionalized by making it more biocompatible before or after possible loading with active ingredients by at least one additional layer of biodegradable or resorbable polymers such as collagen, albumin, gelatin, hyaluronic acid, starch, celluloses such as methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose phthalate; Casein, dextrans, polysaccharides, fibrinogen, poly (D, L-lactides), poly (D, L-lactide-co-glycolides), poly (glycolides), poly (hydroxybutylates), poly (alkylcarbonates), poly (orthoesters), Polyesters, poly (hydroxyvaleric acid), polydioxanones, poly (ethylene terephthalates), poly (malic acid), poly (tartronic acid), polyanhydrides, polyphosphazenes, poly (amino acids), and their co-polymers or non-biodegradable or absorbable poly
  • active substances such as medicaments and medicaments can be applied to the activated carbon-containing layer or introduced into the layer. This is particularly useful where drugs can not be applied directly to or on the implant, such as metals.
  • water-soluble lipophilic active substances such as paclitaxel
  • metallic surfaces which tend to form a crystalline film.
  • the immobilizable amounts are limited and the Release uncontrollable.
  • Direct treatment of such metallic surfaces with paclitaxel leads to maximum loadings of about 3 mg / mm 2 , the release of which under physiological conditions in physiological buffer solutions leads to an uncontrolled desorption of a maximum of 30% within 1 to 5 days.
  • Carbon layers activated according to the invention are preferably glassy amorphous, with a layer thickness in the range from 80 nm to 10 .mu.m, preferably from 100 nm to 5 .mu.m, preferably with a porosity of 5 nm to 1 .mu.m, preferably from 5 nm to 1000 nm Porosities of 5% to 50%, preferably from 10% to 50%, and an average pore size of 5 nm to 1 .mu.m, preferably from 5 nm to 500 nm, up to a hundred times the amount of unactivated carbon-coated or purely metallic implants and take up optionally release controlled depending on the porosity or the pore size and the surface properties.
  • peptides and proteins as well as glycoproteins and lipoproteins can also be immobilized by suitable functionalization of the arbitrary carbon-containing layer.
  • a form of functionalization according to the invention consists in the covalent or non-covalent adsorption of substances which allow the binding of peptides, proteins, glycoproteins or lipoproteins provided with affinity tags (so-called affinity tags).
  • Such substances are, for example, ions, cations, in particular metal cations, such as cobalt, nickel, copper, zinc cations, antibodies, calmodulin, chitin, cellulose, sugars, amino acids, glutathione, streptavidin, streptotactin or other mutants for binding Strep -tag or SBP-tagged substances, or S-protein to bind S-tag labeled substances, as well as the like.
  • metal cations such as cobalt, nickel, copper, zinc cations, antibodies, calmodulin, chitin, cellulose, sugars, amino acids, glutathione, streptavidin, streptotactin or other mutants for binding Strep -tag or SBP-tagged substances, or S-protein to bind S-tag labeled substances, as well as the like.
  • affinity tags are conveniently added to the peptides, proteins, glycoproteins or lipoproteins to be immobilized either at the C-terminal or N-terminal end of the primary sequence, usually by recombinant genetic engineering or biotinylation.
  • affinity tags in particular polyarginine tags (Arg-tag), which preferably consist of five to six arginic acids, polyhistidine tags (Histag), an arbitrarily long polyhistidine sequence, typically 2 to 10 residues, FLAG tag ( FLAG tag) with the sequence DYKDDDDK, Strep tag (Strep tag), for example the Strep-tag II sequence WSHPQFEK, S tag (S-tag) carrying the amino acid residues KETAAAKFERQHMDS, the calmodulin-binding peptide (calmodulin Binding peptide), the family of cellulose binding domains, in particular C-terminal, N-terminal or other position in the primary sequence of the immobilized peptide, protein, glyco- or lipo
  • the modification of the substances to be applied to the functionalized carbon surfaces corresponds to the usual systems which are possible in the purification and in particular chromatographic labeling.
  • the functionalization of the carbon surface takes place here by the adsorption of corresponding substances in and / or on the carbon-containing layer, which can form a bond with the affinity appendages.
  • Corresponding corresponding substances are, for example, cations which are introduced into the carbon layer to allow binding to the basic polyarginine tag, such as cobalt, nickel, copper, zinc cations, for example, to allow binding of polyhistidine tags.
  • the adsorption of the antibody Ml on the carbon surfaces allows the attachment of FLAG tags, streptavidin or streptotactin or others
  • Mutants for the binding of strep-tag or SBP-tag labeled substances, or the adsorption of the S-protein on the surface to bind S-tag labeled substances are known.
  • calmodulin binding peptide-labeled substances can be bound to the carbonaceous layer.
  • the functionalization is carried out by adsorption of cellulose so that substances modified with cellulose-binding domains can be bound, or by adsorption of chitin, in order to bind substances which provide chitin-binding domains.
  • glutathione labeled glutathione S-transferase tag binding agents can be functionalized with maltose or amylose to bind maltose binding protein labeled substances.
  • carbon layers functionalized with 0.1-8 ⁇ g / mm adsorbed Strep Tactin be obtained on porous carbon surfaces with a pore size of 100-900 nm, a porosity of 30-60% and a layer thickness of 1-5 ⁇ m from a Strep-Tactin solution by spraying or dipping.
  • the carbon layer functionalized in this way can absorb, for example, 0.1-10 ⁇ g / mm 2 of recombinant Strep-tagged IL-2.
  • the carbon layer is doped with cobalt ions, wherein the porous carbon matrix contains a cobalt ion content of 0.1 to 50% of the solids content, preferably up to 60% in glassy porous carbon layers.
  • layer thicknesses of 500 nm to 1000 nm can be adsorbed by the metal ion doping in the matrix 0.1 to 100 ug polyarginine tag labeled recombinant IL-2.
  • a further embodiment provides, for example, the functionalization of the carbon surfaces by adsorption of linker substances, preferably of carboxymethylated dextranes, for example as hydrogels, which enable the physical binding of substances, preferably biomolecules or active substances, and / or possess chemical reactivity, such that such substances can be covalently bound by means of covalent bonds, preferably by the formation of amino, thiol or aldehyde bonds.
  • linker substances preferably of carboxymethylated dextranes, for example as hydrogels, which enable the physical binding of substances, preferably biomolecules or active substances, and / or possess chemical reactivity, such that such substances can be covalently bound by means of covalent bonds, preferably by the formation of amino, thiol or aldehyde bonds.
  • the cohesive material layer can be functionalized in the following manner: Adsorption of carboxymethylated dextran, subsequent modification by incubation in NHS / EDC to convert the carboxymethyl groups into N-hydroxysuccinimide ester.
  • esters can be adsorbed, which form covalent amino bonds with the esters.
  • Unreacted esters can be inactivated in a further step by, for example, incubation in IM ethanolamine hydrochloride solution.
  • IM ethanolamine hydrochloride solution for example, the adsorption of 1 ⁇ g of carboxymethylated dextran per mm of a porous, carbonaceous composite layer of glassy carbon and carbon black particles results in a functionalization which can covalently bind 0.01 to 5000 ⁇ g / mm 2 of peptides having a molecular weight of 60-90.
  • porous layers activated according to the invention can be used in the functionalization step of the method with drugs or medicaments, Microorganisms, cells and / or tissues are loaded, or provided with diagnostic tools such as markers or contrast agents for the localization of coated implants in the body, for example, with therapeutic or diagnostic amounts of radioactive sources.
  • the implants activated according to the invention are loaded with active substances in the functionalization step.
  • the loading of active substances can take place in or on the carbon-containing layer by means of suitable sorptive methods such as adsorption, absorption, physisorption, chemisorption, in the simplest case by impregnation of the carbon-containing coating with active substance solutions, active ingredient dispersions or active ingredient suspensions in suitable solvents.
  • covalent or noncovalent attachment of drugs in or on the carbonaceous coating could be a preferred option depending on the drug used and its chemical properties.
  • the active ingredient is in the form of a solution
  • Suitable solvents include, for example, methanol, ethanol, N-propahol, isopropanol, butoxy diglycol, butoxyethanol, butoxyisopropanol, butoxypropanol, n-butyl alcohol, t-butyl alcohol, butylene glycol, butyloctanol, diethylene glycol, dimethoxy diglycol,
  • Preferred solvents comprise one or more organic solvents from the group consisting of ethanol, isopropanol, -P -propanol, dipropylene glycol methyl ether and butoxyisopropanol (1,2-propylene glycol «-butyl ether), tetrahydrofuran, phenol, benzene, toluene, xylene, preferably ethanol, isopropanol.
  • -Propanol and / or dipropylene glycol methyl ether in particular isopropanol and / or "-Propanol.
  • the drug loading may be temporary, d. H. the active substance can be released after implantation of the medical device, or the
  • Active substance is permanently immobilized in or on the carbon-containing layer.
  • active ingredient-containing medical implants with static, dynamic or combined static and dynamic drug loadings can be generated. This results in multifunctional coatings based on the carbon-containing layers produced according to the invention.
  • Active substances are immobilized essentially permanently on or in the coating.
  • Active substances are inorganic substances, eg hydroxylapatite (HAP), fluorapatite, tricalcium phosphate (TCP), zinc; and / or organic substances such as peptides, proteins, carbohydrates such as mono-, oligo- and polysaccharides, lipids, phospholipids, steroids, lipoproteins, glycoproteins, glycolipids, proteoglycans, DNA, RNA, signal peptides or antibodies or antibody fragments, bioresorbable polymers, eg polylactic acid , Chitosan, as well as pharmacologically active substances or mixtures, combinations of these and the like.
  • HAP hydroxylapatite
  • TCP tricalcium phosphate
  • zinc zinc
  • organic substances such as peptides, proteins, carbohydrates such as mono-, oligo- and polysaccharides, lipids, phospholipids, steroids, lipoproteins, glycoproteins, glycolipid
  • active ingredients which can be used in active ingredient loading for the release of active ingredients are, for example, hydroxylapatite (HAP), fluorapatite, tricalcium phosphate (TCP), zinc; and / or organic substances such as peptides, proteins, carbohydrates such as mono-, oligo- and polysaccharides, lipids, phospholipids, steroids, lipoproteins, glycoproteins, glycolipids, proteoglycans, DNA, RNA, signal peptides or antibodies or antibody fragments, bioresorbable polymers, e.g. Polylactonic acid, chitosan, and the like, as well as pharmacologically active substances or mixtures.
  • HAP hydroxylapatite
  • TCP tricalcium phosphate
  • zinc zinc
  • organic substances such as peptides, proteins, carbohydrates such as mono-, oligo- and polysaccharides, lipids, phospholipids, steroids, lipoproteins, glycoproteins, glycolipids, proteogly
  • Suitable pharmacologically active substances or substance mixtures for the static and / or dynamic loading of implantable medical devices coated according to the invention include active substances or
  • Active ingredient combinations selected from heparin, synthetic heparin analogues (eg fondaparinux), hirudin, antithrombin III, drotrecogin alpha; Fibrinolytica such as alteplase, plasmin, lysokinases, factor Xlla, prourokinase, Urokinase, anestreplase, streptokinase; Platelet aggregation inhibitors such as acetylsalicylic acid, ticlopidine, clopidogrel, abciximab, dextrans; Corticosteroids such as Alclometasone, Amcinonide, Augmented Betamethasone, Beclomethasone, Betamethasone, Budesonide, Cortisone, Clobetasol, Clocortolone, Desonide, Desoximetasone, Dexamethasone, Flucinolone, Fluocinonide, Flurandrenolide, Flunisolide
  • Class III antiarrhythmics such as amiodarone, sotalol
  • Class IV antiarrhythmics such as diltiazem, verapamil, gallopamil
  • other antiarrhythmics such as adenosine, orciprenaline, ipratropium bromide
  • Agents for the stimulation of angiogenesis in Myocardium such as Vascular Endothelial Growth Factor (VEGF), Basic Fibroblast Growth Factor (bFGF), non-viral DNA, viral DNA, endothelial growth factors: FGF-1, FGF-2, VEGF, TGF
  • Antibodies monoclonal antibodies, anticalins
  • Digitalis glycosides such as acetyldigoxin / metildigoxin, digitoxin, digoxin; Cardiac glycosides like Ouabain,
  • Antihypertensives such as centrally effective anti-adrenergic agents, e.g. Methyldopa, imidazoline receptor agonists; Dihydropyridine-type calcium channel blockers such as nifedipine, nitrendipine; ACE inhibitors: quinaprilat, cilazapril, moexipril, trandolapril, spirapril, imidapril, trandolapril; Angiotensin II antagonists: candesartancilexetil, valsartan, telmisartan,
  • Phosphodiesterase inhibitors such as milrinone, enoximone and antihypotonics, such as in particular adrenergic and dopaminergic substances such as dobutamine, epinephrine, etilefrine, norfenefrine, norepinephrine, oxilofrin, dopamine, midodrine, pholedrine, aminotetium; and partial adrenoceptor agonists such as dihydroergotamine; Fibronectin, polylysines, ethylene-vinylacetates, inflammatory cytokines such as: TGF ⁇ , PDGF, VEGF, bFGF, TNF ⁇ , NGF, GM-CSF, IGF- ⁇ , IL-1, IL-8, IL-6, growth hormones; and adhesive substances such as cyanoacrylates, beryllium, silica; and Growth Factors such as erythropoietin, hormones such as corticotropins, go
  • Particularly preferred embodiments of the present invention are coated vascular endoprostheses (intraluminal endoprostheses) such as stents, coronary stents, intravascular stents, peripheral stents, and the like.
  • vascular endoprostheses intraluminal endoprostheses
  • Layer thicknesses between 80 nm and 10 microns, pore sizes of 5 nm to 1 micron and porosities of 1% to 70% generated and activated, preferably by introducing fillers and their subsequent removal from the carbon layer or by the, a porous matrix-generating admixture of soot particles with spherical or ellipsoid or rod-shaped morphology and a
  • Particle size from 10 nm to 200 nm, so that active ingredients can be absorbed in sufficient quantities.
  • the surface of the stent-implant can be increased up to 2000m 2 / m 3 .
  • the hydrophilicity of the coating can be increased, on the one hand the biocompatibility additionally increases, on the other hand makes the layer receptive to active substances, in particular hydrophilic agents.
  • stents in particular coronary stents and peripheral stents, are loaded with pharmacologically active substances or substance mixtures or with cells or cell cultures by the method according to the invention.
  • the carbon-containing stent surfaces for the local suppression of cell adhesion, platelet aggregation, complement activation or inflammatory tissue reactions or cell proliferation can be equipped with the following active substances:
  • Heparin, synthetic heparin analogues eg fondaparinux
  • hirudin antithrombin III
  • drotrecogin alpha fibrinolytica (alteplase, plasmin, lysokinases, factor XIIa, prourokinase, urokinase, anistreplase, streptokinase)
  • platelet aggregation inhibitors acetylsalicylic acid, ticlopidine, clopidogrel, abciximab , Dextrans
  • corticosteroids alclometasone, amcinonide, augmented betamethasone, beclomethasone, betamethasone, budesonide, cortisone, clobetasol, clocortolone, desonide, desoximetasone, dexamethasone, flucinolone, fluocinonide, flurandrenolide, flunisolide, flu
  • the stents activated according to the invention can be loaded with:
  • Antiarrhythmics in particular class I antiarrhythmics (quinidine-type antiarrhythmics: quinidine, dysopyramide, ajmaline, prallybium bitartrate, detaiobium bitartrate; lidocaine-type antiarrhythmics: lidocaine, mexiletine,
  • ipratropium bromide Stimulation of myocardial angiogenesis: Vascular Endothelial Growth Factor (VEGF), Basic Fibroblast Growth Factor (bFGF), non-viral DNA, viral DNA, endothelial growth factors: FGF-1, FGF-2, VEGF, TGF; Antibodies, monoclonal antibodies, anticalins; Stem Cells, Endothelial Progenitor Cells (EPC). Other cardiacs are: Digitalis glycosides
  • Antihypertensive agents centrally effective anti-adrenergic agents: methyldopa, imidazoline receptor agonists, calcium channel blockers: dihydropyridine type such as nifedipine, nitrendipine, ACE inhibitors: quinaprilat, cilazapril, moexipril, trandolapril, spirapril, imidapril, trandolapril, angiotensin II antagonists: candesartancilexetil, valsartan, telmisartan , Olmesartan medoxomil, eprosartan; peripherally acting alpha-receptor blockers: Prazosin, urapidil, doxazosin, bunazosin, terazosin, indoramine; Vasod
  • phosphodiesterase inhibitors midiesterase inhibitors
  • antihypotonics especially adrenergic and dopaminergic substances (dobutamine, epinephrine, etilefrine, norfenefrine, norepinephrine, oxilofrin, dopamine, midodrine, pholedrine, ameziniummetil), partial adrenoceptor agonists (dihydroergotamine), and finally other antihypotonics such fludrocortisone.
  • adrenergic and dopaminergic substances dobutamine, epinephrine, etilefrine, norfenefrine, norepinephrine, oxilofrin, dopamine, midodrine, pholedrine, ameziniummetil
  • partial adrenoceptor agonists dihydroergotamine
  • other antihypotonics such fludrocortisone.
  • extracellular matrix components fibronectin, polylysines, ethyleneevinylacetates, inflammatory cytokines such as: TGF ⁇ , PDGF, VEGF, bFGF, TNF ⁇ , NGF, GM-CSF, IGF- ⁇ , IL-1, IL-8, IL-6, Growth Hormone; and adhesive substances such as: cyanoacrylates, beryllium, or silica.
  • growth factor growth factor
  • erythropoietin erythropoietin
  • hormones may be provided in the stent coatings, such as corticotropins, gonadotropins, somatropin, thyrotrophin, desmopressin, terlipressin, oxytocin, cetrorelix, corticorelin, leuprorelin, triptorelin, gonerelin, ganirelix, buserelin, nafarelin, goserelin, as well as regulatory peptides such as somatostatin, and / or octreotide.
  • corticotropins such as corticotropins, gonadotropins, somatropin, thyrotrophin, desmopressin, terlipressin, oxytocin, cetrorelix, corticorelin, leuprorelin, triptorelin, gonerelin, ganirelix, buserelin, nafarelin, goserelin, as well as regulatory peptides such as s
  • inventions provide for functionalization by loading the carbon surfaces with cells, for example pluripotent stem cells, endothelial cells or connective tissue cells. These can be obtained from organisms, cultivated in the laboratory from cell cultures or be genetically modified.
  • vascular grafts provided with activated carbon layers can be loaded with endothelial cell cultures by previously using them in a bioreactor as a substrate or as a rearing and carrier system for cell cultures. Suitable processes for this purpose are described in DE 103 35 131 or PCT / EP04 / 00077, the disclosure of which is hereby incorporated by reference.
  • nanoporous activated carbon layers according to the invention having a surface area of 200 to 3000 m 2 / m 3 can be loaded after endothelial cell cultivation, the possible cell densities being 10 1 -10 16 cells / ml layer volume, preferably 10 3 -10 12 cells / ml range.
  • Suitable pore sizes are in the range of 0.1 to 1000 .mu.m, preferably 1 to 400 .mu.m, in order to support a better integration of the implants by ingrowth into the surrounding cell or bone tissue.
  • the following active substances can be used to stimulate tissue growth, in particular in the case of orthopedic implants for better implant integration: bone and cartilage stimulating peptides, bone morphogenetic proteins (BMPs), in particular recombinant BMPs (eg recombinant human BMP-2 (rhBMP-2)) Bisphosphonates (eg risedronate, pamidronate, ibandronate, zoledronic acid, clodronic acid, etidronic acid, alendronic acid, tiludronic acid), fluorides (disodium fluorophosphate, sodium fluoride); Calcitonin, dihydrotachystyrene.
  • BMPs bone morphogenetic proteins
  • rhBMP-2 recombinant BMPs
  • Bisphosphonates eg risedronate, pamidronate, ibandronate, zoledronic acid, clodronic acid, etidronic acid, alendronic acid, tiludronic
  • EGF epidermal growth factor
  • PDGF platelet-derived growth factor
  • FGFs fibroblast growth factors
  • TGF-a transforming growth factor-a
  • EGF Erythropoietin
  • IGF-I Insulin-Like Growth Factor-I
  • IGF-II Insulin-Like Growth Factor-II
  • IL-1 Interleukin-1
  • IL-2 Interleukin-2
  • IL-6 Interleukin-8
  • TNF-a Tumor Necrosis Factor-a
  • TNF-b Tumor Necrosis Factor-b
  • CSFs Colony Stimulating Factors
  • adhesion and integration-requiring substances are, in addition to the inflammatory cytokines already mentioned, the monocyte chemotactic protein, fibroblast stimulating factor 1, histamine, fibrin or fibrinogen, endothelin-1, angiotensin II, collagens, bromocriptine, methylsergide, methotrexate, carbon tetrachloride, thioacetamide, ethanol.
  • inventively activated implants, stents and the like can also be used instead of pharmaceuticals or in addition with antibacterial anti-infective coatings or impregnations, the following substances or mixtures being usable: silver (ions), titanium dioxide, antibiotics and anti-infective agents.
  • silver (ions) ions
  • titanium dioxide e.g., benzylpenicillin (penicillin G), phenoxymethylpenicillin (penicillin V), ⁇ -lactamase-resistant penicillins
  • beta-lactam antibiotics ⁇ -lactamase-sensitive penicillins such as benzylpenicillin (penicillin G), phenoxymethylpenicillin (penicillin V), ⁇ -lactamase-resistant penicillins such as
  • Aminopenicillins such as amoxicillin, ampicillin, bacampicillin; Acylaminopenicillins such as mezlocillin, piperacillin; Carboxypenicillins, cephalosporins (cefazolin, cefuroxime, cefoxitin, cefotiam, cefaclor, cefadroxil, cefalexin, loracarbef, cefixime, cefuroxime axetil, ceftibuten, cefpodoxime proxetil, cefpodoxime proxetil) or others such as aztreonam, ertapenem, meropenem.
  • cephalosporins cefazolin, cefuroxime, cefoxitin, cefotiam, cefaclor, cefadroxil, cefalexin, loracarbef, cefixime, cefuroxime axetil, ceftibuten, cefpodoxime proxetil
  • antibiotics are ⁇ -lactamase inhibitors (sulbactam, sultamicillin silicate), tetracyclines (doxycycline, minocycline, tetracycline, chlortetracycline, oxytetracycline), aminoglycosides (gentamicin, neomycin, streptomycin, tobramycin, amikacin, netilmicin, paromomycin, framycetin, spectinomycin), macrolide antibiotics ( Azithromycin, clarithromycin, erythromycin, roxithromycin, spiramycin, josamycin),
  • Lincosamides (clindamycin, lincomycin), gyrase inhibitors (fluoroquinolones such as ciprofloxacin, ofloxacin, moxifloxacin, norfloxacin, gatifloxacin, enoxacin, fleroxacin, levofloxacin, other quinolones such as pipemic acid), sulfonamides and trimethoprim (sulfadiazine, sulfates, trimethoprim), glycopeptide antibiotics (nancomycin, teicoplanin) , Polypeptide antibiotics (polymyxins such as colistin,
  • Polymyxin B Polymyxin B), nitroimidazole derivatives (metronidazole, tinidazole), aminoquinolones (chloroquine, mefloquine, hydroxychloroquine), biguanides (proguanil), quinine alkaloids and diaminopyrimidines (pyrimethamine), amphenicols (chloramphenicol) and other antibiotics (rifabutin, dapsone, fusidic acid, fosfomycin , Nifuratel, telithromycin, fusafungin, fosfomycin,
  • Pentamidine diisethionate, rifampicin, taurolidine, atovaquone, linezolide Among the nirustatics may be mentioned acyclovir, ganciclovir, famciclovir, foscarnet, inosine (dimepranol-4-acetamidobenzoate), valganciclovir, valaciclovir, cidofovir, Brivudine.
  • antiretroviral agents include antiretroviral agents (nucleoside analogue reverse transcriptase inhibitors and derivatives: lamivudine, zalcitabine, didanosine, zidovudine, tenofovir, stavudine, abacavir, non-nucleoside analogue reverse transcriptase inhibitors: amprenavir, indinavir, saquinavir, lopinavir, ritonavir, nelfinavir) and other antivirals such as amantadine, ribavirin, zanamivir, oseltamivir, lamivudine.
  • antiretroviral agents nucleoside analogue reverse transcriptase inhibitors and derivatives: lamivudine, zalcitabine, didanosine, zidovudine, tenofovir, stavudine, abacavir, non-nucleoside analogue reverse transcript
  • the implants with carbon-containing layers according to the invention can be suitably modified before or after the drug loading by means of other agents in their chemical or physical properties, for example, to modify the hydrophilicity, hydrophobicity, electrical conductivity, adhesion or other surface properties.
  • biodegradable or non-degradable polymers such as, for example, the biodegradable: collagens, albumin, gelatine, hyaluronic acid, starch, cellulose (methylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose phthalate, casein, dextranes, polysaccharides, fibrinogen, poly ( D, L-lactides), poly (D, L-lactide-co-glycolides), poly (glycolides), poly (hydroxybutylates), poly (alkylcarbonates), poly (orthoesters), polyesters, poly (hydroxyvaleric acid), polydioxanones, Poly (ethylene terephthalate), poly (malic acid), poly (tartronic acid), polyanhydrides, polyphosphohacenes, poly (amino acids), and all their co-polymers.
  • the biodegradable collagens, albumin, gelatine, hyaluronic acid, starch, cellulose (methylcellulose,
  • Non-biodegradable include: poly (ethylene vinyl acetates), silicones, acrylic polymers such as polyacrylic acid, polymethylacrylic acid, polyacrylic cyanoacrylate; Polyethylenes, polypropylenes, polyamides, polyurethanes, poly (ester urethanes), poly (ether urethanes), poly (ester ureas), polyethers such as polyethylene oxide, polypropylene oxide, pluronics, polytetramethylene glycol; Vinyl polymers such as polyvinyl pyrrolidones, poly (vinyl alcohols), poly (vinyl acetate phthalate, parylene.
  • polymers with anionic eg alginate, carrageenan, carboxymethylcellulose) or cationic (eg chitosan, poly-L-lysine etc.) or both properties (phosphorylcholine) can be prepared.
  • These polymers can be applied to the surface of the implants and cover them in whole or in part.
  • PH-sensitive polymers are, for example, poly (acrylic acid) and derivatives, for example: homopolymers such as poly (aminocarboxylic acid), poly (acrylic acid), poly (methylacrylic acid) and their co-polymers. This also applies to polysaccharides such as cellulose acetate phthalate, hydroxypropylmethylcellulose phthalate, hydroxypropylmethylcellulose succinate, cellulose acetate trimellitate and chitosan.
  • Thermosensitive polymers are, for example, poly (N-isopropylacrylamide-co-sodium-acrylate-co-n-N-alkylacrylamide), poly (N-methyl-Nn-propylacrylamide), poly (N-methyl-N-isopropylacrylamide), poly (Nn-propylmethacrylamide ), Poly (N-isopropylacrylamide), poly (N, n-diethylacrylamide), poly (N-isopropylmethacrylamide), poly (N-cyclopropylacrylamide), poly (N-ethylacrylamide), poly (N-ethylmethyacrylamide), poly (N- Methyl-N-ethylacrylamide), poly (N-cyclopropylacrylamide).
  • Thermogel-type polymers are hydroxypropyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, ethyl hydroxyethyl cellulose, and Pluronics such as F-127, L-122, L-92, L-81, L-61.
  • the active substances can be adsorbed in the pores of the carbon-containing layer (non-covalently, covalently), their release being controllable primarily by pore size and geometry. Additional modifications of the porous carbon layer by chemical modification (anionic, cationic) allow the release to be modified, for example pH-dependent.
  • Another application is the release of drug-containing carriers, namely microcapsules, liposomes, nanocapsules, nanoparticles, micelles, synthetic phospholipids, gas dispersions, emulsions, microemulsions, nanospheres, etc., which are adsorbed in the pores of the carbon layer and then released therapeutically.
  • drug-containing carriers namely microcapsules, liposomes, nanocapsules, nanoparticles, micelles, synthetic phospholipids, gas dispersions, emulsions, microemulsions, nanospheres, etc.
  • the Release of the active ingredients from the implant can be controlled in a wide range.
  • Achievable release times are 12 hours to one or more years, preferably 24 hours, 48 hours, 96 hours, 1 week, 2 weeks, 1 month, 3 months.
  • the implants according to the invention can also be loaded with living cells or microorganisms in special applications and thus be tailored. These may settle in suitably porous carbonaceous layers, the implant thus colonized then being provided with a suitable membrane coating which is permeable to nutrients and active ingredients produced by the cells or microorganisms but not to the cells themselves Microorganisms are supplied by the organism through the membrane coating.
  • implants can be produced, for example, which contain insulin-producing cells which, after implantation in the body, produce and release insulin as a function of the glucose level of the environment.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung medizinischer Implantate mit funktionalisierten Oberflächen, durch Bereitstellung eines medizinischen Implantats mit mindestens einer kohlenstoffhaltigen Schicht auf mindestens einem Teil der Oberfläche des Implantats, Aktivierung der kohlenstoffhaltigen Schicht durch Schaffung von Porosität, sowie Funktionalisierung der aktivierten, kohlenstoffhaltigen Schicht, und danach erhältliche funktionalisierte Implantate.

Description

Implantate mit funktionalisierten Kohlenstoffoberflächen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung medizinischer Implantate mit funktionalisierten Oberflächen, durch Bereitstellung eines medizinischen Implantats mit mindestens einer kohlenstoffhaltigen Schicht auf mindestens einem Teil der Oberfläche des Implantats, Aktivierung der kohlenstoffhaltigen Schicht durch Schaffung von Porosität, sowie Funktionalisierung der aktivierten, kohlenstoffhaltigen Schicht, und danach erhältliche, funktionalisierte Implantate.
Medizinische Implantate wie chirurgische bzw. orthopädische Schrauben, Platten, Gelenkprothesen, künstliche Herzklappen, Gefäßprothesen, Stents als auch subkutan oder intramuskulär implantierbare Wirkstoffdepots werden aus verschiedenartigsten Materialien, die nach den spezifischen biochemischen und mechanischen
Eigenschaften ausgewählt werden, hergestellt. Diese Materialien müssen für den dauerhaften Einsatz im Körper geeignet sein, keine toxischen Stoffe freisetzen und bestimmte mechanische und biochemische Eigenschaften aufweisen.
Die beispielsweise für Stents und Gelenkprothesen häufig verwendeten Metalle oder Metalllegierungen, sowie keramischen Materialien weisen jedoch häufig, insbesondere beim Dauereinsatz, Nachteile hinsichtlich ihrer Biokompatibilität oder Funktionalität auf. Implantate lösen durch chemische und/oder physikalische Reizung inflammatorische Gewebe- und Immunreaktionen aus, so dass es zu Unverträglichkeitsreaktionen im Sinne von chronischen Entzündungsreaktionen mit Abwehr- und Abstoßungsreaktionen, überschießender Narbenbildung oder Gewebeabbau kommt, die im Extremfall dazu führen müssen, dass das Implantat entfernt und ersetzt werden muss, oder aber zusätzliche therapeutische Interventionen invasiver oder nichtinvasiver Art angezeigt sind. Aus diesem Grund gab es im Stand der Technik verschiedene Ansätze die Oberflächen medizinischer Implantate in geeigneter Weise zu beschichten, um die Biokompatibilität der verwendeten Materialien oder die funktioneile Wirksamkeit der Implantate zu erhöhen und Abwehr bzw. Abstoßungsreaktionen zu verhindern.
In der US 5,891,507 werden beispielsweise Verfahren zur Beschichtung der Oberfläche von Metallstents mit Silikon, Polytetrafluorethylen sowie biologischen Materialien wie Heparin oder Wachstumsfaktoren beschrieben, welche die Bioverträglichkeit der Metallstents erhöhen.
Neben Kunststoffschichten haben sich kohlenstoffbasierte Schichten als besonders vorteilhaft erwiesen.
So sind beispielsweise aus der DE 199 51 477 Koronarstents mit einer Beschichtung aus amorphem Siliziumkarbid bekannt, welches die Biokompatibilität des
Stentmaterials erhöht. Das US-Patent 6,569,107 beschreibt kohlenstoffbeschichtete Stents, bei welchen das Kohlenstoffmaterial mittels chemischer oder physikalischer Dampfphasenabscheidungs-methoden (CND oder PND) aufgebracht wurde. Auch im US-Patent 5,163,958 werden rohrförmige Endoprothesen oder Stents mit einer kohlenstoffbeschichteten Oberfläche beschrieben, die antithrombogene
Eigenschaften aufweist. Die WO 02/09791 beschreibt Intravaskularstents mit Beschichtungen die durch CND von Siloxanen erzeugt werden.
Neben den CND-Nerfahren zur Abscheidung von Kohlenstoff werden im Stand der Technik verschiedene Sputterverfahren im Hochvakuum zur Herstellung pyrolytischer Kohlenstoffschichten mit verschiedener Struktur beschrieben, siehe hierzu beispielsweise die US 6,355,350. Die so hergestellten Implantate mit modifizierten Oberflächen weisen jedoch einige Nachteile auf. So ist die Biokompatibilität nicht in allen Fällen ausreichend, um Abstoßungsreaktionen vollständig zu verhindern. Ferner sind die oberflächenbeschichteten Implantate des Standes der Technik in der Regel geschlossenporig, was ein Zusammenwachsen mit dem umliegenden Körpergewebe erschwert oder verhindert oder die Funktionalisierung einschränkt. Obwohl diese Implantate des Standes der Technik beispielsweise auch mit Antibiotika beschichtet werden können, ist die Wirkung dieser Stoffe nach Einsetzen des Implantats jedoch stets nur von kurzer Dauer, da die aufgebrachten Mengen des Wirkstoffs durch die Natur des Implantats und seiner Oberflächenbeschichtung begrenzt sind oder deren Desorption nicht kontrollierbar ist oder aber deren Wirksamkeit durch physikalische oder chemische Wechselwirkung mit der Beschichtung beeinträchtigt wird.
Ferner ist es aus medizinischer Sicht sinnvoll und wünschenswert, wenn Implantate nicht nur in ihrer stützenden Funktion, wie bei Stents, verwendet werden können, sondern auch mit zusätzlichen Funktionen versehen werden können, zum Beispiel einer langfristigen Abgabe vor Arzneistoffen am Einsatzort des Implantats, um die
Wirkung des Implantats zu verstärken oder aber zusätzliche medizinisch wünschenswerte Wirkungen zu erzeugen.
Es bestellt daher ein Bedarf nach einfach anwendbaren und kostengünstigen
Verfahren zur Herstellung funktionalisierter Implantate.
Ferner besteht ein Bedarf nach kostengünstig herzustellenden medizinischen Implantaten mit verbesserten Eigenschaften.
Eine Aufgabe der vorliegenden Erfindung ist es daher, ein Verfahren zur Herstellung von Implantaten mit zusätzlicher Funktionalität zur Verfügung zu stellen. Eine weitere Aufgabe der vorliegenden Erfindung ist es, medizinische Implantate zur Verfügung zu stellen, die zusätzliche Funktionen, wie z. B. die Abgabe von Arzneistoffen im Körper oder die Ansiedlung von Geweben, übernehmen können und dabei erhöhte Bioverträglichkeit bzw. Biokompatibilität aufweisen bzw. eine stärkere funktionelle Implantatwirkung aufweisen.
Eine weitere Aufgabe der vorliegenden Erfindung ist es, medizinische Implantate bereit zu stellen, die eine dauerhafte Freisetzung von medizinischen Wirkstoffen im Körper eines Patienten ermöglichen, oder eine durch Oberflächenmodifikation verbesserte Funktion aufweisen.
Eine wiederum weitere Aufgabe der vorliegenden Erfindung ist es, medizinische Implantate zur Verfügung zu stellen, welche aufgebrachte bzw. inkorporierte pharmakologisch wirksame Stoffe nach dem Einsetzen des Implantats in den menschlichen Körper gezielt und/oder kontrolliert freisetzen können. Eine weitere Aufgabe der Erfindung ist es, implantierbare Wirkstoffdepots mit einer Beschichtung bereitzustellen, welche die Freisetzung von Wirkstoffen aus dem Depot steuern kann.
Eine weitere Aufgabe der Erfindung ist es, medizinische Implantate zur Verfügung zu stellen, welche aufgebrachte bzw. inkorporierte Mikroorganismen, virale Vektoren oder Zellen oder Gewebe enthalten, so dass nach dem Einsetzen des
Implantats in den menschlichen Körper gezielt eine therapeutische Wirkung erzeugt werden kann oder die Bioverträglichkeit gesteigert werden kann.
Die erfindungsgemäße Lösung der oben genannten Aufgaben besteht in einem Verfahren sowie damit erhältlichen medizinischen Implantaten wie in den unabhängigen Ansprüchen definiert. Bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens bzw. der erfindungsgemäßen Erzeugnisse und Verwendungen ergeben sich aus den abhängigen Unteransprüchen. Im Rahmen der vorliegenden Erfindung wurde gefunden, dass sich insbesondere kohlenstoffhaltige Schichten auf implantierbaren medizinischen Vorrichtungen unterschiedlichster Art auf einfache Weise dazu nutzen lassen, das Implantat mit zusätzlichen medizinisch-physiologischen und therapeutischen Funktionen auszustatten.
Insbesondere ist es erfindungsgemäß möglich, therapeutisch wirksame Mengen an Arzneistoffen auf der Oberfläche eines Implantats oder in einer auf dem Implantat vorhandenen Schicht zu fixieren und im menschlichen Körper dauerhaft und kontrolliert freizusetzen.
Entsprechend umfasst das erfindungsgemäße Verfahren zur Herstellung medizinischer Implantate mit funktionalisierten Oberflächen die folgenden Schritte: a) Bereitstellung eines medizinischen Implantats mit mindestens einer kohlenstoffhaltigen Schicht auf mindestens einem Teil der Oberfläche des Implantats; b) Aktivierung der kohlenstoffhaltigen Schicht durch Schaffung von Porosität; c) Funktionalisierung der aktivierten, kohlenstoffhaltigen Schicht.
Mit dem erfindungsgemäßen Verfahren lassen sich Implantate mit kohlenstoffhaltigen Oberflächenbeschichtungen geeignet modifizieren, so dass eine Beladung mit therapeutisch wirksamen Mengen an pharmakologisch wirksamen Substanzen möglich ist. Durch Erzeugung von Porosität in kohlenstoffhaltigen Oberflächenschichten geeigneter Stärke, gezielte Einstellung/Modifizierung der Porengröße und/oder Porenstruktur, sowie gegebenenfalls geeignete freisetzungsmodifizierende Oberflächenbeschichtung lassen sich Beladungsmenge, Art und Geschwindigkeit der Freisetzung sowie die biologisch-physiologischen Oberflächeneigenschaften gezielt einstellen und variieren. Auf diese Weise lassen sich maßgeschneiderte Lösungen für jede Art von Implantat und Wirkstoff sowie jeden Anwendungsort und Anwendungszweck der medizinischen Implantate mit einfachen Verfahrensmaßnahmen wie erfindungsgemäß beschrieben realisieren.
IMPLANTATE
Mit dem erfindungs gemäßen Verfahren können kohlenstoffhaltig beschichtete Implantate funktionalisiert werden.
Die Begriffe „implantierbare, medizinische Vorrichtung" und „Implantat" werden im weiteren synonym verwendet und umfassen medizinische oder therapeutische Implantate wie beispielsweise Gefäßendoprothesen, intraluminale Endoprothesen, Stents, Koronarstents, periphere Stents, chirurgische bzw. orthopädische Implantate für temporäre Zwecke wie chirurgische Schrauben, Platten, Nägel und sonstige Befestigungsmittel, permanente chirurgische oder orthopädische Implantate wie Knochen- oder Gelenkprothesen, beispielsweise künstliche Hüft- oder Kniegelenke, Gelenkpfanneneinsätze, Schrauben, Platten, Nägel, implantierbare orthopädische
Fixierungshilfsmittel, Wirbelkörperersatzmittel, sowie Kunstherzen und Teile davon, künstliche Herzklappen, Herzschrittmachergehäuse, Elektroden, subkutane und/oder intramuskulär einsetzbare Implantate, Wirkstoffdepots und Mikrochips, und dergleichen.
Die im erfindungsgemäßen Verfahren verwendbaren Implantate können aus nahezu beliebigen, vorzugsweise im wesentlichen temperaturstabilen Materialien bestehen, insbesondere aus allen Materialien, aus denen typischerweise Implantate hergestellt werden.
Beispiele hierfür sind amorpher und/oder (teil-)kristalliner Kohlenstoff, Vollkarbonmaterial, poröser Kohlenstoff, Graphit, Kohlenstoffverbundmaterialien, Kohlefasern, Keramiken wie z. B. Zeolithe, Silikate, Aluminiumoxide, Aluminosilikate, Siliziumkarbid, Siliziumnitrid; Metallkarbide, Metalloxide, Metallnitride, Metallcarbonitride, Metalloxycarbide, Metalloxynitride und Metalloxycarbonitride der Übergangsmetalle wie Titan, Zirkonium, Hafnium, Vanadium, Niob, Tantal, Chrom, Molybdän, Wolfram, Mangan, Rhenium, Eisen, Kobalt, Nickel; Metalle und Metalllegierungen, insbesondere der Edelmetalle Gold, Silber, Ruthenium, Rhodium, Palladium, Osmium, Iridium, Platin; Metalle und Metalllegierungen von Titan, Zirkon, Hafnium, Vanadin, Niob, Tantal, Chrom, Molybdän, Wolfram, Mangan, Rhenium, Eisen, Kobalt, Nickel, Kupfer; Stahl, insbesondere rostfreier Stahl, Formgedächtnislegierungen wie Nitinol, Nickel- Titanlegierung, Glas, Stein, Glasfasern, Mineralien, natürliche oder synthetische Knochensubstanz, Knochenimitate auf Basis von Erdalkalimetallkarbonaten wie Kalziumkarbonat, Magnesiumkarbonat, Strontiumkarbonat, geschäumte Materialien wie Polymerschäume, geschäumte Keramik und dergleichen sowie beliebige Kombinationen der genannten Materialien.
In bevorzugten Ausfuhrungsformen der vorliegenden Erfindung sind die verwendeten Implantate Stents, insbesondere Metallstents, vorzugsweise aus rostfreiem Stahl, Platinhaitigen radiopaken Stahllegierungen, sogenannten PERSS (platinum enhanced radiopaque stainless steel alloys), Kobaltlegierungen,
Titanlegierungen, hochschmelzenden Legierungen beispielsweise auf Basis von Niob, Tantal, Wolfram und Molybdän, Edelmetallegierungen, Nitinollegierungen, sowie Magnesiumlegierungen und Mischungen der Vorgenannten. Besonders bevorzugte Implantate im Rahmen der vorliegenden Erfindung sind Stents aus rostfreiem Stahl, insbesondere Fe-18Cr-14Ni-2.5Mo ("316LVM" ASTM F138), Fe-21Cr-10Ni-3.5Mn-2.5Mo (ASTM F 1586), Fe-22Cr-13Ni-5Mn (ASTM F 1314), Fe-23Mn-21 Cr- 1 Mo- IN (Nickelfreier rostfreier Stahl); aus Kobaltlegierungen wie z.B. Co-20Cr-15W-10Ni ("L605" ASTM F90), Co-20Cr-35Ni-10Mo ("MP35N" ASTM F 562), Co-20Cr-16Ni-16Fe-7Mo ("Phynox" ASTM F 1058); Beispiele bevorzugter Titanlegierungen sind CP Titanium (ASTM F 67, Grade 1), Η-6A1-4V (Alpha/beta ASTM F 136), Ti-6Al-7Nb (alpha/beta ASTM F1295), Ti-15Mo (beta grade ASTM F2066); Stents aus Edelmetalllegierungen, insbesondere Iridiumhaltige Legierungen wie Pt-lOIr; Nitinollegierungen wie martensitische, superelastische und kaltbearbeitete (bevorzugt 40%) Nitinole; sowie Magnesiumlegierungen wie Mg- 3A1-1Z.
Die erfindungsgemäß verwendbaren implantierbaren medizinischen Vorrichtungen können nahezu beliebige äußere Formen aufweisen; das erfindungsgemäße Verfahren ist nicht auf bestimmte Strukturen beschränkt.
Die Implantate müssen eine kohlenstoffhaltige Schicht auf zumindest einem Teil ihrer Oberfläche aufweisen. Diese Schicht kann aus pyrolytisch erzeugtem
Kohlenstoff, glasartig amorphem Kohlenstoff, aufgedampftem Kohlenstoff, mittels CVD-, PVD- oder Sputtern aufgebrachtem Kohlenstoff, diamantartigem Kohlenstoff, graphitischem Kohlenstoff, Metallcarbiden, Metallcarbonitriden, Metalloxynitriden oder Metalloxycarbiden, sowie beliebigen Kombinationen davon bestehen. Die kohlenstoffhaltige Schicht kann amorph, teilkristallin oder kristallin sein, bevorzugt sind Schichten aus amorphem, pyrolytischem Kohlenstoff, in einigen Ausfuhrungsformen auch diamantartiger, beispielsweise aufgedampfter Kohlenstoff. Besonders bevorzugt sind kohlenstoffhaltig beschichtete Implantate, die durch Aufbringen Kohlenstoff erzeugender Materialien und/oder polymerer Filme auf das Implantat und anschließende Karbonisierung dieser Materialien unter Sauerstoffausschluss und bei erhöhter Temperatur hergestellt werden. Beispiele hierfür sind in der DE 10322187 bzw. PCT/EP2004/005277, DE 10324415 bzw. PCT/EP2004/004987 oder DE 10333098 bzw. PCT/EP2004/004985 offenbart, deren Offenbarungen hiermit per Zitierung einbezogen werden.
Weitere geeignete kohlenstoffhaltig beschichtete Implantate sind handelsübliche karbonbeschichtete Implantate, wie zum Beispiel Metallstents vom Typ Radix
Carbostent® (Sorin Biomedica) und dergleichen, welche meist mittels physikalischer Dampfabscheidungs- oder Zerstäubungsverfahren, auch Sputtern, hergestellte Kohlenstoffbeschichtungen enthalten.
Die Dicke der einen oder mehreren kohlenstoffhaltigen Schicht(en) kann in allgemeinen von 1 nm bis 1 mm, gegebenenfalls auch mehrere Millimeter betragen, z.B. bis zu 10 mm, vorzugsweise bis zu 6 mm, besonders bevorzugt bis zu 2 mm, insbesondere zwischen 10 nm und 200μm.
In bevorzugten Ausführungsformen der vorliegenden Erfindung können die implantierbaren medizinischen Vorrichtungen auch mehrere kohlenstoffhaltige Schichten gleicher oder unterschiedlicher Dicke und/oder Porosität aufweisen. So lassen sich beispielsweise tieferliegende porösere Schichten mit darüber liegenden engporigen Schichten kombinieren, welche die Abgabe von in der stärker porösen Schicht deponierten Wirkstoffen geeignet verzögern können. AKTIVIERUNG
Gemäß dem erfindungsgemäßen Verfahren werden die physikalischen und chemischen Eigenschaften der kohlenstoffbasierten Beschichtung durch geeignete Aktivierungsschritte weiter modifiziert und dem jeweils gewünschten
Verwendungszweck angepasst. Herkömmliche kohlenstoffbeschichtete Implantate weisen meist in Wesentlichen geschlossene Oberflächen auf, welche eine wirksame und dauerhafte Beladung mit z.B. Wirkstoffen stark einschränken oder auf sehr geringe Mengen begrenzen. Zweck der Aktivierung ist es, eine Porosität in der kohlenstoffhaltigen Schicht zu schaffen bzw. eine poröse kohlenstoffhaltige Schicht auf dem Implantat zu bilden, um so eine bessere Funktionalisierung mittels Wirkstoffen, Zellen, Proteinen, Mikroorganismen etc. zu ermöglichen und die Aufnahmefähigkeit der kohlenstoffhaltigen Schicht je Flächeneinheit zu erhöhen.
Der Aktivierungsschritt im erfindungsgemäßen Verfahren besteht somit im Wesentlichen darin, Porosität in der Kohlenstoffschicht auf dem Implantat zu erzeugen. Hierfür stehen mehrere Möglichkeiten zur Verfügung.
Eine mögliche Aktivierung der Kohlenstoffschicht umfasst beispielsweise reduzierende oder oxidative Behandlungsschritte, bei welchen die Schicht mit geeigneten Reduktionsmitteln und/oder Oxidationsmitteln wie Wasserstoff, Kohlendioxid, Wasserdampf, Sauerstoff, Luft, Distickstoffmonoxid, oder auch oxidierenden Säuren wie Salpetersäure und dergleichen sowie ggf. Mischungen dieser ein oder mehrfach behandelt wird.
Bevorzugt ist die Aktivierung mit Luft, besonders bevorzugt bei erhöhter Temperatur. Der oder die Aktivierungsschritte können ggf. bei erhöhter Temperatur, beispielsweise von 40°C bis 1000°C, vorzugsweise 70°C bis 900°C, besonders bevorzugt 100°C bis 850°C, insbesondere bevorzugt 200°C bis 800°C und insbesondere bei etwa 700 °C durchgeführt werden. In besonders bevorzugten Aus:führungsformen wird die kohlenstoffhaltige Schicht reduktiv oder oxidativ, oder mit einer Kombination dieser Behandlungsschritte bei Raumtemperatur modifiziert. Auch Kochen in oxidierenden Säuren oder in Laugen kann zur Erzeugung einer porösen Oberfläche verwendet werden.
Je nach Art der verwendeten Oxidations- oder Reduktionsmittel, Temperatur und Dauer der Aktivierung lassen sich Porengröße und Porenstruktur variieren. In besonders bevorzugten Ausfuhrungsformen können erfindungsgemäß aktivierte kohlenstoffbeschichtete medizinische Implantate durch gezielte Einstellung der Porosität der Kohlenstoffschicht zur kontrollierten Abgabe von Wirkstoffen aus dem Substrat in die äußere Umgebung verwendet werden.
Bevorzugt sind die Beschichtungen nach der Aktivierung porös, insbesondere nanoporös. Hierin lassen sich beispielsweise erfindungsgemäße medizinische Implantate als Arzneistoffträger mit Depotwirkung verwenden, insbesondere auch wenn das Implantat selbst zusätzlich eine poröse Struktur aufweist, wobei die aktivierte, kohlenstoffbasierte Schicht des Implantats als freisetzungsregulierende Membran genutzt werden kann.
In bevorzugten Ausführungsformen kann die Einstellung der Porosität durch Herauswaschen von in der kohlenstoffhaltigen Beschichtung vorhandenen Füllstoffen, wie beispielsweise Polyvinylpyrrolidon, Polyethylenglycol, Aluminiumpulver, Fettsäuren, Mikrowachse- oder -Emulsionen, Paraffine, Carbonate, gelöste Gase, oder wasserlösliche Salze mit Wasser, Lösemittel, Säuren oder Laugen oder durch Destillation oder oxidative bzw. nichtoxidative thermische Zersetzung erfolgen. Geeignete Methoden hierzu sind in der DE 103 22 187 bzw. in der PCT/EP2004/005277 desselben Anmelders beschrieben, deren Offenbarung hiermit vollständig per Zitierung einbezogen wird.
Gegebenenfalls kann die Porosität auch durch Strukturierung der Oberfläche mit pulverförmigen Substanzen wie beispielsweise Metallpulver, Ruß, Phenolharzpulver, Fasern, insbesondere Kohlenstoff- oder Naturfasern erzeugt werden.
Eine weitere Möglichkeit der Aktivierung bzw. Porositätserzeugung ist das
Besputtern der kohlenstoffhaltigen Schicht mit geeigneten Elementen, oder auch sogenanntes "Ion-Bombarding", beispielsweise mit Edelgasionen oder dergleichen.
Die aktivierte Beschichtung kann gegebenenfalls auch in einem weiteren optionalen Verfahrensschritt, einem sogenannten CVD-Prozeß (Chemical Vapour Deposition, chemische Gasphasenabscheidung) oder CVI-Prozeß (Chemical Vapour Infiltration) unterzogen werden, um die Oberflächen- oder Porenstruktur und deren Eigenschaften weiter zu modifizieren. Hierzu wird die karbonisierte Beschichtung mit geeigneten, kohlenstoffabspaltenden Precursorgasen bei hohen Temperaturen behandelt. Bevorzugt ist hier die nachträgliche Aufbringung von diamantartigem Kohlenstoff. Auch andere Elemente können damit abgeschieden werden, beispielsweise Silizium. Derartige Verfahren sind im Stand der Technik bekannt.
Als kohlenstoffabspaltende Precursor kommen nahezu alle bekannten gesättigten und ungesättigten Kohlenwasserstoffe mit ausreichender Flüchtigkeit unter CVD- Bedingungen in Frage. Beispiele hierfür sind Methan, Ethan, Ethylen, Acetylen, lineare und verzweigte Alkane, Alkene und Alkine mit Kohlenstoffzahlen von Ci - C20, aromatische Kohlenwasserstoffe wie Benzol, Naphthalin etc., sowie ein- und mehrfach alkyl-, alkenyl- und alkinylsubstituierte Aromaten wie beispielsweise Toluol, Xylol, Cresol, Styrol etc.
Als Keramik-Precursor können BC13, NH3, Silane wie S1H4, Tetraethoxysilan
(TEOS), Dichlorodimethylsilan (DOS), Methyltrichlorosilan (MTS), Trichlorosilyl- dichloroboran (TDADB), Hexadichloromethylsilyloxid (HDMSO), A1C13, TiCl3 oder Mischungen davon verwendet werden.
Diese Precursor werden in CVD- Verfahren zumeist in geringer Konzentration von etwa 0,5 bis 15 Vol.-% in Mischung mit einem Inertgas, wie beispielsweise Stickstoff, Argon oder dergleichen angewendet. Auch der Zusatz von Wasserstoff zu entsprechenden Abscheidegasgemischen ist möglich. Bei Temperaturen zwischen 500 und 2000°C, vorzugsweise 500 bis 1500°C und besonders bevorzugt 700 bis 1300°C, spalten die genannten Verbindungen Kohlenwasserstofffragmente bzw. Kohlenstoff oder keramische Vorstufen ab, die sich im Porensystem der pyrolysierten Beschichtung im wesentlichen gleichmäßig verteilt niederschlagen, dort die Porenstruktur modifizieren und so zu einer im wesentlichen homogenen Porengröße und Porenverteilung führen.
Mittels CVD-Methoden lassen sich gezielt Poren in der kohlenstoffhaltigen Schicht auf dem Implantat verkleinern, bis hin zur völligen Schließung/Versiegelung der Poren. Hierdurch lassen sich die sorptiven Eigenschaften, wie auch die mechanischen Eigenschaften der aktivierten Implantatoberfläche maßgeschneidert einstellen.
Durch CVD von Silanen oder Siloxanen, gegebenenfalls im Gemisch mit Kohlenwasserstoffen lassen sich die kohlenstoffhaltigen Implantatbeschichtungen durch Carbid- oder Oxycarbidbildung beispielsweise oxidationsbeständig modifizieren.
In bevorzugten Ausfuhrungsformen können die erfindungsgemäß aktivierten, beschichteten Implantate mittels Sputterverfahren zusätzlich beschichtet bzw. modifiziert werden. Hierzu können Kohlenstoff, Silizium oder Metalle bzw. Metallverbindungen aus geeigneter Sputtertargets nach an sich bekannten Verfahren aufgebracht werden. So können durch Einbau von Silizium-, Titan-, Zirkonium- oder Tantalverbindungen oder Metallen mittels CVD oder PVD in die kohlenstoffhaltige Schicht Carbidphasen gebildet werden, welche die Stabilität und Oxidationsbeständigkeit der Schicht erhöhen.
In einer weiteren bevorzugten Ausführungsform des Aktivierungsschritts lassen sich kohlenstoffhaltige Schichten, z.B. auch aufgesputterte C-Schichten, nachträglich mechanisch bearbeiten, um poröse Oberflächen zu erzeugen. So führt beispielsweise die gezielte Abrasion dieser Schichten mittels geeigneter Verfahren zu porösen Schichten. Eine bevorzugte Möglichkeit stellt die Abrasion von solchen kohlenstoffhaltigen Schichten im Ultraschallbad dar, wo durch die Beimengung von abrasiven Feststoffen unterschiedlicher Partikelgrößen und Härtegrade durch angemessenen Energieeintrag und geeigneter Frequenz des Ultraschallbades in Abhängigkeit der Einwirkungszeit gezielte Schichtdefekte und somit Porosität erzeugt werden können.
Bevorzugt sind hierbei wässrige Ultraschallbäder unter Zusatz von Tonerde, Silikaten, Aluminaten und dergleichen, vorzugsweise Tonerdedispersionen. Jedoch können auch beliebige andere für Ultraschallbäder geeignete Lösungsmittel anstelle oder in Mischung mit Wasser verwendet werden. Beispielsweise lassen sich durch die Behandlung von kohlenstoffbeschichteten Implantaten in einem wässrigen Ultraschallbad unter Beimengung von Tonerde, bevorzugt 1%-ige bis hin zu 60% Tonerde-Dispersionen, nano-abradierte Kohlenstoffschichten mit einer mittleren Porengröße von etwa 5 nm bis 200 nm erhalten.
Ferner können mittels lonenimplantierung von Metallen, insbesondere Übergangsmetallen, und/oder Nichtmetallen die Oberflächeneigenschaften des Implantats weiter modifiziert werden; so können beispielsweise durch Stickstoffimplantierung Nitride, Oxynitride oder Carbonnitride, insbesondere solche der Übergangsmetalle eingebaut werden. Durch lonenimplantierung von Kohlenstoff lassen sich Porosität und Festigkeit der Oberflächenmaterialien darüber hinaus weiter modifizieren.
Bevorzugt ist die kohlenstoffhaltige Schicht nach der Aktivierung porös, mit
Porendurchmessern im Bereich von 0,1 bis 1000 μm, bevorzugt zwischen 1 μm bis 400 μm. Auch makroporöse Schichten lassen sich mit den erfindungsgemäßen Aktivierungsschritten erzielen.
Besonders bevorzugt ist die kohlenstoffhaltige Schicht nach der Aktivierung nanoporös, mit Porendurchmessern von 1 nm bis 1000 nm, bevorzugt von 5 nm bis 900 nm.
In einer besonders bevorzugten Ausführungsform der Erfindung erfolgt die Aktivierung bereits während des Herstellungsschritts der kohlenstoffhaltigen
Schicht, z.B. durch Aufbringung einer oder mehrerer poröser kohlenstoffhaltiger Schichten, durch Karbonisierung kohlenstofferzeugender Substanzen, durch Beschichtung mit Kohlenstoff mittels CVD oder PVD, und/oder durch Aufbringung geeigneter Schichten aus porösen biologisch abbaubaren bzw. resorbierbaren oder nicht-biologisch abbaubaren bzw. resorbierbaren Polymeren.
Besonders bevorzugt ist, dass eine oder mehrere poröse kohlenstoffhaltige Schichten durch Beschichten des Implantats mit einem gegebenenfalls geschäumten oder füllstoffhaltigen Polymerfilm, und anschließendes Karbonisieren des Polymerfilms bei Temperaturen von 200 bis 3500 °C, vorzugsweise bis 2000 °C in sauerstofffreier Atmosphäre aufgebracht werden, die gegebenenfalls nachträglich im Luftstrom teiloxidiert werden können. Entsprechende Verfahren sind beispielsweise in DE 10324415 bzw. PCT/EP2004/004987, oder in DE 10333098 bzw.
PCT/EP2004/004985 beschrieben, deren Offenbarung hiermit vollständig miteinbezogen wird.
So führt beispielsweise die Beimischung von Polyethylenglycol in den zu carbonisierenden Polymerfilm zu Defekten in der Polymervernetzung, welche nach thermischer Behandlung oder Herauslösen in geeigneten Lösungsmitteln zu porösen Kohlenstoffschichten führt. Durch die Wahl des Polymersystems, des Molekulargewichts von Polyethylenglycol und des Polyethylenglycol- Feststoffgehalts können der Anwendung entsprechende Porositäten, insbesondere die mittlere Porengröße, die Porengrößenverteilung und der Grad der Porosität eingestellt werden. Beispielsweise können durch die Wahl von Polyethylenglycolen mit einem Molekulargewicht von 1000 bis 8000000 Dalton Porengrößen von 10 bis 1000 nm erzeugt werden, in bevorzugter Ausführungsform von 50 bis 1000 nm. Durch die Variierung des Feststoffgehalts von 10% bis 80% lassen sich Porositätsgrade von 5% bis 80% erzeugen, bevorzugt von 20% bis 60%.
Ein weiteres Beispiel dieser Art der kombinierten Erzeugung und Aktivierung der kohlenstoffhaltigen Schicht stellt die Beimengung von Ruß in den Polymerfilm dar. Durch die Wahl der mittleren Partikelgröße und des Feststoffgehalts im Polymerfilm lassen sich poröse Matrizes herstellen, deren Porositätsgrad und mittlere Porengröße durch die Wahl geeigneter Polymersysteme, Russ-Partikelgrößen und des Feststoffgehalts je nach Anwendung einstellen lässt. So kann beispielsweise durch die Beimengung von Russpartikeln einer mittlerer Partikelgröße von 10 nm bis 1 mm, bevorzugt von 10 nm bis 1000 nm, bei einem Feststoffgehalt von 20 bis 80%, bevorzugt von 30% bis 60%, eine mittlere Porosität von 30-60% erzeugen, wobei die hergestellten Porengrößen zwischen 10 bis 1000 nm, bevorzugt von 10 bis 800 nm einstellbar sind.
Ferner lassen sich durch eine optionale Parylenierung der Implantate vor oder nach dem Aktivierungsschritt Oberflächeneigenschaften und Porosität der kohlenstoffhaltigen Schicht weiter modifizieren. Hierbei werden die Implantate zunächst bei erhöhter Temperatur, üblicherweise etwa 600 °C mit Paracyclophan behandelt, wobei auf den Implantaten oberflächlich ein Polymerfilm aus Poly(p- xylylen) ausgebildet wird. Dieser lässt sich in einem nachfolgenden Karbonisierungsschritt nach bekannten Verfahren in Kohlenstoff umwandeln.
Sofern erforderlich kann in besonders bevorzugten Ausfuhrungsformen das aktivierte Implantat weiteren chemischen und/oder physikalischen Oberflächenmodifikationen unterzogen werden. Auch Reinigungsschritte zur Entfernung von eventuellen Rückständen und Verunreinigungen können hier vorgesehen werden. Hierzu können Säuren, insbesondere oxidierende Säuren, oder Lösemittel verwendet werden, bevorzugt ist das Auskochen in Säuren oder Lösemitteln. So lässt sich durch Auskochen in oxidierenden Säuren eine Carboxylierung dieser aktivierten Kohlenstoffschichten erzeugen. Vor der medizinischen Verwendung oder einer Beladung mit Wirkstoffen können die erfindungsgemäßen Implantate mit üblichen Methoden sterilisiert werden, beispielsweise durch Autoklavieren, Ethylenoxid-Sterilisation oder Gamma-
Bestrahlung.
Erfindungsgemäß lassen sich alle mögliche Aktivierungsverfahren miteinander sowie auch mit beliebigen der nachfolgend beschriebenen Funktionalisierungsschritten kombinieren.
FUNKTIONALISIERUNG
Die Implantate können durch geeignete Maßnahmen zusätzlich mit einer Vielzahl von Funktionen ausgestattet werden. Orthopädische und chirurgische Implantate oder Gefäßendoprothesen können als Arzneimittelträger oder -depots verwendet werden. Die Biokompatibilität und die Funktionalität der erfindungsgemäßen Implantate kann durch den Einbau von Zusatzstoffen, Füllstoffen, Proteinen gezielt beeinflusst bzw. verändert werden. Hierdurch lassen sich Abstoßungsphänomene im Körper bei erfindungsgemäß hergestellten Implantaten verringern oder ganz ausschalten oder die Wirksamkeit des Implantats steigern bzw. zusätzliche Wirkungen erzeugen.
Unter Funktionalisierung im Sinne der vorliegenden Erfindung werden allgemein Maßnahmen verstanden, in deren Folge die kohlenstoffhaltige Schicht weitere, zusätzliche Funktionen erhält. Erfindungsgemäße Funktionalisierungen bestehen im Einbau von Stoffen in die kohlenstoffhaltige Schicht oder die Fixierung von Stoffen an der kohlenstoffhaltigen Schicht. Geeignete Stoffe werden ausgewählt aus pharmakologischen Wirkstoffen, Linker, Mikroorganismen, pflanzliche oder tierische einschließlich menschlicher Zellen oder Zellkulturen und Gewebe, Mineralien, Salze, Metalle, synthetische oder natürliche Polymere, Proteine, Peptide, Aminosäuren, Lösemittel etc.
Erfindungsgemäß kann das geeignet aktivierte Implantat funktionalisiert werden, indem es vor oder nach einer möglichen Beladung mit Wirkstoffen dadurch bioverträglicher gemacht wird, dass es mit mindestens einer zusätzlichen Schicht aus biologisch abbaubaren bzw. resorbierbaren Polymeren wie Kollagen, Albumin, Gelatine, Hyaluronsäure, Stärke, Cellulosen wie Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose- Phtalat; Kasein, Dextrane, Polysaccharide, Fibrinogen, Poly(D,L-Lactide), Poly(D,L- Lactide-Co-Glycolide), Poly(Glycolide), Poly(Hydroxybutylate), Poly(Alkylcarbonate), Poly(Orthoester), Polyester, Poly(Hydroxyvalerinsäure), Polydioxanone, Poly(Ethylenterephtalate), Poly(malatsäure), Poly(Tartronsäure), Polyanhydride, Polyphosphazene, Poly(Aminosäuren), und deren Co-Polymere oder nicht-biologisch abbaubaren bzw. resorbierbaren Polymeren zumindest teilweise zu beschichten. Bevorzugt sind insbesondere anionische, kationischen oder amphotere Beschichtungen, wie z.B. Alginat, Carrageenan, Carboxymethylcellulose; Chitosan, Poly-L-Lysine; und/oder Phoshporylcholin ausgestattet wird.
Auch können im Funktionalisierungsscl-ritt des erfindungsgemäßen Verfahrens auf die aktivierte kohlenstoffhaltige Schicht Wirkstoffe wie Arzneimittel und Medikamente aufgebracht oder in die Schicht eingebracht werden. Dies ist insbesondere da nützlich, wo Wirkstoffe nicht im oder auf dem Implantat direkt aufgebracht werden können, wie etwa bei Metallen.
So lassen sich beispielsweise auf metallischen Oberflächen schwer wasserlösliche, lipophile Wirkstoffe wie Paclitaxel auftragen, welche zur Bildung eines kristallinen Films neigen. Üblicherweise sind die immobilisierbaren Mengen begrenzt und die Freisetzung nicht kontrollierbar. Eine direkte Bescliichtung von solchen metallischen Oberflächen mit Paclitaxel führt zu maximalen Beladungen von etwa 3mg/mm2, deren Freisetzung unter physiologischen Bedingungen in physiologischen Pufferlösungen zu einer unkontrollierten Desorption von maximal 30% innerhalb von 1 bis 5 Tagen führt.
Erfindungsgemäß aktivierte Kohlenstoffschichten vorzugsweise glasartig amorphe, mit einer Schichtdicke im Bereich von 80 nm bis 10 μm, bevorzugt von 100 nm bis 5 μm, vorzugsweise mit einer Porosität von 5 mn bis 1 μm, bevorzugt von 5 nm bis 1000 nm, können beispielsweise bereits bei Porositäten von 5% bis 50%, bevorzugt von 10% bis 50%, und einer mittleren Porengröße von 5 nm bis 1 μm, bevorzugt von 5 nm bis 500 nm, Wirkstoffmengen bis hin zum hundertfachen dessen von nichtaktivierten kohlenstoffbeschichteten oder rein metallischen Implantaten aufnehmen und in Abhängigkeit der Porosität bzw. der Porengröße und der Oberflächeneigenschaften gegebenenfalls kontrolliert freisetzen.
Bei Beladungsmengen von 0,5 bis 3,0 μg/mm2 Paclitaxel und hydrophoben Kohlenstoffoberflächen mit einer Schichtdicke von 200 nm können in einer erfindungsgemäßen Ausfülirungsform mit 50 nm Porengröße und einem Porositätsgrad von 5% beispielsweise gezielt mit einer konstanten täglichen
Freisetzungsrate 70-100%» der aufgebrachten Paclitaxelmenge innerhalb von 25 bis 35 Tagen unter physiologischen Bedingungen kontrolliert freigesetzt werden.
In besonders bevorzugten Ausführungsformen können durch geeignete Funktionalisierung der beliebigen kohlenstoffhaltigen Schicht auch Peptide und Proteine sowie Glykoproteine und Lipoproteine immobilisiert werden. Eine erfindungsgemäße Form der Funktionalisierung besteht in der kovalenten oder nicht-kovalenten Adsorption von Substanzen, welche die Bindung von mit Affinitätsanhängseln (so genannte affinity tags) versehenen bzw. markierten Peptiden, Proteinen, Glykoproteinen oder Lipoproteinen erlauben.
Derartige Substanzen sind beispielsweise Ionen, Kationen, insbesondere Metallkationen wie Kobalt-, Nickel-, Kupfer-, Zink-Kationen, Antikörper, Calmodulin, Chitin, Cellulose, Zucker, Aminosäuren, Gluthathion, Streptavidin, Strep-tactin oder andere Mutanten zur Bindung von Strep-tag oder SBP-tag markierten Substanzen, oder S-Protein um S-tag markierte Substanzen zu binden, sowie dergleichen.
Diese Affinitätsanhängsel werden auf geeignete Weise den zu immobilisierenden Peptiden, Proteinen, Glykoproteinen oder Lipoproteinen entweder am C-terminalen oder N-terminalen Ende der Primärsequenz angefügt, üblicherweise auf dem Weg der rekombinanten gentechnischen Herstellung oder Biotynilierung. Bevorzugt sind hierbei Affinitätsanhängsel, insbesondere Polyarginin-Anhängsel (Arg-tag), welche bevorzugt aus fünf bis sechs Argininsäuren bestehen, Polyhistidin- Anhängsel (His- tag), einer beliebig langen Polyhistidine-Sequenz, typischerweise 2 bis 10 Reste, FLAG-Anhängsel (FLAG-tag) mit der Sequenz DYKDDDDK, Strep-Anhängsel (Strep-tag), zum Beispiel die Strep-tag II Sequenz WSHPQFEK, S-Anhängsel (S- tag), welches die Aminosärereste KETAAAKFERQHMDS trägt, das Calmodulin- bindende Peptid (calmodulin binding peptide), die Familie der Cellulose binding domains, insbesondere C-terminal, N-terminal oder auch anderer Position in der Primärsequenz des zu immobilisierenden Peptides, Proteins, Glyko- oder Lipoproteins, das SBP-Anhängsel (SBP-tag), mit der Sequenz IvωEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP, das Polyhistidin-Anhängsel (Polyhistidine-tag), Chitin-bindende Domänen (chitin- binding domains), Gluthation-S-Transferase-tag (Gluthatione-S-Transferase-tag), Maltose bindendes Protein (Maltose-binding Protein), Bacteriophage T7 und V5 epitope, aber auch jedes anderes Affinitätsanhängsel.
Die Modifikation der auf den funktionalisierten Kohlenstoffoberflächen aufzubringenden Substanzen entspricht den üblichen Systemen, welche in der Aufreinigung und insbesondere chromatographischen Markierung möglich sind.
Die Funktionalisierung der Kohlenstoffoberfläche erfolgt hierbei durch die Adsorption von korrespondierenden Substanzen in und/oder an der kohlenstoffhaltigen Schicht, welche mit den Affinitätsanhängseln eine Bindung eingehen können. Entsprechende korrespondierende Substanzen sind beispielsweise Kationen, welche in die Kohlenstoffschicht eingebracht werden, um die Bindung zum basischen Polyarginin- Anhängsel zu ermöglichen, etwa Kobalt-, Nickel-, Kupfer-, Zink-Kationen, um beispielsweise die Bindung von Polyhistidin- Anhängseln zu ermöglichen.
Die Adsoption des Antikörpers Ml auf den Kohlenstoffoberflächen ermöglicht die Bindung von FLAG- Anhängseln, Streptavidin bzw. Strep-tactin oder andere
Mutanten zur Bindung von Strep-tag oder SBP-tag markierten Substanzen, oder die Adsorption des S-Proteins auf der Oberfläche, um S-tag markierte Substanzen zu binden.
In einer weiteren Ausführungsform besteht die Funktionalisierung in der
Verwendung von Calmodulin, welches auf der Kohlenstoffoberfläche zu adsorbieren ist. Hiermit lassen sich Calmodulin-Binding-Peptide-markierte Substanzen an die kohlenstoffhaltige Schicht binden. In weiteren Ausfül-rungsformen erfolgt die Funktionalisierung durch Adsorption von Cellulose so dass mit Cellulose-bindenden Domänen modifizierte Substanzen gebunden werden können, oder aber durch Adsorption von Chitin, um mit Chitin- bindenden Domänen versehende Substanzen zu binden.
Analog kann mit Gluthathion zur Bindung von Gluthathion-S-Transferase-tag markierte Substanzen funktionalisiert werden, mit Maltose oder Amylose, um mit Maltose-bindendem Protein markierte Substanzen zu binden.
Der Fachmann wird entsprechend den gentechnisch möglichen Bedingungen, den funktionellen und strukturellen Eigenschaften des Peptids, Proteins, Glyko- oder Lipoproteins ein geeignetes Affinitäts-System wählen.
So können beispielsweise auf porösen Kohlenstoffoberflächen mit einer Porengröße von 100-900 nm, einer Porosität von 30-60% und einer Schichtdicke von l-5μm aus einer Strep-Tactin-Lösung durch Sprühen oder Tauchen Kohlenstoffschichten funktionalisiert mit 0,1 - 8 μg/mm adsorbiertem Strep-Tactin gewonnen werden. Die auf diese Weise funktionalisierte Kohlenstoffschicht kann beispielsweise 0,1 - 10 μg/mm2 rekombinantes, mit dem Strep-tag markiertes IL-2 aufnehmen.
In einer weiteren Ausfuhrungsform wird die Kohlenstoffschicht mit Kobaltionen dotiert, wobei die poröse Kohlenstoffmatrix einen Kobaltionengehalt von 0,1 bis zu 50% des Feststoffgehalts enthält, bevorzugt bis zu 60% in glasartigen porösen Kohlenstoffschichten. Bei einer Porosität von 50%, Schichtdicken von 500nm bis 1000 nm, können durch die Metallionendotierung in der Matrix 0,1 bis 100 μg Polyarginin-tag markiertes rekombinantes IL-2 adsorbiert werden. Eine weitere Ausf hrungsform sieht beispielsweise die Funktionalisierung der Kohlenstoffoberflächen mittels Adsorption von Linker-Substanzen vor, bevorzugt von carboxymethylierten Dextranen, zum Beispiel als Hydrogel, welche die physikalische Bindung von Substanzen, bevorzugt Biomolekülen oder Wirkstoffen ermöglichen und bzw. oder chemische Reaktivität besitzen, so dass mittels kovalenter Bindungen solche Substanzen kovalent gebunden werden können, bevorzugt durch die Bildung von Amino-, Thiol- oder Aldehydbindungen.
Der Fachmann wird in Abhängigkeit des Ligandentyps die geeignete Art des Linkers auswählen.
Für die Herstellung einer Aminobindung lässt sich in bevorzugten Ausführungsformen die Kohleiistoffschicht in folgender Weise funktionalisieren: Adsorption von carboxymethyliertem Dextran, nachfolgende Modifikation durch Inkubation in NHS/EDC zur Umwandlung der Carboxymethylgruppen in N- Hydroxysuccinimidester.
Auf diese Weise können Liganden adsorbiert werden, welche kovalente Amino- Bindungen mit den Estern eingehen. Nicht abreagierte Ester können in einem weiteren Schritt durch beispielsweise Inkubation in IM Ethanolamin-Hydrochlorid- Lösung wieder inaktiviert werden. So ergibt beispielsweise die Adsorption von lμg carboxymethyliertem Dextran pro mm einer porösen, kohlenstoffhaltigen Kompositschicht aus glasartigem Kohlenstoff und Russpartikeln eine Funktionalisierung, welche 0,01 bis 5000 μg/mm2 Peptide mit einem Molekulargewicht von 60-90 kovalent binden kann.
Ferner können die erfmdungsgemäß aktivierten, porösen Schichten im Funktionalisierungsschritt des Verfahrens mit Arzneistoffen bzw. Medikamenten, Mikroorganismen, Zellen und/oder Geweben beladen werden, oder auch mit diagnostischen Hilfsmitteln wie Markern oder Kontrastmitteln zur Lokalisierung von beschichteten Implantaten im Körper versehen werden, beispielsweise auch mit therapeutischen oder diagnostischen Mengen an radioaktiven Strahlern.
WIRKSTOFFBESCHICHTUNG
In bevorzugten Ausführungsformen werden die erfindungsgemäß aktivierten Implantate im Funktionalisierungsschritt mit Wirkstoffen beladen. Die Beladung mit Wirkstoffen kann in oder auf der kohlenstoffhaltigen Schicht mittels geeigneter sorptiver Methoden wie Adsorption, Absorption, Physisorption, Chemisorption erfolgen, im einfachsten Fall durch Imprägnierung der kohlenstoffhaltigen Beschichtung mit Wirkstofflösungen, Wirkstoffdispersionen oder Wirkstoffsuspensionen in geeigneten Lösungsmitteln. Auch kovalente oder nichtkovalente Anbindung von Wirkstoffen in oder auf der kohlenstoffhaltigen Beschichtung kam hier nach Abhängigkeit des verwendeten Wirkstoffs und seiner chemischen Eigenschaften eine bevorzugte Option sein.
In bevorzugten Ausführungsformen wird der Wirkstoff in Form einer Lösung,
Dispersion oder Suspension in einem geeigneten Lösemittel oder Lösemittelgemisch, ggf. mit anschließender Trocknung, aufgetragen. Geeignete Lösemittel umfassen beispielsweise Methanol, Ethanol, N-Propahol, Isopropanol, Butoxydiglycol, Butoxyethanol, Butoxyisopropanol, Butoxypropanol, n-Butyl-Alkohol, t-Butyl- Alkohol, Butyleneglycol, Butyloctanol, Diethylenglycol, Dimethoxydiglycol,
Dimethylether, Dipropylenglycol, Ethoxydiglycol, Ethoxyethanol, Ethylhexandiol, Glycol, Hexanediol, 1,2,6-Hexanetriol, Hexylalkohol, Hexylenglycol, Isobutoxypropanol, Isopentyldiol, 3-Methoxybutanol, Methoxydiglycol, Methoxyethanol, Methoxyisopropanol, Methoxymethylbutanol, Methoxy PEG-10, Methylal, Methyl-Hexylether, Methylpropanediol, Neopentylglycol, PEG-4, PEG-6, PEG-7, PEG-8, PEG-9, PEG-6-Methylether, Pentylenglycol, PPG-7, PPG-2-Buteth- 3, PPG-2 Butylether, PPG-3 Butylether, PPG-2 Methylether, PPG-3 Methylether, PPG-2 Propylether, Propanediol, Propylenglycol, Propylenglycol-Butylether, Propylenglycol-Propylether, Tetrahydrofuran, Trimethylhexanol, Phenol, Benzol, Toluol, Xylol; als auch Wasser, ggf. im Gemisch mit Dispersionshilfsmitteln, sowie Mischungen der obengenannten davon.
Bevorzugte Lösungsmittel umfassen ein oder mehrere organische Lösungsmittel aus der Gruppe Ethanol, Isopropanol, «-Propanol, Dipropylenglykolmethylether und Butoxyisopropanol (l,2-Propylenglykol-«-butylether), Tetrahydrofuran, Phenol, Benzol, Toluol, Xylol, vorzugsweise Ethanol, Isopropanol, «-Propanol und/oder Dipropylenglykolmethylether, insbesondere Isopropanol und/oder «-Propanol.
In den aktivierten, porösen kohlenstoffhaltigen Schichtungen können geeignet dimensionierte Wirkstoffe auch in Poren okkludiert werden.
Die Wirkstoff beladung kann temporär sein, d. h. der Wirkstoff kann nach Implantierung der medizinischen Vorrichtung freigesetzt werden, oder aber der
Wirkstoff wird in oder auf der kohlenstoffhaltigen Schicht dauerhaft immobilisiert. Auf diese Weise können wirkstoffhaltige medizinische Implantate mit statischen, dynamischen oder kombiniert statischen und dynamischen Wirkstoffbeladungen erzeugt werden. So ergeben sich multifunktionale Beschichtungen auf Basis der erfindungsgemäß hergestellten kohlenstoffhaltigen Schichten.
Bei statischer Beladung mit Wirkstoffen werden Wirkstoffe im Wesentlichen permanent auf oder in der Beschichtung immobilisiert. Hierfür verwendbare Wirkstoffe sind anorganische Substanzen, z.B. Hydroxylapatit (HAP), Fluorapatit, Trikalziumphosphat (TCP), Zink; und/oder organische Substanzen wie Peptide, Proteine, Kohlenhydrate wie Mono-, Oligo- und Polysaccharide, Lipide, Phospholipide, Steroide, Lipoproteine, Glykoproteine, Glykolipide, Proteoglykane, DNA, RNA, Signalpeptide oder Antikörper bzw. Antikörperfragmente, bioresorbierbare Polymere, z.B. Polylactonsäure, Chitosan, sowie pharmakologisch wirksame Stoffe oder Stoffgemische, Kombinationen dieser und dergleichen.
Bei dynamischen Wirkstoffbeladungen ist die Freisetzung der aufgebrachten Wirkstoffe nach Implantierung der medizinischen Vorrichtung im Körper vorgesehen. Auf diese Weise können die beschichteten Implantate zu therapeutischen Zwecken eingesetzt werden, wobei die auf das Implantat aufgebrachten Wirkstoffe lokal am Einsatzort des Implantats sukzessive freigesetzt werden. In dynamischen Wirkstoffbeladungen für die Freisetzung von Wirkstoffen verwendbare Wirkstoffe sind beispielsweise Hydroxylapatit (HAP), Fluorapatit, Trikalziumphosphat (TCP), Zink; und/oder organische Substanzen wie Peptide, Proteine, Kohlenhydrate wie Mono-, Oligo- und Polysaccharide, Lipide, Phospholipide, Steroide, Lipoproteine, Glykoproteine, Glykolipide, Proteoglykane, DNA, RNA, Signalpeptide oder Antikörper bzw. Antikörperfragmente, bioresorbierbare Polymere, z.B. Polylactonsäure, Chitosan, und dergleichen, sowie pharmakologisch wirksame Stoffe oder Stoffgemische.
Geeignete pharmakologisch wirksame Stoffe oder Stoffgemische zur statischen und/oder dynamischen Beladung von erfindungsgemäß beschichteten implantierbaren medizinischen Vorrichtungen umfassen Wirkstoffe oder
Wirkstoffkombinationen, die ausgewählt sind aus Heparin, synthetische Heparin- Analoga (z.B. Fondaparinux), Hirudin, Antithrombin III, Drotrecogin alpha; Fibrinolytica wie Alteplase, Plasmin, Lysokinasen, Faktor Xlla, Prourokinase, Urokinase, Anistreplase, Streptokinase; Thrombozytenaggregations-hemmer wie Acetylsalicylsäure, Ticlopidine, Clopidogrel, Abciximab, Dextrane; Corticosteroide wie Alclometasone, Amcinonide, Augmented Betamethasone, Beclomethasone, Betamethasone, Budesonide, Cortisone, Clobetasol, Clocortolone, Desonide, Desoximetasone, Dexamethasone, Flucinolone, Fluocinonide, Flurandrenolide, Flunisolide, Fluticasone, Halcinonide, Halobetasol, Hydrocortisone, Methylprednisolone, Mometasone, Prednicarbate, Prednisone, Prednisolone, Triamcinolone; sogenannte Non-Steroidal Anti-Inflammatory Drugs wie Diclofenac, Diflunisal, Etodolac, Fenoprofen, Flurbiprofen, Ibuprofen, Indomethacin, Ketoprofen, Ketorolac, Meclofenamate, Mefenamic acid, Meloxicam, Nabumetone, Naproxen, Oxaprozin, Piroxicam, Salsalate, Sulindac, Tolmetin, Celecoxib, Rofecoxib; Zytostatika wie Alkaloide und Podophyllumtoxine wie Vinblastin, Vincristin; Alkylantien wie Nitrosoharnstoffe, Stickstofflost- Analoga; zytotoxische Antibiotika wie Daunorubicin, Doxorubicin und andere Anthrazykline und verwandte Substanzen, Bleomycin, Mitomycin; Antimetabolite wie Folsäure-, Purin- oder Pyrimidin- Analoga; Paclitaxel, Docetaxel, Sirolimus; Platinverbindungen wie Carboplatin, Cisplatin oder Oxaliplatin; Amsacrin, Irinotecan, Imatinib, Topotecan, Interferon-alpha 2a, Interferon-alpha 2b, Hydroxycarbamid, Miltefosin, Pentostatin, Porfimer, Aldesleukin, Bexaroten, Tretinoin; Antiandrogene, und Antiöstrogene; Antiarrythmika, insbesondere Antiarrhythmika der Klasse I wie Antiarrhythmika vom Chinidintyp, z.B. Chinidin, Dysopyramid, Ajmalin, Prajmaliumbitartrat, Detajmiumbitartrat; Antiarrhythmika vom Lidocaintyp, z.B. Lidocain, Mexiletin, Phenytoin, Tocainid; Antiarrhythmika der Klasse I C, z.B. Propafenon, Flecainid(acetat); Antiarrhythmika der Klasse II, Betarezeptorenblocker wie Metoprolol, Esmolol, Propranolol, Metoprolol, Atenolol, Oxprenolol;
Antiarrhythmika der Klasse III wie Amiodaron, Sotalol; Antiarrhythmika der Klasse IV wie Diltiazem, Verapamil, Gallopamil; andere Antiarrhythmika wie Adenosin, Orciprenalin, Ipratropiumbromid; Agenzien zur Stimulation der Angiogenese im Myokard wie Vascular Endothelial Growth Factor (VEGF), Basic Fibroblast Growth Factor (bFGF), nicht virale DNA, virale DNA, endotheliale Wachstumsfaktoren: FGF-1, FGF-2, VEGF, TGF; Antikörper, Monoklonale Antikörper, Anticaline; Stammzellen, Endothelial Progenitor Cells (EPC); Digitalisglykoside wie Acetyldigoxin/Metildigoxin, Digitoxin, Digoxin; Herzglykoside wie Ouabain,
Proscillaridin; Antihypertonika wie zentral wirksame antiadrenerge Substanzen, z.B. Methyldopa, Imidazolinrezeptoragonisten; Kalciumkanalblocker vom Dihydropyridintyp wie Nifedipin, Nitrendipin; ACE-Hemmer: Quinaprilat, Cilazapril, Moexipril, Trandolapril, Spirapril, Imidapril, Trandolapril; Angiotensin- II-Antagonisten: Candesartancilexetil, Valsartan, Telmisartan,
Olmesartanmedoxomil, Eprosartan; peripher wirksame alpha-Rezeptorenblocker wie Prazosin, Urapidil, Doxazosin, Bunazosin, Terazosin, Indoramin; Vasodilatatoren wie Dihydralazin, Diisopropylamindichloracetat, Minoxidil, Nitroprussidnatrium; andere Antihypertonika wie Indapamid, Co-Dergocrinmesilat, Dihydroergotoxinmethansulfonat, Cicletanin, Bosentan, Fludrocortison;
Phosphodiesterasehemmer wie Milrinon, Enoximon und Antihypotonika, wie insbesondere adrenerge und dopaminerge Substanzen wie Dobutamin, Epinephrin, Etilefrin, Norfenefrin, Norepinephrin, Oxilofrin, Dopamin, Midodrin, Pholedrin, Ameziniummetil; und partielle Adrenozeptor-Agonisten wie Dihydroergotamin; Fibronectin, Polylysine, Ethylenevinylacetate, inflammatorische Zytokine wie: TGFß, PDGF, VEGF, bFGF, TNFα, NGF, GM-CSF, IGF-a, IL-1, IL-8, IL-6, Growth Hormone; sowie adhäsive Substanzen wie Cyanacrylate, Beryllium, Silica; und Wachstumsfaktoren (Growth Factor) wie Erythropoetin, Hormonen wie Corticotropine, Gonadotropine, Somatropin, Thyrotrophin, Desmopressin, Terlipressin, Oxytocin, Cetrorelix, Corticorelin, Leuprorelin, Triptorelin,
Gonadorelin, Ganirelix, Buserelin, Nafarelin, Goserelin, sowie regulatorische Peptide wie Somatostatin, Octreotid; Bone and Cartilage Stimulating Peptides, bone morphogenetic proteins (BMPs), insbesondere rekombinante BMP 's wie z.B. Recombinant human BMP -2 (rhBMP-2)), Bisphosphonate (z.B. Risedronate, Pamidronate, Ibandronate, Zoledronsäure, Clodronsäure, Etidronsäure, Alendronsäure, Tiludronsäure), Fluoride wie Dinatriumfluorophosphat, Natriumfluorid; Calcitonin, Dihydrotachystyrol; Growth Factors und Zytokine wie Epidermal Growth Factor (EGF), Platelet-Derived Growth Factor (PDGF), Fibroblast Growth Factors (FGFs), Transforming Growth Factors-b TGFs-b), Transforming Growth Factor-a (TGF-a), Erythropoietin (Epo), Insulin-Like Growth Factor-I (IGF-I), Insulin-Like Growth Factor-II (IGF-II), Interleukin-1 (IL-1), Interleukin-2 (IL-2), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor Necrosis Factor-a (TNF-a), Tumor Necrosis Factor-b (TNF-b), Interferon-g (INF-g), Colony Stimulating Factors (CSFs); Monocyte chemotactic protein, fibroblast stimulating factor 1, Histamin, Fibrin oder Fibrinogen, Endothelin-1, Angiotensin II, Kollagene, Bromocriptin, Methylsergid, Methotrexat, Kohlenstofftetrachlorid, Thioacetamid, und Ethanol; ferner Silber(ionen), Titandioxid, Antibiotika und Antiinfektiva wie insbesondere ß -Laktam- Antibiotika, z.B. ß-Lactamase-sensitive Penicilline wie Benzylpenicilline (Penicillin G), Phenoxymethylpenicillin (Penicillin V); ß- Lactamase-resistente Penicilline wie Aminopenicilline wie Amoxicillin, Ampicillin, Bacampicillin; Acylaminopenicilline wie Mezlocillin, Piperacillin; Carboxypenicilline, Cephalosporine wie Cefazolin, Cefuroxim, Cefoxitin, Cefotiam, Cefaclor, Cefadroxil, Cefalexin, Loracarbef, Cefixim, Cefuroximaxetil, Ceftibuten, Cefpodoximproxetil, Cefpodoximproxetil; Aztreonam, Ertapenem, Meropenem; ß- Lactamase-Inhibitoren wie Sulbactam, Sultamicillintosilat; Tetracycline wie Doxycyclin, Minocyclin, Tetracyclin, Chlortetracyclin, Oxytetracyclin; Aminoglykoside wie Gentamicin, Neomycin, Streptomycin, Tobramycin, Amikacin, Netilmicin, Paromomycin, Framycetin, Spectinomycin; Makrolidantibiotika wie Azithromycin, Clarithromycin, Erythromycin, Roxithromycin, Spiramycin, Josamycin; Lincosamide wie Clindamycin, Lincomycin, Gyrasehemmer wie Fluorochinolone wie Ciprofloxacin, Ofloxacin, Moxifloxacin, Norfloxacin, Gatifloxacin, Enoxacin, Fleroxacin, Levofloxacin; Chinolone wie Pipemidsäure; Sulfonamide, Trimethoprim, Sulfadiazin, Sulfalen; Glykopeptidantibiotika wieVancomycin, Teicoplanin; Polypeptidantibiotika wie Polymyxine wie Colistin, Polymyxin-B, Nitroimidazol-Derivate wie Metronidazol, Tinidazol; Aminochinolone wie Chloroquin, Mefloquin, Hydroxychloroquin; Biguanide wie Proguanil; Chininalkaloide und Diaminopyrimidine wie Pyrimethamin; Amphenicole wie Chloramphenicol; Rifabutin, Dapson, Fusidinsäure, Fosfomycin, Nifuratel, Telithromycin, Fusafungin, Fosfomycin, Pentamidindiisethionat, Rifampicin, Taurolidin, Atovaquon, Linezolid; Virustatika wie Aciclovir, Ganciclovir, Famciclovir, Foscarnet, Inosin-(Dimepranol-4-acetamidobenzoat), Valganciclovir, Valaciclovir, Cidofovir, Brivudin; antiretrovirale Wirkstoffe (nukleosidanaloge Reverse-Transkriptase-Hemmer und -Derivate) wie Lamivudin, Zalcitabin, Didanosin, Zidovudin, Tenofovir, Stavudin, Abacavir; nicht nukleosidanaloge Reverse-Transkriptase-Hemmer: Amprenavir, Indinavir, Saquinavir, Lopinavir, Ritonavir, Nelfinavir; Amantadin, Ribavirin, Zanamivir, Oseltamivir und Lamivudin, sowie beliebige Kombinationen und Gemische davon.
STENTS
Besonders bevorzugte Ausführungsformen der vorliegenden Erfindung sind beschichtete Gefäßendoprothesen (intraluminale Endoprothesen) wie Stents, Koronarstents, intravaskulare Stents, periphere Stents und dergleichen.
Diese können mit dem erfindungsgemäßen Verfahren auf einfache Weise biokompatibel funktionalisiert werden, wodurch beispielsweise die in der perkutanen transluminalen Angioplastie mit herkömmlichen Stents häufig auftretenden Restenosen verhindert werden können. So kann durch die Immobilisierung von geeigneten Wirkstoffen auf porösen kohlenstoffhaltigen Beschichtungen, insbesondere Paclitaxel, Rapamycine oder Dexamethason, die lokale Entzündungsreaktion im Gewebe der Gefäßwand durch vorübergehende lokale Freisetzung dieser Wirkstoffe gehemmt bzw. unterdrückt werden. Die Verwendung und Wirksamkeit solcher Wirkstoffe ist dem Stand der Technik gemäß himeichend bekannt. Jedoch ist Anwendbarkeit durch die dem Stand der Technik entsprechenden Beschichtungssysteme limitiert, insbesondere wegen der unzureichenden Beladungsfähigkeit, welche zu unzureichender Bioverfügbarkeit führt, unzureichende bzw. unvollständige Freisetzung dieser Wirkstoffe oder Unverträglichkeiten zwischen Beschichtungssystem und Wirkstoff durch unerwünschte physikalische oder chemische Wechselwirkungen.
In bevorzugten Ausfuhrungsformen der vorliegenden Erfindung werden glasartige Kohlenstoffschichten oder Komposit-Schichten mit Russpartikelzusatz mit
Schichtdicken zwischen 80 nm und 10 μm, Porengrößen von 5 nm bis 1 μm und Porositäten von 1% bis 70% erzeugt und aktiviert, bevorzugt durch Einbringen von Füllstoffen und deren anschließender Entfernung aus der Kohlenstoffschicht oder durch die, eine poröse Matrix erzeugende Beimengung von Russpartikeln mit sphärischer oder ellipsoider oder stäbchenförmigen Morphologie und einer
Partikelgröße von 10 nm bis 200 nm, so dass Wirkstoffe in ausreichender Menge aufgenommen werden können. Die Oberfläche des Stent-Implantats kann dabei auf bis zu 2000m2/m3 erhöht werden.
In bevorzugten Ausführungen der Erfindung kann durch Aktivierung der kohlenstoffhaltigen Schicht, beispielsweise mit Luft bei erhöhter Temperatur, die Hydrophilie der Beschichtung erhöht werden, was einerseits die Bioverträglichkeit zusätzlich steigert, andererseits die Schicht aufnahmefähiger für Wirkstoffe, insbesondere hydrophile Wirkstoffe macht.
In besonders bevorzugten Ausführungsformen werden nach dem erfindungsgemäßen Verfahren Stents, insbesondere Koronarstents und periphere Stents mit pharmakologisch wirksamen Stoffen oder Stoffgemischen beladen oder mit Zellen oder mit Zellkulturen. Beispielsweise können die kohlenstoffhaltigen Stentoberflächen für die lokale Unterdrückung von Zelladhäsion, Thrombozytenaggregation, Komplementaktivierung bzw. inflammatorische Gewebereaktionen oder Zellproliferation mit folgenden Wirkstoffen ausgerüstet werden mit:
Heparin, synthetische Heparin- Analoga (z.B. Fondaparinux), Hirudin, Antithrombin III, Drotrecogin alpha, Fibrinolytica (Alteplase, Plasmin, Lysokinasen, Faktor Xlla, Prourokinase, Urokinase, Anistreplase, Streptokinase), Thrombozytenaggregations- hemmer (Acetylsalicylsäure, Ticlopidine, Clopidogrel, abciximab, Dextrane), Corticosteroide (Alclometasone, Amcinonide, Augmented Betamethasone, Beclomethasone, Betamethasone, Budesonide, Cortisone, Clobetasol, Clocortolone, Desonide, Desoximetasone, Dexamethasone, Flucinolone, Fluocinonide, Flurandrenolide, Flunisolide, Fluticasone, Halcinonide, Halobetasol, Hydrocortisone, Methylprednisolone, Mometasone, Prednicarbate, Prednisone, Prednisolone, Triamcinolone), sogenannte Non-Steroidal Anti-Inflammatory Drugs (Diclofenac, Diflunisal, Etodolac, Fenoprofen, Flurbiprofen, Ibuprofen, Indomethacin, Ketoprofen, Ketorolac, Meclofenamate, Mefenamic acid, Meloxicam, Nabumetone, Naproxen, Oxaprozin, Piroxicam, Salsalate, Sulindac, Tolmetin, Celecoxib, Rofecoxib), Zytostatika (Alkaloide und Podophyllumtoxine wie Vinblastin, Vincristin; Alkylantien wie Nitrosoharnstoffe, Stickstofflost- Analoga; zytotoxische Antibiotika wie Daunorubicin, Doxorubicin und andere Anthrazykline und verwandte Substanzen, Bleomycin, Mitomycin; Antimetabolite wie Folsäure-, Purin- oder Pyrimidin-Analoga; Paclitaxel, Docetaxel, Sirolimus; Platinverbindungen wie Carboplatin, Cisplatin oder Oxaliplatin; Amsacrin, Irinotecan, Imatinib, Topotecan, Interferon-alpha 2a, Interferon-alpha 2b, Hydroxycarbamid, Miltefosin, Pentostatin, Porfimer, Aldesleukin, Bexaroten, Tretinoin; Antiandrogene, Antiöstrogene).
Für systemische, kardiologische Wirkungen können die erfindungsgemäß aktivierten Stents beladen werden mit:
Antiarrythmika, insbesondere Antiarrhythmika der Klasse I (Antiarrhythmika vom Chinidintyp: Chinidin, Dysopyramid, Ajmalin, Prajmaliumbitartrat, Detajmiumbitartrat; Antiarrhythmika vom Lidocaintyp: Lidocain, Mexiletin,
Phenytoin, Tocainid; Antiarrhythmika der Klasse I C: Propafenon, Flecainid(acetat)), Antiarrhythmika der Klasse II (Betarezeptorenblocker) (Metoprolol, Esmolol, Propranolol, Metoprolol, Atenolol, Oxprenolol), Antiarrhythmika der Klasse III (Amiodaron, Sotalol), Antiarrhythmika der Klasse IV (Diltiazem, Verapamil, Gallopamil), andere Antiarrhythmika wie Adenosin, Orciprenalin,
Ipratropiumbromid; Stimulation der Angiogenese im Myokard: Vascular Endothelial Growth Factor (VEGF), Basic Fibroblast Growth Factor (bFGF), nicht virale DNA, virale DNA, endotheliale Wachstumsfaktoren: FGF-1, FGF-2, VEGF, TGF; Antikörper, Monoklonale Antikörper, Anticaline; Stammzellen, Endothelial Progenitor Cells (EPC). Weitere Kardiaka sind: Digitalisglykoside
(Acetyldigoxin/Metildigoxin, Digitoxin, Digoxin), weitere Herzglykoside (Ouabain, Proscillaridin). Ferner Antihypertonika (zentral wirksame antiadrenerge Substanzen: Methyldopa, Imidazolinrezeptoragonisten; Kalciumkanalblocker: vom Dihydropyridintyp wie Nifedipin, Nitrendipin; ACE-Hemmer: Quinaprilat, Cilazapril, Moexipril, Trandolapril, Spirapril, Imidapril, Trandolapril; Angiotensin- II-Antagonisten: Candesartancilexetil, Valsartan, Telmisartan, Olmesartanmedoxomil, Eprosartan; peripher wirksame alpha-Rezeptorenblocker: Prazosin, Urapidil, Doxazosin, Bunazosin, Terazosin, Indoramin; Vasodilatatoren: Dihydralazin, Diisopropylamindichloracetat, Minoxidil, Nitroprussidnatrium), andere Antihypertonika wie Indapamid, Co-Dergocrinmesilat, Dihydroergotoxinmethansulfonat, Cicletanin, Bosentan. Weiters Phosphodiesterasehemmer (Milrinon, Enoximon) und Antihypotonika, hier insbesondere adrenerge und dopaminerge Substanzen (Dobutamin, Epinephrin, Etilefrin, Norfenefrin, Norepinephrin, Oxilofrin, Dopamin, Midodrin, Pholedrin, Ameziniummetil), partielle Adrenozeptor-Agonisten (Dihydroergotamin), schließlich andere Antihypotonika wie Fludrocortison.
Für die Steigerung der Gewebeadhäsion, insbesondere bei peripheren Stents können Komponenten der extrazellulären Matrix, Fibronectin, Polylysine, Ethylenevinylacetate, inflammatorische Zytokine wie: TGFß, PDGF, VEGF, bFGF, TNFα, NGF, GM-CSF, IGF-a, IL-1, IL-8, IL-6, Growth Hormone; sowie adhäsive Substanzen wie: Cyanoacrylate, Beryllium, oder Silica verwendet werden.
Weitere hierfür geeignete Substanzen, systemisch und/oder lokal wirkend, sind Wachstumsfaktoren (Growth Factor), Erythropoetin.
Auch Hormone können in den Stentbeschichtungen vorgesehen werden, wie beispielsweise Corticotropine, Gonadotropine, Somatropin, Thyrotrophin, Desmopressin, Terlipressin, Oxytocin, Cetrorelix, Corticorelin, Leuprorelin, Triptorelin, Gonadorelin, Ganirelix, Buserelin, Nafarelin, Goserelin, sowie regulatorische Peptide wie Somatostatin, und/oder Octreotid.
Weitere Ausführungsformen sehen eine Funktionalisierung durch Beladung der Kohlenstoffoberflächen mit Zellen vor, beispielsweise mit pluripotenten Stammzellen, Endothelzellen oder Bindegewebszellen. Diese können aus Organismen gewonnen werden, im Labor aus Zellkulturen kultiviert werden oder gentechnisch verändert sein.
So können beispielsweise in einer besonderen Ausführungsform mit aktivierten Kohlenstoffschichten versehene Gefäßimplantate mit Endothelzellkulturen beladen werden, indem diese zuvor in einem Bioreaktor als Substrat bzw. als Aufzucht und Trägersystem für Zellkulturen verwendet werden. Geeignete Verfahren hierzu sind in DE 103 35 131 bzw. PCT/EP04/00077 beschrieben, deren Offenbarung hiermit einbezogen wird.
So können beispielsweise erfindungsgemäße, nanoporös aktivierte Kohlenstoffschichten mit einer Oberfläche von 200 bis 3000 m2/m3 nach Kultivierung mit Endothelzellen beladen werden, wobei die möglichen Zelldichten von 101 - 1016 Zellen/ml Schichtvolumen, bevorzugt von 103-1012 Zellen/ml reichen.
ORTHOPÄDISCHE IMPLANTATE
Im Falle von chirurgischen und orthopädischen Implantaten kann es vorteilhaft sein, die Implantate mit einer oder mehreren kohlenstoffhaltigen Schichten so zu aktivieren, dass die Schichten makroporös sind. Geeignete Porengrößen liegen im Bereich von 0,1 bis 1000 μm, bevorzugt bei 1 bis 400 μm, um eine bessere Integration der Implantate durch Einwachsen ins umliegende Zeil- oder Knochengewebe zu unterstützen.
Für orthopädische und nichtorthopädische Implantate sowie erfindungsgemäß funktionalisierte Herzklappen oder Kunstherzteile können ferner, sofern diese mit Wirkstoffen beladen werden sollen, für die lokale Unterdrückung von Zelladhäsion, Thrombozytenaggregation, Komplementaktivierung bzw. inflammatorische Gewebereaktion oder Zellproliferation die gleichen Wirkstoffe eingesetzt werden wie in den oben beschriebenen Stentanwendungen.
Ferner können zur Stimulation von Gewebewachstum insbesondere bei orthopädischen Implantaten für eine bessere Implantatintegration folgende Wirkstoffe verwendet werden: Bone and Cartilage Stimulating Peptides, bone morphogenetic proteins (BMPs), insbesondere rekombinante BMP 's (z.B. Recombinant human BMP-2 (rhBMP-2)), Bisphosphonate (z.B. Risedronate, Pamidronate, Ibandronate, Zoledronsäure, Clodronsäure, Etidronsäure, Alendronsäure, Tiludronsäure), Fluoride (Dinatriumfluorophosphat, Natriumfluorid); Calcitonin, Dihydrotachystyrol. Dann alle Growth Factors und Zytokine (Epidermal Growth Factor (EGF), Platelet-Derived Growth Factor (PDGF), Fibroblast Growth Factors (FGFs), Transforming Growth Factors-b TGFs-b), Transforming Growth Factor-a (TGF-a), Erythropoietin (Epo), Insulin-Like Growth Factor-I (IGF-I), Insulin-Like Growth Factor-II (IGF-II), Interleukin-1 (IL-1), Interleukin-2 (IL-2), Interleukin-6 (IL-6), Interleukin-8 (IL-8), Tumor Necrosis Factor-a (TNF-a), Tumor Necrosis Factor-b (TNF-b), Interferon-g (INF-g), Colony Stimulating Factors (CSFs)). Weitere adhäsions- und integrationsfordernde Substanzen sind neben den bereits genannten inflammatorischen Cytokinen das Monocyte chemotactic protein, fibroblast stimulating factor 1, Histamin, Fibrin oder Fibrinogen, Endothelin-1, Angiotensin II, Kollagene, Bromocriptin, Methylsergid, Methotrexat, Kohlenstofftetrachlorid, Thioacetamid, Ethanol.
BESONDERE AUSFUHRUNGSFORMEN
Darüber hinaus können die erfindungsgemäß aktivierten Implantate, Stents und dergleichen auch anstelle von Pharmazeutika oder zusätzlich mit antibakteriellen- antiinfektiösen Beschichtungen oder Imprägnierungen versehen werden, wobei die folgenden Stoffe oder Stoffgemische verwendbar sind: Silber(ionen), Titandioxid, Antibiotika und Antiinfektiva. Insbesondere beta-Laktam-Antibiotika (ß-Lactam- Antibiotika: ß-Lactamase-sensitive Penicilline wie Benzylpenicilline (Penicillin G), Phenoxymethylpenicillin (Penicillin V); ß-Lactamase-resistente Penicilline wie
Aminopenicilline wie Amoxicillin, Ampicillin, Bacampicillin; Acylaminopenicilline wie Mezlocillin, Piperacillin; Carboxypenicilline, Cephalosporine (Cefazolin, Cefuroxim, Cefoxitin, Cefotiam, Cefaclor, Cefadroxil, Cefalexin, Loracarbef, Cefixim, Cefuroximaxetil, Ceftibuten, Cefpodoximproxetil, Cefpodoximproxetil) oder andere wie Aztreonam, Ertapenem, Meropenem. Weitere Antibiotika sind ß- Lactamase-Inhibitoren (Sulbactam, Sultamicillintosilat), Tetracycline (Doxycyclin, Minocyclin, Tetracyclin, Chlortetracyclin, Oxytetracyclin), Aminoglykoside (Gentamicin, Neomycin, Streptomycin, Tobramycin, Amikacin, Netilmicin, Paromomycin, Framycetin, Spectinomycin), Makrolidantibiotika (Azithromycin, Clarithromycin, Erythromycin, Roxithromycin, Spiramycin, Josamycin),
Lincosamide (Clindamycin, Lincomycin), Gyrasehemmer (Fluorochinolone wie Ciprofloxacin, Ofloxacin, Moxifloxacin, Norfloxacin, Gatifloxacin, Enoxacin, Fleroxacin, Levofloxacin; andere Chinolone wie Pipemidsäure), Sulfonamide und Trimethoprim (Sulfadiazin, Sulfalen, Trimethoprim), Glykopeptidantibiotika (Nancomycin, Teicoplanin), Polypeptidantibiotika ( Polymyxine wie Colistin,
Polymyxin-B), Nitroimidazol-Derivate ( Metronidazol, Tinidazol), Aminochinolone (Chloroquin, Mefloquin, Hydroxychloroquin), Biguanide (Proguanil), Chininalkaloide und Diaminopyrimidine (Pyrimethamin), Amphenicole (Chloramphenicol) und andere Antibiotika (Rifabutin, Dapson, Fusidinsäure, Fosfomycin, Nifuratel, Telithromycin, Fusafungin, Fosfomycin,
Pentamidindiisethionat, Rifampicin, Taurolidin, Atovaquon, Linezolid). Unter den Nirustatika sind zu nennen Aciclovir, Ganciclovir, Famciclovir, Foscarnet, Inosin- (Dimepranol-4-acetamidobenzoat), Valganciclovir, Valaciclovir, Cidofovir, Brivudin. Dazu zählen auch Antiretrovirale Wirkstoffe (nukleosidanaloge Reverse- Transkriptase-Hemmer und -Derivate: Lamivudin, Zalcitabin, Didanosin, Zidovudin, Tenofovir, Stavudin, Abacavir; nicht nukleosidanaloge Reverse-Transkriptase- Hemmer: Amprenavir, Indinavir, Saquinavir, Lopinavir, Ritonavir, Nelfinavir) und andere Virustatika wie Amantadin, Ribavirin, Zanamivir, Oseltamivir, Lamivudin.
In besonders bevorzugten Ausführungsformen der vorliegenden Erfindung können die erfindungsgemäßen Implantate mit kohlenstoffhaltigen Schichten vor oder nach der Wirkstoffbeladung mittels weiterer Agenzien in ihren chemischen oder physikalischen Eigenschaften geeignet modifiziert werden, beispielsweise um die Hydrophilie, Hydrophobie, elektrische Leitfähigkeit, Haftung oder sonstige Oberflächeneigenschaften zu modifizieren. Hierfür einsetzbare Stoffe sind biodegradierbare oder nicht-degradierbare Polymere, wie beispielsweise bei den biodegradierbaren: Kollagene, Albumin, Gelatin, Hyaluronsäure, Stärke, Cellulose (Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose-Phtalat; weiterhin Kasein, Dextrane, Polysaccharide, Fibrinogen, Poly(D,L-Lactide), Poly(D,L-Lactide-Co-Glycolide), Poly(Glycolide), Poly(Hydroxybutylate), Poly(Alkylcarbonate), Poly(Orthoester), Polyester, Poly(Hydroxyvaleric Acid), Polydioxanone, Poly(Ethylen-Terephtalate), Poly(malatsäure), Poly(Tartronsäure), Polyanhydride, Polyphosphohazene, Poly(Aminosäuren), und alle ihre Co-Polymere.
Zu den nicht-biodegradierbaren zählen: Poly(Ethylen-Vinylacetate), Silicone, Acrylpolymere wie Polyacrylsäure, Polymethylacrylsäure, Polyacrylcynoacrylat; Polyethylene, Polypropylene, Polyamide, Polyurethane, Poly(Ester-Urethane), Poly(Ether-Urethane), Poly(Ester-Hamstoffe), Polyether wie Polyethylenoxid, Polypropylenoxid, Pluronics, PolyTetramethylenglycol; Vinylpolymere wie Polyvinylpyrrolidone, Poly(Vinyl-alkohole), Poly(vinyl-acetat-phatalat; Parylene. Generell gilt, dass Polymere mit anionischen (z.B. Alginat, Carrageenan, carboxymethylcellulose) oder kationischen (z.B. Chitosan, Poly-L-Lysine etc.) oder beiden Eigenschaften (Phoshporylcholin) hergestellt werden können.
Diese Polymere können auf die Oberfläche der Implantate aufgebracht werden, und diese ganz oder teilweise bedecken.
Zur Modifizierung der Freisetzungseigenschaften wirkstoffhaltiger erfindungsgemäßer Implantate können durch Auftragen beispielsweise von weiteren Polymeren spezifische pH- oder temperaturabhängige Freisetzungseigenschaften erzeugt werden. PH-sensitive Polymere sind beispielsweise Poly(Acrylsäure) und Derivate, zum Beispiel: Homopolymere wie Poly(Aminocarboxylsäure), Poly(Acrylsäure), Poly(Methyl-Acrylsäure) und deren Co-Polymere. Ebenso gilt dies für Polysaccharide wie Celluloseacetat-Phtalat, Hydroxypropylmethylcellulose- Phtalat, Hydroxypropylmethylcellulose-Succinat, Celluloseacetat-Trimellitat und Chitosan. Thermosensitive Polymere sind beispielsweise Poly(N- Isopropylacrylamid-Co-Natrium-Acrylat-Co-n-N-Alkylacrylamid), Poly(N-Methyl- N-n-propylacrylamid), Poly(N-Methyl-N-Isopropylacrylamid), Poly(N-n- Propylmethacrylamid), Poly(N-Isopropylacrylamid), Poly(N,n-Diethylacrylamid), Poly(N-Isopropylmethacrylamid), Poly(N-Cyclopropylacrylamid), Poly(N- Ethylacrylamid), Poly(N-Ethylmethyacrylamid), Poly(N-Methyl-N-Ethylacrylamid), Poly(N-Cyclopropylacrylamid). Weitere Polymere mit Thermogel-Charakteristik sind Hydroxypropyl-Cellulose, Methyl-Cellulose, Hydroxypropylmethyl-Cellulose, Ethylhydroxyethyl-Cellulose und Pluronics wie F-127, L-122, L-92, L-81, L-61. Die Wirkstoffe können einerseits in den Poren der kohlenstoffhaltigen Schicht adsorbiert werden (nicht-kovalent, kovalent), wobei deren Freisetzung primär durch Porengröße und -geometrie steuerbar sind. Zusätzliche Modifikationen der porösen Kohlenstoffschicht durch chemische Modifikation (anionisch, kationisch) erlauben die Freisetzung zu modifizieren, beispielsweise pH-abhängig. Eine weitere Anwendung stellt die Freisetzung von wirkstoffhaltigen Trägern dar, nämlich Microcapsules, Liposomen, Nanocapsules, Nanopartikeln, Micellen, synthetische Phospholipide, Gas-Dispersionen, Emulsionen, Mikroemulsionen, Nanospheres etc., die in den Poren der Kohlenstoffschicht adsorbiert und dann therapeutisch freigesetzt werden. Durch zusätzliche kovalente oder nicht-kovalente Modifikation der Kohlenstoffschicht lassen sich die Poren okkludieren, so dass biologisch aktive Wirkstoffe geschützt sind. In Frage kommen die oben bereits genannten Polysaccharide, Lipide etc., allerdings auch die genannte Polymere.
Bei der zusätzlichen Beschichtung der erfindungsgemäß erzeugten porösen kohlenstoffhaltigen Schichten mit weiteren Schichten kann daher zwischen physischen Barrieren wie inerten biodegradierbaren Substanzen (Poly-1-Lysin, Fibronectin, Chitosan, Heparin etc.) und biologisch aktiven Barrieren unterschieden werden. Letztere können sterisch behindernde Moleküle sein, die physiologisch bioaktiviert werden und die Freisetzung von Wirkstoffen bzw. deren Trägern gestatten. Beispielsweise Enzyme, welche die Freisetzung vermitteln, biologisch aktive Stoffe aktivieren oder nicht-aktive Beschichtungen binden und zur Exposition von Wirkstoffen führen. Alle hier im speziellen aufgeführten Mechanismen und Eigenschaften sind sowohl auf die primär vorliegende Kohlenstoffschicht anzuwenden, als auch auf darauf zusätzlich aufgebrachte Schichten.
Durch Auftragen obengenannter freisetzungsmodifizierender Polymerschichten und/oder Anpassung der Porenstruktur der kohlenstoffhaltigen Schicht kann die Freisetzung der Wirkstoffe aus dem Implantat in weiten Bereich gesteuert werden. Erreichbare Freisetzungszeiten liegen bei 12 Stunden bis ein oder mehrere Jahre, vorzugsweise 24 Stunden, 48 Stunden, 96 Stunden, 1 Woche, 2 Wochen, 1 Monat, 3 Monate.
Die erfindungsgemäßen Implantate können in besonderen Anwendungen auch mit lebenden Zellen oder Mikroorganismen beladen und damit -Tinkfionalisiert werden. Diese können sich in geeignet porösen kohlenstoffhaltigen Schichten ansiedeln, wobei das so besiedelte Implantat dann mit einem geeigneten Membranüberzug versehen werden kami, der für Nährstoffe und von den Zellen oder Mikroorganismen erzeugte Wirkstoffe durchlässig ist, nicht jedoch für die Zellen selbst. So können die Zellen oder Mikroorganismen vom Organismus durch den Membranüberzug versorgt werden.
Auf diese Weise lassen sich unter Anwendung der erfindungsgemäßen Technologie beispielsweise Implantate herstellen, die Insulinproduzierende Zellen enthalten, welche nach Implantierung im Körper in Abhängigkeit vom Glukosespiegel der Umgebung Insulin produzieren und freisetzen.

Claims

Ansprüche
1. Verfahren zur Herstellung medizinischer Implantate mit funktionalisierten Oberflächen, umfassend die folgenden Schritte: a) Bereitstellung eines medizinischen Implantats mit mindestens einer kohlenstoffhaltigen Schicht auf mindestens einem Teil der Oberfläche des Implantats; b) Aktivierung der kohlenstoffhaltigen Schicht durch Schaffung von Porosität; c) Funktionalisierung der aktivierten, kohlenstoffhaltigen Schicht.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die kohlenstoffhaltige Schicht ausgewählt ist aus pyrolytisch erzeugtem Kohlenstoff, aufgedampftem Kohlenstoff, mittels CVD-, PVD- oder Sputtern aufgebrachtem Kohlenstoff, Metallcarbiden,
Metallcarbonitriden, Metalloxynitriden oder Metalloxycarbiden, sowie beliebigen Kombinationen davon.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Implantat aus einem Material besteht, welches aus Kohlenstoff, Kohlenstoffverbundmaterial, Kohlefasern, Keramik, Glas, Kunststoffe, Metalle, Legierungen, Knochen, Stein, oder Mineralien ausgewählt ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Implantat aus medizinischen oder therapeutischen Implantaten wie Gefäßendoprothesen, Stents, Koronarstents, peripheren Stents, chirurgischen oder orthopädischen Implantaten, Knochen- oder Gelenkprothesen, Kunstherzen, künstlichen Herzklappen, subkutanen und/oder intramuskulären Implantaten ausgewählt ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Aktivierung der kohlenstoffhaltigen Schicht mit geeigneten Oxidationsmitteln und/oder Reduktionsmitteln erfolgt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die kohlenstoffhaltige Schicht durch Oxidation mit Luft, Sauerstoff, Distickstofftnonoxid, und/oder oxidierenden Säuren, gegebenenfalls bei erhöhter Temperatur, aktiviert wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Aktivierung durch Abrasion im wässrigen Ultraschallbad unter Zusatz von Tonerde, Silikaten und/oder Aluminaten erfolgt.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die Aktivierung die kohlenstoffhaltige Schicht porös, vorzugsweise makroporös, mit Porendurchmessern im Bereich von 0,1 bis 1000 μm, wird, ggf. auch durch Vorstrukturierung des Substrats.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass durch die Aktivierung die kohlenstoffhaltige Schicht nanoporös ist.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aktivierte, poröse kohlenstoffhaltige Schicht mittels CVD und/oder CVI von flüchtigen organischen Stoffen, nachverdichtet und/oder versiegelt wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Funktionalisierung der aktivierten, kohlenstoffhaltigen Schicht das Beladen der Schicht mit mindestens einem Stoff ausgewählt aus pharmakologischen Wirkstoffen, Linkern, Mikroorganismen, pflanzliche oder tierische einschließlich menschlicher Zellen oder Zellkulturen und Gewebe, Mineralien, Salze, Metalle, synthetische oder natürliche Polymere, Proteine, Peptide, Aminosäuren, Lösemittel, Ionen, Kationen, insbesondere Metallkationen wie Kobalt-, Nickel-, Kupfer-, Zink-Kationen, Antikörper, Calmodulin, Chitin, Cellulose, Zucker, Aminosäuren, Gluthathion, Streptavidin, Strep-tactin oder andere Mutanten oder S-Protein, Dextrane, sowie sowie deren Derivate, Mischungen und Kombinationen umfasst.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Funktionalisierung durch die Adsorption von mit Affinitätsanhängseln (affinity tags) korrespondierenden Substanzen in und/oder an der kohlenstoffhaltigen Schicht erfolgt, wobei die korrespondierenden Substanzen so gewählt sind, dass sie mit den Affmitätsanhängseln eine Bindung eingehen können.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass der oder die Stoffe bzw. Substanzen durch
Adsorption, Absorption, Physisorption, Chemisorption, elektrostatische, kovalente Bindung, oder nicht-kovalente Bindung auf der kohlenstoffhaltigen Schicht aufgebracht bzw. immobilisiert wird/werden.
14. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der mindestens eine Stoff im wesentlichen permanent auf der(den) kohlenstoffhaltigen Schicht(en) immobilisiert ist.
15. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass der mindestens eine auf die kohlenstoffhaltige Schicht aufgebrachte Stoff, insbesondere pharmakologische Wirkstoff, aus der Schicht kontrolliert freisetzbar ist.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass die pharmakologisch wirksamen Stoffe in Microcapsules, Liposomen, Nanocapsules, Nanopartikeln, Micellen, synthetischen Phospholipide, Gas-Dispersionen, Emulsionen, Mikroemulsionen, oder Nanospheres inkorporiert werden, die in den Poren oder an der Oberfläche der kohlenstoffhaltigen Schicht adsorbiert werden und dami therapeutisch freisetzbar sind.
17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass ferner eine die Freisetzung des Wirkstoffs beeinflussende Beschichtung ausgewählt aus pH-sensitiven und/oder Temperatursensitiven Polymeren und/oder biologisch aktiven Barrieren wie z.B. Enzymen aufgebracht wird.
18. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Funktionalisierung das Aufbringen von biologisch abbaubaren bzw. resorbierbaren Polymeren wie Kollagen, Albumin, Gelatine, Hyaluronsäure, Stärke, Cellulosen wie Methylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose, Carboxymethylcellulose- Phtalat; Kasein, Dextrane, Polysaccharide, Fibrinogen, Poly(D,L-Lactide), Poly(D,L- Lactide-Co-Glycolide), Poly(Glycolide), Poly(Hydroxybutylate), Poly(Alkylcarbonate), Poly(Orthoester), Polyester, Poly(Hydroxyvalerinsäure), Polydioxanone, Poly(Ethylenterephtalate), Poly(malatsäure), Poly(Tartronsäure), Polyanhydride, Polyphosphazene, Poly(Aminosäuren), und deren Co-Polymeren, umfasst.
19. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Funktionalisierung das Aufbringen von nicht biologisch abbaubaren bzw. resorbierbaren Polymeren wie Poly(Ethylen-
Vinylacetate), Silicone, Acrylpolymere wie Polyacrylsäure, Polymethylacrylsäure, Polyacrylcyanoacrylat; Polyethylene, Polypropylene, Polyamide, Polyurethane, Poly(Ester-Urethane), Poly(Ether-Urethane), Poly(Ester-Harnstoffe), Polyether (Poly(Ethylenoxid), Poly(Propylenoxid), Pluronics, Poly(Tetramethylenglycol); Vinylpolymere wie Polyvinylpyrrolidone, Poly(Vinylalkohole), oder Poly(vinyl- acetat-phatalat), sowie deren Copolymeren, umfasst.
20. Implantat mit funktionalisierter Oberfläche, herstellbar nach einem der vorhergehenden Ansprüche.
21. Implantat nach Anspruch 20, dadurch gekennzeichnet, dass es aus Metallen wie rostfreier Stahl, Titan, Tantal, Platin, Gold, Palladium, Legierungen, insbesondere Formgedächtnislegierungen wie Nitinol, oder Nickel-Titan Legierung, oder aus Kohlefasern, Vollkarbonmaterial, oder Kohlenstoffkompositen besteht.
22. Implantat nach Anspruch einem der Ansprüche 20 oder 21, umfassend mehrere, gegebenenfalls mit Wirkstoff beladene, kohlenstoffhaltige Schichten.
23. Vorrichtung nach einem der Ansprüche 20 bis 22, ferner umfassend anionische oder kationische oder amphotere Beschichtungen, ausgewählt aus Alginat, Carrageenan, Carboxymethylcellulose; Poly(meth)acrylaten, Chitosan, Poly-L-Lysine; und/oder Phoshporylcholin.
24. Wirkstoffbeschichteter Stent nach einem der Ansprüche 20 bis 23.
25. Wirkstoffbeschichtete Herzklappe nach einem der Ansprüche 20 bis 23.
26. Implantat nach einem der Ansprüche 20 bis 23, in Form einer orthopädischen Knochen- oder Gelenksprothese, eines Knochensubstituts oder eines Wirbelkörperersatzmittels im Brust- oder Lendenbereich der Wirbelsäule.
27. Subkutan und/oder intramuskulär einsetzbares Wirkstoffdepot mit kontrollierter Freisetzung, nach einem der Ansprüche 20 bis 23.
28. Implantat nach einem der Ansprüche 20 bis 27, umfassend aufgebrachte bzw. inkorporierte Mikroorganismen, virale Vektoren oder Zellen oder Gewebe.
29. Verwendung eines Implantats nach Anspruch 28, zur Erzeugung einer therapeutischen Wirkung oder zur Erhöhung der Bioverträglichkeit des Implantats nach dem Einsetzen des Implantats in den menschlichen Körper.
PCT/EP2004/005785 2003-05-28 2004-05-28 Implantate mit funktionalisierten kohlenstoffoberflächen WO2004105826A2 (de)

Priority Applications (15)

Application Number Priority Date Filing Date Title
BRPI0410957-0A BRPI0410957A (pt) 2003-05-28 2004-05-28 implantes com superfìcies de carbono funcionalizadas
PL04735213T PL1626749T3 (pl) 2003-05-28 2004-05-28 Implanty zawierające sfunkcjonalizowane powierzchnie węglowe
SI200431001T SI1626749T1 (sl) 2003-05-28 2004-05-28 Implantat s funkcionaliziranimi ogljikovimi površinami
CA002519750A CA2519750A1 (en) 2003-05-28 2004-05-28 Implants with functionalized carbon surfaces
MXPA05011231 MXPA05011231A (es) 2003-05-28 2004-05-28 Implante con superficies de carbono funcionaliza
JP2006529943A JP2007502184A (ja) 2003-05-28 2004-05-28 機能化カーボン表面を有するインプラント
CN200480013969A CN100594040C (zh) 2003-05-28 2004-05-28 具有功能化的碳表面的植入物
DK04735213T DK1626749T3 (da) 2003-05-28 2004-05-28 Implantater med funktionaliserede carbonoverflader
EP04735213A EP1626749B1 (de) 2003-05-28 2004-05-28 Implantate mit funktionalisierten kohlenstoffoberflächen
DE502004008211T DE502004008211D1 (de) 2003-05-28 2004-05-28 Implantate mit funktionalisierten kohlenstoffoberflächen
EA200501561A EA009836B1 (ru) 2003-05-28 2004-05-28 Имплантаты с функционализированными углеродными поверхностями
DE202004009061U DE202004009061U1 (de) 2003-05-28 2004-05-28 Implantate mit funktionalisierten Kohlenstoffoberflächen
AU2004243503A AU2004243503A1 (en) 2003-05-28 2004-05-28 Implants comprising functionalized carbon surfaces
US10/939,021 US20050079201A1 (en) 2003-05-28 2004-09-10 Implants with functionalized carbon surfaces
HK06106757.4A HK1089702A1 (en) 2003-05-28 2006-06-13 Implants comprising functionalized carbon surfaces

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10324415.8 2003-05-28
DE2003124415 DE10324415A1 (de) 2003-05-28 2003-05-28 Verfahren zur Beschichtung von Substraten mit kohlenstoffbasiertem Material
DE2003133098 DE10333098A1 (de) 2003-07-21 2003-07-21 Biokompatibel beschichtete medizinische Implantate
DE10333099.2 2003-07-21
DE10333098.4 2003-07-21
DE10333099A DE10333099A1 (de) 2003-07-21 2003-07-21 Implantate mit funktionalisierten Kohlenstoffoberflächen

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/939,021 Continuation-In-Part US20050079201A1 (en) 2003-05-28 2004-09-10 Implants with functionalized carbon surfaces

Publications (2)

Publication Number Publication Date
WO2004105826A2 true WO2004105826A2 (de) 2004-12-09
WO2004105826A3 WO2004105826A3 (de) 2005-06-23

Family

ID=32872363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/005785 WO2004105826A2 (de) 2003-05-28 2004-05-28 Implantate mit funktionalisierten kohlenstoffoberflächen

Country Status (18)

Country Link
US (1) US20050079201A1 (de)
EP (2) EP2033666A2 (de)
JP (1) JP2007502184A (de)
KR (1) KR20060015624A (de)
AT (1) ATE410196T1 (de)
AU (1) AU2004243503A1 (de)
BR (1) BRPI0410957A (de)
CA (1) CA2519750A1 (de)
DE (2) DE502004008211D1 (de)
DK (1) DK1626749T3 (de)
EA (1) EA009836B1 (de)
ES (1) ES2315661T3 (de)
HK (1) HK1089702A1 (de)
MX (1) MXPA05011231A (de)
PL (1) PL1626749T3 (de)
PT (1) PT1626749E (de)
SI (1) SI1626749T1 (de)
WO (1) WO2004105826A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006002498A2 (en) * 2004-07-05 2006-01-12 Ziscoat N.V. Biocompatible coating of medical devices comprising molecular sieves
EP1685861A2 (de) * 2005-01-28 2006-08-02 Greatbatch, Inc. Stentbeschichtung zur Arzneimittelfreisetzung
JP2008522752A (ja) * 2004-12-09 2008-07-03 ボストン サイエンティフィック リミティッド 制御された治療剤送達のための蒸着ナノポーラス被覆を有する医療装置
US20100098740A1 (en) * 2001-05-11 2010-04-22 Exogenesis Corporation Method of controlling a drug release rate
US9005696B2 (en) 2008-08-07 2015-04-14 Exogenesis Corporation Medical device for bone implant and method for producing such a device
US9909020B2 (en) 2005-01-21 2018-03-06 The Boeing Company Activation method using modifying agent

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040081704A1 (en) * 1998-02-13 2004-04-29 Centerpulse Biologics Inc. Implantable putty material
US7713297B2 (en) 1998-04-11 2010-05-11 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US20020114795A1 (en) 2000-12-22 2002-08-22 Thorne Kevin J. Composition and process for bone growth and repair
US7238478B2 (en) * 2003-11-13 2007-07-03 Stratagene California Compositions and methods for protein isolation
JP4566189B2 (ja) * 2004-03-15 2010-10-20 テルモ株式会社 癒着防止材
US8557343B2 (en) 2004-03-19 2013-10-15 The Boeing Company Activation method
EP1753429A1 (de) * 2004-05-28 2007-02-21 Vertex Pharmaceuticals Incorporated Modulatoren von muscarinischen rezeptoren
EP1784270A4 (de) * 2004-09-05 2014-01-01 Friction Control Solutions Ltd Arbeitsplatte und system und verfahren zu dessen herstellung
AT501408B1 (de) * 2004-12-07 2011-03-15 Physikalisches Buero Steinmueller Gmbh Biologische oberflächen
US20060129215A1 (en) * 2004-12-09 2006-06-15 Helmus Michael N Medical devices having nanostructured regions for controlled tissue biocompatibility and drug delivery
KR20070104574A (ko) * 2004-12-30 2007-10-26 신벤션 아게 신호를 제공하는 제제, 임플란트 재료 및 약물을 포함하는조합물
EP2014708A1 (de) 2005-01-13 2009-01-14 Cinvention Ag Geformter Körper aus einem Verbundstoffmaterial
CA2593043A1 (en) * 2005-02-03 2006-08-10 Cinvention Ag Drug delivery materials made by sol/gel technology
JP2008532913A (ja) * 2005-03-18 2008-08-21 シンベンション アーゲー 多孔性の焼結化金属材料の調製のためのプロセス
DE102005019458A1 (de) * 2005-04-25 2006-10-26 Grünenthal GmbH Darreichungsform mit verbesserter Freisetzung von Cefuroximaxetil
EP1902087A1 (de) * 2005-07-01 2008-03-26 Cinvention Ag Verfahren zur herstellung von porösen retikulierten verbundwerkstoffen
MX2008000131A (es) * 2005-07-01 2008-04-04 Cinv Ag Dispositivos medicos que comprenden un material compuesto reticulado.
DE202006006920U1 (de) * 2006-04-25 2007-08-30 Biomed Est. Dentalimplantat
US20070073385A1 (en) * 2005-09-20 2007-03-29 Cook Incorporated Eluting, implantable medical device
EP1957427A4 (de) * 2005-10-28 2011-03-23 Biomedflex Llc Anbringung eines elastischen dünnfilms auf superelastischen formspeicher-metallkomponenten
US20090258782A1 (en) * 2005-12-09 2009-10-15 Drexel University Mesoporous carbons
US20070154514A1 (en) * 2005-12-30 2007-07-05 Demakas John J Therapeutic Structures
US7862897B2 (en) * 2006-01-27 2011-01-04 Carbon Ceramics Company, Llc Biphasic nanoporous vitreous carbon material and method of making the same
US20070191931A1 (en) * 2006-02-16 2007-08-16 Jan Weber Bioerodible endoprostheses and methods of making the same
US9526814B2 (en) * 2006-02-16 2016-12-27 Boston Scientific Scimed, Inc. Medical balloons and methods of making the same
WO2007106438A2 (en) * 2006-03-10 2007-09-20 Versilant Nanotechnologies Llc Methods of manufacturing highly polished gemstones
US20070270970A1 (en) * 2006-03-14 2007-11-22 Sdgi Holdings, Inc. Spinal implants with improved wear resistance
US20070270971A1 (en) * 2006-03-14 2007-11-22 Sdgi Holdings, Inc. Intervertebral prosthetic disc with improved wear resistance
US20070224235A1 (en) 2006-03-24 2007-09-27 Barron Tenney Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US20070233246A1 (en) * 2006-03-31 2007-10-04 Sdgi Holdings, Inc. Spinal implants with improved mechanical response
US7709045B2 (en) * 2006-04-28 2010-05-04 Boston Scientific Scimed, Inc. Medical devices coated with porous carbon and methods of manufacturing the same
CN100447319C (zh) * 2006-06-08 2008-12-31 利芳建医药科技咨询(上海)有限公司 一种防治乳腺增生的药用蛋白质纤维及其制备和应用
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8771343B2 (en) 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US20080021462A1 (en) * 2006-07-24 2008-01-24 Warsaw Orthopedic Inc. Spinal stabilization implants
US20080021557A1 (en) * 2006-07-24 2008-01-24 Warsaw Orthopedic, Inc. Spinal motion-preserving implants
WO2008033711A2 (en) 2006-09-14 2008-03-20 Boston Scientific Limited Medical devices with drug-eluting coating
US20080069858A1 (en) * 2006-09-20 2008-03-20 Boston Scientific Scimed, Inc. Medical devices having biodegradable polymeric regions with overlying hard, thin layers
CA2668408A1 (en) * 2006-11-03 2008-05-15 Boston Scientific Limited Ion bombardment of medical devices
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US7718616B2 (en) 2006-12-21 2010-05-18 Zimmer Orthobiologics, Inc. Bone growth particles and osteoinductive composition thereof
US8052903B2 (en) * 2006-12-25 2011-11-08 Christopher Whitmarsh Vitreous carbon material and process for making the same
BRPI0806916A2 (pt) * 2007-01-19 2014-04-29 Cinv Ag Implante poroso, não degradável feito por moldagem de pó
DE102007007865A1 (de) 2007-02-14 2008-08-21 Jennissen, Herbert, Prof. Dr. Verfahren zur Herstellung von lagerfähigen Implantaten mit einer ultrahydrophilen Oberfläche
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US20100167401A1 (en) * 2007-03-19 2010-07-01 Vasif Hasirci Stacked, patterned biomaterials and/or tissue engineering scaffolds
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US7942926B2 (en) * 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
WO2009020520A1 (en) 2007-08-03 2009-02-12 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US7883736B2 (en) * 2007-09-06 2011-02-08 Boston Scientific Scimed, Inc. Endoprostheses having porous claddings prepared using metal hydrides
US8845751B2 (en) * 2007-09-21 2014-09-30 Waldemar Link Gmbh & Co. Kg Endoprosthesis component
US7938855B2 (en) * 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US20090118818A1 (en) * 2007-11-02 2009-05-07 Boston Scientific Scimed, Inc. Endoprosthesis with coating
JP5581311B2 (ja) 2008-04-22 2014-08-27 ボストン サイエンティフィック サイムド,インコーポレイテッド 無機材料のコーティングを有する医療デバイス及びその製造方法
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
WO2009155328A2 (en) 2008-06-18 2009-12-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
AU2009200540A1 (en) * 2008-07-03 2010-01-21 Induce Biologics Inc. Use of immobilized antagonists for enhancing growth factor containing bioimplant effectiveness
DE102008040786A1 (de) * 2008-07-28 2010-02-04 Biotronik Vi Patent Ag Biokorrodierbares Implantat mit einer Beschichtung enthaltend eine wirkstofftragende Polymermatrix
US20100070013A1 (en) * 2008-09-18 2010-03-18 Medtronic Vascular, Inc. Medical Device With Microsphere Drug Delivery System
JP2012504445A (ja) * 2008-10-02 2012-02-23 フジフィルム・マニュファクチュアリング・ヨーロッパ・ベスローテン・フエンノートシャップ 抗微生物コーティング
US20100131051A1 (en) * 2008-11-24 2010-05-27 Medtronic Vascular, Inc. Systems and Methods for Treatment of Aneurysms Using Zinc Chelator(s)
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
KR101087088B1 (ko) 2008-12-29 2011-11-25 한국과학기술연구원 나노 구조 패턴을 갖는 약물 방출용 스텐트의 제조방법 및 이로부터 제조된 약물 방출용 스텐트
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US20100233227A1 (en) * 2009-03-10 2010-09-16 Boston Scientific Scimed, Inc. Medical devices having carbon drug releasing layers
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
DE102009024616A1 (de) * 2009-06-08 2010-12-23 Telos Gmbh Sterilisierbare Implantatbeschichtung und Verfahren zu deren Herstellung
FR2949688B1 (fr) * 2009-09-04 2012-08-24 Sofradim Production Tissu avec picots revetu d'une couche microporeuse bioresorbable
FR2949687B1 (fr) 2009-09-04 2011-09-23 Sofradim Production Tissu avec picots revetus d'un materiau hydrosoluble
AU2010337239B2 (en) 2009-12-14 2015-08-27 Ascension Orthopedics, Inc. Humeral head resurfacing implant
US8882740B2 (en) * 2009-12-23 2014-11-11 Stryker Trauma Gmbh Method of delivering a biphosphonate and/or strontium ranelate below the surface of a bone
JP5806289B2 (ja) 2010-04-06 2015-11-10 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. 内部人工器官
US20130180913A1 (en) * 2010-07-16 2013-07-18 Cnanoz Inc Water filtration system using hybrid nano carbon, silver, iron and aluminium oxide
WO2012051420A2 (en) * 2010-10-13 2012-04-19 Cibor, Inc. Synthetic bone grafts constructed from carbon foam materials
CN103313733A (zh) 2010-11-15 2013-09-18 捷迈整形外科生物材料有限公司 骨空隙填充剂
CN102485184A (zh) * 2010-12-03 2012-06-06 令狐恩强 一种纳米银抗菌胆管支架及其制备方法
WO2012082989A2 (en) * 2010-12-17 2012-06-21 Bio2 Technologies, Inc. Method and apparatus for a porous orthopedic implant
WO2012094708A1 (en) * 2011-01-12 2012-07-19 The University Of Queensland Bone graft biomaterial
KR101240075B1 (ko) * 2011-05-09 2013-03-07 동국대학교 산학협력단 의료용 임플란트 및 그의 제조방법
FR2976577B1 (fr) * 2011-06-17 2014-03-28 Saint Gobain Procede de fabrication d'un vitrage comprenant une couche poreuse
KR101277658B1 (ko) * 2011-07-11 2013-06-21 조선대학교산학협력단 다중 약물전달계를 갖는 생체의료용 세라믹 재료의 제조 방법
RU2477627C1 (ru) * 2011-07-18 2013-03-20 Общество с ограниченной ответственностью "ИЛЬКОМ" Полимерный композиционный материал
CN104039312A (zh) * 2011-08-16 2014-09-10 实验室护肤股份有限公司 细干颗粒腺苷组合物和包括其的局部制剂
US9484123B2 (en) 2011-09-16 2016-11-01 Prc-Desoto International, Inc. Conductive sealant compositions
KR101393592B1 (ko) * 2012-03-06 2014-05-14 한양대학교 산학협력단 내구성이 우수한 인공뼈 및 그 제조방법
RU2505602C1 (ru) * 2012-06-04 2014-01-27 Федеральное государственное бюджетное учреждение "Российский кардиологический научно-производственный комплекс" Министерства здравоохранения и социального развития РФ (ФГБУ "РКНПК" Минздравсоцразвития России) Способ получения резидентных стволовых клеток сердца млекопитающего из образцов миокарда
EP2858554A4 (de) * 2012-06-11 2016-02-24 Univ California Verfahren und system für in-vivo-wasserstoffperoxidnachweis mit ultraschall
DE102013201885A1 (de) 2013-02-05 2014-08-07 Urs Brodbeck Keramikkörper, insbesondere zur Verwendung in einem Knochenimplantat, insbesondere als Dentalimplantat
WO2014152228A1 (en) * 2013-03-14 2014-09-25 Osteoceramics, Inc. Systems and methods of using chemically bound antibiotics activated by infections
WO2014151580A1 (en) * 2013-03-15 2014-09-25 Clarion University of Pennsylvania Surface modified dental implant
KR101644686B1 (ko) * 2014-04-17 2016-08-02 서울대학교산학협력단 가교된 폴리포스포릴콜린으로 코팅된 체내 삽입용 보형물
US11766506B2 (en) * 2016-03-04 2023-09-26 Mirus Llc Stent device for spinal fusion
RU2626896C1 (ru) * 2016-11-11 2017-08-02 Общество с ограниченной ответственностью "ЭЛЕСТИМ-КАРДИО" Эндокардиальная электродная система для стимуляции левых отделов сердца
KR102173645B1 (ko) * 2018-12-28 2020-11-05 (주)에이치피케이 약물 방출 탄소 섬유 스텐트 및 그 제조방법
CN109603769A (zh) * 2019-01-08 2019-04-12 咸阳师范学院 一种苯酚吸附材料的制备方法及应用
CN117064579B (zh) * 2023-10-17 2024-01-12 山东百多安医疗器械股份有限公司 一种氮化硅陶瓷种植体及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064085A1 (de) * 1998-06-09 1999-12-16 Franz Herbst Verfahren zur herstellung von biokompatiblen oberflächen
WO2002080996A1 (de) * 2001-04-03 2002-10-17 Franz Herbst Medizinisches implantat und verfahren zu seiner herstellung

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3623164A (en) * 1969-10-06 1971-11-30 Gulf Oil Corp Prosthetic device
US3685059A (en) * 1970-07-28 1972-08-22 Gulf General Atomic Inc Prosthetic blood circulation device having a pyrolytic carbon coated blood contacting surface
US4209480A (en) * 1972-10-24 1980-06-24 Homsy Charles A Implantable material and method of preparing same
US4549977A (en) * 1976-09-29 1985-10-29 Colgate-Palmolive Company Bottled particulate detergent
JPS5441913A (en) * 1977-09-09 1979-04-03 Kanebo Ltd Carbonncarbon composite material and method of making same
US4318948A (en) * 1979-07-25 1982-03-09 Fordath Limited Article comprising carbon fibres and method of producing the article
JPS62119161A (ja) * 1985-11-14 1987-05-30 呉羽化学工業株式会社 可撓性炭素材料およびその製造方法
JP2852305B2 (ja) * 1986-11-14 1999-02-03 杉郎 大谷 人工補▲てん▼補綴材料
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US4986943A (en) * 1989-02-28 1991-01-22 The Aerospace Corporation Method for oxidation stabilization of pitch-based matrices for carbon-carbon composites
US5171492A (en) * 1989-04-26 1992-12-15 Mitsubishi Pencil Co., Ltd. Process for producing carbonaceous implant material
US5209979A (en) * 1990-01-17 1993-05-11 Ethyl Corporation Silicon carbide coated article with ceramic topcoat
JPH04220261A (ja) * 1990-12-19 1992-08-11 Sumitomo Electric Ind Ltd ダイヤモンド被覆生体用部材
US5451444A (en) * 1993-01-29 1995-09-19 Deliso; Evelyn M. Carbon-coated inorganic substrates
US5382642A (en) * 1993-07-28 1995-01-17 Arco Chemical Technology, L.P. Copolymers of allyl alcohol propoxylates and vinyl aromatic monomers
US5516884A (en) * 1994-03-09 1996-05-14 The Penn State Research Foundation Preparation of polycarbynes and diamond-like carbon materials made therefrom
US5605714A (en) * 1994-03-29 1997-02-25 Southwest Research Institute Treatments to reduce thrombogeneticity in heart valves made from titanium and its alloys
DE69521709T2 (de) * 1994-09-23 2002-04-25 Impra Inc Kohlenstoffhaltiges gefässtransplantat und herstellungsverfahren
RU2095464C1 (ru) 1996-01-12 1997-11-10 Акционерное общество закрытого типа "Тетра" Биокарбон, способ его получения и устройство для его осуществления
US5891507A (en) 1997-07-28 1999-04-06 Iowa-India Investments Company Limited Process for coating a surface of a metallic stent
US6156697A (en) * 1997-11-04 2000-12-05 Corning Incorporated Method of producing high surface area carbon structures
US6203505B1 (en) 1998-06-05 2001-03-20 Advanced Cardiovascular Systems, Inc. Guidewires having a vapor deposited primer coat
EP1109738A4 (de) * 1998-07-20 2010-08-11 Corning Inc Verfahren zur herstellung von mesoporösem kohlenstoff unter verwendung von poren-formern
CA2351734A1 (en) * 1998-11-20 2000-06-02 University Of Connecticut Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
JP2000237299A (ja) * 1999-02-18 2000-09-05 Yasuhiro Fukui 生体適合性材及びその形成方法
US6372283B1 (en) * 1999-04-02 2002-04-16 Medtronic, Inc. Plasma process for surface modification of pyrolitic carbon
DE19951477A1 (de) 1999-10-26 2001-05-03 Biotronik Mess & Therapieg Stent
AU2001279759A1 (en) 2000-07-28 2002-02-13 Blue Medical Devices B.V. Intravascular stent with expandable coating
DE10051910A1 (de) * 2000-10-19 2002-05-02 Membrana Mundi Gmbh Flexible, poröse Membranen und Adsorbentien, und Verfahren zu deren Herstellung
US20040018228A1 (en) * 2000-11-06 2004-01-29 Afmedica, Inc. Compositions and methods for reducing scar tissue formation
US6544582B1 (en) * 2001-01-05 2003-04-08 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
EP2319453B1 (de) * 2001-09-28 2016-07-20 Boston Scientific Limited Kardiovaskulärer Ballonkatheter mit Nanokompositen
US20030093147A1 (en) * 2001-11-13 2003-05-15 Ogle Matthew F. Medical devices that stimulate growth factor production
US20030104028A1 (en) * 2001-11-29 2003-06-05 Hossainy Syed F.A. Rate limiting barriers for implantable devices and methods for fabrication thereof
CN1303132C (zh) * 2002-03-25 2007-03-07 麻省大学 高分子量聚合物
CZ295032B6 (cs) 2002-05-23 2005-05-18 Škoda Auto a. s. Ochranná lišta prahu dveří automobilu se svíticím efektem
US6859986B2 (en) * 2003-02-20 2005-03-01 Cordis Corporation Method system for loading a self-expanding stent
DE202004009059U1 (de) 2003-05-16 2004-09-16 Blue Membranes Gmbh Mit kohlenstoffbasiertem Material beschichtete Substrate
DE10324415A1 (de) 2003-05-28 2004-12-16 Blue Membranes Gmbh Verfahren zur Beschichtung von Substraten mit kohlenstoffbasiertem Material
DE10322182A1 (de) 2003-05-16 2004-12-02 Blue Membranes Gmbh Verfahren zur Herstellung von porösem, kohlenstoffbasiertem Material
WO2004101017A2 (de) 2003-05-16 2004-11-25 Blue Membranes Gmbh Biokompatibel beschichtete medizinische implantate
DE10333098A1 (de) 2003-07-21 2005-02-10 Blue Membranes Gmbh Biokompatibel beschichtete medizinische Implantate
DE10335131A1 (de) 2003-07-31 2005-02-24 Blue Membranes Gmbh Verfahren und Herstellung von porösen kohlenstoffbasierten Formkörpern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064085A1 (de) * 1998-06-09 1999-12-16 Franz Herbst Verfahren zur herstellung von biokompatiblen oberflächen
WO2002080996A1 (de) * 2001-04-03 2002-10-17 Franz Herbst Medizinisches implantat und verfahren zu seiner herstellung

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098740A1 (en) * 2001-05-11 2010-04-22 Exogenesis Corporation Method of controlling a drug release rate
US8512734B2 (en) 2004-07-05 2013-08-20 Katholieke Universiteit Leuven, K.U.Leuven R&D Biocompatible coating of medical devices
WO2006002498A3 (en) * 2004-07-05 2006-02-23 Ziscoat N V Biocompatible coating of medical devices comprising molecular sieves
WO2006002498A2 (en) * 2004-07-05 2006-01-12 Ziscoat N.V. Biocompatible coating of medical devices comprising molecular sieves
JP2008522752A (ja) * 2004-12-09 2008-07-03 ボストン サイエンティフィック リミティッド 制御された治療剤送達のための蒸着ナノポーラス被覆を有する医療装置
US10888896B2 (en) 2005-01-21 2021-01-12 The Boeing Company Activation method using modifying agent
US9909020B2 (en) 2005-01-21 2018-03-06 The Boeing Company Activation method using modifying agent
US8048151B2 (en) 2005-01-28 2011-11-01 Greatbatch Ltd. Stent coating for eluting medication
US8066764B2 (en) 2005-01-28 2011-11-29 Greatbatch Ltd. Stent coating for eluting medication
US8367151B2 (en) 2005-01-28 2013-02-05 Greatbatch Ltd. Stent coating for eluting medication
US8057543B2 (en) 2005-01-28 2011-11-15 Greatbatch Ltd. Stent coating for eluting medication
EP1685861A3 (de) * 2005-01-28 2006-09-27 Greatbatch, Inc. Stentbeschichtung zur Arzneimittelfreisetzung
EP1685861A2 (de) * 2005-01-28 2006-08-02 Greatbatch, Inc. Stentbeschichtung zur Arzneimittelfreisetzung
US9005696B2 (en) 2008-08-07 2015-04-14 Exogenesis Corporation Medical device for bone implant and method for producing such a device

Also Published As

Publication number Publication date
AU2004243503A1 (en) 2004-12-09
PL1626749T3 (pl) 2009-04-30
EP1626749A2 (de) 2006-02-22
MXPA05011231A (es) 2006-09-14
EP1626749B1 (de) 2008-10-08
JP2007502184A (ja) 2007-02-08
EA200501561A1 (ru) 2006-06-30
DK1626749T3 (da) 2009-02-09
KR20060015624A (ko) 2006-02-17
ES2315661T3 (es) 2009-04-01
SI1626749T1 (sl) 2009-04-30
CA2519750A1 (en) 2004-12-09
ATE410196T1 (de) 2008-10-15
US20050079201A1 (en) 2005-04-14
DE202004009061U1 (de) 2004-08-12
HK1089702A1 (en) 2006-12-08
WO2004105826A3 (de) 2005-06-23
EP2033666A2 (de) 2009-03-11
DE502004008211D1 (de) 2008-11-20
BRPI0410957A (pt) 2006-07-04
PT1626749E (pt) 2009-01-14
EA009836B1 (ru) 2008-04-28

Similar Documents

Publication Publication Date Title
EP1626749B1 (de) Implantate mit funktionalisierten kohlenstoffoberflächen
CN100384490C (zh) 具有生物相容性涂层的医用植入物
US20050079200A1 (en) Biocompatibly coated medical implants
EP1680149B1 (de) Verfahren zur beschichtung von implantaten mittels eines druckverfahrens
US20070003753A1 (en) Medical devices comprising a reticulated composite material
US20060171990A1 (en) Drug delivery materials made by sol/gel technology
CN100594040C (zh) 具有功能化的碳表面的植入物
DE10333098A1 (de) Biokompatibel beschichtete medizinische Implantate
DE10333099A1 (de) Implantate mit funktionalisierten Kohlenstoffoberflächen
MXPA05011230A (en) Medical implants comprising biocompatible coatings
NEU LIPIŃSKA2, MICHAL WOLUNTARSKI2, NORINA LABUDE3
Schickle et al. Multifunctionalization of inert ceramics through graphene-derivates immobilization
ONDER Hastane Enfeksiyonlarına Karşı İmplant Yüzeylerinden Kontrollü İlaç Salımı

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10939021

Country of ref document: US

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004735213

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 170898

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2519750

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 4328/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/011231

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 200501561

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 20048139697

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057022587

Country of ref document: KR

Ref document number: 2006529943

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004243503

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004243503

Country of ref document: AU

Date of ref document: 20040528

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004243503

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057022587

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004735213

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0410957

Country of ref document: BR