WO2004027846A1 - Substrate processing apparatus and method of manufacturing semiconductor device - Google Patents

Substrate processing apparatus and method of manufacturing semiconductor device Download PDF

Info

Publication number
WO2004027846A1
WO2004027846A1 PCT/JP2003/011904 JP0311904W WO2004027846A1 WO 2004027846 A1 WO2004027846 A1 WO 2004027846A1 JP 0311904 W JP0311904 W JP 0311904W WO 2004027846 A1 WO2004027846 A1 WO 2004027846A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
exhaust
processing chamber
gas
processing
Prior art date
Application number
PCT/JP2003/011904
Other languages
French (fr)
Japanese (ja)
Inventor
Takatomo Yamaguchi
Tomoyuki Matsuda
Tatsuhisa Matsunaga
Kenji Shirako
Rui Nomura
Kouichi Noto
Original Assignee
Hitachi Kokusai Electric Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002274752A external-priority patent/JP2006080098A/en
Priority claimed from JP2003001961A external-priority patent/JP2006080101A/en
Application filed by Hitachi Kokusai Electric Inc. filed Critical Hitachi Kokusai Electric Inc.
Publication of WO2004027846A1 publication Critical patent/WO2004027846A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes

Definitions

  • the present invention relates to a substrate processing technique.
  • a semiconductor wafer (hereinafter, referred to as a wafer) in which a semiconductor integrated circuit is manufactured is made of polysilicon or silicon. Fields that are useful for depositing silicon nitride films. Background art
  • a batch-type vertical hot-wall type low-pressure CVD apparatus (hereinafter, referred to as a CVD apparatus) is widely used for depositing a CVD film such as polysilicon or silicon nitride film on a wafer.
  • a conventional CVD apparatus of this type includes, for example, an inner tube and an outer tube surrounding the inner tube as disclosed in Japanese Patent Application Laid-Open No. 2000-311862.
  • the gas inlet nozzle has a plurality of outlets opened corresponding to each wafer held in the port. Some of the inner tubes have vents on the side wall.
  • a plurality of enanos are loaded into the inner tube from the furnace port at the lower end (port opening padding) while being held long and aligned by a bottle, and the raw material gas is introduced into the inner tube.
  • the CVD film is deposited on the wafer by being introduced by the introduction nozzle and heating the inside of the process tube by the heater unit.
  • the raw material gas horizontally ejected from the plurality of ejection ports of the gas introduction nozzle flows between the upper and lower wafers that are horizontally held in the port, contacts the wafer surface, and is opened in the inner tube. From the exhaust vent The air is exhausted to the outside of the tube by the exhaust force of the exhaust port.
  • An object of the present invention is to provide a substrate processing technique that can prevent foreign substances from adhering to an outer peripheral surface of a side wall of a processing chamber. Disclosure of the invention
  • a substrate processing apparatus includes an initiative having a processing chamber for processing a substrate, a boat holding the substrate and carrying the processing chamber, and a gas inlet for introducing a processing gas into the processing chamber.
  • An outer tube located outside the inner tube; and a side wall of the inner tube having at least a vertical length longer than a horizontal length with respect to a main surface of the substrate held by the boat, and A length of which is formed over the plurality of substrates, and an exhaust slit that exhausts the processing chamber.
  • the gas is introduced into the processing chamber through the gas inlet. Since the gas introduced into the processing chamber is exhausted from the exhaust slit formed in the side wall of the processing chamber, the gas flowing in the processing chamber flows in parallel to each substrate. By flowing in parallel to each substrate, the gas comes into uniform contact with the entire surface of each substrate, so that the processing state in each substrate becomes uniform. Since the processing gas exhausted from the exhaust slit does not flow along the outer peripheral surface of the side wall of the processing chamber by flowing through the exhaust duct, it is necessary to prevent the processing gas from contacting the outer peripheral surface of the side wall of the processing chamber. But Yes ( Brief description of drawings.
  • FIG. 1 is a front sectional view showing a CVD apparatus according to an embodiment of the present invention.
  • 2 (a) is a plan sectional view taken along line aa of FIG. 1
  • FIG. 2 (b) is a plan sectional view taken along line bb of FIG.
  • FIG. 3 is a side sectional view taken along the line cc of FIG.
  • FIG. 4 is a graph showing the relationship between D / S and gas flow uniformity.
  • FIG. 5 is a schematic diagram showing a control system of the CVD device.
  • FIG. 6 is a front sectional view showing a CVD apparatus according to a second embodiment of the present invention.
  • FIG. 7 (a) is a plan sectional view taken along line a--a of FIG. 6, and FIG. FIG. 7 is a cross-sectional plan view taken along line bb in FIG.
  • FIG. 8 is a front sectional view showing a CVD apparatus according to a third embodiment of the present invention.
  • FIG. 9 (a) is a plan sectional view taken along line a--a of FIG. 8, and FIG. FIG. 9 is a plan sectional view taken along the line b_b in FIG.
  • FIG. 10 is a side sectional view taken along line c-c in FIG.
  • FIG. 11 is a front sectional view showing a CVD apparatus according to a fourth embodiment of the present invention.
  • FIG. 12 is a side sectional view taken along the line XU—XII in FIG.
  • FIG. 13 is a front sectional view showing a CVD apparatus according to a fifth embodiment of the present invention.
  • FIG. 14 is a side sectional view taken along line XIV-XIV in FIG.
  • FIG. 15 is a plan sectional view showing a CVD apparatus according to a sixth embodiment of the present invention.
  • FIG. 16 is a plan sectional view showing a CVD apparatus according to a seventh embodiment of the present invention.
  • the substrate processing apparatus is configured as a CVD apparatus (batch type vertical hot wall type decompression CVD apparatus).
  • the CVD apparatus shown in FIG. 1 is provided with a vertical process tube 1 which is arranged vertically so that the center line is vertical and fixedly supported, and the process tube 1 is an inner tube 2 and a fan tube. Tube 3.
  • Each of the inner tube 2 and the outer tube 3 is made of a material having high heat resistance such as quartz glass or silicon carbide (SiC), and is integrally formed into a cylindrical shape.
  • the inner tube 1 is formed in a cylindrical shape having a closed upper end and an open lower end.
  • the hollow portion of the cylindrical portion of the inner tube 1 is provided with a plurality of gaps which are held long by a boat.
  • a processing chamber 4 into which the transfer chambers 8 are carried is formed.
  • the inner diameter of the inner tube 2 is set to be larger than the maximum outer diameter of the wafer 10 to be handled.
  • the fan tube 3 is similar to the inner tube 2, is formed in a cylindrical shape having a closed upper end and an opened lower end, and is concentrically covered so as to surround the outer side of the inner tube 2.
  • a gap 5 is formed between the inner tube 2 and the outer tube 3 in a circular ring shape having a constant width.
  • the lower end between the inner tube 2 and the outer tube 3 is hermetically sealed by a manifold 6 formed in a circular ring shape, and the manifold 6 is connected to the inner tube 2 and the outer tube 3. It is detachably attached to the inner tube 2 and the outer tube 3 for maintenance inspection work and cleaning work. Since the manifold 6 is supported by the housing of the CVD device, the process tube 1 is in a vertically installed state.
  • An exhaust port 7 is provided in a part of the side wall of the manifold 6, and the exhaust port 7 is connected to an exhaust device so that the inside of the processing chamber 4 can be depressurized to a predetermined degree of vacuum. .
  • an exhaust duct section 8 is connected to the exhaust port 7, and the exhaust duct section 8 is formed in an exhaust duct 6 formed in the air tube 3 and described later. It is configured to be connected.
  • the manifold 6 has a seal cap 9 that closes the lower end opening from below in the vertical direction. It is coming into contact.
  • the seal cap 9 is formed in a disk shape substantially equal to the outer diameter of the outer tube 3, and is configured to be vertically moved up and down by a port elevator installed vertically outside the process tube 1. .
  • a boat 11 for holding a wafer 10 as an object to be processed is vertically supported on the center line of the seal cap 9.
  • the boat 11 is provided with a pair of upper and lower end plates 1 1 ⁇ 1 3 and a plurality of holding members 14 which are installed vertically between the end plates 1 2 and 1 3.
  • a large number of holding grooves (holding portions) 15 are arranged in the holding member 14 at equal intervals in the longitudinal direction, and are submerged so as to face each other and open. By inserting the circumference of the wafer 10 between the holding grooves 15 of the same step of the plurality of holding members 14, the plurality of wafers 10 are aligned in a horizontal and centered state. Is held.
  • a pair of upper and lower auxiliary end plates 16 and 17 are disposed between the boat 11 and the seal cap 9 and supported by a plurality of auxiliary holding members 18.
  • a desired number of heat insulating plates 50 are laid in the holding grooves 19 to prevent heat from escaping below the processing chamber 4.
  • a heater unit 10 for heating the inside of the process tube 1 uniformly or at a predetermined temperature distribution is provided concentrically around the outer tube 3, and the heater unit 20 is a CVD unit. It is installed vertically by being supported by the housing of the device.
  • a channel-shaped spare chamber 2 is located at a position 180 ° opposite to the exhaust port 7 on the side wall of the inner tube 2 which is the side wall of the processing chamber 4. 1 is formed so as to bulge outward in the radial direction and extend in the vertical direction, and a gas introduction nozzle 22 is piped inside the preliminary chamber 21 so as to extend in the vertical direction. ing.
  • the inlet 3 of the gas introduction nozzle 2 2 penetrates the side wall of the manifold 6 radially outward and protrudes out of the process tube 1. Devices and the like are connected.
  • the gas inlet nozzle 22 has a plurality of outlets 14 serving as gas inlets arranged in a vertical direction, and the number of the outlets 24 is equal to the number of wafers 10 held in the port 11.
  • the height position of each spout 24 is vertically aligned with the upper and lower sides held by port 11. C are set to face the space between 10 and 10 respectively.
  • the exhaust slit 15 is vertically located at a position 180 degrees opposite to the preparatory chamber 21 on the side wall of the inner tube 1, that is, at a position on the exhaust port 7 side.
  • the exhaust slit 25 is set to be longer than the entire length of the wafer group 10 held by the boat 11.
  • An exhaust duct 26 covering the exhaust slit 25 projects from the outer periphery of the side wall of the inner tube 2.
  • the exhaust duct 26 is formed in a trough shape having a substantially rectangular cross section, and the radial dimension of the exhaust duct 26 is set to be equal to or less than the radial dimension of the gap 5 between the inner tube 2 and the outer tube 3. I have.
  • the lower end surface of the exhaust duct 16 is in contact with the upper surface of the exhaust duct portion 8 of the manifold 6, and the inside of the exhaust duct 16 is exhausted by the exhaust port 7 through the exhaust duct portion 8. .
  • a nitrogen gas supply pipe 27 for supplying nitrogen gas to the gap 5 is connected to the side wall of the manifold 6.
  • the CVD apparatus includes a control system 40 composed of a main controller 41 and a plurality of sub-controllers 42 to 45.
  • the main controller 41 has a display / input unit 41a, a CPU (central processing unit) 41b, a memory 41c, and a recording unit 41d.
  • the recording unit 41d is a recording unit. It can exchange data with body 4 1 e.
  • the sub-controllers 42 to 45 have the same configuration as the main controller 41.
  • a temperature-related unit such as a heater unit 20 is connected to the temperature control sub-controller 42, and an exhaust device 46 connected to the exhaust port 7 and a pressure gauge 47 are connected to the pressure control sub-controller 43.
  • a unit related to gas supply is connected to the gas control sub-controller 44, and a unit related to gas supply such as a gas supply device 48 is connected to the gas control sub-controller 44.
  • a machine of 49 mag was connected overnight.
  • the main controller 41 instructs these sub-controllers 42 to 45 to perform temperature control, pressure control, flow rate control, and machine control based on the recipe showing the control sequence of the film forming process on the time axis. Composed I have.
  • the wafers 10 are inserted into the boat 11 so as to be engaged with the holding grooves 15 of the holding member 14 at a plurality of locations where the circumferential edges of the wafers 10 face each other.
  • the peripheral edge of the location is engaged with each holding groove 15 and is loaded (charged) and held so as to support its own weight.
  • the plurality of wafers 10 are aligned parallel to each other and horizontally in the charging state of the boat 11 with their centers aligned.
  • the boat 11 holding a plurality of wafers 10 aligned and held by the boat elevator 49 is loaded into the processing chamber 4 of the in-tube 2 (port loading). And is placed in the processing chamber 4 as shown in FIGS. 1 and 3. In this state, the seal cap 9 seals the processing chamber 4.
  • the inside of the process tube 1 is depressurized to a predetermined degree of vacuum (for example, 20 OP a) by an exhaust force acting on the exhaust port 7, and in the heating step, Is heated to a predetermined temperature (for example, 400 ° C.) by the heater unit 20.
  • a predetermined degree of vacuum for example, 20 OP a
  • Is heated to a predetermined temperature for example, 400 ° C.
  • a predetermined source gas 30 is supplied to the inlet 23 of the gas introduction nozzle 22 at normal pressure (atmospheric pressure)
  • the source gas 30 is supplied through the gas introduction nozzle 22. It is circulated and introduced into the processing chamber 4 of the inner tube 2 from the plurality of ejection ports 24.
  • monosilane (SiH 4 ) and phosphine (FH 3 ) are introduced into the processing chamber 4 as the source gas 30.
  • nitrogen gas 31 is supplied to the gap 5 by a nitrogen gas supply pipe 27.
  • the raw material gas 30 introduced into the processing chamber 4 flows out from the exhaust slit 25 vertically elongated on the side wall of the inner tube 2 to the exhaust duct 16 and is manifolded through the exhaust duct section 8. It is exhausted from the exhaust port 7 opened in 6. At this time, the gas inlet nozzle 2 and the exhaust slit 25 face 180 ° apart from each other. g Due to the arrangement of each, the source gas 30 ejected from each ejection port 24 of the gas introduction nozzle 22 flows horizontally through the processing chamber 4 toward the exhaust slit 25 on the opposite side. , Flows parallel to each wafer 10.
  • each of the plurality of ejection ports 24 is disposed so as to face each other between the vertically adjacent wafers 10 and 10, the raw material ejected from each ejection port 24 is respectively provided.
  • the gas 30 flows into each of the spaces between the vertically adjacent wafers 10 and 10 and reliably flows in parallel.
  • a CVD film is formed on the surface of the wafer 1.0 by the CVD reaction of the raw material gas 30 flowing in parallel in the space between the vertically adjacent wafers 10 while being in contact with the surface of the wafer 10. accumulate.
  • a doped polysilicon film is deposited on the wafer 10.
  • the source gas 30 is uniformly contacted over the entire surface of each wafer 10, the deposition state of the CVD film is uniform in both the film thickness and the film quality throughout each wafer 10.
  • the ratio of the width to the direction S (hereinafter, referred to as D / S) is shown as ⁇ , and the flow rate of gas above and below the exhaust slit 25 is simulated as a lame, and the graph shown in Fig. 4 is obtained.
  • D / S is plotted on the horizontal axis.
  • the vertical axis shows the uniformity of the flow represented by the ratio of the gas flow rate A at the upper part of the exhaust slit 25 to the gas flow rate B at the lower part (hereinafter referred to as A / B).
  • the processing conditions in the simulation are as follows:
  • the radial dimension of the exhaust duct 16 is 15 mm, and the length of the exhaust slit 25 is a boat 11.
  • the pressure in the processing chamber is 300 OPa
  • the flow rate of the gas introduction nozzle 22 is 400 cc, Z minute (cubic centimeters per minute), 800 cc. / Min, 1 2 PT / JP2003 / 011904
  • the gas flows uniformly in the exhaust slit 25 at any flow rate of 400 cc / min, 800 cc / min, and 1200 cc / min.
  • the D / S is not limited to D / S ⁇ 70.
  • D / S 60 or more may be set.
  • the circumferential width S of the exhaust hole constituted by the exhaust slot, the soto and the plurality of holes is not limited to being set to be the same over the entire length, and may be reduced.
  • the width D in the circumferential direction and the depth in the radial direction of the exhaust duct are not limited to the same value over the entire length, but may be increased or decreased.
  • the raw material gas 30 exhausted from the exhaust slit 25 is supplied between the inner tube 2 and the gas tube 3.
  • No silane by-product adheres to the outer peripheral surface of the inner tube because it does not flow out into the gap 5 of the inner tube. Therefore, the phenomenon that by-products adhering to the outer peripheral surface of the inner tube 1 peel off and flow back to the processing chamber 4 does not occur, and the risk of contamination of the surface of the wafer 10 due to the scattering of the particles does not occur. Can be eliminated. Further, leakage of the source gas 30 from the exhaust duct 26 is reliably prevented by the nitrogen gas 31 supplied from the nitrogen gas supply pipe 27 to the gap 5.
  • the processing chamber 4 is opened by lowering the seal cap 9 and the processed wafer group 10 is processed while being held by the boat 11. It is carried out of the process tube 1 from the chamber 4 (port unloading).
  • FIGS. 6 and 7 Next, a CVD apparatus according to a second embodiment of the present invention shown in FIGS. 6 and 7 will be described.
  • the exhaust duct unit 8 and the exhaust duct The exhaust port 7 for reducing the pressure inside the processing chamber 4 to a predetermined degree of vacuum is connected to a part of the side wall of the manifold 6.
  • a nitrogen gas supply nozzle 28 as an inert gas supply means is provided at the position of the preliminary chamber 21 in the gap 5 between the inner tube 1 and the outer tube 3 so as to extend in a vertical direction,
  • the inlet 28 a of the nitrogen gas supply nozzle 28 projects radially outward through the side wall of the manifold 6 and protrudes to the outside, and a nitrogen gas supply device is connected to the inlet 28 a Have been.
  • the nitrogen gas supply nozzle 28 is provided with a plurality of pairs of jet ports 29, 29 for jetting nitrogen gas in opposite directions 180 degrees in the circumferential direction, which are arranged at equal intervals in the vertical direction. .
  • a predetermined source gas 30 is supplied to the inlet 23 of the gas introduction nozzle 22 at normal pressure (atmospheric pressure). Then, the nitrogen gas 31 is supplied to the gap 5 between the inner tube 2 and the outer tube 3 in the circumferential direction from the group of ejection ports 29 of the nitrogen gas supply nozzles 28. The nitrogen gas 31 supplied to the gap 5 is diffused throughout the gap 5 by the exhaust force of the exhaust port 7. The raw material gas 30 introduced into the processing chamber 4 flows out of the exhaust slit 25 vertically elongated on the side wall of the inner tube 2 into the gap 5 between the inner tube 2 and the fan tube 3.
  • the gas is exhausted from the exhaust port 7 connected to the manifold 6.
  • the nitrogen gas 31 is jetted into the gap 5 from the jet port 29 of the nitrogen gas supply nozzle 28 in the circumferential direction to fill the gap 5, the exhaust slit 15
  • the raw material gas 30 flowing out of the gap 5 is prevented from diffusing into the gap 5 as a whole, so that by-products of silane do not adhere to the outer peripheral surface of the inner tube 2. Accordingly, there is no occurrence of a phenomenon in which by-products adhered to the outer peripheral surface of the inner tube 2 are separated and flow back to the processing chamber 4, and the risk of contamination of the surface of the wafer 10 due to scattering of the particles is eliminated. can do.
  • the nitrogen gas is not limited to be supplied by the nitrogen gas supply nozzle vertically provided in the gap between the inner tube and the gas tube, but is connected to the lower end of the gap. It may be configured to supply by a nitrogen gas supply pipe.
  • the inert gas is not limited to nitrogen gas, but may be an inert gas other than nitrogen gas, such as argon gas or helium gas.
  • FIG. 11 Next, a description will be given of a CVD apparatus according to a third embodiment of the present invention shown in FIGS. 8, 9, and 10.
  • FIG. 8 a description will be given of a CVD apparatus according to a third embodiment of the present invention shown in FIGS. 8, 9, and 10.
  • FIG. 8 a description will be given of a CVD apparatus according to a third embodiment of the present invention shown in FIGS. 8, 9, and 10.
  • This embodiment is different from the first embodiment in that the exhaust duct section 8 is omitted and one end of the exhaust port 7 is connected to a part of the side wall of the manifold 6.
  • the exhaust holes 26 a are arranged along the exhaust slits 25 on the rear wall of the exhaust duct 26, and the cleaning liquid after cleaning the inner tube 2 is supplied from inside the exhaust duct 26.
  • a drain hole 26 b for draining is provided in the lower end wall of the exhaust duct 16.
  • the opening area of each exhaust hole 26a is set such that the exhaust pressure of each exhaust hole 26a is substantially equal to each other.
  • the source gas 30 introduced into the processing chamber 4 from each of the jet ports 24 of the gas introduction nozzle 22 is exhausted.
  • the opening area of each exhaust hole 26a is set so that the exhaust pressure of each exhaust hole 26a is substantially equal to each other, the raw material gas 30 flows in the vertical direction of the processing chamber 4. It will flow evenly over the entire length. Therefore, the source gas 30 is uniformly contacted between the wafers 10 over the entire length of the boat 11, so that the deposited state of the CVD film is uniform between the wafers 10 in both film thickness and film quality. become.
  • the gas in the space between the upper end of the port 11 and the inner tube 2 is set.
  • the size of the exhaust slit 25 in the vertical direction may extend above and below the holding range of the wafer 10.
  • By-products are deposited on the inner surface of the inner tube 2. To accumulate each time, the inner tube 2 is periodically or irregularly cleaned by a jet treatment.
  • the inner tube 2 may be contaminated.
  • the exhaust Since the cleaning liquid can be discharged through the drain hole 26 b formed at the lower end of the duct 26, it is possible to prevent the cleaning liquid from being left inside the exhaust duct 26.
  • the VD device will be described.
  • This embodiment is different from the above-described first embodiment in that, in addition to the third embodiment, a plurality of partition walls 26 c are disposed between adjacent exhaust holes 26 a. 26a and 26a, which protrude so as to partition between the spaces.
  • the exhaust port 7 is arranged below the exhaust duct 26.
  • the exhaust pressures of the exhaust ports 7 respectively applied to the vertically arranged exhaust holes 26 a are substantially equal to each other, the raw material gas 30 is located above and below the exhaust slit 25. In the direction, the state is drawn out uniformly from the processing chamber 4 over the entire length.
  • the partition wall 26c prevents the source gas 30 from stagnating in the divided sections. Accordingly, the raw material gas 30 flows uniformly over the entire length of the processing chamber 4 in the vertical direction, and the wafers 10 contact each other evenly over the entire length of the boat 11, so that the CVD film is formed. Is uniform in both film thickness and film quality among the wafers 10.
  • the partition wall 26c When the partition wall 26c is inclined so that the exhaust slit 15 side is lowered, the cleaning liquid after the jet cleaning can be reliably drained. Further, the partition wall 26c may be provided with a drain hole 16b, and may be inclined so that the cleaning liquid collects in the 7K drain hole 26b.
  • FIGS. 13 and 14 Next, a CVD apparatus according to a fifth embodiment of the present invention shown in FIGS. 13 and 14 will be described.
  • This embodiment is different from the first embodiment in that the exhaust duct 8 is omitted and one end of the exhaust port 7 is connected to a part of the side wall of the manifold 6.
  • Several exhaust holes 26 a are arranged on the side wall of the exhaust duct 26, and drain holes for draining the cleaning liquid after cleaning the inner tube 2 from inside the exhaust duct 26.
  • 26 b is opened at the lower end wall of exhaust duct 26, multiple bulkheads 26c is protruded so as to partition the space between adjacent exhaust holes 26a, 26a between the exhaust holes 26a.
  • each exhaust hole 26 a is opened on the side wall of the exhaust duct 26, the raw material gas 30 blown out from the exhaust slit 25 flows through each exhaust hole 26 a. Since it is possible to prevent blow-through, the source gas 30 flows evenly over the entire length of the processing chamber 4 in the vertical direction. Therefore, since the source gas 30 is in uniform contact with each of the wafers 10 over the entire length of the port 11, the deposition state of the CVD film is mutually constant between the wafers 10 and the film quality. Both become even.
  • the exhaust duct is not limited to being laid symmetrically with respect to the exhaust slit, but may be shifted left and right. In particular, by displacing the exhaust duct from the exhaust slit so that the exhaust hole formed in the side wall is as far away from the exhaust slit as possible, disturbance of the flow of the source gas can be prevented.
  • This embodiment is different from the above-described first embodiment in that a pair of exhaust slits 25.25 are formed at the center of the gas introduction nozzle 22 or the gas injection port 24 as a gas introduction port. These are referred to as gas supply units.) And are arranged in line symmetry in the radial direction of the wafer 10 with respect to a line connecting the center of the main surface of the wafer 10. According to the present embodiment, the pair of exhaust slits 25 and 25 are arranged in line symmetry with respect to the ejection port 1, so that the gas is injected from each of the ejection ports 24 of the gas introduction nozzle 22.
  • the raw material gas 30 divides the processing chamber 4 evenly toward the pair of exhaust slits 25, 25 on the opposite side and flows horizontally, so that the raw material gas 30 uniformly contacts the entire surface of the wafer 10. State. Therefore, the deposited state of the CVD film formed on the surface of the wafer 10 by the CVD reaction of the J source gas 30 becomes more uniform in both the film thickness and the film quality over the entire surface of the wafer 10. You.
  • the exhaust holes 26a are positioned at approximately the same distance as the exhaust slits 25, 25 with respect to the exhaust slits 25, 25, thereby preventing direct gas blow-through in the P direction. be able to. In this description, a pair of exhaust slits 25, 25 is used, but any number of pairs may be used as long as they are line-symmetric.
  • This embodiment is different from the first embodiment in that a pair of gas introduction nozzles 22 and 22 are located at the center of the preliminary chamber 21 or between the gas introduction nozzles 22.2.
  • a pair of exhaust slits 25, 25 are laid in a line symmetrical manner with respect to the line, and the pair of exhaust slits 25, 25 are connected to the line connecting the center of the gas introduction nozzle 22 and the center of the main surface of the wafer 10. 10 in that they are arranged symmetrically in the radial direction, and a pair of exhaust ducts 26, 26 are laid so as to cover both exhaust slits 25, 25, respectively.
  • the raw material gas 30 ejected from each of the ejection ports 24 of the pair of gas introduction nozzles 21 and 12 respectively passes the processing chamber 4 through the pair of exhaust slits 25 and 25 on the opposite side.
  • the deposited state of the CVD film formed on the surface of the wafer 10 by the CVD reaction of the source gas 30 is more uniform over the entire surface of the wafer 10 in both film thickness and film quality. become.
  • the exhaust holes 26a are positioned at approximately the same distance from the exhaust slits 25, 25 with respect to the exhaust slits 25, 25 to prevent direct gas blow-through. Can be. In the present description, a pair of exhaust slits 25, 25, an exhaust duct 26, and an exhaust hole 26a are described.
  • the size of the plurality of exhaust holes formed in the exhaust duct is not limited to the same size, and the size of the exhaust hole at a position close to the size of the exhaust hole at a position different from the exhaust port is not limited.
  • the partition for dividing the inside of the exhaust duct into a plurality of sections is not limited to being arranged between adjacent exhaust holes, but may be arranged one by one for a plurality of exhaust holes. In other words, a plurality of exhaust holes may be arranged in a section inside the exhaust duct.
  • the wall directly facing the wafer is of a fixed size.
  • the flow of the raw material gas is constant in the upper and lower parts.
  • a vertically long exhaust slit is opened, it is divided by a partition inside the exhaust duct compared to when a horizontally long exhaust slit is opened. Since the stagnation disappears as much as there is no block, the effect can be further improved.
  • the number of spouts opened in the gas introduction nozzle is not limited to be equal to the number of wafers to be processed, but can be increased or decreased according to the number of wafers to be processed.
  • the spouts are not limited to being arranged between the vertically adjacent wafers, but may be arranged every two or three wafers.
  • the number of gas introduction nozzles is not limited to one, and two or more gas introduction nozzles may be provided.
  • the gas introduction nozzle is not limited to being laid in the spare chamber bulging out of the inn tube, but may be laid along the inner periphery of the side wall of the processing chamber.
  • the gas inlet is not limited to the gas inlet nozzle, but may be opened in a manifold or processing room.
  • the processing target may be a photomask, a printed wiring board, a liquid crystal panel, a compact disk, a magnetic disk, or the like.
  • the deposition of a doped polysilicon film has been described.
  • the present invention can be applied to a general method of forming a CVD film such as a doped polysilicon oxide film or a silicon nitride film.
  • the method for manufacturing a semiconductor device according to the present invention can be applied to all thermal treatment steps in a method for manufacturing a semiconductor device, such as an oxide film forming step and a diffusion step. .
  • a method for manufacturing a semiconductor device such as an oxide film forming step and a diffusion step.
  • the present invention is not limited to this. It can be applied to all substrate processing apparatuses such as a heat treatment apparatus (furnace).

Abstract

A substrate processing apparatus, wherein an inner tube (2) forming a process tube (1) in association with an outer tube (3) forms a processing chamber (4) for carrying a boat (11) holding a plurality of wafers (10) thereinto, an exhaust port (7) is provided in a manifold (6) sealing air-tight the lower end parts of the inner tube (2) and the outer tube (3), an gas inlet nozzle (22) for leading material gas (30) is installed in the inner tube (2), an exhaust slit (25) is opened in the inner tube (2) on the opposite side of the gas inlet nozzle (22), and an exhaust duct (26) covering the exhaust slit (25) is projectedly provided on the outer peripheral surface of the inner tube (2), whereby since it can be prevented by flowing the process gas exhausted from the exhaust slit to an exhaust duct that process gas generates foreign matter on the outer peripheral surface of the inner tube, it can be prevented that the generated and adhered foreign matter flows reversely into the processing chamber and becomes particles.

Description

基板処理装置および半導体装置の製造方法 技術分野  FIELD OF THE INVENTION
本発明は、 基板処理技術に関し、例えば、 半導体集積回路装置 (以下、 I Cと いう。 ) の製造方法において、 半導体集積回路が作り込まれる半導体ウェハ (以 下、 ウェハという。 ) にポリシリ明コンやシリコン窒化膜等を堆積 (デポジション ) するのに利用して有効なものに関する田。 背景技術  The present invention relates to a substrate processing technique. For example, in a method of manufacturing a semiconductor integrated circuit device (hereinafter, referred to as an IC), a semiconductor wafer (hereinafter, referred to as a wafer) in which a semiconductor integrated circuit is manufactured is made of polysilicon or silicon. Fields that are useful for depositing silicon nitride films. Background art
I Cの製造方法において、 ウェハにポリシリコンやシリコン窒ィ匕膜等の C V D 膜をデポジションするのにバッチ式縦形ホットウオール形減圧 C V D装置 (以下 、 C V D装置という。 ) が、広く使用されている。 従来のこの種の C V D装置と しては、例えば、 特開 2 0 0 0 - 3 1 1 8 6 2号公報に示されているように、 ィ ンナチューブおよびこのィンナチューブを取り囲むァウタチュ一ブから構成され 縦形に設置されたプロセスチューブと、 複数枚のウェハを保持してィンナチュ一 ブ内に搬入するボ一トと、 ィンナチューブ内に原料ガスを導入するガス導入ノズ ルと、 プロセスチューブ内を排気して減圧する排気口と、 プロセスチューブ外に 敷設されてプロセスチューブ内を加熱するヒータュニットとを備えており、 ガス 導入ノズルには複数個の噴出口がポートに保持された各ウェハに対応して開設さ れ、 ィンナチューブの側壁には排気孔が開設されているものがある。  2. Description of the Related Art In a method of manufacturing an IC, a batch-type vertical hot-wall type low-pressure CVD apparatus (hereinafter, referred to as a CVD apparatus) is widely used for depositing a CVD film such as polysilicon or silicon nitride film on a wafer. . A conventional CVD apparatus of this type includes, for example, an inner tube and an outer tube surrounding the inner tube as disclosed in Japanese Patent Application Laid-Open No. 2000-311862. A vertically installed process tube, a boat that holds multiple wafers and carries them into the inner tube, a gas introduction nozzle that introduces source gas into the inner tube, and exhausts the process tube. It has an exhaust port for reducing pressure, and a heater unit laid outside the process tube to heat the inside of the process tube. The gas inlet nozzle has a plurality of outlets opened corresponding to each wafer held in the port. Some of the inner tubes have vents on the side wall.
この C V D装置においては、 複数枚のゥエノヽがボ一卜によって長く整列されて 保持された状態でィンナチューブ内に下端の炉口から搬入 (ポート口一ディング ) され、 インナチューブ内に原料ガスがガス導入ノズルによって導入されるとと もに、 ヒータユニットによってプロセスチューブ内が加熱されることにより、 ゥ ェハに C V D膜がデポジションされる。 この際、 ガス導入ノズルの複数の噴出口 から水平に噴出された原料ガスは、 ポートに互いに水平に保持された上下のゥェ ハの間を流れてウェハの表面に接触し、 ィンナチューブに開設された排気孔から ューブの外部に排気口の排気力によつて排気される。 In this CVD apparatus, a plurality of enanos are loaded into the inner tube from the furnace port at the lower end (port opening padding) while being held long and aligned by a bottle, and the raw material gas is introduced into the inner tube. The CVD film is deposited on the wafer by being introduced by the introduction nozzle and heating the inside of the process tube by the heater unit. At this time, the raw material gas horizontally ejected from the plurality of ejection ports of the gas introduction nozzle flows between the upper and lower wafers that are horizontally held in the port, contacts the wafer surface, and is opened in the inner tube. From the exhaust vent The air is exhausted to the outside of the tube by the exhaust force of the exhaust port.
しかしながら、前記した C V D装置においては、 排気孔から排気された原料ガ スの一部がィンナチューブとァウタチューブとの間に流れて局所的な淀みが発生 すると、 ィンナチューブの外周面に異物が付着しパーティクルが発生し易くなる という問題点がある。 例えば、 ポリシリコン膜を形成する場合においては、 高温 領域におけるモノシラン (S i H4 ) の滞在期間が長くなると、 気相中での分解 反応が過度に進行してしまうために、 シリコンが粉状になって析出しィンナチュ —ブの外周面に茶褐色の副生成物が付着しているのが、 確認された。 この副生成 物はシランの中間生成物のシリレンが重合結合したもの [ ( S i H 4 ) n ] であ ると考えられる。 そして、 インナチューブの外周面に付着した異物が剥離して処 理室に逆流すると、 ウェハの表面を汚染するパーティクルになる。 However, in the above-described CVD apparatus, when a part of the raw material gas exhausted from the exhaust hole flows between the inner tube and the outer tube and local stagnation occurs, foreign matter adheres to the outer peripheral surface of the inner tube and particles are generated. There is a problem that it easily occurs. For example, when forming a polysilicon film, if the residence time of monosilane (SiH 4 ) in the high-temperature region becomes longer, the decomposition reaction in the gas phase proceeds excessively, so that silicon becomes powdery. It was confirmed that a brown by-product had adhered to the outer peripheral surface of the aluminum tube. The by-products which silylene intermediate product of the silane are polymerized bound [(S i H 4) n ] are suspect to be. Then, when the foreign matter adhering to the outer peripheral surface of the inner tube peels off and flows back into the processing chamber, it becomes particles that contaminate the surface of the wafer.
本発明の目的は、処理室の側壁外周面に異物が付着するのを防止することがで きる基板処理技術を提供することにある。 発明の開示  An object of the present invention is to provide a substrate processing technique that can prevent foreign substances from adhering to an outer peripheral surface of a side wall of a processing chamber. Disclosure of the invention
本発明に係る基板処理装置は、基板を処理する処理室を形成したィンナチユー ブと、前記基板を保持して前記処理室に搬入するボートと、 前記処理室に処理ガ スを導入するガス導入口と、 前記ィンナチューブの外側に位置するァウタチュー ブと、 前記ィンナチューブの側壁に少なくとも前記ボートに保持された前記基板 の主面に対し水平方向の長さよりも垂直方向の長さが長く、 その垂直方向の長さ が複数枚の前記基板にわたって形成され、前記処理室を排気する排気スリットと 、 を備えていることを特徴とする。  A substrate processing apparatus according to the present invention includes an initiative having a processing chamber for processing a substrate, a boat holding the substrate and carrying the processing chamber, and a gas inlet for introducing a processing gas into the processing chamber. An outer tube located outside the inner tube; and a side wall of the inner tube having at least a vertical length longer than a horizontal length with respect to a main surface of the substrate held by the boat, and A length of which is formed over the plurality of substrates, and an exhaust slit that exhausts the processing chamber.
前記した手段において、 ガスはガス導入口から処理室に導入される。 処理室に 導入されたガスは処理室の側壁に開設された排気スリットから排気されるため、 処理室を流れるガスは各基板にそれぞれ平行に流れる状態になる。 各基板にそれ ぞれ平行に流れることにより、 ガスは各基板の全面に均一に接触する状態になる ため、各基板内における処理状態は均一になる。 排気スリツトから排気された処 理ガスは排気ダクトを流れることにより、処理室の側壁の外周面に沿って流れる ことはないため、処理ガスが処理室の側壁外周面に接触するのを防止することが できる ( 図面の簡単な説明. In the above means, the gas is introduced into the processing chamber through the gas inlet. Since the gas introduced into the processing chamber is exhausted from the exhaust slit formed in the side wall of the processing chamber, the gas flowing in the processing chamber flows in parallel to each substrate. By flowing in parallel to each substrate, the gas comes into uniform contact with the entire surface of each substrate, so that the processing state in each substrate becomes uniform. Since the processing gas exhausted from the exhaust slit does not flow along the outer peripheral surface of the side wall of the processing chamber by flowing through the exhaust duct, it is necessary to prevent the processing gas from contacting the outer peripheral surface of the side wall of the processing chamber. But Yes ( Brief description of drawings.
第 1図は本発明の一実施の形態である CVD装置を示す正面断面図である。 第 2図 (a) は第 1図の a— a線に沿う平面断面図、 (b) は第 1図の b— b 線に沿う平面断面図である。  FIG. 1 is a front sectional view showing a CVD apparatus according to an embodiment of the present invention. 2 (a) is a plan sectional view taken along line aa of FIG. 1, and FIG. 2 (b) is a plan sectional view taken along line bb of FIG.
第 3図は第 1図の c— c線に沿う側面断面図である。  FIG. 3 is a side sectional view taken along the line cc of FIG.
第 4図は D/ Sとガスの流れの均一性との関係を示すグラフである。  FIG. 4 is a graph showing the relationship between D / S and gas flow uniformity.
第 5図は C V D装置の制御システムを示す模式図である。  FIG. 5 is a schematic diagram showing a control system of the CVD device.
第 6図は本発明の第二の実施の形態である C V D装置を示す正面断面図である 第 7図 (a) は第 6図の a— a線に沿う平面断面図、 (b) は第 6図の b— b 線に沿う平面断面図である。  FIG. 6 is a front sectional view showing a CVD apparatus according to a second embodiment of the present invention. FIG. 7 (a) is a plan sectional view taken along line a--a of FIG. 6, and FIG. FIG. 7 is a cross-sectional plan view taken along line bb in FIG.
第 8図は本発明の第三の実施の形態である C VD装置を示す正面断面図である 第 9図 (a) は第 8図の a— a線に沿う平面断面図、 (b) は第 8図の b_b 線に沿う平面断面図である。  FIG. 8 is a front sectional view showing a CVD apparatus according to a third embodiment of the present invention. FIG. 9 (a) is a plan sectional view taken along line a--a of FIG. 8, and FIG. FIG. 9 is a plan sectional view taken along the line b_b in FIG.
第 1 0図は第 8図の c一 c線に沿う側面断面図である。  FIG. 10 is a side sectional view taken along line c-c in FIG.
第 1 1図は本発明の第四の実施の形態である CVD装置を示す正面断面図であ る。  FIG. 11 is a front sectional view showing a CVD apparatus according to a fourth embodiment of the present invention.
第 1 2図は第 1 1図の XU— XII線に沿う側面断面図である。  FIG. 12 is a side sectional view taken along the line XU—XII in FIG.
第 1 3図は本発明の第五の実施の形態である CVD装置を示す正面断面図であ る。  FIG. 13 is a front sectional view showing a CVD apparatus according to a fifth embodiment of the present invention.
第 1 4図は第 1 3図の XIV— XIV線に沿う側面断面図である。  FIG. 14 is a side sectional view taken along line XIV-XIV in FIG.
第 1 5図は本発明の第六の実施の 態である C V D装置を示す平面断面図であ る。  FIG. 15 is a plan sectional view showing a CVD apparatus according to a sixth embodiment of the present invention.
第 1 6図は本発明の第七の実施の形態である C V D装置を示す平面断面図であ る。 発明を実施するための最良の形態 以下、本発明の一実施の形態を図面に即して説明する。 FIG. 16 is a plan sectional view showing a CVD apparatus according to a seventh embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
本実施の形態において、 第 1図に示されているように、 本発明に係る基板処理 装置は C V D装置 (バッチ式縦形ホットウォール形減圧 C V D装置) として構成 されている。  In the present embodiment, as shown in FIG. 1, the substrate processing apparatus according to the present invention is configured as a CVD apparatus (batch type vertical hot wall type decompression CVD apparatus).
第 1図に示された C V D装置は中心線が垂直になるように縦に配されて固定的 に支持された縦形のプロセスチューブ 1を備えており、 プロセスチューブ 1はィ ンナチューブ 2とァゥ夕チューブ 3とから構成されている。 ィンナチューブ 2お よびァウタチューブ 3はいずれも、石英ガラスや炭化シリコン ( S i C ) 等の耐 熱性の高い材料が用いられて円筒形状にそれぞれ一体成形されている。 ィンナチ ュ一ブ 1は上端が閉塞し下端が開口した円筒形状に形成されており、 ィンナチュ —ブ 1の筒中空部はボ一トによつて長く整列した状態に保持された複数枚のゥェ 八が搬入される処理室 4を形成している。 ィンナチューブ 2の内径は取り扱うゥ ェハ 1 0の最大外径よりも大きくなるように設定されている。 ァゥ夕チューブ 3 はィンナチューブ 2に対して大きめに相似し上端が閉塞し下端が開口した円筒形 状に形成されており、 ィンナチューブ 2の外側を取り囲むように同心円に被せら れている。 インナチューブ 2とァウタチューブ 3との間には隙間 5が一定幅の円 形リング形状に形成されている。  The CVD apparatus shown in FIG. 1 is provided with a vertical process tube 1 which is arranged vertically so that the center line is vertical and fixedly supported, and the process tube 1 is an inner tube 2 and a fan tube. Tube 3. Each of the inner tube 2 and the outer tube 3 is made of a material having high heat resistance such as quartz glass or silicon carbide (SiC), and is integrally formed into a cylindrical shape. The inner tube 1 is formed in a cylindrical shape having a closed upper end and an open lower end. The hollow portion of the cylindrical portion of the inner tube 1 is provided with a plurality of gaps which are held long by a boat. A processing chamber 4 into which the transfer chambers 8 are carried is formed. The inner diameter of the inner tube 2 is set to be larger than the maximum outer diameter of the wafer 10 to be handled. The fan tube 3 is similar to the inner tube 2, is formed in a cylindrical shape having a closed upper end and an opened lower end, and is concentrically covered so as to surround the outer side of the inner tube 2. A gap 5 is formed between the inner tube 2 and the outer tube 3 in a circular ring shape having a constant width.
インナチューブ 2とァウタチュ一ブ 3との間の下端部は、 円形リング形状に形 成されたマニホ一ルド 6によって気密封止されており、 マニホ一ルド 6はィンナ チューブ 2およびァゥ夕チューブ 3についての保守点検作業や清掃作業のために 、 ィンナチューブ 2およびァウタチューブ 3に着脱自在に取り付けられている。 マ二ホールド 6が C V D装置の筐体に支持されることにより、 プロセスチューブ 1は垂直に据え付けられた状態になっている。 マ二ホールド 6の側壁の一部には 排気口 7が開設されており、 排気口 7は排気装置に接続されて処理室 4の内部を 所定の真空度に減圧し得るように構成されている。 第 2図 (b ) に示されている ように、排気口 7には排気ダクト部 8が連設されており、 排気ダクト部 8はァゥ 夕チューブ 3に形成された後記する排気ダクト 6に連結するように構成されて いる。  The lower end between the inner tube 2 and the outer tube 3 is hermetically sealed by a manifold 6 formed in a circular ring shape, and the manifold 6 is connected to the inner tube 2 and the outer tube 3. It is detachably attached to the inner tube 2 and the outer tube 3 for maintenance inspection work and cleaning work. Since the manifold 6 is supported by the housing of the CVD device, the process tube 1 is in a vertically installed state. An exhaust port 7 is provided in a part of the side wall of the manifold 6, and the exhaust port 7 is connected to an exhaust device so that the inside of the processing chamber 4 can be depressurized to a predetermined degree of vacuum. . As shown in FIG. 2 (b), an exhaust duct section 8 is connected to the exhaust port 7, and the exhaust duct section 8 is formed in an exhaust duct 6 formed in the air tube 3 and described later. It is configured to be connected.
マ二ホールド 6には下端開口を閉塞するシールキャップ 9が垂直方向下側から 当接されるようになつている。 シールキャップ 9はァウタチューブ 3の外径と略 等しい円盤形状に形成されており、 プロセスチューブ 1の外部に垂直に設備され たポートエレべ一夕によつて垂直方向に昇降されるように構成されている。 シ一 ルキヤップ 9の中心線上には被処理物としてのウェハ 1 0を保持するためのボー ト 1 1が垂直に立脚されて支持されるようになっている。 ボート 1 1は上下で一 対の端板 1 1ヽ 1 3と、 両端板 1 2、 1 3間に架設されて垂直に配設された複数 本の保持部材 1 4とを備えており、各保持部材 1 4には多数条の保持溝 (保持部 ) 1 5が長手方向に等間隔に配されて互いに対向して開口するように没設されて いる。 ウェハ 1 0の円周縁が複数本の保持部材 1 4の同一の段の保持溝 1 5間に 揷入されることにより、 複数枚のウェハ 1 0は水平かつ互いに中心を揃えた状態 に整列されて保持される。 ボート 1 1とシールキャップ 9との間には上下で一対 の補助端板 1 6、 1 7が複数本の補助保持部材 1 8によって支持されて配設され ており、各補助保持部材 1 8には多数条の保持溝 1 9が没設されている。 保持溝 1 9には断熱板 5 0が所望の枚数敷設され、処理室 4の下方への熱の逃げを防止 する。 The manifold 6 has a seal cap 9 that closes the lower end opening from below in the vertical direction. It is coming into contact. The seal cap 9 is formed in a disk shape substantially equal to the outer diameter of the outer tube 3, and is configured to be vertically moved up and down by a port elevator installed vertically outside the process tube 1. . A boat 11 for holding a wafer 10 as an object to be processed is vertically supported on the center line of the seal cap 9. The boat 11 is provided with a pair of upper and lower end plates 1 1 ヽ 1 3 and a plurality of holding members 14 which are installed vertically between the end plates 1 2 and 1 3. A large number of holding grooves (holding portions) 15 are arranged in the holding member 14 at equal intervals in the longitudinal direction, and are submerged so as to face each other and open. By inserting the circumference of the wafer 10 between the holding grooves 15 of the same step of the plurality of holding members 14, the plurality of wafers 10 are aligned in a horizontal and centered state. Is held. A pair of upper and lower auxiliary end plates 16 and 17 are disposed between the boat 11 and the seal cap 9 and supported by a plurality of auxiliary holding members 18. Has a number of holding grooves 19 submerged. A desired number of heat insulating plates 50 are laid in the holding grooves 19 to prevent heat from escaping below the processing chamber 4.
ァウタチューブ 3の外部にはプロセスチューブ 1内を全体にわたつて均一また は所定の温度分布に加熱するヒータュニット 1 0が、 ァウタチューブ 3を包囲す るように同心円に設備されており、 ヒータュニット 2 0は C V D装置の筐体に支 持されることにより垂直に据え付けられた状態になっている。  Outside the outer tube 3, a heater unit 10 for heating the inside of the process tube 1 uniformly or at a predetermined temperature distribution is provided concentrically around the outer tube 3, and the heater unit 20 is a CVD unit. It is installed vertically by being supported by the housing of the device.
第 1図および第 2図に示されているように、処理室 4の側壁であるインナチュ —ブ 2の側壁の排気口 7と 1 8 0度反対側の位置には、 チャンネル形状の予備室 2 1が径方向外向きに膨出されて垂直方向に長く延在するように形成されており 、 予備室 2 1の内部にはガス導入ノズル 2 2が垂直方向に延在するように配管さ れている。 ガス導入ノズル 2 2の入口部 3はマ二ホールド 6の側壁を径方向外 向きに貫通してプロセスチューブ 1の外部に突き出されており、 入口部 2 3には 原料ガス供給装置や窒素ガス供給装置等が接続されている。 ガス導入ノズル 2 2 にはガス導入口としての複数個の噴出口 1 4が垂直方向に並べられて開設されて おり、 噴出口 2 4群の個数はポート 1 1に保持されたウェハ 1 0の枚数に一致さ れており、各噴出口 2 4の高さ位置はポート 1 1に保持された上下で隣合うゥェ ハ 1 0と 1 0との間の空間に対向するようにそれぞれ設定されている。 As shown in FIG. 1 and FIG. 2, a channel-shaped spare chamber 2 is located at a position 180 ° opposite to the exhaust port 7 on the side wall of the inner tube 2 which is the side wall of the processing chamber 4. 1 is formed so as to bulge outward in the radial direction and extend in the vertical direction, and a gas introduction nozzle 22 is piped inside the preliminary chamber 21 so as to extend in the vertical direction. ing. The inlet 3 of the gas introduction nozzle 2 2 penetrates the side wall of the manifold 6 radially outward and protrudes out of the process tube 1. Devices and the like are connected. The gas inlet nozzle 22 has a plurality of outlets 14 serving as gas inlets arranged in a vertical direction, and the number of the outlets 24 is equal to the number of wafers 10 held in the port 11. The height position of each spout 24 is vertically aligned with the upper and lower sides held by port 11. C are set to face the space between 10 and 10 respectively.
第 1図および第 3図に示されているように、 ィンナチューブ 1の側壁における 予備室 2 1と 1 8 0度反対側の位置すなわち排気口 7側の位置には、排気スリッ ト 1 5が垂直方向に細長く開設されており、排気スリット 2 5の長さはボー卜 1 1に保持されたウェハ 1 0群の全長よりも長く延在するように設定されている。 ィンナチューブ 2の側壁の外周には排気スリット 2 5を被覆する排気ダクト 2 6 が突設されている。 排気ダクト 2 6は横断面形状が略長方形の樋形状に形成され ており、排気ダクト 2 6の径方向の寸法はインナチューブ 2とァウタチューブ 3 との隙間 5の径方向の寸法以下に設定されている。 第 2図 (a ) に示された排気 ダクト 1 6の周方向の幅 Dと排気スリット 2 5の周方向の幅 Sとの比は、 「 7 0 」 すなわち 「D/ S = 7 0」 に設定されている。 排気ダクト 1 6の下端面はマ二 ホールド 6の排気ダクト部 8の上面に当接されており、排気ダクト 1 6の内部は 排気ダクト部 8を通じて排気口 7によって排気されるようになっている。 また、 第 2図 (b ) に示されているように、 マ二ホールド 6の側壁には、 隙間 5に窒素 ガスを供給する窒素ガス供給管 2 7が接続されている。  As shown in FIGS. 1 and 3, the exhaust slit 15 is vertically located at a position 180 degrees opposite to the preparatory chamber 21 on the side wall of the inner tube 1, that is, at a position on the exhaust port 7 side. The exhaust slit 25 is set to be longer than the entire length of the wafer group 10 held by the boat 11. An exhaust duct 26 covering the exhaust slit 25 projects from the outer periphery of the side wall of the inner tube 2. The exhaust duct 26 is formed in a trough shape having a substantially rectangular cross section, and the radial dimension of the exhaust duct 26 is set to be equal to or less than the radial dimension of the gap 5 between the inner tube 2 and the outer tube 3. I have. The ratio of the circumferential width D of the exhaust duct 16 to the circumferential width S of the exhaust slit 25 shown in FIG. 2 (a) is "70", that is, "D / S = 70". Is set. The lower end surface of the exhaust duct 16 is in contact with the upper surface of the exhaust duct portion 8 of the manifold 6, and the inside of the exhaust duct 16 is exhausted by the exhaust port 7 through the exhaust duct portion 8. . Further, as shown in FIG. 2 (b), a nitrogen gas supply pipe 27 for supplying nitrogen gas to the gap 5 is connected to the side wall of the manifold 6.
第 5図に示されているように、 C V D装置はメインコントローラ 4 1と複数の サブコントローラ 4 2〜4 5とによって構成された制御システム 4 0を備えてい る。 メインコントローラ 4 1は表示'入力部 4 1 aと、 C P U (中央演算ュニッ ト) 4 1 bと、 メモリ 4 1 cと、 記録部 4 1 dとを備えており、 記録部 4 1 dは 記録 体 4 1 eとデータを交換し得るようになつている。 なお、 サブコント口一 ラ 4 2〜4 5もメインコントローラ 4 1と同様な構成を備えている。 温度制御サ ブコントローラ 4 2にはヒータュニット 2 0等の温度に関連するュニットが接続 されており、 圧力制御サブコントローラ 4 3には排気口 7に接続された排気装置 4 6および圧力計 4 7等の圧力に関連するュニッ卜が接続されており、 ガス制御 サブコントローラ 4 4にはガス供給装置 4 8等のガス供給に関連するュニッ卜が 接続されており、機械制御サブコントローラ 4 5にはポートェレべ一夕 4 9等の 機械が接続されている。 メインコントローラ 4 1はこれらのサブコントローラ 4 2 - 4 5に対して、 成膜プロセスの制御シーケンスを時間軸で示したレシピに基 づく温度制御や圧力制御、 流量制御および機械制御を指令するように構成されて いる。 As shown in FIG. 5, the CVD apparatus includes a control system 40 composed of a main controller 41 and a plurality of sub-controllers 42 to 45. The main controller 41 has a display / input unit 41a, a CPU (central processing unit) 41b, a memory 41c, and a recording unit 41d. The recording unit 41d is a recording unit. It can exchange data with body 4 1 e. The sub-controllers 42 to 45 have the same configuration as the main controller 41. A temperature-related unit such as a heater unit 20 is connected to the temperature control sub-controller 42, and an exhaust device 46 connected to the exhaust port 7 and a pressure gauge 47 are connected to the pressure control sub-controller 43. A unit related to gas supply is connected to the gas control sub-controller 44, and a unit related to gas supply such as a gas supply device 48 is connected to the gas control sub-controller 44. A machine of 49 mag was connected overnight. The main controller 41 instructs these sub-controllers 42 to 45 to perform temperature control, pressure control, flow rate control, and machine control based on the recipe showing the control sequence of the film forming process on the time axis. Composed I have.
次に、前記構成に係る C V D装置の作用および効果を、 本発明の一実施の形態 である I Cの製造方法における成膜工程を例にして説明する。  Next, the operation and effect of the CVD apparatus according to the above configuration will be described with reference to a film forming process in an IC manufacturing method according to an embodiment of the present invention.
ウェハチヤ一ジングステップにおいて、 ウェハ 1 0はボート 1 1に、 その円周 縁部が対向する複数箇所において保持部材 1 4の保持溝 1 5間にそれぞれ係合す るように挿入されて行き、 複数箇所の円周縁部が各保持溝 1 5に係合されて、 自 重を支えられるように装填 (チヤ一ジング) されて保持される。 複数枚のウェハ 1 0はボート 1 1におけるチャージング状態においてその中心を揃えられて互い に平行かつ水平に整列されている。  In the wafer charging step, the wafers 10 are inserted into the boat 11 so as to be engaged with the holding grooves 15 of the holding member 14 at a plurality of locations where the circumferential edges of the wafers 10 face each other. The peripheral edge of the location is engaged with each holding groove 15 and is loaded (charged) and held so as to support its own weight. The plurality of wafers 10 are aligned parallel to each other and horizontally in the charging state of the boat 11 with their centers aligned.
ポート口—ディングステップにおいて、 複数枚のウェハ 1 0を整列保持したボ —ト 1 1はボートエレベータ 4 9により差し上げられるようにして、 インナチュ —ブ 2の処理室 4に搬入 (ポートローデイング) されて行き、処理室 4に第 1図 および第 3図に示されているように存置される。 この状態において、 シールキヤ ップ 9は処理室 4をシールした状態になる。  In the port loading step, the boat 11 holding a plurality of wafers 10 aligned and held by the boat elevator 49 is loaded into the processing chamber 4 of the in-tube 2 (port loading). And is placed in the processing chamber 4 as shown in FIGS. 1 and 3. In this state, the seal cap 9 seals the processing chamber 4.
続いて、減圧ステップにおいて、 プロセスチューブ 1の内部が排気口 7に作用 する排気力によって所定の真空度 (例えば、 2 0 O P a ) に減圧されるとともに 、 昇温ステップにおいて、 プロセスチューブ 1の内部がヒータュニット 2 0によ つて所定の温度 (例えば、 4 0 0 °C ) に昇温される。  Subsequently, in the depressurizing step, the inside of the process tube 1 is depressurized to a predetermined degree of vacuum (for example, 20 OP a) by an exhaust force acting on the exhaust port 7, and in the heating step, Is heated to a predetermined temperature (for example, 400 ° C.) by the heater unit 20.
次に、 成膜ステップにおいて、 所定の原料ガス 3 0がガス導入ノズル 2 2の入 口部 2 3に常圧(大気圧) で供給されると、原料ガス 3 0はガス導入ノズル 2 2 を流通して複数個の噴出口 2 4からィンナチューブ 2の処理室 4に導入される。 例えば、 ド一プドポリシリコンが拡散される場合においては、 原料ガス 3 0とし てはモノシラン (S i H 4 ) およびホスフィン (F H 3 ) が処理室 4に導入され る。 また、第 2図 (b ) に示されているように、窒素ガス 3 1が隙間 5に窒素ガ ス供給管 2 7によって供給される。 Next, in a film forming step, when a predetermined source gas 30 is supplied to the inlet 23 of the gas introduction nozzle 22 at normal pressure (atmospheric pressure), the source gas 30 is supplied through the gas introduction nozzle 22. It is circulated and introduced into the processing chamber 4 of the inner tube 2 from the plurality of ejection ports 24. For example, when doped polysilicon is diffused, monosilane (SiH 4 ) and phosphine (FH 3 ) are introduced into the processing chamber 4 as the source gas 30. Further, as shown in FIG. 2 (b), nitrogen gas 31 is supplied to the gap 5 by a nitrogen gas supply pipe 27.
処理室 4に導入された原料ガス 3 0はィンナチューブ 2の側壁に垂直方向に細 長く開設された排気スリツト 2 5から排気ダクト 1 6に流出して、 排気ダクト部 8を経由してマ二ホールド 6に開設された排気口 7から排気される。 この際、 ガ ス導入ノズル 2 と排気スリット 2 5とは互いに 1 8 0度離れて対向するように g それぞれ配置されているために、 ガス導入ノズル 2 2の各噴出口 2 4からそれぞ れ噴出された原料ガス 3 0は処理室 4を反対側の排気スリット 2 5に向かって水 平に流れ、各ウェハ 1 0に対してそれぞれ平行に流れる。 しかも、 複数個の噴出 口 2 4のそれぞれは上下で隣合うウェハ 1 0と 1 0との間に対向するようにそれ ぞれ配置されているため、各噴出口 2 4からそれぞれ噴出された原料ガス 3 0は 上下で隣合うウェハ 1 0と 1 0との間の空間のそれぞれに流れ込んで確実に平行 に流れる。 ウェハ 1 0の表面に接触しながら上下で隣合うウェハ 1 0と 1 0との 間の空間を平行に流れて行く原料ガス 3 0の C V D反応によって、 ウェハ 1. 0の 表面には C V D膜が堆積する。 例えば、 モノシランとホスフィンとが導入された 場合には、 ド一プドポリシリコン膜がウェハ 1 0に堆積する。 この際、 原料ガス 3 0は各ウェハ 1 0内の全面にわたってそれぞれ均一に接触するために、 C V D 膜の堆積状態は各ウェハ 1 0内において全体にわたって膜厚および膜質共に均一 になる。 The raw material gas 30 introduced into the processing chamber 4 flows out from the exhaust slit 25 vertically elongated on the side wall of the inner tube 2 to the exhaust duct 16 and is manifolded through the exhaust duct section 8. It is exhausted from the exhaust port 7 opened in 6. At this time, the gas inlet nozzle 2 and the exhaust slit 25 face 180 ° apart from each other. g Due to the arrangement of each, the source gas 30 ejected from each ejection port 24 of the gas introduction nozzle 22 flows horizontally through the processing chamber 4 toward the exhaust slit 25 on the opposite side. , Flows parallel to each wafer 10. In addition, since each of the plurality of ejection ports 24 is disposed so as to face each other between the vertically adjacent wafers 10 and 10, the raw material ejected from each ejection port 24 is respectively provided. The gas 30 flows into each of the spaces between the vertically adjacent wafers 10 and 10 and reliably flows in parallel. A CVD film is formed on the surface of the wafer 1.0 by the CVD reaction of the raw material gas 30 flowing in parallel in the space between the vertically adjacent wafers 10 while being in contact with the surface of the wafer 10. accumulate. For example, when monosilane and phosphine are introduced, a doped polysilicon film is deposited on the wafer 10. At this time, since the source gas 30 is uniformly contacted over the entire surface of each wafer 10, the deposition state of the CVD film is uniform in both the film thickness and the film quality throughout each wafer 10.
本実施の形態においては、 排気孔が細長い排気スリット 2 5によって構成され 、 かつ、排気ダクト 2 6の周方向の幅 Dと排気スリット 2 5の周方向の幅 Sとの 比が 「7 0」 すなわち 「D / S = 7 0 J に設定されていることにより、排気スリ ット 5の全長にわたって一定の流量を発生させることができるために、 ポート 1 iによって保持されたウェハ 1 0群の各ウェハ 1 0に形成された膜厚および膜 質は、 ウェハ 1 0群におけるポート 1 1の全長にわたって均一になる。 ' ここで、排気ダクト 2 6の周方向の幅 Dと排気スリット 2 5の周方向の幅 Sと の比 (以下、 D / Sという。 ) をノ、。ラメ一夕として、 排気スリツト 2 5の上下に おけるガスの流速をシミュレーションしたところ、 第 4図に示されたグラフが得 られた。 第 4図において、 横軸には D / Sが取られており、縦軸には排気スリツ ト 2 5の上部におけるガスの流量 Aと下部におけるガスの流量 Bとの比 (以下、 A/ Bという。 ) によって表される流れの均一性が取られている。 なお、 シミュ レ一シヨンにおける処理条件は、 次の通りである。 排気ダクト 1 6の径方向の寸 法は 1 5 mmである。 排気スリット 2 5の長さはボ一ト 1 1に保持されたウェハ 群の長さと略同一である。 処理室の圧力は 3 0 O P aである。 ガス導入ノズル 2 2の流速は 4 0 0 c c Z分 (立方センチメートル毎分) 、 8 0 0 c c /分、 1 2 P T/JP2003/011904 In the present embodiment, the exhaust hole is constituted by an elongated exhaust slit 25, and the ratio of the circumferential width D of the exhaust duct 26 to the circumferential width S of the exhaust slit 25 is “70”. That is, "D / S = 70 J is set, so that a constant flow rate can be generated over the entire length of the exhaust slit 5, so that each of the wafers 10 held by the port 1 i The thickness and quality of the film formed on the wafer 10 are uniform over the entire length of the port 11 in the group of wafers 10. 'Here, the circumferential width D of the exhaust duct 26 and the circumference of the exhaust slit 25 are determined. The ratio of the width to the direction S (hereinafter, referred to as D / S) is shown as ノ, and the flow rate of gas above and below the exhaust slit 25 is simulated as a lame, and the graph shown in Fig. 4 is obtained. In Fig. 4, D / S is plotted on the horizontal axis. The vertical axis shows the uniformity of the flow represented by the ratio of the gas flow rate A at the upper part of the exhaust slit 25 to the gas flow rate B at the lower part (hereinafter referred to as A / B). The processing conditions in the simulation are as follows: The radial dimension of the exhaust duct 16 is 15 mm, and the length of the exhaust slit 25 is a boat 11. The pressure in the processing chamber is 300 OPa, the flow rate of the gas introduction nozzle 22 is 400 cc, Z minute (cubic centimeters per minute), 800 cc. / Min, 1 2 PT / JP2003 / 011904
9  9
0 0 c c /分である。 0 0 c c / min.
第 4図によれば、 4 0 0 c c /分、 8 0 0 c c /分、 1 2 0 0 c c /分のいず れの流速においても、 ガスが排気スリツト 2 5において均一に流れる場合すなわ ち A/Bが 「1」 になる場合の!)/ Sは 「7 0」 であることが、 理解される。 し たがって、 「D / S. = 7 0」 に設定されていると、 原料ガス 3 0は排気スリツト 2 5をその上下の全長にわたって一定の流量をもって流れることになる。  According to FIG. 4, the gas flows uniformly in the exhaust slit 25 at any flow rate of 400 cc / min, 800 cc / min, and 1200 cc / min. When A / B becomes "1"! It is understood that) / S is “70”. Therefore, when “D / S. = 70” is set, the source gas 30 flows through the exhaust slit 25 at a constant flow rate over the entire length above and below it.
なお、 D / S - 7 0に設定するに限らず、例えば、 A/ B = 1 ± 5 %とすると 、 D / S = 6 0以上に設定してもよい。 また、排気スリ、ソトおよび複数個の孔に よつて構成された排気孔の周方向の幅 Sは、 全長にわたつて同一に設定するに限 らず、增減させてもよい。 排気ダクトの周方向の幅 Dおよび径方向の深さは、 全 長にわたって同一に設定するに限らず、増減させてもよい。  It should be noted that the D / S is not limited to D / S−70. For example, if A / B = 1 ± 5%, D / S = 60 or more may be set. Further, the circumferential width S of the exhaust hole constituted by the exhaust slot, the soto and the plurality of holes is not limited to being set to be the same over the entire length, and may be reduced. The width D in the circumferential direction and the depth in the radial direction of the exhaust duct are not limited to the same value over the entire length, but may be increased or decreased.
本実施の形態においては、 排気スリット 2 5が排気ダクト 1 6によって被覆さ れていることにより、 排気スリット 2 5から排気された原料ガス 3 0はインナチ ユーブ 2とァゥ夕チューブ 3との間の隙間 5に流出することがないため、 ィンナ チューブの外周面にシランの副生成物が付着することはない。 したがって、 イン ナチューブ 1の外周面に付着した副生成物が剥離して処理室 4に逆流する現象が 発生することはなく、 そのパ一ティクルの飛散によるウェハ 1 0の表面の汚染の 危険性を解消することができる。 また、排気ダクト 2 6からの原料ガス 3 0の漏 洩は、窒素ガス供給管 2 7から隙間 5に供給された窒素ガス 3 1によって確実に 防止される。  In the present embodiment, since the exhaust slit 25 is covered with the exhaust duct 16, the raw material gas 30 exhausted from the exhaust slit 25 is supplied between the inner tube 2 and the gas tube 3. No silane by-product adheres to the outer peripheral surface of the inner tube because it does not flow out into the gap 5 of the inner tube. Therefore, the phenomenon that by-products adhering to the outer peripheral surface of the inner tube 1 peel off and flow back to the processing chamber 4 does not occur, and the risk of contamination of the surface of the wafer 10 due to the scattering of the particles does not occur. Can be eliminated. Further, leakage of the source gas 30 from the exhaust duct 26 is reliably prevented by the nitrogen gas 31 supplied from the nitrogen gas supply pipe 27 to the gap 5.
以上のようにして所望の C V D膜 (例えば、 ド一プドポリシリコン膜) が堆積 された後に、 ポートアン口一ディングステップにおいて、原料ガス 3 0の供給が 停止され、不活性ガスにより、 プロセスチューブ 1内が大気圧に復帰された後に 、 シールキヤップ 9が下降されることによつて処理室 4が開口されるとともに、 ボート 1 1に保持された状態で処理済みのウェハ 1 0群が処理室 4からプロセス チューブ 1の外部に搬出 (ポートアン口一ディング) される。  After the desired CVD film (for example, a doped polysilicon film) is deposited as described above, the supply of the source gas 30 is stopped in the port opening opening step, and the process is performed by the inert gas. After the inside of the tube 1 is returned to the atmospheric pressure, the processing chamber 4 is opened by lowering the seal cap 9 and the processed wafer group 10 is processed while being held by the boat 11. It is carried out of the process tube 1 from the chamber 4 (port unloading).
次に、 第 6図および第 7図に示された本発明の第二の実施の形態である C V D 装置について説明する。  Next, a CVD apparatus according to a second embodiment of the present invention shown in FIGS. 6 and 7 will be described.
第二の実施の形態に係る C V D装置において、排気ダクト部 8および排気ダク ト 6が省略されており、処理室 4の内部を所定の真空度に減圧する排気口 7の 一端がマ二ホールド 6の側壁の一部に接続されている。 また、 ィンナチューブ 1 とァウタチューブ 3との間の隙間 5における予備室 2 1の位置には、 不活性ガス 供給手段としての窒素ガス供給ノズル 2 8が垂直方向に延在するように配管され ており、 窒素ガス供給ノズル 2 8の入口部 2 8 aはマ二ホールド 6の側壁を径方 向外向きに貫通して外部に突き出されており、 入口部 2 8 aには窒素ガス供給装 置が接続されている。 窒素ガス供給ノズル 2 8には窒素ガスを互いに周方向に 1 8 0度反対向きに噴出する一対の噴出口 2 9、 2 9が複数組、垂直方向に等間隔 に並べられて開設されている。 In the CVD apparatus according to the second embodiment, the exhaust duct unit 8 and the exhaust duct The exhaust port 7 for reducing the pressure inside the processing chamber 4 to a predetermined degree of vacuum is connected to a part of the side wall of the manifold 6. Further, a nitrogen gas supply nozzle 28 as an inert gas supply means is provided at the position of the preliminary chamber 21 in the gap 5 between the inner tube 1 and the outer tube 3 so as to extend in a vertical direction, The inlet 28 a of the nitrogen gas supply nozzle 28 projects radially outward through the side wall of the manifold 6 and protrudes to the outside, and a nitrogen gas supply device is connected to the inlet 28 a Have been. The nitrogen gas supply nozzle 28 is provided with a plurality of pairs of jet ports 29, 29 for jetting nitrogen gas in opposite directions 180 degrees in the circumferential direction, which are arranged at equal intervals in the vertical direction. .
この構成に係る C V D装置による I Cの製造方法の成膜工程における成膜ステ ップにおいては、 所定の原料ガス 3 0がガス導入ノズル 2 2の入口部 2 3に常圧 (大気圧) で供給されると、 インナチューブ 2とァウタチューブ 3との間の隙間 5には窒素ガス 3 1が窒素ガス供給ノズル 2 8の噴出口 2 9群から周方向に供給 される。 隙間 5に供給された窒素ガス 3 1は排気口 7の排気力によって隙間 5全 体に拡散する。 処理室 4に導入された原料ガス 3 0はィンナチューブ 2の側壁に 垂直方向に細長く開設された排気スリツト 2 5からインナチューブ 2とァゥ夕チ ュ一ブ 3との間の隙間 5に流出して、 マ二ホールド 6に接続 れた排気口 7から 排気される。 本実施の形態においては、窒素ガス 3 1が隙間 5に窒素ガス供給ノ ズル 2 8の噴出口 2 9から周方向に噴出されて隙間 5に充満されていることによ り、排気スリツト 1 5から隙間 5に流出した原料ガス 3 0が隙間 5に全体的に拡 散することを阻止されるので、 ィンナチューブ 2の外周面にシランの副生成物が 付着することはない。 したがって、 インナチュ一ブ 2の外周面に付着した副生成 物が剥離して処理室 4に逆流する現象が発生することはなく、 そのパーティクル の飛散によるウェハ 1 0の表面の汚染の危険性を解消することができる。  In the film forming step in the film forming step of the IC manufacturing method using the CVD apparatus having this configuration, a predetermined source gas 30 is supplied to the inlet 23 of the gas introduction nozzle 22 at normal pressure (atmospheric pressure). Then, the nitrogen gas 31 is supplied to the gap 5 between the inner tube 2 and the outer tube 3 in the circumferential direction from the group of ejection ports 29 of the nitrogen gas supply nozzles 28. The nitrogen gas 31 supplied to the gap 5 is diffused throughout the gap 5 by the exhaust force of the exhaust port 7. The raw material gas 30 introduced into the processing chamber 4 flows out of the exhaust slit 25 vertically elongated on the side wall of the inner tube 2 into the gap 5 between the inner tube 2 and the fan tube 3. The gas is exhausted from the exhaust port 7 connected to the manifold 6. In the present embodiment, since the nitrogen gas 31 is jetted into the gap 5 from the jet port 29 of the nitrogen gas supply nozzle 28 in the circumferential direction to fill the gap 5, the exhaust slit 15 The raw material gas 30 flowing out of the gap 5 is prevented from diffusing into the gap 5 as a whole, so that by-products of silane do not adhere to the outer peripheral surface of the inner tube 2. Accordingly, there is no occurrence of a phenomenon in which by-products adhered to the outer peripheral surface of the inner tube 2 are separated and flow back to the processing chamber 4, and the risk of contamination of the surface of the wafer 10 due to scattering of the particles is eliminated. can do.
なお、 窒素ガスはインナチューブとァゥ夕チュ一ブとの間の隙間に垂直に立設 された窒素ガス供給ノズルによつて供給するように構成するに限らず、 隙間の下 端部に接続した窒素ガス供給管によって供給するように構成してもよい。 また、 不活^ガスとしては窒素ガスを使用するに限らず、 アルゴンガスやヘリゥムガス 等の窒素ガス以外の不活性ガスを使用してもよい。 „〜TO The nitrogen gas is not limited to be supplied by the nitrogen gas supply nozzle vertically provided in the gap between the inner tube and the gas tube, but is connected to the lower end of the gap. It may be configured to supply by a nitrogen gas supply pipe. The inert gas is not limited to nitrogen gas, but may be an inert gas other than nitrogen gas, such as argon gas or helium gas. „~ TO
PCT/JP2003/011904 PCT / JP2003 / 011904
1 1 次に、 第 8図、第 9図および第 1 0図に示された本発明の第三の実施の形態で ある C V D装置について説明する。 11 Next, a description will be given of a CVD apparatus according to a third embodiment of the present invention shown in FIGS. 8, 9, and 10. FIG.
本実施の形態が第一の実施の形態と異なる点は、排気ダクト部 8が省略されて 排気口 7の一端がマ二ホールド 6の側壁の一部に接続されている点と、 複数個の 排気孔 2 6 aが排気ダクト 2 6の背面壁に排気スリット 2 5に沿うように配列さ れて開設されている点と、 インナチューブ 2の洗浄作業後の洗浄液を排気ダクト 2 6の内部から排出するための水抜き孔 2 6 bが排気ダクト 1 6の下端壁に開設 されている点である。 そして、各排気孔 2 6 aの開口面積は各排気孔 2 6 a同士 の排気圧が互 、に略均等になるように設定されている。  This embodiment is different from the first embodiment in that the exhaust duct section 8 is omitted and one end of the exhaust port 7 is connected to a part of the side wall of the manifold 6. The exhaust holes 26 a are arranged along the exhaust slits 25 on the rear wall of the exhaust duct 26, and the cleaning liquid after cleaning the inner tube 2 is supplied from inside the exhaust duct 26. The point is that a drain hole 26 b for draining is provided in the lower end wall of the exhaust duct 16. The opening area of each exhaust hole 26a is set such that the exhaust pressure of each exhaust hole 26a is substantially equal to each other.
本実施の形態に係る C V D装置による I Cの製造方法の成膜工程における成膜 ステップにおいては、 ガス導入ノズル 2 2の各噴出口 2 4から処理室 4に導入さ れた原料ガス 3 0は排気スリット 2 5から排気ダクト 2 6に流出して、排気ダク ト 1 6の背面壁に開設された各排気孔 2 6 aからそれぞれ隙間 5に流出し、 マ二 ホールド 6に開設された排気口 7から排気される。 この際、各排気孔 2 6 aの開 口面積は各排気孔 2 6 a同士の排気圧が互いに略均等になるように設定されてい るので、 原料ガス 3 0は処理室 4の上下方向において全長にわたって均等に流れ ることになる。 したがって、 原料ガス 3 0はボート 1 1の全長にわたって各ゥェ ハ 1 0相互間においてそれぞれ均等に接触するために、 C V D膜の堆積状態は各 ウェハ 1 0相互間において互いに膜厚および膜質共に均等になる。  In the film forming step in the film forming step of the IC manufacturing method using the CVD apparatus according to the present embodiment, the source gas 30 introduced into the processing chamber 4 from each of the jet ports 24 of the gas introduction nozzle 22 is exhausted. The air flows out of the slits 25 into the exhaust duct 26, flows out of the exhaust holes 26a in the rear wall of the exhaust duct 16 into the gaps 5, and into the gaps 5, respectively. It is exhausted from. At this time, since the opening area of each exhaust hole 26a is set so that the exhaust pressure of each exhaust hole 26a is substantially equal to each other, the raw material gas 30 flows in the vertical direction of the processing chamber 4. It will flow evenly over the entire length. Therefore, the source gas 30 is uniformly contacted between the wafers 10 over the entire length of the boat 11, so that the deposited state of the CVD film is uniform between the wafers 10 in both film thickness and film quality. become.
なお、排気スリット 2 5の長さがポート 1 1のダミーウェハを含むウェハ 1 0 の保持範囲以内に設定されている場合には、 ポート 1 1の上端とインナチューブ 2との間の空間におけるガスの流れの発生と、 ボート 1 1の下端部の補助保持部 材 1 6、 1 7周辺部からの流れが発生してポート 1 1の上下 ¾3のガスの流れが不 均等になるのを防ぐために、排気スリット 2 5の上下方向の大きさはウェハ 1 0 の保持範囲よりも上部および下部に及んでいてもよい。 ィンナチューブ 2の内面 •には副生成物が成膜ステッフ。毎に累積するために、 インナチューブ 2は定期また は不定期にゥエツト処理によってクリーニングされる。 このゥエツトクリーニン グ時に洗浄液がインナチューブ 2の排気ダクト 2 6の内部に取り残されると、 ィ ンナチューブ 2の汚染の要因になる。 しかし、本実施の形態においては、 排気ダ クト 2 6の下端に開設された水抜き孔 2 6 bによって洗浄液を排出することがで きるので、洗浄液が排気ダク卜 2 6の内部に取り残されてしまうのを防止するこ とができる。 When the length of the exhaust slit 25 is set within the holding range of the wafer 10 including the dummy wafer of the port 11, the gas in the space between the upper end of the port 11 and the inner tube 2 is set. In order to prevent the generation of flow and the flow of gas from the periphery of the auxiliary holding members 16 and 17 at the lower end of the boat 11 and the uneven gas flow above and below the port 11 1 The size of the exhaust slit 25 in the vertical direction may extend above and below the holding range of the wafer 10. By-products are deposited on the inner surface of the inner tube 2. To accumulate each time, the inner tube 2 is periodically or irregularly cleaned by a jet treatment. If the cleaning liquid is left inside the exhaust duct 26 of the inner tube 2 during the jet cleaning, the inner tube 2 may be contaminated. However, in this embodiment, the exhaust Since the cleaning liquid can be discharged through the drain hole 26 b formed at the lower end of the duct 26, it is possible to prevent the cleaning liquid from being left inside the exhaust duct 26.
次に、 第 1 1図および第 1 2図に示された本発明の第四の実施の形態である C Next, a fourth embodiment C of the present invention shown in FIG. 11 and FIG.
V D装置について説明する。 The VD device will be described.
本実施の形態が前記した第一の実施の形態と異なる点は、第三の実施の形態の 点に加えて、複数の隔壁 2 6 cが各排気孔 2 6 aの間に隣り合う排気孔 2 6 a、 2 6 aの空間相互間を仕切るように突設されている点、 である。  This embodiment is different from the above-described first embodiment in that, in addition to the third embodiment, a plurality of partition walls 26 c are disposed between adjacent exhaust holes 26 a. 26a and 26a, which protrude so as to partition between the spaces.
本実施の形態によれば、各排気孔 2 6 aに対向する空間が各隔壁 2 6 cによつ てそれぞれ仕切られ区分けされていることにより、排気口 7が排気ダクト 2 6の 下方に配置されているにも関わらず、 上下方向に並んだ各排気孔 2 6 aにそれぞ れ加わる排気口 7による排気圧は互いに略等しくなるために、 原料ガス 3 0は排 気スリット 2 5の上下方向において全長にわたって均等に処理室 4から吸い出さ れる状態になる。 また、 隔壁 2 6 cは区分けした区画内に原料ガス 3 0が淀むの を防止する。 したがって、 原料ガス 3 0は処理室 4の上下方向において全長にわ たって均等に流れる状態になって、 ボート 1 1の全長にわたって各ウェハ 1 0相 互間においてそれぞれ均等に接触するために、 C V D膜の堆積状態は各ウェハ 1 0相互間において互いに膜厚および膜質共に均等になる。  According to the present embodiment, since the space facing each exhaust hole 26a is partitioned and partitioned by each partition 26c, the exhaust port 7 is arranged below the exhaust duct 26. However, since the exhaust pressures of the exhaust ports 7 respectively applied to the vertically arranged exhaust holes 26 a are substantially equal to each other, the raw material gas 30 is located above and below the exhaust slit 25. In the direction, the state is drawn out uniformly from the processing chamber 4 over the entire length. In addition, the partition wall 26c prevents the source gas 30 from stagnating in the divided sections. Accordingly, the raw material gas 30 flows uniformly over the entire length of the processing chamber 4 in the vertical direction, and the wafers 10 contact each other evenly over the entire length of the boat 11, so that the CVD film is formed. Is uniform in both film thickness and film quality among the wafers 10.
なお、 隔壁 2 6 cは排気スリット 1 5側が下がるように傾斜させると、 ゥエツ トクリーニング後の洗浄液を確実に排水することができる。 また、 隔壁 2 6 cに 水抜き孔 1 6 bをそれぞれ設け、 7K抜き孔 2 6 bに洗浄液が集まるように傾斜さ せてもよい。  When the partition wall 26c is inclined so that the exhaust slit 15 side is lowered, the cleaning liquid after the jet cleaning can be reliably drained. Further, the partition wall 26c may be provided with a drain hole 16b, and may be inclined so that the cleaning liquid collects in the 7K drain hole 26b.
次に、第 1 3図および第 1 4図に示された本発明の第五の実施の形態である C V D装置について説明する。  Next, a CVD apparatus according to a fifth embodiment of the present invention shown in FIGS. 13 and 14 will be described.
本実施の形態が前記した第一の実施の形態と異なる点は、排気ダクト部 8が省 略されて排気口 7の一端がマ二ホールド 6の側壁の一部に接続されている点、 複 数個の排気孔 2 6 aが排気ダクト 2 6の側面壁に配列されて開設されている点、 ィンナチューブ 2の洗浄作業後の洗浄液を排気ダクト 2 6の内部から排出するた めの水抜き孔 2 6 bが排気ダクト 2 6の下端壁に開設されている点、 複数の隔壁 2 6 cが各排気孔 2 6 aの間に隣り合う排気孔 2 6 a、 2 6 aの空間相互間を仕 切るように突設されている点、 である。 This embodiment is different from the first embodiment in that the exhaust duct 8 is omitted and one end of the exhaust port 7 is connected to a part of the side wall of the manifold 6. Several exhaust holes 26 a are arranged on the side wall of the exhaust duct 26, and drain holes for draining the cleaning liquid after cleaning the inner tube 2 from inside the exhaust duct 26. 26 b is opened at the lower end wall of exhaust duct 26, multiple bulkheads 26c is protruded so as to partition the space between adjacent exhaust holes 26a, 26a between the exhaust holes 26a.
本実施の形態によれば、各排気孔 2 6 aが排気ダクト 2 6の側面壁に開設され ていることにより、排気スリツト 2 5から吹き出された原料ガス 3 0が各排気孔 2 6 aを吹き抜けてしまうのを防止することができるので、 原料ガス 3 0は処理 室 4の上下方向において全長にわたって均等に流れる状態になる。 したがって、 原料ガス 3 0はポート 1 1の全長にわたって各ウェハ 1 0相互間においてそれぞ れ均等に接触するために、 C V D膜の堆積状態は各ウェハ 1 0相互間において互 ヽに膜厚および膜質共に均等になる。  According to the present embodiment, since each exhaust hole 26 a is opened on the side wall of the exhaust duct 26, the raw material gas 30 blown out from the exhaust slit 25 flows through each exhaust hole 26 a. Since it is possible to prevent blow-through, the source gas 30 flows evenly over the entire length of the processing chamber 4 in the vertical direction. Therefore, since the source gas 30 is in uniform contact with each of the wafers 10 over the entire length of the port 11, the deposition state of the CVD film is mutually constant between the wafers 10 and the film quality. Both become even.
このような形態は、特に、排気ダクト 2 6と排気スリット 2 5との距離が近い 場合に、 排気孔 2 6 aと排気スリット 2 5との距離が近くなることにより、均等 に流れることが難しくなることがあることを是正できる。  In such a form, particularly when the distance between the exhaust duct 26 and the exhaust slit 25 is short, it is difficult to flow evenly because the distance between the exhaust hole 26 a and the exhaust slit 25 is short. Can correct what can happen.
なお、排気ダクトは排気スリツトに対して対称形に敷設するに限らず、 左右方 向にずらしてもよい。 特に、 側面壁に開設した排気孔が排気スリツトからできる だけ離れるように排気ダクトを排気スリツ卜からずらすと、 原料ガスの流れの乱 れを防止することができる。  Note that the exhaust duct is not limited to being laid symmetrically with respect to the exhaust slit, but may be shifted left and right. In particular, by displacing the exhaust duct from the exhaust slit so that the exhaust hole formed in the side wall is as far away from the exhaust slit as possible, disturbance of the flow of the source gas can be prevented.
次に、第 1 5図に示された本発明の第六の実施の形態である C V D装置につい て説明する。  Next, a CVD apparatus according to a sixth embodiment of the present invention shown in FIG. 15 will be described.
本実施の形態が前記した第一の実施の形態と異なる点は、一対の排気スリツト 2 5 . 2 5がガス導入ノズル 2 2の中心、 または、 ガス導入口としてのガスの噴 出口 2 4 (これらをガス供給部と称する。 ) とウェハ 1 0の主面の中心とを結ぶ 線分に対してウェハ 1 0の半径方向に線対称形に配置されている点、 である。 本実施の形態によれば、 一対の排気スリット 2 5、 2 5が噴出口 1 に対して 線対称形に配置されていることにより、 ガス導入ノズル 2 2の各噴出口 2 4から それぞれ噴出された原料ガス 3 0は処理室 4を反対側の一対の排気スリット 2 5 、 2 5にそれぞれ向かって均等に分流して水平に流れるために、 ウェハ 1 0の表 面に全体にわたって均等に接触する状態になる。 したがって、 J 料ガス 3 0の C V D反応によってウェハ 1 0の表面に形成される C V D膜の堆積状態は、 ウェハ 1 0の面内において全体にわたって膜厚および膜質共により一層均一な状態にな る。 さらに、排気孔 2 6 aを排気スリット 2 5、 2 5に対し、各々の排気スリツ ト 2 5、 2 5と略同距離の位置に配置することにより、 ガスの直接の吹き抜けを P方止することができる。 本説明では、 一対の排気スリツト 2 5、 2 5としたが、 線対称であれば、何組でもよい。 This embodiment is different from the above-described first embodiment in that a pair of exhaust slits 25.25 are formed at the center of the gas introduction nozzle 22 or the gas injection port 24 as a gas introduction port. These are referred to as gas supply units.) And are arranged in line symmetry in the radial direction of the wafer 10 with respect to a line connecting the center of the main surface of the wafer 10. According to the present embodiment, the pair of exhaust slits 25 and 25 are arranged in line symmetry with respect to the ejection port 1, so that the gas is injected from each of the ejection ports 24 of the gas introduction nozzle 22. The raw material gas 30 divides the processing chamber 4 evenly toward the pair of exhaust slits 25, 25 on the opposite side and flows horizontally, so that the raw material gas 30 uniformly contacts the entire surface of the wafer 10. State. Therefore, the deposited state of the CVD film formed on the surface of the wafer 10 by the CVD reaction of the J source gas 30 becomes more uniform in both the film thickness and the film quality over the entire surface of the wafer 10. You. In addition, the exhaust holes 26a are positioned at approximately the same distance as the exhaust slits 25, 25 with respect to the exhaust slits 25, 25, thereby preventing direct gas blow-through in the P direction. be able to. In this description, a pair of exhaust slits 25, 25 is used, but any number of pairs may be used as long as they are line-symmetric.
次に、第 1 6図に示された本発明の第七の実施の形態である C V D装置につい て説明する。  Next, a CVD apparatus according to a seventh embodiment of the present invention shown in FIG. 16 will be described.
本実施の形態が前記した第一の実施の形態と異なる点は、一対のガス導入ノズ ル 2 2、 2 2が予備室 2 1の中心、 または、 ガス導入ノズル 2 2 . 2 との間の g巨離の中心、 または、 ガスの噴出口 2 4、 2 4との間の足巨離の中心 (これらをガ ス供給部と称する。 ) とウェハ 1 0の主面の中心とを結ぶ線分に対して線対称形 に敷設されている点、一対の排気スリット 2 5、 2 5がガス導入ノズル 2 2の中 心とウェハ 1 0の主面の中心とを結ぶ線分に対してウェハ 1 0の半径方向に線対 称形に配置されている点、一対の排気ダクト 2 6、 2 6が両排気スリット 2 5、 2 5をそれぞれ被覆するように敷設されている点、 である。  This embodiment is different from the first embodiment in that a pair of gas introduction nozzles 22 and 22 are located at the center of the preliminary chamber 21 or between the gas introduction nozzles 22.2. g A line connecting the center of the giant separation or the center of the giant separation between the gas outlets 24 and 24 (these are referred to as gas supply units) and the center of the main surface of the wafer 10 A pair of exhaust slits 25, 25 are laid in a line symmetrical manner with respect to the line, and the pair of exhaust slits 25, 25 are connected to the line connecting the center of the gas introduction nozzle 22 and the center of the main surface of the wafer 10. 10 in that they are arranged symmetrically in the radial direction, and a pair of exhaust ducts 26, 26 are laid so as to cover both exhaust slits 25, 25, respectively.
本実施の形態によれば、 一対のガス導入ノズル 2 1、 1 2の各噴出口 2 4から それぞれ噴出された原料ガス 3 0は処理室 4を反対側の一対の排気スリット 2 5 、 2 5にそれぞれ向かって均等に分流して水平に流れ、'かつ、一対の排気ダクト 2 6 . 2 6に互いに均等に吸い込まれるために、 ウェハ 1 0の表面に全体にわた つて均等に接触する状態になる。 したがって、原料ガス 3 0の C V D反応によつ てウェハ 1 0の表面に形成される C V D膜の堆積状態は、 ウェハ 1 0の面内にお いて全体にわたって膜厚および膜質共により一層均一な状態になる。 さらに、排 気孔 2 6 aを排気スリット 2 5、 2 5に対し、各々の排気スリット 2 5、 2 5に それぞれ略同距離の位置に配置することにより、 ガスの直接の吹き抜けを防止す ることができる。 本説明では、 一対の排気スリット 2 5、 2 5および排気ダクト 2 6、排気孔 2 6 aとしたが、 線対禾尔であれば、何組でもよい。  According to the present embodiment, the raw material gas 30 ejected from each of the ejection ports 24 of the pair of gas introduction nozzles 21 and 12 respectively passes the processing chamber 4 through the pair of exhaust slits 25 and 25 on the opposite side. To a uniform flow over the entire surface of the wafer 10 in order to diverge evenly toward each other and flow horizontally, and to be evenly sucked into the pair of exhaust ducts 26.26. Become. Therefore, the deposited state of the CVD film formed on the surface of the wafer 10 by the CVD reaction of the source gas 30 is more uniform over the entire surface of the wafer 10 in both film thickness and film quality. become. In addition, the exhaust holes 26a are positioned at approximately the same distance from the exhaust slits 25, 25 with respect to the exhaust slits 25, 25 to prevent direct gas blow-through. Can be. In the present description, a pair of exhaust slits 25, 25, an exhaust duct 26, and an exhaust hole 26a are described.
なお、 本発明は前記実施の形態に限定されるものではなく、 その要旨を逸脱し ない範囲で種々に変更が可能であることはいうまでもない。  Note that the present invention is not limited to the above-described embodiment, and it goes without saying that various changes can be made without departing from the scope of the invention.
例えば、排気ダクトに開設する複数個の排気孔は、 互いに同一のサイズに構成 するに限らず、排気口から違い位置の排気孔のサイズを近い位置の排気孔のサイ ズょりも大きく構成してもよい。 つまり、排気ダクトの流量が上下方向において 可及的に一定になるように設定することが望ましい。 例えば、 それぞれの孔に対 して、 V X A = Q ( V:速度、 A面積、 Q=流量) が一定になるように、孔のサ ィズ、位置を設けるようにするのが好ましい。 For example, the size of the plurality of exhaust holes formed in the exhaust duct is not limited to the same size, and the size of the exhaust hole at a position close to the size of the exhaust hole at a position different from the exhaust port is not limited. The gap may be configured to be large. That is, it is desirable to set the flow rate of the exhaust duct to be as constant as possible in the vertical direction. For example, it is preferable to set the size and position of each hole so that VXA = Q (V: velocity, A area, Q = flow rate) is constant for each hole.
排気ダク卜の内部を複数に区分けする隔壁は、 隣り合う排気孔同士の間に配置 するに限らず、複数の排気孔に対して一つずつ配置してもよい。 換言すれば、排 気ダクトの内部の区画には複数個の排気孔を配置してもよい。  The partition for dividing the inside of the exhaust duct into a plurality of sections is not limited to being arranged between adjacent exhaust holes, but may be arranged one by one for a plurality of exhaust holes. In other words, a plurality of exhaust holes may be arranged in a section inside the exhaust duct.
ウェハに直接面している壁は一定のサイズに構成することが望ましい。 一定の サイズに構成すると、 原料ガスの流れが上下において一定となるために、縦長の 排気スリットを開設した場合に、 横長の排気スリットを開設する場合に比べて排 気ダクトの内部に隔壁によって区分けされた区画がなくなる分だけ淀みがなくな るために、 より一層効果を得ることができる。  Preferably, the wall directly facing the wafer is of a fixed size. With a fixed size, the flow of the raw material gas is constant in the upper and lower parts.Therefore, when a vertically long exhaust slit is opened, it is divided by a partition inside the exhaust duct compared to when a horizontally long exhaust slit is opened. Since the stagnation disappears as much as there is no block, the effect can be further improved.
ガス導入ノズルに開設する噴出口の個数は、処理するウェハの枚数に一致させ るに限らず、処理するウェハの枚数に対応して増減することができる。 例えば、 噴出口は上下で隣合うウェハ同士間にそれぞれ対向して配置するに限らず、二枚 や三枚置きに配設してもよい。 また、 ガス導入ノズルは.1本のみならず、 2本以 上設けてもよい。  The number of spouts opened in the gas introduction nozzle is not limited to be equal to the number of wafers to be processed, but can be increased or decreased according to the number of wafers to be processed. For example, the spouts are not limited to being arranged between the vertically adjacent wafers, but may be arranged every two or three wafers. The number of gas introduction nozzles is not limited to one, and two or more gas introduction nozzles may be provided.
ガス導入ノズルはィンナチュ一ブに膨出形成された予備室に敷設するに限らず 、 処理室の側壁内周に沿って敷設してもよい。 また、 ガス導入口はガス導入ノズ ルに開設するに限らず、 マ二ホールドや処理室に開設してもよい。  The gas introduction nozzle is not limited to being laid in the spare chamber bulging out of the inn tube, but may be laid along the inner periphery of the side wall of the processing chamber. The gas inlet is not limited to the gas inlet nozzle, but may be opened in a manifold or processing room.
前記実施の形態では処理がウェハに施される場合について説明したが、処理対 象はホトマスクやプリント配線基板、液晶パネル、 コンパクトディスクおよび磁 気ディスク等であってもよい。  In the above embodiment, the case where the processing is performed on the wafer has been described, but the processing target may be a photomask, a printed wiring board, a liquid crystal panel, a compact disk, a magnetic disk, or the like.
前記実施の形態では、 ド一プドポリシリコン膜の堆積について説明したが、 ド —プドポリシリコン酸化膜やシリコン窒化膜等の C V D膜の成膜方法全般に適用 することができる。  In the above embodiment, the deposition of a doped polysilicon film has been described. However, the present invention can be applied to a general method of forming a CVD film such as a doped polysilicon oxide film or a silicon nitride film.
さらに、 本発明に係る半導体装置の製造方法は酸化膜形成工程や拡散工程等の 半導体装置の製造方法における熱処理 (thermal treatment ) 工程全般に適用す ることができる。 . 前記実施の形態ではバッチ式縦形ホットウオール形減圧 C V D装置に適用した 場合について説明したが、 それに限定されるものではなく、 横形ホットウオール 形減圧 C V D装置や酸化膜形成装置や拡散装置およぴ他の熱処理装置 ( furnace )等の基板処理装置全般に適用することができる。 Further, the method for manufacturing a semiconductor device according to the present invention can be applied to all thermal treatment steps in a method for manufacturing a semiconductor device, such as an oxide film forming step and a diffusion step. . In the above-described embodiment, the case where the present invention is applied to a batch type vertical hot wall type low pressure CVD apparatus has been described. However, the present invention is not limited to this. It can be applied to all substrate processing apparatuses such as a heat treatment apparatus (furnace).

Claims

請 求 の 範 囲 基板を処理する処理室を形成したインナチューブと、前記基板を保持して前 記処理室に搬入するボ一トと、 前記処理室に処理ガスを導入するガス導入口 と、 前記インナチューブの外側に位置するァウタチューブと、前記インナチ ュ一ブの側壁に少なくとも前記ボートに保持された前記基板の主面に対し水 平方向の長さよりも垂直方向の長さが長く、その垂直方向の長さが複数枚の 前記基板にわたって形成され、前記処理室を排気する排気スリッ卜と、 を備 えていることを特徴とする基板処理装置。 Scope of Claim Inner tube forming a processing chamber for processing a substrate, a boat holding the substrate and carrying the processing chamber into the processing chamber, a gas inlet for introducing a processing gas into the processing chamber, An outer tube positioned outside the inner tube; and a side wall of the inner tube having a length in a vertical direction longer than a horizontal length of at least a main surface of the substrate held by the boat, and A substrate processing apparatus, comprising: an exhaust slit formed over a plurality of the substrates in a direction and exhausting the processing chamber.
基板を処理する処理室を形成したインナチューブと、前記基板を保持して前 記処理室に搬入するボ一トと、前記処理室に処理ガスを導入するガス導入口 と、 前記インナチュ一ブの側壁の外側に位置するァゥ夕チューブと、 前記ィ ンナチューブの側壁に前記基板に対し垂直方向の長さが前記ポートの基板を 保持し得る保持部よりも長く形成され、 前記処理室を排気する排気スリット と、 を備えていることを特徴とする基板処理装置。 An inner tube having a processing chamber for processing a substrate, a boat for holding the substrate and carrying the substrate into the processing chamber, a gas inlet for introducing a processing gas into the processing chamber, The outer tube is located outside the side wall, and the length of the inner tube in the direction perpendicular to the substrate is formed longer than the holding portion capable of holding the substrate of the port, and the processing chamber is evacuated. A substrate processing apparatus, comprising: an exhaust slit;
前記処理室の外側に前記排気スリットを囲う排気ダクトが敷設されているこ とを特徴とする請求の範囲第 1項記載の基板処理装置。 2. The substrate processing apparatus according to claim 1, wherein an exhaust duct surrounding the exhaust slit is laid outside the processing chamber.
前記処理室の外側に前記排気スリツトを囲う排気ダク卜が敷設されているこ とを特徴とする請求の範囲第 2項記載の基板処理装置。 3. The substrate processing apparatus according to claim 2, wherein an exhaust duct surrounding the exhaust slit is laid outside the processing chamber.
前記排気ダク卜に複数個の排気孔が開設されていることを特徴とする請求の 範囲第 3項記載の基板処理装置。 4. The substrate processing apparatus according to claim 3, wherein a plurality of exhaust holes are opened in the exhaust duct.
前記排気ダクトに複数個の排気孔が開設されていることを特徴とする請求の 範囲第 4項記載の基板処理装置。 5. The substrate processing apparatus according to claim 4, wherein a plurality of exhaust holes are opened in the exhaust duct.
前記排気ダクトの内部は隔壁によって複数に区分けされていることを特徴と する請求の範囲第 3項記載の基板処理装置。 4. The substrate processing apparatus according to claim 3, wherein the inside of the exhaust duct is divided into a plurality of sections by partition walls.
前記排気ダク卜の内部は隔壁によって複数に区分けされていることを特徴と する請求の範囲第 4項記載の基板処理装置。 5. The substrate processing apparatus according to claim 4, wherein the inside of the exhaust duct is divided into a plurality of sections by partition walls.
前記隔壁は基板の半径方向に平行に設けられていることを特徴とする請求の 範囲第 7項記載の基板処理装置。 The substrate processing apparatus according to claim 7, wherein the partition wall is provided in parallel with a radial direction of the substrate.
. 前記隔壁は基板の半径方向に平行に設けられていることを特徴とする請求 の範囲第 8項記載の基板処理装置。 9. The substrate processing apparatus according to claim 8, wherein the partition is provided in parallel with a radial direction of the substrate.
. 前記排気ダクトの前記区分けされた複数の区画に前記排気孔がそれぞれ設 けられていることを特徴とする請求の範囲第 7項記載の基板処理装置。. 前記排気ダクトの前記区分けされた複数の区画に前記排気孔がそれぞれ設 けられていることを特徴とする請求の範囲第 8項記載の基板処理装置。. 前記排気ダクトまたは前記区分けに水抜き孔が設けられていることを特徴 とする請求の範囲第 7項記載の基板処理装置。8. The substrate processing apparatus according to claim 7, wherein the exhaust holes are respectively provided in the divided sections of the exhaust duct. 9. The substrate processing apparatus according to claim 8, wherein the exhaust holes are respectively provided in the divided sections of the exhaust duct. 8. The substrate processing apparatus according to claim 7, wherein a drain hole is provided in the exhaust duct or the partition.
. 前記排気ダクトまたは前記区分けに水抜き孔が設けられていることを特徴 とする請求の範囲第 8項記載の基板処理装置。9. The substrate processing apparatus according to claim 8, wherein a drain hole is provided in the exhaust duct or the partition.
. 前記排気スリットはガス供給部と前記基板の主面の中心とを通る直線に対 して対称形に配置されていることを特徴とする請求の範囲第 1項記載の基板 . 前記排気スリットはガス供給部と前記基板の主面の中心とを通る直線に対 して対称形に配置されていることを特徴とする請求の範囲第 項記載の基板 . 基板を処理する処理室を形成したインナチューブと、前記基板を保持して 前記処理室に搬入するボートと、前記処理室に処理ガスを導入するガス導入 口と、 前記インナチューブの外側に位置するァウタチューブと、 前記処理室 の側壁に開設されて前記処理室を排気する排気スリットと、 前記ィンナチュ —ブと前記ァウタチューブとの間の空間に不活性ガスを供給する供給手段と 、 を備えていることを特徴とする基板処理装置。The substrate according to claim 1, wherein the exhaust slit is disposed symmetrically with respect to a straight line passing through a gas supply unit and a center of the main surface of the substrate. 3. The substrate according to claim 1, wherein the substrate is disposed symmetrically with respect to a straight line passing through a gas supply unit and a center of the main surface of the substrate. A tube, a boat holding the substrate, and carrying the substrate into the processing chamber, a gas inlet for introducing a processing gas into the processing chamber, an outer tube located outside the inner tube, and a side wall of the processing chamber. A substrate processing apparatus, comprising: an exhaust slit configured to exhaust the processing chamber; and a supply unit configured to supply an inert gas to a space between the inner tube and the outer tube.
. 複数枚の基板を保持したボートを処理室に搬入するステップと、 ァウタチ ュ一ブ内を排気するステップと、処理ガスを前記処理室へ前記基板の主面に 対して平行に導入するステツフ。と、 前記処理室の側壁に少なくとも前記ボー 卜に保持された前記基板の主面に対し水平方向の長さより垂直方向の長さが 長く、 その垂直方向の長さが複数枚の前記基板にわたって形成された排気ス リツトから前記処理室を排気するステップと、前記処理ガスの供給を停止す るステップと、 前記処理室から前記ポートを搬出するステツプとを備えてい 1 * ることを特徴とする半導体の製造方法。A step of carrying a boat holding a plurality of substrates into the processing chamber; a step of evacuating the inside of the au- totube; and a step of introducing a processing gas into the processing chamber in parallel with the main surface of the substrate. A length in a vertical direction is longer than a length in a horizontal direction with respect to a main surface of the substrate held on the boat at least on a side wall of the processing chamber, and the vertical length is formed over a plurality of the substrates. Exhausting the processing chamber from the exhaust slit, stopping supplying the processing gas, and carrying out the port from the processing chamber. 1 * A method of manufacturing a semiconductor, characterized in that:
. 複数枚の基板を保持したポートを処理室に搬入するステップと、 ァゥ夕チ ュ一ブ内を排気するステップと、処理ガスを前記処理室へ前記基板の主面に 対して平行に導入するステツプと、 前記処理室の側壁に前記基板に対し垂直 方向の長さが前記ボートの基板を保持し得る保持部よりも長く形成され、 前 記処理室を排気する排気スリットから前記処理室を排気するステップと、前 記処理ガスの供給を停止するステップと、 前記処理室から前記ポ一トを搬出 するステップとを備えていることを特徴とする半導体の製造方法。 Loading a port holding a plurality of substrates into the processing chamber; evacuating the vacuum chamber; and introducing a processing gas into the processing chamber in parallel with the main surface of the substrate. And a step perpendicular to the substrate on the side wall of the processing chamber is formed to be longer than a holding portion capable of holding the substrate of the boat, and the processing chamber is formed through an exhaust slit for exhausting the processing chamber. A method for manufacturing a semiconductor, comprising: evacuating; stopping supply of the processing gas; and carrying out the port from the processing chamber.
PCT/JP2003/011904 2002-09-20 2003-09-18 Substrate processing apparatus and method of manufacturing semiconductor device WO2004027846A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002274752A JP2006080098A (en) 2002-09-20 2002-09-20 Substrate processor and manufacturing method of semiconductor device
JP2002-274752 2002-09-20
JP2003001961A JP2006080101A (en) 2003-01-08 2003-01-08 Semiconductor manufacturing device
JP2003-1961 2003-01-08

Publications (1)

Publication Number Publication Date
WO2004027846A1 true WO2004027846A1 (en) 2004-04-01

Family

ID=32032883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011904 WO2004027846A1 (en) 2002-09-20 2003-09-18 Substrate processing apparatus and method of manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2004027846A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632354B2 (en) 2006-08-08 2009-12-15 Tokyo Electron Limited Thermal processing system with improved process gas flow and method for injecting a process gas into a thermal processing system
TWI657501B (en) * 2017-02-15 2019-04-21 日商國際電氣股份有限公司 Substrate processing device, reaction tube, method for manufacturing the semiconductor device, and program
US11685992B2 (en) 2017-09-25 2023-06-27 Kokusai Electric Corporation Substrate processing apparatus, quartz reaction tube and method of manufacturing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322523A (en) * 1989-06-20 1991-01-30 Fujitsu Ltd Vapor growth device
US5246500A (en) * 1991-09-05 1993-09-21 Kabushiki Kaisha Toshiba Vapor phase epitaxial growth apparatus
JPH07297179A (en) * 1994-04-28 1995-11-10 Matsushita Electric Ind Co Ltd Method of evacuating heat-treatment furnace, and heat-treatment furnace
JP2000311862A (en) * 1999-04-28 2000-11-07 Kokusai Electric Co Ltd Substrate treating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0322523A (en) * 1989-06-20 1991-01-30 Fujitsu Ltd Vapor growth device
US5246500A (en) * 1991-09-05 1993-09-21 Kabushiki Kaisha Toshiba Vapor phase epitaxial growth apparatus
JPH07297179A (en) * 1994-04-28 1995-11-10 Matsushita Electric Ind Co Ltd Method of evacuating heat-treatment furnace, and heat-treatment furnace
JP2000311862A (en) * 1999-04-28 2000-11-07 Kokusai Electric Co Ltd Substrate treating system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632354B2 (en) 2006-08-08 2009-12-15 Tokyo Electron Limited Thermal processing system with improved process gas flow and method for injecting a process gas into a thermal processing system
TWI657501B (en) * 2017-02-15 2019-04-21 日商國際電氣股份有限公司 Substrate processing device, reaction tube, method for manufacturing the semiconductor device, and program
US10961625B2 (en) 2017-02-15 2021-03-30 Kokusai Electric Corporation Substrate processing apparatus, reaction tube and method of manufacturing semiconductor device
US11685992B2 (en) 2017-09-25 2023-06-27 Kokusai Electric Corporation Substrate processing apparatus, quartz reaction tube and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US10570508B2 (en) Film forming apparatus, film forming method and heat insulating member
JP2654996B2 (en) Vertical heat treatment equipment
JP2006080098A (en) Substrate processor and manufacturing method of semiconductor device
US5702531A (en) Apparatus for forming a thin film
JP4759073B2 (en) Substrate support, substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
TWI415206B (en) A substrate processing apparatus, and a method of manufacturing the semiconductor device
US20090017637A1 (en) Method and apparatus for batch processing in a vertical reactor
US20080134977A1 (en) Substrate Treating Apparatus and Semiconductor Device Manufacturing Method
JP2002280378A (en) Batch-type remote plasma treatment apparatus
CN107078052B (en) Substrate processing apparatus, method of manufacturing semiconductor device, and recording medium
JP2011029441A (en) Device and method for treating substrate
JP2007158358A (en) Substrate processing apparatus
JP2004006551A (en) Device and method for treating substrate
JP2000311862A (en) Substrate treating system
JP2005209668A (en) Substrate treatment equipment
JP4861391B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
KR101828988B1 (en) Loadrock chamber
JP2006080101A (en) Semiconductor manufacturing device
WO2004027846A1 (en) Substrate processing apparatus and method of manufacturing semiconductor device
US20230207335A1 (en) Substrate processing apparatus, method of processing substrate, method of manufacturing semiconductor device, and recording medium
KR20030074418A (en) Substrate processing method and apparatus
JP2004273605A (en) Substrate processing apparatus
JP2009004642A (en) Device for treating substrate
JP3738494B2 (en) Single wafer heat treatment equipment
JP2004296659A (en) Substrate treating apparatus and manufacturing method of semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP