Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberWO2004059284 A2
Publication typeApplication
Application numberPCT/US2003/040520
Publication date15 Jul 2004
Filing date19 Dec 2003
Priority date20 Dec 2002
Also published asCA2507960A1, CA2507960C, CA2508000A1, CA2508001A1, CA2508070A1, CA2508113A1, CA2508323A1, CA2508323C, CA2508370A1, CA2511032A1, CA2974221A1, CN1726275A, CN1726386A, CN1955711A, CN100424166C, CN100472197C, EP1572979A1, EP1572979A4, EP1573297A1, EP1573311A2, EP1573311A4, EP1573312A2, EP1573312A4, EP1573408A2, EP1573408A4, EP1576376A2, EP1576376A4, EP1579190A1, EP1579190A4, EP1579194A2, EP1579194A4, US7400983, US7648678, US7758809, US7937228, US7960178, US8216512, US8257968, US8298815, US8386195, US8394635, US8529836, US8663978, US8673642, US8784735, US8788217, US8969086, US9040284, US9229016, US9599630, US9778273, US20040266015, US20050064535, US20060045806, US20060046298, US20060063265, US20060085140, US20060088928, US20060088940, US20060172426, US20080241876, US20100081167, US20110167930, US20110269238, US20120310422, US20130029409, US20130084567, US20130203103, US20130217108, US20130330252, US20140038232, US20140186218, US20140234170, US20140286838, US20140356935, US20160084862, WO2004057307A1, WO2004058404A2, WO2004058404A3, WO2004058950A1, WO2004059284A3, WO2004059287A2, WO2004059287A3, WO2004059288A2, WO2004059288A3, WO2004059297A1, WO2004059441A2, WO2004059441A3
Publication numberPCT/2003/40520, PCT/US/2003/040520, PCT/US/2003/40520, PCT/US/3/040520, PCT/US/3/40520, PCT/US2003/040520, PCT/US2003/40520, PCT/US2003040520, PCT/US200340520, PCT/US3/040520, PCT/US3/40520, PCT/US3040520, PCT/US340520, WO 2004/059284 A2, WO 2004059284 A2, WO 2004059284A2, WO-A2-2004059284, WO2004/059284A2, WO2004059284 A2, WO2004059284A2
InventorsLars Winther, Marc Key, Kristopher Buchanan, John Favuzzi, Benno Guggenheimer
ApplicantDakocytomation Denmark A/S
Export CitationBiBTeX, EndNote, RefMan
External Links: Patentscope, Espacenet
Apparatus for automated processing biological samples
WO 2004059284 A2
Abstract
The present invention concerns an apparatus (1) for automatic processing at least one biological sample accommodated on a carrier member, such as a slide by (7) applying a predetermined amount of reagents in a predetermined sequence according to a processing protocol, said apparatus (1) comprising; a housing frame (4); at least one processing section for accommodating at least one slide (7), wherein the at least one processing section is provided within the housing (4); a hood cover protecting the at least one processing section in said housing (4); wherein the hood cover (40) completely encloses the processing section defining an interior space (120); and wherein the apparatus (1) further comprises climate control device (121) provided to control the environment within the interior space (120).
Claims  (OCR text may contain errors)
CLAIMS:What is claimed is:
1. An apparatus for automatic processing of at least one biological sample accommodated on a carrier member, such as a slide, by applying a predetermined amount of reagents in a predetermined sequence according to a processing protocol, comprising: a housing frame; at least one sample processing section for accommodating at least one carrier member for a sample, said at least one sample processing section is provided within said housing; a cover protecting said at least one sample processing section in said housing, said cover enclosing the sample processing section and defining an interior space between the housing and the cover; at least one climate control device configured to control the environment within said interior space; and a sensor device providing feedback signals to the climate control means.
2. An apparatus according to claim 1, wherein the sensor device is adapted to sense at least one climate parameter from the group comprising temperature, pressure, humidity, airspeed and the presence of toxic elements in fume.
3. An apparatus according to claim 1 or 2, wherein the sensor device comprises internal sensors located inside the interior space.
4. An apparatus according to any of claims 1 to 3, wherein the sensor device comprises external sensors located outside the interior space, such as at or inside an air inlet/outlet manifold, in a laboratory facility accommodating the apparatus, or outside the building accommodating the laboratory.
5. An apparatus according to any of the claims 1 to 4, wherein the cover comprises at least one openable hood.
6. An apparatus according to any of the claims 1 to 4, wherein the cover is an integrated part of the apparatus.
7. An apparatus according to any of the claims 1 to 6, wherein the cover comprises a plurality of covers arranged to cover a plurality of sections of the apparatus, such as at least one biological sample accommodated on a carrier in the at least one processing section.
8. An apparatus according to claim 7, wherein a plurality of interior spaces of the apparatus is defined by said plurality of covers , each interior space including at least one section arranged for comprising at least one sample on a carrier and/or at least one section arranged for comprising at least one reagent in a container.
9. An apparatus according to claim 8, wherein the at least one climate control device is arranged to control the climate in each interior space, comprising at least one sample on a carrier, according to a sample processing protocol defined for that particular sample.
10. An apparatus according to claim 9, wherein the at least one climate control device receives input signals from internal and/or external sensors, and is arranged to adjust the controlling the climate in each interior space, according to the input signals.
11. An apparatus according to claim 8 to 10, wherein the at least one climate control device is connected for data communication with a data processing device, such as a computer, wherein the protocol for the processing of the particular sample is stored, and where from control data are provided to the climate control means.
12. An apparatus according to any of the claims 1 to 11, wherein the at least one climate control device controls at least the pressure and ensures a slight sub-pressure within the interior space.
13. An apparatus according to any of the claims 1 to 11, wherein the at least one climate control device controls at least the pressure and ensures a slightly higher pressure within the interior space.
14. An apparatus according to any of the claims 1 to 13, wherein the at least one climate control device includes humidity control within the interior space.
15. An apparatus according to any of claims 1 to 14, wherein the at least one climate control device controls the ambient temperature of the air within the interior space.
16. An apparatus according to any of claims 1 to 15, wherein the climate control device comprises a ventilation system configured to automatically exchanging the air in the interior space.
17. An apparatus according to claim 16, wherein the ventilation system comprise a fan in an opening through which air may be exchanged.
18. An apparatus according to claim 17, further comprising at least one air manipulation device wherein said opening being provided with the characteristics of the air flowing into the apparatus, such as the air temperature, pressure, air flow rate and humidity.
19. An apparatus according to any of claims 1 to 18, wherein the climate control device comprises an exhaustion device capable of removing fumes from the interior space.
20. An apparatus according to any of claims 1 to 19, wherein the climate control device comprises a device capable of recycling air for humidity, temperature and toxic control, a device capable of removing toxic elements from the air to be recycled, and/or a device capable of supplying humidity to the air to be recycled and/or a heater/cooling device capable of controlling the temperature of the air to be recycled.
21. An apparatus according to claim 20, wherein the device configured to recycle air comprises a filter capable of cleaning and/or humidifying the air.
22. An apparatus according to any of claims 19 to 21, wherein said exhaustion device is adapted to draw air from an outlet positioned below the level in which the at least one slide is accommodated.
23. An apparatus according to any of claims 19 to 21, wherein said exhaustion device is adapted to draw air from an outlet positioned above the level in which the at least one slide is accommodated.
24. An apparatus according to any of claims 1 to 23, wherein said cover are provided with at least one seal element to provide an air tight seal between the cover means and the housing.
25. An apparatus according to any of claims 1 to 24, wherein an inlet is provided for supplying air into the interior space comprising at least one air inlet opening in the housing frame, and wherein an air manipulation device are provided in said inlet means for adapting the inflowing air with predetermined characteristics.
26. An apparatus according to claim 25, wherein said air manipulation device comprises an a humid filter device wherein the inlet air is drawn through said humid filter device to ensure high and uniform humidity in the chamber.
27. An apparatus according to claim 25, wherein the air manipulation device controls humidity by spraying water droplets or having a water surface.
28. An apparatus according to claim 25, wherein the air manipulation device comprises an air recycling device where the recycled air is drawn through filters to remove fumes and filters to adjust the humidity.
29. An apparatus according to claim 25, wherein the air manipulation device controls the humidity to never be below a predetermined level, to prevent drying out of the sample.
30. An apparatus according to claim 25, wherein the air manipulation device comprises an air additive supply device by which disfectants, UN protectants or other compounds may be added to the inlet air to prevent microbial growth or discolouring.
31. An apparatus according to claim 25, wherein the air manipulation device comprises an air additive supply arranged for addition of fluids from the group comprising reagents, neutral gas, oxygen, carbondioxide, nitrogen, water droplets, and formamide.
32. An apparatus according to any of claims 1 to 31, wherein the apparatus comprises at least one sensor device to register one or mote parameters of the air in interior space of the apparatus, said sensors being arranged in the vicinity of the cover means and/or in the vicinity of the sample carriers on a carrier rack assembly.
33. A method of automatically processing one or more biological samples accommodated on a carrier member, such as a slide, by applying a predetermined amount of reagents in a predetermined sequence according to a processing protocol in an automatic sample processing apparatus, comprising the steps of: measuring at least one air characteristic inside an interior space in which at least one carrier member is provided inside a cover enclosing the samples accommodated in the apparatus, and ventilating said interior space and controlling said apparatus according to a predetermined processing environment defined in a processing control procedure, said ventilation including exchanging air through at least one air inlet and air outlet.
34. A method according to claim 33, wherein the inlet air is drawn through a humid filter device of the air manipulation device to ensure high and uniform humidity in the chamber.
35. A method according to claim 33, wherein the humidity is controlled by spraying water droplets or having a water surface.
36. A method according to claim 33, wherein recycled air is drawn through filters to remove fumes and filters to adjust the humidity.
37. A method according to claim 33, wherein the humidity is controlled to never be below a predetermined level, to prevent drying out of the sample.
38. A method according to claim 33, wherein disfectants, UN protectants or other compounds may be added to the inlet air to prevent microbial growth or discolouring.
39. An apparatus according to claim 33, wherein the air manipulation device comprises air additive supply device arranged for addition of fluids from the group comprising reagents, neutral gas, oxygen, carbondioxide, nitrogen, water droplets, and formamide.
Description  (OCR text may contain errors)

APPARATUS FOR AUTOMATED PROCESSING BIOLOGICAL SAMPLES

TECHNICAL FIELD

The present invention relates to a method and an apparatus for automatic processing of at least one biological sample accommodated on a carrier member, such as microscopic slide, by applying a predetermined amount of reagents in a sequence according to a processing protocol, wherein at least one slide is provided in a slide rack assembly.

This application relates to the field of sample processing systems and methods of processing samples. The present invention may be directed to the automated processing, treatment, or even staining of samples arranged on carriers, such as microscope slides, and in some embodiments, directed to the continuous or batch processing of samples and carriers, as well as washing elements of a sampling system. Embodiments may further relate to control systems for sample processing and data acquisition, data maintenance, and data retrieval for sample processing. Applications to which the present invention may especially relate include cytology, immunohistochemistry, in-situ hybridization, fluorescent in-situ hybridization, special staining, and microarrays, as well as potentially other chemical and biological applications.

BACKGROUND

The biological sample may suitably be selected from histological material, including formalin fixed and paraffin embedded material, cytological material, fine needle aspirates, cell smears, exfoliative cytological specimens, touch preparations, bone marrow specimens, sputum samples, expectorates, oral swabs, laryngeal swabs, vaginal swabs, bronchial aspirates, bronchial lavage, gastric lavage, and body fluids. Such may be subjected to various treatments.

Sample processing in immunohistochemical (IHC) applications and in other chemical and biological analyses may require one or a number of various processing sequences or protocols as part of an analysis of one or more samples. The sample processing sequences or protocols may be defined by the individual or organization requesting an analysis, such as a pathologist or histologist of a hospital, and may be further defined by the dictates of a particular analysis to be performed.

In preparation for sample analysis, a biological sample may be acquired by known sample acquisition techniques and may comprise, for example in IHC applications, tissues generally or even in some applications one or a plurality of isolated cells, such as in microarray samples, and may be presented on a sample carrier such as a microscope slide. Furthermore, the sample may be presented on the carrier variously and potentially in some form of preservation. As one example, a human biopsi sample may be fixed and embedded in a suitable media like paraffin or epon, before being mounted onto a carrier. The sample may be treated according to the protocol, which may include the following non limiting procedural steps: deparaffination, antigen retrieval, denaturing, washing, incubation with various immunological reagents, molecular probes or dyes, strigency wash or counterstaining.

Histological, cytological, ISH, IHC special stains and other applications, for example, may require processing sequences or protocols that comprise many and laborious steps such as deparaffinization, target retrieval, and staining. Such steps are not special for ISH procedures, but goes for IHC, cytological, specials or ISH stainings. Previously, in some applications, these steps may have been performed manually, potentially creating a time- intensive protocol and necessitating personnel to be actively involved in the sample processing. Attempts have been made to automate sample processing to address the need for expedient sample processing and a less manually burdensome operation. However, such previous efforts may have not fully addressed the needs for an automated sample processing system. Previous efforts to automate sample processing may be deficient in several aspects that prevent more robust automated sample processing, such as: the lack of sufficient computer control and monitoring of sample processing; the lack of information sharing for processing protocol and processing status, especially for individual samples; the lack of diagnostic capabilities; and the lack of real-time or adaptive capabilities for multiple sample batch processing.

From US Patent No. 5,839,091 an automated sample processing for samples presented on carriers such as slides is known. In this apparatus, an array of slides is stained by a robotic device delivering reagents onto the slides. The staining apparatus is provided with a lid cover, which provides a protective cover of the biological samples on the carriers in the apparatus during the staining processes as well as containing stains of the some times hazardous reagent materials within the apparatus and preventing operators from being exposed to such stains.

Slides can be any suitable solid or semi solid support for the biological sample. In particular, the support may be a microscope slide, a membrane, a filter, a polymer slide, a chamber slide, a dish, or a petridish.

Some staining processes involve the use of hazardous materials, such as toxic materials. These materials may be collected in special containers in order to ensure safe handling of the waste material. However, this does not sufficiently protect the laboratory environment in which the apparatus is placed from being contaminated with toxic material. Moreover, in some staining processes or other treatments in the apparatus heat is applied. This increases the risk of vaporising reagents which then may escape to the outside of the apparatus.

In the apparatuses known in the art, a protective hood or similar plastic cover is put over the staining apparatus in order to shield off the biological samples during the staining. In this known technique, one risk is the drying out of slides and lack of control of airspeed and temperature.

DISCLOSURE OF INVENTION

On this background, it is an object of the invention to provide an apparatus for automatic staining of biological samples, in which the hazardous materials and toxic or otherwise damaging fumes are contained and automatically handled, so that operators need not be involved in the handling of such types of materials.

The invention consists of a method and an apparatus for automatic staining at least one biological sample accommodated on a carrier slide by applying a predetermined amount of reagents in a predetermined sequence according to a staining protocol, said apparatus comprising: a housing frame; at least one staining section for accommodating at least one slide, said at least one staining section is provided within said housing; a hood cover protecting said at least one staining section in said housing; wherein the hood cover completely encloses the staining section defining an interior space; and wherein the apparatus further comprises climate control device that provide control of the environment within said interior space; and sensor device to provide feedback signals to the climate control means.

In the staining apparatus, fumes from the reagents and other processing liquids used in the apparatus for performing the treatment of the biological samples are present. In an apparatus according to the invention, these fumes may be exhausted from the interior space of the apparatus, just as the climate in the apparatus may be controlled. In particular, in order to avoid the volatile fumes from escaping into the surroundings, the climate control device preferably includes a pressure control device that can ensure a slight sub- pressure within the interior space. By maintaining a slight sub-pressure inside the apparatus, the fumes are kept inside in the interior space, from where the climate control system may remove the volatile fumes. These fumes may advantageously be collected in suitable storage or otherwise be disposed of.

Advantageously, the climate control device may also include humidity control within the interior space. This makes an apparatus according to the invention more suitable for some special sample treatment applications, just as the climate requirement inside the laboratory where the apparatus is placed may be less strict. Moreover, the climate control device may preferably also include a temperature control device that can control the ambient temperature of the air within the interior space.

Climate control, especially control of temperature and humidity is important for ensuring standardized and reproducible staining protocols, as the biological samples can easily dry out or changes properties, including moφhology and antigenicity. Also, the controlled environment can ensure uniform chemical reaction conditions on the slides during the staining protocol.

The climate control device in an apparatus according to the invention may include an exhaustion device that can remove fumes from the interior space. These exhaustion devices are preferably adapted to draw air from an outlet positioned below the level in which the at least one slide is accommodated. Hereby, fumes are drawn away from the hood and the slides. This may reduce any risk of cross-contamination. Cross contamination could be a problem, as some fumes can adsorb to the biological sample, resulting in a change of properties. Especially hydrophobic, acidic, basic, strong chaotropic or otherwise reactive or corrosive fumes can cause serious and unwanted cross contamination.

The sensor device is preferably adapted to sense at least one climate parameter from the group comprising temperature, pressure, humidity, airspeed and the presence of toxic elements in fume. These measured air characteristics are used for manipulating the inflowing air into the interior space, so that it is ensured that the biological samples are processed in a controlled ambient environment and that it is ensured that the samples do not dry out or are otherwise being deteriorated.

The sensor device may comprise internal sensors located inside the interior space. Alternatively, the sensor may comprise external sensors located outside the interior space, such as at or inside an air inlet/outlet manifold, in a laboratory facility accommodating the apparatus, or outside the building accommodating the laboratory.

In the preferred embodiment, the cover is at least one openable hood. The cover is an integrated part of the apparatus, e.g. a hinged hood which may be swung open. An automatic lock may be provided to prevent any opening during the processing.

In an embodiment, the cover is a plurality of covers arranged to cover a plurality of sections of the apparatus, such as at least one biological sample accommodated on a carrier in the at least one processing section. Hereby, different environments may be created for different samples. A plurality of interior spaces may be defined by a plurality of covers in the apparatus, each interior space including at least one section arranged for comprising at least one sample on a carrier and/or at least one section arranged for comprising at least one reagent in a container.

The climate control device may be arranged to controlling the climate in each interior space, comprising at least one sample on a carrier, according to a sample processing protocol defined for that particular sample. In an embodiment of the invention, the climate control device receives input signals from internal and/or external sensors, and are arranged to control the climate in each interior space, according to the input signals. The climate control device may then preferably connected for data communication with a data processing device, such as a computer, wherein the protocol for the processing of the particular sample is stored, and where from control data are provided to the climate control device. Hereby, an automatic climate control is provided for the sample processing, whereby it may be possible to provide a selected air environment for a particular sample processing protocol.

In a preferred embodiment of the invention, the hood cover is provided with one or more seal elements to provide an air-tight seal between the cover and the housing. Hereby, the sub-pressure need not be present or a higher pressure inside may be provided for achieving a more precise climate control inside the apparatus.

The exchange of air between the interior space and the surroundings may be carried out via an inlet and an outlet. In an embodiment of the invention, the inlet may be provided for supplying air into the interior space including an air inlet opening in the housing, and wherein air manipulation device are provided in addition to said inlet means to adapt the inflowing air with predetermined characteristics. Hereby, the inside climate of the air in the interior space may be accurately controlled.

According to the present invention, a method and an apparatus is provided which allows air containing the fumes to be removed to the exterior or removed on a filter device before the cleaner air is being recycled.

Also, it should be understood, that the air drawn into the interior space in addition to be temperature controlled by heating or cooling, also may be added humidity by spraying water droplets or using a filter device, or added other components, like nitrogen gas, carbondioxide or inert gasses to control the environment in the hood.

In one preferred embodiment, the inlet air is drawn through a humid filter device to ensure high and uniform humidity in the chamber.

In another preferred embodiment, the humidity is controlled by spraying water droplets or having a water surface.

In yet another preferred embodiment, recycled air is drawn through filters to remove fumes and filters to adjust the humidity. In yet another preferred embodiment, the humidity is controlled to never be below a predetermined level, to prevent drying out of the sample.

Also, disfectantcs, UN protectants or other compounds could be added to the inlet air to prevent microbial growth or discolouring.

It should be understood that by controlling the environment by the present invention, the mechanical and electrical parts are also protected from corrosion and wear. Also, by an apparatus according to the invention the air may be moved around inside the interior space which ensures uniform and controllable temperature control.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is described with reference to a preferred embodiment with reference to the drawings, in which:

Fig. 1 is a schematic perspective view of a staining apparatus according to the preferred embodiment of the invention; Fig. 2 is a top view of the work area in the staining apparatus shown in fig. 1 ; Fig. 3 is a schematic side view of the staining apparatus of fig. 1; and

Fig. 4 is an example of a ventilation assembly mountable in the housing in an apparatus according to the invention.

BEST MODES FOR CARRYING OUT THE INVENTION

A staining apparatus 1 according to the invention is shown in the figures. The staining apparatus 1 comprises a rectangular housing frame 4 surrounding a reagent station 2 comprising an array of reagent bottle compartments wherein each compartment a reagent vial 3 is placed, and a first and second slide sections 5 wherein a number of separate rack assemblies 11 is placed, potentially in some embodiments in one or more drawer assemblies 6, and where each rack assembly 11 accommodates a number of microscope slides 7 mounted side by side in the rack assembly. In the embodiment shown, each rack may hold up to 8 slides, but the rack may be designed to hold any suitable number of slides. With eight racks arranged side by side, the shown embodiments may hold up to 64 slides 7 each having a biological sample, e.g. a tissue mounted on the upper side of the slide, so that reagent may be applied from above to the sample on each slide.

A robot arm 20 for moving a probe 10 in X and Y (as well as Z) direction as indicated by the arrows X and Y is arranged above the frame 4 of the staining apparatus. The robot arm 20 may is therefore position the probe 10 above all reagent vials 3 as well as above all the microscope slides 7, and may further operate the probe 10 to aspirate portions of reagent contained in any of the vials 3, to transfer the portion of reagent and apply it to any of the slides 7 in order to provide a selected staining or treatment of the sample on each slide 7. By use of suitable control, e.g. a computer (not shown) having the appropriate software and input data for the puφose, this staining apparatus 1 is able to automatically stain or treat samples requiring different staining or treatment reagents and processes.

As shown in fig. 1, the probe 10 is accommodated in a robotic head 22 and is manipulated by the robot arm 20. The probe 10 is raised to an upper position (in a Z direction) where it is clear of the vials 3 underneath the probe 10, but the robot comprises means in the robotic head 22 for lowering the probe 10 in order to dip the probe tip into the content of a selected reagent vial 3 and to aspirate a selected amount of reagent for the selected staining or treatment process. The robotic head 22 may also be provided with a CCD camera 25, in some embodiments configured to point downwards. The camera is utilised to determine status information of the slides and the reagent bottles and other features of the apparatus in the work area, for example reading information which may or may not be encrypted, that is provided on a reagent container to determine the reagent type and the reagent location within the system. The camera may also determine status of the tissue sample carriers, for example the location of a particular slide, informational indicia, such as which may be converted into an encrypted format, that indicate information about the tissue sample presented on the slide or the processing protocol to be performed.

The staining apparatus 1 of the present embodiment further comprises a probe washing station 8 and a reagent mixer 9, and the robot arm 20 is furthermore arranged to transfer the probe 10 to the washing station 8 as well as to the reagent mixer 9.

As shown in fig. 3, the apparatus 1 is provided with an openable hood cover 40, which is pivotably attached to the frame housing 4. The hood 40 is shown in a closed position and an open position 40' is indicated in dotted lines in the figure. In the bottom of the frame housing 4, the slide rack assemblies 11, potentially in some embodiments in one or more drawer assemblies 6 are provided. An interior space 120 is defined by this hood cover 40 and the frame 4. The staining sections 5 and the reagent station 2 are arranged such that they are accessible by the robotic arm 20 via the equipment arranged on the robotic head 22.

A climate control device 121 is provided for controlling the pressure and potentially also the temperature and the humidity of the air in the interior space 120 inside the apparatus 1. This climate control 121 includes an outlet 122 and an inlet 123 allowing for an exchange of air in a controlled manner. Exhausted air from the interior space may be directed to a collection storage or disposed of in other manners depending on the requirements on the location of the apparatus. The exhausted air may - in particular in some staining or other processes - include volatile fumes or other toxic or unwanted fumes from the reagents and other liquids used for the processing of the biological samples.

The ambient air in the interior space 120 is drawn through the rack assembly 11 of the drawer assembly 6 in the staining sections 5. In the drawer assembly 6, other processing devices are preferably also provided, such as pretreatment tanks in which the biological specimens arranged on slides may be immersed in a pretreatment liquid which is often heated to a processing temperature. By drawing the fumes out of the interior space 120 at a location close to the heating sources and below the level in which the slides are arranged, the fumes are essentially prevented from diffuse to widely in the interior space, whereby the risk of such fumes coming into unwanted contact with biological samples, other reagents or processing liquids may be avoided.

Besides maintaining a slight sub-pressure inside the hood, the climate control may also be adapted to controlling the temperature and the humidity inside the apparatus, so that such climatic conditions do not interfere with the staining processes. Hereby, the apparatus may easily be adapted to changes in the environment, such as seasonal changes, temperature changes, just as the apparatus according to the invention may be able to adapt itself to a specific location, e.g. adapt to difference in altitude, etc.

The temperature, humidity, airflow rate and/or other environmental factors can be controlled by a feed back mechanism from a sensor device, such as one or more sensors arranged in the hood or elsewhere inside the interior space and/or external sensors, which may be advantageous in order to compensate for external influences such as high temperature or extremely dry climate in local areas having extreme climate variations.

The system may further have the ability to vent toxic and or flammable fumes from inside the cabinet portions or enclosure to exit ports that can be connected to an external system vent or hood, such as vent 160. Embodiments may comprise exit ports from the internal enclosure of the system and exit ports from the bulk fluid containers of the system, such as reagent containers. Fumes may be isolated and removed from various compartments within the system. An environmental control system addresses the system's ventilation to ensure the evacuation of volatile organic vapours, keeping the concentration of these materials below established toxic and explosive limits.

In some embodiments, a ventilation system such as that shown in Figures 3 and 4 will draw hazardous fumes from the vicinity of each processing tank in the drawer assemblies 6 by an exhaustion device that may comprise dedicated ducts 122, 123. These ducts will feed a manifold 121 running along the rear of the instrument. A separate ventilation system for an electronic chassis of the system may be similarly isolated having independent air input and output vents. Each of these systems has independent air input and output air vents. At one end of the manifold, a centrifugal blower will exhaust the fumes to an exit port that may be connected to the facility hood/exhaust system.

In fig. 4, a ventilation assembly 80 for mounting in the apparatus is shown. Through this ventilation assembly 80 air may be exchanged between the interior space 120 and the surroundings. In addition to the inlet and outlet ducts 122, 123, air manipulation devices 81, 82 may be arranged. These air manipulation devices may include moisture control, air pressure and air flow regulation in order to control the environment in the interior space automatically in response to sensor readings inside the interior space.

Above, the apparatus according to the invention is described according to some preferred explanatory embodiments. However, it is realised by the invention that many other variations and equivalents of the apparatus may be carried out without departing from the scope of the invention as specified in the accompanying claims. As can be easily understood from the foregoing, the basic concepts of the present invention may be embodied in a variety of ways. It involves both sample processing techniques as well as various systems, assemblies, and devices to accomplish sample processing, input, and other functions. In this application, the sample processing techniques are also disclosed as part of the results shown to be achieved by the various systems, assemblies, and devices described and as steps which are inherent to utilization. They should be understood to be the natural result of utilizing the devices as intended and described. In addition, while some devices are disclosed, it should be understood that these not only accomplish certain methods but also can be varied in a number of ways. Importantly, as to all of the foregoing, all of these facets should be understood to be encompassed by this disclosure.

The discussion included in this application is intended to serve as a basic description. The reader should be aware that the specific discussion may not explicitly describe all embodiments possible; many alternatives are implicit. It also may not fully explain the generic nature of the invention and may not explicitly show how each feature or element can actually be representative of a broader function or of a great variety of alternative or equivalent elements. Again, these are implicitly included in this disclosure. Where the invention is described in device-oriented terminology, each element of the device implicitly performs a function. Importantly, neither the description nor the terminology is intended to limit the scope of the claims which may be included at any time.

It should also be understood that a variety of changes may be made without departing from the essence of the invention. Such changes are also implicitly included in the description. They still fall within the scope of this invention. A broad disclosure encompassing both the explicit embodiment(s) shown, the great variety of implicit alternative embodiments, and the broad methods or processes and the like are encompassed by this disclosure and may be relied upon at any time.

Further, each of the various elements of the invention and claims may also be achieved in a variety of manners. This disclosure should be understood to encompass each such variation, be it a variation of an embodiment of any apparatus embodiment, a method or process embodiment, or even merely a variation of any element of these. Particularly, it should be understood that as the disclosure relates to elements of the invention, the words for each element may be expressed by equivalent apparatus terms or method terms — even if only the function or result is the same. Such equivalent, broader, or even more generic terms should be considered to be encompassed in the description of each element or action. Such terms can be substituted where desired to make explicit the implicitly broad coverage to which this invention is entitled. As but one example, it should be understood that all actions may be expressed as a means for taking that action or as an element which causes that action. Similarly, each physical element disclosed should be understood to encompass a disclosure of the action which that physical element facilitates. Regarding this last aspect, as but one example, the disclosure of a "retention element" should be understood to encompass disclosure of the act of "retaining" — whether explicitly discussed or not ~ and, conversely, were there effectively disclosure of the act of "retaining", such a disclosure should be understood to encompass disclosure of a "retention element" and even a "means for retaining". It should also be understood that in jurisdictions where specific language may be construed as limiting, as but one example in the United States where some inteφretations of "means for" elements can be construed narrowly, broader equivalent language may be used and should be understood as encompassed by this specification. Such changes and alternative terms are to be understood to be explicitly included in the description.

Any patents, patent applications, publications, or other references mentioned in this application for patent are hereby incoφorated by reference. In addition, as to each term used it should be understood that unless its utilization in this application is inconsistent with such inteφretation, common dictionary definitions should be understood as incoφorated for each term and all definitions, alternative terms, and synonyms such as contained in the Random House Webster's Unabridged Dictionary, second edition are hereby incoφorated by reference as well as the definitions presented by searchStorage.com, such to be considered as representing the meaning of the terms as understood by computer professionals. Finally, any priority case for this application is hereby appended and hereby incoφorated by reference.

Thus, the applicant(s) should be understood to have support to claim at least: i) each of the sample processing systems and subsystems as herein disclosed and described, ii) the related methods disclosed and described, iii) similar, equivalent, and even implicit variations of each of these systems, assemblies, devices and methods, iv) those alternative designs which accomplish each of the functions shown as are disclosed and described, v) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, vi) each feature, component, and step shown as separate and independent inventions, vii) the applications enhanced by the various systems or components disclosed, viii) the resulting products produced by such systems or components, and ix) methods and systems, assemblies, devices, and apparatuses substantially as described hereinbefore and with reference to any of the accompanying examples, x) the various combinations and permutations of each of the elements disclosed, xi) each potentially dependent claim or concept as a dependency on each and every one of the independent claims or concepts presented, xii) processes performed with the aid of or on a computer as described throughout the above discussion, xiii) a programmable system as described throughout the above discussion, xiv) a computer readable memory encoded with data to direct a computer comprising means or elements which function as described throughout the above discussion, xv) a computer configured as herein disclosed and described, xvi) individual or combined subroutines and programs as herein disclosed and described, xvii) the related methods disclosed and described, xviii) similar, equivalent, and even implicit variations of each of these systems and methods, xix) those alternative designs which accomplish each of the functions shown as are disclosed and described, xx) those alternative designs and methods which accomplish each of the functions shown as are implicit to accomplish that which is disclosed and described, xxi) each feature, component, and step shown as separate and independent inventions, and xxii) the various combinations and permutations of each of the above.

Further, if or when used, the use of the transitional phrase "comprising" or the like is used to maintain the "open-end" claims herein, according to traditional claim inteφretation. Thus, unless the context requires otherwise, it should be understood that the term "comprise" or variations such as "comprises" or "comprising" or the like, are intended to imply the inclusion of a stated element or step or group of elements or steps but not the exclusion of any other element or step or group of elements or steps. Such terms should be inteφreted in their most expansive form so as to afford the applicant the broadest coverage legally permissible.

Any claims set forth at any time are hereby incoφorated by reference as part of this description of the invention, and the applicant expressly reserves the right to use all of or a portion of such incoφorated content of such claims as additional description to support any of or all of the claims or any element or component thereof, and the applicant further expressly reserves the right to move any portion of or all of the incoφorated content of such claims or any element or component thereof from the description into the claims or vice-versa as necessary to define the matter for which protection is sought by this application or by any subsequent continuation, division, or continuation-in-part application thereof, or to obtain any benefit of, reduction in fees pursuant to, or to comply with the patent laws, rules, or regulations of any country or treaty, and such content incoφorated by reference shall survive during the entire pendency of this application including any subsequent continuation, division, or continuation-in-part application thereof or any reissue or extension thereon.

Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
ES2160486A1 * Title not available
GB2218514A * Title not available
US4115861 *28 Mar 197719 Sep 1978Instrumentation Specialties CompanyChemical analyzer
US4510169 *23 Aug 19839 Apr 1985The Board Of Regents, The University Of TexasMethod and apparatus for cryopreparing biological tissue for ultrastructural analysis
US4695430 *31 Oct 198522 Sep 1987Bio/Data CorporationAnalytical apparatus
US5382511 *24 Aug 199217 Jan 1995Gene Tec CorporationMethod for studying nucleic acids within immobilized specimens
US6335208 *10 May 19991 Jan 2002Intersil Americas Inc.Laser decapsulation method
US20010006417 *22 Jan 20015 Jul 2001Ljl Biosystems, Inc.Devices and methods for sample analysis
US20010037072 *20 Feb 20011 Nov 2001Virtanen Jorma A.Cassette and applicator for biological and chemical sample collection
US20010055799 *15 Dec 199827 Dec 2001David BaunochMethod and apparatus for automated reprocessing of tissue samples
US20020009391 *6 Feb 200124 Jan 2002Ljl Biosystems, Inc.Integrated sample-processing system
US20020176801 *1 Feb 200228 Nov 2002Giebeler Robert H.Fluid delivery and analysis systems
US20020178547 *24 May 20025 Dec 2002Shofner Engineering Associates, Inc.Ultra rapid conditioning of cotton fiber for testing and processing
US20030043963 *5 Sep 20026 Mar 2003Motoyuki YamagamiX-ray fluorescence spectrometric system and a program for use therein
US20030124729 *16 Dec 20023 Jul 2003Ventana Medical Systems, Inc.Removal of embedding media from biological samples and cell conditioning on automated staining instruments
Non-Patent Citations
Reference
1 *See also references of EP1573312A2
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
WO2014075693A1 *18 Nov 201322 May 2014Dako Denmark A/SMethod and apparatus for reagent validation in automated sample processing
US76486788 Dec 200319 Jan 2010Dako Denmark A/SMethod and system for pretreatment of tissue slides
US77588093 Dec 200920 Jul 2010Dako Cytomation Denmark A/SMethod and system for pretreatment of tissue slides
US786072710 Jan 200528 Dec 2010Ventana Medical Systems, Inc.Laboratory instrumentation information management and control network
US793722819 Mar 20083 May 2011Dako Denmark A/SInformation notification sample processing system and methods of biological slide processing
US796017819 Dec 200314 Jun 2011Dako Denmark A/SEnhanced scheduling sample processing system and methods of biological slide processing
US797278924 Nov 20065 Jul 2011Dako Denmark A/SDye compounds
US821651219 Dec 200310 Jul 2012Dako Denmark A/SApparatus for automated processing biological samples
US825796819 Dec 20034 Sep 2012Dako Denmark A/SMethod and apparatus for automatic staining of tissue samples
US829881522 Dec 200330 Oct 2012Dako Denmark A/SSystems and methods of sample processing and temperature control
US838619528 Mar 201126 Feb 2013Dako Denmark A/SInformation notification sample processing system and methods of biological slide processing
US83946356 May 201112 Mar 2013Dako Denmark A/SEnhanced scheduling sample processing system and methods of biological slide processing
US852983611 Jun 201210 Sep 2013Dako Denmark A/SApparatus for automated processing biological samples
US86639786 Aug 20124 Mar 2014Dako Denmark A/SMethod and apparatus for automatic staining of tissue samples
US86736424 Feb 201318 Mar 2014Dako Denmark A/SEnhanced scheduling sample processing system and methods of biological slide processing
US871905316 Jul 20046 May 2014Ventana Medical Systems, Inc.Laboratory instrumentation information management and control network
US878473512 Aug 201322 Jul 2014Dako Denmark A/SApparatus for automated processing biological samples
US878821723 Jan 201322 Jul 2014Dako Denmark A/SInformation notification sample processing system and methods of biological slide processing
US88123294 Apr 200719 Aug 2014Ventana Medical Systems, Inc.Laboratory instrumentation information management and control network
US896908618 Feb 20143 Mar 2015Dako Denmark A/SEnhanced scheduling sample processing system and methods of biological slide processing
US922901617 Jun 20145 Jan 2016Dako Denmark A/SInformation notification sample processing system and methods of biological slide processing
US95996309 Jan 201421 Mar 2017Dako Denmark A/SMethod and apparatus for automatic staining of tissue samples
US971989527 May 20161 Aug 2017Lee H. AngrosIn situ heat induced antigen recovery and staining apparatus and method
US976616522 Feb 201619 Sep 2017Lee H. AngrosIn situ heat induced antigen recovery and staining apparatus and method
US977827322 Dec 20033 Oct 2017Dako Denmark A/SIsolated communication sample processing system and methods of biological slide processing
Legal Events
DateCodeEventDescription
15 Jul 2004ALDesignated countries for regional patents
Kind code of ref document: A2
Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG
15 Jul 2004AKDesignated states
Kind code of ref document: A2
Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW
8 Sep 2004121Ep: the epo has been informed by wipo that ep was designated in this application
29 Dec 2004DFPERequest for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
6 May 2005WWEWipo information: entry into national phase
Ref document number: 2003814195
Country of ref document: EP
26 May 2005WWEWipo information: entry into national phase
Ref document number: 2003297369
Country of ref document: AU
16 Jun 2005ENPEntry into the national phase in:
Ref document number: 2006045806
Country of ref document: US
Kind code of ref document: A1
16 Jun 2005WWEWipo information: entry into national phase
Ref document number: 10539308
Country of ref document: US
17 Jun 2005WWEWipo information: entry into national phase
Ref document number: 2511032
Country of ref document: CA
14 Sep 2005WWPWipo information: published in national office
Ref document number: 2003814195
Country of ref document: EP
16 Sep 2005WWEWipo information: entry into national phase
Ref document number: 11227270
Country of ref document: US
2 Mar 2006WWPWipo information: published in national office
Ref document number: 10539308
Country of ref document: US
6 Jul 2006WWPWipo information: published in national office
Ref document number: 11227270
Country of ref document: US
20 Nov 2006WWWWipo information: withdrawn in national office
Country of ref document: JP
20 Nov 2006NENPNon-entry into the national phase in:
Ref country code: JP