WO2004052418A1 - Graft for regenerating bone-cartilage tissue - Google Patents

Graft for regenerating bone-cartilage tissue Download PDF

Info

Publication number
WO2004052418A1
WO2004052418A1 PCT/JP2003/015573 JP0315573W WO2004052418A1 WO 2004052418 A1 WO2004052418 A1 WO 2004052418A1 JP 0315573 W JP0315573 W JP 0315573W WO 2004052418 A1 WO2004052418 A1 WO 2004052418A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
bone
cell
bioabsorbable
scaffold
Prior art date
Application number
PCT/JP2003/015573
Other languages
French (fr)
Japanese (ja)
Inventor
Guoping Chen
Hajime Ohgushi
Takashi Ushida
Tetsuya Tateishi
Yoshinori Takakura
Shigeyuki Wakitani
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to AU2003289197A priority Critical patent/AU2003289197A1/en
Priority to JP2004558415A priority patent/JP4923235B2/en
Publication of WO2004052418A1 publication Critical patent/WO2004052418A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3886Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types
    • A61L27/3891Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells comprising two or more cell types as distinct cell layers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3612Cartilage, synovial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/3654Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3821Bone-forming cells, e.g. osteoblasts, osteocytes, osteoprogenitor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3847Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus

Definitions

  • the present invention relates to regeneration of bone and cartilage tissue used for repairing bone and cartilage diseases such as refractory osteoarthritis and cartilage wounds caused by accidents.
  • Osteoarthritis is a frequent disease in the field of orthopedics and often results in a high degree of dysfunction.
  • Artificial joint surgery is the main body of surgical treatment, but current artificial joint parts made of metal or high molecular polymer have problems such as infection, wear, loosening, and breakage.
  • tissue transplantation in addition to the problem of a shortage of donors, if the donor is another person, there is also a problem of a giant response based on an immune response. Due to the existence of such various problems, it is considered that a regenerative medical engineering-based treatment is ideal at present, and research on regeneration of bone and cartilage tissue is being actively conducted.
  • fixation of cartilage tissue is important for wound healing, and it is most desirable to regenerate bone and cartilage tissue simultaneously.
  • a three-dimensional porous carrier material is required as a tissue support.
  • Such carrier materials are required to have conditions such as porosity, biocompatibility and bioabsorbability.
  • PVA polylactic acid
  • PGA polyglycolic acid
  • a three-dimensional porous carrier material prepared with a bioabsorbable synthetic polymer such as (PLGA) or a natural polymer such as collagen is often used (Japanese Patent Application Laid-Open Nos. 2002-146086 and 2002-2002). 146084; JP-A-2002-143291; JP-A-2002-143290).
  • those made of the above-mentioned bioabsorbable synthetic polymer have excellent mechanical strength, but are hydrophobic, and because of their large gaps and cracks, most cells pass through the gaps. Without it, it is extremely difficult to seed bone, chondrocytes or stem cells that can differentiate into bone and chondrocytes. For this reason, an effective cell seeding rate cannot be obtained, and a large amount of these cells cannot be accumulated on the support carrier. Therefore, there is a problem that the regeneration efficiency of bone and cartilage tissue is low.
  • collagen sponge which is a natural high molecular porous material derived from living organisms, is hydrophilic, has excellent interaction with cells, and is easy to seed cells. The problem was that it was difficult to handle clinically because it was low, and it was soft and easily twisted.
  • porous carrier material for simultaneously regenerating a tissue having a hierarchical structure such as bone and cartilage tissue has not been developed yet.
  • An object of the present invention is to solve such problems of the related art. Specifically, it has good biocompatibility and is capable of differentiating into at least one type of osteogenic cell selected from the group consisting of osteocytes or stem cells capable of differentiating into osteocytes, or chondrocytes or chondrocytes It is easy to seed at least one type of chondrogenic cell selected from the group consisting of stem cells, and the seeding efficiency is good. Therefore, it is possible to accumulate a large amount of these cells on a support (scaffold).
  • An object of the present invention is to provide a support for osteogenic cells or osteochondrogenic cells, which has good regeneration efficiency of tissues and cartilage tissues, has high mechanical strength, and is easy to handle even in clinical practice.
  • the present invention provides a bone material having such a structure that bone-forming cells and cartilage-forming cells are laminated on such a support material in a state where they are substantially separated from each other, and the bone tissue and the cartilage tissue are connected to each other.
  • An object of the present invention is to provide an in vivo implant for simultaneous regeneration of cartilage tissue. .
  • FIG. 1 Porous sheet made of a typical bioabsorbable synthetic polymer according to the present invention and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor and cell differentiation control factor or their derivatives). 1 shows a schematic diagram of a quality scaffold material.
  • Figure 1 Porous sheet made of a typical bioabsorbable synthetic polymer according to the present invention and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor and cell differentiation control factor or their derivatives).
  • a porous body made of another bioabsorbable material bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or a derivative thereof
  • a porous body made of another bioabsorbable material bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or a derivative thereof
  • a sheet-shaped bioabsorbable synthetic polymer and another bioabsorbable material bioabsorbable natural macromolecule, cell growth factor, cell segment control factor or derivative thereof
  • a porous composite porous structure A sheet-shaped bioabsorbable synthetic polymer and another bioabsorbable material (bioabsorbable natural macromolecule, cell growth factor, cell segment control factor or derivative thereof) A porous composite porous structure;
  • FIG. 3 Representative block-like bioabsorbable synthetic polymer according to the present invention and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation regulator or their derivatives). Schematic diagram of a porous scaffold material.
  • Figure 3 Representative block-like bioabsorbable synthetic polymer according to the present invention and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation regulator or their derivatives).
  • a porous body made of another bioabsorbable material bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or a derivative thereof
  • a porous composite of a block-shaped bioabsorbable synthetic polymer and a porous body made of another bioabsorbable material naturally bioabsorbable polymer, cell growth factor, cell differentiation control factor or their derivatives
  • Porous structure naturally bioabsorbable polymer, cell growth factor, cell differentiation control factor or their derivatives
  • FIG. 4 Typical block-like bioabsorbable synthetic polymer according to the present invention, another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or derivative thereof) and FIG. 2 is a schematic view of a porous scaffold material made of an inorganic compound.
  • FIG. 4 Typical block-like bioabsorbable synthetic polymer according to the present invention, another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or derivative thereof) and FIG. 2 is a schematic view of a porous scaffold material made of an inorganic compound.
  • a porous body made of another bioabsorbable material bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or a derivative thereof
  • a block-shaped porous structure of a bioabsorbable synthetic polymer (b) a block-shaped porous structure of a bioabsorbable synthetic polymer; (c) Porous composite with a porous body consisting of a block-shaped bioabsorbable synthetic polymer and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or their derivatives) A porous structure; and
  • a block of a bioabsorbable synthetic polymer in block form and another bioabsorbable material bioabsorbable natural polymer, cell growth factor, cell segment control factor or their derivatives
  • a composite porous structure of a porous body and a porous body having a layer A composite porous structure of a porous body and a porous body having a layer.
  • FIG. 2 is a schematic diagram of a gel-like scaffold material.
  • Figure 5 Typical sheet-shaped bioabsorbable synthetic polymer according to the present invention, another bioabsorbable 'ft material (bioabsorbable natural polymer, cell growth factor, cell differentiation regulator or their derivatives)
  • FIG. 2 is a schematic diagram of a gel-like scaffold material.
  • Figure 5 Typical sheet-shaped bioabsorbable synthetic polymer according to the present invention, another bioabsorbable 'ft material (bioabsorbable natural polymer, cell growth factor, cell differentiation regulator or their derivatives)
  • FIG. 2 is a schematic diagram of a gel-like scaffold material.
  • a gel made of another bioabsorbable material bioabsorbable natural polymer, cell growth factor, cell differentiation controlling factor or a derivative thereof
  • Figure 6 Schematic representation of a bone-cartilage tissue regeneration implant.
  • cartilage tissue comprising a second scaffold material and chondrogenic cells
  • Figure 7 An electron micrograph of a composite mesh of a bioabsorbable synthetic polymer and a bioabsorbable natural polymer.
  • Figure 8 An electron micrograph of a composite mesh of a bioabsorbable synthetic polymer, a bioabsorbable natural polymer, and an inorganic compound.
  • Fig. 9 Bone and cartilage tissue of the regenerated dog joint.
  • FIG. 10 A schematic longitudinal cross-sectional view of the laminated sheet-like scaffold material.
  • FIG. 11 Sheet-like or block-like porous structure of bioabsorbable synthetic polymer
  • FIG. 11 (a) a porous body or gel made of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell fraction control factor or derivative thereof); and
  • the present invention has been made to solve the above problems, and relates to the following implant and a method for producing the same.
  • Item 1 An osteo-cartilage tissue transplant having a structure in which bone tissue and cartilage tissue are connected.
  • the bone tissue comprises a scaffold material capable of retaining cells and at least one type of osteogenic cell selected from the group consisting of bone cells retained by the scaffold material or stem cells capable of differentiating into bone cells.
  • the cartilage tissue according to claim 1, wherein the cartilage tissue comprises a scaffold material capable of retaining cells and at least one chondrogenic cell selected from the group consisting of chondrocytes retained in the scaffold material or stem cells capable of differentiating into chondrocytes. Transplant.
  • Item 3 The implant according to Item 1, wherein the scaffolding material is a sheet or a block.
  • Item 4 The implant according to Item 2, wherein the scaffold material further comprises a structure made of another compound formed in a mesh structure made of a bioabsorbable synthetic polymer or an internal structure matrix of a porous material.
  • Item 5 The implant according to Item 4, wherein the structure in the internal structure matrix is a porous structure or a gel.
  • the structure in the internal structure matrix further includes one or more members selected from the group consisting of a natural polymer, a cell growth factor, a cell differentiation controlling factor and an inorganic compound, or a derivative thereof.
  • Item 5. The transplant according to Item 4.
  • Item 7. The implant according to Item 2, wherein the bone tissue scaffolding material is a porous ceramic.
  • Item 8. The implant according to Item 2, wherein the cartilage tissue scaffolding material is a gel.
  • Item 9 The transplant according to Item 2, wherein the osteogenic cells and / or chondrogenic cells are bone marrow-derived stem cells.
  • Item 10 At least one type of osteogenic cell selected from the group consisting of bone cells or stem cells capable of differentiating into osteocysts and at least one type selected from the group consisting of chondrocytes or stem cells capable of differentiating into chondrocytes
  • a method for producing an osteo-cartilage tissue transplant comprising the step of seeding the chondrogenic cells of the present invention on a scaffold capable of retaining the cells in a state where the osteogenic cells and the chondrogenic cells are substantially separated.
  • Item 11 At least one type of bone selected from the group consisting of bone cells or stem cells capable of differentiating into bone cells as the first scaffolding material, wherein the scaffolding material is composed of the first and second scaffolding materials. Seeding morphogenic cells, seeding at least one chondrogenic cell selected from the group consisting of chondrocytes or stem cells capable of differentiating into chondrocytes on a second scaffold capable of retaining cells, osteogenesis Item 10. The method according to Item 10, comprising a step of laminating a first scaffold material holding osteoblasts and a second scaffold material holding chondrogenic cells.
  • Item 12 The method according to item 10, further comprising a step of culturing the osteogenic cells and the chondrogenic cells in separate media.
  • Item 13 The method according to Item 10, wherein the scaffold material is a sheet or a block.
  • Item 14 The item in which the scaffolding material is formed of a bioabsorbable synthetic polymer in a mesh body or a porous body having an internal structure matrix in which a structure made of another bioabsorbable material is formed. 10. The method according to 10.
  • the bioabsorbable material constituting the structure includes at least one selected from the group consisting of a natural polymer, a cell growth factor, a cell differentiation control factor, and an inorganic compound or a derivative thereof. The method described in 14 above.
  • Item 16 The structure is produced by forming a structure of a natural polymer and then complexing it with at least one selected from the group consisting of a cell growth factor, a cell differentiation regulator and an inorganic compound.
  • Item 15. The method according to Item 15.
  • Item 17. The structure according to Item 15, wherein the structure is produced by forming a structure of a natural polymer and a cell growth factor and then complexing it with a cell differentiation control factor or an inorganic compound. Method.
  • Item 18 The structure according to Item 15, wherein the structure is produced by forming a structure of a natural macromolecule and a cell differentiation controlling factor and then complexing it with a cell growth factor or an inorganic compound. the method of.
  • Item 19 The structure according to Item 15, wherein the structure is produced by forming a structure of a natural polymer, a cell growth factor, and a cell differentiation controlling factor, and then complexing the structure with an inorganic compound. Method.
  • Item 20 The item described in 'Item 14, wherein the structure is produced by forming a structure of an inorganic compound and then complexing it with a natural polymer, a cell growth factor, or a cell differentiation controlling factor. the method of.
  • Item 21 A scaffold for bone tissue formation, in which a structure made of another bioabsorbable material is formed in a mesh structure or a porous body made of a bioabsorbable synthetic polymer.
  • Item 22 The material according to item 21, wherein the scaffolding material is a sheet or a block.
  • Item 23 The material according to item 21, which is a laminate of a sheet and / or a block.
  • Item 24 The structure according to Item 21, wherein the structure in the internal structure matrix includes one or more members selected from the group consisting of natural macromolecules, cell growth factors, cell differentiation control factors, and inorganic compounds. Material.
  • Item 25 A scaffold for bone and cartilage tissue formation, in which a structure made of another compound is formed in a mesh structure or a porous material made of a bioabsorbable synthetic polymer inside an internal structure matrix.
  • Item 26 The material according to item 25, having a bone tissue forming part and a cartilage tissue forming part, and having a portion that restricts cell migration between the bone tissue forming part and the cartilage tissue forming part.
  • Item 27 The material according to item 26, which is a laminate of a sheet-like material and a Z-like or block-like material.
  • the present invention will be described in more detail.
  • the implant of the present invention has a structure in which the bone tissue and the cartilage tissue are connected, and the bone-cartilage tissue is integrated.
  • the cartilage tissue is supported by the bone tissue Things. Transplantation is difficult with cartilage tissue alone, but by integrating it with bone tissue, transplantation can be performed more easily.
  • the bone tissue of the implant may be composed entirely of bone and may be bone, and a wide range of tissues that can become bone is included.
  • a tissue in which osteogenic cells are seeded on a scaffolding material capable of retaining cells preferably a scaffolding material (scaffold) composed of a bioabsorbable material, or a scaffolding material retaining osteogenic cells in the presence of a culture solution.
  • the tissue in which bone is partially formed by culturing is included in the bone tissue.
  • a ceramic material such as hide-opening xiapatite can be used in addition to a bioabsorbable material.
  • the cartilage tissue of the implant may be composed entirely of cartilage, and broadly encompasses tissue that can become cartilage.
  • tissue in which chondrogenic cells are seeded on a scaffold material capable of retaining cells preferably a scaffold material (scaffold) composed of a bioabsorbable material, and a scaffold material retaining chondrogenic cells are cultured in the presence of a culture solution.
  • the tissue in which cartilage is partially formed is included in the cartilage tissue. Gels such as collagen gel can be used as a scaffold for cartilage tissue.
  • the structure in which the bone tissue and the cartilage tissue are connected means a structure in which the bone tissue is connected so as to support the cartilage tissue.
  • bone tissue and cartilage tissue are directly connected without any separation from each other, or when bone and cartilage tissue are connected via a bioabsorbable material, but when bone and cartilage are regenerated,
  • the bioabsorbable material includes a structure that is absorbed by a living body.
  • the structure in which the bone tissue and the cartilage tissue are connected include, for example, a structure having a hierarchical structure in which the bone tissue and the cartilage tissue are connected in layers, and a structure in which one or more independent cartilage tissues exist in a mass on the bone tissue. Is mentioned. Further, a sponge-like or gel-like cartilage tissue may be placed on the bone tissue to obtain the implant of the present invention.
  • the osteochondral tissue graft of the present invention comprises covering the osteochondral tissue with a periosteum obtained from another bone tissue such as a tibia, or a substitute thereof.
  • the osteogenic cells include all cells capable of forming bone, for example, osteocytes, osteoblasts, bone marrow cells capable of inducing and inducing osteoblasts, mesenchymal stem cells, somatic stem cells Is exemplified. When an osteoclast system is obtained from living bone, it is preferable to use only osteoblasts. You may.
  • osteogenic cells are osteogenic cells as osteogenic cells, but as long as cells having osteogenic performance are present, cells with weak or no osteogenic performance They may be mixed. Osteoblasts are preferred as osteogenic cells.
  • stem cells such as bone marrow cells and mesenchymal stem cells are used as the osteogenic cells and seeded on the scaffold, it is preferable to induce the osteogenic cells to differentiate into osteoblasts in the bone tissue.
  • any medium suitable for differentiation induction can be used, and is not particularly limited, for example, 10% fetal serum or 10 to 15% human serum, 100 mg Og ZL glucose, 5 O DMEM medium supplemented with mg ZL-ascorbic acid, ⁇ dexamethasone, and lOniM glycemic phosphate can be used.
  • Stem cells capable of differentiating into bone cells are cultured using such a differentiation-inducing medium, and the cells can be separated.
  • the chondrogenic cells include all cells capable of forming cartilage, and include, for example, chondrocytes, bone marrow cells capable of differentiating and inducing chondrocytes, mesenchymal stem cells, and somatic stem cells.
  • chondrocytes are preferred.
  • stem cells such as bone marrow cells, mesenchymal stem cells, and somatic stem cells as chondrogenic cells
  • the chondrogenic cells are induced to differentiate into chondrocytes in cartilage tissue.
  • the differentiation-inducing medium any medium suitable for inducing differentiation can be used, and is not particularly limited.
  • DMEM fetal mesenchymal cells
  • 584 mg / L glutamine 0.4 mM proline
  • 5 O mg / L ascorbic acid transforming growth factor] 33 (TGF-] 33)
  • TGF-] 33 transforming growth factor
  • ⁇ dexamethasone A medium differentiate medium
  • Stem cells capable of differentiating into chondrocytes are cultured using such a differentiation-inducing medium, and the cells can be separated.
  • a porous structure or a gel is exemplified as a structure containing a bioabsorbable material such as a natural polymer such as collagen, a cell growth factor, a cell differentiation controlling factor, and an inorganic compound provided in the pore.
  • a bioabsorbable material such as a natural polymer such as collagen, a cell growth factor, a cell differentiation controlling factor, and an inorganic compound provided in the pore.
  • the bioabsorbable biosynthetic polymer mesh or porous body used in the present invention is mainly used to increase the mechanical strength of the scaffold material of the present invention, and the mesh body is woven, knitted, or woven cloth. Alternatively, it may be made of a nonwoven fabric or the like.
  • the porous body can be obtained by a well-known method such as a foam molding method using a foaming agent, or a porous agent removing method. In this foam molding method for a porous body, a foaming agent is added to a polymer compound, the foaming agent is foamed, and then the polymer is cured.
  • a water-soluble sugar or salt may be added to the polymer solution, and after curing, the water-soluble substance may be washed and removed with water.
  • a porous ceramic material such as porous hydroxyapatite can be used.
  • the mechanical strength decreases, but the pore density of the natural polymer porous structure per mesh unit increases, Since the seeded cells are retained in these pores, the number of seeded cells in the complex can be increased, and the regeneration of bone tissue and cartilage tissue becomes efficient.
  • the size of the stitch of the mesh or the size of the pores of the porous body depends on the location in the living body to be implanted, etc. It is appropriately determined in consideration of the speed and the like.
  • the size of the mesh stitch is, for example, 0.1 mm to 5 cm.
  • examples thereof include polysaccharides such as alginic acid.
  • the bioabsorbable synthetic polymer preferably used in the present invention is polylactic acid, polyglycolic acid, or a copolymer of lactic acid and glycolic acid.
  • a natural polymer As a bioabsorbable material different from the bioabsorbable synthetic polymer constituting the structure of the present invention, a natural polymer, a cell growth factor, a cell differentiation controlling factor or an inorganic compound, or Are exemplified.
  • Natural polymers can be used as long as they are naturally occurring or derived from living organisms and exhibit biocompatibility.
  • Collagen, hyaluronic acid, chondroitin sulfate, gelatin, fipronectin, and 1One or more selected from laminin and the like, particularly collagen is preferably used.
  • Collagen includes types I, II, III, IV, V, VI, VIII, IX, X, etc. In the present invention, any of these can be used, and derivatives thereof may be used.
  • Cell growth factor and cell differentiation control factor can be used as long as they can control cell growth and differentiation.
  • Epidermal growth factor (EGF) insulin, platelet-derived growth factor (PDGF), fibroblast proliferation
  • FGF factor
  • HGF hepatocyte growth factor
  • VEGF vascular endothelial growth factor
  • TGF-j8 transforming growth factor j3
  • BMP bone morphogenetic factor
  • Any inorganic compound can be used as long as it promotes the adhesion, growth, and differentiation induction of bone cells or stem cells that can be differentiated into bone cells, and any of them can be used.
  • the thickness of the mesh-like (including sheet-like) scaffold material may be determined as appropriate depending on the use mode of the biocomposite material, and is usually 0.1 to 5 mm, preferably 0.1 to 1 mm. ⁇ L mm. Its porosity is usually above 50%.
  • the thickness of the block-like scaffolding material is usually 3 to 50 mm, preferably 5 to 20 mm. Its porosity is usually above 50%.
  • the structure in one preferable internal structure matrix of the present invention is a porous structure, and is a mesh structure of a bioabsorbable synthetic polymer or an internal structure matrix of a porous material, that is, a stitch or a porous structure of a mesh body.
  • Bioabsorbable natural high in body pores A porous body containing a molecule or a derivative thereof and further containing at least one selected from the group consisting of a cell growth factor, a cell differentiation controlling factor, and an inorganic compound or a derivative thereof (FIGS. 1 and 2).
  • the scaffold material having a porous structure of the present invention can be produced by various methods.
  • a mesh or porous body of the bioabsorbable synthetic polymer and a bioabsorbable natural polymer, cell It can be obtained by crosslinking or adsorbing a porous structure made of a bioabsorbable material such as a growth factor, a cell differentiation controlling factor, an inorganic compound or a derivative thereof.
  • the porous structure contains at least one kind of bioabsorbable material.
  • the material contains a bioabsorbable natural polymer or a derivative thereof as an essential component, and further contains a cell growth factor. And at least one selected from the group consisting of a cell differentiation controlling factor and an inorganic compound or a derivative thereof.
  • the structures in the internal structure matrix are identical to the structures in the internal structure matrix
  • the natural polymer After forming the structure of the natural polymer, it may be complexed with at least one selected from the group consisting of cell growth factors, cell differentiation regulators and inorganic compounds by impregnation, immersion, coating, etc. After forming a structure of a natural polymer and a cell growth factor, a complex may be formed by impregnation, immersion, coating, or the like with a cell differentiation control factor and Z or an inorganic compound.
  • a complex After forming a structure of a natural macromolecule and a cell differentiation controlling factor, a complex may be formed by impregnation, immersion, coating or the like with a cell growth factor and a metal or inorganic compound.
  • a complex with an inorganic compound may be formed by impregnation, dipping, or coating.
  • the structure of the natural polymer and the cell growth factor can be produced in the same manner by using a solution of the natural polymer and the cell growth factor instead of the natural polymer solution. The same applies to a structure of a natural polymer and a cell differentiation controlling factor, and a structure of a natural polymer, a cell growth factor and a cell differentiation controlling factor.
  • the structure may be formed after the internal structure matrix of the mesh body or the porous body is composited with an inorganic compound by impregnation, dipping, coating, or the like in advance.
  • One of the preferable methods of this production method is as follows: (1) a bioabsorbable natural polymer which forms a secondary structure in a mesh or porous body of a bioabsorbable synthetic polymer as a primary structure; Cell growth factor, cell differentiation control factor or their derivatives 1 After adhering and impregnating more than one kind of solution, subsequently, (2) freeze-drying, and preferably crosslinking by treating with a gaseous or liquid crosslinking agent.
  • step (1) at least one kind of bioabsorbable natural polymer, cell growth factor, cell differentiation controlling factor or a derivative thereof is mixed and then impregnating force or at least one kind of each is mixed. Done.
  • the bioabsorbable synthetic polymer mesh (porous structure), which is the primary structure, is replaced with the bioabsorbable natural polymer, cell growth factor, cell differentiation controlling factor, or any of these. Treat with an aqueous solution of the derivative.
  • a dipping method and a coating method are preferably employed.
  • the immersion method is effective when the concentration or viscosity of an aqueous solution of a bioabsorbable natural polymer, a cell growth factor, a cell differentiation controlling factor, or a derivative thereof is low.
  • the bioabsorbable natural polymer is used. It is carried out by immersing the bioabsorbable synthetic polymer mesh in a low-concentration aqueous solution of a cell growth factor, a cell differentiation controlling factor or a derivative thereof.
  • the application method is effective when the concentration and viscosity of the aqueous solution of the bioabsorbable natural polymer, cell growth factor, and cell differentiation control factor are high and the immersion method cannot be applied. This is performed by applying a high-concentration aqueous solution of a molecule, a cell growth factor, and a cell differentiation regulator to a bioabsorbable synthetic polymer mesh.
  • crosslinking agent used in the present invention any conventionally known crosslinking agents can be used.
  • Crosslinking agents which are preferably used are aldehydes such as daltaraldehyde, formaldehyde, paraformaldehyde, in particular glutaraldehyde.
  • crosslinking agent in the crosslinking of the present invention, it is preferable to use the above-mentioned crosslinking agent in a gaseous state.
  • crosslinking is carried out at a constant temperature under a constant concentration of a crosslinking agent or in an atmosphere of a crosslinking agent vapor saturated with an aqueous solution thereof for a predetermined time.
  • the crosslinking temperature may be selected within a range in which the bioabsorbable synthetic polymer mesh does not dissolve and vapor of the crosslinking agent can be formed, and is usually set at 20 ° C to 50 ° C.
  • the cross-linking time depends on the type of the cross-linking agent and the cross-linking temperature. Is desirably set in a range in which is performed. If the cross-linking time is short, the cross-linking fixation becomes insufficient, and the natural polymer porous body may be dissolved in a short time after transplantation in the living body, and the longer the cross-linking time, the more the cross-linking proceeds. If the time is too long, the hydrophilicity decreases, the seeding density of osteogenic cells and chondrogenic cells on the scaffold decreases, and cell donation and tissue regeneration are not performed efficiently. It is not preferable because it causes problems such as a decrease in bioabsorbability.
  • the preferred crosslinking time is about 10 minutes to 12 hours.
  • Other production methods include (1) a bioabsorbable synthetic polymer as a primary structure, a mesh or a bioabsorbable natural polymer that forms a secondary structure in a porous body, or one of its derivatives. After adhering and impregnating the above solution, (2) freeze-drying, and preferably crosslinking by treating with a gaseous or liquid crosslinking agent, and then (3) a water-soluble crosslinking accelerator such as lipopositimide And a crosslinking reaction with a cell growth factor and / or a cell division controlling factor or a derivative thereof.
  • a bioabsorbable synthetic polymer as a primary structure, a mesh or a bioabsorbable natural polymer that forms a secondary structure in a porous body, or one of its derivatives.
  • step (1) one or more bioabsorbable natural polymers or derivatives thereof are mixed and then impregnated.
  • the impregnation method is the same as the method described above.
  • the bioabsorbable natural polymer of the secondary structure or the porous body of the derivative thereof is treated in advance with a water-soluble cross-linking accelerator such as carbodiimide, and then the cell growth factor and the cell differentiation control factor are treated. It is preferable to carry out the treatment by impregnating each with one or more mixed aqueous solutions.
  • the second scaffold material of the present invention is a gel-like structure, and is in a mesh structure of a bioabsorbable synthetic polymer or in an internal structure matrix of a porous body, that is, in a mesh of a mesh body or in a pore of a porous body.
  • a gel structure comprising a bioabsorbable natural polymer, a cell growth factor, a cell differentiation controlling factor and a derivative thereof is further formed.
  • the method of preparation is as follows: (1) A mesh structure or a porous material of a bioabsorbable synthetic polymer of the primary structure is used to prepare one or more solutions of bioabsorbable natural polymer, cell growth factor, cell differentiation control factor, etc. After adhering and impregnating, subsequently, (2) it is crosslinked by gelling.
  • the natural polymers that make up the gel include gelatin, collagen, starch, pectin, hyaluronic acid, chitin, chitosan or alginic acid and the attraction of these materials. Conductors.
  • a gel-like structure examples include a biostructure that absorbs at low temperature and one or more types of raw natural macromolecules, cell growth factors, and cell differentiation control factors, or a mixed solution of one or more types of each.
  • the cross-linking agent include an epoxy compound, carbodiimide, carbonyldiimidazole, glutaraldehyde, hexamethylene diisocyanate, and the like.
  • the corresponding block-like scaffold material can be obtained in the same manner as above. It is possible to obtain
  • the third scaffold material of the present invention is a porous structure, and is provided in a mesh body of a bioabsorbable synthetic polymer or an internal structure matrix of a porous body, that is, in a mesh of a mesh body or in a pore of a porous body. It is further formed of a porous body composed of an inorganic compound and at least one selected from the group consisting of a bioabsorbable natural polymer, a cell growth factor and a cell differentiation control factor (Fig. 2).
  • This production method is performed by depositing or coating fine particles of an inorganic compound on the surface of the porous structure described above.
  • a method for depositing or coating fine particles of an inorganic compound is described in Japanese Patent Application Laid-Open No. 2002-143921.
  • the desirable shape of the composite material of the present invention is a sheet-like shape, and the inside structure matrix of a mesh body or a porous body of a bioabsorbable synthetic polymer having such a shape, that is, a stitch or a porous body of the mesh body
  • a porous structure of a natural polymer is formed in the pores.
  • the overall thickness of the sheet is usually 0.1 to 5 mm, preferably 0.1 to 1 mm, and the thickness of the natural polymer porous structure.
  • the porosity of the porous structure is usually 80% or more.
  • sheet-like material includes a mesh-like material, a film-like material, and a film-like material (FIGS. 1, 2, and 5).
  • the porous structure of a natural polymer such as a collagen sponge formed in a sheet-like scaffold is preferably thin.
  • the cell solution for seeding can be impregnated into the pores of the porous body without leaking, and as a result, the density of cells retained in the scaffold material increases, and the regeneration of bone and cartilage tissue can be performed quickly and It will be done efficiently.
  • a scaffold material seeded with osteogenic or chondrogenic cells When a scaffold material seeded with osteogenic or chondrogenic cells is used on a single sheet, thin bone-cartilage tissue can be regenerated, but as shown in Fig. 10, a scaffold seeded with these cells can be used. Materials can be stacked and used. In this case, the thickness of the regenerated bone and cartilage can be adjusted by the number of sheets used for the bone tissue and the cartilage tissue. In the case of Fig. 10, cells were seeded on each of the stacked sheet-like scaffolds, so the density of the seeded cells was as high as that of one sheet-like scaffold. When transplanted into a living body as a body, osteo-cartilage tissue can be regenerated satisfactorily.
  • the thickness of the bone and cartilage may be the same or different ( Figure 6).
  • the thickness of cartilage tissue is usually about 0.4 to 7.0 mm, and the thickness of bone tissue is about 0.4 to 30 mm.
  • the transplant of the present invention may be used without culturing after seeding osteogenic cells or chondrogenic cells, but is preferably formed into a transplant after culturing for about 2 weeks to 2 months. .
  • a sheet-like mesh of a bioabsorbable synthetic polymer or a porous body is made of a natural material derived from a body. Place in the aqueous solution of the polymer, freeze, and freeze-dry. As a result, a sheet-like scaffold material in which the mesh or porous body of the bioabsorbable synthetic polymer is sandwiched in the natural polymer porous structure is formed.
  • FIGS. 11 (1) and (2) are schematic diagrams showing that a natural high molecular porous structure is formed on the surface of a mesh or porous body of a bioabsorbable synthetic polymer.
  • the natural polymer porous structure is a mesh or porous material of a bioabsorbable synthetic polymer mesh. It is also formed in body pores.
  • collagen or the like is contained in a mesh or a porous body of a bioabsorbable synthetic polymer and pores.
  • Natural macromolecules epidermal growth factor (EGF), insulin, platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), liver cell growth factor (HGF), vascular endothelial growth factor (VEGF), trans Further formed a structure consisting of cell growth factors such as forming growth factor j3 (TGF-J3), bone morphogenetic factor (BMP), and dexamethasone, and inorganic compounds such as cell differentiation regulators, hydroxyapatite, and calcium triphosphate. It is composed of scaffolding materials.
  • the chondrocytes used in the present invention and stem cells capable of differentiating into chondrocytes are prepared from living tissues by a conventional method.
  • chondrocytes living cartilage tissue is treated with enzymes such as collagenase, trypsin, liberase, and proteinase to degrade extracellular matrix, and then a serum medium is added, followed by centrifugation to isolate chondrocytes.
  • the isolated chondrocytes were plated on a culture brassco, and 10% fetal calf serum, 450 mg / L glucose, 584 mg / X glutamine, 0.4 mM proline and 5 O mg ZL ascorbic acid Culture in DMEM medium containing DMEM (DMEM serum medium). Subculture 2 or 3 times until the number of cells becomes sufficient. Collect the subcultured cells by trypsinization, and use them as a cell fluid for seeding. ,
  • Stem cells capable of differentiating into chondrocytes are isolated by direct centrifugation, or isolated by centrifugation of a bone marrow extract by density gradient centrifugation using a density gradient medium composed of Percoll (perco 11). Seed these cells into a culture flask and add DMEM T / JP2003 / 015573
  • the subcultured cells are collected by trypsinization and used as a cell solution for seeding.
  • the scaffold material of the present invention In order to seed the scaffold material of the present invention with chondrocytes or stem cells capable of differentiating into chondrocytes, the scaffold material is wetted with a culture solution, and the scaffold material is impregnated with the cell solution for seeding, or This is carried out by directly impregnating the above scaffold material with a cell solution for seeding.
  • the chondrogenic cells are mixed with at least one solution selected from the group consisting of a bioabsorbable natural polymer, a cell growth factor and a cell differentiation controlling factor at a low temperature, and then the porous material of the primary structure is mixed.
  • a method is exemplified in which a chondrogenic cell is mixed with a crosslinking agent, and then the mixture is introduced into a porous material having a primary structure, and the temperature is increased to 37 ° C. to cause gelation.
  • the cell concentration of the cell solution for seeding is preferably 5 ⁇ 10 5 cells / m 1 to 5 ⁇ 10 7 cells / m 1, and it is preferable to seed a cell solution having a volume equal to or larger than the volume of the scaffold material.
  • the scaffold material is impregnated with the cell solution for seeding, and then a culture solution is further added.
  • a cartilage tissue transplant is obtained by culturing and growing the medium in an incubator at 37 ° C. in an atmosphere of 5% CO 2 .
  • chondrocytes In the case of stem cells, a further step of differentiation into chondrocytes is required.After impregnating the scaffold material with a cell solution for seeding stem cells capable of differentiating into chondrocytes, 4500 mg / L glucose, 584 mg / L glutamine, The cells were cultured in a DMEM medium (differentiation medium) containing 0.4 mM proline, 50 mg ZL ascorbic acid, lOng / mL transforming growth factor] 33 (TGF- ⁇ 3), and ⁇ dexamethasone. obtain.
  • DMEM medium differentiate medium
  • proline 50 mg ZL ascorbic acid
  • TGF- ⁇ 3 lOng / mL transforming growth factor] 33
  • Stem cells capable of differentiating into bone cells used in the present invention are prepared from living tissues by a conventional method.
  • Stem cells capable of differentiating into osteocytes are isolated by direct centrifugation or by centrifuging the bone marrow extract by density gradient centrifugation using a density gradient medium consisting of Percoll (perco 11). Inoculate these cells into a culture flask and subculture 2-3 times in DMEM serum medium until the number of cells is sufficient.
  • Bone cells can be obtained by subjecting living bone tissue to a treatment with an enzyme such as collagenase to degrade extracellular matrices and releasing the cells.
  • the crushed bone fragments are cultured on a culture vessel, and isolated from cells that have migrated from around the bone fragments. Culture the isolated bone cells in DMEM medium supplemented with 10% fetal calf serum, 100 Omg ZL glucose, and 50 mg / L ascorbic acid.
  • a bone cell or a stem cell capable of being divided into a bone cell may be used, but it is desirable to use a stem cell capable of differentiating into a bone cell.
  • the scaffold material of the present invention In order to inoculate the scaffold material of the present invention with osteogenic cells, the scaffold material is wetted with a culture solution, and the scaffold material is impregnated with the cell solution for seeding, or the scaffold material is directly seeded on the scaffold material. It is performed by impregnating the cell solution for use.
  • the cell concentration of the cell solution for seeding is preferably 5 ⁇ 10 5 cells / m 1 to 5 ⁇ 10 7 cells / m 1, and it is preferable to seed a cell solution having a volume equal to or larger than the volume of the scaffold material.
  • Stem cells that can be differentiated into osteocytes are cultured in DMEM medium supplemented with 10% fetal calf serum or 10-15% human serum, 100 mg / L glucose, 5 mg / L ascorbic acid, ⁇ dexamethasone, and 10 mM glycemic phosphate. Then, it can be differentiated to obtain a transplant of bone tissue.
  • cartilage tissue portion and the bone tissue portion are laminated, and the cartilage tissue culture medium and the bone tissue culture medium are cultured using a bioreactor that passes through the cartilage, the tissue portion, and the bone tissue portion, respectively, to regenerate the bone-cartilage tissue.
  • the cartilage tissue portion and the bone tissue portion are superimposed and cultured in a bioreactor that provides the cartilage tissue portion and the bone tissue portion with a cartilage tissue culture medium and a bone tissue culture medium, respectively.
  • the culture medium for cartilage tissue culture was 450 Omg ZL gnorecose, 584 mg Lg / retamine, 0.4 mM proline, 50 mg 1 ascorbic acid, transforming growth factor) 83 (TGF-j33) and ⁇ Consist of DMEM medium containing dexamethasone.
  • Bone tissue culture medium is DMEM medium supplemented with 10% fetal fetal serum or 10 to 15% human serum, 100 mg Og ZL glucose, 50 mg L ascorbic acid, ⁇ ⁇ dexamethasone, and 10 mM glycerol phosphate. Constitute. The flow rate of each medium can be adjusted.
  • the bone tissue and the cartilage tissue are connected, and the osteogenic cells and the chondrogenic cells are preferably present in the scaffold material in a substantially separated state.
  • the “substantially separated state” means that near the interface between bone tissue and cartilage tissue, there may be a portion where osteogenic cells and chondrogenic cells overlap, but the overlapping portion is as small as possible. The smaller the better, the overlapping of osteogenic cells and chondrogenic 14 cells has little or no effect on the osteo-cartilage junction, as long as the cartilage is supported by bone.
  • osteogenic cells and chondrogenic cells are seeded on a first scaffold material and a second scaffold material, respectively, and then the obtained first scaffold material (bone tissue) and second scaffold material (cartilage tissue) are laminated, Cultures of this, if necessary, fall under the “substantially separated state”.
  • first scaffold material bone tissue
  • second scaffold material cartilage tissue
  • the tissue forming part forms a part where the movement of the bone forming cells and the chondrogenic cells is restricted, such as the bioabsorbable sheet shown in FIG.
  • those in which osteogenic cells and chondrogenic cells are seeded on the scaffold and cultured as necessary also fall under the “substantially separated state”.
  • the osteogenic and chondrogenic cells can mix near the interface, but this is within the range of a substantially separate state.
  • chondrogenic cells may be mixed in a small proportion with osteogenic cells, and chondrogenic cells may be mixed with a small proportion of osteogenic cells.
  • the bone and cartilage are formed so as to be suitable for transplantation, they fall under the “substantially separated state”.
  • PLGA lactic acid and dalicholate
  • the obtained uncrosslinked composite biomaterial was crosslinked at 37 ° C. for 4 hours with glutaraldehyde vapor saturated with a 25 wt% aqueous solution of glutaraldehyde, and then washed 10 times with a phosphate buffer. Furthermore, it was immersed in a 0.1 M glycine aqueous solution for 4 hours, washed 10 times with a phosphate buffer solution, washed 3 times with distilled water, and frozen at -80 ° C for 12 hours.
  • chondrocytes or stem cells capable of being divided into chondrocytes or osteocytes or stem cells capable of differentiating into osteocytes according to the present invention.
  • PLGA-collagen composite mesh a composite porous body of bioabsorbable synthetic polymer and bioabsorbable natural polymer, which is one of the scaffold materials to be nourished.
  • Fig. 7 shows a photograph enlarged 100 times.
  • the PLGA-collagen composite mesh obtained in Example 1 was immersed in a 100 mM aqueous solution of calcium chloride (20 mL) buffered with 50 raM Tris buffer (pH 7.4), and incubated for 3 hours in a thermostat at 37 ° C. did.
  • the PLGA-collagen composite mesh was taken out of the Shiidai calcium aqueous solution and centrifuged at a speed of 600 rpm.
  • the centrifuged PLGA-collagen composite mesh was immersed in lOOmM aqueous sodium hydrogen phosphate solution (20 mL) buffered with 50 mM Tris buffer, and incubated in a thermostat at 37 ° C for 3 hours.
  • the PLGA-collagen composite mesh was removed from the aqueous solution of sodium hydrogen phosphate and centrifuged at a speed of 600 rpm. The centrifuged PLGA-collagen composite mesh was alternately immersed in the above-described calcium chloride aqueous solution and sodium hydrogen phosphate aqueous solution, and this alternate immersion was repeated up to six times.
  • the obtained PLGA-collagen-hydroxyapatite porous composite structure was made of gold, and the structure was observed with a scanning electron microscope (SEM).
  • Fig. 8 shows a photo magnified 200 times.
  • the sheet-like porous structure of the PLGA mesh body and the collagen sponge prepared in Example 1 was sterilized with ethylene oxide gas.
  • a thin piece of cartilage was shaved off from the cartilage of the dog elbow joint with a scalpel and minced, and then incubated in DMEM medium containing 0.2% (w / v) collagenase at 37 ° C for 12 hours. Then, the supernatant filtered through a nylon filter having a pore size of 70 ⁇ is centrifuged at 1500 rpm for 5 minutes, and 10% fetal bovine serum, antibiotics, 45 Omg / L gnorecose, 584 mg / L gnorecamine, 0.4 mM proline After washing twice with DMEM medium containing 5 and 5 Omg / 1 ascorbic acid, canine elbow chondrocytes were obtained.
  • the resulting chondrocytes were cultured in DMEM medium containing 10% fetal serum, antibiotics, 4500 mg ZL gnorecose, 58 ArngZL gnoretamine, 0.4 mM proline and 50 mg / L ascorbic acid at 37 ° C and 5% C0. Culture was performed under two atmospheres. Chondrocytes subcultured twice were detached and collected with 0.025% trypsin / 0.01% EDTA / PBS (-) to prepare 5 ⁇ 10 6 cells / ml cell solution.
  • the PLGA-collagen mesh sterilized with ethylene oxide gas was wetted with a DMEM serum medium, and the edge of the complex (membrane) was surrounded by a rubber ring, and 0.5 ml / cm 2 of the cell solution was dropped.
  • the cells were cultured in an incubator at 37 ° C. in a 5% CO 2 atmosphere for 4 hours. Thereafter, the rubber ring was removed, a large amount of culture solution was added, and the culture was continued. After 24 hours, the cells PLGA were seeded - fall collagen composite mesh, the edges of the composite (film) enclosed with a rubber ring, PLGA - 0.
  • Cells were isolated by centrifugation of bone marrow collected from dog femurs at 1500 rpm in 10% fetal serum, antibiotics, 100 Omg / L glucose, 5 OmgZL in Falcon T-75 culture flasks. The cells were cultured in a DMEM medium supplemented with ascorbic acid at 37 ° C. in a 5% CO 2 atmosphere. After 24 hours, change the medium, discard the non-adhered cells, and add 10% fetal serum, antibiotics, 100 Omg / L glucose, and 5 Omg ZL ascorbic acid to the bone marrow cells adhered to the surface of the flask. Added new DMEM medium, 37. C, 5% C_ ⁇ the culture was continued under 2 atmosphere. The medium was changed every two days.
  • Bone marrow cells subcultured twice were detached and collected with 0.025% trypsin / 0.01% EDTA / PBS (-) to prepare a 5 ⁇ 10 6 cell S / ml bone marrow cell solution.
  • the PLGA-collagen-hydroxypatite porous composite structure of Example 2 sterilized with ethylene oxide gas was wetted with a DMEM serum medium, and the edge of the composite (membrane) was surrounded by a rubber ring. , 0.5 ml / cm 2 cell solution was added dropwise.
  • the cells were cultured in an incubator at 37 ° C. in a 5% CO 2 atmosphere for 4 hours.
  • the above cartilage and bone tissue layers are sandwiched between Teflon clips, and 10% fetal serum, antibiotics, 100 Omg 1 glucose, 584 mg / L glutamine, 0.4 mM proline, 50 mg / L ascorbic acid, ⁇
  • the cells were cultured in a DMEM medium supplemented with dexamethasone and 10 mM glycerol phosphate in an incubator at 37 ° C under a 5% CO 2 atmosphere. After two weeks of culture, the complex was implanted subcutaneously on the back of nude mice. Specimens were collected 8 weeks after transplantation. As shown in FIG. 9, after 8 weeks, the surface of the cartilage layer was glossy and the color was observed to be milky white.
  • the specimens were subjected to HE staining and safranin-0 staining. As a result, small round cells in the pits and extracellular matrix with Safranin-0 staining were observed in the cartilage layer.
  • m-RNA expressing type II collagen and aggrecan was detected and identified in the m-RNA sample extracted from the sample.
  • M-RNA expressing osteocalcin was detected and identified in the m-RNA sample extracted from the bone layer. From these, it was confirmed that the regenerated tissue was bone'cartilage tissue.
  • the first bone marrow lOmL was collected from the iliac bone of patients with osteochondral disorders in the talus.
  • the collected bone marrow Ri by the centrifugation at 1500 rpm, cells were isolated and 15% autologous serum in Falcon T-75 culture flask, antibiotic substance, in ⁇ medium, 37 ° C, 5% C0 2 atmosphere And cultured. After 2 days, replace the media, it continued adhered have not cells cultured in adherent bone marrow cells 37 ° C, 5% C0 2 atmosphere on the surface of the flask discarded. The medium was changed every two days. As a result, an adherent cell population containing a large amount of stem cells capable of differentiating into chondrocytes or bone cells is expanded.
  • the above cultured cells were subcultured twice and detached and collected with 0.025% trypsin / 0.01% EDTA / PBS (-) to prepare a cell solution of 5 ⁇ 10 5 cells / mL. After immersing porous hydroxyapatite ceramic in this cell solution, add 82 ⁇ g / ral ascorbic acid, 10 mM glycerol phosphate, and 100 nM dexamethasone to 15% autologous serum, antibiotics, and ⁇ medium for an additional 2 minutes. After culturing for a week, osteoblasts and a bone matrix, i.e., osteogenesis, were generated in the pores on the ceramic surface.
  • a second bone marrow collection was performed in the same manner as the first bone marrow to grow adherent cells.
  • the cultured cells passaged twice to 0.025% trypsin / 0 01% EDTA / PBS.
  • (-) peeling-harvested 1 X 1 0 7 cells / mL of cell solution was prepared by. This cell solution was mixed with a collagen aqueous solution, and cultured at 37 ° C. in a 5% CO 2 atmosphere for 2 days to gel the collagen and the cell solution.
  • the stem cells which can be divided into the above-mentioned collagen gel-based chondrocytes are placed on a ceramic (porous hydroxyapatite) -based bone tissue layer, and an osteo-cartilage tissue transplant is prepared. The extracted part was filled. In addition, sutures were placed over the periosteum collected from the tibia.
  • the stem cells performed bone formation on the ceramic base, and a stable bond was formed with the ceramic surface. Furthermore, cartilage formation occurred at the part in contact with the joint surface, indicating that simultaneous regeneration of osteochondral was possible.
  • the cartilage tissue can be supported by the bone tissue, so that the cartilage tissue can be efficiently regenerated.

Abstract

A bone-cartilage tissue graft having a structure in which a bone tissue is connected to a cartilage tissue; and a process for producing a bone-cartilage tissue graft comprising the step wherein at least one type of bone-forming cells selected from the group consisting of bone cells and stem cells capable of differentiating into bone cells and at least one type of cartilage-forming cells selected from the group consisting of cartilage cells and stem cells capable of differentiating into cartilage cells are sowed in a scaffold material capable of holding the cells in such a state that the bone-forming cells are substantially separated from the cartilage-forming cells.

Description

明細書  Specification
骨一軟骨組織の再生用移植体  Osteochondral tissue regeneration implant
技術分野  Technical field
本発明は、 難治性変形性関節炎や事故による軟骨創傷などの骨 ·軟骨疾患を修 復するために用いられる骨 ·軟骨組織の再生に関する。  The present invention relates to regeneration of bone and cartilage tissue used for repairing bone and cartilage diseases such as refractory osteoarthritis and cartilage wounds caused by accidents.
背景技術  Background art
変形性関節症は整形外科分野において高頻度見られる疾患で、 しばしば高度の 機能障害をきたす。 人工関節手術が外科的治療の主体を成すが、 現在の金属や高 分子ポリマーを材料とする人工関節部分は感染'磨耗 ·緩み ·破損といった問題 を有する。 組織移植の場合では、 ドナーの不足という問題に加え、 ドナーが他人 の場合、 免疫応答に基づく 巨絶反応という問題もある。 このような種々の問題点 の存在により、 現在では、 再生医工学的な手法による治療法は理想的であると考 えられ、 骨、 軟骨組織の再生に関する研究が盛んに行われている。 軟骨組織を移 植する際、 軟骨組織の固定化が損傷治癒に重要であり、 そのために骨 ·軟骨組織 を同時再生することが最も望ましい。  Osteoarthritis is a frequent disease in the field of orthopedics and often results in a high degree of dysfunction. Artificial joint surgery is the main body of surgical treatment, but current artificial joint parts made of metal or high molecular polymer have problems such as infection, wear, loosening, and breakage. In the case of tissue transplantation, in addition to the problem of a shortage of donors, if the donor is another person, there is also a problem of a giant response based on an immune response. Due to the existence of such various problems, it is considered that a regenerative medical engineering-based treatment is ideal at present, and research on regeneration of bone and cartilage tissue is being actively conducted. When transplanting cartilage tissue, fixation of cartilage tissue is important for wound healing, and it is most desirable to regenerate bone and cartilage tissue simultaneously.
さらに、 再生医工学的な手法により骨、 軟骨組織を再生するためには、 骨、 軟 骨細胞あるいは骨、 軟骨細胞に分化し得る幹細胞が増殖するための足場として、 また、 形成している生体組織の支持体としての 3次元的な多孔質性の担体材料が 必要である。 このような担体材料は多孔質性や生体親和性や生体吸収性などの条 件が要求され、 従来、 ポリ乳酸 (PLA) ゃポリグリコール酸 (PGA) や乳酸とグリ コール酸との共重合体 (PLGA)のような生体吸収性合成高分子、 あるいはコラーゲ ンなどの天然高分子で調製した 3次元的な多孔質性担体材料がよく用いられてい る (特開 2002— 146086 ;特開 2002— 146084 ;特開 2002 -143291 ;特開 2002— 143290) 。  Furthermore, in order to regenerate bone and cartilage tissue by regenerative medical engineering techniques, bone, cartilage cells or stem cells capable of differentiating into bone and cartilage cells are used as a scaffold for proliferation, and the living body that forms A three-dimensional porous carrier material is required as a tissue support. Such carrier materials are required to have conditions such as porosity, biocompatibility and bioabsorbability. Conventionally, polylactic acid (PLA) ゃ polyglycolic acid (PGA) or a copolymer of lactic acid and glycolic acid A three-dimensional porous carrier material prepared with a bioabsorbable synthetic polymer such as (PLGA) or a natural polymer such as collagen is often used (Japanese Patent Application Laid-Open Nos. 2002-146086 and 2002-2002). 146084; JP-A-2002-143291; JP-A-2002-143290).
しかしながら、 上記の生体吸収性合成高分子からなるものは、 機械強度に優れ ているものの、 疎水性であり、 またその大きい隙間、 割れ目のため、 大部分の細 胞は隙間を通過してしまい、 その上に載らず、 骨、 軟骨細胞あるいは骨、 軟骨細 胞に分化し得る幹細胞を播種することが極めて困難である。 このため、 有効な細 胞の播種率が得られず、 これら細胞を大量に支持担体に集積することができない ため、 骨、 軟骨組織の再生効率が低い問題点があった。 一方、 生体由来の天然高 分子の多孔質性材料である例えばコラーゲンスポンジは、 親水性で、 細胞との相 互作用が非常に優れており、 細胞の播種の容易なものであるが、 機械強度が低く、 また柔らかくて捩れやすいので、 臨床では取り扱いにくいという問題点を包含し ていた。 However, those made of the above-mentioned bioabsorbable synthetic polymer have excellent mechanical strength, but are hydrophobic, and because of their large gaps and cracks, most cells pass through the gaps. Without it, it is extremely difficult to seed bone, chondrocytes or stem cells that can differentiate into bone and chondrocytes. For this reason, an effective cell seeding rate cannot be obtained, and a large amount of these cells cannot be accumulated on the support carrier. Therefore, there is a problem that the regeneration efficiency of bone and cartilage tissue is low. On the other hand, collagen sponge, which is a natural high molecular porous material derived from living organisms, is hydrophilic, has excellent interaction with cells, and is easy to seed cells. The problem was that it was difficult to handle clinically because it was low, and it was soft and easily twisted.
また、 骨 ·軟骨組織のような階層構造を有する組織を同時再生するための多孔 質性担体材料はまだ開発されていない。  In addition, a porous carrier material for simultaneously regenerating a tissue having a hierarchical structure such as bone and cartilage tissue has not been developed yet.
本発明は、 従来技術のこのような問題点を解決することを課題とするものであ る。 具体的には、 良好な生体親和性を有し、 骨細胞あるいは骨細胞に分化し得る 幹細胞からなる群から選ばれる少なくとも 1種の骨形成性細胞、 あるいは軟骨細 胞あるいは軟骨細胞に分化し得る幹細胞からなる群から選ばれる少なくとも 1種 の軟骨形成性細胞の播種が容易で、 播種効率が良好であり、 そのためこれら細胞 を大量に支持体 (足場) に集積することが可能であって、 骨組織、 軟骨組織の再 生効率が良好であるとともに、 機械的強度も高く、 臨床においても取扱い易い、 骨形成性細胞、 あるいは骨一軟骨形成性細胞の支持体を提供することにある。  An object of the present invention is to solve such problems of the related art. Specifically, it has good biocompatibility and is capable of differentiating into at least one type of osteogenic cell selected from the group consisting of osteocytes or stem cells capable of differentiating into osteocytes, or chondrocytes or chondrocytes It is easy to seed at least one type of chondrogenic cell selected from the group consisting of stem cells, and the seeding efficiency is good. Therefore, it is possible to accumulate a large amount of these cells on a support (scaffold). An object of the present invention is to provide a support for osteogenic cells or osteochondrogenic cells, which has good regeneration efficiency of tissues and cartilage tissues, has high mechanical strength, and is easy to handle even in clinical practice.
さらに、 本発明は、 このような支持体材料に骨形成性細胞及び軟骨形成性細胞 をこれらが実質的に分離された状態で積層し、 骨組織と軟骨組織が繋がっている 構造を有する骨 ·軟骨組織を同時再生するための生体内移植体を提供しようとす るものである。.  Further, the present invention provides a bone material having such a structure that bone-forming cells and cartilage-forming cells are laminated on such a support material in a state where they are substantially separated from each other, and the bone tissue and the cartilage tissue are connected to each other. An object of the present invention is to provide an in vivo implant for simultaneous regeneration of cartilage tissue. .
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1 :本発明に係る代表的なシート状の生体吸収性合成高分子、 別の生体吸収 性材料 (生体吸収性天然高分子、 細胞成長因子と細胞分化制御因子またはそれら の誘導体) からなる多孔質足場材料の模式図を示す。 図 1中:  Figure 1: Porous sheet made of a typical bioabsorbable synthetic polymer according to the present invention and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor and cell differentiation control factor or their derivatives). 1 shows a schematic diagram of a quality scaffold material. In Figure 1:
(a) 別の生体吸収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御 因子またはそれらの誘導体) からなる多孔質体;  (a) a porous body made of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or a derivative thereof);
(b) シート状の生体吸収性合成高分子の多孔質構造体;及び  (b) a sheet-like porous structure of a bioabsorbable synthetic polymer; and
(c) シート状の生体吸収性合成高分子と別の生体吸収性材料 (生体吸収性天然高 分子、 細胞成長因子、 細胞分化制御因子、 またはそれらの誘導体) からなる多孔 質体との複合多孔質構造体。 図 2 :本発明に係る代表的なシート状の生体吸収性合成高分子、 別の生体吸収 性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御因子またはそれら の誘導体) と無機ィ匕合物からなる多孔質足場材料の模式図。 図 2中: (c) Composite porosity composed of a sheet-shaped bioabsorbable synthetic polymer and a porous body composed of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor, or a derivative thereof) Quality structure. Figure 2: Representative sheet-shaped bioabsorbable synthetic polymer according to the present invention, another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or their derivative) and inorganic material. The schematic diagram of the porous scaffolding material which consists of a dagger. In Figure 2:
(a) 別の生体吸収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御 因子またはそれらの誘導体) からなる多孔質体;  (a) a porous body made of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or a derivative thereof);
(b) シート状の生体吸収性合成高分子の多孔質構造体;  (b) a sheet-like porous structure of a bioabsorbable synthetic polymer;
(c) シート状の生体吸収性合成高分子と別の生体吸収性材料 (生体吸収性天然高 分子、 細胞成長因子、 細胞分ィヒ制御因子またはそれらの誘導体) 力 らなる多孔質 体との多孔質複合多孔質構造体;及び  (c) A sheet-shaped bioabsorbable synthetic polymer and another bioabsorbable material (bioabsorbable natural macromolecule, cell growth factor, cell segment control factor or derivative thereof) A porous composite porous structure; and
(d) 多孔質体の外表面に無機化合物からなる被覆層を有する、 シート状の生体吸 収性合成高分子と、 別の生体吸収性材料 (天然高分子と細胞成長因子、 細胞分化 誘導因子またはその誘導体) の層及び無機化合物の層を有する多孔質体の複合多 孔質構造体。  (d) A sheet-shaped bioabsorbable synthetic polymer having a coating layer made of an inorganic compound on the outer surface of the porous body, and another bioabsorbable material (natural polymer, cell growth factor, cell differentiation inducer Or a derivative thereof) and a porous body having a layer of an inorganic compound.
図 3 :本発明に係る代表的なプロック状の生体吸収性合成高分子、 別の生体吸 収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御因子またはそれ らの誘導体) からなる多孔質足場材料の模式図。 図 3中:  Figure 3: Representative block-like bioabsorbable synthetic polymer according to the present invention and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation regulator or their derivatives). Schematic diagram of a porous scaffold material. In Figure 3:
(a) 別の生体吸収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御 因子またはそれらの誘導体) からなる多孔質体;  (a) a porous body made of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or a derivative thereof);
(b) プロック状の生体吸収性合成高分子の多孔質構造体;及び  (b) a block-like porous structure of a bioabsorbable synthetic polymer; and
(c) プロック状の生体吸収性合成高分子と別の生体吸収性材料 (生体吸収性天然 高分子、 細胞成長因子、 細胞分化制御因子またはそれらの誘導体) からなる多孔 質体との多孔質複合多孔質構造体。  (c) A porous composite of a block-shaped bioabsorbable synthetic polymer and a porous body made of another bioabsorbable material (natural bioabsorbable polymer, cell growth factor, cell differentiation control factor or their derivatives) Porous structure.
図 4 :本発明に係る代表的なプロック状の生体吸収性合成高分子、 別の生体吸 収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御因子またはそれ らの誘導体) と無機化合物からなる多孔質足場材料の模式図。 図 4中:  Figure 4: Typical block-like bioabsorbable synthetic polymer according to the present invention, another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or derivative thereof) and FIG. 2 is a schematic view of a porous scaffold material made of an inorganic compound. In Figure 4:
(a) 別の生体吸収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御 因子またはそれらの誘導体) からなる多孔質体;  (a) a porous body made of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or a derivative thereof);
(b) ブロック状の生体吸収性合成高分子の多孔質構造体; (c) ブロック状の生体吸収性合成高分子と別の生体吸収性材料 (生体吸収性天然 高分子、 細胞成長因子、 細胞分化制御因子またはそれらの誘導体) からなる多孔 質体との多孔質複合多孔質構造体;及び (b) a block-shaped porous structure of a bioabsorbable synthetic polymer; (c) Porous composite with a porous body consisting of a block-shaped bioabsorbable synthetic polymer and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or their derivatives) A porous structure; and
(d) ブロック状の生体吸収性合成高分子と、 別の生体吸収性材料 (生体吸収性天 然高分子、 細胞成長因子、 細胞分ィヒ制御因子またはそれらの誘導体) の層と無機 化合物の層を有する多孔質体との多孔質体の複合多孔質構造体。  (d) A block of a bioabsorbable synthetic polymer in block form and another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell segment control factor or their derivatives) and an inorganic compound A composite porous structure of a porous body and a porous body having a layer.
図 5 :本発明に係る代表的なシート状の生体吸収性合成高分子、 別の生体吸収 'ft材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御因子またはそれら の誘導体) 力 らなるゲル状足場材料の模式図。 図 5中:  Figure 5: Typical sheet-shaped bioabsorbable synthetic polymer according to the present invention, another bioabsorbable 'ft material (bioabsorbable natural polymer, cell growth factor, cell differentiation regulator or their derivatives) FIG. 2 is a schematic diagram of a gel-like scaffold material. In Figure 5:
(a) シート状の生体吸収性合成高分子の多孔質構造体;  (a) a sheet-like porous structure of a bioabsorbable synthetic polymer;
(b) 別の生体吸収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御 因子またはそれらの誘導体) からなるゲル;及ぴ  (b) a gel made of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation controlling factor or a derivative thereof);
(c) シート状の生体吸収性合成高分子と別の生体吸収性材料 (生体吸収性天然高 分子、 細胞成長因子、 細胞分化制御因子またはそれらの誘導体) のゲルからなる 多孔質体との複合構造体。  (c) Composite of a sheet-shaped bioabsorbable synthetic polymer and another bioabsorbable material (a bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or their derivative) and a porous body consisting of a gel Structure.
図 6 :骨-軟骨組織の再生用移植体の模式図。 図 6中:  Figure 6: Schematic representation of a bone-cartilage tissue regeneration implant. In Figure 6:
(a) 第 2足場材料と軟骨形成性細胞からなる軟骨組織;及び  (a) cartilage tissue comprising a second scaffold material and chondrogenic cells; and
(b) 第 1足場材料と骨形成性細胞からなる骨組織。  (b) Bone tissue composed of the first scaffold material and osteogenic cells.
図 7 . 生体吸収性合成高分子と生体吸収性天然高分子との複合メッシュの電 顕写真。  Figure 7. An electron micrograph of a composite mesh of a bioabsorbable synthetic polymer and a bioabsorbable natural polymer.
図 8 . 生体吸収性合成高分子と生体吸収性天然高分子と無機化合物との複合 メッシュの電顕写真。  Figure 8. An electron micrograph of a composite mesh of a bioabsorbable synthetic polymer, a bioabsorbable natural polymer, and an inorganic compound.
図 9 . 再生したィヌ関節の骨 ·軟骨組織の外観写真。  Fig. 9. Bone and cartilage tissue of the regenerated dog joint.
図 1 0 . 積層されたシート状足場材料の縦方向模式断面図。 図 10中: (a) 別の生体吸収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分化制御 因子またはそれらの誘導体) からなる多孔質体、 あるいはゲル;及ぴ  FIG. 10. A schematic longitudinal cross-sectional view of the laminated sheet-like scaffold material. In Figure 10: (a) Porous body or gel made of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell differentiation control factor or their derivatives);
(b) シート状、 あるいはプロック状の生体吸収性合成高分子の多孔質構造体 図 1 1 . ( a ) および (b ) は、 本発明に係る代表的なシート状複合体材料 の模式断面図。 図 11中: (a) 別の生体吸収性材料 (生体吸収性天然高分子、 細胞成長因子、 細胞分ィヒ制御 因子またはそれらの誘導体) からなる多孔質体、 あるいはゲル;及び (b) Sheet-like or block-like porous structure of bioabsorbable synthetic polymer Figure 11. (a) and (b) are schematic cross-sectional views of a typical sheet-like composite material according to the present invention. . In Figure 11: (a) a porous body or gel made of another bioabsorbable material (bioabsorbable natural polymer, cell growth factor, cell fraction control factor or derivative thereof); and
(b) シート状、 あるいはプロック状の生体吸収性合成高分子の多孔質構造体 図 12: ヒト足関節の骨 ·軟骨組織を再生した写真。 図 12中:  (b) Sheet-shaped or block-shaped porous structure of bioabsorbable synthetic polymer Figure 12: Photograph of bone and cartilage tissue of human ankle joint. In Figure 12:
(a) 手術前の患者の足関節の MR画像 (距骨内側に骨軟骨障害がみられる:矢 印) ;  (a) MR image of the ankle joint of the patient before the operation (osteochondral disorder inside the talus: arrow);
(b) 手術前の患者の足関節の CT画像 (距骨内側に骨軟骨障害がみられる:矢 印) ;  (b) CT image of the ankle of the patient before surgery (osteochondral disorder inside the talus: arrow);
(c) 幹細胞をゲル化した外観図;及び  (c) an external view of the gel of the stem cells; and
(d) 幹細胞-骨構造体 (矢印) 移植後のレントゲン写真。  (d) Stem cell-bone structure (arrow) Radiograph after transplantation.
発明の開示  Disclosure of the invention
本発明は、 上記の課題を解決するためになされたものであり、 以下の移植体及 ぴその製造法に関する。  The present invention has been made to solve the above problems, and relates to the following implant and a method for producing the same.
項 1 . 骨組織と軟骨組織が繋がっている構造を有する骨一軟骨組織の移植体。 項 2 . 前記骨組織が細胞を保持し得る足場材料と該足場材料に保持された骨 細胞あるいは骨細胞に分化し得る幹細胞からなる群から選ばれる少なくとも 1種 の骨形成性細胞を含み、 前記軟骨組織が細胞を保持し得る足場材料と該足場材料 に保持された軟骨細胞あるいは軟骨細胞に分化し得る幹細胞からなる群から選ば れる少なくとも 1種の軟骨形成性細胞を含む、 項 1に記載の移植体。  Item 1. An osteo-cartilage tissue transplant having a structure in which bone tissue and cartilage tissue are connected. Item 2. The bone tissue comprises a scaffold material capable of retaining cells and at least one type of osteogenic cell selected from the group consisting of bone cells retained by the scaffold material or stem cells capable of differentiating into bone cells. The cartilage tissue according to claim 1, wherein the cartilage tissue comprises a scaffold material capable of retaining cells and at least one chondrogenic cell selected from the group consisting of chondrocytes retained in the scaffold material or stem cells capable of differentiating into chondrocytes. Transplant.
項 3 . 足場材料がシート状物、 あるいは、 ブロック状物である、 項 1に記載 の移植体。  Item 3. The implant according to Item 1, wherein the scaffolding material is a sheet or a block.
項 4 . 前記足場材料が、 生体吸収性合成高分子からなるメッシュ体あるいは 多孔質体の内部構造マトリックス内に、 さらに別の化合物からなる構造体が形成 されている項 2に記載の移植体。  Item 4. The implant according to Item 2, wherein the scaffold material further comprises a structure made of another compound formed in a mesh structure made of a bioabsorbable synthetic polymer or an internal structure matrix of a porous material.
項 5 . 内部構造マトリックス内の構造体が、 多孔質構造体、 あるいは、 ゲル である、 項 4に記載の移植体。  Item 5. The implant according to Item 4, wherein the structure in the internal structure matrix is a porous structure or a gel.
項 6 . 内部構造マトリックス内の構造体が、 天然高分子、 細胞成長因子、 細 胞分化制御因子および無機化合物、 或いはこれらの誘導体からなる群から選ばれ る 1種または 2種以上をさらに含む、 項 4に記載の移植体。 項 7 . 骨組織の足場材料が多孔質セラミックスである、 項 2に記載の移植体。 項 8 . 軟骨組織の足場材料がゲルである、 項 2に記載の移植体。 Item 6. The structure in the internal structure matrix further includes one or more members selected from the group consisting of a natural polymer, a cell growth factor, a cell differentiation controlling factor and an inorganic compound, or a derivative thereof. Item 5. The transplant according to Item 4. Item 7. The implant according to Item 2, wherein the bone tissue scaffolding material is a porous ceramic. Item 8. The implant according to Item 2, wherein the cartilage tissue scaffolding material is a gel.
項 9 . 骨形成性細胞および/または軟骨形成性細胞が、 骨髄由来の幹細胞で ある、 項 2に記載の移植体。  Item 9. The transplant according to Item 2, wherein the osteogenic cells and / or chondrogenic cells are bone marrow-derived stem cells.
項 1 0 . 骨細胞あるいは骨糸田胞に分化し得る幹細胞からなる群から選ばれる 少なくとも 1種の骨形成性細胞並びに軟骨細胞あるいは軟骨細胞に分化し得る幹 細胞からなる群から選ばれる少なくとも 1種の軟骨形成性細胞を、 骨形成性細胞 と軟骨形成性細胞が実質的に分離した状態で細胞を保持し得る足場材料に播種す る工程を含む骨一軟骨組織の移植体の製造方法。  Item 10. At least one type of osteogenic cell selected from the group consisting of bone cells or stem cells capable of differentiating into osteocysts and at least one type selected from the group consisting of chondrocytes or stem cells capable of differentiating into chondrocytes A method for producing an osteo-cartilage tissue transplant, comprising the step of seeding the chondrogenic cells of the present invention on a scaffold capable of retaining the cells in a state where the osteogenic cells and the chondrogenic cells are substantially separated.
項 1 1 . 足場材料が第 1足場材料及び第 2足場材料からなり、 細胞を保持し 得る第 1足場材料に骨細胞あるいは骨細胞に分化し得る幹細胞からなる群から選 ばれる少なくとも 1種の骨形成性細胞を播種する工程、 細胞を保持し得る第 2足 場材料に軟骨細胞あるいは軟骨細胞に分化し得る幹細胞からなる群から選ばれる 少なくとも 1種の軟骨形成性細胞を播種する工程、 骨形成性細胞を保持する第 1 足場材料と軟骨形成性細胞を保持する第 2足場材料とを積層する工程を含む項 1 0に記載の方法。  Item 11. At least one type of bone selected from the group consisting of bone cells or stem cells capable of differentiating into bone cells as the first scaffolding material, wherein the scaffolding material is composed of the first and second scaffolding materials. Seeding morphogenic cells, seeding at least one chondrogenic cell selected from the group consisting of chondrocytes or stem cells capable of differentiating into chondrocytes on a second scaffold capable of retaining cells, osteogenesis Item 10. The method according to Item 10, comprising a step of laminating a first scaffold material holding osteoblasts and a second scaffold material holding chondrogenic cells.
項 1 2 . 骨形成性細胞と軟骨形成性細胞を別々の培地で培養する工程をさら に包含する項 1 0に記載の方法。  Item 12. The method according to item 10, further comprising a step of culturing the osteogenic cells and the chondrogenic cells in separate media.
項 1 3 . 足場材料がシート状物、 あるいは、 ブロック状物である、 項 1 0に 記載の方法。  Item 13. The method according to Item 10, wherein the scaffold material is a sheet or a block.
項 1 4 . 前記足場材料が、 生体吸収性合成高分子からなるメッシュ体あるい は多孔質体の内部構造マトリックス内に、 さらに別の生体吸収性材料からなる構 造体が形成されている項 1 0に記載の方法。  Item 14. The item in which the scaffolding material is formed of a bioabsorbable synthetic polymer in a mesh body or a porous body having an internal structure matrix in which a structure made of another bioabsorbable material is formed. 10. The method according to 10.
項 1 5 . 前記構造体を構成する前記生体吸収性材料が、 天然高分子、 細胞成 長因子、 細胞分化制御因子及び無機化合物或いはこれらの誘導体からなる群から 選ばれる少なくとも 1種を含む、 項 1 4に記載の方法。  Item 15. The bioabsorbable material constituting the structure includes at least one selected from the group consisting of a natural polymer, a cell growth factor, a cell differentiation control factor, and an inorganic compound or a derivative thereof. The method described in 14 above.
項 1 6 . 前記構造体が、 天然高分子の構造体を形成してから、 細胞成長因子、 細胞分化制御因子および無機化合物からなる群から選ばれる少なくとも 1種と複 合ィヒして製造されたものである、 項 1 5に記載の方法。 項 1 7 . 前記構造体が、 天然高分子と細胞成長因子の構造体を形成してから、 細胞分化制御因子、 あるいは無機化合物と複合化して製造されたものである、 項 1 5に記載の方法。 Item 16. The structure is produced by forming a structure of a natural polymer and then complexing it with at least one selected from the group consisting of a cell growth factor, a cell differentiation regulator and an inorganic compound. Item 15. The method according to Item 15. Item 17. The structure according to Item 15, wherein the structure is produced by forming a structure of a natural polymer and a cell growth factor and then complexing it with a cell differentiation control factor or an inorganic compound. Method.
項 1 8 . 前記構造体が、 天然高分子と細胞分化制御因子の構造体を形成して 力 ら、 細胞成長因子、 あるいは無機化合物と複合化して製造されたものである、 項 1 5に記載の方法。  Item 18. The structure according to Item 15, wherein the structure is produced by forming a structure of a natural macromolecule and a cell differentiation controlling factor and then complexing it with a cell growth factor or an inorganic compound. the method of.
項 1 9 . 前記構造体が、 天然高分子と細胞成長因子と細胞分化制御因子の構 造体を形成してから、 無機化合物と複合化して製造されたものである、 項 1 5に 記載の方法。  Item 19. The structure according to Item 15, wherein the structure is produced by forming a structure of a natural polymer, a cell growth factor, and a cell differentiation controlling factor, and then complexing the structure with an inorganic compound. Method.
項 2 0 . 前記構造体が、 無機化合物の構造体が形成してから、 天然高分子、 細胞成長因子、 あるいは細胞分化制御因子と複合化して製造されたものである、 '項 1 4に記載の方法。  Item 20. The item described in 'Item 14, wherein the structure is produced by forming a structure of an inorganic compound and then complexing it with a natural polymer, a cell growth factor, or a cell differentiation controlling factor. the method of.
項 2 1 . 生体吸収性合成高分子からなるメッシュ体あるいは多孔質体の内部 構造マトリックス内に、. さらに別の生体吸収性材料からなる構造体が形成されて いる骨組織形成用足場材料。  Item 21. A scaffold for bone tissue formation, in which a structure made of another bioabsorbable material is formed in a mesh structure or a porous body made of a bioabsorbable synthetic polymer.
項 2 2 . 足場材料がシート状物、 あるいは、 ブロック状物である、 項 2 1に 記載の材料。  Item 22. The material according to item 21, wherein the scaffolding material is a sheet or a block.
項 2 3 . シート状物及び/又はブロック状物の積層体である、 項 2 1に記載 の材料。  Item 23. The material according to item 21, which is a laminate of a sheet and / or a block.
項 2 4 . 内部構造マトリックス内の構造体が、 天然高分子、 細胞成長因子、 細胞分化制御因子おょぴ無機化合物からなる群から選ばれる 1種または 2種以上 を含む、 項 2 1に記載の材料。  Item 24. The structure according to Item 21, wherein the structure in the internal structure matrix includes one or more members selected from the group consisting of natural macromolecules, cell growth factors, cell differentiation control factors, and inorganic compounds. Material.
項 2 5 . 生体吸収性合成高分子からなるメッシュ体あるいは多孔質体の内部 構造マトリックス内に、 さらに別の化合物からなる構造体が形成されている骨一 軟骨組織形成用足場材料。  Item 25. A scaffold for bone and cartilage tissue formation, in which a structure made of another compound is formed in a mesh structure or a porous material made of a bioabsorbable synthetic polymer inside an internal structure matrix.
項 2 6 . 骨組織形成部と軟骨組織形成部を有し、 骨組織形成部と軟骨組織形 成部の間に細胞の移動を制限する部分を有する項 2 5に記載の材料。  Item 26. The material according to item 25, having a bone tissue forming part and a cartilage tissue forming part, and having a portion that restricts cell migration between the bone tissue forming part and the cartilage tissue forming part.
項 2 7 . シート状物及び Z又はブロック状物の積層体である、 項 2 6に の材料。 以下、 本発明をさらに詳述する。 Item 27. The material according to item 26, which is a laminate of a sheet-like material and a Z-like or block-like material. Hereinafter, the present invention will be described in more detail.
本発明の移植体は、 骨組織と軟骨組織が繋がっている構造を有し、 骨一軟骨組 織が一体となったものであり、 その好ましい実施態様では、 軟骨組織が骨組織で 支えられたものである。 軟骨組織のみでは移植が困難であるが、 骨組織と一体と なることで、 移植をより容易に行うことができる。  The implant of the present invention has a structure in which the bone tissue and the cartilage tissue are connected, and the bone-cartilage tissue is integrated.In a preferred embodiment, the cartilage tissue is supported by the bone tissue Things. Transplantation is difficult with cartilage tissue alone, but by integrating it with bone tissue, transplantation can be performed more easily.
移植体の骨組織とは、 全体が骨から構成され Tいてもよく、 骨になり得る組織 は広く包含される。 例えば細胞を保持し得る足場材料、 好ましくは生体吸収性材 料からなる足場材料 (足場) に骨形成性細胞を播種した組織、 骨形成性細胞を保 持した足場材料を培養液の存在下に培養して部分的に骨が形成された組織は該骨 組織に包含される。 骨組織の足場材料として、 生体吸収性材料の他に、 ハイド口 キシァパタイトなどのセラミック材料を使用することもできる。  The bone tissue of the implant may be composed entirely of bone and may be bone, and a wide range of tissues that can become bone is included. For example, a tissue in which osteogenic cells are seeded on a scaffolding material capable of retaining cells, preferably a scaffolding material (scaffold) composed of a bioabsorbable material, or a scaffolding material retaining osteogenic cells in the presence of a culture solution. The tissue in which bone is partially formed by culturing is included in the bone tissue. As a scaffold material for bone tissue, a ceramic material such as hide-opening xiapatite can be used in addition to a bioabsorbable material.
同様に、 移植体の軟骨組織とは、 全体が軟骨から構成されていてもよく、 軟骨 になり得る組織は広く包含される。 例えば細胞を保持し得る足場材料、 好ましく は生体吸収性材料からなる足場材料 (足場) に軟骨形成性細胞を播種した組織、 軟骨形成性細胞を保持した足場材料を培養液の存在下に培養して部分的に軟骨が 形成された組織は該軟骨組織に包含される。 軟骨組織の足場材料として、 コラー ゲンゲルなどのゲルを使用することができる。  Similarly, the cartilage tissue of the implant may be composed entirely of cartilage, and broadly encompasses tissue that can become cartilage. For example, a tissue in which chondrogenic cells are seeded on a scaffold material capable of retaining cells, preferably a scaffold material (scaffold) composed of a bioabsorbable material, and a scaffold material retaining chondrogenic cells are cultured in the presence of a culture solution. The tissue in which cartilage is partially formed is included in the cartilage tissue. Gels such as collagen gel can be used as a scaffold for cartilage tissue.
骨組織と軟骨組織が繋がつている構造とは、 骨組織が軟骨組織を支えることが できる状態で結合している構造を意味する。 例えば、 骨組織と軟骨組織は相互に 分離するものがなく直接繋がっているか、 或いは、 骨組織と軟骨組織の間に生体 吸収性材料を介して繋がっているが、 骨及び軟骨を再生した際には該生体吸収性 材料は生体に吸収されている構造が包含される。  The structure in which the bone tissue and the cartilage tissue are connected means a structure in which the bone tissue is connected so as to support the cartilage tissue. For example, bone tissue and cartilage tissue are directly connected without any separation from each other, or when bone and cartilage tissue are connected via a bioabsorbable material, but when bone and cartilage are regenerated, The bioabsorbable material includes a structure that is absorbed by a living body.
骨組織と軟骨組織が繋がっている構造としては、 例えば骨組織と軟骨組織が層 状に結合した階層構造を有するもの、 骨組織上に 1または複数の独立した軟骨組 織が塊状に存在する構造が挙げられる。 さらに骨組織にスポンジ状またはゲル状 の軟骨組織を載置し、 本発明の移植片としてもよい。  Examples of the structure in which the bone tissue and the cartilage tissue are connected include, for example, a structure having a hierarchical structure in which the bone tissue and the cartilage tissue are connected in layers, and a structure in which one or more independent cartilage tissues exist in a mass on the bone tissue. Is mentioned. Further, a sponge-like or gel-like cartilage tissue may be placed on the bone tissue to obtain the implant of the present invention.
本発明の好ましい実施形態の 1つにおいて、 本発明の骨一軟骨組織の移植片は、 骨一軟骨組織を、 例えば脛骨などの他の骨組織から採取した骨膜、 或いはその代 用物で覆うのが好ましい。 本発明において、 骨形成性細胞としては、 骨を形成可能な細胞が全て包含され、 例えば骨細胞、 骨芽細胞、 骨芽細胞に分化 ·誘導可能な骨髄細胞、 間葉系幹細胞、 体性幹細胞が例示される。 生体骨から骨細胞系を得る場合、 骨芽細胞のみからな るものが好ましいが、 骨芽細胞の骨形成機能が破骨細胞の骨吸収機能を上回って いる限り、 破骨細胞が含まれていてもよい。 また、 骨形成性細胞として、 全ての 細胞が骨形成可能な細胞であるのが最も好ましいが、 骨形性能を有する細胞を有 する限り、 骨形性能が弱いか骨形性能を有しない細胞が混在してもよい。 骨形成 性細胞としては、 骨芽細胞が好ましい。 骨形成性細胞として骨髄細胞、 間葉系幹 細胞などの幹細胞を使用して足場材料に播種した場合、 骨形成性細胞を骨組織に おいて骨芽細胞に分化誘導するのが好ましい。 分化誘導培地として、 分化誘導に 適した任意の培地を使用でき、 特に限定されないが、 例えば、 1 0 %ゥシ胎児血 清あるいは 10〜15%ヒト血清、 1 0 0 O m g ZL グルコース、 5 O m g ZL ァス コルビン酸、 ΙΟΟηΜデキサメタゾン、 lOniM グリセ口リン酸を加えた DMEM培地 を使用することができる。 このような分化誘導培地を使用して骨細胞に分化し得 る幹細胞を培養し、 分ィ匕させて行うことができる。 In one of the preferred embodiments of the present invention, the osteochondral tissue graft of the present invention comprises covering the osteochondral tissue with a periosteum obtained from another bone tissue such as a tibia, or a substitute thereof. Is preferred. In the present invention, the osteogenic cells include all cells capable of forming bone, for example, osteocytes, osteoblasts, bone marrow cells capable of inducing and inducing osteoblasts, mesenchymal stem cells, somatic stem cells Is exemplified. When an osteoclast system is obtained from living bone, it is preferable to use only osteoblasts. You may. It is most preferable that all cells are osteogenic cells as osteogenic cells, but as long as cells having osteogenic performance are present, cells with weak or no osteogenic performance They may be mixed. Osteoblasts are preferred as osteogenic cells. When stem cells such as bone marrow cells and mesenchymal stem cells are used as the osteogenic cells and seeded on the scaffold, it is preferable to induce the osteogenic cells to differentiate into osteoblasts in the bone tissue. As the differentiation-inducing medium, any medium suitable for differentiation induction can be used, and is not particularly limited, for example, 10% fetal serum or 10 to 15% human serum, 100 mg Og ZL glucose, 5 O DMEM medium supplemented with mg ZL-ascorbic acid, ΙΟΟηΜdexamethasone, and lOniM glycemic phosphate can be used. Stem cells capable of differentiating into bone cells are cultured using such a differentiation-inducing medium, and the cells can be separated.
本発明において、 軟骨形成性細胞としては、 軟骨を形成可能な細胞が全て包含 され、 例えば軟骨細胞、 軟骨細胞に分化 ·誘導可能な骨髄細胞、 間葉系幹細胞、 体性幹細胞が例示される。  In the present invention, the chondrogenic cells include all cells capable of forming cartilage, and include, for example, chondrocytes, bone marrow cells capable of differentiating and inducing chondrocytes, mesenchymal stem cells, and somatic stem cells.
軟骨形成性細胞としては、 軟骨細胞が好ましレ、。 軟骨形成性細胞として骨髄細 胞、 間葉系幹細胞、 体性幹細胞などの幹細胞を使用して足場材料に播種した場合、 軟骨形成性細胞を軟骨組織において軟骨細胞に分化誘導する。 分化誘導培地とし て、 分化誘導に適した任意の培地を使用でき、 特に限定されないが、 例えば、 上 記足場材料に上記軟骨細胞に分化し得る幹細胞の播種用細胞液を含浸した後、 4 5 0 O m g /Lグルコース、 5 8 4 m g /Lグルタミン、 0 . 4 mMプロリン、 5 O m g /L ァスコルビン酸、 トランスフォーミング増殖因子 ]3 3 ( T G F - ]3 3 ) 、 ΙΟΟηΜデキサメタゾンを含有する DMEM培地 (分化培地) を使用するこ とができる。 このような分化誘導培地を使用して軟骨細胞に分化し得る幹細胞を 培養し、 分ィ匕させて行うことができる。  As chondrogenic cells, chondrocytes are preferred. When seeded on a scaffold using stem cells such as bone marrow cells, mesenchymal stem cells, and somatic stem cells as chondrogenic cells, the chondrogenic cells are induced to differentiate into chondrocytes in cartilage tissue. As the differentiation-inducing medium, any medium suitable for inducing differentiation can be used, and is not particularly limited. For example, after the above-described scaffold material is impregnated with a cell solution for seeding stem cells capable of differentiating into chondrocytes, 45 DMEM containing 0 O mg / L glucose, 584 mg / L glutamine, 0.4 mM proline, 5 O mg / L ascorbic acid, transforming growth factor] 33 (TGF-] 33), ΙΟΟηΜdexamethasone A medium (differentiation medium) can be used. Stem cells capable of differentiating into chondrocytes are cultured using such a differentiation-inducing medium, and the cells can be separated.
本発明における生体吸収性合成高分子のメッシュ体あるいは多孔質体の隙間、 ポアの内に備えられるコラーゲン等の天然高分子、 細胞成長因子、 細胞分化制御 因子、 無機化合物などの生体吸収性材料を含む構造体として、 多孔質構造体、 あ るいはゲルが例示される。 Gaps between the mesh or porous body of the bioabsorbable synthetic polymer in the present invention, A porous structure or a gel is exemplified as a structure containing a bioabsorbable material such as a natural polymer such as collagen, a cell growth factor, a cell differentiation controlling factor, and an inorganic compound provided in the pore.
本発明に用いられる生体吸収 1·生合成高分子のメッシュ体あるいは多孔質体は、 主として本発明の足場材料の機械的強度を増大させるために用いられ、 メッシュ 体は、 織物、 編物、 織布又は不織布等からなるものでよい。 また、 多孔質体は、 発泡剤を利用する発泡成形法、 あるいは多孔質化剤除去法等周知の方法により得 ることができる。 この多孔質体の発泡成型法においては、 高分子化合物に発泡剤 を添加し発泡剤を発泡させた後、 上記高分子を硬化させる。 高分子溶液中に、 水 溶性の糖類あるいは塩類を添カ卩し、 硬化後、 該水溶性物質を水で洗浄除去すれば よい。 骨形成性材料の足場材料としては、 多孔質ハイドロキシァパタイトなどの 多孔質セラミック材料を使用することができる。  The bioabsorbable biosynthetic polymer mesh or porous body used in the present invention is mainly used to increase the mechanical strength of the scaffold material of the present invention, and the mesh body is woven, knitted, or woven cloth. Alternatively, it may be made of a nonwoven fabric or the like. Further, the porous body can be obtained by a well-known method such as a foam molding method using a foaming agent, or a porous agent removing method. In this foam molding method for a porous body, a foaming agent is added to a polymer compound, the foaming agent is foamed, and then the polymer is cured. A water-soluble sugar or salt may be added to the polymer solution, and after curing, the water-soluble substance may be washed and removed with water. As a scaffold for the osteogenic material, a porous ceramic material such as porous hydroxyapatite can be used.
メッシュの編目の大きさあるいは多孔質体の孔の大きさは大きくなればなるほ ど、 機械的強度は低下するものの、 メッシュ単位当たりの天然高分子多孔質構造 体の細孔密度が高くなり、 播種細胞はこの細孔に保持されるので、 複合体におけ る播種細胞数を増大でき、 骨組織、 軟骨組織の再生が効率的になる。  As the mesh size of the mesh or the pore size of the porous body increases, the mechanical strength decreases, but the pore density of the natural polymer porous structure per mesh unit increases, Since the seeded cells are retained in these pores, the number of seeded cells in the complex can be increased, and the regeneration of bone tissue and cartilage tissue becomes efficient.
したがって、 そのメッシュの編目の大きさあるいは多孔質体の孔の大きさは、 移植される生体内の場所等に応じて、 求められる機械強度あるいは弾力性、 ある いは骨組織、 軟骨組織の再生速度等を勘案して適宜定められる。 メッシュの編目 の大きさとしては、 例えば 0 . l mm〜5 c mが挙げられる。  Therefore, the size of the stitch of the mesh or the size of the pores of the porous body depends on the location in the living body to be implanted, etc. It is appropriately determined in consideration of the speed and the like. The size of the mesh stitch is, for example, 0.1 mm to 5 cm.
メッシュ体あるいは多孔質体を形成する生体吸収性合成高分子としては、 ポリ 乳酸、 ポリダリコール酸、 乳酸とグリコール酸の共重合体、 ポリリンゴ酸、 ポリ — ε—力プロラク トンなどのポリエステル或いはセルロース、 ポリアルギン酸な どの多糖類等を挙げることができる。 本発明において好ましく使用される生体吸 収性合成高分子はポリ乳酸、 ポリグリコール酸、 乳酸とグリコール酸の共重合体 である  Examples of bioabsorbable synthetic polymers that form a mesh or a porous body include polylactic acid, polydalicholic acid, a copolymer of lactic acid and glycolic acid, polymalic acid, polyester such as poly-ε-force prolactone, cellulose, or poly. Examples thereof include polysaccharides such as alginic acid. The bioabsorbable synthetic polymer preferably used in the present invention is polylactic acid, polyglycolic acid, or a copolymer of lactic acid and glycolic acid.
本発明の構造体を構成する、 生体吸収性合成高分子とは別の生体吸収性材料と しては、 天然高分子、 細胞成長因子、 細胞分化制御因子おょぴ無機化合物、 或い はこれらの誘導体が例示される。 天然高分子は、 自然に存在する、 あるいは生体に由来するもので、 生体親和性 を示すものであれば、 何れも使用できるが、 コラーゲン、 ヒアルロン酸、 コンド ロイチン硫酸、 ゼラチン、 フィプロネクチン、 及ぴラミニンなどから選ばれた 1 種以上のもの、 特にコラーゲンが好ましく使用される。 コラーゲンには I、 II、 III、 IV、 V、 VI、 VIII、 IX、 X型などのものがあるが、 本発明においてはこれら の何れも使用でき、 これらの誘導体を使用してもよい。 As a bioabsorbable material different from the bioabsorbable synthetic polymer constituting the structure of the present invention, a natural polymer, a cell growth factor, a cell differentiation controlling factor or an inorganic compound, or Are exemplified. Natural polymers can be used as long as they are naturally occurring or derived from living organisms and exhibit biocompatibility. Collagen, hyaluronic acid, chondroitin sulfate, gelatin, fipronectin, and 1One or more selected from laminin and the like, particularly collagen is preferably used. Collagen includes types I, II, III, IV, V, VI, VIII, IX, X, etc. In the present invention, any of these can be used, and derivatives thereof may be used.
細胞成長因子と細胞分化制御因子は細胞の成長、 分化を制御できるものであれ ば、 何れも使用できるが、 上皮細胞成長因子 (EGF) 、 インシュリン、 血小板由来 増殖因子 (PDGF) 、 繊維芽細胞増殖因子 (FGF) 、 肝細胞増殖因子 (HGF) 、 血管 内皮増殖因子 (VEGF) 、 トランスフォーミング増殖因子 j3 (TGF- j8 ) 、 骨形成因 子 (BMP) 、 デキサメタゾンなどから犟ばれた 1種以上のもの或いはこれらの誘導 体があるが、 本発明においてはこれらの何れも使用できる。  Cell growth factor and cell differentiation control factor can be used as long as they can control cell growth and differentiation. Epidermal growth factor (EGF), insulin, platelet-derived growth factor (PDGF), fibroblast proliferation One or more selected from factor (FGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), transforming growth factor j3 (TGF-j8), bone morphogenetic factor (BMP), dexamethasone, etc. And derivatives thereof, and any of them can be used in the present invention.
無機化合物は骨細胞あるいは骨細胞に分化し得る幹細胞の接着、 成長、 分化誘 導を促進するものであれば、 何れも使用できるが、 ハイドロキシァパタイト、 三 リン酸カルシウムなどから選ばれた 1種以上或いはこれらの誘導体があるが、 本 発明においてはこれらの何れも使用できる。  Any inorganic compound can be used as long as it promotes the adhesion, growth, and differentiation induction of bone cells or stem cells that can be differentiated into bone cells, and any of them can be used.One or more selected from hydroxyapatite, calcium triphosphate, and the like Alternatively, there are derivatives thereof, and any of these can be used in the present invention.
生体吸収性合成高分子からなるメッシュ体あるいは多孔質体の内部構造マトリ ックス内に形成される、 さらに別の生体吸収性材料からなる構造体の細孔は、 播 種細胞の増殖及ぴ組織再生の足場とするものであり、 細孔は連続していることが 好ましい。 その大きさは l〜300 m、 好ましくは 20〜: 100 i m程度とするのがよ い。  The pores of a structure made of another bioabsorbable material, formed in the internal structure matrix of a mesh body or a porous body made of a bioabsorbable synthetic polymer, allow the growth of seeded cells and tissue regeneration And the pores are preferably continuous. Its size is l to 300 m, preferably 20 to: about 100 im.
また、 本発明においては、 メッシュ状 (シート状を含む)'の足場材料の厚みは、 生体複合材料の使用態様によって適宜定めればよいが、 通常 0. l〜5mm、 好ま しくは 0. l〜l mmである。 その空隙率は、 通常 50%以上である。 プロック状の 足場材料の厚みは、 通常 3〜5 0 mm、 好ましくは 5〜 2 0 mmである。 その空 隙率は、 通常 50%以上である。  Also, in the present invention, the thickness of the mesh-like (including sheet-like) scaffold material may be determined as appropriate depending on the use mode of the biocomposite material, and is usually 0.1 to 5 mm, preferably 0.1 to 1 mm. ~ L mm. Its porosity is usually above 50%. The thickness of the block-like scaffolding material is usually 3 to 50 mm, preferably 5 to 20 mm. Its porosity is usually above 50%.
本発明の 1つの好ましい内部構造マトリックス内の構造体は多孔質構造体であ り、 生体吸収性合成高分子のメッシュ体あるいは多孔質体の内部構造マトリック ス内、 すなわちメッシュ体の編目あるいは多孔質体の孔内に、 生体吸収性天然高 分子またはその誘導体を含み、 さらに細胞成長因子、 細胞分化制御因子及び無機 化合物またはその誘導体からなる群から選ばれる少なくとも 1種を含む多孔質体 をさらに形成したものである (図 1、 図 2 ) 。 本発明の多孔質構造体を有する足 場材料は種々の方法により製造することができるが、 例えば、 前記生体吸収性合 成高分子のメッシュ体あるいは多孔質体と生体吸収性天然高分子、 細胞成長. 子、 細胞分化制御因子、 無機化合物またはそれらの誘導体などの生体吸収性材料から なる多孔質構造体とを架橋結合または吸着させることにより得ることができる。 なお、 以下の方法において、 多孔質構造体は、 生体吸収性材料の少なくとも 1 種を含むものであるが、 該材料は、 生体吸収性天然高分子またはその誘導体を必 須成分として含み、 さらに細胞成長因子、 細胞分化制御因子及び無機化合物また はその誘導体からなる群から選ばれる少なくとも 1種を含むものである。 The structure in one preferable internal structure matrix of the present invention is a porous structure, and is a mesh structure of a bioabsorbable synthetic polymer or an internal structure matrix of a porous material, that is, a stitch or a porous structure of a mesh body. Bioabsorbable natural high in body pores A porous body containing a molecule or a derivative thereof and further containing at least one selected from the group consisting of a cell growth factor, a cell differentiation controlling factor, and an inorganic compound or a derivative thereof (FIGS. 1 and 2). . The scaffold material having a porous structure of the present invention can be produced by various methods. For example, a mesh or porous body of the bioabsorbable synthetic polymer and a bioabsorbable natural polymer, cell It can be obtained by crosslinking or adsorbing a porous structure made of a bioabsorbable material such as a growth factor, a cell differentiation controlling factor, an inorganic compound or a derivative thereof. In the following method, the porous structure contains at least one kind of bioabsorbable material. The material contains a bioabsorbable natural polymer or a derivative thereof as an essential component, and further contains a cell growth factor. And at least one selected from the group consisting of a cell differentiation controlling factor and an inorganic compound or a derivative thereof.
例えば内部構造マトリックス内の構造体は、  For example, the structures in the internal structure matrix
天然高分子の構造体を形成してから、 細胞成長因子、 細胞分化制御因子およ.ぴ無 機化合物からなる群から選ばれる少なくとも 1種と含浸、 浸漬、 塗布などにより 複合化してもよく、 天然高分子と細胞成長因子の構造体を形成してから、 細胞分 化制御因子および Zまたは無機化合物と含浸、 浸漬、 塗布などにより複合化して もよく、 After forming the structure of the natural polymer, it may be complexed with at least one selected from the group consisting of cell growth factors, cell differentiation regulators and inorganic compounds by impregnation, immersion, coating, etc. After forming a structure of a natural polymer and a cell growth factor, a complex may be formed by impregnation, immersion, coating, or the like with a cell differentiation control factor and Z or an inorganic compound.
天然高分子と細胞分化制御因子の構造体を形成してから、 細胞成長因子およびノ または無機化合物と含浸、 浸漬、 塗布などにより複合化してもよく、 After forming a structure of a natural macromolecule and a cell differentiation controlling factor, a complex may be formed by impregnation, immersion, coating or the like with a cell growth factor and a metal or inorganic compound.
天然高分子と細胞成長因子と細胞分ィヒ制御因子の構造体を形成してから、 含浸、 浸漬、 塗布などにより無機化合物と複合化してもよい。 なお、 天然高分子と細胞 成長因子の構造体は、 天然高分子溶液の代わりに天然高分子と細胞成長因子の溶 液を用いて同様に製造することができる。 天然高分子と細胞分化制御因子の構造 体、 天然高分子と細胞成長因子と細胞分化制御因子の構造体も同様である。 また、 メッシュ体あるいは多孔質体の内部構造マトリッタスが予め無機化合物と含浸、 浸漬、 塗布などにより複合化してから、 前記構造体を形成してもよい。 After forming a structure of a natural polymer, a cell growth factor, and a cell fraction control factor, a complex with an inorganic compound may be formed by impregnation, dipping, or coating. The structure of the natural polymer and the cell growth factor can be produced in the same manner by using a solution of the natural polymer and the cell growth factor instead of the natural polymer solution. The same applies to a structure of a natural polymer and a cell differentiation controlling factor, and a structure of a natural polymer, a cell growth factor and a cell differentiation controlling factor. Further, the structure may be formed after the internal structure matrix of the mesh body or the porous body is composited with an inorganic compound by impregnation, dipping, coating, or the like in advance.
この作製方法の好ましい方法の 1つとしては、 (1 ) 1 次構造体である生体吸 収性合成高分子のメッシュ体あるいは多孔質体に 2次構造体を構成する生体吸収 性天然高分子、 細胞成長因子、 細胞分化制御因子或いはそれらの誘導体などの 1 種以上の溶液を付着、 含浸せしめた後、 続いて、 (2 ) 凍結乾燥し、 好ましくは ガス状ないし液状の架橋剤で処理することにより架橋するものである。 One of the preferable methods of this production method is as follows: (1) a bioabsorbable natural polymer which forms a secondary structure in a mesh or porous body of a bioabsorbable synthetic polymer as a primary structure; Cell growth factor, cell differentiation control factor or their derivatives 1 After adhering and impregnating more than one kind of solution, subsequently, (2) freeze-drying, and preferably crosslinking by treating with a gaseous or liquid crosslinking agent.
上記工程 (1 ) においては、 生体吸収性天然高分子、 細胞成長因子、 細胞分化 制御因子或いはそれらの誘導体などは 1種以上混ぜてから、 含浸せしめる力、 あ るいはそれぞれ 1種以上を混ぜて行われる。  In the above step (1), at least one kind of bioabsorbable natural polymer, cell growth factor, cell differentiation controlling factor or a derivative thereof is mixed and then impregnating force or at least one kind of each is mixed. Done.
上記工程 ( 1 ) においては、 前記 1 次構造体である生体吸収性合成高分子メッ シュ体 (多孔質構造体) を前記生体吸収性天然高分子、 細胞成長因子、 細胞分化 制御因子またはこれらの誘導体の水溶液で処理する。 処理方法としては種々のも のがあるが、 浸漬法ゃ塗布法が好ましく採用される。  In the above step (1), the bioabsorbable synthetic polymer mesh (porous structure), which is the primary structure, is replaced with the bioabsorbable natural polymer, cell growth factor, cell differentiation controlling factor, or any of these. Treat with an aqueous solution of the derivative. Although there are various treatment methods, a dipping method and a coating method are preferably employed.
浸漬法は、 生体吸収性天然高分子、 細胞成長因子、 細胞分化制御因子またはこ れらの誘導体の水溶液の濃度や粘度が低い場合に有効であり、 具体的には、 生体 吸収性天然高分子、 細胞成長因子、 細胞分化制御因子またはこれらの誘導体の低 濃度水溶液に生体吸収性合成高分子メッシュ体を浸漬することにより行われる。 塗布法は、 生体吸収性天然高分子、 細胞成長因子、 細胞分化制御因子の水溶液 の濃度や粘度が高く、 浸漬法が適用できないときに有効であり、 具体的には、 生 体吸収性天然高分子、 細胞成長因子、 細胞分化制御因子の高濃度水溶液を生体吸 収性合成高分子メッシュ体に塗布することにより行われる。  The immersion method is effective when the concentration or viscosity of an aqueous solution of a bioabsorbable natural polymer, a cell growth factor, a cell differentiation controlling factor, or a derivative thereof is low. Specifically, the bioabsorbable natural polymer is used. It is carried out by immersing the bioabsorbable synthetic polymer mesh in a low-concentration aqueous solution of a cell growth factor, a cell differentiation controlling factor or a derivative thereof. The application method is effective when the concentration and viscosity of the aqueous solution of the bioabsorbable natural polymer, cell growth factor, and cell differentiation control factor are high and the immersion method cannot be applied. This is performed by applying a high-concentration aqueous solution of a molecule, a cell growth factor, and a cell differentiation regulator to a bioabsorbable synthetic polymer mesh.
本発明で用いられる架橋剤としては、 従来公知のものが何れも使用できる。 好 ましく使用される架橋剤は、 ダルタルアルデヒ ド、 ホルムアルデヒ ド、 パラホル ムアルデヒドのようなアルデヒド類、 特にグルタルアルデヒドである。  As the crosslinking agent used in the present invention, any conventionally known crosslinking agents can be used. Crosslinking agents which are preferably used are aldehydes such as daltaraldehyde, formaldehyde, paraformaldehyde, in particular glutaraldehyde.
本発明の架橋化は、 前記したように、 上記の架橋剤をガス状にして用いるのが 好ましい。  As described above, in the crosslinking of the present invention, it is preferable to use the above-mentioned crosslinking agent in a gaseous state.
具体的には、 上記天然高分子多孔質体を架橋するに際し、 一定温度で一定濃度 の架橋剤又はその水溶液で飽和した架橋剤蒸気の雰囲気下で一定時間架橋を行う。 架橋温度は、 生体吸収性合成高分子メッシュ体が溶解せず、 且つ架橋剤の蒸気 が形成できる範囲内で選定すればよく、 通常、 2 0 °C〜5 0 °Cに設定される。  Specifically, when the above-mentioned natural polymer porous body is crosslinked, crosslinking is carried out at a constant temperature under a constant concentration of a crosslinking agent or in an atmosphere of a crosslinking agent vapor saturated with an aqueous solution thereof for a predetermined time. The crosslinking temperature may be selected within a range in which the bioabsorbable synthetic polymer mesh does not dissolve and vapor of the crosslinking agent can be formed, and is usually set at 20 ° C to 50 ° C.
架橋時間は、 架橋剤の種類や架橋温度にもよるが、 上記天然高分子多孔質体の 親水性や生体吸収性を阻害せず、 かつ生体移植時にこのものが溶解しないような 架橋固定ィ匕が行われる範囲に設定するのが望ましい。 架橋時間が短くなると、 架橋固定ィヒが不十分となり、 移植後生体内で天然高分 子多孔質体が短時間で溶解する恐れがあり、 また架橋時間が長いほど架橋化が進 むが、 架橋時間があまり長過ぎると、 親水性が低くなり、 骨形成性細胞、 軟骨形 成性細胞の足場材料に対する播種密度が低くなり、 細胞の贈殖及ぴ組織再生が効 率よく行われないほか、 生体吸収性も低下する等の問題点を生じるので好ましく ない。 好ましい架橋時間は 1 0分から 1 2時間程度である。 The cross-linking time depends on the type of the cross-linking agent and the cross-linking temperature. Is desirably set in a range in which is performed. If the cross-linking time is short, the cross-linking fixation becomes insufficient, and the natural polymer porous body may be dissolved in a short time after transplantation in the living body, and the longer the cross-linking time, the more the cross-linking proceeds. If the time is too long, the hydrophilicity decreases, the seeding density of osteogenic cells and chondrogenic cells on the scaffold decreases, and cell donation and tissue regeneration are not performed efficiently. It is not preferable because it causes problems such as a decrease in bioabsorbability. The preferred crosslinking time is about 10 minutes to 12 hours.
他の作製方法としては、 (1 ) 1 次構造体としての生体吸収性合成高分子のメ ッシュ体あるいは多孔質体に 2次構造体を構成する生体吸収性天然高分子または その誘導体の 1種以上の溶液を付着、 含浸せしめた後、 (2 ) 凍結乾燥し、 好ま しくはガス状ないし液状の架橋剤で処理することにより架橋し、 次いで、 (3 ) 力ルポジィミドなどの水溶性架橋促進剤で処理し、 細胞成長因子及び/又は細胞 分ィ匕制御因子或いはそれらの誘導体と架橋反応するものである。  Other production methods include (1) a bioabsorbable synthetic polymer as a primary structure, a mesh or a bioabsorbable natural polymer that forms a secondary structure in a porous body, or one of its derivatives. After adhering and impregnating the above solution, (2) freeze-drying, and preferably crosslinking by treating with a gaseous or liquid crosslinking agent, and then (3) a water-soluble crosslinking accelerator such as lipopositimide And a crosslinking reaction with a cell growth factor and / or a cell division controlling factor or a derivative thereof.
上記工程 (1 ) においては、 生体吸収性天然高分子またはその誘導体は 1種以 上混ぜてから、 含浸せしめて行われる。 含浸方法は上記に記載の方法と同様であ る。  In the above step (1), one or more bioabsorbable natural polymers or derivatives thereof are mixed and then impregnated. The impregnation method is the same as the method described above.
上記工程 (3) においては、 2次構造体の生体吸収性天然高分子またはその誘導 体の多孔質体をあらかじめカルポジィミドなどの水溶性架橋促進剤で処理した後、 細胞成長因子、 細胞分化制御因子のそれぞれ 1種類以上の混合水溶液に含浸する ことにより行うのが好ましい。  In the above step (3), the bioabsorbable natural polymer of the secondary structure or the porous body of the derivative thereof is treated in advance with a water-soluble cross-linking accelerator such as carbodiimide, and then the cell growth factor and the cell differentiation control factor are treated. It is preferable to carry out the treatment by impregnating each with one or more mixed aqueous solutions.
本発明の第 2の足場材料はゲル状の構造体であり、 生体吸収性合成高分子のメ ッシュ体あるいは多孔質体の内部構造マトリックス内、 すなわちメッシュ体の編 目あるいは多孔質体の孔内に、 生体吸収性天然高分子、 細胞成長因子、 細胞分化 制御因子及びそれらの誘導体からなるゲル構造体をさらに形成したものである。 この作製方法としては、 (1 ) 1 次構造体の生体吸収性合成高分子のメッシュ 体あるいは多孔質体に生体吸収性天然高分子、 細胞成長因子、 細胞分化制御因子 などの 1種類以上の溶液を付着、 含浸せしめた後、 続いて、 (2 ) ゲル化するこ とにより架橋するものである。  The second scaffold material of the present invention is a gel-like structure, and is in a mesh structure of a bioabsorbable synthetic polymer or in an internal structure matrix of a porous body, that is, in a mesh of a mesh body or in a pore of a porous body. In addition, a gel structure comprising a bioabsorbable natural polymer, a cell growth factor, a cell differentiation controlling factor and a derivative thereof is further formed. The method of preparation is as follows: (1) A mesh structure or a porous material of a bioabsorbable synthetic polymer of the primary structure is used to prepare one or more solutions of bioabsorbable natural polymer, cell growth factor, cell differentiation control factor, etc. After adhering and impregnating, subsequently, (2) it is crosslinked by gelling.
ゲルを構成する天然高分子としては、 ゼラチン、 コラーゲン、 デンプン、 ぺク チン、 ヒアルロン酸、 キチン、 キトサンまたはアルギン酸及びこれらの材料の誘 導体が挙げられる。 The natural polymers that make up the gel include gelatin, collagen, starch, pectin, hyaluronic acid, chitin, chitosan or alginic acid and the attraction of these materials. Conductors.
ゲル状構造体作製の具体例としては、 低温で生体吸収 '生天然高分子と細胞成長 因子と細胞分化制御因子などの 1種類以上のもの、 あるいはそれぞれ 1種以上の ものの混合溶液を 1 次構造体の多孔質体に導入してから、 37°Cまでに温度を上げ てゲル化する方法、 あるいは、 低温で生体吸収性天然高分子と細胞成長因子と細 胞分ィ匕制御因子などの 1種以上の混合溶液をさらに、 架橋剤と混ぜてから 1 次構 造体の多孔質体に導入し、 37°Cまで温度を上げてゲル化する方法が挙げられる。 架橋剤としては、 エポキシ化合物、 カルポジイミド、 力ルポニルジイミダゾ-ル、 グルタルアルデヒド、 へキサメチレンジイソシァネートなどが挙げられる。  Specific examples of the preparation of a gel-like structure include a biostructure that absorbs at low temperature and one or more types of raw natural macromolecules, cell growth factors, and cell differentiation control factors, or a mixed solution of one or more types of each. A method of gelling by increasing the temperature to 37 ° C after introduction into the porous body of the body, or a method using a bioabsorbable natural polymer, cell growth factor, and cell division control factor at a low temperature. There is a method in which a mixed solution of more than one kind is further mixed with a crosslinking agent, introduced into the porous material of the primary structure, and heated to 37 ° C to gel. Examples of the cross-linking agent include an epoxy compound, carbodiimide, carbonyldiimidazole, glutaraldehyde, hexamethylene diisocyanate, and the like.
上記の図 1に示されるメッシュ状の多孔質構造体の代わりに図 3に示されるブ ロック状の多孔質構造体を用いることにより、 上記と同様にして対応するブ口ッ ク状の足場材料を得ることが可能である。  By using the block-like porous structure shown in FIG. 3 instead of the mesh-like porous structure shown in FIG. 1 above, the corresponding block-like scaffold material can be obtained in the same manner as above. It is possible to obtain
本発明の第 3の足場材料は多孔質構造体であり、 生体吸収性合成高分子のメッ シュ体あるいは多孔質体の内部構造マトリックス内、 すなわちメッシュ体の編目 あるいは多孔質体の孔内に、 生体吸収性天然高分子、 細胞成長因子おょぴ細胞分 化制御因子からなる群から選ばれる少なくとも 1種と無機化合物からなる多孔質 体をさらに形成したものである (図 2 ) 。  The third scaffold material of the present invention is a porous structure, and is provided in a mesh body of a bioabsorbable synthetic polymer or an internal structure matrix of a porous body, that is, in a mesh of a mesh body or in a pore of a porous body. It is further formed of a porous body composed of an inorganic compound and at least one selected from the group consisting of a bioabsorbable natural polymer, a cell growth factor and a cell differentiation control factor (Fig. 2).
この作製方法としては、 上記に記載の多孔質構造体の表面に無機化合物の微粒 子を沈着、 あるいはコーティングすることにより、 行われる。 無機化合物の微粒 子を沈着、 あるいはコーティングする方法は特開 2 0 0 2—1 4 3 2 9 1に記載 されている。  This production method is performed by depositing or coating fine particles of an inorganic compound on the surface of the porous structure described above. A method for depositing or coating fine particles of an inorganic compound is described in Japanese Patent Application Laid-Open No. 2002-143921.
上記の図 2に示されるメッシュ状の多孔質構造体の代わりに図 4に示されるブ 口ック状の多孔質構造体を用いることにより、 上記と同様にして対応するプロッ ク状の足場材料を得ることが可能である。  By using the block-like porous structure shown in FIG. 4 instead of the mesh-like porous structure shown in FIG. 2 above, the corresponding block-like scaffolding material is obtained in the same manner as above. It is possible to obtain
本発明の複合材料の望ましい形状は、 シート状の形状であり、 このような形状 の生体吸収性合成高分子のメッシュ体あるいは多孔質体の内部構造マトリックス 内、 すなわちメッシュ体の編目あるいは多孔質体の孔内に、 天然高分子の多孔質 構造体を形成させる。 このシート状物の全体の厚さは、 通常 0 . l〜5 mm、 好 ましくは 0 . l〜l mmが好ましく、 また、 上記天然高分子多孔質構造体の厚さ は適宜調製できるが、 生体吸収性合成高分子のメッシュ体あるいは多孔質体とほ ぼ同じ厚さに形成するのが好ましい。 その多孔質構造体の空隙率は、 通常 8 0 % 以上である。 なお、 本明細書においてシート状物というときは、 メッシュ状物、 フィルム状物ないし膜状物を包含する (図 1, 2 , 5 ) 。 The desirable shape of the composite material of the present invention is a sheet-like shape, and the inside structure matrix of a mesh body or a porous body of a bioabsorbable synthetic polymer having such a shape, that is, a stitch or a porous body of the mesh body A porous structure of a natural polymer is formed in the pores. The overall thickness of the sheet is usually 0.1 to 5 mm, preferably 0.1 to 1 mm, and the thickness of the natural polymer porous structure. Can be appropriately prepared, but is preferably formed to have substantially the same thickness as the mesh or porous body of the bioabsorbable synthetic polymer. The porosity of the porous structure is usually 80% or more. In this specification, the term “sheet-like material” includes a mesh-like material, a film-like material, and a film-like material (FIGS. 1, 2, and 5).
本発明において、 シート状の足場材料中に形成されるコラーゲンスポンジ等の 天然高分子の多孔質構造体は薄いことが好ましい。 薄い多孔質構造体においては、 播種用細胞液が多孔質体の細孔にもれなく含浸でき、 結果として足場材料におい て保持される細胞の密度が高まり、 骨及ぴ軟骨組織の再生が速やかにかつ効率的 に行われることになる。  In the present invention, the porous structure of a natural polymer such as a collagen sponge formed in a sheet-like scaffold is preferably thin. In the case of a thin porous structure, the cell solution for seeding can be impregnated into the pores of the porous body without leaking, and as a result, the density of cells retained in the scaffold material increases, and the regeneration of bone and cartilage tissue can be performed quickly and It will be done efficiently.
骨形成性細胞ないし軟骨形成性細胞を播種した足場材料を 1枚のシートで用い ると薄い骨一軟骨組織の再生が可能であるが、 図 1 0に示すように、 これら細胞 を播種した足場材料を積層して用いることもできる。 この場合において再生され る骨及び軟骨の厚みは、 骨組織及び軟骨組織に使用されるシートの枚数により調 節可能である。 図 1 0のものは、 積層されたシート状足場材料の各々において細 胞の播種が行われているので、 播種された細胞の密度は 1枚のシート状足場材料 と同様に高く、 これを移植体として生体内に移植すれば、 骨一軟骨組織の再生が 良好に行われる。  When a scaffold material seeded with osteogenic or chondrogenic cells is used on a single sheet, thin bone-cartilage tissue can be regenerated, but as shown in Fig. 10, a scaffold seeded with these cells can be used. Materials can be stacked and used. In this case, the thickness of the regenerated bone and cartilage can be adjusted by the number of sheets used for the bone tissue and the cartilage tissue. In the case of Fig. 10, cells were seeded on each of the stacked sheet-like scaffolds, so the density of the seeded cells was as high as that of one sheet-like scaffold. When transplanted into a living body as a body, osteo-cartilage tissue can be regenerated satisfactorily.
骨組織と軟骨組織を積層する場合、 骨組織と軟骨組織の厚みは、 同じであって も異なっていてもよい (図 6 ) 。 軟骨組織の厚みは、 通常 0. 4〜7. 0mm程度であ り、 骨組織の厚みは、 0. 4〜30mm程度である。  When laminating bone and cartilage, the thickness of the bone and cartilage may be the same or different (Figure 6). The thickness of cartilage tissue is usually about 0.4 to 7.0 mm, and the thickness of bone tissue is about 0.4 to 30 mm.
本発明の移植体は、 骨形成性細胞或いは軟骨形成性細胞を播種した後、 培養す ることなく使用してもよいが、 好ましくは 2週間から 2ヶ月程度培養後に移植体 とするのが好ましい。  The transplant of the present invention may be used without culturing after seeding osteogenic cells or chondrogenic cells, but is preferably formed into a transplant after culturing for about 2 weeks to 2 months. .
例えば、 図 1 1 ( 1 ) に示されるような、 本発明のシート状の足場材料を製造 するには、 シート状の生体吸収性合成高分子のメッシュ体あるいは多孔質体を生 体由来の天然高分子の水溶液中に位置させて凍結し、 凍結乾燥する。 これにより、 生体吸収性合成高分子のメッシュ体あるいは多孔質体が天然高分子多孔質構造体 中にサンドィツチされているシート状の足場材料が形成される。  For example, in order to produce the sheet-like scaffolding material of the present invention as shown in Fig. 11 (1), a sheet-like mesh of a bioabsorbable synthetic polymer or a porous body is made of a natural material derived from a body. Place in the aqueous solution of the polymer, freeze, and freeze-dry. As a result, a sheet-like scaffold material in which the mesh or porous body of the bioabsorbable synthetic polymer is sandwiched in the natural polymer porous structure is formed.
また、 図 1 1 ( 2 ) に示されるような、 シート状の生体吸収性合成高分子のメ ッシュ体あるいは多孔質体を生体由来の天然高分子水溶液の上面或 、は下面で凍 結し、 凍結乾燥すると、 片面が生体吸収性合成高分子メッシュ体あるいは多孔質 体で、 他面が天然高分子多孔質構造体であるシート状足場材料が形成される。 なお、 図 1 1 ( 1 ) および (2 ) は、 模式図であり、 これらによれば、 天然高 分子多孔質構造体が生体吸収性合成高分子のメッシュ体あるいは多孔質体の表面 に形成されているように記載しているが、 図 1の模式図からも明らかなように、 実際には、 天然高分子多孔質構造体は、 生体吸収性合成高分子のメッシュ体の編 目あるいは多孔質体の孔内にも形成される。 Also, as shown in Fig. 11 (2), a sheet of bioabsorbable synthetic polymer The solid or porous body is frozen on the upper or lower surface of an aqueous solution of a natural polymer derived from a living body, and freeze-dried. One side is a bioabsorbable synthetic polymer mesh or porous body and the other side is a natural high polymer. A sheet-like scaffold material that is a molecular porous structure is formed. FIGS. 11 (1) and (2) are schematic diagrams showing that a natural high molecular porous structure is formed on the surface of a mesh or porous body of a bioabsorbable synthetic polymer. However, as is apparent from the schematic diagram of FIG. 1, in practice, the natural polymer porous structure is a mesh or porous material of a bioabsorbable synthetic polymer mesh. It is also formed in body pores.
本発明における軟骨形成性細胞な 、し骨形成性細胞を保持する足場材料の他の 好ましい実施形態においては、 生体吸収性合成高分子のメッシュ体あるいは多孔 質体の隙間、 ポアの内にコラーゲン等の天然高分子、 上皮細胞成長因子 (EGF) 、 インシュリン、 血小板由来増殖因子 (PDGF) 、 繊維芽細胞増殖因子 (FGF) 、 肝細 胞増殖因子 (HGF) 、 血管内皮増殖因子 (VEGF) 、 トランスフォーミング増殖因子 j3 (TGF- J3 ) 、 骨形成因子 (BMP) 、 デキサメタゾンなどの細胞成長因子と細胞分 化制御因子、 ハイドロキシアパタイ ト、 三リン酸カルシウムなどの無機化合物か らなる構造体をさらに形成した足場材料により構成される。  In another preferred embodiment of the scaffold material for retaining chondrogenic cells and osteoblasts according to the present invention, collagen or the like is contained in a mesh or a porous body of a bioabsorbable synthetic polymer and pores. Natural macromolecules, epidermal growth factor (EGF), insulin, platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), liver cell growth factor (HGF), vascular endothelial growth factor (VEGF), trans Further formed a structure consisting of cell growth factors such as forming growth factor j3 (TGF-J3), bone morphogenetic factor (BMP), and dexamethasone, and inorganic compounds such as cell differentiation regulators, hydroxyapatite, and calcium triphosphate. It is composed of scaffolding materials.
本発明において用いる軟骨細胞およぴ軟骨細胞に分化し得る幹細胞は常法によ り生体組織から調製する。  The chondrocytes used in the present invention and stem cells capable of differentiating into chondrocytes are prepared from living tissues by a conventional method.
軟骨細胞は、 生体軟骨組織をコラーゲナーゼ、 トリプシン、 リバラーゼ、 プロ ティナーゼ等の酵素処理により、 細胞外マトリ ックスを分解処理し、 次いで血清 培地を添加し、 遠心して、 軟骨細胞を単離する。 単離した軟骨細胞を培養ブラス コに播き、 1 0 %ゥシ胎児血清, 4 5 0 0 m g /Lグルコース、 5 8 4 m g /Xグ ルタミン、 0 . 4 mMプロリンおよび 5 O m g ZL ァスコルビン酸を含有する D MEM培地 (DMEM血清培地) で培養する。 十分な細胞数になるまで、 2〜3 回継代培養し、 この継代培養した細胞をトリプシン処理により回収し、 播種用細 胞液とする。 ,  For chondrocytes, living cartilage tissue is treated with enzymes such as collagenase, trypsin, liberase, and proteinase to degrade extracellular matrix, and then a serum medium is added, followed by centrifugation to isolate chondrocytes. The isolated chondrocytes were plated on a culture brassco, and 10% fetal calf serum, 450 mg / L glucose, 584 mg / X glutamine, 0.4 mM proline and 5 O mg ZL ascorbic acid Culture in DMEM medium containing DMEM (DMEM serum medium). Subculture 2 or 3 times until the number of cells becomes sufficient. Collect the subcultured cells by trypsinization, and use them as a cell fluid for seeding. ,
また、 軟骨細胞に分化し得る幹細胞は、 直接遠心により単離か、 あるいは骨髄 抽出液をパーコール (p e r c o 1 1 ) からなる密度勾配媒体を用いた密度勾配 遠心法により遠心して単離する。 これらの細胞を培養フラスコに播き、 DMEM T/JP2003/015573 Stem cells capable of differentiating into chondrocytes are isolated by direct centrifugation, or isolated by centrifugation of a bone marrow extract by density gradient centrifugation using a density gradient medium composed of Percoll (perco 11). Seed these cells into a culture flask and add DMEM T / JP2003 / 015573
18 18
血清培地で十分な細胞数となるまで、 2〜3回継代培養する。 継代培養した細胞 をトリプシン処理により回収し、 播種用細胞液とする。 Subculture 2-3 times in serum medium until sufficient cells are obtained. The subcultured cells are collected by trypsinization and used as a cell solution for seeding.
本発明の足場材料に、 軟骨細胞あるいは軟骨細胞に分化し得る幹細胞を播種す るには、 上記足場材料を培養液で濡らしておき、 この足場材料に上記播種用細胞 液を含浸するか、 あるいは上記足場材料に直接播種用細胞液を含浸することによ り行う。 或いは、 軟骨形成性細胞を低温で生体吸収性天然高分子と細胞成長因子 及ぴ細胞分化制御因子からなる群から選ばれる少なくとも 1種の溶液を混ぜてか ら、 1 次構造体の多孔質体に導入し、 37°Cまで温度を上げてゲル化する方法、 あ るいは、 低温で生体吸収性天然高分子と細胞成長因子及び細胞分化制御因子から なる群から選ばれる少なくとも 1種の溶液をさらに、 軟骨形成性細胞と架橋剤と 混ぜてから、 1 次構造体の多孔質体に導入し、 37°Cまで温度を上げてゲル化する 方法が例示される。  In order to seed the scaffold material of the present invention with chondrocytes or stem cells capable of differentiating into chondrocytes, the scaffold material is wetted with a culture solution, and the scaffold material is impregnated with the cell solution for seeding, or This is carried out by directly impregnating the above scaffold material with a cell solution for seeding. Alternatively, the chondrogenic cells are mixed with at least one solution selected from the group consisting of a bioabsorbable natural polymer, a cell growth factor and a cell differentiation controlling factor at a low temperature, and then the porous material of the primary structure is mixed. Or at least one solution selected from the group consisting of bioabsorbable natural polymers and cell growth factors and cell differentiation regulators at low temperature. Further, a method is exemplified in which a chondrogenic cell is mixed with a crosslinking agent, and then the mixture is introduced into a porous material having a primary structure, and the temperature is increased to 37 ° C. to cause gelation.
上記播種用細胞液の細胞濃度は、 5 X 1 05cells/m 1〜 5 X 1 07cells/m 1が望ましく、 足場材料の体積以上の容量の細胞液を播種することが望ましい。 本発明の軟骨組織を再生するため、 軟骨細胞を利用する場合、 上記足場材料に 上記播種用細胞液を含浸した後、 さらに、 培養液を添加し、 該複合体中の軟骨細 胞を DMEM血清培地で、 3 7°C、 5%C02雰囲気下のインキュベータにおいて 培養増殖させることにより、 軟骨組織移植体を得る。 The cell concentration of the cell solution for seeding is preferably 5 × 10 5 cells / m 1 to 5 × 10 7 cells / m 1, and it is preferable to seed a cell solution having a volume equal to or larger than the volume of the scaffold material. When chondrocytes are used to regenerate the cartilage tissue of the present invention, the scaffold material is impregnated with the cell solution for seeding, and then a culture solution is further added. A cartilage tissue transplant is obtained by culturing and growing the medium in an incubator at 37 ° C. in an atmosphere of 5% CO 2 .
幹細胞の場合は、 さらに軟骨細胞への分化工程が必要であり、 上記足場材料に 上記軟骨細胞に分化し得る幹細胞の播種用細胞液を含浸した後、 4500mg/L グルコース、 584m g/Lグルタミン、 0. 4mMプロリン、 50mgZLァス コルビン酸、 lOng/mL トランスフォーミング増殖因子 ]3 3 (TGF- β 3) 、 ΙΟΟηΜ デキサメタゾンを含有する DMEM培地 (分化培地) で培養し、 分化させ て当該移植体を得る。  In the case of stem cells, a further step of differentiation into chondrocytes is required.After impregnating the scaffold material with a cell solution for seeding stem cells capable of differentiating into chondrocytes, 4500 mg / L glucose, 584 mg / L glutamine, The cells were cultured in a DMEM medium (differentiation medium) containing 0.4 mM proline, 50 mg ZL ascorbic acid, lOng / mL transforming growth factor] 33 (TGF-β3), and ΙΟΟηΜdexamethasone. obtain.
本発明において用いる骨細胞に分化し得る幹細胞は常法により生体組織から調 製する。 骨細胞に分化し得る幹細胞は、 直接遠心により単離か、 あるいは骨髄抽 出液をパーコール (p e r c o 1 1 ) からなる密度勾配媒体を用いた密度勾配遠 心法により遠心して単離する。 これらの細胞を培養フラスコに播き、 DMEM血 清培地で十分な細胞数となるまで、 2〜3回継代培養する。 継代培養した細胞を 15573 Stem cells capable of differentiating into bone cells used in the present invention are prepared from living tissues by a conventional method. Stem cells capable of differentiating into osteocytes are isolated by direct centrifugation or by centrifuging the bone marrow extract by density gradient centrifugation using a density gradient medium consisting of Percoll (perco 11). Inoculate these cells into a culture flask and subculture 2-3 times in DMEM serum medium until the number of cells is sufficient. Subcultured cells 15573
19 19
トリプシン処理により回収し、 播種用細胞液とする。 Collect by trypsinization and use as cell solution for seeding.
骨細胞は、 生体骨組織をコラーゲナーゼ等の酵素処理により、 細胞外マトリツ タスを分解処理し、 細胞を遊離させることにより得られる。 また、 培養容器の上 に粉砕した骨片を培養し、 骨片周辺から遊出した細胞から単離する。 単離した骨 細胞を 10%ゥシ胎児血清、 100 OmgZLグルコース、 50mg/Lァスコル ビン酸を加えた DMEM培地で培養する。  Bone cells can be obtained by subjecting living bone tissue to a treatment with an enzyme such as collagenase to degrade extracellular matrices and releasing the cells. In addition, the crushed bone fragments are cultured on a culture vessel, and isolated from cells that have migrated from around the bone fragments. Culture the isolated bone cells in DMEM medium supplemented with 10% fetal calf serum, 100 Omg ZL glucose, and 50 mg / L ascorbic acid.
本発明において骨組織を再生するために、 骨細胞と、 骨細胞に分ィ匕し得る幹細 胞はどちらを利用しても良いが、 骨細胞に分化し得る幹細胞を利用することが望 ましい。  In the present invention, in order to regenerate the bone tissue, either a bone cell or a stem cell capable of being divided into a bone cell may be used, but it is desirable to use a stem cell capable of differentiating into a bone cell. No.
本発明の足場材料に、 骨形成性細胞を播種するには、 上記足場材料を培養液で 濡らしておき、 この足場材料に上記播種用細胞液を含浸するか、 あるいは上記足 場材料に直接播種用細胞液を含浸することにより行う。  In order to inoculate the scaffold material of the present invention with osteogenic cells, the scaffold material is wetted with a culture solution, and the scaffold material is impregnated with the cell solution for seeding, or the scaffold material is directly seeded on the scaffold material. It is performed by impregnating the cell solution for use.
上記播種用細胞液の細胞濃度は、 5 X 1 05 cellsノ m 1〜 5 X 107cells/m 1が望ましく、 足場材料の体積以上の容量の細胞液を播種することが望ましい。 骨細胞に分化し得る幹細胞は、 10%ゥシ胎児血清あるいは 10〜15%ヒト血清、 100 Omg/Lグルコース、 5 OmgZLァスコルビン酸、 ΙΟΟηΜデキサメタゾ ン、 10mM グリセ口リン酸を加えた DMEM培地で培養し、 分化させて骨組織の移 植体を得ることができる。 The cell concentration of the cell solution for seeding is preferably 5 × 10 5 cells / m 1 to 5 × 10 7 cells / m 1, and it is preferable to seed a cell solution having a volume equal to or larger than the volume of the scaffold material. Stem cells that can be differentiated into osteocytes are cultured in DMEM medium supplemented with 10% fetal calf serum or 10-15% human serum, 100 mg / L glucose, 5 mg / L ascorbic acid, ΙΟΟηΜdexamethasone, and 10 mM glycemic phosphate. Then, it can be differentiated to obtain a transplant of bone tissue.
さらに軟骨組織部分と骨組織部分を積層して、 軟骨組織培養培地と骨組織培養 培地をそれぞれ軟骨,組織部分と骨組織部分に通すパイオリアクターを用いて培養 し、 骨-軟骨組織を再生する。  Further, the cartilage tissue portion and the bone tissue portion are laminated, and the cartilage tissue culture medium and the bone tissue culture medium are cultured using a bioreactor that passes through the cartilage, the tissue portion, and the bone tissue portion, respectively, to regenerate the bone-cartilage tissue.
上記の軟骨細胞あるいは軟骨細胞に分化し得る幹細胞を播種し、 積層した軟骨 組織部分と上記の骨細胞あるいは骨細胞に分化し得る幹細胞を播種し、 積層した 骨組織部分をさらに重ねて、 通常の生体吸収性の縫合系で縫って、 あるいはテフ ロンなどのプラスチックのクリツプで挟んで、 軟骨組織部分と骨組織部分を接触 する。 これを通常のパイオリアクターの中に入れ、 10%ゥシ胎児血清あるいは 10〜15%ヒト血清、 抗生物質、 100 Omg/Lグルコース、 584 m g /Lグル タミン、 0. 4mMプロリン、 5 OmgZLァスコルビン酸、 ΙΟΟηΜデキサメタゾ ン、 10mM グリセ口リン酸を加えた DMEM培地で、 37°C、 5%C〇2雰囲気下 2003/015573 Seeding the above chondrocytes or stem cells capable of differentiating into chondrocytes, seeding the laminated cartilage tissue portion with the above stem cells capable of differentiating into the osteocytes or osteocytes, and further stacking the stacked bone tissue portion to obtain a normal The cartilage and bone tissue parts are brought into contact by sewing with a bioabsorbable suture system or sandwiched between plastic clips such as Teflon. Put this in a normal bioreactor, 10% fetal serum or 10-15% human serum, antibiotics, 100 Omg / L glucose, 584 mg / L glutamine, 0.4 mM proline, 5 Omg ZL ascorbic acid , Iotaomikuron'omikuron'itamyu dexamethasone in DMEM medium supplemented with 10mM glycerin port phosphate, 37 ° C, 5% C_〇 2 atmosphere 2003/015573
20 20
のインキュベータにおいて培養する。 あるいは、 軟骨組織部分と骨組織部分を重 ねたものを軟骨組織培養用培地と骨組織培養培地をそれぞれ、 軟骨組織部分と骨 組織部分に提供するパイオリアクターで培養する。 軟骨組織培養用培地は 4 5 0 O m g ZLグノレコース、 5 8 4 m g Lグ /レタミン、 0 . 4 mMプロリン、 5 0 m g 1 ァスコルビン酸、 トランスフォーミング増殖因子) 8 3 (T G F - j3 3 ) と ΙΟΟη デキサメタゾンを含有する DMEM培地で構成する。 骨組織培養培地は 1 0 %ゥシ胎児血清あるいは 10〜: 15%ヒト血清、 1 0 0 O m g ZL グルコース、 5 O m g L ァスコルビン酸、 ΙΟΟηΜデキサメタゾン、 10mMグリセ口リン酸を加え た DMEM培地で構成する。 それぞれの培地の流速は調整が可能である。 Culture in an incubator. Alternatively, the cartilage tissue portion and the bone tissue portion are superimposed and cultured in a bioreactor that provides the cartilage tissue portion and the bone tissue portion with a cartilage tissue culture medium and a bone tissue culture medium, respectively. The culture medium for cartilage tissue culture was 450 Omg ZL gnorecose, 584 mg Lg / retamine, 0.4 mM proline, 50 mg 1 ascorbic acid, transforming growth factor) 83 (TGF-j33) and ΙΟΟη Consist of DMEM medium containing dexamethasone. Bone tissue culture medium is DMEM medium supplemented with 10% fetal fetal serum or 10 to 15% human serum, 100 mg Og ZL glucose, 50 mg L ascorbic acid, 、 ηΜdexamethasone, and 10 mM glycerol phosphate. Constitute. The flow rate of each medium can be adjusted.
本発明の移植体は、 骨組織と軟骨組織が繋がったものであり、·骨形成性細胞と 軟骨形成性細胞は、 足場材料において、 実質的に分離した状態で存在しているの が好ましい。 「実質的に分離した状態」 とは、 骨組織と軟骨組織の界面付近では 骨形成性細胞と軟骨形成性細胞が重なつている部分があってもよいが、 その重な つている部分はできるだけ少ない方がよく、 骨形成性細胞と軟骨形成 14細胞の重 なりは骨一軟骨結合にほとんど或いは全く影響せず、 軟骨が骨に支えられている ものであればよい。 例えば骨形成性細胞と軟骨形成性細胞を各々第 1足場材料と 第 2足場材料に播種し、 次いで得られた第 1足場材料 (骨組織) と第 2足場材料 (軟骨組織) を積層し、 必要に応じてこれを培養したものは、 「実質的に分離し た状態」 に該当する。 或いは、 1つの足場材料において、 骨組織形成部と軟骨組. 織形成部を図 5に示される生体吸収性シートのような骨形成性細胞と軟骨形成性 細胞の移動が制限される部分を形成し、 該足場材料に骨形成性細胞と軟骨形成性 細胞を播種し、 必要に応じて培養したものも 「実質的に分離した状態」 に該当す る。 培養の過程で足場構造は徐々に分解ないし吸収されるので、 骨形成性細胞と 軟骨形成性細胞は界面付近で混ざり得るが、 この程度は実質的に分離した状態の 範囲内である。 また、 骨形成性細胞には軟骨形成性細胞が少ない割合で混合する ことがあり得、 軟骨形成性細胞には骨形成性細胞が少ない割合で混合することが あり得るが、 このような場合も、 骨及ぴ軟骨が移植に適するように形成される範 囲内であれば、 「実質的に分離した状態」 に該当する。  In the implant of the present invention, the bone tissue and the cartilage tissue are connected, and the osteogenic cells and the chondrogenic cells are preferably present in the scaffold material in a substantially separated state. The “substantially separated state” means that near the interface between bone tissue and cartilage tissue, there may be a portion where osteogenic cells and chondrogenic cells overlap, but the overlapping portion is as small as possible. The smaller the better, the overlapping of osteogenic cells and chondrogenic 14 cells has little or no effect on the osteo-cartilage junction, as long as the cartilage is supported by bone. For example, osteogenic cells and chondrogenic cells are seeded on a first scaffold material and a second scaffold material, respectively, and then the obtained first scaffold material (bone tissue) and second scaffold material (cartilage tissue) are laminated, Cultures of this, if necessary, fall under the “substantially separated state”. Alternatively, in one scaffold material, the bone tissue forming part and the cartilage group. The tissue forming part forms a part where the movement of the bone forming cells and the chondrogenic cells is restricted, such as the bioabsorbable sheet shown in FIG. However, those in which osteogenic cells and chondrogenic cells are seeded on the scaffold and cultured as necessary also fall under the “substantially separated state”. Since the scaffold structure is gradually degraded or resorbed during the culture, the osteogenic and chondrogenic cells can mix near the interface, but this is within the range of a substantially separate state. In addition, chondrogenic cells may be mixed in a small proportion with osteogenic cells, and chondrogenic cells may be mixed with a small proportion of osteogenic cells. However, as long as the bone and cartilage are formed so as to be suitable for transplantation, they fall under the “substantially separated state”.
発明を実施するための最良の形態 以下、 本発明を実施例により更に詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples.
実施例 1 Example 1
機械強度が高い生体吸収性高分子である乳酸とダリコール酸との共重合体 (PLGA)メッシュ体を 0. 3wt%のブタ腱由来ペプシン可溶化 I型コラーゲン酸性水 溶液に浸漬し、 - 80°Cで 12 時間凍結した。 次にこの凍結物を、 真空減圧下. (0. 2 Torr) で 24時間凍結乾燥し、 PLGA メッシュ体とコラーゲンスポンジとのシート 状の未架橋足場材料を製造した。  A copolymer of lactic acid and dalicholate (PLGA), a bioabsorbable polymer with high mechanical strength, is immersed in 0.3 wt% of a pig tendon-derived pepsin-solubilized type I collagen acidic aqueous solution, -80 ° C for 12 hours. Next, this frozen product was freeze-dried under vacuum reduced pressure (0.2 Torr) for 24 hours to produce a sheet-like uncrosslinked scaffold material of a PLGA mesh body and a collagen sponge.
得られた未架橋複合生体材料を 37°Cで、 25wt%のグルタルアルデヒド水溶液で 飽和したグルタルアルデヒド蒸気で 4時間架橋処理した後、 リン酸緩衝液で 10回 洗浄した。 さらに、 0. 1Mグリシン水溶液に 4時間浸漬し、 リン酸緩衝液で 10回 洗浄した後、 蒸留水で 3回洗浄し、 - 80°Cで 12時間凍結した。 これを真空減圧下 (0. 2 Torr) で 24時間凍結乾燥し、 本発明で軟骨細胞あるいは軟骨細胞に分ィ匕 し得る幹細胞、 あるいは骨細胞あるいは骨細胞に分化し得る幹細胞を播種し、 培 養する足場材料の 1種類である生体吸収性合成高分子と生体吸収性天然高分子の 複合多孔質体、 PLGA-コラーゲン複合メッシュを得た。  The obtained uncrosslinked composite biomaterial was crosslinked at 37 ° C. for 4 hours with glutaraldehyde vapor saturated with a 25 wt% aqueous solution of glutaraldehyde, and then washed 10 times with a phosphate buffer. Furthermore, it was immersed in a 0.1 M glycine aqueous solution for 4 hours, washed 10 times with a phosphate buffer solution, washed 3 times with distilled water, and frozen at -80 ° C for 12 hours. This is freeze-dried under vacuum reduced pressure (0.2 Torr) for 24 hours, and seeded with chondrocytes or stem cells capable of being divided into chondrocytes or osteocytes or stem cells capable of differentiating into osteocytes according to the present invention. We obtained PLGA-collagen composite mesh, a composite porous body of bioabsorbable synthetic polymer and bioabsorbable natural polymer, which is one of the scaffold materials to be nourished.
この足場材料を金でコーティングし、 それらの構造を走査型電子顕微鏡 (SEM) で観察した。 100倍拡大した写真を図 7に示す。  The scaffolds were coated with gold and their structure was observed with a scanning electron microscope (SEM). Fig. 7 shows a photograph enlarged 100 times.
実施例 2 Example 2
実施例 1で得られた PLGA-コラーゲン複合メッシュを 50raMの Tris緩衝液 ( p H 7. 4) で緩衝した lOOmMの塩化カルシウム水溶液 (20mL) に浸漬し、 37°Cの恒温槽 で 3時間ィンキュベートした。 PLGA-コラーゲン複合メッシュを塩ィ匕カルシウム水 溶液から取り出し、 600rpmの速度で遠心処理した。 遠心した PLGA-コラーゲン複 合メッシュを 50mMの Tris緩衝液で緩衝した lOOmMのリン酸水素ニナトリゥム水 溶液 (20mL) に浸漬し、 37°Cの恒温槽で 3時間インキュベートした。 PLGA—コラー ゲン複合メッシュをリン酸水素ニナトリゥム水溶液から取り出し、 600rpmの速度 で遠心した。 遠心した PLGA -コラーゲン複合メッシュを、 再ぴ上記の塩化カルシ ゥム水溶液とリン酸水素ニナトリゥム水溶液に交互浸漬し、 6回までこの交互浸 漬を繰り返した。 得られた PLGA-コラーゲン-ハイドロキシァパタイト多孔質複合構造体を金でコ し、 その構造を走査型電子顕微鏡 (SEM) で観察した。 200倍拡大した 写真を図 8に示す。 The PLGA-collagen composite mesh obtained in Example 1 was immersed in a 100 mM aqueous solution of calcium chloride (20 mL) buffered with 50 raM Tris buffer (pH 7.4), and incubated for 3 hours in a thermostat at 37 ° C. did. The PLGA-collagen composite mesh was taken out of the Shiidai calcium aqueous solution and centrifuged at a speed of 600 rpm. The centrifuged PLGA-collagen composite mesh was immersed in lOOmM aqueous sodium hydrogen phosphate solution (20 mL) buffered with 50 mM Tris buffer, and incubated in a thermostat at 37 ° C for 3 hours. The PLGA-collagen composite mesh was removed from the aqueous solution of sodium hydrogen phosphate and centrifuged at a speed of 600 rpm. The centrifuged PLGA-collagen composite mesh was alternately immersed in the above-described calcium chloride aqueous solution and sodium hydrogen phosphate aqueous solution, and this alternate immersion was repeated up to six times. The obtained PLGA-collagen-hydroxyapatite porous composite structure was made of gold, and the structure was observed with a scanning electron microscope (SEM). Fig. 8 shows a photo magnified 200 times.
この SEM写真によれば、 PLGA-コラーゲン複合メッシュの細孔表面にハイドロキ シアパタイト微粒子が沈着している状態が観察される。 また、 繰り返した交互浸 漬の回数の増加と共に、 沈着したハイドロキシァパタイト微粒子の沈積量と粒径 が大きくなつていることが分つた。  According to this SEM photograph, a state in which hydroxyapatite fine particles are deposited on the surface of the pores of the PLGA-collagen composite mesh is observed. In addition, it was found that the amount of deposited hydroxyapatite fine particles and the particle size became larger as the number of times of repeated alternate soaking increased.
実施例 1で作成した PLGAメッシュ体とコラーゲンスポンジとのシート状多孔質 構造体を酸ィ匕エチレンガスで滅菌した。  The sheet-like porous structure of the PLGA mesh body and the collagen sponge prepared in Example 1 was sterilized with ethylene oxide gas.
試験例 1 Test example 1
(1) 軟骨組織の形成  (1) Formation of cartilage tissue
ィヌ肘関節の軟骨から薄い軟骨片をメスで剃りおろし、 細かく刻んだ後、 0.2 (w/v) %のコラーゲナーゼを含有する DMEM培地中で 37°Cで 12時間インキュ ペートした。 そして、 ポアサイズが 70 μπιのナイロンフィルターで濾過した上 澄みを 1500rpmで 5分間遠心し、 10%ゥシ胎児血清, 抗生物質、 45 O Om g/ Lグノレコース、 584 m g /Lグノレタミン、 0. 4mMプロリンおよび 5 Omg/ 1 ァスコルビン酸を含有する DM EM培地で 2回洗浄した後、 ィヌ肘の軟骨細胞 を得た。 得られた軟骨細胞を 10%ゥシ胎児血清, 抗生物質、 4500mgZL グノレコース、 58 ArngZL グノレタミン、 0. 4 mMプロリンおょぴ 50 m g /L ァスコルビン酸を含有する DMEM培地で 37 °C、 5 %C02雰囲気下で培養した。 2回継代培養した軟骨細胞を 0.025%トリプシン/ 0.01%EDTA/PBS (-) で剥離 · 採集し、 5X 106 cells/ml細胞液を調製した。 A thin piece of cartilage was shaved off from the cartilage of the dog elbow joint with a scalpel and minced, and then incubated in DMEM medium containing 0.2% (w / v) collagenase at 37 ° C for 12 hours. Then, the supernatant filtered through a nylon filter having a pore size of 70 μπι is centrifuged at 1500 rpm for 5 minutes, and 10% fetal bovine serum, antibiotics, 45 Omg / L gnorecose, 584 mg / L gnorecamine, 0.4 mM proline After washing twice with DMEM medium containing 5 and 5 Omg / 1 ascorbic acid, canine elbow chondrocytes were obtained. The resulting chondrocytes were cultured in DMEM medium containing 10% fetal serum, antibiotics, 4500 mg ZL gnorecose, 58 ArngZL gnoretamine, 0.4 mM proline and 50 mg / L ascorbic acid at 37 ° C and 5% C0. Culture was performed under two atmospheres. Chondrocytes subcultured twice were detached and collected with 0.025% trypsin / 0.01% EDTA / PBS (-) to prepare 5 × 10 6 cells / ml cell solution.
次に、 酸化エチレンガスで滅菌した上記 PLGA -コラーゲン複合メッシュを DMEM 血清培地で濡らし、 複合体 (膜) の縁をゴムのリングで囲って、 0.5m 1 / c m2細 胞液を滴下した。 インキュベータ中で、 37°C、 5%C02雰囲気下で、 4時間静 置して培養した。 その後、 ゴムのリングを取り外し、 多量の培養液を入れて、 培 養を続けた。 24時間後、 細胞を播種した PLGA -コラーゲン複合メッシュを転倒し、 複合体 (膜) の縁をゴムのリングで囲って、 PLGA -コラーゲン複合メッシュの下面 にも 0. 5 ml /cm2細胞液を滴下し、 軟骨細胞を播種した。 インキュベータ中 で、 37° (、 5%CO2雰囲気下で、 4時間静置して培養した。 その後、 ゴムのリ ングを取り外し、 多量の培養液を入れて、 培養を続けた。 24時間後、 細胞を 2回 播種した PLGA-コラーゲン複合メッシュを積層し、 テフロンのタリップで積層体 の回りを挟んで、 軟骨組織層を得た。 Next, the PLGA-collagen mesh sterilized with ethylene oxide gas was wetted with a DMEM serum medium, and the edge of the complex (membrane) was surrounded by a rubber ring, and 0.5 ml / cm 2 of the cell solution was dropped. The cells were cultured in an incubator at 37 ° C. in a 5% CO 2 atmosphere for 4 hours. Thereafter, the rubber ring was removed, a large amount of culture solution was added, and the culture was continued. After 24 hours, the cells PLGA were seeded - fall collagen composite mesh, the edges of the composite (film) enclosed with a rubber ring, PLGA - 0. 5 ml / cm 2 cell fluid to the lower surface of the collagen composite mesh Was dropped, and the chondrocytes were seeded. In the incubator The culture was allowed to stand for 4 hours at 37 ° (5% CO 2 atmosphere. The rubber ring was removed, a large amount of culture solution was added, and the culture was continued. The PLGA-collagen composite mesh seeded twice was laminated, and a cartilage tissue layer was obtained by sandwiching the periphery of the laminate with a Teflon tulip.
(2) 骨組織の形成  (2) Bone tissue formation
ィヌの大腿骨から採集した骨髄を 1500rpmで遠心することにより、 細胞を単離 し、 ファルコンの T- 75培養フラスコ中で 10 %ゥシ胎児血清、 抗生物質、 100 Omg/Lグルコース、 5 OmgZLァスコルビン酸を加えた DMEM培地で、 3 7°C、 5%C02雰囲気下で培養した。 24時間後、 培地を交換し、 接着していな い細胞を捨てて、 フラスコの表面に接着した骨髄細胞に 10%ゥシ胎児血清、 抗 生物質、 100 Omg/Lグルコース、 5 OmgZLァスコルビン酸を加えた新し い DMEM培地を添加し、 37。C、 5 %C〇2雰囲気下で培養を続けた。 培地は 2 日間ごと交換した。 Cells were isolated by centrifugation of bone marrow collected from dog femurs at 1500 rpm in 10% fetal serum, antibiotics, 100 Omg / L glucose, 5 OmgZL in Falcon T-75 culture flasks. The cells were cultured in a DMEM medium supplemented with ascorbic acid at 37 ° C. in a 5% CO 2 atmosphere. After 24 hours, change the medium, discard the non-adhered cells, and add 10% fetal serum, antibiotics, 100 Omg / L glucose, and 5 Omg ZL ascorbic acid to the bone marrow cells adhered to the surface of the flask. Added new DMEM medium, 37. C, 5% C_〇 the culture was continued under 2 atmosphere. The medium was changed every two days.
2回継代培養した骨髄細胞を 0.025%トリプシン/ 0.01%EDTA/PBS (-) で剥 離 ·採集し、 5 X 106cellS/ml骨髄細胞液を調製した。 次に、 酸化エチレンガ スで滅菌した上記実施例 2の PLGA -コラーゲン-ハイ ドロキシァパタイト多孔質複 合構造体を DMEM血清培地で濡らし、 複合体 (膜) の縁をゴムのリングで囲って、 0. 5m 1 /cm2細胞液を滴下した。 インキュベータ中で、 37°C、 5 % C O 2 雰囲気下で、 4 時間静置して培養した。 その後、 ゴムのリングを取り外し、 多量 の培養液を入れて、 培養を続けた。 24 時間後、 細胞を播種した PLGA -コラーゲン 複合メッシュを転倒し、 複合体 (膜) の縁をゴムのリングで囲って、 PLGA-コラー ― ゲン複合メッシュの下面にも 0. 5m 1 /cm2細胞液を滴下し、 骨髄細胞を播種 した。 インキュベータ中で、 37° (:、 5%C02雰囲気下で、 4 時間静置して培養 した。 その後、 ゴムのリングを取り外し、 10%ゥシ胎児血清あるいは 1%ヒト 血清、 抗生物質、 l O O OmgZL グルコース、 5 Omg/L ァスコルビン酸、 ΙΟΟηΜデキサメタゾン、 lOmM グリセ口リン酸を加えた DMEM培地を大量に入れ て、 培養を続けた。 24時間後、 細胞を 2回播種した PLGA-コラーゲン-ハイドロキ シァパタイ ト多孔質複合構造体を積層し、 テフロンのクリップで積層体の回りを 挟んで、 骨組織層を得た。 (3) 骨—軟骨組織移植体の移植 Bone marrow cells subcultured twice were detached and collected with 0.025% trypsin / 0.01% EDTA / PBS (-) to prepare a 5 × 10 6 cell S / ml bone marrow cell solution. Next, the PLGA-collagen-hydroxypatite porous composite structure of Example 2 sterilized with ethylene oxide gas was wetted with a DMEM serum medium, and the edge of the composite (membrane) was surrounded by a rubber ring. , 0.5 ml / cm 2 cell solution was added dropwise. The cells were cultured in an incubator at 37 ° C. in a 5% CO 2 atmosphere for 4 hours. Thereafter, the rubber ring was removed, a large amount of culture solution was added, and the culture was continued. After 24 hours, PLGA cells were seeded - collagen composite mesh fall, and the edges of the composite (film) enclosed with a rubber ring, PLGA-collagen composite to the lower surface of the mesh 0. 5m 1 / cm 2 The cell solution was dropped, and bone marrow cells were seeded. In an incubator, 37 ° (:., Under 5% C0 2 atmosphere, and cultured by standing for 4 hours then remove the rubber ring, 10% © shea calf serum or 1% human serum, antibiotics, l OO OmgZL A large amount of DMEM medium supplemented with glucose, 5 Omg / L ascorbic acid, ΙΟΟηΜdexamethasone, and lOmM glycerol phosphate was added, and the culture was continued 24 hours later, PLGA-collagen-hydroxylate seeded twice with cells The sheapatite porous composite structure was laminated and sandwiched around the laminate with a Teflon clip to obtain a bone tissue layer. (3) Bone-cartilage tissue transplantation
上記の軟骨組織層と骨組織層をテフロンのクリツプで挟んで、 10 %ゥシ胎児 血清、 抗生物質、 100 Omg 1グルコース、 584m g/Lグルタミン、 0. 4mMプロリン、 50mg/L ァスコルビン酸、 ΙΟΟηΜデキサメタゾン、 10mM グ リセ口リン酸を加えた DMEM培地で、 37°C、 5 % C O 2雰囲気下のインキュべ ータにおいて培養した。 2週間培養した後、 複合体をヌードマウスの背中の皮下 に移植した。 移植後 8週の時点で検体を採収した。 図 9に示すように 8週間後軟 骨層表面光沢があり、 色が乳白色であることが観察された。 また、 検体を HE染色 と safranin - 0染色を行った結果、 軟骨層に小窩内小円形細胞と Safranin - 0染色 性細胞外マトリックスが認められた。 さらに検体から抽出した m— RNA試料中 にタイプ II コラーゲンやァグリカンを発現する m— RNAが検出同定された。 骨層から抽出した m—RN A試料中にォステオカルシンを発現する m—RN Aが 検出同定された。 これらのことにより、 再生した組織が骨 '軟骨組織であること を確認した。 The above cartilage and bone tissue layers are sandwiched between Teflon clips, and 10% fetal serum, antibiotics, 100 Omg 1 glucose, 584 mg / L glutamine, 0.4 mM proline, 50 mg / L ascorbic acid, ΙΟΟηΜ The cells were cultured in a DMEM medium supplemented with dexamethasone and 10 mM glycerol phosphate in an incubator at 37 ° C under a 5% CO 2 atmosphere. After two weeks of culture, the complex was implanted subcutaneously on the back of nude mice. Specimens were collected 8 weeks after transplantation. As shown in FIG. 9, after 8 weeks, the surface of the cartilage layer was glossy and the color was observed to be milky white. The specimens were subjected to HE staining and safranin-0 staining. As a result, small round cells in the pits and extracellular matrix with Safranin-0 staining were observed in the cartilage layer. In addition, m-RNA expressing type II collagen and aggrecan was detected and identified in the m-RNA sample extracted from the sample. M-RNA expressing osteocalcin was detected and identified in the m-RNA sample extracted from the bone layer. From these, it was confirmed that the regenerated tissue was bone'cartilage tissue.
実施例 3 Example 3
インフォームドコンセントを得て、 距骨に骨一軟骨障害を有する患者の腸骨か ら第一回目の骨髄 lOmLを採集した。 採集した骨髄を 1500rpmで遠心することによ り、 細胞を単離し、 ファルコンの T- 75培養フラスコ中で 15%自己血清、 抗生物 質、 αΜΕΜ培地で、 37°C、 5%C02雰囲気下で培養した。 2日後、 培地を交 換し、 接着していない細胞を捨ててフラスコの表面に接着した骨髄細胞を 37°C、 5 %C02雰囲気下で培養を続けた。 培地は 2日間ごと交換した。 これにより、 軟 骨細胞あるいは骨細胞へ分化し得る幹細胞を多く含む接着性細胞集団が増殖する。 上記の培養細胞を 2回継代培養して 0.025%トリプシン/ 0.01%EDTA/PBS (-) で剥離 ·採集し 5 X 105cells/mLの細胞液を調製した。 この細胞液に多孔体の ハイドロキシアパタイトセラミックを浸漬させたのち、 15%自己血清、 抗生物 質、 αΜΕΜ培地に 82 μ g/ral ァスコルビン酸, 10 mMグリセ口リン酸, 100nM デキサメサゾン添加してさらに 2週間培養をおこなレ、、 セラミック表面ならぴに 気孔内に骨芽細胞と骨基質すなわち骨形成を生じさせた。 第一回の骨髄採取から 2週間後に第 2回目の骨髄採取を第一回目と同様におこ ない、 接着性細胞を増殖させた。 この培養細胞を 2回継代して 0. 025%トリプシ ン /0. 01%EDTA/PBS (-) で剥離 ·採集し 1 X 1 0 7 cells/mL の細胞液を調製した。 この細胞液をコラ-一ゲン水溶液と混合し、 3 7 °C、 5 % C 0 2雰囲気下で 2日間培 養し、 コラーゲンと細胞溶液をゲル化させた。 With informed consent, the first bone marrow lOmL was collected from the iliac bone of patients with osteochondral disorders in the talus. The collected bone marrow Ri by the centrifugation at 1500 rpm, cells were isolated and 15% autologous serum in Falcon T-75 culture flask, antibiotic substance, in αΜΕΜ medium, 37 ° C, 5% C0 2 atmosphere And cultured. After 2 days, replace the media, it continued adhered have not cells cultured in adherent bone marrow cells 37 ° C, 5% C0 2 atmosphere on the surface of the flask discarded. The medium was changed every two days. As a result, an adherent cell population containing a large amount of stem cells capable of differentiating into chondrocytes or bone cells is expanded. The above cultured cells were subcultured twice and detached and collected with 0.025% trypsin / 0.01% EDTA / PBS (-) to prepare a cell solution of 5 × 10 5 cells / mL. After immersing porous hydroxyapatite ceramic in this cell solution, add 82 μg / ral ascorbic acid, 10 mM glycerol phosphate, and 100 nM dexamethasone to 15% autologous serum, antibiotics, and αΜΕΜ medium for an additional 2 minutes. After culturing for a week, osteoblasts and a bone matrix, i.e., osteogenesis, were generated in the pores on the ceramic surface. Two weeks after the first bone marrow collection, a second bone marrow collection was performed in the same manner as the first bone marrow to grow adherent cells. The cultured cells passaged twice to 0.025% trypsin / 0 01% EDTA / PBS. (-) peeling-harvested 1 X 1 0 7 cells / mL of cell solution was prepared by. This cell solution was mixed with a collagen aqueous solution, and cultured at 37 ° C. in a 5% CO 2 atmosphere for 2 days to gel the collagen and the cell solution.
以上の 2回採取された骨髄から、 骨形成を生じたセラミックを作製でき、 さら に軟骨あるいは骨細胞へ分化し得る幹細胞がゲル状態に保持できた。 そこで、 患 者の手術をおこなった。 患者足関節を展開し、 骨軟骨障害のある距骨を露出させ た。 この距骨表面内側に約 1 X 2cmの軟骨変性がみられた。 この部分を軟骨と下層 の骨を一体として摘出した。  From the bone marrow collected twice, a ceramic with osteogenesis could be produced, and stem cells capable of differentiating into cartilage or bone cells could be maintained in a gel state. Therefore, surgery was performed on the patient. The patient's ankle joint was deployed to expose the talus with osteochondral disorders. About 1 X 2 cm of cartilage degeneration was found inside the surface of the talus. This part was extracted with the cartilage and the underlying bone as one.
上記のコラーゲンゲルを基盤とした軟骨細胞へ分ィ匕可能な幹細胞を、 セラミツ ク (多孔体のハイドロキシアパタイト) を基盤とした骨組織層に載せ、 骨一軟骨 組織の移植体を作製し、 この摘出部分に充填した。 さらに脛骨より採取した骨膜 を覆って縫合した。  The stem cells which can be divided into the above-mentioned collagen gel-based chondrocytes are placed on a ceramic (porous hydroxyapatite) -based bone tissue layer, and an osteo-cartilage tissue transplant is prepared. The extracted part was filled. In addition, sutures were placed over the periosteum collected from the tibia.
移植後の組織形成はレントゲン写真により観察した。 術後のレントゲン観察に よりセラミックと周囲の骨組織の一体化がみられた。 また、 足関節の疼痛は軽減 し、 足関節の安定性も獲得できた。 以上より、 骨、 軟骨組織が形成していること が類推できた。  The tissue formation after transplantation was observed by radiograph. Postoperative radiographic observation showed that the ceramic and the surrounding bone tissue were integrated. In addition, pain in the ankle joint was reduced, and stability of the ankle joint was obtained. From the above, it could be inferred that bone and cartilage tissue were formed.
このように、 幹細胞 -骨構造体を作製することにより、 セラミックを基盤とする 上には幹細胞が骨形成を営み、 セラミック表面と安定な結合を生じた。 さらに関 節面に接する部分には軟骨形成が生じ、 骨軟骨の同時再生が可能であることを示 した。  Thus, by creating a stem cell-bone structure, the stem cells performed bone formation on the ceramic base, and a stable bond was formed with the ceramic surface. Furthermore, cartilage formation occurred at the part in contact with the joint surface, indicating that simultaneous regeneration of osteochondral was possible.
本発明によれば、 軟骨組織を骨組織で支えることが可能であるので、 軟骨組織 の再生を効率よく行うことが可能である。  According to the present invention, the cartilage tissue can be supported by the bone tissue, so that the cartilage tissue can be efficiently regenerated.

Claims

請求の範囲  The scope of the claims
I . 骨組織と軟骨組織が繋がっている構造を有する骨一軟骨組織の移植体。 I. An osteo-cartilage tissue transplant having a structure in which bone tissue and cartilage tissue are connected.
2 . 前記骨組織が細胞を保持し得る足場材料と該足場材料に保持された骨細 胞あるいは骨細胞に分化し得る幹細胞からなる群から選ばれる少なくとも 1種の 骨形成性細胞を含み、 前記軟骨組織が細胞を保持し得る足場材料と該足場材料に 保持された軟骨細胞あるいは軟骨細胞に分化し得る幹細胞からなる群から選ばれ る少なくとも 1種の軟骨形成性細胞を含む、 請求項 1に記載の移植体。 2. The bone tissue comprises a scaffold material capable of retaining cells and at least one type of osteogenic cell selected from the group consisting of bone cells retained by the scaffold material or stem cells capable of differentiating into bone cells. The cartilage tissue according to claim 1, wherein the cartilage tissue comprises a scaffold material capable of retaining cells and at least one type of chondrogenic cell selected from the group consisting of chondrocytes retained in the scaffold material or stem cells capable of differentiating into chondrocytes. The implant of claim.
3 . 足場材料がシート状物、 あるいは、 ブロック状物である、 請求項 1に記 載の移植体。  3. The implant according to claim 1, wherein the scaffolding material is a sheet or a block.
4 . 前記足場材料が、 生体吸収性合成高分子からなるメッ.シュ体あるいは多 孔質体の内部構造マトリックス内に、 さらに別の化合物からなる構造体が形成さ れている請求項2に記載の移植体。 4. The structure according to claim 2 , wherein the scaffold material has a structure made of a further compound formed in a mesh structure or a porous structure body made of a bioabsorbable synthetic polymer. Transplant.
5 . 内部構造マトリックス内の構造体が、 多孔質構造体、 あるいは、 ゲルで ある、 請求項 4に記載の移植体。  5. The implant according to claim 4, wherein the structure in the internal structure matrix is a porous structure or a gel.
6 . 内部構造マトリックス内の構造体が、 天然高分子、 細胞成長因子、 細胞 分化制御因子おょぴ無機化合物、 或いはこれらの誘導体からなる群から選ばれる 1種または 2種以上をさらに含む、 請求項 4に記載の移植体。  6. The structure in the internal structure matrix further comprises one or more members selected from the group consisting of natural macromolecules, cell growth factors, cell differentiation regulators and inorganic compounds, or derivatives thereof. Item 5. The transplant according to Item 4.
7 . 骨組織の足場材料が多孔質セラミックスである、 請求項 2に記載の移植 体。 .  7. The implant according to claim 2, wherein the scaffold material of the bone tissue is a porous ceramic. .
8 . 軟骨組織の足場材料がゲルである、 請求項 2に記載の移植体。  8. The implant of claim 2, wherein the scaffold of cartilage tissue is a gel.
9 . 骨形成性細胞および Zまたは軟骨形成性細胞が、 骨髄由来の幹細胞であ る、 請求項 2に記載の移植体。  9. The transplant of claim 2, wherein the osteogenic cells and Z or chondrogenic cells are bone marrow-derived stem cells.
1 0 . 骨細胞あるいは骨細胞に分化し得る幹細胞からなる群から選ばれる少 なくとも 1種の骨形成性細胞並びに軟骨細胞あるいは軟骨細胞に分化し得る幹細 胞からなる群から選ばれる少なくとも 1種の軟骨形成性細胞を、 骨形成性細胞と 軟骨形成性細胞が実質的に分離した状態で細胞を保持し得る足場材料に播種する 工程を含む骨一軟骨組織の移植体の製造方法。  10. At least one selected from the group consisting of bone cells or stem cells capable of differentiating into osteocytes and at least one selected from the group consisting of chondrocytes or stem cells capable of differentiating into chondrocytes A method for producing an osteo-cartilage tissue transplant, comprising the step of seeding chondrogenic cells of a species on a scaffold capable of retaining cells in a state where the osteogenic cells and chondrogenic cells are substantially separated.
I I . 足場材料が第 1足場材料及び第 2足場材料からなり、 細胞を保持し得 る第 1足場材料に骨細胞あるいは骨細胞に分化し得る幹細胞からなる群から選ば れる少なくとも 1種の骨形成性細胞を播種する工程、 細胞を保持し得る第 2足場 材料に軟骨細胞あるいは軟骨細胞に分化し得る幹細胞からなる群から選ばれる少 なくとも 1種の軟骨形成性細胞を播種する工程、 骨形成性細胞を保持する第 1足 場材料と軟骨形成性細胞を保持する第 2足場材料とを積層する工程を含む請求項1 0に記載の方法。 II. The scaffold material is composed of a first scaffold material and a second scaffold material, and the first scaffold material capable of retaining cells is selected from the group consisting of bone cells or stem cells capable of differentiating into bone cells. Seeding at least one type of osteogenic cell, wherein at least one type of chondrogenic cell selected from the group consisting of chondrocytes or stem cells capable of differentiating into chondrocytes is used as the second scaffold material capable of retaining cells 10. The method according to claim 10, comprising a step of seeding, and a step of laminating a first scaffold material holding osteogenic cells and a second scaffold material holding chondrogenic cells.
1 2 . 骨形成性細胞と軟骨形成性細胞を別々の培地で培養する工程をさらに 包含する請求項 1 0に記載の方法。  12. The method according to claim 10, further comprising the step of culturing the osteogenic cells and the chondrogenic cells in separate media.
1 3 . 足場材料がシート状物、 あるいは、 プロック状物である、 請求項 1 0 に記載の方法。  13. The method according to claim 10, wherein the scaffolding material is a sheet or a block.
1 4 . 前記足場材料が、 生体吸収性合成高分子からなるメッシュ体あるいは 多孔質体の内部構造マトリックス内に、 さらに別の生体吸収性材料からなる構造 体が形成されている請求項 1 0に記載の方法。  14. The scaffold material according to claim 10, wherein a structure made of another bioabsorbable material is formed in a mesh body made of a bioabsorbable synthetic polymer or an internal structure matrix of a porous body. The described method.
1 5 . 前記構造体を構成する前記生体吸収性材料が、 天然高分子、 細胞成長 因子、 細胞分化制御因子及び無機化合物或いはこれらの誘導体からなる群から選 ばれる少なくとも 1種を含む、 請求項 1 4に記載の方法。  15. The bioabsorbable material constituting the structure includes at least one selected from the group consisting of a natural polymer, a cell growth factor, a cell differentiation control factor, and an inorganic compound or a derivative thereof. The method described in 4.
1 6 . 前記構造体が、 天然高分子の構造体を形成してから、 細胞成長因子、 細胞分化制御因子および無機化合物からなる群から選ばれる少なくと-も 1種と複 合ィ匕して製造されたものである、 請求項 1 5に記載の方法。  16. After the structure forms a structure of a natural polymer, the structure is combined with at least one selected from the group consisting of a cell growth factor, a cell differentiation regulator and an inorganic compound. 16. The method of claim 15, wherein the method is manufactured.
1 7 . 前記構造体が、 天然高分子と細胞成長因子の構造体を形成してから、 細胞分化制御因子、 あるいは無機化合物と複合化して製造されたものである、 請 求項 1 5に記載の方法。  17. The claim according to claim 15, wherein the structure is produced by forming a structure of a natural polymer and a cell growth factor and then complexing it with a cell differentiation controlling factor or an inorganic compound. the method of.
1 8 . 前記構造体が、 天然高分子と細胞分化制御因子の構造体を形成してか ら、 細胞成長因子、 あるいは無機化合物と複合化して製造されたものである、 請 求項 1 5に記載の方法。  18. The method according to claim 15, wherein the structure is produced by forming a structure of a natural macromolecule and a cell differentiation controlling factor and then complexing it with a cell growth factor or an inorganic compound. The described method.
1 9 . 前記構造体が、 天然高分子と細胞成長因子と細胞分化制御因子の構造 体を形成してから、 無機化合物と複合化して製造されたものである、 請求項 1 5 に記載の方法。  19. The method according to claim 15, wherein the structure is formed by forming a structure of a natural polymer, a cell growth factor, and a cell differentiation control factor, and then complexing the structure with an inorganic compound. .
2 0 . 前記構造体が、 無機化合物の構造体が形成してから、 天然高分子、 細 胞成長因子、 あるいは細胞分化制御因子と複合化して製造されたものである、 請 求項 1 4に記載の方法。 20. The structure is manufactured by complexing with a natural polymer, a cell growth factor, or a cell differentiation controlling factor after the formation of the inorganic compound structure. The method of claim 14.
2 1 . 生体吸収性合成高分子からなるメッシュ体あるいは多孔質体の内部構 造マトリックス内に、 さらに別の生体吸収性材料からなる構造体が形成されてい る骨組織形成用足場材料。  2 1. A scaffold for bone tissue formation, in which a structure made of another bioabsorbable material is formed in a mesh structure made of a bioabsorbable synthetic polymer or an internal structure matrix of a porous body.
2 2 . 足場材料がシート状物、 あるいは、 ブロック状物である、 請求項 2 1 に記載の材料。  22. The material according to claim 21, wherein the scaffolding material is a sheet or a block.
2 3 . シート状物及び/又はプロック状物の積層体である、 請求項 2 1に記 載の材料。  23. The material according to claim 21, which is a laminate of a sheet and / or a block.
2 4 . 内部構造マトリックス内の構造体が、 天然高分子、 細胞成長因子、 細 胞分化制御因子おょぴ無機化合物からなる群から選ばれる 1種または 2種以上を 含む、 請求項 2 1に記載の材料。  24. The structure according to claim 21, wherein the structure in the internal structure matrix contains one or more members selected from the group consisting of a natural polymer, a cell growth factor, a cell differentiation control factor, and an inorganic compound. The described material.
2 5 . 生体吸収性合成高分子からなるメッシュ体あるいは多孔質体の内部構 造マトリックス内に、 さらに別の化合物からなる構造体が形成されている骨ー軟 骨組織形成用足場材料。  25. A scaffold for bone-cartilage tissue formation in which a structure made of another compound is formed in a mesh structure made of a bioabsorbable synthetic polymer or an internal structure matrix of a porous material.
2 6 . 骨組織形成部と軟骨組織形成部を有し、 骨組織形成部と軟骨組織形成 部の間に細胞の移動を制限する部分を有する請求項 2 5に記載の材料。  26. The material according to claim 25, comprising a bone tissue forming part and a cartilage tissue forming part, wherein the material has a portion for restricting cell migration between the bone tissue forming part and the cartilage tissue forming part.
2 7 . シート状物及び/又はプロック状物の積層体である、 請求項 2 6に記 載の材料。  27. The material according to claim 26, which is a laminate of a sheet and / or a block.
PCT/JP2003/015573 2002-12-06 2003-12-05 Graft for regenerating bone-cartilage tissue WO2004052418A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003289197A AU2003289197A1 (en) 2002-12-06 2003-12-05 Graft for regenerating bone-cartilage tissue
JP2004558415A JP4923235B2 (en) 2002-12-06 2003-12-05 Bone-cartilage tissue regeneration implant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002355823 2002-12-06
JP2002-355823 2002-12-06

Publications (1)

Publication Number Publication Date
WO2004052418A1 true WO2004052418A1 (en) 2004-06-24

Family

ID=32500803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015573 WO2004052418A1 (en) 2002-12-06 2003-12-05 Graft for regenerating bone-cartilage tissue

Country Status (3)

Country Link
JP (1) JP4923235B2 (en)
AU (1) AU2003289197A1 (en)
WO (1) WO2004052418A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093137A1 (en) * 2005-03-01 2006-09-08 Gc Corporation Method of fabricating sheet for cartilage tissue regeneration
JP2007054026A (en) * 2005-08-26 2007-03-08 National Institute For Materials Science Bilayer bioreactor
JP2008504867A (en) * 2004-07-01 2008-02-21 サイトリ セラピューティクス インコーポレイテッド Methods of using regenerative cells for the treatment of musculoskeletal diseases
JP2008120787A (en) * 2006-10-19 2008-05-29 National Institute For Materials Science Porous article and method for producing the same
WO2009133878A1 (en) * 2008-04-30 2009-11-05 学校法人聖マリアンナ医科大学 Biomaterial of artificial bone-cartilage complex type
JP2012187186A (en) * 2011-03-09 2012-10-04 Seiren Co Ltd Base material sheet for regenerative medicine
US8691216B2 (en) 2001-12-07 2014-04-08 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote wound healing
US8883499B2 (en) 2001-12-07 2014-11-11 Cytori Therapeutics, Inc. Systems and methods for isolating and using clinically safe adipose derived regenerative cells
US9133431B2 (en) 2009-05-01 2015-09-15 Bimini Technologies Llc Systems, methods and compositions for optimizing tissue and cell enriched grafts
US9198937B2 (en) 2001-12-07 2015-12-01 Cytori Therapeutics, Inc. Adipose-derived regenerative cells for treating liver injury
US9463203B2 (en) 2001-12-07 2016-10-11 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of cartilage defects
US9480718B2 (en) 2001-12-07 2016-11-01 Cytori Therapeutics, Inc. Methods of using adipose-derived regenerative cells in the treatment of peripheral vascular disease and related disorders
US9486484B2 (en) 2008-08-19 2016-11-08 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
CN107158476A (en) * 2017-05-16 2017-09-15 四川大学 A kind of preparation method of through hole double network polymer hydrogel support

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015694A1 (en) * 1992-02-14 1993-08-19 Board Of Regents, The University Of Texas System Multi-phase bioerodible implant/carrier and method of manufacturing and using same
WO1995031157A1 (en) * 1994-05-13 1995-11-23 Thm Biomedical, Inc. Device and methods for in vivo culturing of diverse tissue cells
WO1998040111A1 (en) * 1997-03-07 1998-09-17 University College London Tissue implant
EP1027897A1 (en) * 1999-02-10 2000-08-16 Isotis B.V. Cartillage tissue engineering
JP2001204807A (en) * 2000-01-28 2001-07-31 Gunze Ltd Base material for tissue culture, and biomedical material made of same
EP1270025A2 (en) * 2001-06-27 2003-01-02 Ethicon, Inc. Porous ceramic/porous polymer layered scaffolds for the repair and regeneration of tissue
JP2003180814A (en) * 2001-12-18 2003-07-02 Olympus Optical Co Ltd Scaffold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993015694A1 (en) * 1992-02-14 1993-08-19 Board Of Regents, The University Of Texas System Multi-phase bioerodible implant/carrier and method of manufacturing and using same
WO1995031157A1 (en) * 1994-05-13 1995-11-23 Thm Biomedical, Inc. Device and methods for in vivo culturing of diverse tissue cells
WO1998040111A1 (en) * 1997-03-07 1998-09-17 University College London Tissue implant
EP1027897A1 (en) * 1999-02-10 2000-08-16 Isotis B.V. Cartillage tissue engineering
JP2001204807A (en) * 2000-01-28 2001-07-31 Gunze Ltd Base material for tissue culture, and biomedical material made of same
EP1270025A2 (en) * 2001-06-27 2003-01-02 Ethicon, Inc. Porous ceramic/porous polymer layered scaffolds for the repair and regeneration of tissue
JP2003180814A (en) * 2001-12-18 2003-07-02 Olympus Optical Co Ltd Scaffold

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9511096B2 (en) 2001-12-07 2016-12-06 Cytori Therapeutics, Inc. Methods of using regenerative cells to treat an ischemic wound
US9511094B2 (en) 2001-12-07 2016-12-06 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of stroke and related diseases and disorders
US9198937B2 (en) 2001-12-07 2015-12-01 Cytori Therapeutics, Inc. Adipose-derived regenerative cells for treating liver injury
US9872877B2 (en) 2001-12-07 2018-01-23 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote epithelialization or neodermis formation
US9463203B2 (en) 2001-12-07 2016-10-11 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of cartilage defects
US9849149B2 (en) 2001-12-07 2017-12-26 Cytori Therapeutics, Inc. Methods of using regenerative cells in the treatment of erectile dysfunction
US9597395B2 (en) 2001-12-07 2017-03-21 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of cardiovascular conditions
US9480718B2 (en) 2001-12-07 2016-11-01 Cytori Therapeutics, Inc. Methods of using adipose-derived regenerative cells in the treatment of peripheral vascular disease and related disorders
US9504716B2 (en) 2001-12-07 2016-11-29 Cytori Therapeutics, Inc. Methods of using adipose derived regenerative cells to promote restoration of intevertebral disc
US8691216B2 (en) 2001-12-07 2014-04-08 Cytori Therapeutics, Inc. Methods of using regenerative cells to promote wound healing
US8883499B2 (en) 2001-12-07 2014-11-11 Cytori Therapeutics, Inc. Systems and methods for isolating and using clinically safe adipose derived regenerative cells
US9492483B2 (en) 2001-12-07 2016-11-15 Cytori Therapeutics, Inc. Methods of using regenerative cells to treat a burn
JP4937119B2 (en) * 2004-07-01 2012-05-23 サイトリ セラピューティクス インコーポレイテッド Methods of using regenerative cells for the treatment of musculoskeletal diseases
JP2008504867A (en) * 2004-07-01 2008-02-21 サイトリ セラピューティクス インコーポレイテッド Methods of using regenerative cells for the treatment of musculoskeletal diseases
JP4620110B2 (en) * 2005-03-01 2011-01-26 株式会社ジーシー Production method of cartilage tissue regeneration sheet
JPWO2006093137A1 (en) * 2005-03-01 2008-08-07 株式会社ジーシー Production method of cartilage tissue regeneration sheet
WO2006093137A1 (en) * 2005-03-01 2006-09-08 Gc Corporation Method of fabricating sheet for cartilage tissue regeneration
JP2007054026A (en) * 2005-08-26 2007-03-08 National Institute For Materials Science Bilayer bioreactor
JP2008120787A (en) * 2006-10-19 2008-05-29 National Institute For Materials Science Porous article and method for producing the same
WO2009133878A1 (en) * 2008-04-30 2009-11-05 学校法人聖マリアンナ医科大学 Biomaterial of artificial bone-cartilage complex type
US9486484B2 (en) 2008-08-19 2016-11-08 Cytori Therapeutics, Inc. Methods of using adipose tissue-derived cells in the treatment of the lymphatic system and malignant disease
US9133431B2 (en) 2009-05-01 2015-09-15 Bimini Technologies Llc Systems, methods and compositions for optimizing tissue and cell enriched grafts
JP2012187186A (en) * 2011-03-09 2012-10-04 Seiren Co Ltd Base material sheet for regenerative medicine
CN107158476A (en) * 2017-05-16 2017-09-15 四川大学 A kind of preparation method of through hole double network polymer hydrogel support
CN107158476B (en) * 2017-05-16 2020-03-27 四川大学 Preparation method of through-hole double-network polymer hydrogel stent

Also Published As

Publication number Publication date
JPWO2004052418A1 (en) 2006-04-06
JP4923235B2 (en) 2012-04-25
AU2003289197A1 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
JP3646162B2 (en) Transplant for cartilage tissue regeneration
US8202551B2 (en) Tissue engineered cartilage, method of making same, therapeutic and cosmetic surgical applications using same
US5665391A (en) Cultured, full-thickness integument substitutes based on three-dimensional matrix membranes
JP3709487B2 (en) Compositions and methods for naturally secreted extracellular matrix
JP4923235B2 (en) Bone-cartilage tissue regeneration implant
US6228117B1 (en) Device for tissue engineering bone
JP2004531297A (en) Methods and appliances for tissue repair
CA2330104A1 (en) Creation of three-dimensional tissues
US9421229B2 (en) Neural scaffolds
US20060159665A1 (en) Seed tear resistant scaffold
CN110665055B (en) Sericin/nano-hydroxyapatite tissue engineering bone graft and preparation method and application thereof
JP4412537B2 (en) Bone regeneration method
JP5247796B2 (en) Method for producing cell-derived extracellular matrix support
JP5540301B2 (en) Porous substrate, method for producing the same, and method of using the porous substrate
Tsuchiya et al. Custom-shaping system for bone regeneration by seeding marrow stromal cells onto a web-like biodegradable hybrid sheet
EP1196206A1 (en) Human naturally secreted extracellular matrix-coated device
WO2007020713A1 (en) Cell culture support embeddable in vivo
JP4717336B2 (en) Bone regeneration base material and method for producing the same
JP2004267562A (en) Carrier for living body, and cell cultivation
JP4393888B2 (en) Scaffolding material
KR100427557B1 (en) Bone collagen scaffold
Sabetkish et al. Evaluating the bone regeneration in calvarial defect using osteoblasts differentiated from adipose-derived mesenchymal stem cells on three different scaffolds: an animal study
JP2004329122A (en) Cell culture device and culture method
WO2023012823A1 (en) Electrospun microfibrous porous stretchable membranes and the method of preparation thereof
Huss et al. PLURIPOTENCY OF ADULT STEM CELLS

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004558415

Country of ref document: JP

122 Ep: pct application non-entry in european phase