WO2004076734A1 - Poly alcohol-based binder composition - Google Patents

Poly alcohol-based binder composition Download PDF

Info

Publication number
WO2004076734A1
WO2004076734A1 PCT/US2004/004593 US2004004593W WO2004076734A1 WO 2004076734 A1 WO2004076734 A1 WO 2004076734A1 US 2004004593 W US2004004593 W US 2004004593W WO 2004076734 A1 WO2004076734 A1 WO 2004076734A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
binder composition
low molecular
binder
acid
Prior art date
Application number
PCT/US2004/004593
Other languages
French (fr)
Inventor
Liang Chen
William E. Downey
Kathleen M. Bullock
Michael T. Pellegrin
Yadi Delaviz
Kevin Guigley
Harry B. Cline
Original Assignee
Owens Corning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning filed Critical Owens Corning
Priority to MXPA05006832A priority Critical patent/MXPA05006832A/en
Priority to EP04711828A priority patent/EP1595016A1/en
Priority to NZ540416A priority patent/NZ540416A/en
Priority to AU2004215014A priority patent/AU2004215014B2/en
Priority to CA002507646A priority patent/CA2507646A1/en
Publication of WO2004076734A1 publication Critical patent/WO2004076734A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/26Macromolecular compounds or prepolymers
    • C03C25/32Macromolecular compounds or prepolymers obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C03C25/323Polyesters, e.g. alkyd resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/30Chemical modification of a polymer leading to the formation or introduction of aliphatic or alicyclic unsaturated groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the invention relates to the field of binder compositions utilized in the manufacture of fiber products, typically from glass fibers. Specifically, the invention relates to a poly alcohol-based aqueous binder composition and fiber products incorporating such a binder composition.
  • Manufacture of glass fiber thermal insulation typically utilizes a continuous process in which raw batch materials are fed into a melting furnace to produce molten glass. The molten glass is then ejected from the furnace through a number of trays or bushings having small openings to form glass filaments. The initial glass filaments are then typically pulled and attenuated to produce the final fiber dimensions and cooled to form the glass fibers. The cooled fibers are then collected on a conveyor belt to form a mat. The fibers are typically bonded together to form an integral batt or layer structure by applying a binder composition to the fibers as they are being collected on the conveyor belt. The collection of binder-coated fibers is then cured, typically in a curing oven, to evaporate remaining solvent and set the binder composition.
  • the fibers in the resulting fiber product thus remain partially coated with a thin layer of the binder material and may exhibit greater accumulation or agglomeration at junctions formed where adjacent fibers are in contact or the spacing between them is very small.
  • the resulting fiber products exhibit higher recovery and stiffness than fiber products that do not incorporate a binder.
  • Fiberglass insulation products prepared in this manner can be provided in various forms including batt, board (a heated and compressed batt) and molding media (an alternative form of heated and compressed batt) for use in different applications.
  • Most fiberglass batt insulation will have a density of less than 1 lb/ft 3 (16 kg/m 3 ) with about 4-5 wt% being binder.
  • Fiberglass board typically has a density of between 1 and 10 lbs/ft 3 (16 and 160 kg/m ) with about 7-12 wt% binder while fiberglass molding media will more typically have a density between 10 and 20 lbs/ft 3 (160 and 320 kg/m 3 ) with at least about 12 wt% binder.
  • the glass fibers incorporated in these products typically have diameters from about 2 to about 9 microns and may range in length from about 0.25 inch (0.64 cm) to the extremely long fibers used in forming "continuous" filament products.
  • the expanded batt is then typically conveyed to and through a curing oven in which heated air is passed through the insulation product to cure the binder.
  • the insulation product may be compressed with flights or rollers to produce the desired dimensions and surface finish on the resulting blanket, batt or board product.
  • the fiber product is fed into a molding press that will be used to produce the final product shape and to complete the curing process.
  • the curing ovens were operated at a temperature from about 200°C (392°F) to about 325°C (617°F) and preferably from about 250°C (482°F) to about 300°C (572°F) with curing processes taking between about 0.5 minute and 3 minutes.
  • the goal is to identify a binder system that is relatively inexpensive, is water soluble (or at least water dispersible), and can be easily applied and readily cured.
  • the binder composition should also be sufficiently stable to permit mixing and application at temperatures ordinarily encountered in fiber product manufacturing plants. Further, the cured binder product should result in a strong bond with sufficient elasticity and thickness recovery to permit reasonable deformation and recovery of the resulting fiber product. Thickness recovery is especially important in insulation applications for both conserving storage space and providing the maximum insulating value after installation.
  • Phenol-formaldehyde binders which are characterized by relatively low viscosity when uncured and the formation of a rigid thermoset polymeric matrix with the fibers when cured.
  • a low uncured viscosity simplifies binder application and allows the binder- coated batt to expand more easily when the forming chamber compression is removed.
  • the rigid matrix formed by curing the binder allows a finished fiber product to be compressed for packaging and shipping and then recover to substantially its original dimension when unpacked for installation.
  • Phenol/formaldehyde binders utilized in the some prior art applications have been highly alkaline resole (also referred to as resol or A-stage) type that are relatively inexpensive and are water soluble. These binders are typically applied to the fibers as an aqueous solution shortly after the fibers are formed and then cured at elevated temperatures. The curing conditions are selected to evaporate any remaining solvent and cure the binder to a thermoset state. The fibers in the resulting product tend to be partially coated with a thin layer of the thermoset resin with accumulations of the binder composition being found at the junctions formed at points where adjacent fibers cross.
  • Urea is a commonly used formaldehyde scavenger that is effective both during and subsequent to the manufacture of the fiber product. Urea is typically added directly to the phenol/formaldehyde resin, to produce a urea-extended phenol formaldehyde resole resin (also referred to as "premix" or "pre-react). Further, urea, being less expensive than the alkaline phenol/formaldehyde resoles commonly used as binders, can provide substantial cost savings for fiber product manufacturers.
  • Low molecular weight, low viscosity binders which allow maximum vertical expansion of the batt as it exits the forming stage generally form a non-rigid plastic matrix when cured and reduce the vertical height recovery properties of the final product. Conversely, higher viscosity binders tend to cure to form a rigid matrix that interferes with the vertical expansion of the coated, but uncured, fiber batt.
  • Another binder composition is disclosed in U.S. Pat. No. 5,661,213, which teaches an aqueous composition comprising a polyacid, a polyol and a phosphorous-containing accelerator, wherein the ratio of the number of equivalents of the polyacid to the number of equivalents of the polyol is from about 100:1 to about 1:3.
  • PAG polyacrylic glycol
  • An object of the present invention to provide a binder composition that exhibits improved cure performance with reduced emissions without sacrificing the performance of the final product or complication the manufacturing process.
  • a binder composition comprising a low molecular weight multifunctional acid, such as maleic anhydride, fumaric acid, malic acid, or citric acid, with a low molecular weight poly alcohol such as polyvinyl alcohol (PVA or PVOH) or poly(ethylene-co-vinyl alcohol), and an optional catalyst, such as sodium hypophosphite.
  • a low molecular weight multifunctional acid such as maleic anhydride, fumaric acid, malic acid, or citric acid
  • a low molecular weight poly alcohol such as polyvinyl alcohol (PVA or PVOH) or poly(ethylene-co-vinyl alcohol)
  • PVA or PVOH polyvinyl alcohol
  • poly(ethylene-co-vinyl alcohol) poly(ethylene-co-vinyl alcohol)
  • an optional catalyst such as sodium hypophosphite
  • Fig. 1 is a graph reflecting the average stroke end cure time plotted against the organic (maleic) acid ratio of the binder premix solution samples.
  • Fig. 2 is a graph reflecting a dynamic mechanical analyzer (DMA) trace of the storage modulus (MPa) against time for each of the binder premix solution samples.
  • DMA dynamic mechanical analyzer
  • Fig. 3 is a graph reflecting the cure performance of a 1 :1 binder premix solution of maleic acid and PVA according to the present invention and a prior art binder composition comprising a hypophosphite terminated polyacrylic acid/triethanolamine binder (PAT Plus).
  • PAT Plus hypophosphite terminated polyacrylic acid/triethanolamine binder
  • Fig. 4 is a bar graph reflecting data from Table 2 and documenting the recovery of batts coated with a standard phenolic binder and binder compositions according to the present invention taken at the end-of-line (EOL) and six weeks post-production.
  • binder systems and compositions are generally available, including phenol/formaldehyde binders, extended phenol/formaldehyde binders, PAG binders and polyacrylic acid/triethanolamine (PAT) binders, none of these binder systems has successfully utilized a low molecular weight multifunctional organic acid and a low molecular weight poly alcohol to form a polyester thermoset resin system.
  • the present invention provides a binder system that produces a thermoset polyester by reacting a low molecular weight (for example, less than 1000) multifunctional acid, such as maleic anhydride, fumaric acid, or malic acid, with a low molecular weight (for example, between about 200 and about 13,000) polymer or oligomer of one or more alcohols such as polyvinyl alcohol or poly(ethylene-co-vinyl alcohol).
  • a low molecular weight for example, less than 1000
  • multifunctional acid such as maleic anhydride, fumaric acid, or malic acid
  • a low molecular weight for example, between about 200 and about 13,000
  • polymer or oligomer of one or more alcohols such as polyvinyl alcohol or poly(ethylene-co-vinyl alcohol
  • a low molecular weight polyol preferably a polyvinyl alcohol, such as Air Product's AIRVOL® 502 or Celanese Chemicals' CELVOL® 502, is dissolved in water to make a 10-30 wt% polyol solution.
  • the polyol solution is then mixed with a 10-30 wt% aqueous solution of a low molecular weight multifunctional organic acid.
  • the binder solution preferably comprises at least one cure catalyst or accelerator, such as sodium hypophosphite, to enhance the cure rate of the binder composition.
  • cure catalyst or accelerator such as sodium hypophosphite
  • the ratio of the functional groups of the organic acid and poly alcohol components be within a range of about 1:10 to about 5:1.
  • the pH of the binder composition be fairly acidic with a pH value of between about 1.5 and about 4.5 to avoid forming the carboxylic salt from the carboxylic acid and ensure that the carboxylic acid will form the desired ester with the poly alcohol during the crosslinking reaction.
  • a number of examples of the present invention were prepared as follows: A 30 wt% polyol solution was prepared by dissolving 60 g of CELVOL® 502 polyvinyl alcohol powder in 140 g of water. The mixture was heated and continually agitated until the polyvinyl alcohol was completely dissolved.
  • a 30 wt% acid solution was prepared by dissolving 60 g of maleic anhydride briquette (Huntsman Petrochemical Corp.) in 140 g of water. The mixture was heated and maintained at a temperature of approximately 50°C (122°F) until the maleic anhydride was completely dissolved.
  • a series of five 30 wt% binder premix solutions were then prepared by combining quantities of the 30 wt% polyol solution and the 30 wt% acid solution as indicated below in Table 1.
  • the curing performance of each of the binder premix solutions was then evaluated, with the results also provided in Table 1.
  • the binder compositions exhibited a very low initial viscosity and did not form fiber during the heating process. Under continued heating the binder composition eventually underwent the crosslinking reaction, reaching a substantially complete thermoset condition in a very short period of time.
  • certain of the compositions include only an "End" time for the Stroke Cure trials reflected below.
  • Each of the binder premix solutions reflected in Table 1 was also subjected to a Dynamic Mechanical Analysis (DMA) to evaluate the storage modulus of the binder during the cure cycle.
  • DMA Dynamic Mechanical Analysis
  • the results of this analysis are reflected in Fig. 2 and indicate that the cross-linking strength was increased for those binder premix solutions as the ratio of the organic acid was increased.
  • a rheometer was then used to compare a 1:1 mixture of a PVA solution (CELVOL® 502) and an organic acid solution (maleic anhydride) according to the present invention to a prior art PAT Plus binder composition (hypophosphite terminated polyacrylic acid triethanolamine binder).
  • a PVA solution CELVOL® 502
  • an organic acid solution maleic anhydride
  • PAT Plus binder composition hyperphosphite terminated polyacrylic acid triethanolamine binder
  • a plant production trial was conducted using both a partially hydrolyzed component and a fully hydrolyzed component of a low molecular weight version of CELVOL® 502 (number average Mn ⁇ 7,000) and maleic anhydride, with and without a sodium hypophosphite accelerator.
  • the recovery of the batts produced during this were tested at completion (end-of-line or EOL) and after six weeks and compared with control samples prepared using a traditional phenol formaldehyde binder systems. The results of these tests are provided below in Table 2. These results are also illustrated in Fig. 4.
  • PAA - polyacrylic acid (Mn ⁇ 2000 - 5000)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Textile Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides a binder composition comprising a low molecular weight polycarboxylic acid, such as maleic anhydride, and a low molecular weight poly alcohol, such as polyvinyl alcohol, that exhibits improved cure performance with reduced emissions without sacrificing the performance of the final product or complication the manufacturing process. The binder composition may also incorporate a cure catalyst or accelerant such as sodium hypophosphite.

Description

POLY ALCOHOL-BASED BINDER COMPOSITION
BACKGROUND OF THE INVENTION
The invention relates to the field of binder compositions utilized in the manufacture of fiber products, typically from glass fibers. Specifically, the invention relates to a poly alcohol-based aqueous binder composition and fiber products incorporating such a binder composition.
Manufacture of glass fiber thermal insulation typically utilizes a continuous process in which raw batch materials are fed into a melting furnace to produce molten glass. The molten glass is then ejected from the furnace through a number of trays or bushings having small openings to form glass filaments. The initial glass filaments are then typically pulled and attenuated to produce the final fiber dimensions and cooled to form the glass fibers. The cooled fibers are then collected on a conveyor belt to form a mat. The fibers are typically bonded together to form an integral batt or layer structure by applying a binder composition to the fibers as they are being collected on the conveyor belt. The collection of binder-coated fibers is then cured, typically in a curing oven, to evaporate remaining solvent and set the binder composition. The fibers in the resulting fiber product thus remain partially coated with a thin layer of the binder material and may exhibit greater accumulation or agglomeration at junctions formed where adjacent fibers are in contact or the spacing between them is very small. As a result of the improved strength and resiliency, the resulting fiber products exhibit higher recovery and stiffness than fiber products that do not incorporate a binder.
Fiberglass insulation products prepared in this manner can be provided in various forms including batt, board (a heated and compressed batt) and molding media (an alternative form of heated and compressed batt) for use in different applications. Most fiberglass batt insulation will have a density of less than 1 lb/ft3 (16 kg/m3) with about 4-5 wt% being binder. Fiberglass board typically has a density of between 1 and 10 lbs/ft3 (16 and 160 kg/m ) with about 7-12 wt% binder while fiberglass molding media will more typically have a density between 10 and 20 lbs/ft3 (160 and 320 kg/m3) with at least about 12 wt% binder. The glass fibers incorporated in these products typically have diameters from about 2 to about 9 microns and may range in length from about 0.25 inch (0.64 cm) to the extremely long fibers used in forming "continuous" filament products. As the batt of binder-coated fibers emerges from the forming chamber, it will tend to expand as a result of the resiliency of the glass fibers. The expanded batt is then typically conveyed to and through a curing oven in which heated air is passed through the insulation product to cure the binder. In addition to curing the binder, within the curing oven the insulation product may be compressed with flights or rollers to produce the desired dimensions and surface finish on the resulting blanket, batt or board product. In the case of molding media, after partially curing the binder, the fiber product is fed into a molding press that will be used to produce the final product shape and to complete the curing process. Typically, for fiber products incorporating phenolic binders the curing ovens were operated at a temperature from about 200°C (392°F) to about 325°C (617°F) and preferably from about 250°C (482°F) to about 300°C (572°F) with curing processes taking between about 0.5 minute and 3 minutes.
Generally, the goal is to identify a binder system that is relatively inexpensive, is water soluble (or at least water dispersible), and can be easily applied and readily cured. The binder composition should also be sufficiently stable to permit mixing and application at temperatures ordinarily encountered in fiber product manufacturing plants. Further, the cured binder product should result in a strong bond with sufficient elasticity and thickness recovery to permit reasonable deformation and recovery of the resulting fiber product. Thickness recovery is especially important in insulation applications for both conserving storage space and providing the maximum insulating value after installation.
Phenol-formaldehyde binders, which are characterized by relatively low viscosity when uncured and the formation of a rigid thermoset polymeric matrix with the fibers when cured. A low uncured viscosity simplifies binder application and allows the binder- coated batt to expand more easily when the forming chamber compression is removed. Similarly, the rigid matrix formed by curing the binder allows a finished fiber product to be compressed for packaging and shipping and then recover to substantially its original dimension when unpacked for installation.
Phenol/formaldehyde binders utilized in the some prior art applications have been highly alkaline resole (also referred to as resol or A-stage) type that are relatively inexpensive and are water soluble. These binders are typically applied to the fibers as an aqueous solution shortly after the fibers are formed and then cured at elevated temperatures. The curing conditions are selected to evaporate any remaining solvent and cure the binder to a thermoset state. The fibers in the resulting product tend to be partially coated with a thin layer of the thermoset resin with accumulations of the binder composition being found at the junctions formed at points where adjacent fibers cross.
Various techniques have been used to reduce formaldehyde emission from phenol/formaldehyde resins including various formaldehyde scavengers added to the resin during or after its preparation. Urea is a commonly used formaldehyde scavenger that is effective both during and subsequent to the manufacture of the fiber product. Urea is typically added directly to the phenol/formaldehyde resin, to produce a urea-extended phenol formaldehyde resole resin (also referred to as "premix" or "pre-react). Further, urea, being less expensive than the alkaline phenol/formaldehyde resoles commonly used as binders, can provide substantial cost savings for fiber product manufacturers.
Low molecular weight, low viscosity binders which allow maximum vertical expansion of the batt as it exits the forming stage generally form a non-rigid plastic matrix when cured and reduce the vertical height recovery properties of the final product. Conversely, higher viscosity binders tend to cure to form a rigid matrix that interferes with the vertical expansion of the coated, but uncured, fiber batt.
These problems were addressed with a variety of non-phenol/formaldehyde binders exhibiting low uncured viscosity and structural rigidity when cured. One such binder composition was disclosed in U.S. Pat. No. 5,318,990 and utilized a polycarboxy polymer, a monomeric trihydric alcohol and a catalyst comprising an alkali metal salt of a phosphorous containing organic acid. Other binder compositions have also been developed to provide reduced emissions during the coating and curing processes utilizing compounds such as polyacrylic acid as disclosed in U.S. Pat. Nos. 5,670,585 and 5,538,761.
Another binder composition is disclosed in U.S. Pat. No. 5,661,213, which teaches an aqueous composition comprising a polyacid, a polyol and a phosphorous-containing accelerator, wherein the ratio of the number of equivalents of the polyacid to the number of equivalents of the polyol is from about 100:1 to about 1:3.
As disclosed in U.S. Pat. No. 6,399,694, another alternative to the phenol/formaldehyde binders utilizes polyacrylic glycol (PAG) as a binder. Although more expensive, PAG binders are relatively odorless, more uniformly coat each fiber and have a generally white color. These characteristics, coupled with the recognition that coloring agents adhere readily, make PAG binders preferable for applications in which the fiber product will be visible after installation. Indeed, fiber board products utilizing PAG binders can be provided with decorative surfaces suitable for display.
The use of polyacrylic acid based binders, however, has resulted in corrosion problems in manufacturing equipment. Thus, there continues to exist a need for a method of inhibiting and reducing the corrosion associated with these prior art binders.
SUMMARY OF THE INVENTION
An object of the present invention to provide a binder composition that exhibits improved cure performance with reduced emissions without sacrificing the performance of the final product or complication the manufacturing process.
This and other objects of the present invention are accomplished by providing a binder composition comprising a low molecular weight multifunctional acid, such as maleic anhydride, fumaric acid, malic acid, or citric acid, with a low molecular weight poly alcohol such as polyvinyl alcohol (PVA or PVOH) or poly(ethylene-co-vinyl alcohol), and an optional catalyst, such as sodium hypophosphite.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a graph reflecting the average stroke end cure time plotted against the organic (maleic) acid ratio of the binder premix solution samples. Fig. 2 is a graph reflecting a dynamic mechanical analyzer (DMA) trace of the storage modulus (MPa) against time for each of the binder premix solution samples.
Fig. 3 is a graph reflecting the cure performance of a 1 :1 binder premix solution of maleic acid and PVA according to the present invention and a prior art binder composition comprising a hypophosphite terminated polyacrylic acid/triethanolamine binder (PAT Plus).
Fig. 4 is a bar graph reflecting data from Table 2 and documenting the recovery of batts coated with a standard phenolic binder and binder compositions according to the present invention taken at the end-of-line (EOL) and six weeks post-production.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
The invention will now be described in more detail by way of example with reference to the embodiment(s) described herein. It should be kept in mind that the following described embodiment(s) is/are only presented by way of example and should not be construed as limiting the inventive concept to any particular physical configuration.
Although a number of binder systems and compositions are generally available, including phenol/formaldehyde binders, extended phenol/formaldehyde binders, PAG binders and polyacrylic acid/triethanolamine (PAT) binders, none of these binder systems has successfully utilized a low molecular weight multifunctional organic acid and a low molecular weight poly alcohol to form a polyester thermoset resin system. The present invention, however, provides a binder system that produces a thermoset polyester by reacting a low molecular weight (for example, less than 1000) multifunctional acid, such as maleic anhydride, fumaric acid, or malic acid, with a low molecular weight (for example, between about 200 and about 13,000) polymer or oligomer of one or more alcohols such as polyvinyl alcohol or poly(ethylene-co-vinyl alcohol). The present invention, therefore, provides an advantageous alternative to the existing binder systems. In accord with the present invention, a low molecular weight polyol, preferably a polyvinyl alcohol, such as Air Product's AIRVOL® 502 or Celanese Chemicals' CELVOL® 502, is dissolved in water to make a 10-30 wt% polyol solution. The polyol solution is then mixed with a 10-30 wt% aqueous solution of a low molecular weight multifunctional organic acid. By varying the specific polyol and organic acid compositions, the initial concentrations, and the mixing ratio of the two solutions, a wide range of thermoset binder solutions can be prepared. In addition to the polyol and the organic acid, the binder solution preferably comprises at least one cure catalyst or accelerator, such as sodium hypophosphite, to enhance the cure rate of the binder composition. It is preferred that the ratio of the functional groups of the organic acid and poly alcohol components be within a range of about 1:10 to about 5:1. It is also preferred that the pH of the binder composition be fairly acidic with a pH value of between about 1.5 and about 4.5 to avoid forming the carboxylic salt from the carboxylic acid and ensure that the carboxylic acid will form the desired ester with the poly alcohol during the crosslinking reaction.
A number of examples of the present invention were prepared as follows: A 30 wt% polyol solution was prepared by dissolving 60 g of CELVOL® 502 polyvinyl alcohol powder in 140 g of water. The mixture was heated and continually agitated until the polyvinyl alcohol was completely dissolved.
A 30 wt% acid solution was prepared by dissolving 60 g of maleic anhydride briquette (Huntsman Petrochemical Corp.) in 140 g of water. The mixture was heated and maintained at a temperature of approximately 50°C (122°F) until the maleic anhydride was completely dissolved.
A series of five 30 wt% binder premix solutions were then prepared by combining quantities of the 30 wt% polyol solution and the 30 wt% acid solution as indicated below in Table 1. The curing performance of each of the binder premix solutions was then evaluated, with the results also provided in Table 1. In certain instances, specifically those in which the polyol/acid ratio was 1 :4, the binder compositions exhibited a very low initial viscosity and did not form fiber during the heating process. Under continued heating the binder composition eventually underwent the crosslinking reaction, reaching a substantially complete thermoset condition in a very short period of time. As a result, certain of the compositions include only an "End" time for the Stroke Cure trials reflected below.
Table 1
Figure imgf000008_0001
The average Stroke Cure end times resulting from the trials detailed in Table 1 are plotted in Fig. 1 against the ratio of organic acid (20-80%) present in the sample. As reflected in Fig. 1 , the best cure performance is achieved with binder premix solutions in which the organic acid and polyol ratios are generally between 3:2 and 2:3.
Each of the binder premix solutions reflected in Table 1 was also subjected to a Dynamic Mechanical Analysis (DMA) to evaluate the storage modulus of the binder during the cure cycle. The results of this analysis are reflected in Fig. 2 and indicate that the cross-linking strength was increased for those binder premix solutions as the ratio of the organic acid was increased.
A rheometer was then used to compare a 1:1 mixture of a PVA solution (CELVOL® 502) and an organic acid solution (maleic anhydride) according to the present invention to a prior art PAT Plus binder composition (hypophosphite terminated polyacrylic acid triethanolamine binder). As reflected in Fig. 3, the binder according to the present invention exhibits both a lower cure start temperature and higher cure rate.
A plant production trial was conducted using both a partially hydrolyzed component and a fully hydrolyzed component of a low molecular weight version of CELVOL® 502 (number average Mn < 7,000) and maleic anhydride, with and without a sodium hypophosphite accelerator. The recovery of the batts produced during this were tested at completion (end-of-line or EOL) and after six weeks and compared with control samples prepared using a traditional phenol formaldehyde binder systems. The results of these tests are provided below in Table 2. These results are also illustrated in Fig. 4.
Table 2
Figure imgf000009_0001
PVAph - partially hydrolyzed polyvinyl alcohol (Mn < 7,000)
PVAfh - fully hydrolyzed polyvinyl alcohol (Mn < 7,000)
SHP - sodium hypophosphite
PAA - polyacrylic acid (Mn ~ 2000 - 5000)
STD — phenol-formaldehyde binder
It will be understood that the above described preferred embodiment(s) of the present invention are susceptible to various modifications, changes, and adaptations, and the same are intended to be comprehended within the meaning and range of equivalents of the appended claims. In particular, it is anticipated that other low molecular weight polycarboxylic acids including oxalic, tartaric, formic, lactic, acetic, diglycollic and succinic acids, low molecular weight oligomers thereof as well as mixtures thereof, would be suitable for use in the present invention.
Further, although a number of equivalent components may have been mentioned herein which could be used in place of the components illustrated and described with reference to the. preferred embodiment(s), this is not meant to be an exhaustive treatment of all the possible equivalents, nor to limit the invention defined by the claims to any particular equivalent or combination thereof. A person skilled in the art would realize that there may be other equivalent components presently known, or to be developed, which could be used within the spirit and scope of the invention defined by the claims.

Claims

WHAT IS CLAIMED IS:
1. A binder composition comprising: a low molecular weight polyalcohol, the polyalcohol comprising an oligomer or polymer of one or more alcohols and having a number average molecular weight of at least 200; a low molecular weight polycarboxylic acid; and water.
2. A binder composition according to claim 1, further comprising a cure accelerant.
3. A binder composition according to claim 1 wherein: the low molecular weight polyalcohol is further characterized by a number average molecular weight of less than about 13,000 and is selected from a group consisting of polyvinyl alcohol, polyethylene glycol, polyethylene-co-vinyl alcohol and mixtures thereof; and the low molecular weight polycarboxylic acid is selected from a group consisting of citric acid, maleic anhydride, maleic acid, fumaric acid, malic acid, oligomers thereof having an average molecular weight of less than about 1000, and mixtures thereof.
4. A binder composition according to claim 3, wherein the poly alcohol and the polycarboxylic acid are present in the binder composition in a weight ratio between 1 :4 and 4:1.
5. A binder composition according to claim 3, wherein the poly alcohol and the polycarboxylic acid are present in the binder composition in a weight ratio between 2:3 and 3:2.
6. A binder composition according to claim 3, wherein the poly alcohol and the polycarboxylic acid are present in the binder composition in a weight ratio of approximately 1:1.
7. A binder composition according to claim 2, wherein the cure accelerant comprises sodium hypophosphite.
8. A method of manufacturing a bound fiber batt comprising the steps of: providing a fiber batt comprising a collection of fibers; applying an aqueous binder premix solution to the batt to form a coated batt; and curing the coated batt under conditions sufficient to bind adjacent fibers with a thermoset resin to form the bound fiber batt; wherein the aqueous binder premix solution comprises a low molecular weight poly alcohol and a low molecular weight polycarboxylic acid.
9. A method of manufacturing a bound fiber batt according to claim 8, wherein: the low molecular weight poly alcohol is characterized by a number average molecular weight of between about 200 and about 13,000 and is selected from a group consisting of polyvinyl alcohol, polyethylene glycol and polyethylene-co-vinyl alcohol; and the low molecular weight polycarboxylic acid is selected from a group consisting of citric acid, maleic anhydride, maleic acid, fumaric acid, malic acid, oligomers thereof having an average molecular weight of less than 1000, and mixtures thereof.
10. A method of manufacturing a bound fiber batt according to claim 9, wherein the aqueous binder premix solution further comprises a cure accelerator.
11. A method of manufacturing a bound fiber batt according to claim 10, wherein the cure accelerator comprises sodium hypophosphite.
12. A method of manufacturing a bound fiber batt according to claim 9, wherein the aqueous binder premix solution is characterized by a pH sufficient to maintain the ability of the polycarboxylic acid to form an ester bond with the low molecular weight poly alcohol.
13. A method of manufacturing a bound fiber batt according to claim 12, wherein the pH is maintained at a value between about 1.5 and about 4.5.
PCT/US2004/004593 2003-02-21 2004-02-17 Poly alcohol-based binder composition WO2004076734A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
MXPA05006832A MXPA05006832A (en) 2003-02-21 2004-02-17 Poly alcohol-based binder composition.
EP04711828A EP1595016A1 (en) 2003-02-21 2004-02-17 Poly alcohol-based binder composition
NZ540416A NZ540416A (en) 2003-02-21 2004-02-17 Poly alcohol-based aqueous binder composition for fiber products
AU2004215014A AU2004215014B2 (en) 2003-02-21 2004-02-17 Poly alcohol-based binder composition
CA002507646A CA2507646A1 (en) 2003-02-21 2004-02-17 Poly alcohol-based binder composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/325,039 US6884849B2 (en) 2003-02-21 2003-02-21 Poly alcohol-based binder composition
US10/325,039 2003-02-21

Publications (1)

Publication Number Publication Date
WO2004076734A1 true WO2004076734A1 (en) 2004-09-10

Family

ID=32867875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/004593 WO2004076734A1 (en) 2003-02-21 2004-02-17 Poly alcohol-based binder composition

Country Status (7)

Country Link
US (1) US6884849B2 (en)
EP (1) EP1595016A1 (en)
AU (1) AU2004215014B2 (en)
CA (1) CA2507646A1 (en)
MX (1) MXPA05006832A (en)
NZ (1) NZ540416A (en)
WO (1) WO2004076734A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7655711B2 (en) 2005-07-26 2010-02-02 Knauf Insulation Gmbh Binder and wood board product from maillard reactants
US8133952B2 (en) 2005-05-06 2012-03-13 Dynea Oy Poly (vinyl alcohol)—based formaldehyde-free curable aqueous composition
US8410204B2 (en) 2007-07-05 2013-04-02 Akzo Nobel Coatings International B.V. Hardener composition, adhesive system and method of gluing
US8501838B2 (en) 2007-01-25 2013-08-06 Knauf Insulation Sprl Composite wood board
US8552140B2 (en) 2007-04-13 2013-10-08 Knauf Insulation Gmbh Composite maillard-resole binders
US8900495B2 (en) 2009-08-07 2014-12-02 Knauf Insulation Molasses binder
US8940089B2 (en) 2007-08-03 2015-01-27 Knauf Insulation Sprl Binders
US9493603B2 (en) 2010-05-07 2016-11-15 Knauf Insulation Sprl Carbohydrate binders and materials made therewith
US9492943B2 (en) 2012-08-17 2016-11-15 Knauf Insulation Sprl Wood board and process for its production
US9505883B2 (en) 2010-05-07 2016-11-29 Knauf Insulation Sprl Carbohydrate polyamine binders and materials made therewith
US9828287B2 (en) 2007-01-25 2017-11-28 Knauf Insulation, Inc. Binders and materials made therewith
EP2231543B1 (en) 2007-12-05 2018-09-12 Saint-Gobain Isover Mineral wool sizing composition comprising a monosaccharide and/or a polysaccharide and an organic polycarboxylic acid, and insulating products obtained
US10287462B2 (en) 2012-04-05 2019-05-14 Knauf Insulation, Inc. Binders and associated products
US10508172B2 (en) 2012-12-05 2019-12-17 Knauf Insulation, Inc. Binder
US10767050B2 (en) 2011-05-07 2020-09-08 Knauf Insulation, Inc. Liquid high solids binder composition
US10864653B2 (en) 2015-10-09 2020-12-15 Knauf Insulation Sprl Wood particle boards
JP2020537055A (en) * 2017-10-09 2020-12-17 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Aqueous binder composition
US10968629B2 (en) 2007-01-25 2021-04-06 Knauf Insulation, Inc. Mineral fibre board
US11060276B2 (en) 2016-06-09 2021-07-13 Knauf Insulation Sprl Binders
US11111372B2 (en) 2017-10-09 2021-09-07 Owens Corning Intellectual Capital, Llc Aqueous binder compositions
US11248108B2 (en) 2017-01-31 2022-02-15 Knauf Insulation Sprl Binder compositions and uses thereof
US11332577B2 (en) 2014-05-20 2022-05-17 Knauf Insulation Sprl Binders
US11401204B2 (en) 2014-02-07 2022-08-02 Knauf Insulation, Inc. Uncured articles with improved shelf-life
US11813833B2 (en) 2019-12-09 2023-11-14 Owens Corning Intellectual Capital, Llc Fiberglass insulation product
US11846097B2 (en) 2010-06-07 2023-12-19 Knauf Insulation, Inc. Fiber products having temperature control additives
US11939460B2 (en) 2018-03-27 2024-03-26 Knauf Insulation, Inc. Binder compositions and uses thereof
US11945979B2 (en) 2018-03-27 2024-04-02 Knauf Insulation, Inc. Composite products

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0213368D0 (en) * 2002-06-11 2002-07-24 Torres Manel Non-woven fabric
JP4301558B2 (en) * 2003-12-26 2009-07-22 日東電工株式会社 Adhesive for polarizing plate, polarizing plate, method for producing the same, optical film, and image display device
US7842382B2 (en) * 2004-03-11 2010-11-30 Knauf Insulation Gmbh Binder compositions and associated methods
US20060084737A1 (en) * 2004-10-15 2006-04-20 Certainteed Corporation Polyester resin binder
US20080003431A1 (en) * 2006-06-20 2008-01-03 Thomas John Fellinger Coated fibrous nodules and insulation product
US20070014995A1 (en) * 2005-07-12 2007-01-18 Jacob Chacko Thin rotary-fiberized glass insulation and process for producing same
US20070270066A1 (en) * 2006-05-05 2007-11-22 Dynea Austria Gmbh Hydrophilic binder for agricultural plant growth substrate
US20070286999A1 (en) * 2006-06-13 2007-12-13 Jacob Cornelis Dijt Sizing composition for glass fibers, sized fiber glass products, and composites
US20080003432A1 (en) * 2006-06-20 2008-01-03 Thomas John Fellinger Insulation having a fibrous material and method of making same
UA99115C2 (en) * 2006-11-03 2012-07-25 Дайнеа Ой Aqueous curable composition, process for its preparation, process for binding of non-woven fibers, bound non-woven product and heat insulation of buildings
US20080160857A1 (en) * 2006-12-27 2008-07-03 Chacko Jacob T Blended insulation blanket
US7638592B2 (en) 2007-01-16 2009-12-29 Battelle Memorial Institute Formaldehyde free binders
US20080175997A1 (en) * 2007-01-19 2008-07-24 Goldstein Joel E Emulsion polymer binder with azirdine crosslinking agent for glass fiber webs
SI2826903T1 (en) * 2007-01-25 2023-10-30 Knauf Insulation Method of manufacturing mineral fiber insulation product
US7993724B2 (en) * 2007-05-09 2011-08-09 Owens Corning Intellectual Capital, Llc Insulation for high temperature applications
US20100000170A1 (en) * 2008-07-03 2010-01-07 Parks Jerry M Pre-Applied Waterless Adhesive On HVAC Facings With Sealable Flange
US20100040832A1 (en) * 2008-08-13 2010-02-18 Saint-Gobain Technical Fabrics America, Inc. Formaldehyde free woven and non-woven fabrics having improved hot wet tensile strength and binder formulations for same
US20100197185A1 (en) * 2009-01-30 2010-08-05 Saint-Gobain Technical Fabrics America, Inc. Low and ultra-low formaldehyde emission binders for non-woven glass mat
US20110091710A1 (en) * 2009-04-13 2011-04-21 Mirth David R Soft fiber insulation product
US9718729B2 (en) * 2009-05-15 2017-08-01 Owens Corning Intellectual Capital, Llc Biocides for bio-based binders, fibrous insulation products and wash water systems
US20110003522A1 (en) * 2009-05-15 2011-01-06 Liang Chen Bio-based aqueous binder for fiberglass insulation materials and non-woven mats
WO2011002730A1 (en) * 2009-06-29 2011-01-06 Owens Corning Intellectual Capital, Llc Modified starch based binders
EP2899227A1 (en) 2009-10-09 2015-07-29 Owens-Corning Intellectual Capital, LLC Bio-based binders for insulation and non-woven mats
US20110223364A1 (en) 2009-10-09 2011-09-15 Hawkins Christopher M Insulative products having bio-based binders
US20110230111A1 (en) * 2010-03-19 2011-09-22 Weir Charles R Fibers containing additives for use in fibrous insulation
US20120144870A1 (en) 2010-12-09 2012-06-14 Owens Corning Intellectual Capital, Llc Apparatus and method for controlling moisture in the manufacture of glass fiber insulation
US9128048B2 (en) 2010-12-09 2015-09-08 Owens Corning Intellectual Capital, Llc Method for online determination of cure status of glass fiber products
US8821625B2 (en) 2010-12-09 2014-09-02 Owens Corning Intellectual Capital, Llc Apparatus and method for re-circulating wash water used in manufacturing glass fiber products
US9938712B2 (en) 2011-03-30 2018-04-10 Owens Corning Intellectual Capital, Llc High thermal resistivity insulation material with opacifier uniformly distributed throughout
WO2012138723A1 (en) 2011-04-07 2012-10-11 Cargill, Incorporated Bio-based binders including carbohydrates and a pre-reacted product of an alcohol or polyol and a monomeric or polymeric polycarboxylic acid
US8718969B2 (en) 2011-04-19 2014-05-06 Owens Corning Intellectual Capital, Llc Apparatus and method for continuous thermal monitoring of cure status of glass fiber products
US20120309246A1 (en) 2011-06-03 2012-12-06 Alexander Tseitlin Curable biopolymer nanoparticle latex binder for mineral, natural organic, or synthetic fiber products and non-woven mats
US9957409B2 (en) 2011-07-21 2018-05-01 Owens Corning Intellectual Capital, Llc Binder compositions with polyvalent phosphorus crosslinking agents
US9416294B2 (en) 2012-04-30 2016-08-16 H.B. Fuller Company Curable epoxide containing formaldehyde-free compositions, articles including the same, and methods of using the same
US8791198B2 (en) 2012-04-30 2014-07-29 H.B. Fuller Company Curable aqueous composition
US11453798B2 (en) 2013-12-05 2022-09-27 Ecosynthetix Ltd. Formaldehyde free binder and multi-component nanoparticle
US11214714B2 (en) * 2018-05-08 2022-01-04 Iowa State University Research Foundation, Inc. Thermoplastic poly acrylated glycerol adhesives useful in cellulosic products

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996015075A1 (en) * 1994-11-14 1996-05-23 Owens Corning Fibrous glass binders
WO1999061384A1 (en) * 1998-05-28 1999-12-02 Owens Corning Corrosion inhibiting composition for polyacrylic acid based binders
US6114464A (en) * 1996-05-29 2000-09-05 Basf Aktiengesellschaft Thermosetting aqueous compostions
US6136916A (en) * 1992-08-06 2000-10-24 Rohm And Haas Company Curable aqueous composition
US20020091185A1 (en) * 1998-10-02 2002-07-11 Johns Manville International, Inc. Polycarboxy/polyol fiberglass binder

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2A (en) * 1826-12-15 1836-07-29 mode of manufacturing wool or other fibrous materials
US3914192A (en) 1973-08-06 1975-10-21 Owens Corning Fiberglass Corp Gloss fibers coated with a size comprising a film-farming binder and an amino acid
US3956241A (en) 1974-06-07 1976-05-11 Aerojet-General Corporation Latent catalysts for epoxy resins
US4177553A (en) 1976-07-01 1979-12-11 Bell Telephone Laboratories, Incorporated Reinforced flexible printed wiring board
US4158083A (en) 1976-07-02 1979-06-12 Basf Wyandotte Corporation Fibrous article sized with a branched water-dispersible polyester
US4198491A (en) 1977-10-25 1980-04-15 Blount David H Process for the production of organic halosilicon acid resinous products and their reaction products
US4238375A (en) 1979-04-23 1980-12-09 Blount David H Process for the production of organic halosilicon acid resinous products and their reaction products utilizing phenol compounds
US4692291A (en) 1980-04-14 1987-09-08 Union Carbide Corporation Molding method using fast curing fiber reinforced, low viscosity thermosetting resin
DE3322993A1 (en) 1983-06-25 1985-01-03 Basf Ag, 6700 Ludwigshafen METHOD FOR ACYLATING POLYVINYL ALCOHOLS AND PHYTOPOLYMERIZABLE AND / OR PHOTO CROSSLINKABLE MIXTURES CONTAINING SO ACYLATED PRODUCTS
JPS60226508A (en) 1984-04-23 1985-11-11 Dai Ichi Kogyo Seiyaku Co Ltd Production of water-soluble composite resin
US4681718A (en) 1984-05-09 1987-07-21 Hughes Aircraft Company Method of fabricating composite or encapsulated articles
US4804688A (en) 1985-03-22 1989-02-14 Vassileff Neiko I Open-cell foamed gypsum insulation
US4795533A (en) 1985-07-10 1989-01-03 Allied-Signal Inc. Gas detection apparatus and method with novel three-component membrane
DE3534476A1 (en) 1985-09-27 1987-04-02 Basf Ag METHOD FOR PRODUCING CARBONIC ACID ESTERS CONTAINING HYDROXY GROUP POLYMERS
US4945074A (en) 1987-06-01 1990-07-31 Blount David H Polymeric alkali metal silicate glass
US4908339A (en) 1987-06-01 1990-03-13 Blount David H Flexible glass
US4824807A (en) 1987-06-01 1989-04-25 Blount David H Flexible alkali metal silicate glass products
US4965408A (en) 1989-02-01 1990-10-23 Borden, Inc. Composite sheet material for electromagnetic radiation shielding
US5108798A (en) * 1989-06-08 1992-04-28 American Cyanamid Company Water soluble binder compositions containing beta-hydroxy urethanes and polyfunctional carboxylic acids
US5164258A (en) 1990-10-29 1992-11-17 Mitsuzo Shida Multi-layered structure
US5314943A (en) * 1990-11-30 1994-05-24 Rohm And Haax Company Low viscosity high strength acid binder
US5268437A (en) 1992-01-22 1993-12-07 Rohm And Haas Company High temperature aqueous polymerization process
US5354803A (en) 1993-03-29 1994-10-11 Sequa Chemicals, Inc. Polyvinyl alcohol graft copolymer nonwoven binder emulsion
US5858522A (en) 1993-08-30 1999-01-12 Formtech Enterprises, Inc. Interfacial blending agent for natural fiber composites
US6255367B1 (en) 1995-03-07 2001-07-03 Landec Corporation Polymeric modifying agents
US5843331A (en) 1995-11-13 1998-12-01 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids
US6065572A (en) 1995-11-13 2000-05-23 The Lubrizol Corporation Polymeric materials to self-regulate the level of polar activators in electrorheological fluids
DE19606394A1 (en) 1996-02-21 1997-08-28 Basf Ag Formaldehyde-free, aqueous binders
US5858549A (en) 1997-01-07 1999-01-12 National Starch And Chemical Investment Holding Corporation (Hydroxyalkyl)urea crosslinking agents
US5977232A (en) 1997-08-01 1999-11-02 Rohm And Haas Company Formaldehyde-free, accelerated cure, aqueous composition for bonding glass fiber heat-resistant nonwovens
US6146556A (en) 1998-04-29 2000-11-14 Katoot; Mohammad W. Polymer additives for forming objects
US6331350B1 (en) 1998-10-02 2001-12-18 Johns Manville International, Inc. Polycarboxy/polyol fiberglass binder of low pH
DE19900459A1 (en) 1999-01-08 2000-07-13 Basf Ag Polymer dispersion

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6136916A (en) * 1992-08-06 2000-10-24 Rohm And Haas Company Curable aqueous composition
US6221973B1 (en) * 1992-08-06 2001-04-24 Rohm And Haas Company Curable aqueous composition and use as fiberglass nonwoven binder
WO1996015075A1 (en) * 1994-11-14 1996-05-23 Owens Corning Fibrous glass binders
US6114464A (en) * 1996-05-29 2000-09-05 Basf Aktiengesellschaft Thermosetting aqueous compostions
WO1999061384A1 (en) * 1998-05-28 1999-12-02 Owens Corning Corrosion inhibiting composition for polyacrylic acid based binders
US20020091185A1 (en) * 1998-10-02 2002-07-11 Johns Manville International, Inc. Polycarboxy/polyol fiberglass binder

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133952B2 (en) 2005-05-06 2012-03-13 Dynea Oy Poly (vinyl alcohol)—based formaldehyde-free curable aqueous composition
US9464207B2 (en) 2005-07-26 2016-10-11 Knauf Insulation, Inc. Binders and materials made therewith
US9260627B2 (en) 2005-07-26 2016-02-16 Knauf Insulation, Inc. Binders and materials made therewith
US9040652B2 (en) 2005-07-26 2015-05-26 Knauf Insulation, Llc Binders and materials made therewith
US9926464B2 (en) 2005-07-26 2018-03-27 Knauf Insulation, Inc. Binders and materials made therewith
US7655711B2 (en) 2005-07-26 2010-02-02 Knauf Insulation Gmbh Binder and wood board product from maillard reactants
US9434854B2 (en) 2005-07-26 2016-09-06 Knauf Insulation, Inc. Binders and materials made therewith
US7947765B2 (en) 2005-07-26 2011-05-24 Knauf Insulation Gmbh Binder and wood board product from maillard reactants
US9745489B2 (en) 2005-07-26 2017-08-29 Knauf Insulation, Inc. Binders and materials made therewith
US8182648B2 (en) 2005-07-26 2012-05-22 Knauf Insulation Gmbh Binders and materials made therewith
US8901208B2 (en) 2007-01-25 2014-12-02 Knauf Insulation Sprl Composite wood board
US8501838B2 (en) 2007-01-25 2013-08-06 Knauf Insulation Sprl Composite wood board
US11453780B2 (en) 2007-01-25 2022-09-27 Knauf Insulation, Inc. Composite wood board
US10968629B2 (en) 2007-01-25 2021-04-06 Knauf Insulation, Inc. Mineral fibre board
US11401209B2 (en) 2007-01-25 2022-08-02 Knauf Insulation, Inc. Binders and materials made therewith
US10759695B2 (en) 2007-01-25 2020-09-01 Knauf Insulation, Inc. Binders and materials made therewith
US10000639B2 (en) 2007-01-25 2018-06-19 Knauf Insulation Sprl Composite wood board
US9447281B2 (en) 2007-01-25 2016-09-20 Knauf Insulation Sprl Composite wood board
US9828287B2 (en) 2007-01-25 2017-11-28 Knauf Insulation, Inc. Binders and materials made therewith
US11905206B2 (en) 2007-01-25 2024-02-20 Knauf Insulation, Inc. Binders and materials made therewith
US11459754B2 (en) 2007-01-25 2022-10-04 Knauf Insulation, Inc. Mineral fibre board
US8552140B2 (en) 2007-04-13 2013-10-08 Knauf Insulation Gmbh Composite maillard-resole binders
US9309436B2 (en) 2007-04-13 2016-04-12 Knauf Insulation, Inc. Composite maillard-resole binders
US8410204B2 (en) 2007-07-05 2013-04-02 Akzo Nobel Coatings International B.V. Hardener composition, adhesive system and method of gluing
US9039827B2 (en) 2007-08-03 2015-05-26 Knauf Insulation, Llc Binders
US11946582B2 (en) 2007-08-03 2024-04-02 Knauf Insulation, Inc. Binders
US8940089B2 (en) 2007-08-03 2015-01-27 Knauf Insulation Sprl Binders
US9469747B2 (en) 2007-08-03 2016-10-18 Knauf Insulation Sprl Mineral wool insulation
US8979994B2 (en) 2007-08-03 2015-03-17 Knauf Insulation Sprl Binders
EP2231543B1 (en) 2007-12-05 2018-09-12 Saint-Gobain Isover Mineral wool sizing composition comprising a monosaccharide and/or a polysaccharide and an organic polycarboxylic acid, and insulating products obtained
US9416248B2 (en) 2009-08-07 2016-08-16 Knauf Insulation, Inc. Molasses binder
US10053558B2 (en) 2009-08-07 2018-08-21 Knauf Insulation, Inc. Molasses binder
US8900495B2 (en) 2009-08-07 2014-12-02 Knauf Insulation Molasses binder
US9493603B2 (en) 2010-05-07 2016-11-15 Knauf Insulation Sprl Carbohydrate binders and materials made therewith
US11814481B2 (en) 2010-05-07 2023-11-14 Knauf Insulation, Inc. Carbohydrate polyamine binders and materials made therewith
US10913760B2 (en) 2010-05-07 2021-02-09 Knauf Insulation, Inc. Carbohydrate binders and materials made therewith
US10738160B2 (en) 2010-05-07 2020-08-11 Knauf Insulation Sprl Carbohydrate polyamine binders and materials made therewith
US11078332B2 (en) 2010-05-07 2021-08-03 Knauf Insulation, Inc. Carbohydrate polyamine binders and materials made therewith
US9505883B2 (en) 2010-05-07 2016-11-29 Knauf Insulation Sprl Carbohydrate polyamine binders and materials made therewith
US11846097B2 (en) 2010-06-07 2023-12-19 Knauf Insulation, Inc. Fiber products having temperature control additives
US10767050B2 (en) 2011-05-07 2020-09-08 Knauf Insulation, Inc. Liquid high solids binder composition
US11725124B2 (en) 2012-04-05 2023-08-15 Knauf Insulation, Inc. Binders and associated products
US10287462B2 (en) 2012-04-05 2019-05-14 Knauf Insulation, Inc. Binders and associated products
US11453807B2 (en) 2012-04-05 2022-09-27 Knauf Insulation, Inc. Binders and associated products
US10183416B2 (en) 2012-08-17 2019-01-22 Knauf Insulation, Inc. Wood board and process for its production
US9492943B2 (en) 2012-08-17 2016-11-15 Knauf Insulation Sprl Wood board and process for its production
US10508172B2 (en) 2012-12-05 2019-12-17 Knauf Insulation, Inc. Binder
US11384203B2 (en) 2012-12-05 2022-07-12 Knauf Insulation, Inc. Binder
US11401204B2 (en) 2014-02-07 2022-08-02 Knauf Insulation, Inc. Uncured articles with improved shelf-life
US11332577B2 (en) 2014-05-20 2022-05-17 Knauf Insulation Sprl Binders
US10864653B2 (en) 2015-10-09 2020-12-15 Knauf Insulation Sprl Wood particle boards
US11230031B2 (en) 2015-10-09 2022-01-25 Knauf Insulation Sprl Wood particle boards
US11060276B2 (en) 2016-06-09 2021-07-13 Knauf Insulation Sprl Binders
US11248108B2 (en) 2017-01-31 2022-02-15 Knauf Insulation Sprl Binder compositions and uses thereof
US11111372B2 (en) 2017-10-09 2021-09-07 Owens Corning Intellectual Capital, Llc Aqueous binder compositions
JP7219271B2 (en) 2017-10-09 2023-02-07 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Aqueous binder composition
EP3694918A4 (en) * 2017-10-09 2021-06-30 Owens Corning Intellectual Capital, LLC Aqueous binder compositions
JP2020537055A (en) * 2017-10-09 2020-12-17 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー Aqueous binder composition
US11136451B2 (en) 2017-10-09 2021-10-05 Owens Corning Intellectual Capital, Llc Aqueous binder compositions
EP4306699A3 (en) * 2017-10-09 2024-04-03 Owens Corning Intellectual Capital, LLC Aqueous binder compositions
US11939460B2 (en) 2018-03-27 2024-03-26 Knauf Insulation, Inc. Binder compositions and uses thereof
US11945979B2 (en) 2018-03-27 2024-04-02 Knauf Insulation, Inc. Composite products
US11813833B2 (en) 2019-12-09 2023-11-14 Owens Corning Intellectual Capital, Llc Fiberglass insulation product

Also Published As

Publication number Publication date
NZ540416A (en) 2007-07-27
CA2507646A1 (en) 2004-09-10
AU2004215014A1 (en) 2004-09-10
AU2004215014B2 (en) 2009-07-30
US20040167260A1 (en) 2004-08-26
US6884849B2 (en) 2005-04-26
EP1595016A1 (en) 2005-11-16
MXPA05006832A (en) 2005-08-16

Similar Documents

Publication Publication Date Title
AU2004215014B2 (en) Poly alcohol-based binder composition
EP1578879B1 (en) Extended polyacrylic acid based binder compositions
CA2285511C (en) Improved polycarboxy/polyol fiberglass binder of low ph
EP2044134B1 (en) Cured binder composition prepared by heating an alkaline, aqueous, formaldehyde free composition based on copolymer of maleic anhydride/vinyl aromatic compound
CA2179104C (en) Use of polyacrylic acid and other polymers as additives in fiberglass formaldehyde based binders
EP2029633B1 (en) Formaldehyde free binder
US9382404B2 (en) Formaldehyde free binder compositions containing metal ion crosslinkers and products made therefrom
US20060079629A1 (en) Polycarboxy/polyol fiberglass binder
WO2004050978A1 (en) Polycaboxylic acid based co-binder
US20050191924A1 (en) Water repellant fiberglass binder
EP3034555A1 (en) Curable formaldehyde-free resin dispersion and improved mineral wool products produced therewith
US8193106B2 (en) Process for binding fibrous materials and resulting product
EP0990728A1 (en) Low molecular weight polycarboxy/polyol fiberglass binder
US8148277B2 (en) Process for binding fibrous materials utilizing a polyanhydride and resulting product
EP3680292A2 (en) Heat- and sound-insulating material made from a mineral fiber based on a non-phenol formaldehyde binder
EP4136061A1 (en) Binders and curable resins for mineral wool

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2507646

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 540416

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/006832

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004711828

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004215014

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004215014

Country of ref document: AU

Date of ref document: 20040217

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004215014

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004711828

Country of ref document: EP

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)