WO2004072331A3 - Apparatus and method for highly controlled electrodeposition - Google Patents

Apparatus and method for highly controlled electrodeposition Download PDF

Info

Publication number
WO2004072331A3
WO2004072331A3 PCT/US2004/004277 US2004004277W WO2004072331A3 WO 2004072331 A3 WO2004072331 A3 WO 2004072331A3 US 2004004277 W US2004004277 W US 2004004277W WO 2004072331 A3 WO2004072331 A3 WO 2004072331A3
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
plating
current distribution
highly controlled
anode
Prior art date
Application number
PCT/US2004/004277
Other languages
French (fr)
Other versions
WO2004072331A2 (en
Inventor
Thomas P Griego
Fernando M Sanchez
Original Assignee
Surfect Technologies Inc
Thomas P Griego
Fernando M Sanchez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/728,636 external-priority patent/US20040115340A1/en
Application filed by Surfect Technologies Inc, Thomas P Griego, Fernando M Sanchez filed Critical Surfect Technologies Inc
Publication of WO2004072331A2 publication Critical patent/WO2004072331A2/en
Publication of WO2004072331A3 publication Critical patent/WO2004072331A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/20Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/24Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
    • H01F41/26Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids using electric currents, e.g. electroplating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys

Abstract

An apparatus and method for highly controlled electrodeposition, particularly useful for electroplating submicron structures. Enhanced control of the process provides for a more uniform deposit thickness over the entire substrate, and permits reliable plating of submicron features. The apparatus includes a pressurized electrochemical cell (10) to improve plating efficiency and reduce defects, vertical laminar flow of the electrolyte solution to remove surface gases from the vertically arranged substrate, a rotating wafer chuck (12) to eliminate edge plating effects, and a variable aperture (18) to control the current distribution and ensure deposit uniformity across the entire substrate. Also a dynamic profile anode whose shape can be varied to optimize the current distribution to the substrate. The anode is advantageously able to use metallic ion sources and may be placed close to the cathode thus minimizing contamination of the substrate.
PCT/US2004/004277 2003-02-12 2004-02-12 Apparatus and method for highly controlled electrodeposition WO2004072331A2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US44717503P 2003-02-12 2003-02-12
US60/447,175 2003-02-12
US51981303P 2003-11-12 2003-11-12
US60/519,813 2003-11-12
US10/728,636 US20040115340A1 (en) 2001-05-31 2003-12-05 Coated and magnetic particles and applications thereof
US10/728,636 2003-12-05

Publications (2)

Publication Number Publication Date
WO2004072331A2 WO2004072331A2 (en) 2004-08-26
WO2004072331A3 true WO2004072331A3 (en) 2004-10-28

Family

ID=32872767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/004277 WO2004072331A2 (en) 2003-02-12 2004-02-12 Apparatus and method for highly controlled electrodeposition

Country Status (2)

Country Link
US (1) US20040256222A1 (en)
WO (1) WO2004072331A2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060011487A1 (en) * 2001-05-31 2006-01-19 Surfect Technologies, Inc. Submicron and nano size particle encapsulation by electrochemical process and apparatus
WO2004052547A2 (en) * 2002-12-05 2004-06-24 Surfect Technologies, Inc. Coated and magnetic particles and applications thereof
TW200533791A (en) * 2004-02-04 2005-10-16 Surfect Technologies Inc Plating apparatus and method
US7837851B2 (en) * 2005-05-25 2010-11-23 Applied Materials, Inc. In-situ profile measurement in an electroplating process
WO2006127320A2 (en) * 2005-05-25 2006-11-30 Applied Materials, Inc. Electroplating apparatus based on an array of anodes
KR100806032B1 (en) * 2006-10-09 2008-02-26 동부일렉트로닉스 주식회사 Electrolysis plating system
US8101052B2 (en) * 2006-11-27 2012-01-24 Taiwan Semiconductor Manufacturing Co., Ltd. Adjustable anode assembly for a substrate wet processing apparatus
US20090038947A1 (en) * 2007-08-07 2009-02-12 Emat Technology, Llc. Electroplating aqueous solution and method of making and using same
US8241471B2 (en) * 2008-11-06 2012-08-14 Griffin Linnard Gene Hydrogen production systems utilizing electrodes formed from nano-particles suspended in an electrolyte
JP2011040036A (en) * 2009-03-30 2011-02-24 Avaya Inc System and method for managing communication session using graphical user interface
US8262894B2 (en) 2009-04-30 2012-09-11 Moses Lake Industries, Inc. High speed copper plating bath
US9797057B2 (en) * 2009-08-24 2017-10-24 Empire Technology Development Llc Magnetic electro-plating
WO2013074702A1 (en) 2011-11-15 2013-05-23 Ashwin-Ushas Corporation, Inc. Complimentary polymer electrochromic device
US9207515B2 (en) 2013-03-15 2015-12-08 Ashwin-Ushas Corporation, Inc. Variable-emittance electrochromic devices and methods of preparing the same
US10147510B1 (en) 2013-11-15 2018-12-04 National Technology & Engineering Solutions Of Sandia, Llc Electroplated AU for conformal coating of high aspect ratio silicon structures
JP6335777B2 (en) * 2014-12-26 2018-05-30 株式会社荏原製作所 Substrate holder, method for holding substrate with substrate holder, and plating apparatus
US9632059B2 (en) 2015-09-03 2017-04-25 Ashwin-Ushas Corporation, Inc. Potentiostat/galvanostat with digital interface
US9482880B1 (en) 2015-09-15 2016-11-01 Ashwin-Ushas Corporation, Inc. Electrochromic eyewear
CN106677655A (en) * 2015-11-05 2017-05-17 江苏永兴金融设备有限公司 Reinforced electronic cabinet door capable of achieving automatic money depositing and withdrawing
US9945045B2 (en) 2015-12-02 2018-04-17 Ashwin-Ushas Corporation, Inc. Electrochemical deposition apparatus and methods of using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909641A (en) * 1958-05-02 1959-10-20 Republic Aviat Corp Tool for electro-shaping
US4278245A (en) * 1979-11-23 1981-07-14 General Electric Company Apparatus for clamping a plurality of elements
US4696729A (en) * 1986-02-28 1987-09-29 International Business Machines Electroplating cell
US5514258A (en) * 1994-08-18 1996-05-07 Brinket; Oscar J. Substrate plating device having laminar flow
US5516412A (en) * 1995-05-16 1996-05-14 International Business Machines Corporation Vertical paddle plating cell

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965742A (en) * 1972-10-26 1974-06-26
US4120758A (en) * 1975-09-09 1978-10-17 Rippere Ralph E Production of powder metallurgy alloys
US4088545A (en) * 1977-01-31 1978-05-09 Supnet Fred L Method of fabricating mask-over-copper printed circuit boards
DE2802689A1 (en) * 1977-12-21 1979-06-28 Bbc Brown Boveri & Cie METHOD FOR CARRYING OUT AN ELECTROLYSIS PROCESS
US4302822A (en) * 1978-05-12 1981-11-24 Nippon Electric Co., Ltd. Thin-film magnetic bubble domain detection device and process for manufacturing the same
US4279707A (en) * 1978-12-18 1981-07-21 International Business Machines Corporation Electroplating of nickel-iron alloys for uniformity of nickel/iron ratio using a low density plating current
FR2446669A1 (en) * 1979-01-17 1980-08-14 Bienvenu Gerard METHOD AND DEVICE FOR IMPLEMENTING TRANSFERS OF MATERIAL OF PHYSICAL AND / OR CHEMICAL REACTIONS OR OF THERMAL TRANSFERS IN A FLUID MEDIUM
US4377619A (en) * 1981-05-08 1983-03-22 Bell Telephone Laboratories, Incorporated Prevention of surface mass migration by means of a polymeric surface coating
US4441118A (en) * 1983-01-13 1984-04-03 Olin Corporation Composite copper nickel alloys with improved solderability shelf life
US4465264A (en) * 1983-05-27 1984-08-14 Olin Corporation Apparatus for producing acicular iron or iron alloy particles
US4666568A (en) * 1986-10-10 1987-05-19 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Portland State University Electrolytic codeposition of metals and nonmetallic particles
DE4227848B4 (en) * 1991-11-28 2009-05-07 Robert Bosch Gmbh Component carrier and method for holding a formed of a ferromagnetic material component
JPH0625899A (en) * 1992-07-10 1994-02-01 Nec Corp Electroplating device
US5312532A (en) * 1993-01-15 1994-05-17 International Business Machines Corporation Multi-compartment eletroplating system
US5421987A (en) * 1993-08-30 1995-06-06 Tzanavaras; George Precision high rate electroplating cell and method
JP3126867B2 (en) * 1993-08-31 2001-01-22 上村工業株式会社 Plating apparatus and plating method for small items
US5565079A (en) * 1993-08-31 1996-10-15 Griego; Thomas P. Fine particle microencapsulation and electroforming
US6322676B1 (en) * 1998-03-25 2001-11-27 University Of Iowa Research Foundation Magnetic composites exhibiting distinct flux properties due to gradient interfaces
US5817221A (en) * 1994-08-25 1998-10-06 University Of Iowa Research Foundation Composites formed using magnetizable material, a catalyst and an electron conductor
US6001248A (en) * 1994-08-25 1999-12-14 The University Of Iowa Research Foundation Gradient interface magnetic composites and systems therefor
US5879520A (en) * 1994-08-26 1999-03-09 Griego; Thomas P. Rotary electrodeposition apparatus
GB9425030D0 (en) * 1994-12-09 1995-02-08 Alpha Metals Ltd Silver plating
US5573859A (en) * 1995-09-05 1996-11-12 Motorola, Inc. Auto-regulating solder composition
US5764567A (en) * 1996-11-27 1998-06-09 International Business Machines Corporation Magnetic tunnel junction device with nonferromagnetic interface layer for improved magnetic field response
US6286206B1 (en) * 1997-02-25 2001-09-11 Chou H. Li Heat-resistant electronic systems and circuit boards
US6402923B1 (en) * 2000-03-27 2002-06-11 Novellus Systems Inc Method and apparatus for uniform electroplating of integrated circuits using a variable field shaping element
JP3049315B1 (en) * 1999-02-19 2000-06-05 名古屋大学長 Method for controlling crystal orientation of electrodeposited or electroless deposited film by magnetic field
US6153320A (en) * 1999-05-05 2000-11-28 International Business Machines Corporation Magnetic devices with laminated ferromagnetic structures formed with improved antiferromagnetically coupling films
US6251250B1 (en) * 1999-09-03 2001-06-26 Arthur Keigler Method of and apparatus for controlling fluid flow and electric fields involved in the electroplating of substantially flat workpieces and the like and more generally controlling fluid flow in the processing of other work piece surfaces as well
KR100352976B1 (en) * 1999-12-24 2002-09-18 한국기계연구원 Electrical Plating Process and Device for Ni Plate Layer Having Biaxial Texture
WO2003018875A1 (en) * 2001-08-27 2003-03-06 Surfect Techologies, Inc. Electrodeposition apparatus and method using magnetic assistance and rotary cathode for ferrous and magnetic particles
US6680128B2 (en) * 2001-09-27 2004-01-20 Agilent Technologies, Inc. Method of making lead-free solder and solder paste with improved wetting and shelf life

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2909641A (en) * 1958-05-02 1959-10-20 Republic Aviat Corp Tool for electro-shaping
US4278245A (en) * 1979-11-23 1981-07-14 General Electric Company Apparatus for clamping a plurality of elements
US4696729A (en) * 1986-02-28 1987-09-29 International Business Machines Electroplating cell
US5514258A (en) * 1994-08-18 1996-05-07 Brinket; Oscar J. Substrate plating device having laminar flow
US5516412A (en) * 1995-05-16 1996-05-14 International Business Machines Corporation Vertical paddle plating cell

Also Published As

Publication number Publication date
US20040256222A1 (en) 2004-12-23
WO2004072331A2 (en) 2004-08-26

Similar Documents

Publication Publication Date Title
WO2004072331A3 (en) Apparatus and method for highly controlled electrodeposition
US5744019A (en) Method for electroplating metal films including use a cathode ring insulator ring and thief ring
US10053792B2 (en) Plating cup with contoured cup bottom
US20060049038A1 (en) Dynamic profile anode
US10351968B2 (en) Front referenced anode
US7425256B2 (en) Selective shield/material flow mechanism
WO2001004928A3 (en) Improved apparatus and method for plating wafers, substrates and other articles
US20090134034A1 (en) Prevention of substrate edge plating in a fountain plating process
EP2980281A1 (en) Apparatus and method for forming metal coating film
WO1999054527A3 (en) Electro-chemical deposition system and method of electroplating on substrates
JPH07252700A (en) Apparatus and process for electropolishing
TW201333276A (en) Dynamic current distribution control apparatus and method for wafer electroplating
EP3070191A1 (en) Film forming apparatus for metal coating film and film forming method therefor
JP2016169399A (en) Apparatus and method for film deposition of metal coating
US20070261964A1 (en) Reactors, systems, and methods for electroplating microfeature workpieces
TW200636803A (en) Method and process for improved uniformity of electrochemical plating films produced in semiconductor device processing
GB2564895A (en) Distribution system for chemical and/or electrolytic surface treatment
Roy et al. Implementation of gold deposition by pulse currents for optoelectronic devices
Zhu et al. A hybrid process for complex-shaped parts electroforming
TW200617214A (en) Dynamic profile anode
KR101068625B1 (en) Method of Uniform Film Metal Layer Formation Using Electroplating
EP3105369B1 (en) Method of forming metal coating
KR100865448B1 (en) Electro chemical plating apparatus and method thereof
US20030201185A1 (en) In-situ pre-clean for electroplating process
CN100426467C (en) Ultrathin gate pole oxidation layer and its growing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)