WO2004094306A1 - Hydrogen generator and hydrogen generating method - Google Patents

Hydrogen generator and hydrogen generating method Download PDF

Info

Publication number
WO2004094306A1
WO2004094306A1 PCT/JP2004/005748 JP2004005748W WO2004094306A1 WO 2004094306 A1 WO2004094306 A1 WO 2004094306A1 JP 2004005748 W JP2004005748 W JP 2004005748W WO 2004094306 A1 WO2004094306 A1 WO 2004094306A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
liquid
generated
container
generator
Prior art date
Application number
PCT/JP2004/005748
Other languages
French (fr)
Japanese (ja)
Inventor
Shinfuku Nomura
Hiromichi Toyota
Kenya Matsumoto
Original Assignee
Techno Network Shikoku Co. Ltd.
Shikoku Electric Power Co. Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Techno Network Shikoku Co. Ltd., Shikoku Electric Power Co. Inc. filed Critical Techno Network Shikoku Co. Ltd.
Priority to JP2005505772A priority Critical patent/JP4710048B2/en
Publication of WO2004094306A1 publication Critical patent/WO2004094306A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0884Gas-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an apparatus and a method for generating hydrogen by decomposing a hydrogen compound.
  • Hydrogen is a highly demanded substance used in the chemical industry as a reducing agent. It is also used for fuel cells as clean energy. Water electrolysis is a conventional hydrogen generation method, but it is expensive and not practical. The most practical and practical hydrogen generation method is a steam reforming method. In this method, water vapor is mixed with a fossil fuel gas such as methane and chemically reacted at a high temperature to obtain hydrogen and carbon monoxide. This steam reforming method has the advantage of low cost, but generates a large amount of carbon monoxide and carbon dioxide.
  • Japanese Patent No. 2711368 and Japanese Patent No. 2871182 describe production of hydrogen and carbon black by decomposing methane or natural gas by plasma. I have.
  • Patent Nos. 2,711,368 and 2,687,182 provide a yield of almost 100% of carbon and hydrogen of hydrocarbons
  • Patent No. 2 7 1 1 3 6 8 The inventions disclosed in Japanese Unexamined Patent Publication No. 28671182 are based on gas-phase plasma that generates plasma between electrodes in a gas such as methane gas, and it is difficult to increase the energy density of plasma. The reaction speed is limited. In addition, plasma is generated at a high temperature and is inconvenient to handle, and it is difficult to maintain safety because methane gas reacts at a high temperature.
  • An object of the present invention is to provide an effective hydrogen generating apparatus and a hydrogen generating method using plasma in liquid which is locally high in energy, macroscopically low in temperature and low in pressure, safe and easy to handle. I do. Disclosure of the invention
  • a hydrogen generator of the present invention includes: a container for containing a liquid containing a hydrogen compound; a bubble generating means for generating bubbles in the liquid; and an electromagnetic wave generator for irradiating the liquid with electromagnetic waves.
  • a hydrogen recovery means which generates plasma in the liquid to decompose the hydrogen compound and recover the generated hydrogen.
  • a carbon recovery means may be provided. Alternatively, it may have a supply means for continuously supplying liquid to the container, and a discharge means for continuously discharging liquid from the container.
  • the bubble generating means may be an ultrasonic generator that irradiates ultrasonic waves into the liquid to generate bubbles.
  • the hydrogen generation method involves placing a liquid containing a compound containing hydrogen and carbon in a container, generating bubbles in the liquid in the container, and irradiating electromagnetic waves to generate plasma in the liquid.
  • the method is characterized in that the compound is decomposed to generate hydrogen, a carbon compound is synthesized, and the generated hydrogen and the carbon compound are recovered.
  • a catalyst that promotes the decomposition reaction may be mixed in the liquid.
  • carbon nanotubes are synthesized in a liquid, and the generated hydrogen is adsorbed on the carbon nanotubes.
  • the term “synthesis of a carbon compound” includes, in addition to synthesizing a substance composed of carbon and another element, synthesizing a substance composed only of carbon, such as diamond-fullerene and carbon nanotube. The invention's effect
  • the hydrogen generating apparatus and the hydrogen generating method of the present invention have an effect that hydrogen can be efficiently generated by generating plasma in a liquid.
  • this plasma is high temperature and high pressure, it is macroscopically low temperature and low pressure because it is generated in the liquid, and it is easy to handle and safe. In addition, it does not generate a large amount of carbon monoxide or carbon dioxide, which causes global warming, and meets the demand for clean energy.
  • a hydrocarbon is used as a raw material liquid to generate hydrogen and simultaneously synthesize a carbon compound such as -U carbon such as fullerene or carbon nanotube, the cost is further improved. Wastes such as cooking oil and engine oil that have been used as hydrocarbons in the raw material liquid can also be used, and the waste can be converted into valuable resources and reused.
  • the use of the present invention also has the advantage of reducing the amount of secondary waste. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an explanatory view showing a hydrogen generator of the present invention.
  • Fig. 2 is a graph showing the emission spectrum of the plasma.
  • FIG. 3 is an explanatory view showing an embodiment of the hydrogen generator of the present invention.
  • FIG. 4 is an explanatory diagram showing an embodiment of another hydrogen generator according to the present invention.
  • FIG. 1 is an explanatory diagram showing a hydrogen generator.
  • the hydrogen generator 1 has a container 2 for holding a liquid 3. This liquid 3 contains a compound containing hydrogen.
  • the apparatus has a bubble generating means for generating bubbles in the liquid.
  • the ultrasonic generator 4 is a means for generating bubbles.
  • an electromagnetic wave generator 5 for irradiating the liquid 3 with electromagnetic waves is provided.
  • the container can be appropriately selected according to the type and amount of the target substance to be treated, and may be as large as a flask for processing a small amount, or a large processing tank for processing a large amount.
  • the pipe may have a passage time for the time required for the liquid to be continuously processed at a high speed.
  • An electromagnetic wave generator 5 is provided so as to irradiate the place where the bubbles 6 are generated with electromagnetic waves.
  • means for generating bubbles in addition to the ultrasonic generator, means for generating bubbles by depressurizing the inside of the container with a pressure reducing means such as a vacuum pump, or means for generating bubbles by providing heating means in a liquid. Can also be used.
  • the ultrasonic generator 4 irradiates the liquid 3 in the container 2 with ultrasonic waves, and the ultrasonic waves generate a large number of bubbles 6 in the liquid in a cloud shape.
  • the hydrogen generator according to the present invention is provided with an electromagnetic wave generator 5 so as to irradiate the position where bubbles 6 in the liquid are generated with electromagnetic waves.
  • the electromagnetic waves the plasma to be generated
  • the frequency and output can be selected according to the type and intensity of the microwave, but microwaves of about 2 GHz or more are mainly used.
  • a high-density high-energy plasma can be generated in a liquid.
  • the plasma is already encapsulated in the gas bubbles, and confinement of the generated plasma, which is a major problem in plasma technology, is not a problem in the present invention.
  • high-temperature and high-pressure plasma is locally generated, it is confined in a liquid with a large heat capacity and is macroscopically low in temperature. Therefore, there is no need to heat anything outside the device or in contact with the device.
  • the plasma generated in this way is high in temperature and pressure, has a high energy density, and is easy to handle.
  • Acoustic cavitation includes single bubbles (single bubbles) and multiple bubbles (multi bubbles), and the present invention can be applied to both.
  • the hydrogen generator according to the present invention is simple and small, and can be made to be large enough to be placed on a desk. It can also be.
  • the liquids were used, which is a type of hydrocarbon dodecane (C 1 2 H 2 6) .
  • the electromagnetic wave was a microwave of 2.45 GHz, and 50 W was irradiated into the liquid (input 200 W, reflection 15 ⁇ W).
  • the ultrasonic wave was irradiated at 50 KHz at an output of 50 W.
  • An exhaust pipe 7 is provided at the top of the container 2, and the gas in the container 2 is sucked by a rotary pump 8. The gas that has passed through the rotary pump 8 is collected from the end 9 of the exhaust pipe.
  • the hydrogen generator 1 is provided with an inert gas supply means 10, and here, an argon gas supply means 10 a and a nitrogen gas supply means 10 b are provided.
  • the inert gas is supplied from the inert gas supply means 10 into the container 2 by the inert gas supply pipe 11.
  • the inert gas supply pipe 11 is provided with a flow meter 12 and control valves 13 a and b. Adjusting the control valves 13 a and b while checking the flow rate with the flow meter 12 Supply an appropriate amount of inert gas into the container 2.
  • the rotary pump 8 was operated to reduce the pressure in the vessel 2 to 500 Pa, and the liquid was irradiated with ultrasonic waves and electromagnetic waves to generate plasma in the liquid. By reducing the pressure, plasma is more likely to be generated than under atmospheric pressure.
  • FIG. 2 is a graph showing the emission spectrum of this plasma. From the peak C 2 indicates that they are generated in a large amount is observed, Togawakaru this the hula one lens, and New carbon such as carbon nanotube has occurred. Further, there is also a peak indicating that hydrogen is generated, and it can be confirmed that hydrogen is generated by the hydrogen generator and the hydrogen generating method of this example.
  • the pressure in the vessel 2 was increased to 5 KPa by decomposing dodecane by the liquid plasma to generate hydrogen.
  • the gas collected in the container 2 was collected by a syringe from the gas collection port 14 provided in the container 2 in an amount of 100 ml (at atmospheric pressure, 5 ml).
  • the collected gas was analyzed by gas chromatography 24 hours later, and as a result, a high concentration of hydrogen of 40% or more was detected. Considering that a considerable amount of hydrogen had been washed away before the analysis, high-purity hydrogen was generated. Hydrogen was generated by mixing a catalyst to promote the reaction to generate hydrogen in the liquid, but hydrogen was also generated without a catalyst. W
  • the hydrogen generator of the present invention decomposes a hydrogen compound by high-energy plasma generated in a liquid. Since the raw material of hydrogen is liquid, the density of the substance is much higher than that of gas such as methane, and the reaction efficiency is high. In addition, since plasma is locally generated in liquid even if it has high energy, it is macroscopically low temperature and low pressure, and is extremely easy to handle and safe. By using a liquid containing a compound containing hydrogen and carbon, hydrogen can be generated and a carbon compound such as new carbon can be obtained at the same time, which is more cost-effective than generating only hydrogen.
  • the electromagnetic wave generator and bubble generator for generating plasma can be controlled electrically and freely by a controller, and the frequency of electromagnetic waves and the output of electromagnetic waves, ultrasonic waves, irradiation time, etc. can be selected, so general-purpose It is highly versatile and can handle various raw material liquids and intended uses. It can be widely used when selecting the type of new carbon generated together with hydrogen.
  • Table 1 shows the results of hydrogen generation by the hydrogen generator 1.
  • the hydrogen concentration in the gas obtained from each liquid is shown.
  • high-purity hydrogen of 60% or more was obtained, and depending on the conditions, a purity of about 80% was obtained.
  • high-purity hydrogen is obtained by using edible oil and waste oil from engine oil, there is an advantage that the treatment of these waste oils is performed simultaneously with the generation of hydrogen.
  • Edible oil can be produced agriculturally without using petroleum as a raw material.
  • the fact that it can be used as a raw material for hydrogen also has the significance of utilizing biomass.
  • Table 2 shows data comparing the energy efficiency of the hydrogen generation method according to this example with the conventional hydrogen generation method.
  • the numbers in Table 2 show the ratio of the energy consumption of the example hydrogen generation method of the present invention to the energy consumption of each conventional technology.
  • the data for Dodecane shows that it consumes 1.10 times more energy than the fossil fuel combustion system, which is considered to be the most energy efficient among the conventional technologies. And are almost equivalent.
  • the energy efficiency of the hydrogen generation method of the present invention is equal to or higher than that of many of the conventional technologies. You. Considering that a large amount of carbon dioxide gas such as carbon dioxide is generated by using a fossil fuel combustion system, it is clear that the hydrogen generation method of the present invention that does not generate carbon dioxide gas is excellent. Table 2
  • FIG. 3 is an explanatory view showing an embodiment of the hydrogen generator.
  • a premixing chamber 15 is provided upstream of the container for holding the liquid 3.
  • the premixing chamber 15 has a raw material liquid supply port 16 and a catalyst supply port 17, so that the raw material liquid and the catalyst can be supplied to the premixing chamber 15 from the outside.
  • a raw material a liquid containing a hydrogen compound, particularly a liquid containing carbon and hydrogen such as hydrocarbons is used.
  • the catalyst is used to accelerate the reaction of decomposing the raw materials to generate hydrogen. For example, palladium is used.
  • the raw material liquid and the catalyst supplied to the premixing chamber 15 are stirred by the stirring means 18 and sufficiently mixed. Further, even in the container 2, the raw material liquid and the catalyst are mixed more satisfactorily by irradiation with ultrasonic waves.
  • the premixing chamber 15 and the vessel 2 are connected by a pipe 19.
  • the pipe 19 is provided with a control valve 20 so as to regulate the flow of the liquid in the pipe 19.
  • the control valve 20 By controlling the control valve 20 so that the liquid at a constant flow rate is continuously supplied, the hydrogen generation processing can be continuously performed.
  • the control valve 20 is closed to interrupt the supply, the hydrogen generation process is performed, and after the processed liquid is discharged from the container 2, the process is repeated.
  • the control valve 20 is opened to supply the liquid, and the sequential processing can be performed by repeating the procedure.
  • An exhaust pipe 7 is provided at the upper part of the container 2 and discharges gas generated inside the container 2 to the outside of the container 2.
  • a liquid discharge pipe 21 is provided at a lower portion of the container 2 so as to discharge the liquid in the container 2 to the outside.
  • the exhaust pipe 7 is connected to a separation membrane 22 that selectively allows only hydrogen from the gas to pass therethrough. Hydrogen that has passed through the separation curtain is recovered as hydrogen gas. Gas that does not pass through the separation membrane 22 is exhausted as it is.
  • a settling tank 23 is connected to the liquid discharge pipe 21. New carbon and catalyst such as carbon nanotubes contained in the liquid discharged from the container 2 are collected as a precipitate. Other liquids are discarded. The recovered catalyst is put into the premixing chamber 15 again and reused. That is, in the present embodiment, the sedimentation tank 23 functions as carbon recovery means.
  • FIG. 4 is an explanatory view showing another embodiment of the hydrogen generator. Also in this embodiment, a premixing chamber 15 is provided so that the raw material liquid and the catalyst are sufficiently mixed in advance and then supplied to the vessel 2. In this embodiment, no exhaust pipe is provided, and only the liquid discharge pipe 21 is provided.
  • the first method uses a substance that absorbs hydrogen as a catalyst. Hydrogen compounds are decomposed by the plasma generated in the liquid in the container 2 to generate hydrogen, and this hydrogen is adsorbed on the catalyst. The hydrogen-adsorbed catalyst is discharged out of the container 2 through the liquid discharge pipe 21 in a state of being contained in the liquid, and is conveyed to the heating tank 24.
  • the second method uses a liquid containing hydrocarbons as a raw material liquid. First, it generates hydrocarbons by the plasma generated in the liquid in the container 2 to generate hydrogen and synthesizes new carbon such as carbon nanotubes. The generated hydrogen is adsorbed on the new carbon. The new carbon that has absorbed the hydrogen is transported to the heating tank 24 through the liquid discharge pipe 21.
  • the heating tank 24 is provided with a heater 25 for heating the inside of the heating tank.
  • the liquid carried to the heating tank 24 by the heater 25 is heated, and the hydrogen adsorbed on the catalyst or the new carbon is separated and collected as a gas. New carbon remaining in the heating tank 24 is also recovered. That is, in this embodiment, the heating tank 24 functions as carbon recovery means.
  • hydrogen since hydrogen is generated by generating plasma in a liquid, it can be used as a hydrogen generation technology having a high reaction rate and high energy efficiency. Since a carbon compound can be produced simultaneously with hydrogen production, it can be used as a device that combines hydrogen production and carbon compound production. Since hydrogen can be obtained without generating carbon dioxide, it can be used as a pollution-free energy technology.

Abstract

A hydrogen generator comprising a container for holding a liquid containing a hydrogen compound, an air bubble-forming means for forming air bubbles in the liquid, an electromagnetic wave generator for irradiating the liquid with an electromagnetic wave, and a hydrogen collecting means is disclosed wherein the hydrogen compound is decomposed by generating a plasma in the liquid and the thus-generated hydrogen is collected. This hydrogen generator enables to generate hydrogen at a high reaction rate and a high energy efficiency by generating a high-energy plasma in the liquid.

Description

水素発生装置および水素発生方法 Hydrogen generator and hydrogen generating method
技術分野 Technical field
本発明は、 水素化合物を分解して水素発生させる装置および方法に関 するものである。  The present invention relates to an apparatus and a method for generating hydrogen by decomposing a hydrogen compound.
明 背景技術  Akira Background technology
 Rice field
水素は還元剤として化学工業で使用される需要の多い物質である。 ま た、 ク リーンエネルギーとして燃料電池にも使用される。 従来の水素発 生方法として水の電気分解法があるが、 コス トが高く実用的ではない。 また、 最も実用的な実用的な水素発生方法として水蒸気改質法がある。 これは、 メタン等の化石燃料ガスに水蒸気を混合し、 高温で化学反応さ せて水素と一酸化炭素を得る方法である。 この水蒸気改質法はコス トが 低いという利点がある反面、 一酸化炭素や二酸化炭素を大量に発生する 。 また、 特許第 2 7 1 1 3 6 8号公報、 特許第 2 8 6 7 1 8 2号公報等 にはメタンや天然ガスをプラズマで分解して水素とカーボンブラックを 製造することが記載されている。  Hydrogen is a highly demanded substance used in the chemical industry as a reducing agent. It is also used for fuel cells as clean energy. Water electrolysis is a conventional hydrogen generation method, but it is expensive and not practical. The most practical and practical hydrogen generation method is a steam reforming method. In this method, water vapor is mixed with a fossil fuel gas such as methane and chemically reacted at a high temperature to obtain hydrogen and carbon monoxide. This steam reforming method has the advantage of low cost, but generates a large amount of carbon monoxide and carbon dioxide. In addition, Japanese Patent No. 2711368 and Japanese Patent No. 2871182 describe production of hydrogen and carbon black by decomposing methane or natural gas by plasma. I have.
水の電気分解法はコス トが高く実用的でないことは述べた。 一方、 水 蒸気改質法ではコス トは低いが、 一酸化炭素や二酸化炭素を大量に発生 する。 これらのガスは地球温暖化の原因となるものである。 特許第 2 7 1 1 3 6 8号公報、 特許第 2 8 6 7 1 8 2号公報等の発明による方法は 炭化水素のほとんど 1 0 0 %の炭素及び水素の収量を与えること、 また He stated that water electrolysis was expensive and impractical. On the other hand, the steam reforming method costs less, but generates large amounts of carbon monoxide and carbon dioxide. These gases are responsible for global warming. The methods according to the inventions of Patent Nos. 2,711,368 and 2,687,182 provide a yield of almost 100% of carbon and hydrogen of hydrocarbons, and
、 反応工程におけるそれらの生成物のいずれもその工程によってほとん ど汚染されていないことが見出されたと記載されている (たとえば、 特 許第 2 7 1 1 3 6 8号公報第 3頁右欄 1 0行)。 特許第 2 7 1 1 3 6 8 号公報、 特許第 2 8 6 7 1 8 2号公報等の発明は、 メタンガス等の気体 中の電極間でプラズマを発生させる気相プラズマによるものであり、 プ ラズマのエネルギー密度を上げることは困難であり、 反応速度に限界が ある。 また、 プラズマは高温状態で発生するために取り扱いが不便であ り、 メタンガス等を高温で反応させるために安全を維持することは困難 である。 この発明は、 局所的には高エネルギーでありながらも巨視的に は低温かつ低圧であり、 安全かつ取り扱いやすい液中プラズマによる効 果的な水素発生装置および水素発生方法を提供することを目的とする。 発明の開示 However, it is described that none of these products in the reaction step was found to be substantially contaminated by the step (for example, see Patent No. 2711 368, page 3, right column, page 3). 10 rows). Patent No. 2 7 1 1 3 6 8 The inventions disclosed in Japanese Unexamined Patent Publication No. 28671182 are based on gas-phase plasma that generates plasma between electrodes in a gas such as methane gas, and it is difficult to increase the energy density of plasma. The reaction speed is limited. In addition, plasma is generated at a high temperature and is inconvenient to handle, and it is difficult to maintain safety because methane gas reacts at a high temperature. SUMMARY OF THE INVENTION An object of the present invention is to provide an effective hydrogen generating apparatus and a hydrogen generating method using plasma in liquid which is locally high in energy, macroscopically low in temperature and low in pressure, safe and easy to handle. I do. Disclosure of the invention
前述の課題を解決するため、 この発明の水素発生装置は、 水素化合物 を含む液体を入れる容器と、 前記液体中に気泡を発生させる気泡発生手 段と、 前記液体に電磁波を照射する電磁波発生装置と、 水素回収手段を 備え、 液中にプラズマを発生させて水素化合物を分解し、 発生した水素 を回収するものである。 さらに、 炭素回収手段を備えてもよい。 あるい は、 前記容器に連続的に液体を供給する供給手段と、 容器から連続的に 液体を排出する排出手段を有するものでもよい。 気泡発生手段を、 前記 液体中に超音波を照射して気泡を発生させる超音波発生装置とすること もできる。  In order to solve the above-mentioned problems, a hydrogen generator of the present invention includes: a container for containing a liquid containing a hydrogen compound; a bubble generating means for generating bubbles in the liquid; and an electromagnetic wave generator for irradiating the liquid with electromagnetic waves. And a hydrogen recovery means, which generates plasma in the liquid to decompose the hydrogen compound and recover the generated hydrogen. Further, a carbon recovery means may be provided. Alternatively, it may have a supply means for continuously supplying liquid to the container, and a discharge means for continuously discharging liquid from the container. The bubble generating means may be an ultrasonic generator that irradiates ultrasonic waves into the liquid to generate bubbles.
さらに、 前述の課題を解決するため水素発生方法は、 水素と炭素を 含む化合物を含む液体を容器に入れ、 容器内の液体に気泡を発生させる とともに電磁波を照射して液中でプラズマを発生させ、 前記化合物を分 解して水素を発生させるとともに炭素化合物を合成し、 発生した水素お よび炭素化合物を回収することを特徴とするものである。 液体中に分解 反応を促進させる触媒を混合してもよい。 また、 液体中でカーボンナノ チューブを合成し、 発生した水素をカーボンナノチューブに吸着させて W 200 Furthermore, in order to solve the above-mentioned problems, the hydrogen generation method involves placing a liquid containing a compound containing hydrogen and carbon in a container, generating bubbles in the liquid in the container, and irradiating electromagnetic waves to generate plasma in the liquid. The method is characterized in that the compound is decomposed to generate hydrogen, a carbon compound is synthesized, and the generated hydrogen and the carbon compound are recovered. A catalyst that promotes the decomposition reaction may be mixed in the liquid. In addition, carbon nanotubes are synthesized in a liquid, and the generated hydrogen is adsorbed on the carbon nanotubes. W 200
3 回収するものであってもよい。 なお、 本発明において炭素化合物の合成 とは、 炭素と他の元素よりなる物質を合成することのほかに、 ダイヤモ ンドゃフラーレン、 カーボンナノチューブ等炭素のみからなる物質を合 成することも含む。 発明の効果  3 It may be collected. In the present invention, the term “synthesis of a carbon compound” includes, in addition to synthesizing a substance composed of carbon and another element, synthesizing a substance composed only of carbon, such as diamond-fullerene and carbon nanotube. The invention's effect
この発明の水素発生装置および水素発生方法は、 液中でプラズマを発生 させることにより、 効率的に水素を発生させることができるという効果 を有する。 このプラズマは高温 ·高圧であるが液中で発生するために巨 視的には低温かつ低圧であり、 取り扱いやすく安全なものである。 また、 地球温暖化の原因となる一酸化炭素や二酸化炭素を大量に発生すること もなく、 クリーンエネルギーとしての要請にも合致するものである。 原 料液として炭化水素を使用し、 水素を発生させるとともにフラーレンや カーボンナノチューブ等の-ユ ーカーボンなど炭素化合物を同時に合成 すると、 コス ト的にもさらに有利になる。 原料液の炭化水素として使用 済みの食用油やエンジンオイルなどの廃棄物も使用でき、 廃棄物を有価 なものに変換再利用できるので、 水素製造と同時に廃棄物処理を行うと いう面からもコス ト的に有利である。 また、 本発明を用いれば二次廃棄 物も少ないという利点がある。 図面の簡単な説明 The hydrogen generating apparatus and the hydrogen generating method of the present invention have an effect that hydrogen can be efficiently generated by generating plasma in a liquid. Although this plasma is high temperature and high pressure, it is macroscopically low temperature and low pressure because it is generated in the liquid, and it is easy to handle and safe. In addition, it does not generate a large amount of carbon monoxide or carbon dioxide, which causes global warming, and meets the demand for clean energy. If a hydrocarbon is used as a raw material liquid to generate hydrogen and simultaneously synthesize a carbon compound such as -U carbon such as fullerene or carbon nanotube, the cost is further improved. Wastes such as cooking oil and engine oil that have been used as hydrocarbons in the raw material liquid can also be used, and the waste can be converted into valuable resources and reused. Advantageously. The use of the present invention also has the advantage of reducing the amount of secondary waste. BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の水素発生装置を示す説明図である。 図 2はプラズマ の発光スぺク トルを示すグラフである。 図 3はこの発明の水素発生装置 の実施例を示す説明図である。 図 4はこの発明の別の水素発生装置の実 施例を示す説明図である。 発明を実施するための最良の形態 FIG. 1 is an explanatory view showing a hydrogen generator of the present invention. Fig. 2 is a graph showing the emission spectrum of the plasma. FIG. 3 is an explanatory view showing an embodiment of the hydrogen generator of the present invention. FIG. 4 is an explanatory diagram showing an embodiment of another hydrogen generator according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
この発明をより詳細に示すために、 以下、 この発明を実施するための 最良の形態について説明する。 図 1は水素発生装置を示す説明図である 。 水素発生装置 1は、 液体 3を入れる容器 2を有する。 この液体 3は水 素を含む化合物を含むものである。 そして、 液体中に気泡を発生させる 気泡発生手段を有するが、 図 1の例では超音波発生装置 4が気泡発生手 段である。 さらに、 液体 3に電磁波を照射する電磁波発生装置 5を備え ている。 容器としては、 処理すべき対象物質の種類や処理量にあわせて 適宜選択でき、 少量を処理するためのフラスコ程度の大きさのものであ つてもよく、 大量に処理するための大型処理槽であってもよく、 あるい は高速で連続的に処理するために液体が処理に必要な時間だけの通過時 間を有する配管であってもよい。  BEST MODE FOR CARRYING OUT THE INVENTION In order to show the present invention in more detail, the best mode for carrying out the present invention will be described below. FIG. 1 is an explanatory diagram showing a hydrogen generator. The hydrogen generator 1 has a container 2 for holding a liquid 3. This liquid 3 contains a compound containing hydrogen. The apparatus has a bubble generating means for generating bubbles in the liquid. In the example of FIG. 1, the ultrasonic generator 4 is a means for generating bubbles. Further, an electromagnetic wave generator 5 for irradiating the liquid 3 with electromagnetic waves is provided. The container can be appropriately selected according to the type and amount of the target substance to be treated, and may be as large as a flask for processing a small amount, or a large processing tank for processing a large amount. Alternatively, the pipe may have a passage time for the time required for the liquid to be continuously processed at a high speed.
この超音波照射により液中では微小な気泡 6が多数発生する。 そして、 この気泡 6が発生している箇所に電磁波を照射するように、 電磁波発生 装置 5が設けられている。 気泡発生手段と しては、 超音波発生装置以外 に、 真空ポンプなどの減圧手段によって容器内を減圧して気泡を発生さ せる手段や、 液体中に加熱手段を設けて気泡を発生させる手段を用いる こともできる。  By this ultrasonic irradiation, many small bubbles 6 are generated in the liquid. An electromagnetic wave generator 5 is provided so as to irradiate the place where the bubbles 6 are generated with electromagnetic waves. As means for generating bubbles, in addition to the ultrasonic generator, means for generating bubbles by depressurizing the inside of the container with a pressure reducing means such as a vacuum pump, or means for generating bubbles by providing heating means in a liquid. Can also be used.
超音波発生装置 4は、 この容器 2内の液体 3に超音波を照射するもの であるが、 この超音波によって液体中に多数の気泡 6が雲状に発生する。 気泡 6の中には容器 2中の液体 3に起因する物質が気相で入っている力 気泡 6内部の気体は超音波によって急速に拡大収縮を繰り返す。 収縮時 にはほぼ断熱圧縮となり、 気泡 6内では超高圧高温となりプラズマが発 生しやすい状態となる。 本発明に係る水素発生装置には電磁波発生装置 5が設けられており、 液体の中の気泡 6が発生する位置に電磁波を照射 するようになつている。 電磁波と しては、 発生させよう とするプラズマ の種類や強度等によって周波数や出力を選択すればよいが、 主に 2 G H z程度かそれ以上のマイクロ波が用いられる。 超音波により高温高圧に なっているところに電磁波を重畳することによって気泡中に高工ネルギ 一のプラズマが発生する。 The ultrasonic generator 4 irradiates the liquid 3 in the container 2 with ultrasonic waves, and the ultrasonic waves generate a large number of bubbles 6 in the liquid in a cloud shape. The force in which the substance originating from the liquid 3 in the container 2 is contained in the gaseous phase in the bubble 6. At the time of contraction, the compression becomes almost adiabatic compression, and becomes extremely high pressure and high temperature in the bubble 6, so that plasma is easily generated. The hydrogen generator according to the present invention is provided with an electromagnetic wave generator 5 so as to irradiate the position where bubbles 6 in the liquid are generated with electromagnetic waves. As the electromagnetic waves, the plasma to be generated The frequency and output can be selected according to the type and intensity of the microwave, but microwaves of about 2 GHz or more are mainly used. By superimposing electromagnetic waves on high temperature and high pressure by ultrasonic waves, high energy plasma is generated in bubbles.
以上のようにして、 液体中で高密度の高エネルギープラズマを発生さ せることができる。 プラズマは既に気泡中に封じ込まれており、 プラズ マ技術における大きな課題である発生したプラズマの封じ込めは本発明 においては問題にならない。 局所的には高温高圧のプラズマが発生して いるが、 熱容量の大きな液体中に閉じ込められており巨視的にみれば低 温である。 したがって装置の外部や装置に接触するものを加熱すること がない。 このようにして発生したプラズマは高温高圧であってエネルギ 一密度が高く、 しかも取り扱いが容易である。 音響キヤビテーシヨンに よる気泡と して単気泡 (シングルバブル) と多気泡 (マルチバブル) が あり、 本発明は両者に適用できる。 単気泡では全体のエネルギーは小さ くなるが、 気泡内において超音波照射だけでも 5 0 0 0 K〜 1 0 0 0 0 0 Κという高エネルギー状態が得られる。 一方、 多気泡ではやや低温に なり超音波照射のみで 5 0 0 0 Κ程度であるが、 全体のエネルギー量は 大きく、 工業的利用に有利である。 本発明に係る水素発生装置は簡易で あるとともに小型であり、 机上に置けるほどの大きさに作ることができ る一方、 超音波発生装置や電磁波発生装置に高出力のものを用いて大規 模なものとすることもできる。  As described above, a high-density high-energy plasma can be generated in a liquid. The plasma is already encapsulated in the gas bubbles, and confinement of the generated plasma, which is a major problem in plasma technology, is not a problem in the present invention. Although high-temperature and high-pressure plasma is locally generated, it is confined in a liquid with a large heat capacity and is macroscopically low in temperature. Therefore, there is no need to heat anything outside the device or in contact with the device. The plasma generated in this way is high in temperature and pressure, has a high energy density, and is easy to handle. Acoustic cavitation includes single bubbles (single bubbles) and multiple bubbles (multi bubbles), and the present invention can be applied to both. Although the overall energy is small in a single bubble, a high energy state of 50,000 K to 100,000 mm can be obtained only by ultrasonic irradiation in the bubble. On the other hand, the temperature of a multibubble is slightly lower and is only about 500 000 mm by ultrasonic irradiation alone. However, the total energy amount is large, which is advantageous for industrial use. The hydrogen generator according to the present invention is simple and small, and can be made to be large enough to be placed on a desk. It can also be.
図 1に示す水素発生装置 1による水素発生の例について説明する。 液 体としては、 炭化水素の一種である ドデカン (C 1 2 H 2 6 ) を使用した。 電磁波は 2 . 4 5 G H z のマイクロ波であり、 5 0 Wを液体中に照射し た (入力 2 0 0 W、 反射 1 5 ◦ W)。 超音波は 4 5 K H zを 5 0 Wの出力 で照射した。 容器 2の上部には排気管 7が設けられており、 ロータリーポンプ 8に より容器 2内の気体を吸引する。 ロータリーポンプ 8を通過した気体は 排気管端部 9よ り回収される。 また、 水素発生装置 1には不活性ガス供 給手段 1 0が設けられており、 ここではアルゴンガス供給手段 1 0 a と 窒素ガス供給手段 1 0 bが設けられている。 不活性ガス供給手段 1 0か ら不活性ガス供給管 1 1により不活性ガスは容器 2内へ供給される。 不 活性ガス供給管 1 1には流量計 1 2と制御弁 1 3 a, bが設けられてお り、 流量計 1 2により流量を確認しながら制御弁 1 3 a , bを調整して、 適量の不活性ガスを容器 2内に供給する。 An example of hydrogen generation by the hydrogen generator 1 shown in FIG. 1 will be described. The liquids were used, which is a type of hydrocarbon dodecane (C 1 2 H 2 6) . The electromagnetic wave was a microwave of 2.45 GHz, and 50 W was irradiated into the liquid (input 200 W, reflection 15 ◦ W). The ultrasonic wave was irradiated at 50 KHz at an output of 50 W. An exhaust pipe 7 is provided at the top of the container 2, and the gas in the container 2 is sucked by a rotary pump 8. The gas that has passed through the rotary pump 8 is collected from the end 9 of the exhaust pipe. Further, the hydrogen generator 1 is provided with an inert gas supply means 10, and here, an argon gas supply means 10 a and a nitrogen gas supply means 10 b are provided. The inert gas is supplied from the inert gas supply means 10 into the container 2 by the inert gas supply pipe 11. The inert gas supply pipe 11 is provided with a flow meter 12 and control valves 13 a and b. Adjusting the control valves 13 a and b while checking the flow rate with the flow meter 12 Supply an appropriate amount of inert gas into the container 2.
初めにロータ リーポンプ 8を作動させて容器 2内を 5 0 0 P aまで減 圧し、 超音波と電磁波を液中に照射して液中でプラズマを発生させた。 減圧することにより、 大気圧下よりもプラズマが発生しやすくなる。  First, the rotary pump 8 was operated to reduce the pressure in the vessel 2 to 500 Pa, and the liquid was irradiated with ultrasonic waves and electromagnetic waves to generate plasma in the liquid. By reducing the pressure, plasma is more likely to be generated than under atmospheric pressure.
図 2はこのプラズマの発光スぺク トルを示すグラフである。 C 2が大 量に発生していることを示しているピークが観察されることより、 フラ 一レン、 カーボンナノチューブなどのニューカーボンが発生しているこ とがわかる。 また、 水素が発生していることを示すピークも存在してお り、 本例の水素発生装置および水素発生方法により水素が発生している ことが確認できる。 FIG. 2 is a graph showing the emission spectrum of this plasma. From the peak C 2 indicates that they are generated in a large amount is observed, Togawakaru this the hula one lens, and New carbon such as carbon nanotube has occurred. Further, there is also a peak indicating that hydrogen is generated, and it can be confirmed that hydrogen is generated by the hydrogen generator and the hydrogen generating method of this example.
液中プラズマによ り ドデカンを分解して水素を発生させることにより、 容器 2の中の圧力は 5 K P aまで上昇した。 容器 2に設けられた気体採 集口 1 4よ り注射器で容器 2内に溜まった気体を 1 0 0 m 1採集した (大気圧下では 5 m 1 )。 採集した気体を 2 4時間後にガスクロマトダラ フィー分析した結果、 4 0 %以上の高濃度の水素が検出された。 分析を 行うまでに相当量の水素が流失したことを考慮すると、 高純度の水素が 発生していることがわかる。 液体中に水素を発生させる反応を促進する ための触媒を混ぜて水素を発生させたが、 触媒なしでもやはり水素を発 W The pressure in the vessel 2 was increased to 5 KPa by decomposing dodecane by the liquid plasma to generate hydrogen. The gas collected in the container 2 was collected by a syringe from the gas collection port 14 provided in the container 2 in an amount of 100 ml (at atmospheric pressure, 5 ml). The collected gas was analyzed by gas chromatography 24 hours later, and as a result, a high concentration of hydrogen of 40% or more was detected. Considering that a considerable amount of hydrogen had been washed away before the analysis, high-purity hydrogen was generated. Hydrogen was generated by mixing a catalyst to promote the reaction to generate hydrogen in the liquid, but hydrogen was also generated without a catalyst. W
7 生させることができた。  7 I was able to live.
以上、 この発明の水素発生装置は液中で発生した高エネルギーのブラ ズマにより水素化合物の分解を行う。 水素の原料材料は液体であるため にメタン等の気体に比べて物質の密度がはるかに高く、 反応効率が高い。 また、 プラズマは局所的には高エネルギーであっても液中で発生してい るため巨視的には低温かつ低圧であり、 極めて取り扱いやすく、 安全で ある。 水素と炭素を含む化合物を含む液体を用いることにより、 水素を 発生させるとともにニューカーボン等の炭素化合物を同時に得ることが できるので、 水素のみを発生させるよりもさらにコス ト上も有利である。 プラズマを発生させるための電磁波発生装置および気泡発生装置は制 御器により電気.的に自由に制御することができ、 電磁波の周波数や電磁 波 ·超音波の出力 · 照射時間等を選択できるので汎用性が高く、 各種の 原料液や使用目的に対応できる。 水素とともに発生させるニューカーボ ンの種類を選択する場合にも広く対応できるものである。  As described above, the hydrogen generator of the present invention decomposes a hydrogen compound by high-energy plasma generated in a liquid. Since the raw material of hydrogen is liquid, the density of the substance is much higher than that of gas such as methane, and the reaction efficiency is high. In addition, since plasma is locally generated in liquid even if it has high energy, it is macroscopically low temperature and low pressure, and is extremely easy to handle and safe. By using a liquid containing a compound containing hydrogen and carbon, hydrogen can be generated and a carbon compound such as new carbon can be obtained at the same time, which is more cost-effective than generating only hydrogen. The electromagnetic wave generator and bubble generator for generating plasma can be controlled electrically and freely by a controller, and the frequency of electromagnetic waves and the output of electromagnetic waves, ultrasonic waves, irradiation time, etc. can be selected, so general-purpose It is highly versatile and can handle various raw material liquids and intended uses. It can be widely used when selecting the type of new carbon generated together with hydrogen.
図 1に示す水素発生装置を使用して水素を発生させる別の例について 説明する。 原料液としてドデカンの他に、 ベンゼン (C 6 H 1 2 )、 巿販さ れている食用油及びエンジンオイル (表 1ではそれぞれ 「原油」 と表示) 、 さらに食用油及びエンジンオイルをそれぞれの一般的な用途で使用し た後に回収した廃油を用いた。 各液体とも 1 0 0 m 1 を容器 2へ入れた 。 電磁波は 2 . 4 5 G H zのマイクロ波であり、 3 0 Wを液体中に照射 した (入力 3 0 0 W、 反射 2 7 0 W)。 超音波を照射した場合と照射しな い場合の両方の条件で実施した。 使用した超音波は 5 8 K H zを 5 Wの 出力で照射したものである。 ロータリーポンプ 8を作動させて容器 2内 を減圧した。 Another example of generating hydrogen using the hydrogen generator shown in FIG. 1 will be described. In addition to dodecane as a raw material liquid, benzene (C 6 H 12 ), edible oils and engine oils sold (each shown as “crude oil” in Table 1), and edible oils and engine oils as general liquids Waste oil collected after use for typical purposes was used. 100 ml of each liquid was placed in the container 2. The electromagnetic wave was a microwave of 2.45 GHz, and 30 W was irradiated into the liquid (input 300 W, reflection 270 W). The test was performed under both conditions of irradiation with and without irradiation of ultrasonic waves. The ultrasonic wave used was irradiated at 58 KHz with a power of 5 W. The pressure in the vessel 2 was reduced by operating the rotary pump 8.
水素発生装置 1によって水素発生を行った結果を表 1に示す。 各液体 より得られた気体中の水素濃度が表されている。 この例においては、 ど の原料液においても、 6 0 %以上の高純度の水素が得られており、 条件 によっては 8 0 %程度の純度も得られた。 また、 食用油及ぴエンジンォ ィルの廃油を使用しても高純度の水素が得られているが、 この場合、 水 素発生とともにこれら廃油の処理が同時に行われるという利点がある。 食用油は石油を原料とせず、 農業的に生産できるものであり、 これを水 素の原料と して使用できるということは、 バイオマスの活用という意義 も有する。 Table 1 shows the results of hydrogen generation by the hydrogen generator 1. The hydrogen concentration in the gas obtained from each liquid is shown. In this example, In the raw material liquid, high-purity hydrogen of 60% or more was obtained, and depending on the conditions, a purity of about 80% was obtained. Although high-purity hydrogen is obtained by using edible oil and waste oil from engine oil, there is an advantage that the treatment of these waste oils is performed simultaneously with the generation of hydrogen. Edible oil can be produced agriculturally without using petroleum as a raw material. The fact that it can be used as a raw material for hydrogen also has the significance of utilizing biomass.
Figure imgf000010_0001
さらに、 この例による水素発生方法のエネルギー効率を、 従来の水素 発生方法と比較したデータを表 2に示す。 表 2の数値は、 それぞれの従 来技術のエネルギー消費に対するこの発明の水素発生方法の例のエネル ギー消費の比を示している。 例えば、 ドデカンの場合のデータで見ると と、 従来技術の中で最もエネルギー効率がよいとされる化石燃料燃焼シ ステムと比較して 1 . 1 0倍のエネルギーを消費していることを示して いて、 ほぼ同等である。 それ以外でもこの発明の水素発生方法のェネル ギー効率は、 従来技術うち多くのものと同等又は上回る結果となってい る。 化石燃料燃焼システムを使用すれば二酸化炭素等の炭酸ガスを大量 に発生することを考慮すると、 炭酸ガスを発生させない本発明の水素発 生方法が優れていることが明らかになる。 表 2
Figure imgf000010_0001
Further, Table 2 shows data comparing the energy efficiency of the hydrogen generation method according to this example with the conventional hydrogen generation method. The numbers in Table 2 show the ratio of the energy consumption of the example hydrogen generation method of the present invention to the energy consumption of each conventional technology. For example, the data for Dodecane shows that it consumes 1.10 times more energy than the fossil fuel combustion system, which is considered to be the most energy efficient among the conventional technologies. And are almost equivalent. Other than that, the energy efficiency of the hydrogen generation method of the present invention is equal to or higher than that of many of the conventional technologies. You. Considering that a large amount of carbon dioxide gas such as carbon dioxide is generated by using a fossil fuel combustion system, it is clear that the hydrogen generation method of the present invention that does not generate carbon dioxide gas is excellent. Table 2
Figure imgf000011_0001
次に、 実施例により本発明をさらに詳細に説明する。 図 3は水素発生 装置の実施例を示す説明図である。 この実施例では液体 3を入れる容器 の上流に予混合室 1 5が設けられている。 予混合室 1 5は原料液供給口 1 6 と触媒供給口 1 7を有し、 外部より原料液および触媒を予混合室 1 5へ供給できるようになっている。 原料と しては水素化合物と含む液体 、 特に、 炭化水素等の炭素と水素を含む液体を使用する。 触媒は原材料 を分解して水素を発生させる反応を促進するためのもので、 たとえばパ ラジウムなどを用いる。 予混合室 1 5へ供給された原料液と触媒は、 撹 拌手段 1 8によって撹拌され、 十分に混合される。 また、 容器 2内にお いても超音波の照射により さらに撹拌されて、 原料液と触媒はより良好 に混合される。
Figure imgf000011_0001
Next, the present invention will be described in more detail with reference to examples. FIG. 3 is an explanatory view showing an embodiment of the hydrogen generator. In this embodiment, a premixing chamber 15 is provided upstream of the container for holding the liquid 3. The premixing chamber 15 has a raw material liquid supply port 16 and a catalyst supply port 17, so that the raw material liquid and the catalyst can be supplied to the premixing chamber 15 from the outside. As a raw material, a liquid containing a hydrogen compound, particularly a liquid containing carbon and hydrogen such as hydrocarbons is used. The catalyst is used to accelerate the reaction of decomposing the raw materials to generate hydrogen. For example, palladium is used. The raw material liquid and the catalyst supplied to the premixing chamber 15 are stirred by the stirring means 18 and sufficiently mixed. Further, even in the container 2, the raw material liquid and the catalyst are mixed more satisfactorily by irradiation with ultrasonic waves.
予混合室 1 5 と容器 2は配管 1 9によって接続されている。 配管 1 9 には制御弁 2 0が設けられており、 配管 1 9中の液体の流れを調整する ようになつている。 一定の流量の液体が連続的に供給されるように制御 弁 2 0を制御して、 水素発生処理を連続的に行うことができる。 また、 容器 2に一定量の液体を供給した後に制御弁 2 0を閉じて供給を中断し 、 水素発生処理を行い、 処理後の液体を容器 2から排出した後に、 再度 0 制御弁 2 0を開いて液体を供給する、 という手順を繰り返して逐次処理 を行うこともできる。 The premixing chamber 15 and the vessel 2 are connected by a pipe 19. The pipe 19 is provided with a control valve 20 so as to regulate the flow of the liquid in the pipe 19. By controlling the control valve 20 so that the liquid at a constant flow rate is continuously supplied, the hydrogen generation processing can be continuously performed. In addition, after supplying a certain amount of liquid to the container 2, the control valve 20 is closed to interrupt the supply, the hydrogen generation process is performed, and after the processed liquid is discharged from the container 2, the process is repeated. 0 The control valve 20 is opened to supply the liquid, and the sequential processing can be performed by repeating the procedure.
容器 2の上部には排気管 7が設けられており、 容器 2の内部で発生し た気体を容器 2の外へ排出する。 一方、 容器 2の下部には液体排出管 2 1が設けられており、 容器 2内の液体を外部へ排出するようになってい る。  An exhaust pipe 7 is provided at the upper part of the container 2 and discharges gas generated inside the container 2 to the outside of the container 2. On the other hand, a liquid discharge pipe 21 is provided at a lower portion of the container 2 so as to discharge the liquid in the container 2 to the outside.
排気管 7には気体中から水素のみを選択して透過させる分離膜 2 2が 接続されている。 分離幕を透過した水素は水素ガスと して回収される。 分離膜 2 2を透過しない気体はそのまま排気される。  The exhaust pipe 7 is connected to a separation membrane 22 that selectively allows only hydrogen from the gas to pass therethrough. Hydrogen that has passed through the separation curtain is recovered as hydrogen gas. Gas that does not pass through the separation membrane 22 is exhausted as it is.
液体排出管 2 1には沈殿槽 2 3が接続されている。 容器 2から排出さ れた液体中に含まれるカーボンナノチューブ等のニューカーボンや触媒 が沈殿物と して回収される。 それ以外の液体は廃棄される。 回収された 触媒は再度予混合室 1 5に投入されて再利用される。 すなわち、 本実施 例においては沈殿槽 2 3は炭素回収手段として機能する。  A settling tank 23 is connected to the liquid discharge pipe 21. New carbon and catalyst such as carbon nanotubes contained in the liquid discharged from the container 2 are collected as a precipitate. Other liquids are discarded. The recovered catalyst is put into the premixing chamber 15 again and reused. That is, in the present embodiment, the sedimentation tank 23 functions as carbon recovery means.
本発明の別の実施例について説明する。 図 4は水素発生装置の別の実 施例を示す説明図である。 この実施例においても予混合室 1 5が設けら れており、 原料液と触媒が予め十分に混合されてから容器 2へ供給され るようになっている。 そしてこの実施例においては、 排気管は設けられ ておらず、 液体排出管 2 1のみが設けられている。  Another embodiment of the present invention will be described. FIG. 4 is an explanatory view showing another embodiment of the hydrogen generator. Also in this embodiment, a premixing chamber 15 is provided so that the raw material liquid and the catalyst are sufficiently mixed in advance and then supplied to the vessel 2. In this embodiment, no exhaust pipe is provided, and only the liquid discharge pipe 21 is provided.
この実施例の水素発生装置による水素発生方法として、 2種類の方法 がある。 第一の方法は、 触媒として水素を吸着する物質を使用するもの である。 容器 2の液中で発生したプラズマにより水素化合物が分解され て水素が発生するが、 この水素を触媒に吸着させる。 水素を吸着した触 媒は液体に含まれた状態で液体排出管 2 1 より容器 2の外に排出され、 加熱槽 2 4へ運ばれる。  There are two types of hydrogen generation methods using the hydrogen generator of this embodiment. The first method uses a substance that absorbs hydrogen as a catalyst. Hydrogen compounds are decomposed by the plasma generated in the liquid in the container 2 to generate hydrogen, and this hydrogen is adsorbed on the catalyst. The hydrogen-adsorbed catalyst is discharged out of the container 2 through the liquid discharge pipe 21 in a state of being contained in the liquid, and is conveyed to the heating tank 24.
第二の方法は、 原料液と して炭化水素を含む液体を使用するものであ 1 り、 容器 2の液中で発生したプラズマにより炭化水素させて水素を発生 させるとともにカーボンナノチューブ等のニューカーボンを合成するも のである。 そして発生した水素をこのニューカーボンに吸着させる。 水 素を吸着したニューカーボンは液体排出管 2 1 を通って加熱槽 2 4へ運 ばれる。 The second method uses a liquid containing hydrocarbons as a raw material liquid. First, it generates hydrocarbons by the plasma generated in the liquid in the container 2 to generate hydrogen and synthesizes new carbon such as carbon nanotubes. The generated hydrogen is adsorbed on the new carbon. The new carbon that has absorbed the hydrogen is transported to the heating tank 24 through the liquid discharge pipe 21.
加熱槽 2 4には加熱槽内を加熱するためのヒーター 2 5が設けられて いる。 ヒーター 2 5により加熱槽 2 4へ運ばれた液体は加熱され、 触媒 またはニューカーボンに吸着されていた水素は分離し気体として回収さ れる。 加熱槽 2 4内に残ったニューカーボンも回収される。 すなわち、 本実施例においては加熱槽 2 4は炭素回収手段として機能する。 産業上の利用可能性  The heating tank 24 is provided with a heater 25 for heating the inside of the heating tank. The liquid carried to the heating tank 24 by the heater 25 is heated, and the hydrogen adsorbed on the catalyst or the new carbon is separated and collected as a gas. New carbon remaining in the heating tank 24 is also recovered. That is, in this embodiment, the heating tank 24 functions as carbon recovery means. Industrial applicability
本発明によれば、 液中でプラズマを発生させて水素を発生させるの で、 反応速度とエネルギー効率が高い水素発生技術として利用できる。 水素製造と同時に炭素化合物も生成できるので、 水素製造と炭素化合物 製造を兼ねた装置としても利用できる。 炭酸ガスを発生させることなく 水素が得られるので、 無公害のエネルギー技術として利用できるもので ある。  According to the present invention, since hydrogen is generated by generating plasma in a liquid, it can be used as a hydrogen generation technology having a high reaction rate and high energy efficiency. Since a carbon compound can be produced simultaneously with hydrogen production, it can be used as a device that combines hydrogen production and carbon compound production. Since hydrogen can be obtained without generating carbon dioxide, it can be used as a pollution-free energy technology.

Claims

1 2 請 求 の 範 囲 1 2 Scope of request
1 . 水素化合物を含む液体を入れる容器と、 前記液体中に気泡を発生さ せる気泡発生手段と、 前記液体に電磁波を照射する電磁波発生装置と、 水素回収手段を備え、 液中にプラズマを発生させて水素化合物を分解し、 発生した水素を回収する水素発生装置。  1. A container for containing a liquid containing a hydrogen compound, bubble generating means for generating bubbles in the liquid, an electromagnetic wave generator for irradiating the liquid with electromagnetic waves, and hydrogen recovery means, and a plasma is generated in the liquid. A hydrogen generator that decomposes hydrogen compounds to recover the generated hydrogen.
2 . 炭素回収手段を有する請求項 1に記載の水素発生装置。  2. The hydrogen generator according to claim 1, further comprising a carbon recovery means.
3 . 前記容器に連続的に液体を供給する供給手段と、 容器から連続的に 液体を排出する排出手段を有する請求項 1または請求項 2に記載の水素 発生装置。  3. The hydrogen generator according to claim 1 or 2, further comprising a supply unit that continuously supplies the liquid to the container, and a discharge unit that continuously discharges the liquid from the container.
4 . 気泡発生手段が前記液体中に超音波を照射して気泡を発生させる超 音波発生装置である請求項 1ないし請求項 3のいずれかに記載の水素発 生装置。 4. The hydrogen generator according to any one of claims 1 to 3, wherein the bubble generator is an ultrasonic generator that irradiates ultrasonic waves into the liquid to generate bubbles.
5 . 水素と炭素を含む化合物を含む液体を容器に入れ、 容器内の液体に 気泡を発生させるとともに電磁波を照射して液中でプラズマを発生させ、 前記化合物を分解して水素を発生させるとともに炭素化合物を合成し、 発生した水素および炭素化合物を回収することを特徴とする水素発生方 法。  5. A liquid containing a compound containing hydrogen and carbon is placed in a container, bubbles are generated in the liquid in the container, plasma is generated in the liquid by irradiating electromagnetic waves, and the compound is decomposed to generate hydrogen. A method for generating hydrogen, comprising synthesizing a carbon compound and recovering generated hydrogen and the carbon compound.
6 . 液体中に触媒を混合する請求項 5に記載の水素発生方法。  6. The method for generating hydrogen according to claim 5, wherein the catalyst is mixed into the liquid.
7 . 液体中でカーボンナノチューブを合成し、 発生した水素をカーボン ナノチューブに吸着させて回収する請求項 5または請求項 6に記載の水 素発生方法。  7. The hydrogen generation method according to claim 5, wherein the carbon nanotubes are synthesized in a liquid, and the generated hydrogen is adsorbed and collected on the carbon nanotubes.
PCT/JP2004/005748 2003-04-21 2004-04-21 Hydrogen generator and hydrogen generating method WO2004094306A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505772A JP4710048B2 (en) 2003-04-21 2004-04-21 Hydrogen generator and hydrogen generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-115199 2003-04-21
JP2003115199 2003-04-21

Publications (1)

Publication Number Publication Date
WO2004094306A1 true WO2004094306A1 (en) 2004-11-04

Family

ID=33307947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005748 WO2004094306A1 (en) 2003-04-21 2004-04-21 Hydrogen generator and hydrogen generating method

Country Status (2)

Country Link
JP (1) JP4710048B2 (en)
WO (1) WO2004094306A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273707A (en) * 2005-03-01 2006-10-12 Tohoku Univ Method for producing nanocarbon material, producing device, and nanocarbon material
JP2009181960A (en) * 2009-05-11 2009-08-13 Ehime Univ Method for generating plasma in liquid
JP2011126742A (en) * 2009-12-17 2011-06-30 Sekisui Chem Co Ltd Method for preparing flaked graphite dispersion, method for producing flaked graphite, and method for producing composite material
JP2012011313A (en) * 2010-06-30 2012-01-19 Nagoya Univ Apparatus and method for treating liquid
KR101152275B1 (en) * 2010-03-19 2012-06-08 이동훈 A fuel generation equipment having a carbon separation device
WO2013030200A1 (en) * 2011-08-30 2013-03-07 Stoecklinger Robert System for producing energy carriers
JP2013529352A (en) * 2010-03-31 2013-07-18 コロラド ステート ユニバーシティー リサーチ ファウンデーション Liquid-gas interface plasma device
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US9287091B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation System and methods for plasma application
JP2016153348A (en) * 2015-02-20 2016-08-25 東京電力ホールディングス株式会社 Hydrogen plasma generation method and hydrogen reduction method using the same
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
US10368939B2 (en) 2015-10-29 2019-08-06 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10441349B2 (en) 2015-10-29 2019-10-15 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10709497B2 (en) 2017-09-22 2020-07-14 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US10973569B2 (en) 2017-09-22 2021-04-13 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US11207124B2 (en) 2019-07-08 2021-12-28 Covidien Lp Electrosurgical system for use with non-stick coated electrodes
KR102410241B1 (en) * 2022-04-27 2022-06-16 순천대학교 산학협력단 solid acid catalyst of metal oxide for hydrogen production using liquid-phase plasma reaction and solid acid catalyst of metal oxide manufactured thereby
US11369427B2 (en) 2019-12-17 2022-06-28 Covidien Lp System and method of manufacturing non-stick coated electrodes
JP7411952B2 (en) 2019-10-02 2024-01-12 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
JP7414233B2 (en) 2019-10-02 2024-01-16 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
US11969204B2 (en) 2021-10-04 2024-04-30 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6202715B2 (en) * 2013-03-15 2017-09-27 国立大学法人愛媛大学 Hydrogen compound decomposition hydrogen recovery apparatus and method
KR101698958B1 (en) * 2015-04-24 2017-01-23 한국기계연구원 Plasma generating device and plasmas treatment method
US20180215616A1 (en) * 2015-08-07 2018-08-02 King Abdullah University Of Science And Technology Methods for reformation of gaseous hydrocarbons using electrical discharge

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617902A (en) * 1979-07-20 1981-02-20 Akiyama Morio Water dissociating method utilizing microwave plasma phenomenon
JPH08109002A (en) * 1994-02-28 1996-04-30 Hokushin Ind Inc Hydrogen generator
JP2000515107A (en) * 1996-05-13 2000-11-14 ハイドロ―ケベック How to cause hydrogen desorption from metal hydrides
JP2001302223A (en) * 2000-04-24 2001-10-31 Sony Corp Carbonaceous material for hydrogen storage and its manufacturing method, hydrogen storing carbonaceous material and its manufacturing method, battery using the hydrogen storing carbonaceous material and fuel cell using the hydrogen storing carbonaceous material
JP2002220201A (en) * 2001-01-19 2002-08-09 Tsutomu Sakurai Method of manufacturing hydrogen from steam by microwave discharge
JP2002234702A (en) * 2001-02-07 2002-08-23 Toyota Central Res & Dev Lab Inc Method and apparatus for generating hydrogen
JP2002308603A (en) * 2001-04-10 2002-10-23 Shikoku Res Inst Inc Method and apparatus for reforming liquid fuel
JP2003095601A (en) * 2001-09-25 2003-04-03 Ulvac Japan Ltd Method for hydrogen occlusion in carbon material
JP2003297598A (en) * 2002-04-01 2003-10-17 Techno Network Shikoku Co Ltd Plasma generating method, and plasma generating device
JP2004168644A (en) * 2002-10-30 2004-06-17 Tokyo Electric Power Co Inc:The Method for storing and transporting hydrogen
JP2004175583A (en) * 2002-11-25 2004-06-24 Jfe Engineering Kk Method for generating hydrogen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200810B2 (en) * 2002-05-17 2008-12-24 セイコーエプソン株式会社 Display manufacturing apparatus and display manufacturing method
JP4182213B2 (en) * 2003-11-10 2008-11-19 独立行政法人産業技術総合研究所 Vapor-liquid phase mixing apparatus and vapor-liquid phase reaction method by liquid level plasma reaction, generation of ammonia and hydrogen, and nitrogen fixing method and apparatus in organic solvent
JP4161056B2 (en) * 2004-02-27 2008-10-08 独立行政法人産業技術総合研究所 Organic or inorganic compound synthesis apparatus and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617902A (en) * 1979-07-20 1981-02-20 Akiyama Morio Water dissociating method utilizing microwave plasma phenomenon
JPH08109002A (en) * 1994-02-28 1996-04-30 Hokushin Ind Inc Hydrogen generator
JP2000515107A (en) * 1996-05-13 2000-11-14 ハイドロ―ケベック How to cause hydrogen desorption from metal hydrides
JP2001302223A (en) * 2000-04-24 2001-10-31 Sony Corp Carbonaceous material for hydrogen storage and its manufacturing method, hydrogen storing carbonaceous material and its manufacturing method, battery using the hydrogen storing carbonaceous material and fuel cell using the hydrogen storing carbonaceous material
JP2002220201A (en) * 2001-01-19 2002-08-09 Tsutomu Sakurai Method of manufacturing hydrogen from steam by microwave discharge
JP2002234702A (en) * 2001-02-07 2002-08-23 Toyota Central Res & Dev Lab Inc Method and apparatus for generating hydrogen
JP2002308603A (en) * 2001-04-10 2002-10-23 Shikoku Res Inst Inc Method and apparatus for reforming liquid fuel
JP2003095601A (en) * 2001-09-25 2003-04-03 Ulvac Japan Ltd Method for hydrogen occlusion in carbon material
JP2003297598A (en) * 2002-04-01 2003-10-17 Techno Network Shikoku Co Ltd Plasma generating method, and plasma generating device
JP2004168644A (en) * 2002-10-30 2004-06-17 Tokyo Electric Power Co Inc:The Method for storing and transporting hydrogen
JP2004175583A (en) * 2002-11-25 2004-06-24 Jfe Engineering Kk Method for generating hydrogen

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006273707A (en) * 2005-03-01 2006-10-12 Tohoku Univ Method for producing nanocarbon material, producing device, and nanocarbon material
US9272359B2 (en) 2008-05-30 2016-03-01 Colorado State University Research Foundation Liquid-gas interface plasma device
US9287091B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation System and methods for plasma application
US9288886B2 (en) 2008-05-30 2016-03-15 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
JP2009181960A (en) * 2009-05-11 2009-08-13 Ehime Univ Method for generating plasma in liquid
JP4517098B2 (en) * 2009-05-11 2010-08-04 国立大学法人愛媛大学 Method for generating plasma in liquid
JP2011126742A (en) * 2009-12-17 2011-06-30 Sekisui Chem Co Ltd Method for preparing flaked graphite dispersion, method for producing flaked graphite, and method for producing composite material
KR101152275B1 (en) * 2010-03-19 2012-06-08 이동훈 A fuel generation equipment having a carbon separation device
JP2013529352A (en) * 2010-03-31 2013-07-18 コロラド ステート ユニバーシティー リサーチ ファウンデーション Liquid-gas interface plasma device
JP2012011313A (en) * 2010-06-30 2012-01-19 Nagoya Univ Apparatus and method for treating liquid
CN103782664A (en) * 2011-08-30 2014-05-07 罗伯特·斯达克林格 System for producing energy carriers
WO2013030200A1 (en) * 2011-08-30 2013-03-07 Stoecklinger Robert System for producing energy carriers
US10524848B2 (en) 2013-03-06 2020-01-07 Covidien Lp System and method for sinus surgery
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
JP2016153348A (en) * 2015-02-20 2016-08-25 東京電力ホールディングス株式会社 Hydrogen plasma generation method and hydrogen reduction method using the same
US10441349B2 (en) 2015-10-29 2019-10-15 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US11135007B2 (en) 2015-10-29 2021-10-05 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10368939B2 (en) 2015-10-29 2019-08-06 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US11298179B2 (en) 2015-10-29 2022-04-12 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US11432869B2 (en) 2017-09-22 2022-09-06 Covidien Lp Method for coating electrosurgical tissue sealing device with non-stick coating
US10709497B2 (en) 2017-09-22 2020-07-14 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US10973569B2 (en) 2017-09-22 2021-04-13 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US11207124B2 (en) 2019-07-08 2021-12-28 Covidien Lp Electrosurgical system for use with non-stick coated electrodes
JP7411952B2 (en) 2019-10-02 2024-01-12 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
JP7414233B2 (en) 2019-10-02 2024-01-16 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
US11369427B2 (en) 2019-12-17 2022-06-28 Covidien Lp System and method of manufacturing non-stick coated electrodes
US11969204B2 (en) 2021-10-04 2024-04-30 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
KR102410241B1 (en) * 2022-04-27 2022-06-16 순천대학교 산학협력단 solid acid catalyst of metal oxide for hydrogen production using liquid-phase plasma reaction and solid acid catalyst of metal oxide manufactured thereby
WO2023210879A1 (en) * 2022-04-27 2023-11-02 순천대학교 산학협력단 Preparation method for metal oxide solid acid catalyst for hygrogen production by using liquid phase plasma reaction and metal oxide solid acid catalyst prepared thereby

Also Published As

Publication number Publication date
JP4710048B2 (en) 2011-06-29
JPWO2004094306A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4710048B2 (en) Hydrogen generator and hydrogen generation method
RU2530110C2 (en) Plasma reactor for conversion of gas to liquid fuel
Sentek et al. Plasma-catalytic methane conversion with carbon dioxide in dielectric barrier discharges
CN109206296A (en) The method of low-temperature plasma dual field aid in treatment methane-containing gas synthesis compound
TWI511782B (en) Methods and apparatuses for converting carbon dioxide and treating waste material
US11148116B2 (en) Methods and apparatus for synthesizing compounds by a low temperature plasma dual-electric field aided gas phase reaction
AU2015282298B2 (en) Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product
KR100709923B1 (en) Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
CN104761431A (en) Method for preparing methanol by converting coal mine gas under synergistic action of plasma and catalyst
CN113165913A (en) Method and apparatus for plasma-induced water purification
Ingale et al. A novel way to treat refractory waste: sonication followed by wet oxidation (SONIWO)
Zhao et al. Microwave-enhanced hydrogen production: a review
JP2004306029A (en) Chemical reactor and decomposing method of toxic substance
KR101634675B1 (en) Dielectric barrier discharge plasma system with catalyst and method for removing carbon dioxide and methane using the same
Dehane et al. Influence of processing conditions on hydrogen Sonoproduction from methanol sono-conversion: A numerical investigation with a validated model
US20230227330A1 (en) System for and method of affecting molecules and atoms with electromagnetic radiation
US20210162339A1 (en) High temperature co2 steam and h2 reactions for environmental benefits.
JP2002193601A (en) Method and device for water decomposition
JP2014177387A (en) Apparatus for recovering hydrogen compound decomposition hydrogen and method thereof
RU2646607C1 (en) Method and mobile device for disposing methane from non-controlled sources
JP4560606B2 (en) Submerged plasma reactor and crystal synthesis method
JP2007126300A (en) Method of and device for generating hydrogen from solid carbonaceous material using microwave
JP2006188397A (en) Hydrogen producing method, hydrogen producing reactor, hydrogen producing apparatus and fuel cell power-generation apparatus
Merabet et al. The sonochemical and ultrasound-assisted production of hydrogen: energy efficiency for the generation of an energy carrier
Suslick Sonochemistry of organometallic compounds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505772

Country of ref document: JP

122 Ep: pct application non-entry in european phase