WO2004035287A1 - Method and device for manufacturing pipe member - Google Patents

Method and device for manufacturing pipe member Download PDF

Info

Publication number
WO2004035287A1
WO2004035287A1 PCT/JP2002/010752 JP0210752W WO2004035287A1 WO 2004035287 A1 WO2004035287 A1 WO 2004035287A1 JP 0210752 W JP0210752 W JP 0210752W WO 2004035287 A1 WO2004035287 A1 WO 2004035287A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
pipe member
curing
resin
layer
Prior art date
Application number
PCT/JP2002/010752
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Otani
Masashi Takiya
Atsushi Umino
Satoshi Makihara
Tetsuya Itagaki
Kazuaki Ishikawa
Yoshiyuki Saido
Original Assignee
Showa Highpolymer Co., Ltd.
Misawa Hobas Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co., Ltd., Misawa Hobas Co., Ltd. filed Critical Showa Highpolymer Co., Ltd.
Priority to AU2002335277A priority Critical patent/AU2002335277A1/en
Priority to PCT/JP2002/010752 priority patent/WO2004035287A1/en
Publication of WO2004035287A1 publication Critical patent/WO2004035287A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/04Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould
    • B29C41/042Rotational or centrifugal casting, i.e. coating the inside of a mould by rotating the mould by rotating a mould around its axis of symmetry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/34Component parts, details or accessories; Auxiliary operations
    • B29C41/36Feeding the material on to the mould, core or other substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/22Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers

Definitions

  • the present invention relates to a method for manufacturing a pipe member, a pipe member obtained therefrom, and a manufacturing apparatus for the pipe member. More specifically, the present invention relates to a method for efficiently producing a multilayer pipe member comprising a plastic, an inorganic filler and a fiber reinforced material by a combination of a centrifugal molding method and light irradiation, a multilayer pipe member obtained by this method, The present invention relates to an apparatus for manufacturing the multilayer pipe member.
  • a centrifugal molding method is known as one of the molding methods of the FRPM tube.
  • a mold in which the outer diameter of the pipe is fixed is rotated at a high speed, fibers, curable resin, aggregate, etc. are charged by a feeder (feeder), and the outer surface is formed by centrifugal force and heating.
  • This is a method for forming the FRP layer, the intermediate layer, the inner FRP layer, and the like.
  • the product is of high quality, with a maximum of about 70 G of gravity applied by high-speed rotation, making it difficult for air holes to be formed.
  • the structure consists of an outer protective layer, an outer FRP layer, a middle layer, an inner FRP layer, and an inner layer. Often it is a protective layer.
  • a conventional centrifugal molding method is described in, for example, Japanese Patent Application Laid-Open No. 2-11832 / 1990.
  • unsaturated polyester resin is mainly used as the thermosetting resin, and curing is performed by radical polymerization using a peroxide catalyst system.
  • cobalt is mixed in the resin to accelerate the curing, and when the resin is put into the rotating cylindrical mold, methyl-ketyl ketone peroxyside or the like is mixed at the tip of 50 to 8 Although it is heated and cured at about 0 ° C, it takes a long time to cure, and a process of removing the mold and performing a hard cure with warm water is essential.
  • molding by heat curing has limitations on the molding time and the shortening of the molding process, and it is difficult to further improve the molding cycle.
  • it is necessary to increase the degree of hardening of the inner surface protective layer because the corrosion resistance of the inner surface protective layer is particularly problematic. It was difficult to produce efficiently by the heating molding method.
  • An object of the present invention is to provide a method for efficiently producing a pipe member by a centrifugal molding method, and an apparatus used for the method. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the object can be achieved by curing a molding material containing a curable resin by a combination of centrifugal molding and light irradiation. I found it.
  • the present invention has been completed based on such findings.
  • a curable resin or a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material is put into a rotating centrifugal mold for a pipe member, and light is applied under a centrifugal force.
  • the pipe member is made of a curable resin and an inorganic filler and / or a fiber reinforced material.
  • the pipe member mainly comprises an outer protective layer, an outer FRP layer, a mortar layer, an inner FRP layer, and a curable resin obtained by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material.
  • the method for producing a pipe member according to the above (1) comprising an inner surface protective layer obtained by curing a molding material as a component, and forming all the layers by applying a single light irradiation while applying a centrifugal force.
  • the pipe member mainly comprises an outer protective layer, an outer FRP layer, a mortar layer, an inner FRP layer, and a curable resin obtained by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material.
  • the method comprises the steps of: forming an inner protective layer formed by curing a molding material as a component; and applying the molding material to a rotating centrifugal molding die for a pipe member while irradiating light, and curing to form each layer.
  • the curable resin in the molding material is: (a) a photopolymerization initiator sensitive to at least one region of ultraviolet light, visible light, and near-infrared light; (b) a general formula (I)
  • R 1 to R 4 each independently represent a halogen atom, a hydrocarbon group, an acyl group, a silyl group, or a heterocyclic group, and Z represents a cation.
  • An apparatus for manufacturing a pipe member comprising: a mechanism for supplying each component constituting a molding material; and a light irradiation mechanism.
  • FIG. 1 is a schematic diagram of a light-curing centrifugal molding apparatus manufactured in an example.
  • FIG. 2 is a schematic diagram of the light irradiation device manufactured in the example.
  • the method for manufacturing a pipe member of the present invention is obtained by combining a conventional centrifugal molding method with a method of curing by irradiation with light.
  • a mold (form) in which the outer diameter of the pipe is fixed is rotated at high speed, fibers, curable resin, aggregates, etc. are fed by a feeder (feeder), and the centrifugal force
  • the method of forming an outer FRP layer, a mortar layer, an inner FRP layer, and the like by heating is combined with a method of curing by irradiating light to the manufacturing method of the present invention.
  • the curable resin or the curable resin A molding material containing a resin, an inorganic filler, and Z or a fiber reinforced material is poured into a rotating centrifugal molding die for a pipe member, and is cured by light irradiation with a centrifugal force applied thereto.
  • a pipe member is manufactured.
  • the method of curing by irradiation with light in the present invention means that a photocurable resin and / or a thermosetting resin is used, and the photocuring is performed by light irradiation or the heat curing is performed using heat by light irradiation. Is the way.
  • each component used in the molding material will be described.
  • a resin in a curable resin used for light curing and heat curing a radical polymerization of an unsaturated polyester resin, a butyl ester resin, a urethane (meth) acrylate resin, etc., which cures quickly. Sex resin.
  • the unsaturated polyester resin is a polymerizable monomer such as styrene, which is obtained by condensing a product (unsaturated polyester) obtained by an esterification reaction between a polyhydric alcohol and an unsaturated polybasic acid (and, if necessary, a saturated polybasic acid). It is dissolved in one and is described in "Polyester Resin Handbook” (Nikkan Kogyo Shimbun, published in 1988) or "Paint Glossary” (edited by Coloring Material Association, published in 1993). Resin.
  • the unsaturated polyester used as a raw material for the unsaturated polyester resin may be one produced by a known method. Specifically, a polybasic acid having no polymerizable unsaturated bond such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, sebacic acid or an anhydride thereof and fumaric acid, maleic acid, A polymerizable unsaturated polybasic acid such as itaconic acid or its anhydride is used as the acid component, and Glycol, propylene glycol, methylen glycol, dipropylene glycol,, '1,2-butanediol, 1,3-butanediol, 1,5-pentendiol, 1,6-hexanediol, 2-methyl-1- , 3—Pronondiol, 2,2—Dimethyl-1,3-propanediol, Cyclohexane-1,4, -Dimethanol, Ethy
  • Bull ester resin also called epoxyacrylate resin
  • a compound with a polymerizable unsaturated bond (Bullester) dissolved in a polymerizable monomer such as styrene which is called “Polyester Resin Handbook” (published by Nikkan Kogyo Shimbun, 1988) or This is a resin described in the “Paint Glossary” (edited by The Color Materials Association, published in 1993).
  • Bull ester used as a raw material of the bullet ester resin is manufactured by a known method, and an unsaturated monobasic acid such as acrylic acid or methacrylic acid is added to an epoxy resin.
  • Examples of the epoxy resin as a raw material include bisphenol diglycidyl ether and its high molecular weight homologues, and novolak type polyglycidyl ethers.
  • a dicarboxylic acid having no active unsaturated group for example, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, Sebacic acid and the like.
  • the unsaturated dicarboxylic acid include dicarboxylic acids having an active unsaturated group, such as fumaric acid, maleic acid, maleic anhydride, and itaconic acid.
  • Polyhydric alcohol components include, for example, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,5-pentanedole, 1,6-I-hexanediol, 2-Methyl_1,3-propanediol, 2,2-Dimethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, Bisphenol A ethylene oxide adduct And polyhydric alcohols such as propylene oxide adduct of bisphenol A.
  • Glycidyl methacrylate is a typical example of the ⁇ , S-unsaturated carboxylate having an epoxy group used in the production of the polyester (meta) acrylate.
  • the unsaturated polyester used for the unsaturated polyester resin and the vinyl ester used for the vinyl ester resin those having a relatively high degree of unsaturation are preferable, and the unsaturated group equivalent (e.g., per unsaturated group) Having a molecular weight of about 100 to 800. Those having an unsaturated group equivalent of less than 100 cannot be easily synthesized. On the other hand, when the unsaturated group equivalent exceeds 800, it is difficult to obtain a cured product having high hardness.
  • Urethane (meth) acrylate resin is a resin in which urethane (meta) acrylate is dissolved in a polymerizable monomer such as styrene.
  • the urethane (meth) acrylate used for the urethane (meth) acrylate resin is not particularly limited.
  • a reaction between a polyisocyanate and a polyhydroxy compound or a polyhydric alcohol is performed.
  • a radically polymerizable unsaturated group-containing oligomer which can be obtained by reacting a hydroxyl group-containing (meth) acrylic compound and, if necessary, a hydroxyl group-containing aryl ether compound after the reaction. Further, after reacting the hydroxyl group-containing (meth) acryl compound with the polyhydroxy compound or the polyhydric alcohol, the polyisocyanate may be further reacted.
  • polyisocyanate used as a raw material of the urethane (meta) acrylate include 2,4-tolylenedienyl succinate and its isomers, diphenylmethandiyl Sociate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, dicyclohexyl methane diisocyanate, naphthalene diisocyanate Refenyl Methane Lithocyanate, Banoc D-750, Chris Bon NK (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Test Module L (trade name: Sumitomo Bayer Corporation) Retan Co., Ltd.), Coronate L (trade name: Nippon Polyurethane Industry Co., Ltd.), Takenate D 102 (trade name) : Takeda Pharmaceutical Co., Ltd.), Isonate 144 L (trade name: Mitsubishi
  • polyhydroxy compound used as a raw material for the urethane (meta) acrylate examples include polyester polyol, polyether polyol, and the like.
  • glycerin-ethylene oxide Adduct glycerin-propylene oxide adduct, glycerin-tetrahydrofuran adduct, glycerin-ethyleneoxy-doped propylene oxide adduct, trimethylolpropane-ethylenoxide adduct Trimethylolpropane-propylene oxide adduct, trimethylolpropane-tetrahydrofuran adduct, trimethylopropane L-Ethyleneoxy-d-propylene oxide adduct dipentaethritol-ethylene-oxide adduct, dipentaethritol-l-propylene oxide adduct, dipentaethritol-l-lute tetrahydrofuran adduct dip
  • polyhydric alcohols used as a raw material of the urethane (meth) acrylate include ethylene glycol, ethylene glycol, triethylene glycol, and polyethylene glycol.
  • One of these polyhydric alcohols may be used alone, or two or more of them may be used as appropriate.
  • the hydroxyl group-containing (meth) acrylic compound used as a raw material of the urethane (meta) acrylate is not particularly limited. Preference is given to lylic acid esters, specifically, for example, 2-hydroxyhydryl (meta) acrylate, 2-hydroxypropyl (meta) acrylate, 3-hydroxybutyl (meta) Acrylate, polyethylene glycol mono (meta) acrylate, polypropylene glycol mono (meta) acrylate And di (meth) acrylate of tris (hydroxyxethyl) isosianuric acid, and pentaethritol tri (meth) atalylate.
  • lylic acid esters specifically, for example, 2-hydroxyhydryl (meta) acrylate, 2-hydroxypropyl (meta) acrylate, 3-hydroxybutyl (meta) Acrylate, polyethylene glycol mono (meta) acrylate, polypropylene glycol mono (meta) acrylate And di (meth) acryl
  • Examples of the hydroxyl group-containing aryl compound that is used as necessary as a raw material of the above-mentioned ethane (meta) acrylate include, for example, ethylene glycol monoaryl ether and diethylene glycol. Coal monolinole ether, triethylen glycol monoalkyl ether, polyethylene glycol monoaryl ether, propylene glycol monoaryl ether, dipropylene glycol monoaryl ether, tripropylene glycol monoaryl ether, polypropylene glycol Lumonoaryl ester, 1,2—butylene glycol monoaryl ester, 1,3—butylene glycol monoaryl ether, hexylene glycol alcohol monoaryl ether, octylene glycol alcohol Examples thereof include, but are not particularly limited to, trimethylolpropanediyl ether, glycerindiyl cellulose, pentaethritol triaryl ether and the like.
  • Unsaturated polyester resins, butylester resins, urethane (meth) acrylate resins, and the like used in the present invention are usually the aforementioned unsaturated polyesters, vinyl esters, and urethane (meta) acrylates.
  • a styrene monomer blended with a resin or the like according to the present invention has a kneadability with a fiber reinforcing material and a filler when a composite material is produced. It is important to increase impregnation and to improve the hardness, strength, chemical resistance, water resistance, etc. of molded products.
  • Styrene-based monomers such as styrene, butyltoluene, dibutylbenzene, etc., methyl (meth) acrylate, ethyl (meth) acrylate, ethylene glycol (meta) acrylate, etc. It is also possible to use the polymerizable monomer in place of the one that does not impair the gist of the present invention.
  • the curable resin used as one component of the molding material is selected from the above-mentioned unsaturated polyester resin, vinyl ester resin, and urethane (meth) acrylate resin.
  • At least one containing at least one polymerization initiator selected from the following (a) a photopolymerization initiator, (b) a polymerization initiator, and (c) an organic peroxide catalyst Can be mentioned favorably.
  • light in the range from ultraviolet light to near-infrared light can be used, and it is particularly preferable to use light in the wavelength range of visible light and near-infrared light.
  • Ultraviolet light refers to light in the wavelength range from 280 to 380 nm
  • visible light refers to light in the wavelength range from 380 to 780 nm
  • near-infrared light refers to light in the wavelength range from 780 to 1200 nm.
  • a compound having photosensitivity in at least one region selected from an ultraviolet region, a visible region, and a near-infrared region can be used.
  • Examples of the ultraviolet polymerization initiator having photosensitivity in the ultraviolet region include benzoins, acetophenones, anthraquinones, thioxanthones, and benzophenones.
  • benzoin Derivatives such as benzoin, benzoin methyl ether, benzoin isopropyl ether, etc .; Derivatives such as 2,2-dimethoxy-2-phenylphenyltophenone, and derivatives of anthraquinones, such as 2-methylanthraquinone, 2-chloroanthraquinone, 2-ethylanthraquinone, and 2-tert-butylanthraquinone; Derivatives such as thioxanthone and 2,54-dimethylthioxanthone; benzophenones; benzophenone, 4-benzylyl 4'-methyldiphenylsulfide; and 4,4 'dichloromouth benzophenone , N
  • Curing using ultraviolet light is advantageous for drying the surface, but because of its low light transmittance, it is desirable to use a resin that has a relatively long wavelength, and preferably has a photosensitivity in a wavelength range of 300 nm or more.
  • a (bis) acyl phosphoxide photopolymerization initiator having photosensitivity even in the visible light region.
  • Specific examples of the (bis) isacylphosphine oxide compound include 2,4,6-trimethylbenzoyldiphenylphosphine chloride, and 2,6-diphenylbenzoyl-diphenylphosphide. Phenylxide, 2,6—Dimethoxybenzoyl diphenyl phosphine, 2,3,5,6—Tetramethyl benzoyl diphenyl phosphine
  • 2-hydroxy-2-methyl-1-phenylpropan-1-one (trade name: Darocur 117, Chivas Special 5 manufactured by TI Chemicals Co., Ltd.) and bis (2,6-dimension) Toloxybenzoyl) 1,2,4,4-Trimethylpentylphosphine oxide (manufactured by Ciba Specialty Chemicals Co., Ltd.) mixed at a ratio of 75% / 25% 0 (Ciba Specialty—Chemicals Co., Ltd.), 1-Hydroxy-cyclohexylfluoroe
  • TP ⁇ BASF Corporation
  • 2-hydroxy-1-2-methyl-1-phenylpropane-1-one trade name: Darocurll 73, Ciba Specialty Chemicals Co., Ltd.
  • 2, 4 , 6 Trimethylbenzoyldiphenylphosphinoxide (trade name: Lu5cirin TP0, manufactured by BASF Corporation) mixed at a ratio of 50% / 50%: D arocur 4 2 6 5 and the like.
  • Examples of visible light polymerization initiators having photosensitivity in the visible light region include “Surface”, Vol. 27 (7), pp. 548 (1989), Campaquinone, Benzyl, Trimethylbenzoyldiphenylphosphine Oxide, Methylthioxanthone, and Bispentazione described in the 3rd Annual Meeting of the Polymer Material Forum, 1 BP 18 (1994). Alone such as phenyltitanium di (pentafluorophenyl)
  • organic peroxides / dyes In addition to the visible light polymerization initiator, organic peroxides / dyes, difuninyl donium salts / dyes, bimidazole / keto compounds, hexylbiimidazole compounds / hydrogen donating compounds Mercaptobenzothiazole / thiopyridium salt system, metal arene / cyanine dye system, and hexaryl ruby 10 imidazole / radical generator system described in Japanese Patent Publication No. 45-377377. And other known complex initiators and (bis) acylphosphinoxide compounds.
  • Examples of the near-infrared light polymerization initiator having photosensitivity in the near-infrared light region include a cationic dye having an absorption in the near-infrared light region represented by the general formula (1II),
  • D + is at least a kind of methine, polymethine, cyanine, xanthene, oxazine, thiazine, arylmethane or pyridium dye cation having sensitivity to visible light or near infrared light, A— represents various anions.
  • R 1 to R 4 each independently represent a halogen atom, a hydrocarbon group 25, an acyl group, a silyl group or a heterocyclic group, and Z represents a cation.
  • a hydrocarbon group 25 an acyl group, a silyl group or a heterocyclic group
  • Z represents a cation.
  • the hydrocarbon group among R 1 to R 4 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, and the like.
  • the group, silyl group and heterocyclic group may have a suitable substituent.
  • the amount of the photopolymerization initiator (a) to be added is generally 0.1 to 7 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the resin. If the amount of the photopolymerization initiator is less than the above lower limit, curing may not proceed sufficiently. If the amount exceeds the above upper limit, it is economically disadvantageous and causes deterioration of the physical properties of the cured product. .
  • Examples of the photo-curable resin used in the present invention include, as unsaturated polyester resins, Rigoluck LC-1 110 and Rigoluck LC-1 manufactured by Showa Polymer Co., Ltd. There are LC series such as 550, vinyl ester resin manufactured by Showa Kagaku Co., Ltd., trade name: Lipoxy LC-720, Lipoxy LC-740, Lipoxy LC-760.
  • an organic peroxide catalyst or another redox catalyst can be used for a resin that is thermally cured by using heat of light irradiation in the present invention.
  • Organic peroxide catalysts may be used, but from the viewpoint of mild curing and safety, it is preferable to use redox catalysts other than organic peroxides.
  • An example thereof is a polymerization initiator comprising a combination of an organic boron compound as the component (b), an acidic compound, and an optionally used hexarylubimidazole compound. By contacting the organic boron compound with the acidic compound, the organic boron compound is decomposed and radicals are generated.
  • organic boron compound a compound represented by the general formula (I) can be used.
  • Examples of the cation “Z” in the general formula (I) include a quaternary ammonium cation, a quaternary pyridinium cation, and a quinoline cation that are insensitive to visible light and near-infrared light.
  • Diazonium Metal cations such as cations, tetrazonium cations, phosphonium cations, (oxo) sulfonium cations, sodium, potassium, lithium, magnesium, calcium, etc., flabbium, villanium (Organic) compounds having a cation charge on oxygen atoms such as salts, carbon cations such as trovinyl and cyclopropyl, halogen cations such as iodonium, arsenic, cobalt, palladium, chromium, titanium and tin And cations of metal compounds such as antimony.
  • Diazonium Metal cations such as cations, tetrazonium cations, phosphonium cations, (oxo) sulfonium cations, sodium, potassium, lithium, magnesium, calcium, etc., flabbium, villanium (Organic) compounds having a cation charge on oxygen atoms such as salts, carbon cations such
  • the acidic compound used in the present invention is, for example, an inorganic acid generally known as Brenstead acid, such as hydrochloric acid, sulfuric acid, nitric acid, or an organic acid such as acetic acid, propionic acid, maleic acid, or the like.
  • examples include carboxylic acids such as adipic acid, (meth) acrylic acid, benzoic acid, and phthalic acids, and sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, and trifluoromethansulfonic acid.
  • compounds having a hydroxyl group such as phenols and alcohols, compounds having a mercapto group such as various thiols, and substances capable of forming a covalent bond by receiving an electron pair known as a Lewis acid, for example, aluminum chloride , Stannic chloride, boron trichloride, boron tribromide and the like can be used.
  • Lewis acid for example, aluminum chloride , Stannic chloride, boron trichloride, boron tribromide and the like.
  • a substance having an acidic active site on a solid surface such as an acidic ion exchange resin, carbon black, and alumina, or an acidic gas compound such as hydrogen chloride or sulfurous acid gas can also be used.
  • acidic compounds having a polymerizable unsaturated group such as (anhydride) maleic acid, fumaric acid, or their polyesters, (meth) acrylic acid, itaconic acid, etc. Oligomers or polymers having such functional groups are suitable.
  • the substance itself is not an acidic substance, but is decomposed or reacted by the action of heating, moisture in the air, oxygen, etc. to generate acidic compounds.
  • the compound also corresponds to the latent acidic compound of the present invention.
  • a substance which is decomposed by light irradiation to generate an acidic compound is also known.
  • a compound called a photo-induced polymerization initiator also corresponds to the photolatent acidic compound of the present invention.
  • Various compounds such as diazonium compounds, sulfonium compounds, oxide compounds, and metal complex compounds are known as the light-powered thione initiator.
  • compounds that generate an acid by light or heat are considered in consideration of availability, economy, stability in a composition, operability, and the like. Desirable. More preferred are thermal acid-generating compounds, and in particular, organic sulfonium compounds that decompose by heating to generate an acid.
  • Organic sulfonium compounds are generally composed of an ion pair of a sulfonium cation moiety having three substituents (such as an alkyl group and an aryl group) and an anion as a counter ion.
  • at least one of the substituents of the sulfonium salt is an aryl group such as a (substituted) phenyl group or a (substituted) naphthyl group. It is desirable that For example, sulfonium compounds having a cation moiety, such as trisulfonium and diphenylmethylsulfonium, may be mentioned.
  • the organic boron compound and the acidic compound come into contact with each other at the time of compounding the initiator. It is desirable to use a compound that generates an acidic compound when stimulated by heat or light.
  • the composition ratio of the organic boron compound and the (latent) acidic compound in the polymerization initiator is usually 0.1 / 5 to 5 / 0.1, preferably 0.5 / 5 to 5 / 0.5 by weight. It is.
  • Organic boron compounds and / or (latent) acids If the amount of the acidic compound is less than this ratio, curing may not proceed sufficiently, and if the amount of the organic boron compound and / or the (latent) acid compound is greater than this ratio, the economy may increase. This is disadvantageous in terms of physical properties and causes the deterioration of the physical properties of the hardened material.
  • the (anhydrous) maleic acid, fumaric acid, or their polyester or (meta) aryl contained in the unsaturated polyester resin or vinyl ester resin may be used.
  • the acid value of the unsaturated polyester resin or the butyl ester resin is preferably 0.1 to 100 mgKOH / g, more preferably 5 to 5 Omg KOH / g.
  • the amount of the heavy is initiator which is a combination of an organic boron compound and a (latent) acidic compound, is usually 0.1 to 7 parts by weight, preferably 0.5 to 100 parts by weight, based on 100 parts by weight of the resin. 5 parts by weight. If the amount of the polymerization initiator is too small, curing may not proceed sufficiently, and if the amount of the polymerization initiator is too large, it is economically disadvantageous and the cured product This may cause deterioration of the physical properties of the material.
  • the above-mentioned organic boron compound and the acidic compound may be further added to the general formula (II)
  • hexarylbimidazole examples include bis (2,4,5—triphenyl) imidazole and bis (2-0—chloromethylphenyl4,5—diphenyl) imidazo. And bis (2--0, p-dichlorophenyl 4,5-diphenyl) imidazole, and bis (2-0-bromophenyl-4,5-diphenyl) imidazole.
  • hexarylbimidazole include bis (2,4,5—triphenyl) imidazole and bis (2-0—chloromethylphenyl4,5—diphenyl) imidazo.
  • a detailed description of hexarylbimidazole is found in Japanese Patent Publication No. 41-35545.
  • the amount of the hexarybiimidazole compound to be added is usually 0.05 to 5 parts by weight, preferably 0.1 to 5 parts by weight, based on 1.0 parts by weight of the total amount of the organic boron compound and the (latent) acidic compound. 1 to 3 parts by weight. If the added amount is too large, it is economically disadvantageous and may cause poor dissolution.
  • organic peroxide catalyst of the component (c) examples include, for example, Benzoylpa 1-year-old cysteine, dicumylperoxide, di-sopropylperoxide, g-t-butyl peroxide, and t-butyl-peroxy benzoate.
  • the well-known combination of ketonpoxide and a reducing agent, the combination of hydroperoxide and a reducing agent, and the combination of diasilver oxide and a reducing agent 5 can also be used.
  • the reducing agent include cobalt salts such as cobalt naphthenate and cobalt octylate, vanadium compounds such as vanadium pentoxide and the like, and amines such as dimethylaniline and the like.
  • the inorganic filler 10 used as one component of the molding material includes, for example, aluminum hydroxide, calcium carbonate, talc, clay, glass powder, silica, barium sulfate, titanium oxide, Known materials such as sand and cement are exemplified. These inorganic fillers can be used in combination of two or more kinds.
  • It is usually from 100 to 500 parts by weight, preferably from 50 to Is300 parts by weight, based on 100 parts by weight.
  • an organic filler may be added.
  • This organic filler is known and has an effect as a low-shrinking agent.
  • pigments can be used in the present invention. There is no particular restriction on the type, and organic pigments and inorganic pigments can be used.
  • the fiber reinforcing material used as one component of the molding material is an inorganic and / or organic fiber, for example, glass fiber, carbon fiber
  • the light source used in the manufacturing method of the present invention may be a light source that emits light in a wavelength range of 280 nm to 1200 nm, but it is particularly necessary to transmit light deep into the FRP layer.
  • the light source preferably emits light in the wavelength range of 380 to 1200 nm.
  • Examples of light sources include high-pressure mercury lamps, ultra-high-pressure mercury lamps, mercury lamps, metal halide lamps, xenon lamps, near-infrared light lamps, sodium lamps, laser lamps, incandescent lamps, and sunlight lamps. it can. Also, various lamps can be used in combination.
  • a lamp in which light in the low-wavelength region having a high energy order is enhanced is effective, and a metal halide lamp and a halogen lamp are particularly preferable.
  • a lamp with enhanced light in the high wavelength region is effective.
  • the shape of the light source is not particularly limited as long as it can enter the mold and irradiate the rotating surface, and there is no particular limitation, but a rod-shaped type or an evening that can be fixed to a feeder is effective.
  • a method for forming the pipe member there are the following three modes for forming a pipe member. That is, a molding material containing an outer protective layer, an outer FRP layer, a mortar layer, an inner FRP layer, and a curable resin as main components obtained by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforcing material.
  • a method of forming each layer by hardening it by light irradiation while applying centrifugal force to form a multilayer pipe member consisting of a protective layer.
  • a mold (form) in which the outer diameter of the pipe is fixed is rotated at high speed, and the fiber strength is increased by a feeder.
  • a hardening resin, an inorganic filler, etc., and the outer protective layer, outer FRP layer, mortar layer, inner FRP layer, and inner protective layer are formed by centrifugal force. It is cured to form each layer.
  • the layers may be completely cured, or each layer may be cured so that it does not mix when the next layer is introduced from the feeder. It may be completely cured.
  • the thick layer may be cured in several steps, or two layers may be cured together.
  • the feature is that the resin in each layer can be prevented from being mixed by alternately repeating the feeding of the material from the feeder and the curing by light irradiation.
  • the curable resin to be used has a part that does not reach the light, so it is desirable to use a combination of light curing and heat curing.
  • only the inner surface protective layer need only be photocured.
  • a mold (mold) having a fixed outer diameter of the pipe is rotated at a high speed, and a fiber reinforcing material, a curable resin, an inorganic filler, and the like are charged by a feeder and centrifuged.
  • All the layers of the outer protective layer, the outer FRP layer, the mortar layer, the inner FRP layer, and the inner protective layer are molded with light, and all the layers are collectively cured to form each layer.
  • the reaction of the inner protective layer can proceed by photo-curing, and the inside proceeds mainly by thermo-curing.
  • the corrosion resistance can be improved.
  • the curable resin to be used only the inner surface protective layer may be photocured only, but the other layers are preferably thermoset or a combination of photocuring and thermosetting.
  • the outer layer does not require the use of photocuring in combination.
  • a mold (form) in which the outer diameter of the pipe is fixed is rotated at a high speed, and while irradiating light, a fiber reinforcing material, a curable resin, an inorganic filler, and the like are removed by a feeder. Throw in and out The surface protective layer, outer FRP layer, mortar layer, inner FRP layer and inner protective layer are continuously cured to form each layer.
  • This method (3) is the method that can be molded in the shortest time in the method of continuous molding. In this case, it is desirable to balance the light intensity and the material supply speed from the feeder so that curing proceeds after sufficient gravity is applied.
  • the curable resin used can be cured in a short time if it is photocurable, but it is desirable to use a combination of photocuring and thermal curing in order to expect post-curing. However, only the inner surface protective layer need only be photocured.
  • the intensity of the irradiated light is higher is desirable, for example if 4 0 0-1 0 0 0 illuminance in the wavelength range of nm is 5 0 m W / cm 2 or more, more preferably 1 0 0 m W / cm 2 or more is desirable. Since the light irradiation time varies depending on the pipe diameter and the construction method, it cannot be specified unconditionally, but it is sufficient if the total time is at least 30 minutes.
  • an apparatus used in the method for manufacturing a pipe member of the present invention is a centrifugal molding apparatus having a mechanism for supplying each component constituting the molding material and a light irradiation mechanism. Irradiation devices may be combined. Specifically, it is a device for supplying curable resin, organoboron compound, inorganic filler, and fiber reinforcement, and a centrifugal molding device for tube members equipped with a light irradiation device.
  • a peroxide or organoboron compound is mixed at the tip of the feeder with a resin to which a photoinitiator and a cobalt salt are added in advance or a resin to which a photoinitiator and an acidic compound are added. And supply it.
  • the light irradiation device may be of the type (A) that is inserted in place of the feeder, or may be of the type (B) attached to the feeder.
  • the type (A) has a shape in which a plurality of lamps with a reflector with a reflector are arranged on the circumference of a cylinder so that light can be irradiated on the entire inner surface of the mold. To irradiate light at once and harden further. Can be used for the method of
  • type (B) has a lamp attached to the tip of the feeder and its surroundings, or to the tip and all parts. It can be used for a continuous molding method.
  • Example 1 (light-curing centrifugal molding device)
  • a light-curing centrifugal molding apparatus shown in the schematic diagram of FIG. 1 was produced.
  • the photo-curing centrifugal molding machine has a function to mix an organoboron compound or a peroxide catalyst at the tip with a mold (form) 1 having an inner diameter of 60 Omm or 100 mm that can rotate at high speed.
  • Resin feeder 3, aggregate (sand) feeder 5, glass fiber feeder 7, and short-arc type 2kW meter is a feeder equipped with four lamps 8 .
  • Reference numeral 2 denotes a resin composition
  • 4 denotes an aggregate (sand)
  • 6 denotes a glass fiber.
  • the light irradiation device has a structure in which four bar-shaped 3 kW gallium lamps 10 are mounted on the circumference of a round bar 9 having a diameter of 300 mm 20 or 700 mm. .
  • Example 1 manufactured of composite tube
  • Unsaturated polyester resin 100, parts by weight, 2,2'-bis (0-chlorophenyl) 1,4,5,4 ', 5'-tetraphenyl 5-1,2' Bisimidazole [manufactured by Wako Pure Chemical Industries, Ltd.] 3.0 parts by weight and 1.5 parts by weight of 2-mercaptobenzothiazole and carbonic acid rusidium [manufactured by Bihoku Powder Chemical Industry Co., Ltd. Name: Softener 1200] 190 parts by weight was mixed to obtain a resin composition 1-2.
  • Vinyl ester resin [manufactured by Showa Polymer Co., Ltd., acid value 8 mg KOH / 10 g] 2,100'-bis (0-chlorophenyl) -1.4,5,4 ', 5' in 100 parts by weight Tetrafluo 1,2'-bisimidazole [manufactured by Wako Pure Chemical Industries, Ltd.] 3.0 parts by weight and 1.5 parts by weight of 2-mercaptobenzothiazole were added to the resin composition.
  • Tetrafluo 1,2'-bisimidazole manufactured by Wako Pure Chemical Industries, Ltd.
  • an organoboron compound for mixing at the tip, an organoboron compound; tetra-n-butylammonium.triphenyl-n-butylborate (manufactured by Showa Denko KK, hereinafter abbreviated as P3B) is N-methylpyrrolid. was dissolved in pyrrolidone were prepared initiator one 1 4 0 weight 0/0 solution.
  • the initiator 11 was charged with the resin 20 composition 11, the resin composition 11 and the resin composition 13, and simultaneously with the resin composition. An amount of 1.0% by weight was fed from the front end of the feeder.
  • the glass fiber was cut into 1-inch lengths using a glass opening (made by Nitto Boseki Co., Ltd., trade name: 425026 TX /).
  • a glass opening made by Nitto Boseki Co., Ltd., trade name: 425026 TX /.
  • For the sand we prepared JIS No. 4 mirror sand.
  • the centrifugal molding device prepared in Example 1 (Fig. 1) was used as the outer protective layer.
  • Short arc main Taruharai Doranpu a) is used without lighting, in which rotates the mold 2 5 0 rpm, the resin composition one 1 and sand the sand content 8 0 wt 0/0, the thickness was set to 1 mm.
  • the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light was irradiated for 3 minutes to cure.
  • the resin composition 12 and short glass fibers were placed on the outer protective layer, which is rotating the mold at 250 rpm as the outer FRP layer, with a glass content of 10% by weight and a thickness of 10% by weight. It was thrown so that it might be 5 mm.
  • the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light irradiation was performed for 10 minutes to cure.
  • the resin composition 12 and sand were mixed with a sand content of 70% by weight and a thickness of 4.5 mm. It was put so that.
  • the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light irradiation was performed for 10 minutes to cure.
  • a resin composition one 2 and short glass fibers, glass content 2 0 weight 0/0, the thickness was set to 4 mm.
  • the light irradiation device shown in FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 10 minutes to cure.
  • the resin composition 13 was poured onto the inner surface FRP layer rotating the mold at 250 rpm so as to have a thickness of 1 mm.
  • the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light irradiation was performed for 5 minutes to cure.
  • the centrifugal molding device prepared in Example 1 (Fig. 1) was used as the outer protective layer. ) was used without turning on the short-arc metal halide lamp, and while the mold was rotating at 250 rpm, the resin composition 11 and the sand had a sand content of 80% by weight and a thickness of 80% by weight. Was set to 1 mm. After insertion, the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light was irradiated for 3 minutes to cure.
  • the outer surface protective layer which rotates the mold and the outer surface FRP layer 2 5 0 rpm, one 2 and glass wool resin composition, glass content 2 0 weight 0/0, the thickness was introduced so as to be 8 mm.
  • the light irradiation device shown in FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 13 minutes to cure. .
  • the resin composition 11 and sand were mixed on the outer FRP layer, which is rotating the mold to 250 rm as a mortar layer, with a sand content of 70% by weight and a thickness of 7 mm. I put it in.
  • the light irradiator shown in Fig. 2 was inserted in place of the feeder, and light was irradiated for 13 minutes to cure.
  • the resin composition 12 and the short glass fiber are mixed with a glass content of 20% by weight and a thickness of 8%. mm.
  • the light irradiation device shown in FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 13 minutes to cure.
  • the resin composition-3 was poured onto the inner surface FRP layer rotating the mold at 250 rpm so as to have a thickness of 1 mm.
  • the light irradiator shown in Fig. 2 was inserted in place of the feeder, and light was irradiated for 5 minutes to cure.
  • Example 2 Using the same equipment and materials as in Example 2, the outer protective layer, outer FRP layer, mortar layer, inner FRP layer, and inner protective layer were first rotated at 250 rpm with the same configuration as in Example 2. In a mold. Next, the light irradiation device of FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 40 minutes to cure all the layers at once, and a composite tube similar to that of Example 2 (4) was formed.
  • Example 4 (Production of composite pipe)
  • each layer has the same configuration as in Example 2, the outer protective layer is 3 minutes, and the outer FRP layer is Each material was charged for 7 minutes, the mortar layer for 5 minutes, the inner FRP layer for 7 minutes, and the inner protective layer for 3 minutes, and cured continuously, and finally cured by irradiating light for another 5 minutes.
  • a composite tube similar to (4) was formed.
  • Example 2 The same material as in Example 2 was used, and each layer was processed while the short-arc metal halide lamp on the feeder of the centrifugal molding machine was turned on.
  • the outer protective layer is 3 minutes
  • the outer FRP layer is 10 minutes
  • the mole layer layer is 8 minutes
  • the inner FRP layer is 10 minutes
  • the inner protective layer is 3 minutes.

Abstract

A method and a device for manufacturing a multi-layer pipe member by a centrifugal molding method capable of hardening layers in a short time, increasing the degree of hardness of an inner surface protective layer, and eliminating the need of after-curing after mold release, the method comprising the steps of inputting molding material containing curing resin or curing resin and inorganic filler, and/or fiber reinforced material into a rotating centrifugal molding die for pipe member and radiating light for curing with a centrifugal force applied thereto; the device for manufacturing the pipe member, i.e., a centrifugal molding device used for the method comprising a mechanism for feeding the components of molded material and a mechanism for radiating the light.

Description

明細書 管部材の製造方法及び管部材用製造装置 技術分野  Description Method for manufacturing pipe member and manufacturing apparatus for pipe member
本発明は、 管部材の製造方法、 それから得られた管部材及び管部材 用製造装置に関する。 さらに詳しくは、 本発明は、 プラスチック及ぴ 無機充填材ゃ繊維強化材からなる多層管部材を、 遠心成形法と光照射 を組み合わせて効率よく製造する方法、 この方法により得られた多層 管部材及び該多層管部材を製造する装置に関するものである。 背景技術  The present invention relates to a method for manufacturing a pipe member, a pipe member obtained therefrom, and a manufacturing apparatus for the pipe member. More specifically, the present invention relates to a method for efficiently producing a multilayer pipe member comprising a plastic, an inorganic filler and a fiber reinforced material by a combination of a centrifugal molding method and light irradiation, a multilayer pipe member obtained by this method, The present invention relates to an apparatus for manufacturing the multilayer pipe member. Background art
F R P と レジンモルタルとを複合したガラス繊維強化プラスチッ ク 複合管、 いわゆる F R P M管は 1 9 7 0年に生産販売が開始されて以 来、 その優れた水密性、 耐食性、 施工性、 高強度、 耐震性といった多 く の特性によ り、 下水道、 工場排水、 海水運搬、 農業用水、 ト ンネル 内配管、 シールド内配管など広範囲に使用されている。  The glass fiber reinforced plastic composite pipe composed of FRP and resin mortar, the so-called FRPM pipe, began production and sales in 1970, and has been offering excellent watertightness, corrosion resistance, workability, high strength, and earthquake resistance. Due to its many characteristics, such as water quality, it is widely used in sewerage, industrial drainage, seawater transportation, agricultural water, pipes in tunnels, pipes in shields, and so on.
この F R P M管の成形方法の一つとして遠心成形法が知られている 。 この遠心成形法は、 パイプの外径を固定したモールド (型枠) を高 速に回転させ、 フィーダ (供給機) によって繊維、 硬化性樹脂、 骨材 等を投入し、 遠心力と加熱によって外面 F R P層、 中間層及び内面 F R P層等を成形する方法である。 製品は、 高速回転により最高 7 0 G 程度の重力がかかるためエア一ホールができにく い高品質のものとな り、 構成は外面保護層、 外面 F R P層、 中間層、 内面 F R P層、 内面 保護層となっている場合が多い。 従来の遠心成形法は特開平 2 — 1 2 1 8 3 2号公報などに記載されている。  A centrifugal molding method is known as one of the molding methods of the FRPM tube. In this centrifugal molding method, a mold (mold) in which the outer diameter of the pipe is fixed is rotated at a high speed, fibers, curable resin, aggregate, etc. are charged by a feeder (feeder), and the outer surface is formed by centrifugal force and heating. This is a method for forming the FRP layer, the intermediate layer, the inner FRP layer, and the like. The product is of high quality, with a maximum of about 70 G of gravity applied by high-speed rotation, making it difficult for air holes to be formed.The structure consists of an outer protective layer, an outer FRP layer, a middle layer, an inner FRP layer, and an inner layer. Often it is a protective layer. A conventional centrifugal molding method is described in, for example, Japanese Patent Application Laid-Open No. 2-11832 / 1990.
この方法においては、 熱硬化性樹脂として、 不飽和ポリエステル樹 脂が主に使用され、 硬化は過酸化物触媒系を用いたラジカル重合によ り行われている。 実際には、 硬化を速めるために樹脂中にコバルト類 を混合しておき、 回 する円筒形の型枠内に樹脂を投入する際に、 メ チルェチルケ卜ンパーォキサイ ドなどを先端混合し 5 0〜 8 0 °C程度 で加熱硬化させているが、 硬化に時間がかかり、 しかも脱型後に温水 でァフ夕一キュアを行なう工程が必須となっている。 In this method, unsaturated polyester resin is mainly used as the thermosetting resin, and curing is performed by radical polymerization using a peroxide catalyst system. Has been carried out. Actually, cobalt is mixed in the resin to accelerate the curing, and when the resin is put into the rotating cylindrical mold, methyl-ketyl ketone peroxyside or the like is mixed at the tip of 50 to 8 Although it is heated and cured at about 0 ° C, it takes a long time to cure, and a process of removing the mold and performing a hard cure with warm water is essential.
このように加熱硬化で成形する以上、 成形時間、 成形工程の短縮に は限界があり、 それ以上の成形サイ クルの向上は難しいのが実状であ つた。 また、 耐食性が必要な配管類では、 特に内面保護層の耐食性能 が問題となるため内面保護層の硬化度を上げる必要があるが、 内面保 護層の硬化度を上げた成形物を従来の加熱による成形法で効率よく製 造することは困難であった。  As described above, molding by heat curing has limitations on the molding time and the shortening of the molding process, and it is difficult to further improve the molding cycle. In addition, in the case of piping that requires corrosion resistance, it is necessary to increase the degree of hardening of the inner surface protective layer because the corrosion resistance of the inner surface protective layer is particularly problematic. It was difficult to produce efficiently by the heating molding method.
本発明は、 このような状況下で、 各層を短時間で硬化させることが できる上、 内面保護層の硬化度を上げることができ、 かつ脱型後のァ フ夕一キュアの必要のない多層管部材を遠心成形法により、 効率よく 製造する方法、 及びこの方法に用いる装置を提供することを目的とす るものである。 発明の開示  Under such circumstances, the present invention can cure each layer in a short time, increase the degree of curing of the inner surface protective layer, and eliminate the need for after-demolding multi-layers. An object of the present invention is to provide a method for efficiently producing a pipe member by a centrifugal molding method, and an apparatus used for the method. Disclosure of the invention
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果、 硬化性樹脂を含む成形材料を遠心成形法と光照射を組み合わせて硬化 させることにより、 その目的を達成し得ることを見出した。 本発明は 、 かかる知見に基づいて完成したものである。  The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the object can be achieved by curing a molding material containing a curable resin by a combination of centrifugal molding and light irradiation. I found it. The present invention has been completed based on such findings.
すなわち、 本発明は、  That is, the present invention
( 1 ) 硬化性樹脂、 又は硬化性樹脂と無機充填材及び/又は繊維強化 材とを含む成形材料を、 回転させている管部材用遠心成形型に投入し 、 遠心力をかけた状態で光照射により硬化させることを特徴とする管 部材の製造方法、  (1) A curable resin or a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material is put into a rotating centrifugal mold for a pipe member, and light is applied under a centrifugal force. A method for producing a tube member, characterized by curing by irradiation.
( 2 ) 管部材が、 硬化性樹脂と無機充填材及び/又は繊維強化材とを 含む成形材料を硬化させてなる外面保護層と外面 F R P層とモルタル 層と内面 F R P層及び硬化性樹脂を主成分とする成形材料を硬化させ てなる内面保護層からなり、 かつ各層を一層づっ遠心力をかけた状態 で光照射により硬化させて形成する上記 ( 1 ) の管部材の製造方法、(2) The pipe member is made of a curable resin and an inorganic filler and / or a fiber reinforced material. An outer protective layer, an outer FRP layer, a mortar layer, an inner FRP layer, and an inner protective layer formed by curing a molding material mainly composed of a curable resin. The method for manufacturing a pipe member according to the above (1), wherein the tube member is formed by being cured by light irradiation while applying force.
( 3 ) 管部材が、 硬化性樹脂と無機充填材及び/又は繊維強化材とを 含む成形材料を硬化させてなる外面保護層と外面 F R P層とモルタル 層と内面 F R P層及び硬化性樹脂を主成分とする成形材料を硬化させ てなる内面保護層からなり、 かつ全ての層を遠心力をかけた状態で一 度の光照射により硬化させて形成する上記 ( 1 ) の管部材の製造方法(3) The pipe member mainly comprises an outer protective layer, an outer FRP layer, a mortar layer, an inner FRP layer, and a curable resin obtained by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material. (1) The method for producing a pipe member according to the above (1), comprising an inner surface protective layer obtained by curing a molding material as a component, and forming all the layers by applying a single light irradiation while applying a centrifugal force.
( 4 ) 管部材が、 硬化性樹脂と無機充填材及び/又は繊維強化材とを 含む成形材料を硬化させてなる外面保護層と外面 F R P層とモルタル 層と内面 F R P層及び硬化性樹脂を主成分とする成形材料を硬化させ てなる内面保護層からなり、 かつ光照射しながら、 前記成形材料を回 転させている管部材用遠心成形型に投入し、 硬化させて各層を形成す る上記 ( 1 ) の管部材の製造方法、 (4) The pipe member mainly comprises an outer protective layer, an outer FRP layer, a mortar layer, an inner FRP layer, and a curable resin obtained by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material. The method comprises the steps of: forming an inner protective layer formed by curing a molding material as a component; and applying the molding material to a rotating centrifugal molding die for a pipe member while irradiating light, and curing to form each layer. (1) a method for manufacturing a pipe member,
( 5 ) 成形材料における硬化性樹脂が、 ( a ) 紫外光、 可視光及び近 赤外光の少なく とも一つの領域の光に感光する光重合開始剤、 (b ) 一般式 ( I )  (5) the curable resin in the molding material is: (a) a photopolymerization initiator sensitive to at least one region of ultraviolet light, visible light, and near-infrared light; (b) a general formula (I)
(式中、 R 1 〜R 4 は、 それぞれ独立してハロゲン原子、 炭化水素基 、 ァシル基、 シリル基又は複素環式基、 Zは陽イオンを示す。 ) で表される有機ホウ素化合物と酸性化合物と場合により用いられる一 般式 (Π ) (Wherein, R 1 to R 4 each independently represent a halogen atom, a hydrocarbon group, an acyl group, a silyl group, or a heterocyclic group, and Z represents a cation.) Compounds and general formulas used in some cases (Π)
(式中 L ' , L 2 及び L 3 は、 それぞれ独立にァリ一ル基を示す。 ) で表されるへキサァリ一ルビィ ミ ダゾール化合物との組み合わせか らなる重合開始剤及び ( c ) 有機過酸化物触媒の中から選ばれる少 なく とも一種の重合開始剤を含む不飽和ポリエステル樹脂、 ビニル エステル樹脂及びゥ レタン (メ タ) アタ リ レ一ト樹脂の中から選ば れる少なく とも一種の樹脂である上記 ( 1 ) 〜 ( 4 ) の管部材の製 造方法、 (Wherein L ', L 2 and L 3 each independently represent an § re Ichiru group.) The combination or Ranaru polymerization initiator and (c) organic and Kisaari one Rubyi Mi imidazole compound to be represented by At least one resin selected from unsaturated polyester resins containing at least one polymerization initiator selected from peroxide catalysts, vinyl ester resins, and urethane (meta) acrylate resins (1) to (4), wherein
( 6 ) 無機充填材が砂及び/又は炭酸カルシウムであり、 繊維強化 材がガラス繊維、 炭素繊維及びァラミ ド繊維の中から選ばれる少な く とも一種である上記 ( 1 )、〜 ( 5 ) の管部材の製造方法、  (6) The above (1) or (5), wherein the inorganic filler is sand and / or calcium carbonate, and the fiber reinforcing material is at least one selected from glass fiber, carbon fiber and aramide fiber. A method for manufacturing a pipe member,
( 7 ) 照射する光が可視光から近赤外光領域の波長を有する上記 ( 1 ) 〜 ( 6 ) の管部材の製造方法、  (7) The method for producing a pipe member according to any one of (1) to (6), wherein the irradiation light has a wavelength in a visible light to near-infrared light region.
( 8 ) 光照射の光源がメ タルハライ ドランプ及び/又はハロゲンラ ンプである上記 ( 1 ) 〜 ( 7 ) の管部材の製造方法、  (8) The method for producing a pipe member according to the above (1) to (7), wherein the light source for light irradiation is a metal halide lamp and / or a halogen lamp.
( 9 ) 硬化性樹脂と して、 一般式 ( I ) で表される有機ホウ素化合 物を含むものを用いる場合、 該有機ホウ素化合物のみを予め樹脂中 に混合せずに、 管部材用遠心成形型に投入して樹脂と混合させる上 記 ( 5 ) 〜 ( 8 ) の管部材の製造方法、  (9) When a curable resin containing an organic boron compound represented by the general formula (I) is used, only the organic boron compound is not mixed into the resin in advance, and the tube is formed by centrifugal molding. (5) to (8), the method of manufacturing a pipe member,
( 1 0 ) 光照射と同時に加熱して硬化を促進させる上記 ( 1 ) 〜 ( 9 ) の管部材の製造方法、  (10) The method for producing a pipe member according to any one of the above (1) to (9), wherein the curing is promoted by heating simultaneously with light irradiation;
( 1 1 ) 上記 ( 1 ) ~ ( 1 0 ) の方法で得られたことを特徴とす る管部材、 及び  (11) A pipe member obtained by the method of (1) to (10) above, and
( 1 2 ) 上記 ( 1 ) 〜 ( 1 0 ) の方法において用いられる遠心成形 装置であつて、 成形材料を構成する各成分を供給する機構及び光照 射機構を有することを特徴とする管部材用製造装置、 (12) Centrifugal molding used in the above methods (1) to (10) An apparatus for manufacturing a pipe member, comprising: a mechanism for supplying each component constituting a molding material; and a light irradiation mechanism.
を提供するものである。 図面の簡単な説明 Is provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例で作製した光硬化遠心成形装置の概略図である。 図 2は、 実施例で作製した光照射装置の概略図である。 FIG. 1 is a schematic diagram of a light-curing centrifugal molding apparatus manufactured in an example. FIG. 2 is a schematic diagram of the light irradiation device manufactured in the example.
図中の符号は、 各々次の意味を有する。 The symbols in the figure have the following meanings.
1 : モ一ルド (型枠)  1: Mold (mold)
2 :樹脂組成物  2: Resin composition
3 :樹脂組成物供給装置  3: Resin composition supply device
4 :砂貯留  4: Sand storage
5 :砂供給装置  5: Sand supply device
6 : ガラス繊維収納  6: Glass fiber storage
7 : ガラス繊維供給装置  7: Glass fiber feeder
8 : メ タルハライ ドランプ  8: Metal halide lamp
9 : 丸棒  9: Round bar
1 0 : ガリ ウムランプ 発明を実施するための最良の形態  10: Gallium lamp Best mode for carrying out the invention
本発明の管部材の製造方法は、 従来の遠心成形法に光照射して硬 化させる方法を組み合わせたものである。 従来の遠心成形法とは、 パイプの外径を固定したモールド (型枠) を高速に回転させ、 フィ ーダ (供給機) によって繊維、 硬化性樹脂、 骨材等を投入し、 遠心 力と加熱によって外面 F R P層、 モルタル層及び内面 F R P層等を 成形する方法であるが、 これに光照射して硬化させる方法を組み合 わせたものが本発明の製造方法である。  The method for manufacturing a pipe member of the present invention is obtained by combining a conventional centrifugal molding method with a method of curing by irradiation with light. With the conventional centrifugal molding method, a mold (form) in which the outer diameter of the pipe is fixed is rotated at high speed, fibers, curable resin, aggregates, etc. are fed by a feeder (feeder), and the centrifugal force The method of forming an outer FRP layer, a mortar layer, an inner FRP layer, and the like by heating is combined with a method of curing by irradiating light to the manufacturing method of the present invention.
本発明の管部材の製造方法においては、 硬化性樹脂、 又は硬化性 樹脂と無機充填材及び Z又は繊維強化材とを含む成形材料を、 回転 させている管部材用遠心成形型に投入し、 遠心力をかけた状態で光 照射によ り硬化させて、 管部材を構成する前記各層を形成させるこ とによ り、 管部材を製造する。 In the method for manufacturing a pipe member of the present invention, the curable resin or the curable resin A molding material containing a resin, an inorganic filler, and Z or a fiber reinforced material is poured into a rotating centrifugal molding die for a pipe member, and is cured by light irradiation with a centrifugal force applied thereto. By forming each of the above-described layers, a pipe member is manufactured.
本発明における光照射して硬化させる方法とは、 光硬化性樹脂及 び/又は熱硬化性樹脂を使用して、 光照射によ り光硬化させるか光 照射による熱を利用して熱硬化させる方法である。 紫外光、 可視光 、 近赤外光に感光する樹脂を使用して光硬化させるか、 有機過酸化 物系や有機過酸化物系以外のレ ドッ クス系の触媒等を添加した熱硬 化性樹脂を使用して光照射による熱を利用して熱硬化させるか、 あ るいは光硬化と熱硬化の両方を利用する。  The method of curing by irradiation with light in the present invention means that a photocurable resin and / or a thermosetting resin is used, and the photocuring is performed by light irradiation or the heat curing is performed using heat by light irradiation. Is the way. Photocurable using a resin that is sensitive to ultraviolet, visible, or near-infrared light, or heat-curable with the addition of a redox-based catalyst other than organic peroxides and organic peroxides. Either a resin is used for heat curing using the heat of light irradiation, or both light curing and heat curing are used.
まず、 前記成形材料に使用する各成分について説明する。 該成形 材料において、 光硬化及び熱硬化に使用する硬化性樹脂における樹 脂と しては、 硬化の速い不飽和ポリエステル樹脂、 ビュルエステル 樹脂、 ウレタン (メ タ) アタ リ レー ト樹脂などのラジカル重合性樹 脂が挙げられる。  First, each component used in the molding material will be described. In the molding material, as a resin in a curable resin used for light curing and heat curing, a radical polymerization of an unsaturated polyester resin, a butyl ester resin, a urethane (meth) acrylate resin, etc., which cures quickly. Sex resin.
不飽和ポリエステル樹脂は、 多価アルコールと不飽和多塩基酸 ( 及び必要に応じて飽和多塩基酸) とのエステル化反応による縮合生 成物 (不飽和ポリエステル) を、 スチレンのような重合性モノマ一 に溶解したもので、 「ポリエステル樹脂ハン ドブッ ク」 (日刊工業 新聞社、 1 9 8 8年発行) 又は 「塗料用語辞典」 (色材協会編、 1 9 9 3年発行) などに記載されている樹脂である。  The unsaturated polyester resin is a polymerizable monomer such as styrene, which is obtained by condensing a product (unsaturated polyester) obtained by an esterification reaction between a polyhydric alcohol and an unsaturated polybasic acid (and, if necessary, a saturated polybasic acid). It is dissolved in one and is described in "Polyester Resin Handbook" (Nikkan Kogyo Shimbun, published in 1988) or "Paint Glossary" (edited by Coloring Material Association, published in 1993). Resin.
不飽和ポリエステル樹脂の原料と して用いられる不飽和ポリエス テルとしては、 公知の方法によ り製造されたものでよい。 具体的に はフタル酸、 イソフタル酸、 テレフタル酸、 テ トラヒ ドロフタル酸 、 アジピン酸、 セバチン酸等の重合性不飽和結合を有していない多 塩基酸又はその無水物とフマル酸、 マレイ ン酸、 ィ タコン酸等の重 合性不飽和多塩基酸又はその無水物を酸成分と し、 これとエチレン グリ コール、 プロピレングリ コール、 ジェチレングリ コール、 ジプ ロピレングリ コール、,' 1 , 2 —ブタンジオール、 1 , 3 —ブタンジ オール、 1 , 5—ペン夕ンジオール、 1 , 6 —へキサンジオール、 2 —メチルー 1 , 3 —プロノ ンジオール、 2, 2 —ジメチルー 1 , 3 _プロパンジオール、 シクロへキサン一 1 , 4 —ジメ タ ノール、 ビスフヱノール Aのェチレンォキサイ ド付加物、 ビスフヱノ一ル A のプロ ピレンォキサイ ド付加物等の多価アルコールをアルコール成 分と して反応させて製造されるものである。 The unsaturated polyester used as a raw material for the unsaturated polyester resin may be one produced by a known method. Specifically, a polybasic acid having no polymerizable unsaturated bond such as phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, sebacic acid or an anhydride thereof and fumaric acid, maleic acid, A polymerizable unsaturated polybasic acid such as itaconic acid or its anhydride is used as the acid component, and Glycol, propylene glycol, methylen glycol, dipropylene glycol,, '1,2-butanediol, 1,3-butanediol, 1,5-pentendiol, 1,6-hexanediol, 2-methyl-1- , 3—Pronondiol, 2,2—Dimethyl-1,3-propanediol, Cyclohexane-1,4, -Dimethanol, Ethylene oxide adduct of bisphenol A, propylene oxide adduct of bisphenol A, etc. It is produced by reacting a polyhydric alcohol as an alcohol component.
ビュルエステル樹脂は、 エポキシァク リ レート樹脂とも呼ばれ、 一般にグリシジル基 (エポキシ基) を有する化合物と、 アク リル酸 などの重合性不飽和結合を有するカルボキシル化合物のカルボキシ ル基との開環反応により生成する重合性不飽和結合を持った化合物 (ビュルエステル) を、 スチレンのような重合性モノマーに溶解し たもので、 「ポリエステル樹脂ハンドブック」 (日刊工業新聞社、 1 9 8 8年発行) 又は 「塗料用語辞典」 (色材協会編、 1 9 9 3年 発行) などに記載されている樹脂である。  Bull ester resin, also called epoxyacrylate resin, is generally formed by a ring-opening reaction between a compound having a glycidyl group (epoxy group) and a carboxyl group of a carboxyl compound having a polymerizable unsaturated bond such as acrylic acid. A compound with a polymerizable unsaturated bond (Bullester) dissolved in a polymerizable monomer such as styrene, which is called “Polyester Resin Handbook” (published by Nikkan Kogyo Shimbun, 1988) or This is a resin described in the “Paint Glossary” (edited by The Color Materials Association, published in 1993).
ビュルエステル樹脂の原料と して用いられるビュルエステルと し ては、 公知の方法によ り製造されるものであり、 エポキシ樹脂に不 飽和一塩基酸、 例えばァク リル酸又はメ タク リル酸を反応させて得 られるエポキシ (メ タ) ァク リ レー ト、 あるいは飽和ジ力ルボン酸 及び/又は不飽和ジカルボン酸と多価アルコールとから得られる末 端力ルポキシル基の飽和ボリエステル又は不飽和ポリエステルにェ ポキシ基を有するび、 β—不飽和カルボン酸エステルを反応させて 得られる飽和ポリエステル又は不飽和ポリエステルのポリエステル (メ タ) アタ リ レー トである。  Bull ester used as a raw material of the bullet ester resin is manufactured by a known method, and an unsaturated monobasic acid such as acrylic acid or methacrylic acid is added to an epoxy resin. Epoxy (meth) acrylate obtained by the reaction, or saturated polyester or unsaturated polyester of terminal lipoxyl group obtained from saturated dicarboxylic acid and / or unsaturated dicarboxylic acid and polyhydric alcohol. It is a polyester (meta) acrylate of a saturated polyester or an unsaturated polyester obtained by reacting a β-unsaturated carboxylic acid ester having an epoxy group.
原料と してのェポキシ樹脂と しては、 ビスフエノ一ル Αジグリ シ ジルェ—テル及びその高分子量同族体、 ノボラッ ク型ポリ グリ シジ ルエーテル類等が挙げられる。 前記末端カルボキシルポリエステルに用いる飽和ジ力ルボン酸と しては、 活性不飽和基を有していないジカルボン酸、 例えばフタル 酸、 イソフタル酸、 テレフ夕ル酸、 テ 卜ラヒ ドロフタル酸、 ァジピ ン酸、 セバチン酸等が挙げられる。 不飽和ジカルボン酸と しては、 活性不飽和基を有しているジカルボン酸、 例えばフマル酸、 マレイ ン酸、 無水マレイ ン酸、 ィ タコン酸等が挙げられる。 多価アルコ— ル成分としては、 例えばェチレングリ コール、 プロ ピレングリ コ一 ル、 ジエチレングリ コール、 ジプロ ピレングリ コール、 1, 2 一ブ 夕ンジオール、 1, 3 —ブ夕ンジオール、 1, 5 —ペンタンジォー ル、 1 , 6 一へキサンジオール、 2 —メチル _ 1, 3—プロパンジ オール、 2 , 2 —ジメチルー 1, 3 —プロパンジオール、 シクロへ キサン一 1 , 4ージメ タノール、 ビスフエノール Aのエチレンォキ サイ ド付加物、 ビスフユノール Aのプロピレンォキサイ ド付加物等 の多価アルコールが挙げられる。 Examples of the epoxy resin as a raw material include bisphenol diglycidyl ether and its high molecular weight homologues, and novolak type polyglycidyl ethers. As the saturated dicarboxylic acid used for the terminal carboxyl polyester, a dicarboxylic acid having no active unsaturated group, for example, phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, adipic acid, Sebacic acid and the like. Examples of the unsaturated dicarboxylic acid include dicarboxylic acids having an active unsaturated group, such as fumaric acid, maleic acid, maleic anhydride, and itaconic acid. Polyhydric alcohol components include, for example, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,5-pentanedole, 1,6-I-hexanediol, 2-Methyl_1,3-propanediol, 2,2-Dimethyl-1,3-propanediol, cyclohexane-1,4-dimethanol, Bisphenol A ethylene oxide adduct And polyhydric alcohols such as propylene oxide adduct of bisphenol A.
前記ポリエステル (メ タ) アタ リ レー トの製造に用いるエポキシ 基を有する α、 S —不飽和カルボン酸エステルと しては、 グリ シジ ルメ タク リ レー トが代表例と して挙げられる。  Glycidyl methacrylate is a typical example of the α, S-unsaturated carboxylate having an epoxy group used in the production of the polyester (meta) acrylate.
これらの、 不飽和ポリエステル樹脂に用いられる不飽和ポリエス テル及びビュルエステル樹脂に用いられるビニルエステルは、 不飽 和度の比較的高いものが好ま しく、 不飽和基当量 (不飽和基 1個当 たりの分子量) が通常 1 0 0 〜 8 0 0程度のものを用いる。 不飽和 基当量が 1 0 0未満のものは合成ができにく い。 一方不飽和基当量 が 8 0 0 を超えると高硬度の硬化物が得られにく い。  As the unsaturated polyester used for the unsaturated polyester resin and the vinyl ester used for the vinyl ester resin, those having a relatively high degree of unsaturation are preferable, and the unsaturated group equivalent (e.g., per unsaturated group) Having a molecular weight of about 100 to 800. Those having an unsaturated group equivalent of less than 100 cannot be easily synthesized. On the other hand, when the unsaturated group equivalent exceeds 800, it is difficult to obtain a cured product having high hardness.
ウレタン (メ タ) ァク リ レート樹脂は、 ウレタン (メ タ) ァク リ レー トをスチレンのような重合性モノマ一に溶解した樹脂である。 ウ レタン (メ タ) ァク リ レート樹脂に使用するウ レタン (メ タ) アタ リ レートは特に限定されるものではなく 、 例えばポリィソシァ ネートとポリ ヒ ドロキシ化合物あるいは多価アルコール類とを反応 させた後、 更に水酸基含有 (メ タ) ァク リル化合物および必要に応 じて水酸基含有ァリルエーテル化合物を反応させることによって得 ることができるラジカル重合性不飽和基含有ォリゴマーである。 ま た、 水酸基含有 (メ タ) ァク リル化合物とポリ ヒ ドロキシ化合物あ るいは多価アルコール類とを反応させた後、 更にポリィソシァネー ト を反応させてもよい。 Urethane (meth) acrylate resin is a resin in which urethane (meta) acrylate is dissolved in a polymerizable monomer such as styrene. The urethane (meth) acrylate used for the urethane (meth) acrylate resin is not particularly limited. For example, a reaction between a polyisocyanate and a polyhydroxy compound or a polyhydric alcohol is performed. A radically polymerizable unsaturated group-containing oligomer which can be obtained by reacting a hydroxyl group-containing (meth) acrylic compound and, if necessary, a hydroxyl group-containing aryl ether compound after the reaction. Further, after reacting the hydroxyl group-containing (meth) acryl compound with the polyhydroxy compound or the polyhydric alcohol, the polyisocyanate may be further reacted.
上記ウレタ ン (メ タ) アタ リ レ一トの原料と して用いられるポリ イ ソシァネー ト と しては、 具体的には 2, 4—ト リ レンジィ ソシァ ネー ト及びその異性体、 ジフエニルメ タ ンジイ ソシァネー ト、 へキ サメチレンジイ ソシァネー ト、 イ ソホロ ンジイ ソシァネー ト、 キシ リ レンジイ ソシァネー ト、 水添キシ リ レンジイ ソシァネ一 ト、 ジシ ク ロへキシルメ タ ンジイ ソシァネ'一ト、 ナフ タ リ ンジイ ソシァネー 卜、 ト リ フヱニルメ タ ン ト リ イ ソシァネー ト、 バノ ッ ク D— 7 5 0 、 ク リ スボン N K (商品名 : 大日本ィ ンキ化学工業 (株) 製) 、 テ スモジュール L (商品名 :住友バイエルゥ レタ ン (株) 製) 、 コロ ネー ト L (商品名 : 日本ポリ ウ レタ ン工業 (株) 製) 、 タケネー ト D 1 0 2 (商品名 : 武田薬品工業 (株) 製) 、 イソネート 1 4 3 L (商品名 : 三菱化学 (株) 製) 等が挙げられるが、 特に限定される ものではない。 これらポリイソシァネー トは一種類のみを用いても よいし、 適宜二種類以上を混合してもよい。  Specific examples of the polyisocyanate used as a raw material of the urethane (meta) acrylate include 2,4-tolylenedienyl succinate and its isomers, diphenylmethandiyl Sociate, hexamethylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, hydrogenated xylylene diisocyanate, dicyclohexyl methane diisocyanate, naphthalene diisocyanate Refenyl Methane Lithocyanate, Banoc D-750, Chris Bon NK (trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Test Module L (trade name: Sumitomo Bayer Corporation) Retan Co., Ltd.), Coronate L (trade name: Nippon Polyurethane Industry Co., Ltd.), Takenate D 102 (trade name) : Takeda Pharmaceutical Co., Ltd.), Isonate 144 L (trade name: Mitsubishi Chemical Co., Ltd.), etc., but are not particularly limited. One kind of these polyisocyanates may be used alone, or two or more kinds may be appropriately mixed.
上記ウ レタ ン (メ タ) アタ リ レー トの原料に用いられるポリ ヒ ド ロキシ化合物としては、 ポリ エステルポリ オール、 ポリ エーテルポ リオ一ルなどが挙げられ、 具体的にはグリセリ ンーエチレンォキシ ド付加物、 グリ セ リ ンープロピレンォキシ ド付加物、 グリ セ リ ン— テ ト ラ ヒ ドロフラ ン付加物、 グリセ リ ン一エチレンォキシ ドープロ ピレンォキシ ド付加物、 ト リ メチロールプロパンーェチレンォキシ ド付加物、 ト リ メチロールプロパン一プロ ピレンォキシ ド付加物、 ト リ メチロールプロパンーテ ト ラ ヒ ドロフラ ン付加物、 卜 リ メ チロ ールプ °ン一エチレンォキシ ドープロピレンォキシ ド付加物 ジ ペンタエスリ トール一エチレン才キシ ド付加物、 ジペンタエスリ ト 一ループロピレンォキシ ド付加物、 ジペンタエスリ ト一ルーテ トラ ヒ ドロフラン付加物 ジペンタエス リ ト一ルーエチレンォキシ ドー プロピレンォキシ ド付加物等が挙げられるが、 特に限定されるもの ではない。 これらポリ ヒ ドロキシ化合物は、 一種類のみを用いても よく 、 適宜二種類以上を混合して用いてもよい。 Examples of the polyhydroxy compound used as a raw material for the urethane (meta) acrylate include polyester polyol, polyether polyol, and the like. Specifically, glycerin-ethylene oxide Adduct, glycerin-propylene oxide adduct, glycerin-tetrahydrofuran adduct, glycerin-ethyleneoxy-doped propylene oxide adduct, trimethylolpropane-ethylenoxide adduct Trimethylolpropane-propylene oxide adduct, trimethylolpropane-tetrahydrofuran adduct, trimethylopropane L-Ethyleneoxy-d-propylene oxide adduct dipentaethritol-ethylene-oxide adduct, dipentaethritol-l-propylene oxide adduct, dipentaethritol-l-lute tetrahydrofuran adduct dipenta-esl-l-ethylene oxide Examples thereof include adducts of xido-propylene oxide, but are not particularly limited. One of these polyhydroxy compounds may be used alone, or two or more of them may be used as a mixture.
上記ウ レタン (メ タ) ァク リ レートの原料と して用いられる多価 アルコール類と しては、 具体的には、 エチレングリ コール、 ジェチ レングリ コ一ル、 ト リエチレングリ コール、 ポリエチレングリ コー ル、 プロピレングリ コール、 ジプロピレングリ コール、 ポリプ口ピ レングリ コ一ル、 2 —メチルー 1 3プ ンジォ一ル、 1 , 3— ブタンジォ一ル、 ビスフヱノ一ル Aとプロピレンォキシ ド又はェチ レンォキシ ドとの付加物、 1 , 2 3 4 ーテ トラヒ ドロキシブ夕 ン、 グリセリ ン、 ト リ メチ口一ルプ ン、 1 , 2 —シクロへキサ ングリ コ一ル、 1 3 —シクロへキサングリ コール、 1 4 ーシク 口へキサングリ コール、 'ラキシレングリ コール、 ビシクロへキシ ル一 4 4 , ージオール、 2 6 —デカ リ ングリ コ一ル、 2 , 7— デ力 リ ングリ コール等が挙げられるが、 特に限定されるものではな い。 これら多価アルコール類は、 一種類のみを用いてもよいし、 適 宜ニ種類以上を混合して用いてもよい。  Specific examples of polyhydric alcohols used as a raw material of the urethane (meth) acrylate include ethylene glycol, ethylene glycol, triethylene glycol, and polyethylene glycol. Propylene glycol, dipropylene glycol, polypyrene pyrene glycol, 2-methyl-13 pentadiol, 1,3-butanediol, bisphenol A and propylene oxide or ethylenoxy Adduct with 1,2,3-tetrahydroxoxybutane, glycerin, trimethicone, 1,2-cyclohexaneglycol, 13-cyclohexaneglycol, 1 4-Silicone Hexanglycol, 'Laxylene glycol, Bicyclohexyl-1-44, -diol, 26-Decalin glycol, 2,7- But not limited thereto. One of these polyhydric alcohols may be used alone, or two or more of them may be used as appropriate.
上記ウ レタン (メ タ) アタ リ レートの原料と して用いられる水酸 基含有 (メ タ) ァク リル化合物と しては、 特に限定されるものでは ないが、 水酸基含有 (メ タ) アク リル酸エステルが好ましく、 具体 的には、 例えば、 2 —ヒ ドロキシェチル (メ タ) アタ リ レート、 2 ーヒ ドロキシプロピル (メ タ) ァク リ レー ト、 3 —ヒ ドロキシプチ ル (メ タ) ァク リ レー ト、 ポリエチレングリ コールモノ (メ タ) ァ ク リ レー ト、 ポリプロ ピレングリ コールモノ (メ タ) ァク リ レート 、 ト リ ス (ヒ ドロキシェチル) イ ソシァヌル酸のジ (メ タ) ァク リ レー ト、 ペンタエス リ トールト リ (メ タ) ア タ リ レー ト等が挙げら れる。 これら水酸基含有 (メ タ) アタ リル化合物は、 一種類のを用 いてもよい し、 適宜二種類以上を混合してもよい。 The hydroxyl group-containing (meth) acrylic compound used as a raw material of the urethane (meta) acrylate is not particularly limited. Preference is given to lylic acid esters, specifically, for example, 2-hydroxyhydryl (meta) acrylate, 2-hydroxypropyl (meta) acrylate, 3-hydroxybutyl (meta) Acrylate, polyethylene glycol mono (meta) acrylate, polypropylene glycol mono (meta) acrylate And di (meth) acrylate of tris (hydroxyxethyl) isosianuric acid, and pentaethritol tri (meth) atalylate. One of these hydroxyl group-containing (meth) aryl compounds may be used, or two or more of them may be appropriately mixed.
上記ゥ レタ ン (メ タ) アタ リ レー トの原料と して必要に応じて用 いられる水酸基含有ァリル化合物と しては、 具体的には、 例えば、 エチレングリ コールモノア リ ルェ一テル、 ジエチレングリ コールモ ノア リノレエ一テル、 ト リェチレングリ コールモノア リ ルエーテル、 ポリエチレングリ コールモノア リ ルエーテル、 プロ ピレングリ コ一 ルモノア リ ルエーテル、 ジプロ ピレングリ コ一ルモノア リ ルエーテ ル、 ト リ プロ ピレングリ コ一ルモノア リルエーテル、 ポリ プロ ピレ ングリ コ一ルモノア リ ルェ一テル、 1 , 2 —ブチレングリ コ一ルモ ノア リ ルェ一テル、 1 , 3 —ブチレングリ コールモノアリ ルエーテ ル、. へキシ レングリ コ一ルモノア リ ルエーテル、 ォクチレングリ コ —ル乇ノア リ ルエーテル、 ト リ メチロールプロパンジァ リ ルェ一テ ル、 グリ セ リ ンジァ リ ルェ一テル、 ペンタエス リ ト一ル ト リ ア リル エーテル等が挙げられるが、 特に限定されるものではない。 これら 水酸基含有ァリルエーテル化合物は、 一種類のみを用いてもよいし 、 適宜二種類以上を混合して用いてもよい。  Examples of the hydroxyl group-containing aryl compound that is used as necessary as a raw material of the above-mentioned ethane (meta) acrylate include, for example, ethylene glycol monoaryl ether and diethylene glycol. Coal monolinole ether, triethylen glycol monoalkyl ether, polyethylene glycol monoaryl ether, propylene glycol monoaryl ether, dipropylene glycol monoaryl ether, tripropylene glycol monoaryl ether, polypropylene glycol Lumonoaryl ester, 1,2—butylene glycol monoaryl ester, 1,3—butylene glycol monoaryl ether, hexylene glycol alcohol monoaryl ether, octylene glycol alcohol Examples thereof include, but are not particularly limited to, trimethylolpropanediyl ether, glycerindiyl cellulose, pentaethritol triaryl ether and the like. One of these hydroxyl group-containing aryl ether compounds may be used alone, or two or more of them may be used as a mixture.
本発明において使用される不飽和ボリエステル樹脂、 ビュルエス テル樹脂、 ウレタン (メ タ) ァク リ レート樹脂等は、 通常前記の不 飽和ポリ エステル、 ビニルエステル、 ウ レタ ン (メ タ) ァク リ レー 卜にスチ レンモノマ一などの反応性モノマーを配合したものであ り 、 本発明の樹脂等に配合されるスチレンモノマーは、 複合材料を製 造する際に繊維強化材及びフイラ一との混練性、 含浸性を高め、 か つ成形製品の硬度、 強度、 耐薬品性、 耐水性等を向上させるために 重要であ り、 不飽和ポリエステル、 ビニルエステル、 ウ レタ ン (メ 夕) アタ リ レート 1 0 0重量部に対して通常 1 0 ~ 2 5 0重量部、 好ま しく は 2 0〜 1 0 0重量部使用される。 使用量が 1 0重量部未 満では、 高粘度のため成形が困難となり、 2 5 0重量部を超える量 では、 高硬度の製品が得られにく く、 耐熱性が不足し、 F R P材料 と して好ま しく ない。 Unsaturated polyester resins, butylester resins, urethane (meth) acrylate resins, and the like used in the present invention are usually the aforementioned unsaturated polyesters, vinyl esters, and urethane (meta) acrylates. A styrene monomer blended with a resin or the like according to the present invention has a kneadability with a fiber reinforcing material and a filler when a composite material is produced. It is important to increase impregnation and to improve the hardness, strength, chemical resistance, water resistance, etc. of molded products. Unsaturated polyester, vinyl ester, urethane (methyl) acrylate 10 0 to 250 parts by weight per 0 parts by weight, Preferably 20 to 100 parts by weight are used. If the amount used is less than 10 parts by weight, molding becomes difficult due to high viscosity.If the amount exceeds 250 parts by weight, it is difficult to obtain a product with high hardness, heat resistance is insufficient, and FRP material and I don't like it.
この場合、 スチレンモノマーの一部又は全部を、 クロルスチレン In this case, part or all of the styrene monomer is replaced with chlorostyrene
、 ビュルトルエン、 ジビュルベンゼンなどのスチレン系モノマ一や 、 メチル (メ タ) ァク リ レー ト、 ェチル (メ タ) ァク リ レート、 ェ チレングリ コールジ (メ タ) ァク リ レー トなど他の重合性モノマー を本発明の主旨を損なわぬ範囲で代替し、 使用することも可能であ る。 Styrene-based monomers such as styrene, butyltoluene, dibutylbenzene, etc., methyl (meth) acrylate, ethyl (meth) acrylate, ethylene glycol (meta) acrylate, etc. It is also possible to use the polymerizable monomer in place of the one that does not impair the gist of the present invention.
本発明において, 成形材料の一成分と して用いられる硬化性樹脂 と しては、 前述の不飽和ポリエステル樹脂、 ビュルエステル樹脂、 及びウレタン (メ タ) ァク リ レー卜樹脂の中から選ばれる少なく と も一種に、 以下に示す ( a ) 光重合開始剤、 ( b ) 重合開始剤及び ( c ) 有機過酸化物触媒の中から選ばれる少なく とも一種の重合開 始剤を含有させたものを好ま しく挙げることができる。  In the present invention, the curable resin used as one component of the molding material is selected from the above-mentioned unsaturated polyester resin, vinyl ester resin, and urethane (meth) acrylate resin. At least one containing at least one polymerization initiator selected from the following (a) a photopolymerization initiator, (b) a polymerization initiator, and (c) an organic peroxide catalyst Can be mentioned favorably.
本発明における光硬化には、 紫外光から近赤外光領域の光を使用 することができるが、 特に可視光、 近赤外光領域の波長の光を使用 することが望ましい。 紫外光とは 2 8 0〜 3 8 0 n m、 可視光とは 3 8 0〜 7 8 0 n m、 近赤外光とは 7 8 0〜 1 2 0 0 n mの波長領 域の光線を示し、 したがって、 前記 ( a ) 成分の光重合開始剤は、 紫外光領域、 可視光領域、 近赤外光領域から選ばれる少なく とも一 種の領域に感光性を有する化合物を用いることができる。  For light curing in the present invention, light in the range from ultraviolet light to near-infrared light can be used, and it is particularly preferable to use light in the wavelength range of visible light and near-infrared light. Ultraviolet light refers to light in the wavelength range from 280 to 380 nm, visible light refers to light in the wavelength range from 380 to 780 nm, and near-infrared light refers to light in the wavelength range from 780 to 1200 nm. Accordingly, as the photopolymerization initiator of the component (a), a compound having photosensitivity in at least one region selected from an ultraviolet region, a visible region, and a near-infrared region can be used.
紫外線領域に感光性を有する紫外線重合開始剤の例と しては、 ベ ンゾィン類、 ァセ トフヱノン類、 アン トラキノン類、 チォキサン ト ン類、 ベンゾフヱノン類等が挙げられ、 例えば、 ベンゾイ ン類では 、 ベンゾイ ン、 ベンゾイ ンメチルエーテル、 ベンゾイ ンイソプロピ ルエーテル等の誘導体、 ァセ トフヱノン類では、 ァセ トフヱノン、 2 , 2—ジメ トキシー 2 —フヱニルァセ トフエノン等の誘導体、 ァ ン トラキノン類では、 2 —メチルアン トラキノン、 2 —クロ口アン トラキノン、 2 —ェチルアン トラキノン、 2 — tーブチルアン トラ キノ ン等の誘導体、 チォキサン ト ン類では、 チォキサン ト ン、 2, 5 4 一ジメチルチオキサン ト ン等の誘導体、 ベンゾフエノン類では、 ベンゾフヱノン、 4 一べンゾィルー 4 ' ーメチルジフヱニルサルフ アイ ド、 4 , 4 ' ージクロ口ベンゾフヱノン、 N , N—ジメチルァ ミ ノベンゾフエノン等の誘導体、 , 4 , 6 — ト リメチルベンゾィ ルジフヱニルホスフィ ンォキサイ ド等があり、 その他公知のものをExamples of the ultraviolet polymerization initiator having photosensitivity in the ultraviolet region include benzoins, acetophenones, anthraquinones, thioxanthones, and benzophenones.For example, in the case of benzoin, Derivatives such as benzoin, benzoin methyl ether, benzoin isopropyl ether, etc .; Derivatives such as 2,2-dimethoxy-2-phenylphenyltophenone, and derivatives of anthraquinones, such as 2-methylanthraquinone, 2-chloroanthraquinone, 2-ethylanthraquinone, and 2-tert-butylanthraquinone; Derivatives such as thioxanthone and 2,54-dimethylthioxanthone; benzophenones; benzophenone, 4-benzylyl 4'-methyldiphenylsulfide; and 4,4 'dichloromouth benzophenone , N, N-dimethylaminobenzophenone and the like, and 4,4,6-trimethylbenzoyldiphenylphosphinoxide and the like.
1 0 使用することができる。 紫外線を利用した硬化では、 表面の乾燥性 には有利だが、 光透過性が低いことから、 比較的長波長、 好ま しく は 3 0 0 n m以上の波長域に感光性を有するものが望ましい。 1 0 Can be used. Curing using ultraviolet light is advantageous for drying the surface, but because of its low light transmittance, it is desirable to use a resin that has a relatively long wavelength, and preferably has a photosensitivity in a wavelength range of 300 nm or more.
特に可視光領域にまで感光性を有する (ビス) ァシルホスフィ ン ォキサイ ド系の光重合開始剤を使用することが好ま しい。 (ビス) i s ァシルホスフィ ンオキサイ ド化合物の具体例と しては、 2, 4 , 6 ― 卜 リメチルベンゾィルージフヱニルホスフィ ン才キサイ ド、 2, 6 —ジフヱ二ルペンゾィル一ジフヱニルホスフィ ンォキサイ ド、 2 , 6 —ジメ トキシベンゾィルージフヱニルホスフィ ンォキサイ ド、 2 , 3 , 5 , 6—テ トラメチルベンゾィルージフエ二ルホスフィ ン In particular, it is preferable to use a (bis) acyl phosphoxide photopolymerization initiator having photosensitivity even in the visible light region. Specific examples of the (bis) isacylphosphine oxide compound include 2,4,6-trimethylbenzoyldiphenylphosphine chloride, and 2,6-diphenylbenzoyl-diphenylphosphide. Phenylxide, 2,6—Dimethoxybenzoyl diphenyl phosphine, 2,3,5,6—Tetramethyl benzoyl diphenyl phosphine
2 0 オキサイ ド、 2, 6—ジクロルベンゾィル一ジフエニルホスフィ ン オキサイ ド、 2 , 3 , 6 — 卜 リメチルベンゾィル一ジフエニルホス フィ ンォキサイ ド、 2 —フヱ二ルー 6 —メチルベンゾィルージフエ ニルホスフィ ンォキサイ ド、 , 6 —ジブロムべンゾィルージフエ ニルホスフィ ンォキサイ ド、 2 , 8 —ジメチルナフタ リ ン一 1 一力20 Oxide, 2,6-dichlorobenzoyl-diphenylphosphine oxide, 2,3,6—trimethylbenzoyl-diphenylphosphine oxide, 2-phenyl-6-methyl Benzoyl diphenyl phosphinoxide,, 6 — dibromobenzyl phenyl phosphin oxide, 2, 8 — dimethyl naphthalene
2 5 ルボニルージフヱニルホスフィ ンオキサイ ド、 1 , 3 —ジメ トキシ ナフ夕 リ ンー 2 —カルボニル一ジフヱニルホスフィ ン才キサイ ド、 2 , 4, 6 一 ト リ メチルベンゾィルーフヱニルホスフィ ン酸メチル エステル、 2, 6 —ジメチルベンゾィル一フエニルホスフィ ン酸メ チルエステル、 2 , 6—ジクロルベンゾィルーフェニルホスフィ ン 酸メチルエステル、 等を挙げることができる。 2 5 Levonyl diphenyl phosphine oxide, 1, 3 — dimethoxy naphthyl lin 2 — carbonyl-diphenyl phosphine oxide, 2, 4, 6-trimethyl benzoyl roof Nylphosphinic acid methyl ester, 2,6-dimethylbenzoyl-phenylphosphinic acid methyl ester Examples thereof include butyl ester, methyl 2,6-dichlorobenzoylphenylphosphinate, and the like.
具体的には、 2—ヒ ドロキシー 2—メチルー 1 —フエニルプロパ ンー 1 —オン (商品名 : D a r o c u r 1 1 7 3、 チバスぺシャル 5 ティ一ケミカルズ (株) 製) とビス ( 2, 6—ジメ トキシベンゾィ ル) 一 2, 4 , 4— ト リメチルペンチルホスフィ ンオキサイ ド (チ バスペシャルティーケミカルズ (株) 製) を 7 5 %/ 2 5 %の割合 で混合された商品名ィルガキュア一 1 7 0 0 (チバスペシャルティ —ケミカルズ (株) 製) 、 1 ーヒ ドロキシーシクロへキシルーフエ Specifically, 2-hydroxy-2-methyl-1-phenylpropan-1-one (trade name: Darocur 117, Chivas Special 5 manufactured by TI Chemicals Co., Ltd.) and bis (2,6-dimension) Toloxybenzoyl) 1,2,4,4-Trimethylpentylphosphine oxide (manufactured by Ciba Specialty Chemicals Co., Ltd.) mixed at a ratio of 75% / 25% 0 (Ciba Specialty—Chemicals Co., Ltd.), 1-Hydroxy-cyclohexylfluoroe
1 0 二ル一ケ ト ン (商品名 : ィルガキュア一 1 8 4、 チバスペシャルテ ィ一ケミカルス、 (株) 製) と ビス ( 2 , 6—ジメ 卜キシベンゾィル ) 一 2 , 4, 4一 ト リ メチルペンチルホスフィ ンオキサイ ド (チバ スペシャルティ一ケミカルス" (株) 製) を 7 5 %/ 2 5 %の割合で 混合された商品名ィルガキュア一 1 8 0 0 (チバスペシャルティ一 i s ケミカルズ (株) 製) 、 5 0 %/ 5 0 %の割合で混合された商品名 ィルガキユア一 1 8 5 0 (チバスペシャルティーケミ カルズ (株) 製) 、 ビス ( 2, 4 , 6— ト リメチルベンゾィル) 一フエニルホス フィ ンォキサイ ド (商品名 : ィルガキユア一 8 1 9、 チバスべシャ ルティ一ケミカルズ (株) 製) 、 2 , 4 , 6— ト リメチルベンゾィ10 2 1 ketone (trade name: irgacure 1 184, Ciba Specialty Chemicals Co., Ltd.) and bis (2,6-dimethyloxybenzoyl) 1, 2, 4, 4 Methylpentyl phosphine oxide (manufactured by Ciba Specialty Chemicals, Inc.) mixed at a ratio of 75% / 25% (trade name: Irgacure-1800) (manufactured by Ciba Specialty Chemicals, Inc.) , 50% / 50%, trade name: Irgaki Yua 1850 (manufactured by Ciba Specialty Chemicals Co., Ltd.), bis (2,4,6-trimethylbenzoyl) Phenylphosphine oxide (trade name: irgakiyua 181-9, manufactured by Ciba-Besharti Chemicals Co., Ltd.), 2, 4, 6-trimethylbenzoy
20 ルージフエ二ルホスフィ ンオキサイ ド (商品名 : L u c i r i n20 Rubiphenylphosphine oxide (trade name: Lucicirin)
TP〇、 B A S F (株) 製) 、 2—ヒ ドロキシ一 2—メチル一 1 — フェニルプロパンー 1 一オン (商品名 : D a r o c u r l l 7 3、 チバスペシャルティーケミ カルズ (株) 製) と 2, 4, 6— ト リ メ チルベンゾィルージフエ二ルホスフィ ンォキサイ ド (商品名 : L u 5 c i r i n T P 0、 B A S F (株) 製) を 5 0 %/ 5 0 %の割合 で混合された商品名 : D a r o c u r 4 2 6 5などがある。 TP〇, BASF Corporation), 2-hydroxy-1-2-methyl-1-phenylpropane-1-one (trade name: Darocurll 73, Ciba Specialty Chemicals Co., Ltd.) and 2, 4 , 6—Trimethylbenzoyldiphenylphosphinoxide (trade name: Lu5cirin TP0, manufactured by BASF Corporation) mixed at a ratio of 50% / 50%: D arocur 4 2 6 5 and the like.
可視光領域に感光性を有する可視光重合開始剤としては、 例えば 「表面」 , 第 2 7巻 ( 7 ) , 第 5 4 8ページ ( 1 9 8 9年) 、 「第 3回 ポリマー材料フォーラム要旨集」 、 1 B P 1 8 ( 1 9 9 4年 ) に記載のカ ンファーキノ ン、 ベンジル、 ト リメチルベンゾィルジ フヱニルフォスフィ ンォキシ ド、 メチルチオキサン ト ン、 ビスペン タジェニルチタニウムージ (ペンタフルオロフヱニル) 等の単独でExamples of visible light polymerization initiators having photosensitivity in the visible light region include “Surface”, Vol. 27 (7), pp. 548 (1989), Campaquinone, Benzyl, Trimethylbenzoyldiphenylphosphine Oxide, Methylthioxanthone, and Bispentazione described in the 3rd Annual Meeting of the Polymer Material Forum, 1 BP 18 (1994). Alone such as phenyltitanium di (pentafluorophenyl)
5 の可視光重合開始剤の他、 有機過酸化物/色素系、 ジフニニルョー ドニゥム塩/色素系、 ビィ ミ ダゾ- -ル /ケ ト化合物系、 へキサァリ 一ルビイ ミ ダゾール化合物/水素供与性化合物系、 メルカプトベン ゾチアゾール /チォピリ リ ゥム塩系、 金属ァレーン /シァニン色素 系の他、 特公昭 4 5 - 3 7 3 7 7号公報に記載のへキサァリ一ルビ 1 0 イ ミ ダゾール /ラジカル発生剤系等の公知の複合開始剤や (ビス) ァシルホスフィ ンォキサイ ド化合物等を挙げることができる。 5 In addition to the visible light polymerization initiator, organic peroxides / dyes, difuninyl donium salts / dyes, bimidazole / keto compounds, hexylbiimidazole compounds / hydrogen donating compounds Mercaptobenzothiazole / thiopyridium salt system, metal arene / cyanine dye system, and hexaryl ruby 10 imidazole / radical generator system described in Japanese Patent Publication No. 45-377377. And other known complex initiators and (bis) acylphosphinoxide compounds.
また、 近赤外光領域に感光性を有する近赤外光重合開始剤と して は、 例えば一般式 ( 1 II)で表される近赤外光領域に吸収をもつ陽ィ ォン染料、  Examples of the near-infrared light polymerization initiator having photosensitivity in the near-infrared light region include a cationic dye having an absorption in the near-infrared light region represented by the general formula (1II),
i s D+ . A— . . . (III) is D + . A—... (III)
(式中、 D+ は可視光あるいは近赤外光領域に感光性を有する少 なく ともメチン、 ポリメチン、 シァニン、 キサンテン、 ォキサジン 、 チアジン、 ァリールメ タン又はピリ リ ゥム系色素陽ィォンの一種 であり、 A— は各種陰イオンを示す。 ) 及び一般式 ( I ) :  (In the formula, D + is at least a kind of methine, polymethine, cyanine, xanthene, oxazine, thiazine, arylmethane or pyridium dye cation having sensitivity to visible light or near infrared light, A— represents various anions.) And the general formula (I):
(式中、 R 1 〜R4 はそれぞれ独立してハロゲン原子、 炭化水素基 25 、 ァシル基、 シリル基又は複素環式基、 Zは陽イオンを示す。 ) で表される有機ホウ素化合物を組み合わせたものがある。 詳細な記 述は、 特開平 1 0— 1 8 2 7 6 7号公報にある。 その他公知のもの が使用できる。 上記一般式 ( I ) において、 R 1 〜R 4 のうちの炭化水素基と し ては、 アルキル基、 アルケニル基、 アルキニル基、 ァリール基、 ァ ラルキル基などを示し、 又この炭化水素基、 ァシル基、 シリル基及 び複素環式基は、 適当な置換基を有していてもよい。 (Wherein, R 1 to R 4 each independently represent a halogen atom, a hydrocarbon group 25, an acyl group, a silyl group or a heterocyclic group, and Z represents a cation.) There are things. A detailed description can be found in Japanese Patent Application Laid-Open No. H10-182727. Other known materials can be used. In the general formula (I), the hydrocarbon group among R 1 to R 4 represents an alkyl group, an alkenyl group, an alkynyl group, an aryl group, an aralkyl group, and the like. The group, silyl group and heterocyclic group may have a suitable substituent.
この ( a ) 成分の光重合開始剤の添加量は、 樹脂 1 0 0重量部に 対して通常 0 . 1 〜 7重量部、 好ま しくは 0 . 5 〜 5重量部である 。 光重合開始剤の添加量が前記下限未満では、 十分に硬化が進行し ないおそれがあり、 又前記上限を超えると、 経済的に不利となる上 、 硬化物の物性低下などが起こる原因となる。  The amount of the photopolymerization initiator (a) to be added is generally 0.1 to 7 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of the resin. If the amount of the photopolymerization initiator is less than the above lower limit, curing may not proceed sufficiently.If the amount exceeds the above upper limit, it is economically disadvantageous and causes deterioration of the physical properties of the cured product. .
本発明で使用する光硬化性樹脂の例と しては、 不飽和ポリエステ ル樹脂と して昭和高分子 (株) 製、 商品名リ ゴラッ ク L C一 1 1 1 0、 リ ゴラッ ク L C一 1 5 5 0、 ビニルエステル樹脂と して昭和高 分子 (株) 製、 商品名リポキシ L C一 7 2 0、 リポキシ L C— 7 4 0、 リポキシ L C— 7 6 0などの L Cシリーズがある。  Examples of the photo-curable resin used in the present invention include, as unsaturated polyester resins, Rigoluck LC-1 110 and Rigoluck LC-1 manufactured by Showa Polymer Co., Ltd. There are LC series such as 550, vinyl ester resin manufactured by Showa Kagaku Co., Ltd., trade name: Lipoxy LC-720, Lipoxy LC-740, Lipoxy LC-760.
本発明で光照射の熱を利用して熱硬化させる樹脂に対しては、 有 機過酸化物触媒やそれ以外のレ ドッ クス系の触媒が使用できる。 有 機過酸化物触媒でもよいが、 硬化がマイルドである点と安全性の点 から有機過酸化物以外のレ ドッ クス系触媒を使用することが好まし い。 その例と して ( b ) 成分の有機ホウ素化合物と酸性化合物と場 合により用いられるへキサァリ一ルビィ ミ ダゾール化合物との組み 合わせからなる重合開始剤が挙げられる。 前記有機ホウ素化合物と 酸性化合物とを接触させることにより、 有機ホゥ素化合物が分解し 、 ラジカルが発生するものである。  In the present invention, an organic peroxide catalyst or another redox catalyst can be used for a resin that is thermally cured by using heat of light irradiation in the present invention. Organic peroxide catalysts may be used, but from the viewpoint of mild curing and safety, it is preferable to use redox catalysts other than organic peroxides. An example thereof is a polymerization initiator comprising a combination of an organic boron compound as the component (b), an acidic compound, and an optionally used hexarylubimidazole compound. By contacting the organic boron compound with the acidic compound, the organic boron compound is decomposed and radicals are generated.
該有機ホウ素化合物と しては、 前記一般式 ( I ) で表わされる化 合物を用いることができる。  As the organic boron compound, a compound represented by the general formula (I) can be used.
この一般式 ( I ) における陽イオン 「Z」 の例と しては、 可視光 及び近赤外光領域に感光性を有しない 4級アンモニゥム陽イオン、 4級ピリ ジニゥム陽イオン、 キノ リニゥム陽イオン、 ジァゾニゥム 陽イオン、 テ トラゾニゥム陽イオン、 ホスホニゥム陽イオン、 (ォ キソ) スルホ二ゥム陽イオン、 ナ ト リ ウム、 カ リ ウム、 リチウム、 マグネシウム、 カルシウム等の金属陽イオン、 フラビリ ウム、 ビラ 二ゥム塩等の酸素原子上に陽イオン電荷を持つ (有機) 化合物、 ト ロ ビニゥム、 シクロプロピリ ゥム等の炭素陽イオン、 ョー ドニゥム 等のハロゲン陽イオン、 砒素、 コバルト、 パラジウム、 クロム、 チ タン、 スズ、 アンチモン等の金属化合物の陽イオンが挙げられる。 本発明で使用される酸性化合物とは、 例えば一般にブレンステツ ド酸と して知られている無機酸、 例えば塩酸、 硫酸、 硝酸など、 あ るいは有機酸である酢酸、 プロピオン酸、 マレイ ン酸、 アジピン酸 、 (メ タ) アク リル酸、 安息香酸、 フタル酸類などのカルボン酸類 、 p — トルエンスルホン酸、 メ タンスルホン酸、 ト リ フルォロメ タ ンスルホン酸等のスルホン酸類等が挙げられる。 またフヱ ノ一ル、 アルコール類などの水酸基含有化合物、 各種チオール類などのメル カプト基を有する化合物、 及びルイス酸として知られる電子対を受 け取って共有結合を作り得る物質、 例えば塩化アルミニウム、 塩化 第二スズ、 三塩化ホウ素、 三臭化ホウ素などを用いることができる 。 これらの酸については、 例えばモリ ソン · ボイ ド著 「有機化学」 第 3版 4 3頁に詳細な説明がある。 Examples of the cation “Z” in the general formula (I) include a quaternary ammonium cation, a quaternary pyridinium cation, and a quinoline cation that are insensitive to visible light and near-infrared light. , Diazonium Metal cations such as cations, tetrazonium cations, phosphonium cations, (oxo) sulfonium cations, sodium, potassium, lithium, magnesium, calcium, etc., flabbium, villanium (Organic) compounds having a cation charge on oxygen atoms such as salts, carbon cations such as trovinyl and cyclopropyl, halogen cations such as iodonium, arsenic, cobalt, palladium, chromium, titanium and tin And cations of metal compounds such as antimony. The acidic compound used in the present invention is, for example, an inorganic acid generally known as Brenstead acid, such as hydrochloric acid, sulfuric acid, nitric acid, or an organic acid such as acetic acid, propionic acid, maleic acid, or the like. Examples include carboxylic acids such as adipic acid, (meth) acrylic acid, benzoic acid, and phthalic acids, and sulfonic acids such as p-toluenesulfonic acid, methanesulfonic acid, and trifluoromethansulfonic acid. Also, compounds having a hydroxyl group such as phenols and alcohols, compounds having a mercapto group such as various thiols, and substances capable of forming a covalent bond by receiving an electron pair known as a Lewis acid, for example, aluminum chloride , Stannic chloride, boron trichloride, boron tribromide and the like can be used. These acids are described in detail, for example, in Morrison Boyd, Organic Chemistry, 3rd edition, page 43.
またこれ以外にも酸性イオン交換樹脂、 カーボンブラッ ク、 アル ミナなど固体表面に酸性の活性点を有する物質、 あるいは塩化水素 、 亜硫酸ガスなどの酸性気体化合物も用いることが出来る。  In addition, a substance having an acidic active site on a solid surface such as an acidic ion exchange resin, carbon black, and alumina, or an acidic gas compound such as hydrogen chloride or sulfurous acid gas can also be used.
これらの酸性化合物の中で、 (無水) マレイ ン酸、 フマル酸、 あ るいはそれらのハ一フェステル、 (メ 夕) アク リル酸、 ィ タコン酸 などの重合性不飽和基を有する酸性化合物あるいはそれらの官能基 を有するォリ ゴマーあるいはポリマ一類などが好適である。  Among these acidic compounds, acidic compounds having a polymerizable unsaturated group such as (anhydride) maleic acid, fumaric acid, or their polyesters, (meth) acrylic acid, itaconic acid, etc. Oligomers or polymers having such functional groups are suitable.
またそのもの自体は酸性物質ではなく、 加熱、 空気中の水分、 酸 素などの作用により分解あるいは反応して酸性化合物を発生する化 合物も本発明の潜在性酸性化合物に該当する。 また光照射によ り分 解して酸性化合物を発生する物質も知られており、 例えば光力チォ ン重合開始剤と呼ばれている化合物も本発明の光潜在性酸性化合物 に該当する。 光力チオン開始剤は、 ジァゾニゥム化合物、 スルホ二 ゥム化合物、 ョ一ドニゥム化合物金属錯体化合物など様々な化合物 が知られており、 「機能材料」 1 9 8 5年 1 0月号 5項、 「U V - Ε Β硬化技術の応用と市場」 シーエムシ一社 1 9 8 9年発行 7 8頁 などに詳細な記述がある。 これらの潜在性酸性化合物と呼ぶベき化 合物の中では、 入手の容易性、 経済性、 組成物中の安定性、 操作性 などを勘案すると光あるいは熱によつて酸を発生する化合物が望ま しい。 さ らに好ま しく は熱酸発生化合物であり特に加熱によ り分解 して酸を発生する有機スルホニゥム化合物が好適である。 有機スル ホニゥム化合物は一般に 3個の置換基 (アルキル基、 ァリ一ル基な ど) を有するスルホ二ゥム陽イオン部分と対イオンである陰イオン とのイオン対から構成されるが、 化合物の安定性、 酸性化合物の発 生能、 発生する酸性化合物の酸強度などの観点からスルホニゥム塩 の置換基の、 少なく とも 1個が (置換) フエニル基、 (置換) ナフ チル基などのァリール基であることが望ま しい。 例えばト リ フヱ二 ルスルホニゥム、 ジフエ二ルメチルスルホニゥムなどの陽イオン部 分を持つスルホニゥム化合物が挙げられる。 In addition, the substance itself is not an acidic substance, but is decomposed or reacted by the action of heating, moisture in the air, oxygen, etc. to generate acidic compounds. The compound also corresponds to the latent acidic compound of the present invention. In addition, a substance which is decomposed by light irradiation to generate an acidic compound is also known. For example, a compound called a photo-induced polymerization initiator also corresponds to the photolatent acidic compound of the present invention. Various compounds such as diazonium compounds, sulfonium compounds, oxide compounds, and metal complex compounds are known as the light-powered thione initiator. UV-Ε Β Β Β Β Β Β と と シ ー シ ー シ ー シ ー シ ー シ ー シ ー 詳細 シ ー ム ム. Among these latent acidic compounds, compounds that generate an acid by light or heat are considered in consideration of availability, economy, stability in a composition, operability, and the like. Desirable. More preferred are thermal acid-generating compounds, and in particular, organic sulfonium compounds that decompose by heating to generate an acid. Organic sulfonium compounds are generally composed of an ion pair of a sulfonium cation moiety having three substituents (such as an alkyl group and an aryl group) and an anion as a counter ion. In view of the stability of the compound, the ability to generate acidic compounds, and the acid strength of the generated acidic compound, at least one of the substituents of the sulfonium salt is an aryl group such as a (substituted) phenyl group or a (substituted) naphthyl group. It is desirable that For example, sulfonium compounds having a cation moiety, such as trisulfonium and diphenylmethylsulfonium, may be mentioned.
開始剤を配合した樹脂組成物の可使時間が十分に必要とされる場 合などは、 有機ホウ素化合物と酸性化合物が開始剤配合時に接触す ることは好ま しく ないので、 潜在性酸性化合物すなわち熱あるいは 光などの刺激によって酸性化合物を発生する化合物を用いることが 望ましい。  When the potable life of the resin composition containing the initiator is required and the like, it is not preferable that the organic boron compound and the acidic compound come into contact with each other at the time of compounding the initiator. It is desirable to use a compound that generates an acidic compound when stimulated by heat or light.
重合開始剤中の有機ホウ素化合物と (潜在性) 酸性化合物の組成 比は、 重量比で通常 0 . 1 / 5〜 5 / 0 . 1 、 好ま しく は 0 . 5 / 5〜 5 / 0 . 5である。 有機ホウ素化合物及び/又は (潜在性) 酸 性化合物がこの比率よ り も少なすぎる場合は、 十分に硬化が進行し ないおそれがあり、 また有機ホウ素化合物及び/又は (潜在性) 酸 性化合物がこの比率よ り も多すぎる場合は、 経済的に不利な上、 硬 化物の物性低下などが起こる原因となる。 The composition ratio of the organic boron compound and the (latent) acidic compound in the polymerization initiator is usually 0.1 / 5 to 5 / 0.1, preferably 0.5 / 5 to 5 / 0.5 by weight. It is. Organic boron compounds and / or (latent) acids If the amount of the acidic compound is less than this ratio, curing may not proceed sufficiently, and if the amount of the organic boron compound and / or the (latent) acid compound is greater than this ratio, the economy may increase. This is disadvantageous in terms of physical properties and causes the deterioration of the physical properties of the hardened material.
5 また、 樹脂等が酸性化合物をあらかじめ含有する場合においては 、 不飽和ポリエステル樹脂あるいはビニルエステル樹脂に含まれる (無水) マレイ ン酸、 フマル酸、 あるいはそれらのハ一フェステル 、 (メ タ) アタ リル酸、 イ タコン酸、 末端にそれら力ルボン酸の力 ルボキシル基を有するオリゴマー、 あるいはポリマ一であってもよ 1 0 く、 また樹脂等に任意の酸性化合物を添加した形のものであっても よい。 この場合、 不飽和ポリエステル樹脂又はビュルエステル樹脂 と しての酸価が 0. l〜 1 0 0mgKOH/gが好ましく、 よ り好 ま しく は 5〜 5 O mg KOH/gである。  5 In the case where the resin or the like contains an acidic compound in advance, the (anhydrous) maleic acid, fumaric acid, or their polyester or (meta) aryl contained in the unsaturated polyester resin or vinyl ester resin may be used. An acid, itaconic acid, an oligomer having a ruboxyl group at the terminal, an oligomer having a ruboxyl group, a polymer, or a resin in which an arbitrary acidic compound is added. Good. In this case, the acid value of the unsaturated polyester resin or the butyl ester resin is preferably 0.1 to 100 mgKOH / g, more preferably 5 to 5 Omg KOH / g.
有機ホウ素化合物と (潜在性) 酸性化合物の組み合わせである重 i s 合開始剤の添加量は、 樹脂 1 0 0重量部に対して通常 0. 1〜7重 量部、 好ま しくは 0. 5〜 5重量部である。 重合開始剤の添加量が これより少なすぎる場合は、 十分に硬化が進行しないおそれがあり 、 また重合開始剤の添加量がこの比率より も多すぎる場合は、 経済 的に不利な上、 硬化物の物性低下などが起こる原因となる。  The amount of the heavy is initiator, which is a combination of an organic boron compound and a (latent) acidic compound, is usually 0.1 to 7 parts by weight, preferably 0.5 to 100 parts by weight, based on 100 parts by weight of the resin. 5 parts by weight. If the amount of the polymerization initiator is too small, curing may not proceed sufficiently, and if the amount of the polymerization initiator is too large, it is economically disadvantageous and the cured product This may cause deterioration of the physical properties of the material.
20 この (b ) 成分の重合開始剤と しては、 前記有機ホウ素化合物と 酸性化合物にさ らに一般式 (Π)  20 As the polymerization initiator of the component (b), the above-mentioned organic boron compound and the acidic compound may be further added to the general formula (II)
L 22 L 2 then 2
(式中 L 1 , L 2 及び L3 は、 それぞれ独立にァリール基を示す。 ) で示されるへキサァリ一ルビィ ミダゾ一ル化合物を組合わせたもの が好ましい。 尚、 前記一般式 (U ) において、 L 1 、 L 2 及び L 3 で示されるァリール基には、 適当な置換基が導入されていてもよい。 へキサァリールビイ ミダゾ一ルの具体例と しては、 ビス ( 2, 4 , 5 — ト リ フヱニル) イ ミ ダゾール、 ビス ( 2— 0—クロ口フエ二 ル一 4 , 5 —ジフエニル) イ ミ ダゾ一ル、 ビス ( 2 — 0, p —ジク ロロフヱ二ルー 4 , 5 —ジフエニル) イ ミ ダゾール、 ビス ( 2— 0 一ブロモフヱニルー 4 , 5 —ジフヱニル) ィ ミ ダゾ一ル等が挙げら れる。 へキサァリールビィ ミ ダゾールに関する詳しい記載は特公昭 4 1 - 3 5 4 5号公報にある。 (Wherein L 1 , L 2, and L 3 each independently represent an aryl group.) Is preferred. In the general formula (U), an appropriate substituent may be introduced into the aryl groups represented by L 1 , L 2 and L 3 . Specific examples of hexarylbimidazole include bis (2,4,5—triphenyl) imidazole and bis (2-0—chloromethylphenyl4,5—diphenyl) imidazo. And bis (2--0, p-dichlorophenyl 4,5-diphenyl) imidazole, and bis (2-0-bromophenyl-4,5-diphenyl) imidazole. A detailed description of hexarylbimidazole is found in Japanese Patent Publication No. 41-35545.
このへキサァリ一ルビイ ミ ダゾール化合物の添加量は、 有機ホウ 素化合物と (潜在性) 酸性化合物との合計量 1 . 0重量部に対して 通常 0 . 0 5〜 5重量部、 好ましく は 0 . 1〜 3重量部である。 添 加量がこれより も多すぎる場合は、 経済的に不利な上、 溶解不良等 が生じるおそれがある。  The amount of the hexarybiimidazole compound to be added is usually 0.05 to 5 parts by weight, preferably 0.1 to 5 parts by weight, based on 1.0 parts by weight of the total amount of the organic boron compound and the (latent) acidic compound. 1 to 3 parts by weight. If the added amount is too large, it is economically disadvantageous and may cause poor dissolution.
また、 ( c ) 成分の有機過酸化物触媒と しては、 例えばべンゾィ ルパ一才キサイ ド、 ジク ミルパーォキサイ ド、 ジィ ソプロピルパー ォキサイ ド、 ジー t 一ブチルパーオキサイ ド、 t 一ブチルパーォキ シベンゾェ一ト、 1, 1 一ビス ( t 一ブチルパーォキシ) 一 3 , 3 , 5 — ト リメチルシクロへキサン、 2 , 5 —ジメチルー 2 , 5 —ビ ス ( t —ブチルバ一才キシ) へキシン一 3、 3—イソプロ ピルヒ ド 口パーオキサイ ド、 tーブチルヒ ドロパーオキサイ ド、 ジクミルバ 一オキサイ ド、 ジクミルヒ ドロパーオキサイ ド、 ァセチルバ一ォキ サイ ド、 ビス ( 4 一 tーブチルシクロへキシル) パーォキシジカー ボネート、 ジイソプロピルパーォキシジカーボネー ト、 イソブチル パーォキサイ ド、 3 , 3 , 5 — ト リ メチルへキサノィルパーォキサ ィ ド、 ラウ リルパーォキサイ ド、 ジク ミルパーォキサイ ド、 ジー t 一ブチルパーォキサイ ド、 t 一プチルハィ ドロパーォキサイ ドなど が挙げられる。 また、 ァゾビスイソプチロニト リル、 ァゾビスカル ボンアミ ドなどのァゾ化合物も有効である。 Examples of the organic peroxide catalyst of the component (c) include, for example, Benzoylpa 1-year-old cysteine, dicumylperoxide, di-sopropylperoxide, g-t-butyl peroxide, and t-butyl-peroxy benzoate. 1,1,1-bis (t-butylperoxy) -1,3,3,5-trimethylcyclohexane, 2,5—dimethyl-2,5—bis (t-butylbutyloxy) hexyne-1,3-isopro Pyrhydride Mouth peroxide, t-butyl hydroperoxide, dicumylvaperoxide, dicumylhydrperoxide, acetylbaoxyside, bis (4-t-butylcyclohexyl) peroxydicarbonate, diisopropylperoxydicarbonate, isobutyl peroxycide , 3, 3, 5 — trimethylhexa Irupaokisa I de, Lau Rirupaokisai de, dichloroethylene Mirupaokisai de, di t one-butylperoxy O wherein de include t one Puchiruhai Doropaokisai Donado. Also, azobisisobutyronitrile, azobiscal Azo compounds such as bonamide are also effective.
なお、 実際には常温硬化系の使用が有効だが、 公知であるケ ト ン パ一ォキサイ ドと還元剤の組み合わせ、 ハイ ドロパーォキサイ ドと 還元剤の組み合わせ、 ジァシルバーオキサイ ドと還元剤の組み合わ 5 せなども用いることができる。 還元剤としての具体例と しては、 ナ フテン酸コバル ト、 才クチル酸コバルト等のコバルト塩、 五酸化バ ナジゥム等のバナジゥム化合物、 ジメチルァ二リ ン等のァミ ン類等 が挙げられる。  Although the use of a room temperature curing system is effective in practice, the well-known combination of ketonpoxide and a reducing agent, the combination of hydroperoxide and a reducing agent, and the combination of diasilver oxide and a reducing agent 5 can also be used. Specific examples of the reducing agent include cobalt salts such as cobalt naphthenate and cobalt octylate, vanadium compounds such as vanadium pentoxide and the like, and amines such as dimethylaniline and the like.
本発明において、 成形材料の一成分と して用いられる無機充填材 1 0 と しては、 例えば水酸化アルミニウム、 炭酸カルシウム、 タルク、 ク レー、 ガラス粉、 シリカ、 硫酸バリ ゥム、 酸化チタン、 砂、 セメ ン トなどの公知のものが挙げられる。 これらの無機充填材を二種以 上を組み合わせて使用することもでき、 その使用量は、 硬化性樹脂 In the present invention, the inorganic filler 10 used as one component of the molding material includes, for example, aluminum hydroxide, calcium carbonate, talc, clay, glass powder, silica, barium sulfate, titanium oxide, Known materials such as sand and cement are exemplified. These inorganic fillers can be used in combination of two or more kinds.
1 0 0重量部に対して通常 1 0〜 5 0 0重量部、 好ましく は 5 0〜 i s 3 0 0重量部である。 It is usually from 100 to 500 parts by weight, preferably from 50 to Is300 parts by weight, based on 100 parts by weight.
また、 本発明では有機充填材も添加してよい。 この有機充填材と しては公知のもので、 低収縮剤としても効果のある、 例えばポリス チレン、 ポリ酢酸ビュル、 ポリメチルメ タク リ レー卜、 ポリエチレ ン、 ポリ塩化ビニリデンマイ クロバルーン、 ポリアク リ ロニト リル In the present invention, an organic filler may be added. This organic filler is known and has an effect as a low-shrinking agent. For example, polystyrene, polyvinyl acetate, polymethyl methacrylate, polyethylene, polyvinylidene chloride micro balloon, polyacrylonitrile
2 0 マイ クロバルーン等が使用できる。 20 Micro balloon and the like can be used.
さ らに、 本発明において顔料を使用することができる。 その種類 の制限は特になく、 有機顔^及び無機顔料が使用可能である。  Furthermore, pigments can be used in the present invention. There is no particular restriction on the type, and organic pigments and inorganic pigments can be used.
本発明において、 成形材料の一成分と して用いられる繊維強化材 は、 無機及び/又は有機繊維であり、 例えばガラス繊維、 炭素繊維 In the present invention, the fiber reinforcing material used as one component of the molding material is an inorganic and / or organic fiber, for example, glass fiber, carbon fiber
2 5 、 ァラミ ド繊維、 ポリェチレンテレフタレ一 卜繊維、 ビニロン繊維 等の公知のものが使用される。 これらの繊維は二種以上を組み合わ せて使用してもよく 、 その使用量は硬化性樹脂 1 0 0重量部に対し て通常 5〜 4 0 0重量部、 好ましくは 5 0〜 3 0 0重量部である。 本発明の製造方法に使用される光源と しては、 2 8 0 n m ~ 1 2 0 0 n mの波長領域の光を出す光源であればよいが、 特に F R P層 の深く まで光を透過させるためには長波長領域の光が望ましく 3 8 0 〜 1 2 0 0 n mの波長領域の光を出す光源が有効である。 光源の 例と しては、 高圧水銀灯、 超高圧水銀灯、 水銀灯、 メ タルハライ ド ランプ、 キセノンランプ、 近赤外光ランプ、 ナ ト リ ウムランプ、 ノ、 ロゲンランプ、 白熱灯、 陽光ランプを使用することができる。 また 、 各種ランプを組み合わせて使用することもできる。 25, known fibers such as aramide fiber, polyethylene terephthalate fiber, and vinylon fiber are used. These fibers may be used in combination of two or more kinds. The amount of the fibers is usually 5 to 400 parts by weight, preferably 50 to 300 parts by weight, per 100 parts by weight of the curable resin. Department. The light source used in the manufacturing method of the present invention may be a light source that emits light in a wavelength range of 280 nm to 1200 nm, but it is particularly necessary to transmit light deep into the FRP layer. The light source preferably emits light in the wavelength range of 380 to 1200 nm. Examples of light sources include high-pressure mercury lamps, ultra-high-pressure mercury lamps, mercury lamps, metal halide lamps, xenon lamps, near-infrared light lamps, sodium lamps, laser lamps, incandescent lamps, and sunlight lamps. it can. Also, various lamps can be used in combination.
また、 より早い硬化速度を得るためにはエネルギー順位の高い低 波長領域の光を強化したランプが有効で、 特にメ タルハライ ドラン プ及びハロゲンランプが好適である。 熱源と しては高波長領域の光 を強化したランプが有効である。  In order to obtain a faster curing speed, a lamp in which light in the low-wavelength region having a high energy order is enhanced is effective, and a metal halide lamp and a halogen lamp are particularly preferable. As a heat source, a lamp with enhanced light in the high wavelength region is effective.
光源の形状と しては、 モ一ルド内に入り回転面を照射できればよ く、 特に制限はないが、 棒状タイプ或いはフィーダに固定できる夕 イブ等が有効である。  The shape of the light source is not particularly limited as long as it can enter the mold and irradiate the rotating surface, and there is no particular limitation, but a rod-shaped type or an evening that can be fixed to a feeder is effective.
次に、 管部材の成形方法について説明する。 本発明においては、 管部材を成形するのに、 以下に示す 3つの態様がある。 すなわち、 硬化性樹脂と無機充填材及び/又は繊維強化材とを含む成形材料を 硬化させてなる外面保護層と外面 F R P層とモルタル層と内面 F R P層及び硬化性樹脂を主成分とする成形材料を硬化させてなる内面 保護層からなる多層管部材を成形するのに、 ( 1 ) 各層を一層づっ 遠心力をかけた状態で光照射によ り硬化させて形成する工法、 ( 2 ) 全ての層を遠心力をかけた状態で一度の光照射により硬化させて 形成する工法、 及び ( 3 ) 光照射させながら、 前記成形材料を回転 させている管部材用遠心成形型に投入し、 硬化させて各層を形成さ せる工法、 である。  Next, a method for forming the pipe member will be described. In the present invention, there are the following three modes for forming a pipe member. That is, a molding material containing an outer protective layer, an outer FRP layer, a mortar layer, an inner FRP layer, and a curable resin as main components obtained by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforcing material. (1) A method of forming each layer by hardening it by light irradiation while applying centrifugal force to form a multilayer pipe member consisting of a protective layer. A method in which the layer is cured by a single light irradiation while applying a centrifugal force, and (3) the molding material is put into a rotating centrifugal mold for a pipe member while being irradiated with the light, and cured. The method of forming each layer by using
具体的には、 前記 ( 1 ) の工法においては、 パイプの外径を固定 したモールド (型枠) を高速に回転させ、 フィーダによって繊維強 化材、 硬化性樹脂、 無機充填材などを投入し、 遠心力によって外面 保護層、 外面 F R P層、 モルタル層及び内面 F R P層、 内面保護層 を一層づっ形成させたところに光照射して、 一層づっ硬化させて、 各層を形成させる。 この場合、 一層づっ完全に硬化させてもよいし 、 一層毎に次の層をフィーダから投入した際に混ざらない程度に硬 化を進め、 最終層の硬化時に光照射に時間をかけて全てを完全硬化 させてもよい。 内面保護層の耐食性能を向上するためには最終層の 硬化時に時間をかけて硬化度を上げることが望ま しい。 また、 厚い 層は数回に分けて硬化してもよいし、 二層まとめて硬化させてもよ い。 フィーダからの材料の投入と光照射による硬化を交互に繰り返 していく ことによ り、 各層毎の樹脂が混ざり合ってしまう という こ とを防止できることが特徴である。 使用する硬化性樹脂は、 光の届 かない部分も生じるので光硬化と熱硬化の併用系にすることが望ま しい。 但し、 内面保護層のみは光硬化のみでよい。 Specifically, in the method (1), a mold (form) in which the outer diameter of the pipe is fixed is rotated at high speed, and the fiber strength is increased by a feeder. , A hardening resin, an inorganic filler, etc., and the outer protective layer, outer FRP layer, mortar layer, inner FRP layer, and inner protective layer are formed by centrifugal force. It is cured to form each layer. In this case, the layers may be completely cured, or each layer may be cured so that it does not mix when the next layer is introduced from the feeder. It may be completely cured. In order to improve the corrosion resistance of the inner protective layer, it is desirable to increase the degree of curing over time when the final layer is cured. The thick layer may be cured in several steps, or two layers may be cured together. The feature is that the resin in each layer can be prevented from being mixed by alternately repeating the feeding of the material from the feeder and the curing by light irradiation. The curable resin to be used has a part that does not reach the light, so it is desirable to use a combination of light curing and heat curing. However, only the inner surface protective layer need only be photocured.
また、 前記 ( 2 ) の工法においては、 パイプの外径を固定したモ 一ルド (型枠) を高速に回転させ、 フィーダによって繊維強化材、 硬化性樹脂、 無機充填材などを投入し、 遠心力によって外面保護層 、 外面 F R P層、 モルタル層及び内面 F R P層、 内面保護層の全て の層を成形したところに光照射して、 全ての層を一括して硬化させ て、 各層を形成させる。 この場合、 内面保護層は光硬化で反応を進 めることができ内部は主に熱硬化で反応を進める。 この場合も内面 保護層に強い光が長時間当たるため、 耐食性能を向上できる。 使用 する硬化性樹脂は、 内面保護層のみは光硬化のみでよいが、 その他 の層は熱硬化又は光硬化と熱硬化の併用系にすることが望ましい。 特に外面層ほど光硬化の併用は不要となる。  In the method (2), a mold (mold) having a fixed outer diameter of the pipe is rotated at a high speed, and a fiber reinforcing material, a curable resin, an inorganic filler, and the like are charged by a feeder and centrifuged. All the layers of the outer protective layer, the outer FRP layer, the mortar layer, the inner FRP layer, and the inner protective layer are molded with light, and all the layers are collectively cured to form each layer. In this case, the reaction of the inner protective layer can proceed by photo-curing, and the inside proceeds mainly by thermo-curing. Also in this case, since strong light is applied to the inner protective layer for a long time, the corrosion resistance can be improved. As for the curable resin to be used, only the inner surface protective layer may be photocured only, but the other layers are preferably thermoset or a combination of photocuring and thermosetting. In particular, the outer layer does not require the use of photocuring in combination.
さらに、 前記 ( 3 ) の工法においては、 パイプの外径を固定した モールド (型枠) を高速に回転させ、 光照射を行ないながらフィー ダによって繊維強化材、 硬化性樹脂、 無機充填材などを投入し、 外 面保護層、 外面 F R P層、 モルタル層、 内面 F R P層、 内面保護層 を連続的に硬化させて、 各層を形成させる。 この ( 3 ) の工法は、 連続的に成形する工法で最も短時間で成形できる工法である。 この 場合、 光の強度とフィーダからの材料供給速度のバランスを取り、 重力が十分にかかってから硬化が進むようにすることが望ましい。 使用する硬化性樹脂は、 光硬化性にしておけば短時間で硬化できる が、 後硬化を期待するためには光硬化と熱硬化の併用系にすること が望ましい。 但し、 内面保護層のみは光硬化のみでよい。 Further, in the method (3), a mold (form) in which the outer diameter of the pipe is fixed is rotated at a high speed, and while irradiating light, a fiber reinforcing material, a curable resin, an inorganic filler, and the like are removed by a feeder. Throw in and out The surface protective layer, outer FRP layer, mortar layer, inner FRP layer and inner protective layer are continuously cured to form each layer. This method (3) is the method that can be molded in the shortest time in the method of continuous molding. In this case, it is desirable to balance the light intensity and the material supply speed from the feeder so that curing proceeds after sufficient gravity is applied. The curable resin used can be cured in a short time if it is photocurable, but it is desirable to use a combination of photocuring and thermal curing in order to expect post-curing. However, only the inner surface protective layer need only be photocured.
本発明においては、 照射する光の強度は高い方が望ましく、 例え ば 4 0 0 〜 1 0 0 0 n mの波長域の照度が 5 0 m W / c m 2 以上、 更に好ましくは 1 0 0 m W / c m 2 以上であることが望ましい。 光 の照射時間としては、 管径ゃ工法によって異なるため、 一概に規定 できないが、 概ね卜一タルで 3 0分以上あればよい。 In the present invention, the intensity of the irradiated light is higher is desirable, for example if 4 0 0-1 0 0 0 illuminance in the wavelength range of nm is 5 0 m W / cm 2 or more, more preferably 1 0 0 m W / cm 2 or more is desirable. Since the light irradiation time varies depending on the pipe diameter and the construction method, it cannot be specified unconditionally, but it is sufficient if the total time is at least 30 minutes.
次に、 本発明の管部材の製造方法において用いられる装置は、 成 形材料を構成する各成分を供給する機構及び光照射機構を有する遠 心成形装置であって、 公知の遠心成形装置に光照射装置を組み合わ せればよい。 具体的には、 硬化性樹脂、 有機ホウ素化合物、 無機充 填材、 繊維強化材を供給する装置、 光照射装置を備えた管部材用遠 心成形装置であり、 硬化性樹脂の供給装置は、 例えば光硬化と熱硬 化の併用系では、 予め光開始剤とコバルト塩を添加した樹脂又は光 開始剤と酸性化合物を添加した樹脂に、 フィーダの先端部で過酸化 物又は有機ホウ素化合物を混合して供給できるようになつている。 光照射装置は、 フィーダと入れ替えに挿入するタイプ (A ) でもよ いし、 フィーダに取り付けたタイプ (B ) でもよい。  Next, an apparatus used in the method for manufacturing a pipe member of the present invention is a centrifugal molding apparatus having a mechanism for supplying each component constituting the molding material and a light irradiation mechanism. Irradiation devices may be combined. Specifically, it is a device for supplying curable resin, organoboron compound, inorganic filler, and fiber reinforcement, and a centrifugal molding device for tube members equipped with a light irradiation device. For example, in a combination system of photocuring and thermosetting, a peroxide or organoboron compound is mixed at the tip of the feeder with a resin to which a photoinitiator and a cobalt salt are added in advance or a resin to which a photoinitiator and an acidic compound are added. And supply it. The light irradiation device may be of the type (A) that is inserted in place of the feeder, or may be of the type (B) attached to the feeder.
前記タイプ (A ) は、 反射板付きバ一状のランプを円柱の円周上 に複数個並べて型の内面を全面にわたって光照射できるようになつ ている形状で、 フィーダを抜き出すのと入れ替えに揷入して一度に 光照射でき、 一層づっ硬化させていく方法、 全ての層を一括して硬 化させる方法に使用することができる。 The type (A) has a shape in which a plurality of lamps with a reflector with a reflector are arranged on the circumference of a cylinder so that light can be irradiated on the entire inner surface of the mold. To irradiate light at once and harden further. Can be used for the method of
一方、 タイプ ( B ) は、 フィ一ダの先端部及びその周辺又は先端 部及び全ての部分にランプを取り付けたものである。 連続的に成形 する工法に使用することができる。  On the other hand, type (B) has a lamp attached to the tip of the feeder and its surroundings, or to the tip and all parts. It can be used for a continuous molding method.
5 実施例  5 Example
次に、 本発明を実施例によ り、 さ らに詳細に説朋するが、 本発明 はこれらの例によってなんら限定されるものではない。 実施例 1 (光硬化遠心成形装置)  Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Example 1 (light-curing centrifugal molding device)
1 0 図 1 の概略図に示す光硬化遠心成形装置を作製した。 該光硬化遠 心成形装置は、 高速回転可能な内径が 6 0 O mm又は 1 0 0 0 mm のモールド (型枠) 1 に、 有機ホウ素化合物や過酸化物触媒を先端 で混合できる機能を備えた樹脂組成物供給装置 3、 骨材 (砂) 供給 装置 5、 ガラス繊維供給装置 7、 ショートアーク方式の 2 kWメ タ i s ルハライ ドランプ 8 を 4個備えたフィーダを組み合わせた構造を有 している。 なお、 符号 2は樹脂組成物、 4は骨材 (砂) 、 6 はガラ ス繊維である。  10 A light-curing centrifugal molding apparatus shown in the schematic diagram of FIG. 1 was produced. The photo-curing centrifugal molding machine has a function to mix an organoboron compound or a peroxide catalyst at the tip with a mold (form) 1 having an inner diameter of 60 Omm or 100 mm that can rotate at high speed. Resin feeder 3, aggregate (sand) feeder 5, glass fiber feeder 7, and short-arc type 2kW meter is a feeder equipped with four lamps 8 . Reference numeral 2 denotes a resin composition, 4 denotes an aggregate (sand), and 6 denotes a glass fiber.
次に、 図 2の概略図に示す光照射装置を作製し、 フィーダと入れ 替わりに挿入できるようにした。 該光照射装置は、 直径 3 0 0 mm 20 又は 7 0 0 mmの丸棒 9の円周上に、 バー状の 3 k Wガリ ウムラン プ 1 0が 4灯取り付けられた構造を有している。 実施例 1 (複合管の製造)  Next, a light irradiation device as shown in the schematic diagram of Fig. 2 was manufactured, so that it could be inserted instead of the feeder. The light irradiation device has a structure in which four bar-shaped 3 kW gallium lamps 10 are mounted on the circumference of a round bar 9 having a diameter of 300 mm 20 or 700 mm. . Example 1 (manufacture of composite tube)
( 1 ) 樹脂組成物の調製  (1) Preparation of resin composition
25 不飽和ポリエステル樹脂 〔昭和高分子 (株) 製、 商品名 : リ ゴラ ッ ク 1 5 5 7、 酸価 2 5 m g K 0 H / g〕 1 0 0重量部に、 1 , 2 ' 一ビス ( 0—クロ口フエ二ル) 一 4, 5 , 4 ' , 5 ' —テ トラフ ヱ二ルー 1 , 1 ' 一ビスイ ミ ダゾ一ル 〔和光純薬工業 (株) 製〕 3 . 0重量部及び 2—メルカプトべンゾチアゾール 1 . 5重量部を添 加し、 樹脂組成物一 1 を得た。 25 Unsaturated polyester resin [manufactured by Showa Polymer Co., Ltd., trade name: Rigoluck 150, 57, acid value 25 mg K 0 H / g] 1, 2'-bis in 100 parts by weight (0—black mouth fern) 1-4,5,4 ', 5'-Tetraf2,1,1'-bisimidazole [manufactured by Wako Pure Chemical Industries, Ltd.] 3 0.0 parts by weight and 1.5 parts by weight of 2-mercaptobenzothiazole were added to obtain a resin composition 11.
不飽和ポリエステル樹脂 (前出) 1 0 0重量部に、 2 , 2 ' ービ ス ( 0—クロ口フエニル) 一 4, 5 , 4 ' , 5 ' —テ トラフェニル 5 - 1 , 2 ' 一ビスイ ミ ダゾ一ル 〔和光純薬ェ窣 (株) 製〕 3. 0重 量部及び 2—メルカプトべンゾチアゾ一ル 1 . 5重量部及び炭酸力 ルシゥム 〔備北粉化工業 (株) 製、 商品名 : ソフ ト ン 1 2 0 0〕 1 9 0重量部を混合し、 樹脂組成物一 2 を得た。  Unsaturated polyester resin (supra) 100, parts by weight, 2,2'-bis (0-chlorophenyl) 1,4,5,4 ', 5'-tetraphenyl 5-1,2' Bisimidazole [manufactured by Wako Pure Chemical Industries, Ltd.] 3.0 parts by weight and 1.5 parts by weight of 2-mercaptobenzothiazole and carbonic acid rusidium [manufactured by Bihoku Powder Chemical Industry Co., Ltd. Name: Softener 1200] 190 parts by weight was mixed to obtain a resin composition 1-2.
ビニルエステル樹脂 〔昭和高分子 (株) 製、 酸価 8 mg K O H/ 10 g ] 1 0 0重量部に、 2 , 2 ' 一ビス ( 0—クロロフヱニル) 一 4 , 5 , 4 ' , 5 ' —テ トラフヱ二ルー 1 , 2 ' —ビスイ ミ ダゾ一ル 〔和光純薬工業 (株) 製〕 3. 0重量部及び 2—メルカプトべンゾ チアゾール 1 . 5重量部を添加し樹脂組成物一 3 を得た。  Vinyl ester resin [manufactured by Showa Polymer Co., Ltd., acid value 8 mg KOH / 10 g] 2,100'-bis (0-chlorophenyl) -1.4,5,4 ', 5' in 100 parts by weight Tetrafluo 1,2'-bisimidazole [manufactured by Wako Pure Chemical Industries, Ltd.] 3.0 parts by weight and 1.5 parts by weight of 2-mercaptobenzothiazole were added to the resin composition. Got.
( ) 有機ホウ素化合物溶液の調製  () Preparation of organic boron compound solution
i s 先端混合用に、 有機ホウ素化合物 ; テ トラー n—プチルアン乇ニ ゥム . ト リ フヱニルー n—ブチルボレ一ト (昭和電工 (株) 製、 以 下 P 3 Bと略す。 ) を N—メチルピロ リ ドンに溶解し、 4 0重量0 /0 溶液の開始剤一 1 を作製した。 is For mixing at the tip, an organoboron compound; tetra-n-butylammonium.triphenyl-n-butylborate (manufactured by Showa Denko KK, hereinafter abbreviated as P3B) is N-methylpyrrolid. was dissolved in pyrrolidone were prepared initiator one 1 4 0 weight 0/0 solution.
開始剤一 1 は、 以下の実施例 (複合管の製造例) において、 樹脂 20 組成物一 1 、 樹脂組成物一 1及び樹脂組成物一 3 を投入すると同時 に、 各樹脂組成物に対して 1 . 0重量%となる量を、 フィーダの先 端から投入した。  In the following examples (Examples of manufacturing a composite tube), the initiator 11 was charged with the resin 20 composition 11, the resin composition 11 and the resin composition 13, and simultaneously with the resin composition. An amount of 1.0% by weight was fed from the front end of the feeder.
( 3 ) ガラス繊維、 砂  (3) Glass fiber, sand
ガラス繊維は、 ガラス口—ビング 〔日東紡 (株) 製、 商品名 : 4 25 0 2 6 TX/〕 を使用し、 長さ 1ィ ンチに切断して供給できるよう にした。 また、 砂は J I S 4号鏡物砂を準備した。  The glass fiber was cut into 1-inch lengths using a glass opening (made by Nitto Boseki Co., Ltd., trade name: 425026 TX /). For the sand, we prepared JIS No. 4 mirror sand.
( 4 ) 一層づっ硬化 (呼び径 6 0 0 mm)  (4) Further hardening (nominal diameter 600 mm)
まず、 外面保護層と して実施例 1 で作製した遠心成形装置 (図 1 ) をショートアークメ タルハライ ドランプは点灯させずに使用し、 モールドを 2 5 0 r p mに回転させている中に、 樹脂組成物一 1 と 砂を砂含有量が 8 0重量0 /0、 厚さが 1 mmとなるように投入した。 投入後、 フィーダと入れ替えに図 2の光照射装置を挿入し 3分間光 照射して硬化させた。 First, the centrifugal molding device prepared in Example 1 (Fig. 1) was used as the outer protective layer. Short arc main Taruharai Doranpu a) is used without lighting, in which rotates the mold 2 5 0 rpm, the resin composition one 1 and sand the sand content 8 0 wt 0/0, the thickness Was set to 1 mm. After insertion, the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light was irradiated for 3 minutes to cure.
次に、 外面 F R P層と してモールドを 2 5 0 r p mに回転させて いる外面保護層の上に、 樹脂組成物一 2 とガラス短繊維をガラス含 有量が 1 0重量%、 厚さが 5 mmとなるように投入した。 投入後、 フィ一ダと入れ替えに図 2の光照射装置を挿入し' 1 0分間光照射し て硬化させた。  Next, the resin composition 12 and short glass fibers were placed on the outer protective layer, which is rotating the mold at 250 rpm as the outer FRP layer, with a glass content of 10% by weight and a thickness of 10% by weight. It was thrown so that it might be 5 mm. After insertion, the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light irradiation was performed for 10 minutes to cure.
次に、 モルタル層と してモールドを 2 5 0 r p mに回転させてい る外面 F R P層の上に、 樹脂組成物一 2 と砂を砂含有量が 7 0重量 %、 厚さが 4 . 5 mmとなるように投入した。 投入後、 フィーダ入 れ替えに図 2の光照射装置を挿入し 1 0分間光照射して硬化させた。 次に、 内面 F R P層と してモールドを 2 5 O r p mに回転させて いるモルタル層の上に、 樹脂組成物一 2 とガラス短繊維を、 ガラス 含有量が 2 0重量0 /0、 厚さが 4 mmとなるように投入した。 投入後 、 フィーダと入れ替えに図 2の光照射装置を挿入し 1 0分間光照射 して硬化させた。 Next, on the outer surface FRP layer where the mold was rotated at 250 rpm as a mortar layer, the resin composition 12 and sand were mixed with a sand content of 70% by weight and a thickness of 4.5 mm. It was put so that. After insertion, the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light irradiation was performed for 10 minutes to cure. Next, on the mortar layer which rotates the mold and the inner surface FRP layer 2 5 O rpm, a resin composition one 2 and short glass fibers, glass content 2 0 weight 0/0, the thickness Was set to 4 mm. After the introduction, the light irradiation device shown in FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 10 minutes to cure.
最後に、 内面保護 F R P層と してモールドを 2 5 0 r p mに回転 させている内面 F R P層の上に、 樹脂組成物一 3 を厚さが 1 mmと なるように投入した。 投入後、 フィーダと入れ替えに図 2 の光照射 装置を挿入し 5分間光照射して硬化させた。  Finally, as an inner surface protection FRP layer, the resin composition 13 was poured onto the inner surface FRP layer rotating the mold at 250 rpm so as to have a thickness of 1 mm. After insertion, the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light irradiation was performed for 5 minutes to cure.
トータル 3 8分の光照射時間 ( トータル作業時間 5 0分) で、 呼 ぴ径 6 0 0 mm、 長さ 5 0 mm、 厚さ 1 5 . 5 mmの複合管を成形 した。  A composite tube with a nominal diameter of 600 mm, a length of 50 mm and a thickness of 15.5 mm was formed with a total light irradiation time of 38 minutes (total working time of 50 minutes).
( 5 ) —層づつ硬化 (呼び径 1 0 0 0 mm)  (5) — Layer-by-layer curing (nominal diameter 100 mm)
まず、 外面保護層と して実施例 1 で作製した遠心成形装置 (図 1 ) をショートアークメ タルハライ ドランプは点灯させずに使用し、 モ一ルドを 2 5 0 r p mに回転させている中に、 樹脂組成物一 1 と 砂を砂含有量が 8 0重量%、 厚さが 1 mmとなるように投入した。 投入後、 フィーダと入れ替えに図 2の光照射装置を挿入し 3分間光 照射して硬化させた。 First, the centrifugal molding device prepared in Example 1 (Fig. 1) was used as the outer protective layer. ) Was used without turning on the short-arc metal halide lamp, and while the mold was rotating at 250 rpm, the resin composition 11 and the sand had a sand content of 80% by weight and a thickness of 80% by weight. Was set to 1 mm. After insertion, the light irradiation device shown in Fig. 2 was inserted in place of the feeder, and light was irradiated for 3 minutes to cure.
次に、 外面 F R P層と してモールドを 2 5 0 r p mに回転させて いる外面保護層の上に、 樹脂組成物一 2 とガラス短繊維を、 ガラス 含有量が 2 0重量0 /0、 厚さが 8 mmとなるように投入した。 投入後 、 フィーダと入れ替えに図 2の光照射装置を挿入し 1 3分間光照射 して硬化させた。 . Next, on the outer surface protective layer, which rotates the mold and the outer surface FRP layer 2 5 0 rpm, one 2 and glass wool resin composition, glass content 2 0 weight 0/0, the thickness Was introduced so as to be 8 mm. After the loading, the light irradiation device shown in FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 13 minutes to cure. .
次に、 モルタル層と してモールドを 2 5 0 r mに回転させてい る外面 F RP層の上に、 樹脂組成物一 1 と砂を砂含有量が 7 0重量 %ヽ 厚さが 7 mmとなるように投入した。 投入後、 フィーダと入れ 替えに図 2の光照射装置を挿入し 1 3分間光照射して硬化させた。 次に、 内面 F R P層と してモールドを 2 5 O r p mに回転させて いるモルタル層の上に、 樹脂組成物一 2 とガラス短繊維を、 ガラス 含有量が 2 0重量%、 厚さが 8 mmとなるように投入した。 投入後 、 フィーダと入れ替えに図 2の光照射装置を挿入し 1 3分間光照射 して硬化させた。  Next, the resin composition 11 and sand were mixed on the outer FRP layer, which is rotating the mold to 250 rm as a mortar layer, with a sand content of 70% by weight and a thickness of 7 mm. I put it in. After loading, the light irradiator shown in Fig. 2 was inserted in place of the feeder, and light was irradiated for 13 minutes to cure. Next, on the mortar layer where the mold is rotated at 25 O rpm as the inner surface FRP layer, the resin composition 12 and the short glass fiber are mixed with a glass content of 20% by weight and a thickness of 8%. mm. After the loading, the light irradiation device shown in FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 13 minutes to cure.
最後に、 内面保護 F R P層と してモールドを 2 5 0 r p mに回転 させている内面 F R P層の上に、 樹脂組成物— 3 を厚さが 1 mmと なるように投入した。 投入後、 フィーダと入れ替えに図 2の光照射 装置を挿入し 5分間光照射して硬化させた。  Finally, as an inner surface protection FRP layer, the resin composition-3 was poured onto the inner surface FRP layer rotating the mold at 250 rpm so as to have a thickness of 1 mm. After insertion, the light irradiator shown in Fig. 2 was inserted in place of the feeder, and light was irradiated for 5 minutes to cure.
トータル 4 7分の光照射時間 ( トータル作業時間 6 5分) で、 呼 び径 1 0 0 O mm、 長さ 5 0 mm, 厚さ 2 5 mmの複合管を成形し た。 実施例 3 (複合管の製造) ( 1 ) 全ての層を一度に硬化 (呼び径 6 0 0 mm) With a total irradiation time of 47 minutes (total work time of 65 minutes), a composite tube with a nominal diameter of 100 Omm, a length of 50 mm, and a thickness of 25 mm was formed. Example 3 (manufacture of composite pipe) (1) All layers are cured at once (nominal diameter 600 mm)
実施例 2 と同様の装置、 材料を使用し、 外面保護層、 外面 F R P 層、 モルタル層、 内面 F R P層、 内面保護層を実施例 2 と同様の構 成でまず 2 5 0 r p mで回転させているモールド内に積層した。 次に、 フィ一ダと入れ替えに図 2の光照射装置を挿入し 4 0分間 光照射して全ての層を一度に硬化させ、 実施例 2 ( 4 ) と同様の複 合管を成形した。  Using the same equipment and materials as in Example 2, the outer protective layer, outer FRP layer, mortar layer, inner FRP layer, and inner protective layer were first rotated at 250 rpm with the same configuration as in Example 2. In a mold. Next, the light irradiation device of FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 40 minutes to cure all the layers at once, and a composite tube similar to that of Example 2 (4) was formed.
( ) 全ての層を一度に硬化 (呼び径 1 0 0 0 mm)  () All layers are cured at once (Nominal diameter: 100 mm)
実施例 2 と同様の装置、 材料を使用し、 外面保護層、 外面 F R P 層、 モルタル層、 内面 F R P層、 内面保護層を実施例 2 と同様の構 成でまず 2 5 0 r p mで回転させているモールド内に積層した。 次に、 フィーダと入れ替えに図 2 の光照射装置を挿入し 6 0分間 光照射して全ての層を一度に硬化させ、 実施例 2 ( 5 ) と同様の複 合管を成形した。 実施例 4 (複合管の製造)  Using the same equipment and materials as in Example 2, the outer protective layer, outer FRP layer, mortar layer, inner FRP layer, and inner protective layer were first rotated at 250 rpm with the same configuration as in Example 2. In a mold. Next, the light irradiation device shown in FIG. 2 was inserted in place of the feeder, and light irradiation was performed for 60 minutes to cure all the layers at once, and a composite tube similar to that of Example 2 (5) was formed. Example 4 (Production of composite pipe)
( 1 ) 材料を供給しながら光硬化 (呼ぴ径 6 0 0 mm)  (1) Light curing while supplying the material (nominal diameter: 600 mm)
実施例 2 と同様の材料を使用し、 遠心成形装置のフィーダのショ —トアークメ タハラを点灯させたまま、 各層を実施例 2 と同様の構 成で、 外面保護層を 3分、 外面 F R P層を 7分、 モルタル層を 5分 、 内面 F R P層を 7分、 内面保護層を 3分で夫々の材料を投入し連 続で硬化させ、 最後に更に 5分間光照射して硬化させ、 実施例 2 ( 4 ) と同様の複合管を成形した。  Using the same material as in Example 2, with the short-circuit meter of the feeder of the centrifugal molding device turned on, each layer has the same configuration as in Example 2, the outer protective layer is 3 minutes, and the outer FRP layer is Each material was charged for 7 minutes, the mortar layer for 5 minutes, the inner FRP layer for 7 minutes, and the inner protective layer for 3 minutes, and cured continuously, and finally cured by irradiating light for another 5 minutes. A composite tube similar to (4) was formed.
( 2 ) 材料供給しながら光硬化 (呼び径 1 0 0 0 mm)  (2) Light curing while supplying material (nominal diameter 100 mm)
実施例 2 と同様の材料を使用し、 遠心成形装置のフィーダのショ ― トアークメ タルハラィ ドランプを点灯させたまま、 各層を実施例 The same material as in Example 2 was used, and each layer was processed while the short-arc metal halide lamp on the feeder of the centrifugal molding machine was turned on.
2 と同様の構成で、 外面保護層を 3分、 外面 F R P層を 1 0分、 モ ル夕ル層を 8分、 内面 F R P層を 1 0分、 内面保護層を 3分で夫々 の材料を投入し連続で硬化させ、 最後に更に 1 0分間光照射して硬 化させ、 実施例 2 ( 5 ) と同様の複合管を成形した。 試験例 With the same configuration as 2, the outer protective layer is 3 minutes, the outer FRP layer is 10 minutes, the mole layer layer is 8 minutes, the inner FRP layer is 10 minutes, and the inner protective layer is 3 minutes. The material was charged and continuously cured, and finally irradiated with light for another 10 minutes to be cured, whereby a composite tube similar to that of Example 2 (5) was formed. Test example
実施例 2〜 4で得られた各複合管について、 J I S A 5 3 5 0 の準拠して、 内圧管 (第 4種) の外圧試験及び内圧試験を行った。 その結果を第 1表に示す。 第 1 表 〔内圧管 (第 4種) の外圧試験及び内圧試験〕  For each of the composite pipes obtained in Examples 2 to 4, an external pressure test and an internal pressure test of the internal pressure pipe (Class 4) were performed in accordance with JIS A530. Table 1 shows the results. Table 1 [External pressure test and internal pressure test of internal pressure pipe (Class 4)]
試験条件 Test condition
外圧試験  External pressure test
呼び径 600襲 基準たわみ: 3 1 mm 試験外圧: 4 4. 6 KN/m 呼び径 1000匪 基準たわみ : 5 I mra 試験外圧: 7 4. 3 KN/ra 内圧試験  Nominal diameter 600 Attack Standard deflection: 31 mm External pressure of test: 44.6 KN / m Nominal diameter 1000 Maraud Standard deflection: 5 Imra External pressure of test: 74.3 KN / ra Internal pressure test
呼び径 600匪 設計内圧 : 0. 5 KN/ffl 試験内圧 : 1 . 0 KN/ra 呼び径 1000醒 設計内圧: 0. 5 KN/m 試験内圧: し 0 KN/m 産業上の利用可能性  Nominal diameter 600 Maraud Design internal pressure: 0.5 KN / ffl Test internal pressure: 1.0 KN / ra Nominal diameter 1000 Awake Design internal pressure: 0.5 KN / m Test internal pressure: No 0 KN / m Industrial applicability
本発明によれば、 遠心成形法と光照射を組み合わせることにより 、 多層構造の管部材を短時間で成形し得ると共に、 成形後のァフ夕 —キュアの必要もなく、 成形サイ クルの大幅な向上を図ることがで きる。 According to the present invention, by combining centrifugal molding and light irradiation, In addition, it is possible to form a multi-layered tubular member in a short time, and it is not necessary to cure after forming, so that the molding cycle can be greatly improved.

Claims

請求の範囲 The scope of the claims
1 . 硬化性樹脂、 又は硬化性樹脂と無機充填材及び/又は繊維強化 材とを含む成形材料を、 回転させている管部材用遠心成形型に投入 し、 遠心力をかけた状態で光照射により硬化させることを特徴とす る管部材の製造方法。 1. A curable resin or a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material is poured into a rotating centrifugal mold for a pipe member, and irradiated with light under a centrifugal force. A method for producing a pipe member, characterized in that the pipe member is cured by the following method.
2 . 管部材が、 硬化性樹脂と無機充填材及び/又は繊維強化材とを 含む成形材料を硬化させてなる外面保護層と外面 F R P層とモル夕 ル層と内面 F R P層及び硬化性樹脂を主成分とする成形材料を硬化 させてなる内面保護層からなり、 かつ各層を一層づっ遠心力をかけ た状態で光照射により硬化させて形成する請求項 1記載の管部材の 製造方法。 2. The pipe member is made of an outer protective layer, an outer FRP layer, a molar layer, an inner FRP layer, and a curable resin obtained by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material. 2. The method for producing a pipe member according to claim 1, comprising an inner surface protective layer obtained by curing a molding material as a main component, and forming each layer by applying light while being subjected to a centrifugal force.
3 . 管部材が、 硬化性樹脂と無機充填材及び/又は繊維強化材とを 含む成形材料を硬化させてなる外面保護層と外面 F R P層とモル夕 ル層と内面 F R P層及び硬化性樹脂を主成分とする成形材料を硬化 させてなる内面保護層からなり、 かつ全ての層を遠心力をかけた状 態で一度の光照射により硬化させて形成する請求項 1記載の管部材 の製造方法。 3. The pipe member is formed by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material. The outer protective layer, the outer FRP layer, the mole layer, the inner FRP layer, and the curable resin. The method for manufacturing a pipe member according to claim 1, comprising an inner protective layer formed by curing a molding material as a main component, and forming all layers by applying a single light irradiation while applying a centrifugal force. .
4 . 管部材が、 硬化性樹脂と無機充填材及び/又は繊維強化材とを 含む成形材料を硬化させてなる外面保護層と外面 F R P層とモル夕 ル層と内面 F R P層及び硬化性樹脂を主成分とする成形材料を硬化 させてなる内面保護層からなり、 かつ光照射しながら、 前記成形材 料を回転させている管部材用遠心成形型に投入し、 硬化させて各層 を形成する請求項 1記載の管部材の製造方法。 4. The pipe member is formed by curing a molding material containing a curable resin and an inorganic filler and / or a fiber reinforced material. The outer protective layer, the outer FRP layer, the mole layer, the inner FRP layer, and the curable resin. A method comprising forming an inner surface protective layer obtained by curing a molding material as a main component, charging the molding material into a rotating centrifugal molding die for a pipe member while irradiating light, and curing the molding material. Item 4. The method for producing a pipe member according to Item 1.
5. 成形材料における硬化性樹脂が、 ( a) 紫外光、 可視光及び近 赤外光の少なく とも一つの領域の光に感光する光重合開始剤、 (b ) 一般式 ( I ) R 1 R 5. The curable resin in the molding material is: (a) a photopolymerization initiator sensitive to at least one region of ultraviolet light, visible light, and near-infrared light; (b) a general formula (I) R 1 R
Z+ · B ( I ) Z + B (I)
R2 R R 2 R
(式中、 R1 〜R4 は、 それぞれ独立してハロゲン原子、 炭化水素 基、 ァシル基、 シリル基又は複素環式基、 Zは陽イオンを示す。 ) で表される有機ホウ素化合物と酸性化合物と場合によ り用いられる 一般式 (Π) (Wherein, R 1 to R 4 each independently represent a halogen atom, a hydrocarbon group, an acyl group, a silyl group, or a heterocyclic group, and Z represents a cation.) Compound and optionally used general formula (に よ)
(式中、 L 1 , L2 及び L3 は、 それぞれ独立にァリール基を示す で表されるへキサァリ一ルビィ ミ ダゾール化合物との組み合わせか らなる重合開始剤及び ( c ) 有機過酸化物触媒の中から選ばれる少 なく とも一種の重合開始剤を含む不飽和ポリエステル樹脂、 ビュル エステル樹脂及びゥ レタン (メ タ) ァク リ レー ト樹脂の中から選ば れる少なく とも一種の樹脂である請求項 1ないし 4のいずれかに記 載の管部材の製造方法。 (Wherein L 1 , L 2 and L 3 each independently represent an aryl group) A polymerization initiator comprising a combination with a hexarylubimidazole compound represented by, and (c) an organic peroxide catalyst The resin is at least one resin selected from unsaturated polyester resins containing at least one polymerization initiator selected from the group consisting of unsaturated polyester resins, vinyl ester resins, and urethane (meth) acrylate resins. The method for producing a pipe member according to any one of 1 to 4.
6. 無機充填材が砂及び/又は炭酸カルシウムであり、 繊維強化材 がガラス繊維、 炭素繊維及びァラミ ド繊維の中から選ばれる少なく とも一種である請求項 1ないし 5のいずれかに記載の管部材の製造 方法。 6. The pipe according to any one of claims 1 to 5, wherein the inorganic filler is sand and / or calcium carbonate, and the fiber reinforcing material is at least one selected from glass fiber, carbon fiber, and aramide fiber. Method of manufacturing components.
7 . 照射する光が可視光から近赤外光領域の波長を有する請求項 1 ないし 6のいずれかに記載の管部材の製造方法。 7. The method for producing a tube member according to claim 1, wherein the irradiation light has a wavelength in a range from visible light to near-infrared light.
8 . 光照射の光源がメ タルハライ ドランプ及び/又はハロゲンラン プである請求項 1 ないし 7のいずれかに記載の管部材の製造方法。 8. The method for producing a tube member according to claim 1, wherein the light source for light irradiation is a metal halide lamp and / or a halogen lamp.
9 . 硬化性樹脂と して、 一般式 ( I ) で表される有機ホウ素化合物 を含むものを用いる場合、 該有機ホウ素化合物のみを予め樹脂中に 混合せずに、 管部材用遠心成形型に投入して樹脂と混合させる請求 項 5ないし 8のいずれかに記載の管部材の製造方法。 9. When a resin containing an organic boron compound represented by the general formula (I) is used as the curable resin, the centrifugal molding die for pipe members is used without mixing the organic boron compound alone in the resin in advance. The method for producing a pipe member according to any one of claims 5 to 8, wherein the mixture is charged and mixed with a resin.
1 0 . 光照射と同時に加熱して、 硬化を促進させる請求項 1 ないし 9のいずれかに記載の管部材の製造方法。 10. The method for producing a tube member according to any one of claims 1 to 9, wherein the curing is promoted by heating simultaneously with light irradiation.
1 1 . 請求項 1ないし 1 0のいずれかに記載の方法で得られたこと を特徴とする管部材。 11. A pipe member obtained by the method according to any one of claims 1 to 10.
1 . 請求項 1ないし 1 0のいずれかに記載の方法において用いら れる遠心成形装置であって、 成形材料を構成する各成分を供給する 機構及び光照射機構を有することを特徴とする管部材用製造装置。 10. A centrifugal molding device used in the method according to any one of claims 1 to 10, wherein the tube member has a mechanism for supplying each component constituting the molding material and a light irradiation mechanism. For manufacturing equipment.
PCT/JP2002/010752 2002-10-16 2002-10-16 Method and device for manufacturing pipe member WO2004035287A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002335277A AU2002335277A1 (en) 2002-10-16 2002-10-16 Method and device for manufacturing pipe member
PCT/JP2002/010752 WO2004035287A1 (en) 2002-10-16 2002-10-16 Method and device for manufacturing pipe member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/010752 WO2004035287A1 (en) 2002-10-16 2002-10-16 Method and device for manufacturing pipe member

Publications (1)

Publication Number Publication Date
WO2004035287A1 true WO2004035287A1 (en) 2004-04-29

Family

ID=32104823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010752 WO2004035287A1 (en) 2002-10-16 2002-10-16 Method and device for manufacturing pipe member

Country Status (2)

Country Link
AU (1) AU2002335277A1 (en)
WO (1) WO2004035287A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259677A (en) * 1976-11-24 1977-05-17 Kubota Ltd Method of manufacture of conjugate pipe reinforced with glass fiber
WO1986005436A1 (en) * 1985-03-23 1986-09-25 Dow Chemical Gmbh Fiber reinforced plastic pipe and centrifugal casting method for manufacturing same
JPS63312810A (en) * 1987-06-17 1988-12-21 Nippon Concrete Ind Co Ltd Preparation of frp reinforced concrete or mortar pipe
EP0533482A1 (en) * 1991-09-17 1993-03-24 Xerox Corporation Processes for preparing imaging members
US5202076A (en) * 1988-09-23 1993-04-13 Hobas Engineering & Durotec Ag Method for producing multi-layer pipe conduit components of plastic material, inorganic filler material and glass fibers
US5300391A (en) * 1991-09-17 1994-04-05 Xerox Corporation Field assisted processes for preparing imaging members
JP2000095928A (en) * 1998-07-22 2000-04-04 Dainippon Ink & Chem Inc Resin concrete composition and molded part thereof
JP2000117850A (en) * 1998-10-19 2000-04-25 Shin Etsu Polymer Co Ltd Production of seamless belt
JP2002105310A (en) * 2000-09-27 2002-04-10 Shin Etsu Polymer Co Ltd Semiconductive belt made of acrylic resin

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5259677A (en) * 1976-11-24 1977-05-17 Kubota Ltd Method of manufacture of conjugate pipe reinforced with glass fiber
WO1986005436A1 (en) * 1985-03-23 1986-09-25 Dow Chemical Gmbh Fiber reinforced plastic pipe and centrifugal casting method for manufacturing same
JPS63312810A (en) * 1987-06-17 1988-12-21 Nippon Concrete Ind Co Ltd Preparation of frp reinforced concrete or mortar pipe
US5202076A (en) * 1988-09-23 1993-04-13 Hobas Engineering & Durotec Ag Method for producing multi-layer pipe conduit components of plastic material, inorganic filler material and glass fibers
EP0533482A1 (en) * 1991-09-17 1993-03-24 Xerox Corporation Processes for preparing imaging members
US5300391A (en) * 1991-09-17 1994-04-05 Xerox Corporation Field assisted processes for preparing imaging members
JP2000095928A (en) * 1998-07-22 2000-04-04 Dainippon Ink & Chem Inc Resin concrete composition and molded part thereof
JP2000117850A (en) * 1998-10-19 2000-04-25 Shin Etsu Polymer Co Ltd Production of seamless belt
JP2002105310A (en) * 2000-09-27 2002-04-10 Shin Etsu Polymer Co Ltd Semiconductive belt made of acrylic resin

Also Published As

Publication number Publication date
AU2002335277A1 (en) 2004-05-04
AU2002335277A8 (en) 2004-05-04

Similar Documents

Publication Publication Date Title
JP3431782B2 (en) Curable composite material composition and curing method thereof
JP3479202B2 (en) Photocurable prepreg composition and method for producing the same
JPH11210981A (en) Photo-curing material for covering or repairing inside face of tubular molded product and its covering method
JP2001294687A (en) Curable prepreg composition, method for producing the same and method for curing the same
JP3644608B2 (en) Photo-curable composite material composition
WO2004035287A1 (en) Method and device for manufacturing pipe member
EP0922727B1 (en) Photocurable prepreg sheet for waterproofing
JP2001335612A (en) Curing material for covering or repairing inside face of tubular molded product and its covering method
JP4490554B2 (en) FRP pressure vessel molding method
JP4133049B2 (en) FRP pressure vessel molding method
JP3806209B2 (en) Filament winding molding method
JP2003286355A (en) Curable prepreg sheet and its manufacturing method and curing method
EP1092744B1 (en) Thermosetting prepreg composition and process for producing the same
JP4316101B2 (en) Process for producing cast cured products
JP3497922B2 (en) Photocurable composite material composition and molding method thereof
JP2000297127A (en) Method for forming anti-corrosive frp
JP3806210B2 (en) Filament winding molding method
KR102225655B1 (en) UV curable sheet resin composition for repairing concrete and waterproof sheet and preparation mehtod thereof
JPH08323860A (en) Method for coating or repairing inner surface of tubular molding
JP6238461B2 (en) Curable material for repairing inner surface of tubular molded body and repair method
JP2004293161A (en) Floor covering construction method
JP2002001817A (en) Sheet for repairing inner surface of photosetting type pipeline and method for repairing inner surface of photosetting type pipeline
JPH11106459A (en) Thermoset prepreg composition and its production
JP2005281610A (en) Curable resin composition
JP3587932B2 (en) Method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP