WO2004044976A1 - Procede de formation d'une zone fragile dans un substrat par co-implantation - Google Patents

Procede de formation d'une zone fragile dans un substrat par co-implantation Download PDF

Info

Publication number
WO2004044976A1
WO2004044976A1 PCT/FR2003/003256 FR0303256W WO2004044976A1 WO 2004044976 A1 WO2004044976 A1 WO 2004044976A1 FR 0303256 W FR0303256 W FR 0303256W WO 2004044976 A1 WO2004044976 A1 WO 2004044976A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
main
species
manufacturing
implantation
Prior art date
Application number
PCT/FR2003/003256
Other languages
English (en)
Inventor
Bernard Aspar
Christelle Lagahe
Nicolas Sousbie
Jean-François Michaud
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to AU2003292305A priority Critical patent/AU2003292305A1/en
Priority to EP03767871A priority patent/EP1559138B1/fr
Priority to KR1020057008062A priority patent/KR101116540B1/ko
Priority to KR1020117007374A priority patent/KR101174594B1/ko
Priority to DE60332261T priority patent/DE60332261D1/de
Priority to JP2004550719A priority patent/JP5258146B2/ja
Priority to AT03767871T priority patent/ATE465514T1/de
Priority to US10/534,199 priority patent/US20070037363A1/en
Publication of WO2004044976A1 publication Critical patent/WO2004044976A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond

Definitions

  • the invention relates to the separation of a thin layer on the surface of a "source” substrate, usually with the aim of transferring this thin layer onto a "target” substrate.
  • thin layer is meant, conventionally, a layer whose thickness is usually between a few tens of angstroms and several micrometers.
  • the transfer of a thin layer to another support in fact provides engineers with a precious degree of freedom in order to be able to design structures that are otherwise impossible.
  • These thin film samples make it possible, for example, to produce so-called “buried” structures such as buried capacitors for “DRAMs” (initials of the English words “Dynamic Random Access Memory”, that is to say “Dynamic Live Memory”). ), where the capacitors are built and then transferred to another silicon substrate; we then resume manufacturing the rest of the circuits on this new substrate.
  • microcomponents are integrated at the final stage on a support having a high resistivity, typically of several kohm cm at least.
  • a highly resistive substrate is not easily found at the same cost and quality as the standard substrates usually used.
  • One solution is to produce the microcomponents on standard substrates, then to transfer, during the final steps, a thin layer containing the microcomponents on an insulating substrate such as glass, quartz or sapphire. From a technical point of view, these transfer operations have the major advantage of decorrelating the properties of the layer in which are formed microcomponents of those of the layer serving as final support, and are therefore interesting in many other cases.
  • the preliminary stages are carried out on thick or standard thickness substrates, with the advantages, on the one hand, of mechanically supporting the various technological stages, and on the other hand meeting the standards concerning their passage on certain production equipment. It is therefore necessary to make a thinning to lead to the final application.
  • certain known methods are based on the creation in a material of a buried fragile layer, by implantation of one or more gaseous species.
  • Patent application FR-2,681,472 discloses such a process.
  • the implanted species create a buried zone weakened by the presence of defects such as micro-cavities, in particular micro-bubbles (of essentially spherical shape, in English “bubbles”) or "platelets” (in the shape of a lens, in English “platelets”).
  • This buried zone defines with the surface of the source substrate a thin layer which will subsequently be transferred to the target substrate.
  • the substrate thus weakened can if necessary undergo heat treatments: it will then be ensured that a thermal annealing does not induce deformation or surface exfoliation.
  • the weakened substrate can also undergo stages of deposition, thermal oxidation, epitaxy in the gas or liquid phase, or treatments for developing electronic and / or optical microcomponents and / or sensors.
  • a subsequent supply of energy for example a heat treatment
  • at the level of the weakened buried zone will promote the growth of the micro-cavities, so as to form micro-cracks.
  • the buried layer of inclusions is used as a trapping layer in the substrate. This makes it possible to locate, preferably at the level of this trapping layer, and in sufficient quantity, gaseous species which may contribute to the final separation of the thin surface layer delimited by the zone of inclusions and the surface of the source substrate.
  • This separation step can be carried out using suitable thermal and / or mechanical treatments.
  • buried fragile layer processes are able to produce layers based on crystalline materials (Si, SiC, InP, AsGa, LiNb0 3 , LiTaO 3 , and so on) in a range of thicknesses which can range from a few tens of angstroms at several micrometers, with very good homogeneity. Higher thicknesses are also accessible. These methods allow in particular the reuse of the substrate after separation, these substrates consuming very little in each cycle. In fact, the substrate thicknesses are usually several hundred microns. We thus work with substrates which can be described as “recyclable” substrates.
  • the gaseous species implanted in the source substrate can be, for example, hydrogen ions and / or rare gases.
  • the article entitled “Efficient production of silicon-on-insulator films by co-implantation of He + with H + ” by Agarwal et al. (Appl. Phys. Lett., Vol. 72, no. 9, March 1998) describes a process comprising the co-implantation of two chemical species, namely hydrogen and helium, in a silicon substrate. The authors specify that the implantation profiles of the two implanted species must be located at the same depth.
  • atoms When atoms are penetrated into the source substrate, for example by ion implantation, these atoms are distributed according to a quasi-Gaussian profile comprising a peak, with a maximum concentration at a certain depth which increases with the energy of implantation of atoms. From at a concentration that will be called “critical", the implanted atoms generate in the material, as explained above, defects in the form, for example, of micro-bubbles and / or platelets and / or of micro -cavities and / or dislocation loops and / or other crystal defects, which reduce the crystal quality of the material. This critical concentration depends, in a significant way, on the implanted species, as well as on the nature of the implanted source substrate.
  • the subsequent fracture of the substrate will occur at depths for which the density of crystal defects is sufficiently large, which requires that the implanted concentration sufficiently exceeds the critical concentration.
  • the depth of the implantation peak being a function of the ion implantation energy, this energy ultimately determines the thickness of the thin layer to be transferred.
  • the postponed thin layer comprises a disturbed layer on the surface: by disturbed layer, it will be understood, in the context of the present invention, a layer comprising vestiges, in the form of roughness and crystal defects, destructive effects of the ion implantation.
  • the thickness of this disturbed layer increases with the implantation energy and with the concentration of implanted ions.
  • To restore excellent quality to the transferred thin layer it is necessary to remove this disturbed layer.
  • the reduction in the thickness of the disturbed layer makes it possible to limit the treatments mentioned above and therefore has, in particular, the advantage of promoting the uniformity in thickness of the deferred thin layer.
  • the reduction of the costs of treatment of the substrates after postponement is also a major advantage.
  • Patent application WO 99/39378 discloses a method making it possible to reduce the thickness of the disturbed layer present at the surface of the postponed thin layer, after the fracture step. This document proposes to carry out multiple implantations in the source substrate. The stages consist of:
  • the general principle of this invention describes a sequence of two or more implantations, at two or more different depths.
  • the expression “main peak” will subsequently be used to denote the peak of implanted species at the level of which it is desired to operate the fracture later, and the expression “secondary peak” for the other implanted species.
  • a drawback of this process is that the concentrations of ions implanted at the level of the secondary peak (s) (which form the atom reservoirs for the first peak) are kept below the concentration at the level of the main peak .
  • concentrations of ions implanted at said first depth to reduce the thickness of the disturbed area after fracture
  • Carrying out a large number of implantations amounts to increasing the cost of the process and makes the sequence of steps particularly complex.
  • the invention proposes, according to a first aspect, a method of manufacturing a thin layer, in which a fragile buried zone is created by implantation of a chemical species in a substrate, so as to then be able to trigger a fracture of said substrate along this fragile area in order to detach said thin layer, said method being remarkable in that it comprises the following steps: a) a "main” implantation in the substrate at a "main" depth of a "main” chemical species, and b) at least one "secondary” implantation in the substrate, at a "secondary” depth different from said main depth, and at a concentration greater than the concentration of the main species, of at least one “secondary” chemical species of effectiveness less than the main species in weakening the substrate, where said steps a) and b) can be carried out in any order, and in what it further comprises the following stages: c) the migration of at least part of said secondary species to the vicinity of the main depth, and d) the triggering of the adite fracture,
  • At least two different species are implanted, characterized by their different effectiveness in forming a weakened zone in the source substrate.
  • embrittlement is meant the formation of specific defects of the micro-bubble type and / or micro-cavities and / or platelets and / or other crystalline defects whose shape, size and density will be conducive to the future propagation of a fracture. in this area.
  • the effectiveness of a given chemical species in forming a weakened zone depends significantly on the material constituting the substrate.
  • the main chemical species implanted may consist of hydrogen ions
  • the secondary chemical species or species may consist of ions of at least one rare gas
  • the substrate may be made of silicon, without this combination of elements is limiting.
  • One of the implanted profiles locates the fracture which will be caused later and which will allow the transfer of a thin surface layer; the other corresponds to a reservoir of species which, after migration, will facilitate the propagation of the fracture. Two locations are usually sufficient.
  • the secondary concentration in species of lesser efficiency may be equal to a large fraction of the concentration which would be sufficient for it to be possible subsequently to fracture the substrate at this secondary implantation (it will naturally be necessary to choose this secondary concentration, a certain safety margin to prevent the substrate from fracturing at this level).
  • the secondary species has, according to the invention, a lower efficiency than the main species, this means in practice that the secondary concentration can be much higher than the main concentration. Thanks to the present invention, there is therefore obtained, by means of a small number of implantations, a weakened area capable of subsequently feeling a fracture line, in which, in addition, the disturbed layer is relatively thin.
  • the implanted ions may, if necessary, form neutral atoms, or bind to the substrate.
  • the secondary species then comes to lodge, in the form of concentrated free gas, in the micro-cavities previously created by the main implantation, and promotes the growth of these micro-cavities, without however enlarging the disturbed area at the peak. main.
  • said secondary depth is greater than said main depth.
  • any crystalline defects caused by the secondary implantation will be located outside the thin layer obtained by the method according to the invention. This arrangement therefore contributes to obtaining a high quality thin layer.
  • the secondary depth is, on the contrary, less than the main depth. Indeed, such an arrangement can be advantageous for certain applications, for example when it is desired to form, by means of the secondary implantation, a layer of specific crystalline defects located within the thin layer; this layer of defects may for example have electrical insulation and / or trapping properties.
  • said migration step c) is favored by an appropriate heat treatment.
  • This characteristic makes it possible to considerably increase the efficiency of the method according to the invention, and also to reduce its duration of implementation. Indeed, such a heat treatment plays a double role: on the one hand, it promotes the development of crystalline defects present at the level of the main peak, and on the other hand it simultaneously promotes the migration of secondary species (ions or atoms).
  • said step d) is carried out using an appropriate heat treatment.
  • the gas of secondary species creates, at the level of the main implantation peak, a significant pressure effect which contributes to the fracture of the source substrate.
  • thermal budget means the application of a given temperature for a given time.
  • the invention relates to a thin layer obtained using one of the methods described succinctly above, before or after its transfer to a final support.
  • FIG. 1 is a graph showing the concentration profiles of ions or hydrogen atoms implanted in a substrate as a function of the depth in the substrate, for three implantation doses given as an example,
  • - Figure 2 is a graph showing the thickness of the disturbed area as a function of the implantation dose in the case of implantation of H + ions in silicon
  • - Figures 3a to 3d represent the main successive steps of the process according to the invention
  • FIG. 4 is a graph showing the concentration profiles, as a function of the depth in the substrate, of the main species and the secondary species established during the steps illustrated in Figures 3a and 3b.
  • FIG. 1 shows, by way of example, three profiles for implanting H + ions in a silicon substrate. These profiles show, for ion implantation doses equal to 1, 5-10 7cm 16 H 2 10 16 H 6,0- 7cm 2, and 1, 0-10 17 H + / cm 2 at an energy of 75 keV approximately, the concentration obtained (in number of ions or hydrogen atoms per cm 3 ) in this substrate, depending on the depth below the implanted surface of the substrate.
  • the figure indicates, purely for information, the minimum level of concentration (concentration critical) which leads to the appearance of crystal defects caused by ion implantation.
  • the three concentration curves rise above this critical concentration, so that, for each concentration curve, we deduce the existence of a disturbed zone in the substrate (zone comprising crystalline defects having for origin ion implantation) located essentially between the two depth levels where said curve crosses the critical concentration line.
  • FIG. 1 presents experimental data concerning this thickness, for a range of implanted doses ranging from 0.5-10 16 H + / cm 2 to 1, 2-10 17 H + / cm 2 , at an energy of approximately 75 keV .
  • the width of the disturbed zone increases with the implanted dose, here between 50 and 250 nanometers (nm) approximately.
  • the thickness of the disturbed layer highlighted on the surface of the reported thin layer will be approximately between 1/3 and 2/3 of the thickness of the disturbed area before fracture.
  • Figures 3a to 3d illustrate the main successive steps of a method according to an embodiment of the invention.
  • Figure 3a shows the implantation of a source substrate 1 by a “secondary” chemical species 2, which creates a concentration of this secondary species 2 within the substrate 1 around a “secondary” depth peak 3.
  • the figure 3b shows the implantation by a chemical species
  • the method according to the invention teaches to implant a species 4 showing significant effectiveness in weakening the source substrate.
  • Species 2 less effective at the secondary peak 3 are implanted to form embrittlement defects.
  • the embodiment illustrated here relates to an application in which it is important to optimize the quality of the thin layer obtained at the end of the process. This is why the implantation of the secondary species 2, which serves to constitute a reservoir of atoms, is here carried out at a depth 3 greater than the implantation depth 5 of the main species 4 where the fracture of the substrate 1 will take place later.
  • FIG. 3c illustrates the next step in this embodiment of the invention.
  • a heat treatment is preferably applied (oven, and / or local heating, and / or laser beam, or the like), as explained in the introduction.
  • a large fraction of these species then feeds the crystal defects present at the main peak (5) and promotes the growth of these defects.
  • FIG. 3d illustrates the conventional operation of fracturing the substrate 1 at the level of the main depth 5, so as to detach from the source substrate 1 a thin layer 6, which can if necessary be transferred to a target substrate (not shown).
  • This detachment reveals a thin disturbed layer 7 on the surface of the thin layer 6 (as well as another disturbed layer on the surface of the source substrate 1).
  • a heat treatment (oven, and / or local heating, and / or laser beam, or other), and / or the application of mechanical stresses such as the projection of a jet of fluid (gas, liquid) and or the insertion of a blade at the level of the weakened zone, and / or the stresses in tension, shear or bending applied to the substrate, and / or acoustic waves ( ultrasound, or other).
  • mechanical stresses such as the projection of a jet of fluid (gas, liquid) and or the insertion of a blade at the level of the weakened zone, and / or the stresses in tension, shear or bending applied to the substrate, and / or acoustic waves ( ultrasound, or other).
  • a thickener layer such as oxide, nitride or the like; the presence of this support will stiffen the transferred layer of the weakened substrate, especially for transport and / or finishing steps; the propagation of the fracture at the level of the main peak will thus make it possible to obtain a self-supporting layer comprising the thin layer originating from the source substrate and the layer of thickener.
  • bonding between the implanted source substrate and a target substrate can be carried out.
  • the target substrate can be, for example, silicon, plastic, or glass, and it can be flexible or rigid.
  • This joining can for example be carried out by direct bonding (molecular adhesion), or even by the use of glues or other adhesive substances; the macroscopic fracture along the weakened area will then give rise to the separation of the bonded structure made up of the two source and target substrates into two parts: the first part made up of the thin surface layer coming from the source substrate, transferred onto the target substrate, the second part consists of the source substrate peeled with a thin surface layer.
  • a “handle” support is applied to the substrate 1, the transfer of the thin layer 6 then being carried out on a final support. After separation and transfer of the thin surface layer, the rest of the weakened substrate can be recycled both as a source substrate and as, if necessary, as a target substrate.
  • the advantage of the method according to the invention compared to the technique described in document WO 99/39378 is that, due to the different properties of the two species implanted at the main and secondary peaks, the dose implanted at the main peak can be greatly reduced compared to the usual dose required in the case of a single implantation (for example, in the case of a single implantation of hydrogen ions in silicon, this usual dose is between 5-10 16 and 10 17 H + / cm 2 ).
  • This reduction in the dose of main species can, according to the measurements made by the present inventors, reach 80%.
  • the concentration of species 2 implanted at the level of secondary peak 3 can significantly exceed the concentration of species 4 implanted at the level of the main peak 5, as shown in FIG. 4.
  • the secondary peak 3 thus serves as a reservoir of secondary species 2 intended to migrate towards the main peak 5.
  • the present invention is particularly suitable for applications requiring a low thermal budget.
  • a low thermal budget For example, when one wishes to transfer by bonding a thin layer of a material A onto a substrate of material B, and the mechanical properties (such as for example the coefficient of thermal expansion) of these two materials are different, the applied heat treatments cannot exceed a certain thermal budget beyond which the bonded structure made up of the two substrates of material A and B can undergo damage (such as a breakage and / or detachment).
  • the method according to the invention can be implemented by choosing the implanted doses of the two species so as to both initiate a fracture at low temperature at a predetermined depth, and to impose a predetermined thickness of the disturbed area.
  • the dose of secondary species 2 will then be increased compared to the secondary dose according to the invention, in order to promote the kinetics of fracture; in addition, the dose of the species 4 implanted at the level of the main peak may be between the dose according to the invention and the usual dose necessary to locate the fracture. Thanks to these arrangements, it will be possible to obtain, at a reasonable time, a fracture at low temperature, while retaining the advantages arising from the fact that the disturbed zone after fracture is of small thickness.
  • a silicon (Si) substrate comprising a layer of thermal silica (SiO 2 ) on the surface (for example 50 nm thick) is implanted with neon atoms at a rate of 2-10 16 Ne / cm 2 at an energy of 210 keV, then implanted with hydrogen at the rate of 7-10 15 H + / cm 2 at an energy of 20 keV.
  • This source substrate is then joined to a target Si substrate by direct bonding.
  • a heat treatment at 500 ° C. then induces the growth of micro-cavities and / or platelets located at the level from the hydrogen peak: the neon atoms migrate to the hydrogen peak and participate in the growth of crystalline defects which will lead to the final fracture.
  • the width of the disturbed area is only about 70 nm, while in the case of a single implantation according to the prior art (of the order of 5-10 16 H + / cm 2 ), the width of the disturbed area is approximately 150 nm.
  • a germanium (Ge) substrate on which a layer of SiO 2 (thick, for example, 100 nm) has been deposited is implanted with helium atoms at a rate of 4-10 16 He / cm 2 at an energy of 180 keV, then implanted with hydrogen at the rate of 2-10 16 H + / cm 2 at an energy of 60 keV.
  • This source substrate can then be joined to a target Si substrate by direct bonding.
  • a heat treatment at 300 ° C. then induces the growth of the micro-cavities and / or platelets located at the level of the hydrogen peak, the helium atoms diffusing up to this zone of crystalline defects and participating in the pressurization and to the development of these.
  • the width of the disturbed zone is only about 300 nm, whereas in the case of a single implantation according to the prior art, the width of the disturbed area is approximately 400 nm.
  • an Si substrate comprising a layer of thermal SiO 2 on the surface (thick, for example, 200 nm) is implanted with helium atoms at a rate of 4-10 16 He / cm 2 at an energy of 180 keV, then implanted with hydrogen at the rate of 2-10 16 H + / cm 2 at an energy of 75 keV.
  • This source substrate can then be joined, by direct bonding, to a target substrate of fused silica.
  • the difference which exists between the coefficients of thermal expansion of these two materials requires carrying out a thermal treatment of fracture at low temperature, usually of the order of 300 ° C.
  • a thermal treatment of fracture at low temperature, usually of the order of 300 ° C.
  • the heat treatment induces the growth of the cavities located at the level of the hydrogen peak, the helium atoms diffusing up to the zone of crystalline defects and participating in the pressurization and the development of these, so that the final fracture at the level of the hydrogen can be produced in only about an hour.
  • the width of the disturbed area is only about 110 nm, while in the case of the single implantation according to the prior art, the width of the disturbed area is 230 nm about.

Abstract

La présente invention concerne un procédé de fabrication d'une couche mince, dans lequel on crée une zone fragile enterrée par implantation d'une espèce chimique dans un substrat (1), de manière à pouvoir ensuite déclencher une fracture du substrat (1) le long de cette zone fragile afin d'en détacher ladite couche mince (6). Selon l'invention, ledit procédé de fabrication comprend notamment les étapes suivantes : a) une implantation << principale >> dans le substrat (1) à une profondeur << principale >> (5) d'une espèce chimique << principale >> (4) ; b) au moins une implantation << secondaire >> dans le substrat (1), à une profondeur << secondaire >> (3) différente de ladite profondeur principale (5), et à une concentration supérieure à la concentration de l'espèce principale (4), d'au moins une espèce chimique << secondaire >> (2) d'efficacité moindre que l'espèce principale (4) à fragiliser le substrat (1) ; c) la migration d'au moins une partie de ladite espèce secondaire (2) jusqu'au voisinage de la profondeur principale (5) ; et d) le déclenchement d'une fracture le long de la profondeur principale (5). L'invention concerne également une couche mince obtenue à l'aide du procédé selon l'invention.

Description

Procédé de formation d'une zone fragile dans un substrat par co-implantation
L'invention concerne la séparation d'une couche mince à la surface d'un substrat « source », dans le but, habituellement, de reporter cette couche mince sur un substrat « cible ».
Par couche mince, on entend, de façon classique, une couche dont l'épaisseur est habituellement comprise entre quelques dizaines d'angstrδm et plusieurs micromètres. II existe de nombreux exemples d'applications où les techniques de report de couche peuvent représenter une solution au problème de l'intégration de couches sur un support a priori inadapté à leur réalisation. Le transfert d'une couche mince sur un autre support fournit en effet aux ingénieurs un degré de liberté précieux pour pouvoir concevoir des structures impossibles par ailleurs. Ces prélèvements de films minces permettent par exemple de réaliser des structures dites « enterrées » telles que des condensateurs enterrés pour les « DRAM » (initiales des mots anglais « Dynamic Random Access Memory », c'est-à-dire « Mémoire Vive Dynamique »), où les condensateurs sont construits puis reportés sur un autre substrat de silicium ; on reprend ensuite la fabrication du reste des circuits sur ce nouveau substrat.
On rencontre un autre exemple encore dans le domaine des applications liées aux télécommunications et hyperfréquence. Dans ce cas, on préfère que les microcomposants soient intégrés au stade final sur un support présentant une résistivité élevée, typiquement de plusieurs kohm cm au moins. Mais on ne trouve pas aisément un substrat fortement résistif aux mêmes coût et qualité que les substrats standard habituellement utilisés. Une solution consiste à réaliser les microcomposants sur des substrats standards, puis à reporter, lors des étapes finales, une couche fine contenant les microcomposants sur un substrat isolant tel que le verre, le quartz ou le saphir. D'un point de vue technique, ces opérations de transfert ont pour intérêt majeur de décorréler les propriétés de la couche dans laquelle sont formés les microcomposants de celles de la couche servant de support final, et sont par conséquent intéressantes dans bien d'autres cas encore.
On peut encore citer les cas où le substrat d'intérêt pour la réalisation des microcomposants coûte excessivement cher. Dans ce cas, par exemple celui du carbure de silicium qui offre de meilleures performances (températures d'utilisation plus élevées, puissances et fréquences maximum d'utilisation significativement améliorées, et ainsi de suite) mais dont le coût est très élevé comparativement au silicium, on aurait intérêt à transférer une couche fine du substrat cher (ici, le carbure de silicium) sur le substrat bon marché (ici, le silicium), et à récupérer le résidu du substrat cher pour réutilisation, après éventuellement une opération de recyclage. L'opération de transfert peut avoir lieu avant, au cours, ou après la réalisation des microcomposants.
Ces techniques peuvent également trouver leur intérêt dans tous les domaines où obtenir un substrat mince est important pour l'application finale. En particulier, on peut citer les applications de puissance, pour des raisons liées à l'évacuation de chaleur (qui sera d'autant meilleure que le substrat est fin) ou au fait que le courant électrique doit parfois traverser l'épaisseur des substrats, avec des pertes qui sont en première approximation proportionnelles à l'épaisseur traversée par ce courant. On peut aussi citer les applications de cartes à puce, dans lesquelles une finesse des substrats est recherchée pour des raisons de souplesse. De même, on peut citer les applications destinées à la réalisation de circuits tridimensionnels ainsi que d'empilements de structures.
Pour nombre d'applications, les étapes préliminaires sont réalisées sur des substrats épais ou d'épaisseur standard, avec pour avantages, d'une part, de bien supporter mécaniquement les différentes étapes technologiques, et d'autre part de répondre aux normes concernant leur passage sur certains équipements de production. Il est donc nécessaire de réaliser un amincissement pour conduire à l'application finale. Pour réaliser le transfert d'une couche mince issue d'un substrat source vers un substrat cible, certains procédés connus sont fondés sur la création dans un matériau d'une couche fragile enterrée, par implantation d'une ou plusieurs espèces gazeuses.
La demande de brevet FR-2 681 472 divulgue un tel procédé. Les espèces implantées créent une zone enterrée fragilisée par la présence de défauts tels que des micro-cavités, en particulier des micro-bulles (de forme essentiellement sphérique, en anglais « bubbles ») ou des « platelets » (en forme de lentille, en anglais « platelets »). Cette zone enterrée délimite avec la surface du substrat source une couche mince qui sera par la suite reportée sur le substrat cible. Pour des variantes concernant la création d'une couche fragile enterrée par implantation d'une ou plusieurs espèces gazeuses, on pourra également se référer aux documents US-5,374,564 (ou EP-A-533551), US- 6,020,252 (ou EP-A-807970), FR-2 767 416 (ou EP-A-1010198), FR-2 748 850 (ou EP-A-902843), FR-2 748 851 , et FR-2 773 261 (ou EP-A-963598). La taille caractéristique des défauts crées par une implantation ionique va du nanomètre à quelques dizaines de nanomètres. Le substrat ainsi fragilisé peut le cas échéant subir des traitements thermiques : on veillera alors à ce qu'un recuit thermique n'induise pas de déformation ou d'exfoliation de surface. Le substrat fragilisé peut aussi subir des étapes de dépôt, d'oxydation thermique, d'épitaxie en phase gazeuse ou liquide, ou des traitements d'élaboration de microcomposants électroniques et/ou optiques et/ou de capteurs.
Si les doses d'implantation ont été bien choisies, un apport subséquent d'énergie, par exemple un traitement thermique, au niveau de la zone enterrée fragilisée va favoriser la croissance des micro-cavités, de façon à former des micro-fissures. La couche enterrée d'inclusions est utilisée comme couche de piégeage dans le substrat. Celle-ci permet de localiser, préférentiellement au niveau de cette couche de piégeage, et en quantité suffisante, des espèces gazeuses qui pourront contribuer à la séparation finale de la couche mince superficielle délimitée par la zone d'inclusions et la surface du substrat source. Cette étape de séparation peut être effectuée à l'aide de traitements thermiques et/ou mécaniques adéquats.
L'avantage de tels procédés à couche fragile enterrée est de pouvoir réaliser des couches à base de matériaux cristallins (Si, SiC, InP, AsGa, LiNb03, LiTaO3, et ainsi de suite) dans une gamme d'épaisseurs pouvant aller de quelques dizaines d'angstrom à plusieurs micromètres, avec une très bonne homogénéité. Des épaisseurs plus élevées sont également accessibles. Ces méthodes permettent en particulier la réutilisation du substrat après séparation, ces substrats ne se consommant que très peu à chaque cycle. En effet, les épaisseurs de substrat sont quant à elles habituellement de plusieurs centaines de microns. On travaille ainsi avec des substrats que l'on peut qualifier de substrats « recyclables ».
Les espèces gazeuses implantées dans le substrat source peuvent être par exemple des ions d'hydrogène et/ou de gaz rares. L'article intitulé « Efficient production of silicon-on-insulator films by co-implantation of He+ with H+ » par Agarwal et al. (Appl. Phys. Lett., vol. 72, n° 9, mars 1998) décrit un procédé comprenant la co-implantation de deux espèces chimiques, à savoir l'hydrogène et l'hélium, dans un substrat de silicium. Les auteurs spécifient que les profils d'implantation des deux espèces implantées doivent être localisés à la même profondeur. Il est ainsi possible de diminuer la dose totale implantée permettant l'obtention ultérieure de la fracture, par rapport à l'utilisation de l'une ou l'autre espèce chimique seule : selon les auteurs, cette technique permet une diminution de la dose totale implantée de l'ordre de 50%. Les auteurs divulguent également que l'ordre d'implantation des deux espèces implantées est important : l'hydrogène doit être implanté en premier, et l'hélium en second ; si l'hélium était implanté en premier, la diminution de la dose totale implantée serait selon eux moins importante.
Lorsque l'on fait pénétrer des atomes dans le substrat source, par exemple par implantation ionique, ces atomes se distribuent selon un profil quasi-gaussien comportant un pic, avec un maximum de concentration à une certaine profondeur qui croît avec l'énergie d'implantation des atomes. A partir d'une concentration que l'on appellera « critique », les atomes implantés engendrent dans le matériau, comme expliqué ci-dessus, des défauts sous la forme, par exemple, de micro-bulles et/ou de platelets et/ou de micro-cavités et/ou de boucles de dislocation et/ou d'autres défauts cristallins, qui amoindrissent la qualité cristalline du matériau. Cette concentration critique dépend, de façon importante, de l'espèce implantée, ainsi que de la nature du substrat source implanté.
La fracture subséquente du substrat se produira aux profondeurs pour lesquelles la densité de défauts cristallins est suffisamment importante, ce qui requiert que la concentration implantée dépasse suffisamment la concentration critique. La profondeur du pic d'implantation étant fonction de l'énergie d'implantation ionique, cette énergie détermine en définitive l'épaisseur de la couche mince à reporter.
Après fracture, la couche mince reportée comporte une couche perturbée en surface : par couche perturbée, on comprendra, dans le cadre de la présente invention, une couche comportant des vestiges, sous forme de rugosités et de défauts cristallins, des effets destructeurs de l'implantation ionique. L'épaisseur de cette couche perturbée augmente avec l'énergie d'implantation et avec la concentration en ions implantés. Pour restituer une excellente qualité à la couche mince reportée, il faut supprimer cette couche perturbée. Les techniques permettant cette suppression sont nombreuses : on peut à titre d'exemple citer le polissage mécano-chimique, l'oxydation sacrificielle, ou l'attaque chimique (humide ou sèche). Notons que plus l'épaisseur retirée est importante, et plus l'homogénéité en épaisseur de la couche mince reportée risque d'être dégradée. La réduction de l'épaisseur de la couche perturbée permet de limiter les traitements cités ci-dessus et présente donc, notamment, l'avantage de favoriser l'homogénéité en épaisseur de la couche mince reportée. Pour certaines applications, la réduction des coûts de traitement des substrats après report est également un atout majeur.
La demande de brevet WO 99/39378 divulgue un procédé permettant de diminuer l'épaisseur de la couche perturbée présente à la surface de la couche mince reportée, après l'étape de fracture. Ce document propose de réaliser des implantations multiples dans le substrat source. Les étapes consistent à :
- implanter des atomes dans le substrat source à une première profondeur pour obtenir une première concentration d'atomes à cette première profondeur,
- implanter des atomes dans ce même substrat à une deuxième profondeur, différente de la première, pour obtenir à cette deuxième profondeur, une deuxième concentration d'atomes, inférieure à la première, - effectuer sur ce substrat un traitement apte à faire migrer vers la première profondeur au moins une partie des atomes implantés à la deuxième profondeur, de manière à engendrer préférentiellement des micro-cavités à la première profondeur.
Le principe général de cette invention décrit une séquence de deux ou plusieurs implantations, à deux ou plusieurs profondeurs différentes. On utilisera par la suite l'expression « pic principal » pour désigner le pic d'espèces implantées au niveau duquel on souhaite opérer la fracture ultérieurement, et l'expression « pic secondaire » pour les autres espèces implantées.
Un inconvénient de ce procédé est que les concentrations d'ions implantés au niveau du ou des pic(s) secondaire(s) (qui forment les réservoirs d'atomes pour le premier pic) sont maintenues inférieures à la concentration au niveau du pic principal. Ainsi, si l'on veut réduire substantiellement la concentration d'ions implantés à ladite première profondeur (pour diminuer l'épaisseur de la zone perturbée après fracture), il devient nécessaire de réaliser un grand nombre d'implantations successives, de façon à introduire dans le substrat source la quantité nécessaire d'atomes permettant l'obtention ultérieure de la fracture au niveau du premier pic. Réaliser un grand nombre d'implantations revient à augmenter le coût du procédé et rend particulièrement complexe l'enchaînement des étapes. Afin de remédier à cet inconvénient, l'invention propose, selon un premier aspect, un procédé de fabrication d'une couche mince, dans lequel on crée une zone fragile enterrée par implantation d'une espèce chimique dans un substrat, de manière à pouvoir ensuite déclencher une fracture dudit substrat le long de cette zone fragile afin d'en détacher ladite couche mince, ledit procédé étant remarquable en ce qu'il comprend les étapes suivantes : a) une implantation « principale » dans le substrat à une profondeur « principale » d'une espèce chimique « principale », et b) au moins une implantation « secondaire » dans le substrat, à une profondeur « secondaire » différente de ladite profondeur principale, et à une concentration supérieure à la concentration de l'espèce principale, d'au moins une espèce chimique « secondaire » d'efficacité moindre que l'espèce principale à fragiliser le substrat, où lesdites étapes a) et b) peuvent êtres mises en oeuvre dans un ordre quelconque, et en ce qu'il comprend en outre les étapes suivantes : c) la migration d'au moins une partie de ladite espèce secondaire jusqu'au voisinage de la profondeur principale, et d) le déclenchement de ladite fracture, le long de la profondeur principale.
Ainsi, selon l'invention, on implante au moins deux espèces différentes, caractérisées par leur efficacité différente à former une zone fragilisée dans le substrat source. Par fragilisation, on entend la formation de défauts spécifiques de type micro-bulles et/ou micro-cavités et/ou platelets et/ou autres défauts cristallins dont la forme, la taille et la densité seront propices à la propagation future d'une fracture dans cette zone. L'efficacité d'une espèce chimique donnée à former une zone fragilisée dépend de façon importante du matériau constituant le substrat. Par exemple, l'espèce chimique principale implantée pourra être constituée d'ions d'hydrogène, la ou les espèces chimiques secondaires pourront être constituées d'ions d'au moins un gaz rare, et le substrat pourra être en silicium, sans que cette combinaison d'éléments soit limitative.
L'un des profils implantés localise la fracture qui sera provoquée ultérieurement et qui permettra le report d'une couche mince superficielle ; l'autre correspond à un réservoir d'espèces qui, après migration, faciliteront la propagation de la fracture. Deux implantations sont habituellement suffisantes. On notera que la concentration secondaire en espèce de moindre efficacité peut être égale à une fraction importante de la concentration qui serait suffisante pour que l'on puisse ultérieurement provoquer la fracture du substrat au niveau de cette implantation secondaire (il faudra naturellement conserver, en choisissant cette concentration secondaire, une certaine marge de sécurité pour éviter que le substrat ne se fracture à ce niveau). Or comme l'espèce secondaire possède, selon l'invention, une efficacité moindre que l'espèce principale, cela signifie en pratique que la concentration secondaire peut être nettement supérieure à la concentration principale. Grâce à la présente invention, on obtient donc, au moyen d'un nombre faible d'implantations, une zone fragilisée apte à sentir ultérieurement de ligne de fracture, dans laquelle, en outre, la couche perturbée est relativement mince.
Sans prétendre vouloir fournir une explication physique définitive, on pourra attribuer ces avantages de l'invention au mécanisme suivant. En examinant ce mécanisme, on gardera à l'esprit qu'après implantation, les ions implantés peuvent le cas échéant former des atomes neutres, ou se lier au substrat.
Il est probable que « l'efficacité » d'une espèce, c'est-à-dire sa capacité à fragiliser le substrat, va de pair avec le piégeage, mentionné ci- dessus, de l'espèce implantée dans les défauts engendrés par l'implantation. Par exemple, dans le cas de l'implantation d'ions H+ dans le silicium, il est connu que ces deux effets résultent probablement de la capacité de cette espèce à former des liaisons chimiques avec le substrat. Ainsi, lors de l'étape c), la tendance à s'éloigner par diffusion de son pic d'implantation est plus forte pour l'espèce secondaire que pour l'espèce principale, précisément en raison de la moindre efficacité de l'espèce secondaire par comparaison avec l'espèce principale. L'espèce secondaire vient alors se loger, sous forme de gaz libre concentré, dans les micro-cavités préalablement crées par l'implantation principale, et favorise la croissance de ces micro-cavités, sans pour autant élargir la zone perturbée au niveau du pic principal. Selon des caractéristiques particulières, ladite profondeur secondaire est supérieure à ladite profondeur principale. Dans ce cas, les éventuels défauts cristallins engendrés par l'implantation secondaire seront situés en-dehors de la couche mince obtenue par le procédé selon l'invention. Cette disposition contribue donc à l'obtention d'une couche mince de haute qualité.
Selon d'autres caractéristiques particulières, la profondeur secondaire est, au contraire, inférieure à la profondeur principale. En effet, une telle disposition peut être avantageuse pour certaines applications, par exemple lorsqu'on souhaite former au moyen de l'implantation secondaire une couche de défauts cristallins spécifiques localisés au sein de la couche mince ; cette couche de défauts pourra par exemple présenter des propriétés d'isolation électrique et/ou de piégeage.
Selon des caractéristiques particulières, ladite étape c) de migration est favorisée par un traitement thermique approprié. Cette caractéristique permet d'augmenter considérablement l'efficacité du procédé selon l'invention, et aussi de réduire sa durée de mise en œuvre. En effet, un tel traitement thermique joue un double rôle : d'une part, il favorise le développement des défauts cristallins présents au niveau du pic principal, et d'autre part il favorise simultanément la migration des espèces secondaires (ions ou atomes).
Selon d'autres caractéristiques particulières, ladite étape d) est réalisée à l'aide d'un traitement thermique approprié. Sous l'effet de ce traitement thermique, le gaz d'espèces secondaires crée, au niveau du pic d'implantation principal, un effet de pression important qui contribue à la fracture du substrat source.
Les caractéristiques des traitements thermiques appliqués seront choisies judicieusement en fonction de l'application concernée. Par exemple, pour certaines applications, il peut être utile - et il est possible grâce à l'invention - d'opérer avec un budget thermique inférieur à celui qui serait nécessaire pour déclencher ladite fracture en l'absence des étapes b) et c), c'est-à-dire selon l'art antérieur (par « budget thermique », on entend l'application d'une température donnée pendant un temps donné). Selon un autre point de vue, compte tenu d'un budget thermique prédéterminé (requis par une application particulière de l'invention), on veillera à respecter ce budget thermique, au besoin en réalisant une implantation d'espèces secondaires supérieure à celle qui serait nécessaire pour pouvoir déclencher ladite fracture avec un budget thermique supérieur audit budget thermique prédéterminé.
Selon un second aspect, l'invention concerne une couche mince obtenue à l'aide de l'un des procédés décrits succinctement ci-dessus, avant ou après son report sur un support final.
D'autres aspects et avantages de l'invention apparaîtront à la lecture de la description détaillée, que l'on trouvera ci-dessous, de modes particuliers de réalisation donnés à titre d'exemples non limitatifs. Cette description se réfère aux dessins annexés, dans lesquels :
- la figure 1 est un graphique montrant les profils de concentration d'ions ou d'atomes hydrogène implantés dans un substrat en fonction de la profondeur dans le substrat, pour trois doses d'implantation données en exemple,
- la figure 2 est un graphique montrant l'épaisseur de la zone perturbée en fonction de la dose d'implantation dans le cas d'une implantation d'ions H+ dans le silicium, - les figures 3a à 3d représentent les étapes successives principales du procédé selon l'invention, et
- la figure 4 est un graphique montrant les profils de concentration, en fonction de la profondeur dans le substrat, de l'espèce principale et de l'espèce secondaire implantées au cours des étapes illustrées sur les figures 3a et 3b. La figure 1 montre, à titre d'exemple, trois profils d'implantation d'ions H+ dans un substrat en silicium. Ces profils montrent, pour des doses d'implantation ionique égales à 1 ,5-1016 H 7cm2, 6,0- 1016 H 7cm2, et 1 ,0-1017 H+/cm2, à une énergie de 75 keV environ, la concentration obtenue (en nombre d'ions ou d'atomes d'hydrogène par cm3) dans ce substrat, en fonction de la profondeur au-dessous de la surface implantée du substrat. La figure indique, purement à titre indicatif, le niveau minimum de concentration (concentration critique) qui conduit à l'apparition de défauts cristallins causés par l'implantation ionique.
Ici, les trois courbes de concentration s'élèvent au-dessus de cette concentration critique, de sorte que, pour chaque courbe de concentration, on en déduit l'existence d'une zone perturbée dans le substrat (zone comportant des défauts cristallins ayant pour origine l'implantation ionique) située essentiellement entre les deux niveaux de profondeur où ladite courbe croise la ligne de concentration critique.
On peut associer ainsi à chaque implantation de dose suffisamment élevée, une épaisseur correspondante de zone perturbée, qui n'est montrée sur la figure 1 qu'à titre indicatif. La figure 2 présente des données expérimentales concernant cette épaisseur, pour une gamme de doses implantées allant de 0,5- 1016 H+/cm2 à 1 ,2-1017 H+/cm2, à une énergie de 75 keV environ. On constate que la largeur de la zone perturbée croît avec la dose implantée, ici entre 50 et 250 nanometres (nm) environ. Après fracture, l'épaisseur de la couche perturbée mise en évidence à la surface de la couche mince reportée sera approximativement comprise entre 1/3 et 2/3 de l'épaisseur de la zone perturbée avant fracture.
Les figures 3a à 3d illustrent les étapes principales successives d'un procédé selon un mode de réalisation de l'invention.
La figure 3a montre l'implantation d'un substrat source 1 par une espèce chimique « secondaire » 2, qui crée une concentration de cette espèce secondaire 2 au sein du substrat 1 autour d'un pic de profondeur « secondaire » 3. La figure 3b montre l'implantation par une espèce chimique
« principale » 4 au droit de la même partie du substrat 1 , qui crée une concentration de cette espèce principale 4 au sein du substrat 1 autour d'un pic de profondeur « principale » 5.
Au niveau de ce pic principal 5, le procédé selon l'invention enseigne d'implanter une espèce 4 montrant une efficacité importante pour fragiliser le substrat source. On implante au niveau du pic secondaire 3 des espèces 2 moins efficaces pour former des défauts de fragilisation. Le mode de réalisation illustré ici concerne une application dans laquelle il importe d'optimiser la qualité de la couche mince obtenue en fin de processus. C'est pourquoi l'implantation de l'espèce secondaire 2, qui sert à constituer un réservoir d'atomes, est ici réalisée à une profondeur 3 supérieure à la profondeur d'implantation 5 de l'espèce principale 4 où la fracture du substrat 1 aura lieu ultérieurement.
La figure 3c illustre l'étape suivante de ce mode de réalisation de l'invention. Au cours de cette étape, on applique de préférence un traitement thermique (four, et/ou chauffage local, et/ou faisceau laser, ou autre), comme expliqué en introduction. Une fraction importante de ces espèces vient alors alimenter les défauts cristallins présents au niveau du pic principal (5) et favoriser la croissance de ces défauts.
Enfin, la figure 3d illustre l'opération classique de fracture du substrat 1 au niveau de la profondeur principale 5, de manière à détacher du substrat source 1 une couche mince 6, que l'on pourra le cas échéant reporter sur un substrat cible (non représenté). Ce détachement fait apparaître une fine couche perturbée 7 à la surface de la couche mince 6 (ainsi qu'une autre couche perturbée à la surface du substrat source 1).
Pour le déclenchement de la fracture, on pourra optionnellement, de façon connue, appliquer un traitement thermique (four, et/ou chauffage local, et/ou faisceau laser, ou autre), et/ou l'application de contraintes mécaniques telles que la projection d'un jet de fluide (gaz, liquide) et ou l'insertion d'une lame au niveau de la zone fragilisée, et/ou des contraintes en traction, cisaillement ou flexion appliquées au substrat, et/ou des ondes acoustiques (ultrasons, ou autre).
Dans le cas où l'on a choisi de faire usage d'un traitement thermique au cours de l'étape c) de migration, il est avantageux, pour des raisons de simplicité de mise en œuvre, d'utiliser le même traitement thermique pour l'étape d). On pourra alors commodément réaliser les deux étapes c) et d) sans interruption.
Selon une variante, on appliquera d'abord, de façon connue, une couche d'épaississeur tel que de l'oxyde, du nitrure ou autre ; la présence de ce support permettra de rigidifier la couche transférée du substrat fragilisé, notamment pour des étapes de transport et/ou de finition ; la propagation de la fracture au niveau du pic principal permettra ainsi d'obtenir une couche autoportée comportant la couche mince issue du substrat source et la couche d'épaississeur.
Selon une autre variante, un collage entre le substrat source implanté et un substrat cible pourra être effectué. Le substrat cible peut être, par exemple, en silicium, en plastique, ou en verre, et il peut être souple ou rigide. Cette solidarisation pourra par exemple être effectuée par collage direct (adhésion moléculaire), ou encore par l'utilisation de colles ou autres substances adhésives ; la fracture macroscopique le long de la zone fragilisée donnera alors lieu à la séparation de la structure collée constituée des deux substrats source et cible en deux parties : la première partie constituée de la couche mince superficielle issue du substrat source, reportée sur le substrat cible, la deuxième partie constituée du substrat source pelé d'une couche mince superficielle.
Selon encore une autre variante, avant ou au cours de l'étape d), on applique sur le substrat 1 un support « poignée », le report de la couche mince 6 étant ensuite effectué sur un support final. Après séparation et report de la couche mince superficielle, le reste du substrat fragilisé peut être recyclé aussi bien en tant que substrat source qu'en tant, le cas échéant, que substrat cible.
L'avantage du procédé selon l'invention par rapport à la technique décrite dans le document WO 99/39378 est que, du fait des propriétés différentes des deux espèces implantées au niveau des pics principal et secondaire, la dose implantée au niveau du pic principal peut être énormément diminuée par rapport à la dose habituelle nécessaire dans le cas d'une implantation unique (par exemple, dans le cas d'une implantation unique d'ions hydrogène dans le silicium, cette dose habituelle est comprise entre 5-1016 et 1017 H+/cm2). Cette diminution de la dose d'espèce principale peut, selon les mesures effectuées par les présents inventeurs, atteindre 80%. Parallèlement, la concentration des espèces 2 implantées au niveau du pic secondaire 3 peut nettement dépasser la concentration des espèces 4 implantées au niveau du pic principal 5, comme le montre la figure 4. Le pic secondaire 3 sert ainsi de réservoir d'espèces secondaires 2 destinées à migrer vers le pic principal 5.
La présente invention est notamment adaptée aux applications exigeant un faible budget thermique. Par exemple, lorsque l'on veut reporter par collage une couche mince d'un matériau A sur un substrat de matériau B, et que les propriétés mécaniques (telles que par exemple le coefficient de dilatation thermique) de ces deux matériaux sont différentes, les traitements thermiques appliqués ne peuvent excéder un certain budget thermique au-delà duquel la structure collée constituée des deux substrats de matériau A et B peut subir des dommages (tels qu'une cassure et/ou un décollement).
Pour de telles applications, on peut mettre en œuvre le procédé selon l'invention en choisissant les doses implantées des deux espèces de manière, à la fois, à déclencher une fracture à basse température à une profondeur prédéterminée, et à imposer une épaisseur prédéterminée de la zone perturbée. La dose d'espèces secondaires 2 sera alors augmentée par rapport à la dose secondaire selon l'invention, afin de favoriser la cinétique de fracture ; de plus, la dose des espèces 4 implantées au niveau du pic principal pourra être comprise entre la dose selon l'invention et la dose habituelle nécessaire pour localiser la fracture. Grâce à ces dispositions, on pourra obtenir, en un temps raisonnable, une fracture à basse température, tout en conservant les avantages provenant du fait que la zone perturbée après fracture est de faible épaisseur.
On va donner ci-dessous, pour terminer, trois exemples numériques de mise en œuvre de l'invention.
Selon un premier exemple, un substrat de silicium (Si) comportant une couche de silice (SiO2) thermique en surface (épaisse par exemple de 50 nm) est implanté avec des atomes de néon à raison de 2-1016 Ne/cm2 à une énergie de 210 keV, puis implanté avec de l'hydrogène à raison de 7-1015 H+/cm2 à une énergie de 20 keV. Ce substrat source est ensuite solidarisé sur un substrat cible de Si par collage direct. Un traitement thermique à 500°C induit alors la croissance de micro-cavités et/ou de platelets localisés au niveau du pic d'hydrogène : les atomes de néon migrent jusqu'au pic d'hydrogène et participent à la croissance défauts cristallins qui mèneront à la fracture finale. Grâce à l'invention, la largeur de la zone perturbée n'est que de 70 nm environ, alors que dans le cas d'une implantation unique selon l'art antérieur (de l'ordre de 5-1016 H+/cm2), la largeur de la zone perturbée est de 150 nm environ.
Selon un deuxième exemple, un substrat de germanium (Ge) sur lequel on a déposé une couche de SiO2 (épaisse, par exemple, de 100 nm) est implanté avec des atomes d'hélium à raison de 4-1016 He/cm2 à une énergie de 180 keV, puis implanté avec de l'hydrogène à raison de 2-1016 H+/cm2 à une énergie de 60 keV. Ce substrat source peut ensuite être solidarisé sur un substrat cible de Si par collage direct. Un traitement thermique à 300°C induit ensuite la croissance des micro-cavités et/ou platelets localisés au niveau du pic d'hydrogène, les atomes d'hélium diffusant jusqu'à cette zone de défauts cristallins et participant à la mise sous pression et au développement de ceux-ci. La fracture finale au niveau du profil d'hydrogène mène au report de la couche de Ge sur le substrat de Si. Grâce à l'invention, la largeur de la zone perturbée n'est que de 300 nm environ, alors que dans le cas d'une implantation unique selon l'art antérieur, la largeur de la zone perturbée est de 400 nm environ. Selon un troisième exemple, un substrat de Si comportant une couche de Si02 thermique en surface (épaisse, par exemple, de 200 nm) est implanté avec des atomes d'hélium à raison de 4-1016 He/cm2 à une énergie de 180 keV, puis implanté avec de l'hydrogène à raison de 2-1016 H+/cm2 à une énergie de 75 keV. Ce substrat source peut ensuite être solidarisé, par collage direct, sur un substrat cible de silice fondue. La différence qui existe entre les coefficients de dilatation thermique de ces deux matériaux impose de réaliser un traitement thermique de fracture à basse température, habituellement de l'ordre de 300°C. Avec les doses d'implantation unique d'hydrogène utilisées classiquement (de l'ordre de 9-1016 H+/cm2), il faudrait plusieurs jours pour parvenir à déclencher, à cette température, la fracture du substrat de Si le long de la zone fragile. En revanche, dans les conditions de co-implantation mentionnées ci-dessus, le traitement thermique induit la croissance des cavités localisées au niveau du pic d'hydrogène, les atomes d'hélium diffusant jusqu'à la zone de défauts cristallins et participant à la mise sous pression et au développement de ceux-ci, de sorte que la fracture finale au niveau du profil d'hydrogène peut être réalisée en une heure environ seulement. On obtient ainsi efficacement le report de la couche de Si sur le substrat de silice fondue. De plus, grâce à l'invention, la largeur de la zone perturbée n'est que de 110 nm environ, alors que dans le cas de l'implantation unique selon l'art antérieur, la largeur de la zone perturbée est de 230 nm environ.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une couche mince, dans lequel on crée une zone fragile enterrée par implantation d'une espèce chimique dans un substrat (1), de manière à pouvoir ensuite déclencher une fracture dudit substrat (1) le long de cette zone fragile afin d'en détacher ladite couche mince (6), ledit procédé étant caractérisé en ce qu'il comprend les étapes suivantes : a) une implantation « principale » dans le substrat (1) à une profondeur « principale » (5) d'une espèce chimique « principale » (4), et b) au moins une implantation « secondaire » dans le substrat (1) à une profondeur « secondaire » (3) différente de ladite profondeur principale (5), et à une concentration supérieure à la concentration de l'espèce principale (4), d'au moins une espèce chimique « secondaire » (2) d'efficacité moindre que l'espèce principale (4) à fragiliser le substrat (1), où lesdites étapes a) et b) peuvent êtres mises en œuvre dans un ordre quelconque, et en ce qu'il comprend en outre les étapes suivantes : c) la migration d'au moins une partie de ladite espèce secondaire (2) jusqu'au voisinage de la profondeur principale (5), et d) le déclenchement de ladite fracture, le long de la profondeur principale (5).
2. Procédé de fabrication selon la revendication 1 , caractérisé en ce que ladite profondeur secondaire (3) est supérieure à ladite profondeur principale (5).
3. Procédé de fabrication selon la revendication 1 , caractérisé en ce que ladite profondeur secondaire (3) est inférieure à ladite profondeur principale (5).
4. Procédé de fabrication selon la revendication 2 ou la revendication 3, caractérisé en ce que ladite au moins une implantation secondaire est mise en œuvre avant ladite implantation principale.
5. Procédé de fabrication selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ladite étape c) est favorisée par un traitement thermique approprié.
6. Procédé de fabrication selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ladite étape d) est réalisée à l'aide d'un traitement thermique approprié.
7. Procédé de fabrication selon la revendication 5 et la revendication 6, caractérisé en ce que les étapes c) et d) sont réalisées au cours d'un même traitement thermique.
8. Procédé de fabrication selon l'une des revendications 5 à 7, caractérisé en ce que ledit traitement thermique est effectué avec un budget thermique inférieur à celui qui serait nécessaire pour déclencher ladite fracture en l'absence des étapes b) et c).
9. Procédé de fabrication selon l'une des revendications 5 à 7, caractérisé en ce que l'on respecte un budget thermique prédéterminé, au besoin en réalisant une implantation d'espèces secondaires (2) supérieure à celle qui serait nécessaire pour pouvoir déclencher ladite fracture avec un budget thermique supérieur audit budget thermique prédéterminé.
10. Procédé de fabrication selon l'une quelconque des revendications 5 à 9, caractérisé en ce que ledit traitement thermique comprend un chauffage au four et/ou un chauffage local et/ou un chauffage au laser.
11. Procédé de fabrication selon l'une quelconque des revendications précédentes, caractérisé en ce que ladite étape d) comporte l'application de contraintes mécaniques.
12. Procédé de fabrication selon la revendication 11 , caractérisé en ce que lesdites contraintes mécaniques comprennent l'utilisation d'un jet de fluide et/ou l'insertion d'une lame au niveau de la zone implantée, et/ou des contraintes en traction, cisaillement ou flexion appliquées au substrat (1), et/ou des ondes acoustiques.
13. Procédé de fabrication selon l'une quelconque des revendications 1 à 12, caractérisé en ce que, avant ou au cours de l'étape d), on applique sur le substrat (1) un épaississeur qui servira de support à ladite couche mince (6) après sa séparation du substrat (1).
14. Procédé de fabrication selon l'une quelconque des revendications 1 à 12, caractérisé en ce que, avant ou au cours de l'étape d), on applique sur le substrat (1) un support « poignée », le report de la couche mince (6) étant ensuite effectué sur un support final.
15. Procédé de fabrication selon l'une quelconque des revendications précédentes, caractérisé en ce que l'espèce chimique principale (4) est constituée d'ions ou d'atomes d'hydrogène.
16. Procédé de fabrication selon l'une quelconque des revendications précédentes, caractérisé en ce que la ou les espèces chimiques secondaires (2) sont constituées d'ions ou d'atomes d'au moins un gaz rare.
17. Couche mince (6), caractérisée en ce qu'elle a été fabriquée au moyen d'un procédé selon l'une quelconque des revendications 1 à 16.
18. Couche mince (6) selon la revendication 17, caractérisée en ce qu'elle a été reportée sur un support souple ou rigide.
PCT/FR2003/003256 2002-11-07 2003-10-31 Procede de formation d'une zone fragile dans un substrat par co-implantation WO2004044976A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2003292305A AU2003292305A1 (en) 2002-11-07 2003-10-31 Method for forming a brittle zone in a substrate by co-implantation
EP03767871A EP1559138B1 (fr) 2002-11-07 2003-10-31 Procede de formation d'une zone fragile dans un substrat par co-implantation
KR1020057008062A KR101116540B1 (ko) 2002-11-07 2003-10-31 공-이온주입에 의한 기판의 취약한 영역의 형성 방법
KR1020117007374A KR101174594B1 (ko) 2002-11-07 2003-10-31 공-이온주입에 의한 기판의 취약한 영역의 형성 방법
DE60332261T DE60332261D1 (de) 2002-11-07 2003-10-31 Herstellungsverfahren für eine bruchzone in einem substrat durch koimplantation
JP2004550719A JP5258146B2 (ja) 2002-11-07 2003-10-31 同時注入により基板内に脆性領域を生成する方法
AT03767871T ATE465514T1 (de) 2002-11-07 2003-10-31 Herstellungsverfahren für eine bruchzone in einem substrat durch koimplantation
US10/534,199 US20070037363A1 (en) 2002-11-07 2004-05-27 Method for forming a brittle zone in a substrate by co-implantation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/13934 2002-11-07
FR0213934A FR2847075B1 (fr) 2002-11-07 2002-11-07 Procede de formation d'une zone fragile dans un substrat par co-implantation

Publications (1)

Publication Number Publication Date
WO2004044976A1 true WO2004044976A1 (fr) 2004-05-27

Family

ID=32116441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/003256 WO2004044976A1 (fr) 2002-11-07 2003-10-31 Procede de formation d'une zone fragile dans un substrat par co-implantation

Country Status (11)

Country Link
US (1) US20070037363A1 (fr)
EP (1) EP1559138B1 (fr)
JP (2) JP5258146B2 (fr)
KR (2) KR101116540B1 (fr)
CN (1) CN100587940C (fr)
AT (1) ATE465514T1 (fr)
AU (1) AU2003292305A1 (fr)
DE (1) DE60332261D1 (fr)
FR (1) FR2847075B1 (fr)
TW (1) TWI323912B (fr)
WO (1) WO2004044976A1 (fr)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032948A1 (fr) * 2004-09-21 2006-03-30 S.O.I.Tec Silicon On Insulator Technologies Procede d'obtention d'une couche mince par mise en oeuvre d'une co-implantation suivie d'une implantation
US7176108B2 (en) 2002-11-07 2007-02-13 Soitec Silicon On Insulator Method of detaching a thin film at moderate temperature after co-implantation
EP1798764A1 (fr) * 2005-12-14 2007-06-20 STMicroelectronics S.r.l. Procédé de fabrication de plaquette utilisable dans l'industrie des semi-conducteurs
FR2905801A1 (fr) * 2006-09-12 2008-03-14 Soitec Silicon On Insulator Procede de transfert d'une couche a haute temperature
FR2907965A1 (fr) * 2006-10-27 2008-05-02 Soitec Silicon On Insulator Procede de traitement d'un substrat donneur pour la fabrication d'un substrat.
US7615463B2 (en) 2001-10-11 2009-11-10 Commissariat A L'energie Atomique Method for making thin layers containing microcomponents
US7670930B2 (en) 2006-03-29 2010-03-02 Commissariat A L 'energie Atomique Method of detaching a thin film by melting precipitates
US7772087B2 (en) 2003-12-19 2010-08-10 Commissariat A L'energie Atomique Method of catastrophic transfer of a thin film after co-implantation
US7883994B2 (en) 1997-12-30 2011-02-08 Commissariat A L'energie Atomique Process for the transfer of a thin film
WO2011023905A1 (fr) 2009-08-26 2011-03-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de détachement par fracture d'un film mince de silicium mettant en oeuvre une triple implantation
US7960248B2 (en) 2007-12-17 2011-06-14 Commissariat A L'energie Atomique Method for transfer of a thin layer
US8048766B2 (en) 2003-06-24 2011-11-01 Commissariat A L'energie Atomique Integrated circuit on high performance chip
US8142593B2 (en) 2005-08-16 2012-03-27 Commissariat A L'energie Atomique Method of transferring a thin film onto a support
US8252663B2 (en) 2009-06-18 2012-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer
US8309431B2 (en) 2003-10-28 2012-11-13 Commissariat A L'energie Atomique Method for self-supported transfer of a fine layer by pulsation after implantation or co-implantation
US8389379B2 (en) 2002-12-09 2013-03-05 Commissariat A L'energie Atomique Method for making a stressed structure designed to be dissociated
US8664084B2 (en) 2005-09-28 2014-03-04 Commissariat A L'energie Atomique Method for making a thin-film element
US8778775B2 (en) 2006-12-19 2014-07-15 Commissariat A L'energie Atomique Method for preparing thin GaN layers by implantation and recycling of a starting substrate

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748851B1 (fr) 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
JP4730581B2 (ja) * 2004-06-17 2011-07-20 信越半導体株式会社 貼り合わせウェーハの製造方法
FR2886051B1 (fr) 2005-05-20 2007-08-10 Commissariat Energie Atomique Procede de detachement d'un film mince
DE102005052357A1 (de) 2005-09-01 2007-03-15 Osram Opto Semiconductors Gmbh Verfahren zum lateralen Zertrennen eines Halbleiterwafers und optoelektronisches Bauelement
FR2898431B1 (fr) * 2006-03-13 2008-07-25 Soitec Silicon On Insulator Procede de fabrication de film mince
KR101484296B1 (ko) * 2007-06-26 2015-01-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 기판의 제작방법
FR2922359B1 (fr) * 2007-10-12 2009-12-18 Commissariat Energie Atomique Procede de fabrication d'une structure micro-electronique impliquant un collage moleculaire
US8741740B2 (en) * 2008-10-02 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
US7927975B2 (en) * 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
US20110207306A1 (en) * 2010-02-22 2011-08-25 Sarko Cherekdjian Semiconductor structure made using improved ion implantation process
US8673733B2 (en) 2011-09-27 2014-03-18 Soitec Methods of transferring layers of material in 3D integration processes and related structures and devices
TWI573198B (zh) * 2011-09-27 2017-03-01 索泰克公司 在三度空間集積製程中轉移材料層之方法及其相關結構與元件
FR2981501B1 (fr) * 2011-10-17 2016-05-13 Soitec Silicon On Insulator Procédé de transfert de couches matériau dans des processus d’intégration 3d et structures et dispositifs associes
US8841742B2 (en) 2011-09-27 2014-09-23 Soitec Low temperature layer transfer process using donor structure with material in recesses in transfer layer, semiconductor structures fabricated using such methods
FR2988516B1 (fr) * 2012-03-23 2014-03-07 Soitec Silicon On Insulator Procede d'implantation de fragilisation de substrats ameliore
US9281233B2 (en) * 2012-12-28 2016-03-08 Sunedison Semiconductor Limited Method for low temperature layer transfer in the preparation of multilayer semiconductor devices
JP2014138152A (ja) * 2013-01-18 2014-07-28 Fuji Electric Co Ltd 半導体薄膜フィルムの製造方法
CN104143496B (zh) * 2013-05-08 2016-12-28 中国科学院上海高等研究院 一种基于层转移的晶硅薄膜的制备方法
WO2015034118A1 (fr) * 2013-09-09 2015-03-12 Yoo Bong Young Procédé de pelage de surface de substrat de silicium
WO2015119742A1 (fr) * 2014-02-07 2015-08-13 Sunedison Semiconductor Limited Procédés de préparation de structures à semi-conducteur en couches
CN104979425B (zh) * 2014-04-09 2017-03-15 中国科学院上海高等研究院 一种应用于层转移薄膜生长的籽晶阵列的制备方法
US10546915B2 (en) 2017-12-26 2020-01-28 International Business Machines Corporation Buried MIM capacitor structure with landing pads
KR102562239B1 (ko) 2018-04-27 2023-07-31 글로벌웨이퍼스 씨오., 엘티디. 반도체 도너 기판으로부터의 층 전이를 용이하게 하는 광 지원형 소판 형성
CN112262467A (zh) * 2018-06-08 2021-01-22 环球晶圆股份有限公司 将硅薄层移转的方法
FR3091620B1 (fr) * 2019-01-07 2021-01-29 Commissariat Energie Atomique Procédé de transfert de couche avec réduction localisée d’une capacité à initier une fracture
WO2023058355A1 (fr) 2021-10-06 2023-04-13 信越半導体株式会社 Procédé pour la formation d'un film hétéroépitaxial

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786801A1 (fr) * 1996-01-25 1997-07-30 Commissariat A L'energie Atomique Procédé de transfert d'une couche mince d'un substrat initial sur un substrat final
EP0801419A1 (fr) * 1996-04-11 1997-10-15 Commissariat A L'energie Atomique Procédé d'obtention d'un film mince de matériau semiconducteur comprenant notamment des composants électroniques
JPH1187668A (ja) * 1997-09-04 1999-03-30 Mitsubishi Materials Shilicon Corp Soi基板の製造方法
FR2773261A1 (fr) * 1997-12-30 1999-07-02 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
FR2774510A1 (fr) * 1998-02-02 1999-08-06 Soitec Silicon On Insulator Procede de traitement de substrats, notamment semi-conducteurs
WO2000063965A1 (fr) * 1999-04-21 2000-10-26 Silicon Genesis Corporation Procede de traitement de couche clivee pour la fabrication de substrats
US6150239A (en) * 1997-05-31 2000-11-21 Max Planck Society Method for the transfer of thin layers monocrystalline material onto a desirable substrate

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028149A (en) * 1976-06-30 1977-06-07 Ibm Corporation Process for forming monocrystalline silicon carbide on silicon substrates
DE2849184A1 (de) * 1978-11-13 1980-05-22 Bbc Brown Boveri & Cie Verfahren zur herstellung eines scheibenfoermigen silizium-halbleiterbauelementes mit negativer anschraegung
US4956698A (en) * 1987-07-29 1990-09-11 The United States Of America As Represented By The Department Of Commerce Group III-V compound semiconductor device having p-region formed by Be and Group V ions
DE59209470D1 (de) * 1991-06-24 1998-10-01 Siemens Ag Halbleiterbauelement und Verfahren zu seiner Herstellung
FR2681472B1 (fr) * 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
JP3416163B2 (ja) * 1992-01-31 2003-06-16 キヤノン株式会社 半導体基板及びその作製方法
US5424863A (en) * 1993-09-23 1995-06-13 Ael Industries, Inc. Dual-polarization fiber optic communications link
FR2715501B1 (fr) * 1994-01-26 1996-04-05 Commissariat Energie Atomique Procédé de dépôt de lames semiconductrices sur un support.
JP3381443B2 (ja) * 1995-02-02 2003-02-24 ソニー株式会社 基体から半導体層を分離する方法、半導体素子の製造方法およびsoi基板の製造方法
CN1132223C (zh) * 1995-10-06 2003-12-24 佳能株式会社 半导体衬底及其制造方法
FR2748850B1 (fr) * 1996-05-15 1998-07-24 Commissariat Energie Atomique Procede de realisation d'un film mince de materiau solide et applications de ce procede
FR2748851B1 (fr) * 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
US6127199A (en) * 1996-11-12 2000-10-03 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
SG65697A1 (en) * 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
KR100232886B1 (ko) * 1996-11-23 1999-12-01 김영환 Soi 웨이퍼 제조방법
FR2756847B1 (fr) * 1996-12-09 1999-01-08 Commissariat Energie Atomique Procede de separation d'au moins deux elements d'une structure en contact entre eux par implantation ionique
DE19653831A1 (de) * 1996-12-21 1998-06-25 Bosch Gmbh Robert Elektrisches Gerät
US6155909A (en) * 1997-05-12 2000-12-05 Silicon Genesis Corporation Controlled cleavage system using pressurized fluid
US5877070A (en) * 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
US6534380B1 (en) * 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
US6103599A (en) * 1997-07-25 2000-08-15 Silicon Genesis Corporation Planarizing technique for multilayered substrates
FR2767416B1 (fr) * 1997-08-12 1999-10-01 Commissariat Energie Atomique Procede de fabrication d'un film mince de materiau solide
US5920764A (en) * 1997-09-30 1999-07-06 International Business Machines Corporation Process for restoring rejected wafers in line for reuse as new
JP2998724B2 (ja) * 1997-11-10 2000-01-11 日本電気株式会社 張り合わせsoi基板の製造方法
US6071795A (en) * 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
JPH11307747A (ja) * 1998-04-17 1999-11-05 Nec Corp Soi基板およびその製造方法
US5909627A (en) * 1998-05-18 1999-06-01 Philips Electronics North America Corporation Process for production of thin layers of semiconductor material
US6054370A (en) * 1998-06-30 2000-04-25 Intel Corporation Method of delaminating a pre-fabricated transistor layer from a substrate for placement on another wafer
US6271101B1 (en) * 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
FR2784795B1 (fr) * 1998-10-16 2000-12-01 Commissariat Energie Atomique Structure comportant une couche mince de materiau composee de zones conductrices et de zones isolantes et procede de fabrication d'une telle structure
US6346458B1 (en) * 1998-12-31 2002-02-12 Robert W. Bower Transposed split of ion cut materials
JP4379943B2 (ja) * 1999-04-07 2009-12-09 株式会社デンソー 半導体基板の製造方法および半導体基板製造装置
US6323108B1 (en) * 1999-07-27 2001-11-27 The United States Of America As Represented By The Secretary Of The Navy Fabrication ultra-thin bonded semiconductor layers
FR2797347B1 (fr) * 1999-08-04 2001-11-23 Commissariat Energie Atomique Procede de transfert d'une couche mince comportant une etape de surfragililisation
US6263941B1 (en) * 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
JP3975634B2 (ja) * 2000-01-25 2007-09-12 信越半導体株式会社 半導体ウェハの製作法
AU2001254866A1 (en) * 2000-04-14 2001-10-30 S.O.I.Tec Silicon On Insulator Technologies Method for cutting out at least a thin layer in a substrate or ingot, in particular made of semiconductor material(s)
FR2809867B1 (fr) * 2000-05-30 2003-10-24 Commissariat Energie Atomique Substrat fragilise et procede de fabrication d'un tel substrat
US6600173B2 (en) * 2000-08-30 2003-07-29 Cornell Research Foundation, Inc. Low temperature semiconductor layering and three-dimensional electronic circuits using the layering
FR2818010B1 (fr) * 2000-12-08 2003-09-05 Commissariat Energie Atomique Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses
US6774010B2 (en) * 2001-01-25 2004-08-10 International Business Machines Corporation Transferable device-containing layer for silicon-on-insulator applications
FR2823373B1 (fr) * 2001-04-10 2005-02-04 Soitec Silicon On Insulator Dispositif de coupe de couche d'un substrat, et procede associe
US6759282B2 (en) * 2001-06-12 2004-07-06 International Business Machines Corporation Method and structure for buried circuits and devices
US6593212B1 (en) * 2001-10-29 2003-07-15 The United States Of America As Represented By The Secretary Of The Navy Method for making electro-optical devices using a hydrogenion splitting technique
FR2834820B1 (fr) * 2002-01-16 2005-03-18 Procede de clivage de couches d'une tranche de materiau
US6607969B1 (en) * 2002-03-18 2003-08-19 The United States Of America As Represented By The Secretary Of The Navy Method for making pyroelectric, electro-optical and decoupling capacitors using thin film transfer and hydrogen ion splitting techniques
US6767749B2 (en) * 2002-04-22 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786801A1 (fr) * 1996-01-25 1997-07-30 Commissariat A L'energie Atomique Procédé de transfert d'une couche mince d'un substrat initial sur un substrat final
EP0801419A1 (fr) * 1996-04-11 1997-10-15 Commissariat A L'energie Atomique Procédé d'obtention d'un film mince de matériau semiconducteur comprenant notamment des composants électroniques
US6150239A (en) * 1997-05-31 2000-11-21 Max Planck Society Method for the transfer of thin layers monocrystalline material onto a desirable substrate
JPH1187668A (ja) * 1997-09-04 1999-03-30 Mitsubishi Materials Shilicon Corp Soi基板の製造方法
FR2773261A1 (fr) * 1997-12-30 1999-07-02 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
FR2774510A1 (fr) * 1998-02-02 1999-08-06 Soitec Silicon On Insulator Procede de traitement de substrats, notamment semi-conducteurs
WO2000063965A1 (fr) * 1999-04-21 2000-10-26 Silicon Genesis Corporation Procede de traitement de couche clivee pour la fabrication de substrats

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AGARWAL A ET AL: "EFFICIENT PRODUCTION OF SILICON-ON-INSULATOR FILMS BY CO- IMPLANTATION OF HE+ WITH H+", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 72, no. 9, 2 March 1998 (1998-03-02), pages 1086 - 1088, XP000742819, ISSN: 0003-6951 *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 08 30 June 1999 (1999-06-30) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609514B2 (en) 1997-12-10 2013-12-17 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US7883994B2 (en) 1997-12-30 2011-02-08 Commissariat A L'energie Atomique Process for the transfer of a thin film
US8470712B2 (en) 1997-12-30 2013-06-25 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US7615463B2 (en) 2001-10-11 2009-11-10 Commissariat A L'energie Atomique Method for making thin layers containing microcomponents
US7176108B2 (en) 2002-11-07 2007-02-13 Soitec Silicon On Insulator Method of detaching a thin film at moderate temperature after co-implantation
US8389379B2 (en) 2002-12-09 2013-03-05 Commissariat A L'energie Atomique Method for making a stressed structure designed to be dissociated
US8048766B2 (en) 2003-06-24 2011-11-01 Commissariat A L'energie Atomique Integrated circuit on high performance chip
US8309431B2 (en) 2003-10-28 2012-11-13 Commissariat A L'energie Atomique Method for self-supported transfer of a fine layer by pulsation after implantation or co-implantation
US7772087B2 (en) 2003-12-19 2010-08-10 Commissariat A L'energie Atomique Method of catastrophic transfer of a thin film after co-implantation
US7323398B2 (en) 2004-09-21 2008-01-29 S.O.I.Tec Silicon On Insulator Technologies Method of layer transfer comprising sequential implantations of atomic species
WO2006032948A1 (fr) * 2004-09-21 2006-03-30 S.O.I.Tec Silicon On Insulator Technologies Procede d'obtention d'une couche mince par mise en oeuvre d'une co-implantation suivie d'une implantation
US8142593B2 (en) 2005-08-16 2012-03-27 Commissariat A L'energie Atomique Method of transferring a thin film onto a support
US8664084B2 (en) 2005-09-28 2014-03-04 Commissariat A L'energie Atomique Method for making a thin-film element
US7524736B2 (en) 2005-12-14 2009-04-28 Stmicroelectronics S.R.L. Process for manufacturing wafers usable in the semiconductor industry
EP1798764A1 (fr) * 2005-12-14 2007-06-20 STMicroelectronics S.r.l. Procédé de fabrication de plaquette utilisable dans l'industrie des semi-conducteurs
US7670930B2 (en) 2006-03-29 2010-03-02 Commissariat A L 'energie Atomique Method of detaching a thin film by melting precipitates
WO2008031980A1 (fr) * 2006-09-12 2008-03-20 S.O.I.Tec Silicon On Insulator Technologies Procede de transfert d'une couche a haute temperature
FR2905801A1 (fr) * 2006-09-12 2008-03-14 Soitec Silicon On Insulator Procede de transfert d'une couche a haute temperature
FR2907965A1 (fr) * 2006-10-27 2008-05-02 Soitec Silicon On Insulator Procede de traitement d'un substrat donneur pour la fabrication d'un substrat.
US8778775B2 (en) 2006-12-19 2014-07-15 Commissariat A L'energie Atomique Method for preparing thin GaN layers by implantation and recycling of a starting substrate
US7960248B2 (en) 2007-12-17 2011-06-14 Commissariat A L'energie Atomique Method for transfer of a thin layer
US8252663B2 (en) 2009-06-18 2012-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer
WO2011023905A1 (fr) 2009-08-26 2011-03-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de détachement par fracture d'un film mince de silicium mettant en oeuvre une triple implantation

Also Published As

Publication number Publication date
JP2011223011A (ja) 2011-11-04
KR101174594B1 (ko) 2012-08-16
AU2003292305A1 (en) 2004-06-03
KR20110048584A (ko) 2011-05-11
CN100587940C (zh) 2010-02-03
DE60332261D1 (de) 2010-06-02
FR2847075A1 (fr) 2004-05-14
FR2847075B1 (fr) 2005-02-18
TW200414320A (en) 2004-08-01
KR20050072793A (ko) 2005-07-12
ATE465514T1 (de) 2010-05-15
TWI323912B (en) 2010-04-21
KR101116540B1 (ko) 2012-02-28
US20070037363A1 (en) 2007-02-15
JP2006505941A (ja) 2006-02-16
EP1559138A1 (fr) 2005-08-03
CN1708844A (zh) 2005-12-14
JP5258146B2 (ja) 2013-08-07
EP1559138B1 (fr) 2010-04-21

Similar Documents

Publication Publication Date Title
EP1559138B1 (fr) Procede de formation d&#39;une zone fragile dans un substrat par co-implantation
EP1285461B1 (fr) Procede de fabrication d&#39;une couche mince
EP1010198B1 (fr) Procede de fabrication d&#39;un film mince de materiau solide
EP0963598B1 (fr) Procede pour le transfert d&#39;un film mince comportant une etape de creation d&#39;inclusions
EP1435111B1 (fr) Procede de fabrication de couches minces contenant des microcomposants
EP2102904B1 (fr) Procede de fabrication de couches minces de gan par implantation et recyclage d&#39;un substrat de depart
EP1354346B1 (fr) Procede de realisation d&#39;une couche mince impliquant l&#39;implantation d&#39;especes gazeuses
EP1299905B1 (fr) Procede de decoupage d&#39;un bloc de materiau et de formation d&#39;un film mince
EP1114446B1 (fr) Procede de realisation d&#39;une membrane mince
EP0898307B1 (fr) Procédé de traitement pour le collage moléculaire et le décollage de deux structures
EP1922752B1 (fr) Procede de report d&#39;une couche mince sur un support
WO2008031980A1 (fr) Procede de transfert d&#39;une couche a haute temperature
WO2001011667A1 (fr) Procede de transfert d&#39;une couche mince comportant une etape de surfragilisation
EP1721333A1 (fr) Technique d&#39;amelioration de la qualite d&#39;une couche mince prelevee
WO2009087290A1 (fr) Procédé de fabrication d&#39;une structure micro-électronique impliquant un collage moléculaire
EP1487012A2 (fr) Procédé de réalisation de structure hétérogène et structure obtenue par un tel procédé
FR2907966A1 (fr) Procede de fabrication d&#39;un substrat.
EP1631982B1 (fr) Procede d&#39;obtention d&#39;une couche tres mince par amincissement par auto-portage provoque
FR2924273A1 (fr) Procede de moderation de deformation
FR2921749A1 (fr) Procede de fabrication d&#39;une structure comprenant un substrat et une couche deposee sur l&#39;une de ses faces.
FR2849268A1 (fr) Procede de fabrication d&#39;un substrat demontable
FR3059149A1 (fr) Procede de fabrication d&#39;un film mince a base d&#39;inp ou de gaas

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1-2005-500813

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 20038A24380

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2004550719

Country of ref document: JP

Ref document number: 1020057008062

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003767871

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057008062

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003767871

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007037363

Country of ref document: US

Ref document number: 10534199

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10534199

Country of ref document: US