WO2004024056A1 - マイクロスフェアの製法及び製造装置 - Google Patents

マイクロスフェアの製法及び製造装置 Download PDF

Info

Publication number
WO2004024056A1
WO2004024056A1 PCT/JP2003/011557 JP0311557W WO2004024056A1 WO 2004024056 A1 WO2004024056 A1 WO 2004024056A1 JP 0311557 W JP0311557 W JP 0311557W WO 2004024056 A1 WO2004024056 A1 WO 2004024056A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage tank
water
drug
organic solvent
microsphere
Prior art date
Application number
PCT/JP2003/011557
Other languages
English (en)
French (fr)
Inventor
Akira Suzuki
Masahiko Tanimoto
Junichi Murata
Original Assignee
Tanabe Seiyaku Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co., Ltd. filed Critical Tanabe Seiyaku Co., Ltd.
Priority to CA002497723A priority Critical patent/CA2497723A1/en
Priority to EP03795361A priority patent/EP1537846A1/en
Priority to AU2003262048A priority patent/AU2003262048A1/en
Priority to JP2004535927A priority patent/JP4690040B2/ja
Priority to CN03823839XA priority patent/CN1688275B/zh
Priority to US10/526,503 priority patent/US20050271731A1/en
Publication of WO2004024056A1 publication Critical patent/WO2004024056A1/ja
Priority to US11/727,287 priority patent/US20070182040A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1641Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, poloxamers
    • A61K9/1647Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1682Processes
    • A61K9/1694Processes resulting in granules or microspheres of the matrix type containing more than 5% of excipient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions

Definitions

  • the present invention relates to an efficient method for producing microspheres by a circulation process and a microsphere manufacturing apparatus used in the method, and a circulation process comprising a combination of an emulsification device, a microsphere storage tank, and a mouthpiece filtration device.
  • a circulation process comprising a combination of an emulsification device, a microsphere storage tank, and a mouthpiece filtration device.
  • Various methods are known for producing drug-containing microspheres, such as an in-water drying method, a phase separation method, an atomization drying method, and a solvent diffusion method.
  • W emulsion for example, see Japanese Patent Application Laid-Open No. 4-46115 (pages 1 to 6) and Japanese Patent Application Laid-Open No. 6-32732 (pages 1 to 8)
  • S / O / W Emulsions for example, Japanese Patent Application Laid-Open Nos. 8-151321 (see pages 10-15)
  • W / O / W emulsions for example, Japanese Patent Application Laid-Open No. 6-145046) (See pages 1 to 11), Japanese Patent Application Laid-Open No. 9-221141 (page 11)) or OZOZW emulsion (for example, Japanese Patent Application Laid-Open No.
  • the oil phase (o, s / o, wZo or oZo) is usually added to the aqueous phase to prepare the emulsion used in the underwater drying method.
  • a method for preparing the whole amount of the emulsion for example, Japanese Patent Application Laid-Open No. H4-146115 (page 116), Japanese Patent Application Laid-Open No. H6-145046 ( See page 111)).
  • membrane filtration methods include dead-end filtration in which the entire amount of the target fluid is treated by a membrane and cross-flow filtration in which the target fluid flows at a right angle to the fluid permeating the membrane and partially filters the target fluid.
  • cross-flow filtration which does not easily cause clogging and is suitable for large-scale treatment, has been used for water treatment and other purposes.Cross-flow filtration is used for recovery, washing, etc. of microspheres produced by the underwater drying method. Examples of use have also become known (for example, US Pat. No. 6,294,204 (pages 6 to 8), and WO96 / 35414 pamphlet (page 6-8)). See pages 11 and 12)).
  • the microsphere production apparatus in the production of microspheres by an underwater drying method, is miniaturized by producing the microspheres by an iterative process, thereby suppressing contamination of various microbes and causing environmental problems.
  • Another object of the present invention is to provide a method for producing high quality microspheres while facilitating the sealing of the apparatus itself.
  • the present inventors have made it possible to repeatedly manufacture a small amount of microspheres and use a process for accumulating the generated microspheres to reduce the size of the microsphere manufacturing apparatus and manufacture microspheres of excellent quality. And found that the production scale of the microsphere can be freely adjusted, and completed the present invention. That is, the present invention relates to a method for producing microspheres comprising the following circulation step.
  • a drug-containing polymer solution containing a drug, a biocompatible and biodegradable poorly water-soluble polymer and an organic solvent having a boiling point lower than that of water is emulsified into an aqueous solution in an emulsifying apparatus, and the drug-containing polymer solution is converted to an aqueous solution.
  • step (e) After the completion of step (d-1) or (d-2), collect the microspheres in the microsphere storage tank.
  • aqueous solution portion is efficiently filtered by cross-filt mouth filtration from the emulsion force produced in the emulsification apparatus and transferred to the microsphere storage tank. Separation can be suppressed, so that even if emulsion production is repeated, the volume of the emulsion in the microsphere storage tank can be suppressed from increasing, and the size of a single emulsion can be reduced. It is easy to perform the process uniformly and high quality microspheres can be manufactured.
  • Figure 1 shows the layout of a microsphere manufacturing device that recycles an aqueous solution.
  • Fig. 2 shows the layout of a microsphere manufacturing device that does not use an aqueous solution for circulation.
  • Examples of the drug-containing polymer liquid containing the drug, the biocompatible and biodegradable poorly water-soluble polymer and the organic solvent having a boiling point lower than that of water in the step (a) include the following. '
  • Biocompatible Capsule A bio-degradable poorly water-soluble polymer dissolved in an organic solvent with a boiling point lower than that of water, and a suspension of the drug in this (S / O)
  • 0.1 to 40% by weight of the drug in the polymer is suspended, and in particular, 1 to 30% by weight of the drug in the organic solvent solution of the polymer is suspended in the microspheres. It is preferable for improving the amount.
  • the drug When suspending a drug in a solution of the polymer in an organic solvent, the drug must not be soluble in the organic solvent.
  • Suspension of the polymer of the drug in the organic solvent solution can be carried out using a homogenizer, a sonicator, or the like. It is preferable that the drug is suspended in the organic solvent solution of the polymer and immediately emulsified in an aqueous solution. .
  • the average particle size of the microspheres which produces the average particle size of the drug, lZ5 ⁇ l / l000, more preferably lZl0 ⁇ 1
  • Micronization of the drug suspended in the organic solvent solution of the polymer can be performed by a conventional method such as a pulverization method, a crystallization method, and a spray-dry method.
  • a pulverization method the drug is made into fine particles by physically pulverizing it with a true pulverizer such as a jet mill, hammer mill, rotating ball mill, vibrating pole mill, bead mill, shaker minole, rod mill, tube mill, etc. be able to.
  • the crystallization method the drug is dissolved in a suitable solvent, and then the pH is adjusted, the temperature is changed, the solvent is changed, and the drug is crystallized, followed by filtration, centrifugation, etc. By recovering by the method described above, the drug can be made into fine particles.
  • the drug is dissolved in an appropriate solvent, and this solution is sprayed into the drying chamber of the spray dryer using a spray nozzle to volatilize the solvent in the spray droplets in a very short time. Thereby, the drug can be made into fine particles.
  • peptide drugs the following methods can be appropriately applied, for example, in order to perform micronization while maintaining drug activity.
  • the drug is water-soluble, and the organic solvent that dissolves the polymer is water-immiscible.
  • it is preferably applied to a drug having a partition ratio of 0.1 or less to n-octanol Z water.
  • Drug concentration in the drug solution is usually 0.1 wt% or more (less than the solubility of the drug) der is, is preferably 1 wt 0 X »or more. Further, it is preferable to disperse the drug water solution having 0.1 an organic solvent solution of the same port Rimmer as in (O) 30 weight 0/0, especially 1 to 20 wt 0/0 (i).
  • the aqueous drug solution may contain other additives in addition to the drug.
  • the additives include stabilizers (albumin, gelatin, ethylenediaminetetraacetic acid 4- sodium hydroxide, dextrin, sodium bisulfite, polyethylene oxide). Recall, etc.), preservatives [p-hydroxybenzoic acid esters (methyl ester, ethyl ester, propyl ester, butyl ester), etc.], pH adjusters (carbonic acid, acetic acid, oxalic acid, citric acid, phosphoric acid, hydrochloric acid, water) And sodium salts thereof, for example, sodium carbonate, sodium hydrogen carbonate and the like.
  • stabilizers albumin, gelatin, ethylenediaminetetraacetic acid 4- sodium hydroxide, dextrin, sodium bisulfite, polyethylene oxide). Recall, etc.), preservatives [p-hydroxybenzoic acid esters (methyl ester, ethyl ester, propyl ester,
  • a drug-retaining substance such as gelatin, agar, polyvinyl alcohol, basic amino acid (arginine, histidine, lysine, etc.)
  • a drug-retaining substance such as gelatin, agar, polyvinyl alcohol, basic amino acid (arginine, histidine, lysine, etc.)
  • arginine, histidine, lysine, etc. may be added to the aqueous drug solution.
  • the average particle size of droplets of the aqueous drug solution is 1Z5 to LZ10000, more preferably the average particle size of the generated microspheres, depending on the particle size of the microspheres. Is preferably from 1/10 to L / 1000, and it is preferable to perform dispersion using a homogenizer, a sonicator or the like. In addition, it is preferable that the aqueous solution of the drug is immediately dispersed into a solution of the polymer immediately after the dispersion in the organic solvent solution of the polymer.
  • the drug is dissolved or dissolved in one of the polymer solutions in the same manner as in the case of the solution (i) or the suspension (S0) of (ii) above. After the suspension, the solution or the suspension is treated in the same manner as in the preparation of the dispersion (WZO) in (iii) above.
  • WZO dispersion
  • It can be prepared by dispersing in another polymer solution that is immiscible with 8.
  • the organic solvent solution of the polymer the same ones as in the case of the solution (O) of (i) can be used as appropriate.
  • the biocompatible and biodegradable poorly water-soluble polymer any biocompatible and biodegradable poorly water-soluble polymer generally used in the field of pharmaceutical preparations can be used.
  • the poorly water-soluble polymer means a polymer that requires 1000 g or more of water at 25 ° C to melt-dry 1 g of the polymer.
  • the biocompatible and biodegradable poorly water-soluble polymer include polyesters of hydroxy fatty acids, poly- ⁇ -cyanoacrylates, and polyamino acids.
  • the polyester of hydroxy fatty acid preferably has an average molecular weight of 2,000 to 800,000, more preferably has an average molecular weight of 5,000 to 200,000, and most preferably has an average molecular weight of 5,000 to 50,000.
  • polyester of the hydroxy lubricating fatty acid examples include polylactic acid, lactic acid-glycolic acid copolymer, 2-hydroxybutyric acid-glycolic acid copolymer, poly-hydroxybutyric acid, and the like.
  • the lactic acid-dalicholic acid copolymer preferably has a monolactate ratio of lactic acid-dali cornoleic acid of 90/10 to 30/70, more preferably 80/20 to 40/60.
  • the 2-hydroxybutyric acid-glycolic acid copolymer preferably has a 2-hydroxybutyric acid / glycolic acid molar ratio of 9 ⁇ 93 to 3 ⁇ 370, more preferably 80/20 to 4060.
  • the organic solvent having a boiling point lower than that of water is an organic solvent having a boiling point lower than that of water at the same pressure, and includes both a water-miscible solvent and a water-immiscible solvent.
  • a water-miscible organic solvent having a boiling point lower than that of water is one that has a boiling point lower than that of water and is completely miscible with water in any proportion.
  • a water-miscible ketone solvent acetone, etc.
  • Examples include water-miscible ether solvents (such as tetrahydrofuran) and nitrile solvents (such as acetonitrile), with acetone being preferred.
  • a water-immiscible organic solvent having a boiling point lower than that of water is a solvent that has a boiling point lower than that of water and is miscible with water in an amount of not more than 10% by volume of water.
  • Hydrogen solvents methylene chloride, chloroform, carbon tetrachloride, PC drawing 00 hire 1557
  • drug to which the method of the present invention is applied include, for example, antitumor; peptide drug, antibiotic, antipyretic, analgesic and anti-inflammatory, antitussive expectorant, sedative, muscle relaxant, antiepileptic , Anti-ulcer, anti-depressant, anti-allergic, inotropic, anti-arrhythmic, vasodilator, antihypertensive diuretic, anti-diabetic, anti-lipidemic, anti-coagulant, hemostatic, anti-tuberculosis, Hormonal agents, narcotics antagonists, bone resorption inhibitors, bone formation promoters, fracture healing promoters, cartilage disease repair / treatment agents, angiogenesis inhibitors, antiemetic agents and the like.
  • antitumor peptide drug, antibiotic, antipyretic, analgesic and anti-inflammatory, antitussive expectorant, sedative, muscle relaxant, antiepileptic , Anti-ulcer, anti-depressant,
  • Antitumor agents include, for example, paclitaxel, bleomycin, methotrexate, actinomycin D, mitomycin C, vinblastine sulfate, vincristine sulfate, dau norevicin, doxonolevicin, neopotenoretinostatin, cytosine arabinoside, fluorosulfuryl chlorophylla, and fluorotetrachloride.
  • Peptide drugs include insulin, somatostatin, sandostatin, growth hormone, prolatatin, adrenocorticotropic hormone (ACTH :), ACTH derivative, melanocyte stimulating hormone (MSH), thyroid hormone releasing hormone (TRH), thyroid stimulation Hormone (TSH), luteinizing hormone (LH), luteinizing hormone-releasing hormone (LHRH) and its derivatives, follicle-stimulating hormone (FSH), vasopressin, desmopressin, oxytocin, calcitoun, elcatonin, parathyroid honolemon ( PTH), Guzole gon, Gastrin, Secretin, Pancreozymine, Cholecystokinin, Angiotensin, Human placental lactogen, Human chorionic gonadotropin (HCG), Enkephalin, Enkephalin derivative, Endorphin, Ficus torphin, interferons (eg, ⁇ , ⁇ , ⁇ type, etc
  • FGF bone morphogenetic factor
  • BMP bone morphogenetic factor
  • NT-3 neurotrophic factor
  • NT-4 neurotrophic factor
  • CNTF GDNF
  • BDNF BDNF
  • blood coagulation factors VIII IX
  • lysozyme chloride polymyxin B, Colistin, gramicidin, bacitracin, erythropoetin (EPO), thrombopoetin (TPO) and the like.
  • Antibiotics include, for example, gentamicin, dibekacin, canendomycin, lividomycin, topramycin, amikacin, fradiomycin, tissomicin, tetracycline hydrochloride, oxytetracycline hydrochloride, rolitetracyline, doxycycline hydrochloride, ampicillin, Peracillin, ticarcillin, aspoxillin, cephalotin, cephaloridin, cefotiam, cefsulodin, cefmenoxime, cefmetazo ⁇ /, cefazolin, cefotaxime, cefoperazone, ceftizoxime, moxalactam, chenamycin, snorezzazem, etc.
  • antipyretic 'analgesic' anti-inflammatory agents include salicylic acid, sulpyrine, flufenamic acid, diclofenac, indomethacin, morphine, pethidine hydrochloride, repolanolol tartrate, oxymorphone and the like.
  • antitussive expectorants examples include ephedrine hydrochloride, methylephedrine hydrochloride, noseptic hydrochloride, codine phosphate, dihydrocodine phosphate, alocramide hydrochloride, clofedanol hydrochloride, picoperidamine hydrochloride, cloperastine, protoxitol hydrochloride, isoprotere hydrochloride Nol, salptamol sulfate, terebutaline sulfate, etc. I can do it.
  • Examples of the sedative include chlorpromazine, prochlorperazine, trifluoroperazine, atropine sulfate, methylscopolamine bromide and the like.
  • muscle relaxant examples include pridinol methanesulfonate, ppocurarine chloride, pancuronium bromide and the like.
  • Antiepileptic agents include, for example, phenytoin, ethosuximide, acetazolamide donatum, chlordazepoxide and the like.
  • Examples of the anti-ulcer agent include Medoc oral bromide, histidine hydrochloride and the like.
  • Examples of the antidepressant include imibramine, clomipramine, noxiptiline, phenelzine sulfate and the like.
  • antiallergic agent examples include diphenhydramine hydrochloride, cufenfeniramine maleate, triberenamine hydrochloride, methdilamine hydrochloride, clemizole hydrochloride, diphenylperalin hydrochloride, methoxyphenamine hydrochloride and the like.
  • cardiotonic agent examples include transpyroxocamphor, theophyllol, aminophylline, etilephrine hydrochloride and the like.
  • antiarrhythmic agent examples include azimilide, propranolol, alprenolol, bufetrol, oxyprenolol and the like.
  • vasodilator examples include oxyfedrine hydrochloride, diltiazem hydrochloride, trazoline hydrochloride, hexobendine, bamethane sulfate and the like.
  • Antihypertensive diuretics include, for example, hexanemethaprompromide, pentolinium, mecamylamine hydrochloride, ecarazine hydrochloride, cloezin and the like.
  • Examples of the therapeutic agent for diabetes include dalimidine sodium, dalipizide, phenformin hydrochloride, pformin hydrochloride, metformin and the like.
  • antilipidemic agent examples include meparotin, pravastatin sodium, simpastatin, funolestatin, clinofibrate, clofibrate, simfibrate, bezafibrate and the like.
  • anticoagulant examples include heparin sodium.
  • hemostatic agents examples include thromboplastin, thrombin, menadione sodium bisulfite, acetomenaphthone, ⁇ -aminocaproic acid, tranexamic acid, And carbazolate sodium sulfonate, adrenochrome monoaminoguanidine methanesulfonate, and the like.
  • antituberculous agents examples include isoniazid, ethambutose, para-aminosalicylic acid and the like.
  • hormonal agent examples include prednisolone, sodium prednisolizolone phosphate, dexamethasone sodium hydrochloride, hexestronore phosphate, and methimazole.
  • narcotic antagonist examples include levallorphan tartrate, nalorphin hydrochloride, naloxone hydrochloride and the like.
  • bone resorption inhibitor examples include ibriflavone, alendronate, chilled mouth salt and the like.
  • bone formation promoter examples include polypeptides such as bone morphogenetic factor (BMP), parathyroid hormone (PTH), cell growth factor (TGF-) 3, and insulin-like growth factor (IGF-I).
  • BMP bone morphogenetic factor
  • PTH parathyroid hormone
  • TGF- cell growth factor
  • IGF-I insulin-like growth factor
  • Examples of the bone fracture healing promoter and the cartilage disease repair / treatment agent include phosphodiesterase 4 inhibitors (PCT / JP02 / 4930, PCT / JP02 / 04931) and the like.
  • angiogenesis inhibitor examples include angiogenesis inhibitor steroids, fumagillin, fumagillol derivatives, angiostatin, endostatin and the like.
  • antiemetic agents include 5-hydroxytryptamine type 3 receptor antagonists such as ondansetron and tropisetron, and neurokien 1 receptor antagonists.
  • the drug may be a free drug or a pharmacologically acceptable salt thereof.
  • the drug is a compound having a basic group such as an amino group
  • an inorganic acid eg, hydrochloric acid, sulfuric acid, nitric acid, etc.
  • an organic acid eg, carbonic acid, succinic acid, etc.
  • an inorganic base for example, an alkali metal such as sodium or potassium
  • an organic base compound for example, an organic amine such as triethylamine or a basic amino acid such as argien
  • a basic aqueous solution e.g., an aqueous solution of an alkali metal hydrogen carbonate, an aqueous solution of an alkali metal carbonate, an aqueous solution of an alkali metal hydroxide, an aqueous solution of an alkali metal phosphate
  • extraction with an organic solvent may be used.
  • a weakly acidic aqueous solution for example, aqueous ammonium chloride solution, weakly acidic solution
  • Buffer solution a weakly acidic aqueous solution (for example, aqueous ammonium chloride solution, weakly acidic solution) Buffer solution) and then extraction with an organic solvent.
  • a free drug can be obtained by distilling off the solvent by a conventional method.
  • the drug is dissolved or suspended in the organic solvent solution of the polymer or the aqueous solution of the drug is dispersed in the organic solvent solution depends on the properties of the drug (solubility in an organic solvent having a boiling point lower than that of water, It can be selected as appropriate according to the stability of the organic solvent, water solubility, etc.), the elution characteristics of the drug from the microspheres, the content, the particle size, etc.If the drug is easily denatured with the organic solvent, the drug may be used. Or an aqueous solution of the drug is dispersed in an organic solvent solution of the polymer.
  • the emulsifying device used to emulsify the drug-containing polymer liquid into an aqueous solution includes a mouthpiece-type stirrer, a turbine-type stirrer, a high-pressure emulsifier, an ultrasonic dispersion device, a static mixer, an internal shear (liquid-liquid shear)
  • a mouthpiece-type stirrer a turbine-type stirrer
  • a high-pressure emulsifier an ultrasonic dispersion device
  • a static mixer an internal shear (liquid-liquid shear)
  • emulsifiers such as a high-speed rotary homogenizer using a high-speed rotary homogenizer using internal shearing (liquid-liquid shearing) (Clearmix by M-Technic, Inc.
  • the emulsifying strength can be increased, so that even when a high-viscosity drug-containing polymer solution is used, droplets with a small particle size are formed in the aqueous solution, and the particle size is reduced. Can be manufactured. Emulsification can be carried out by batch processing or continuous processing. In the case of batch processing, use TK Ajihomo Mixer-1, TK Combimix, TK Homogenizer, CLEARMIX continuous patch type or batch type system, etc.
  • a high-speed shearing type dispersing emulsifier for example, TK homomic line flow manufactured by Tokushu Kika Kogyo Co., Ltd.
  • an in-line type stirring device for example, T.K. Pipeline homomixer, Silverson Hi-Shear in-line mixer, Emtechyuk Creamix continuous system, A mixer or the like can be used.
  • the capacity of the emulsifier is preferably 1100 to 1Z10 of the capacity of the microsphere storage tank.
  • emulsification is preferably carried out within 30 minutes, especially within 10 minutes, while in the case of continuous processing, the average residence time in the emulsifier is within 10 minutes, especially within 5 minutes. Is preferred.
  • the aqueous solution that can be used differs depending on whether a water-miscible organic solvent is used as the polymer organic solvent solution or a water-immiscible organic solvent.
  • a water-miscible organic solvent is used for the organic solvent solution of the polymer, for example, as described in International Publication WO01 / 80835, a water-miscible organic solvent It is preferable to use a homogeneous solution containing a solvent that is immiscible and does not dissolve the polymer together with water, and may contain a monohydric alcohol having 1 to 4 carbon atoms. In this case, it is preferable to use a homogeneous mixed solution of water-glycerin, aqueous ethanol-glycerin and the like.
  • Not miscible with water-miscible organic solvent at a concentration in aqueous solvent solution of a solvent which does not dissolve the polymer is 2 5-9 5 weight 0/0, preferably 5 0-9 0 weight 0 / 0 , more preferably 60 to 80 weight ° / 0 .
  • the aqueous solution may also contain an emulsion stabilizer.
  • Shidani stabilizers include polyvinyl alcohol, polyvinylpyrrolidone, methylcellulose, hydroxypropylcellulose, gum arabic, chitosan, gelatin, lecithin, serum albumin, nonionic surfactant [polyoxyethylene sorbitan Fatty acid esters (Tween 80, 60 manufactured by Nikko Chemicals) and polyoxyethylene castor oil derivatives (HCO-60, HCO-50 manufactured by Nikko Chemicals) can be exemplified.
  • Emulsion stabilizer in an aqueous solution 0 0 0 1:.. L 0 wt 0/0, especially 0 0 1 preferably you added 2% by weight.
  • the neutralizing solution may be pure water, and may contain a noodle stabilizer if necessary.
  • the emulsion stabilizer the same one as in the case of using a water-miscible organic solvent can be used at the same concentration.
  • the emulsifying apparatus can be reduced in size.
  • stirring resistance can be reduced, the degree of emulsification of the entire drug-containing polymer solution and aqueous solution can be easily made uniform, and the particle diameter of the emulsion droplets can vary. It is possible to produce an emulsion of liquid droplets having a small particle diameter and a small particle diameter, and to suppress the leakage of the drug into the aqueous solution because the emulsification time is shortened.
  • emulsification can be carried out by either patch treatment or continuous treatment.
  • Force batch treatment is more effective than continuous emulsion in terms of the emulsification time of the drug-containing polymer solution and aqueous solution to be emulsified.
  • the dispersion of the particle size of the droplet is smaller and the emulsion of the smaller particle size is generated.
  • Cheap since the R solution is replaced every time the emulsification is performed, the concentration of the organic solvent in the aqueous phase of the emulsion can be kept below a certain level in the emulsification step. This is preferable in that deterioration in quality is unlikely to occur.
  • the volume of the aqueous solution used for emulsification is preferably 10 to 300 times the volume of the drug-containing polymer solution. Is calculated by the ratio of the volume of the aqueous solution introduced into the chiller to the volume of the drug-containing polymer solution during the emulsification time.
  • the droplets in the emulsion immediately after the formation are converted into microspheres by gradually leaching the organic solvent into the aqueous solvent in the emulsifier and the microsphere storage tank, and then evaporating and solidifying to form microspheres.
  • the force collectively referred to as a droplet including the microspheres in the process of formation
  • the average particle size of the droplet compared with the average particle size of the microsphere above is the particle size of the droplet immediately after emulsification. Is the diameter.
  • Emulsions obtained by emulsifying a drug-containing polymer solution in an aqueous solution as described above and the drug-containing polymer solution dispersed in the aqueous solution include, for example, the following emulsions.
  • biocompatible and biodegradable poorly water-soluble polymers is dissolved in an organic solvent having a boiling point lower than that of water, and the other is biocompatible and biodegradable in the polymer solution.
  • An aqueous solution of a poorly water-soluble polymer is dispersed in the same organic solvent, and a dispersion in which the drug is dissolved or suspended in the dispersed polymer solution is further dispersed in an aqueous solution. / O / W)
  • the emulsion storage tank used in step (b) is preferably formed of a material that is not reactive with the components of the emulsion and the emulsion.
  • a material that is not reactive with the components of the emulsion and the emulsion for example, stainless steel, Teflon, Teflon coating, glass lining Can be given.
  • the emulsion accumulation tank must have the function of distilling off the organic solvent.On the other hand, the organic solvent having a boiling point lower than that of water is miscible with water. If the organic solvent is soluble, the organic solvent dissolves in the aqueous solution, so the emulsion accumulation tank does not need to have the function of distilling the organic solvent. You may. In addition, in the case of any of the organic solvents, if the organic solvent is eluted into the aqueous solution during the emulsification step and the droplets of the drug-containing polymer liquid are solidified to some extent, the emulsion can be cross-linked without distilling the organic solvent. Can be used for mouth filtration It is.
  • the organic solvent evaporating function includes (A) a method of evaporating the organic solvent by a combination of heating, depressurization, etc., (B) a contact area between the external aqueous phase and the gas phase, and a circulation rate of the emulsion and a stirring speed. And a method in which a gas is blown in the vicinity of the liquid surface (Japanese Patent Application Laid-Open No. 9-221418), (C) a method in which an organic solvent is rapidly distilled off using a hollow fiber membrane module (International Publication WO
  • the hollow fiber membrane module examples include a pervaporation membrane made of silicon rubber (particularly, a pervaporation membrane formed of polydimethylsiloxane), and a membrane in which porous polytetrafluoroethylene is filled with silicon rubber (see Japanese Patent Application Laid-Open No. H5-11-1). Nos. 5,749,949), and those utilizing a pervaporation membrane such as a polyvinyl alcohol mixed membrane (see pages 25-29 of the March 1998 issue of Chemical Engineering) can be suitably used.
  • a pervaporation membrane such as a polyvinyl alcohol mixed membrane
  • “NAGA SEP” a silicone membrane module manufactured by Nagayanagi Industry Co., Ltd., "SG-100 Series”
  • SEP AR EL manufactured by Dainippon Ink and Chemicals, Inc.
  • a commercially available hollow fiber membrane module or the like can be used as appropriate.
  • the microsphere storage tank since the contents of the microsphere storage tank are made uniform and a part of it is passed through the crossflow filtration device, the microsphere storage tank has a stirring function such as a stirring blade or magnetic stirrer for flowing the emulsion. It is preferable to have a pump function for sucking a part of the emulsion from the lower part and returning it to the upper part.
  • a stirring function such as a stirring blade or magnetic stirrer for flowing the emulsion. It is preferable to have a pump function for sucking a part of the emulsion from the lower part and returning it to the upper part.
  • the cross-floor single filtration in the step (c) is a filtration method in which an emulsion to be treated flows in parallel with the filtration membrane so that a part of the liquid component in the treatment passes through the filtration membrane. Part of the aqueous solution of the emulsion flowing through is filtered and permeates as filtrate on the other side of the filtration membrane, and the remaining emulsion flows parallel to the filtration membrane. Since the direction in which the emulsion flows is parallel to the filtration membrane, clogging is unlikely to occur, and a decrease in filtration efficiency is suppressed.
  • the filtration membrane preferably has a pore diameter of 1/300 to 13/13 of the desired microsphere average particle diameter, and generally has a pore diameter of 0.01 to 10 / x ni. .
  • the filtration membrane used for cross-flow filtration contains microspheres Preferably, it has a filtration membrane area of 0.001 to 0.1 lm 2 per liter of tank capacity.
  • a filtration membrane formed of a polymer such as polyvinylidene fluoride, regenerated cellulose polyethersulfone, hydrophilic polyethersulfone, or a polyamide composite membrane is laminated in a flat plate shape or a fine cylinder.
  • a bundle having a large surface area per unit volume can be suitably used.
  • Millipore's ProStack, Sartorius' Sartocon, Paul's Ulticlean, and Cuno's Microflow or the like can be used.
  • the filtrate discharge speed from the cross-flow filtration device it is preferable to adjust the filtrate discharge speed from the cross-flow filtration device to 1/100 to 1/3 of the emulsion conduction speed to the device.
  • step (d-1) and step (d-2) the permeated liquid that has passed through the surface without passing through the filtration membrane of the cross-floor single filtration device is returned to the microsphere storage tank.
  • This passing liquid is the emulsion excluding the filtrate from the emulsion passed through the cross-floor one-filtration device, and the amount of the emulsion is reduced by the amount of the filtrate by the cross-flow filtration.
  • the filtrate is circulated and used as the aqueous solution in the step (a), and emulsification is carried out using this and the drug-containing polymer solution, and the steps (b) to (d-1) are carried out.
  • an organic solvent having a lower boiling point than water can be distilled off from the filtrate, and then used as the aqueous solution in step (a).
  • this organic solvent can be distilled off by installing an appropriate solvent distilling device in a communication passage connecting the filtration device and the emulsifying device.
  • microspheres formed by solidification of drug-containing polymer liquid droplets accumulate in the tank. This means that it is possible to produce microspheres on an industrial scale with a small-scale emulsifier and a small-scale microsphere accumulation tank, compared to producing a large amount of microspheres at one time.
  • the size of the microsphere manufacturing apparatus can be reduced, and Creation of a closed system by molding makes it easy to maintain, prevents the mixing of foreign bacteria from the outside, prevents the organic solvent from being released into the atmosphere, and adjusts the number of emulsions and emulsifications. It is possible to manufacture microspheres according to the conditions.
  • the amount of the emulsifying stabilizer contained in the aqueous solution can be reduced because the emulsifying stabilizer is also circulated and used. Even if a drug leaks, the drug remains in the aqueous solution to be recycled, so that it is possible to recover the drug from the aqueous solution after the microspheres are collected, if necessary.
  • step (d-2) the filtrate is not recycled as the aqueous solution in the step (a), but is studied using a new aqueous solution and a drug-containing polymer solution. ⁇ Repeat step (d-2).
  • the steps (a) to (d-2) are repeated to solidify the drug-containing polymer liquid droplets according to the number of emulsifications.
  • the process (d-1) it is possible to produce microspheres on an industrial scale by using a small-scale emulsifier and a small-scale microsphere storage tank, as in the case of step (d-1). Become.
  • aqueous solution having the same composition prepared in advance can be used as the aqueous solution used for emulsification, it is easier to maintain a uniform reproduction in the emulsification step than in the case where the filtrate is recycled.
  • the filtrate obtained when the cross-flow filtration device is passed in step (c) may be circulated and used as an aqueous solution as in step (d-1), and (d-2)
  • the organic solvent having a lower boiling point than water may be discharged without being recycled as in the step, but if the organic solvent having a lower boiling point than water is miscible with water, the organic solvent contained in the filtrate to be recycled is used.
  • the solvent may additionally be distilled off in the circulation. Thereby in aqueous solvents By further reducing the amount of the organic solvent, the removal of the solvent and the formation of the emulsion can be promoted.
  • step (d-1) or step (d-2) when an organic solvent having a lower boiling point than water is immiscible with water, the organic solvent is distilled off in the microsphere storage tank during the circulation process.
  • step (d-1) or step (d-2) before the microsphere recovery in step (e), stop the cross-flow filtration and continue the organic solvent distillation in the microsphere storage tank. This may supplement the organic solvent evaporation from the microspheres.
  • the water-immiscible organic solvent is not completely distilled off in such a microsphere storage tank, and a more complete distillation of the organic solvent is required from the viewpoint of microsphere formation or regulation of the residual organic solvent.
  • measures may be taken to increase the solvent removal efficiency.
  • the cross-flow filtration is continued, the organic solvent is distilled off from the filtrate, and the filtrate after the distillation is passed through an emulsification apparatus without being subjected to an emulsification step, or Continue the operation of returning to the microsphere storage tank through a separately provided pipe.
  • the case of (d-2) continue the cross-flow filtration, and add a new aqueous solution corresponding to the amount of filtrate to the microsphere storage tank. The introduction can compensate for the evaporation of the organic solvent from the microspheres.
  • the steps (&) to ((1-1) or (d-2) are repeated, and a desired amount of microspheres is accumulated in the microsphere accumulation tank.
  • the end point depends on the size of the storage tank, the desired amount of each microsphere, etc.
  • the processing time required for microsphere generation is preferably less than 2 days, and more preferably the processing time is less than 1 day.
  • the microspheres can be recovered from the suspension accumulated in the microsphere storage tank by filtration (cross-flow filtration, dead-end filtration, etc.), centrifugation, or the like.
  • microspheres When collecting microspheres by cross-flow filtration, use microspheres.
  • the cross-flow filtration device used for the manufacture of the fair as it is the aqueous solution in the suspension can be removed and the microspheres can be collected efficiently. If it is introduced and circulated through a cross-floor filtration device, microspheres can be washed using cross-flow filtration.In addition to the microsphere manufacturing process, recovery and washing are performed in a closed system. It is possible to do with.
  • the particles are sieved through a sieve having an appropriate opening size, so that the particle size of the microspheres can be further adjusted. Is 150 ⁇ ! It is preferable to use the mixture after sieving with a sieve of ⁇ 5 ⁇ .
  • the organic solvent may remain in the microspheres depending on the degree to which the organic solvent is distilled off, but it can be removed by the following method. is there.
  • microspheres thus obtained can be used as fine granules, suspensions, implant preparations, injections, patches, etc., and are administered orally, parenterally [intramuscularly, subcutaneously, intravascularly, or transdermally. Skin administration, transmucosal administration (oral, vaginal, rectal mucosal administration, etc.)].
  • microspheres When microspheres are used as suspensions for injections, oral dry capsules, etc., dispersants (nonionic surfactants, polyoxyethylene castor oil derivatives, cellulosic thickeners) were added. It is preferable to use a liquid agent.
  • an aqueous solution of an excipient such as the above dispersant, moisture-absorbing agent, and anti-agglomeration agent (mannitol, sorbitol, lactose, glucose, xylitolone, masoletose, galactose, sucrose, dextran) can be used.
  • microspheres After the microspheres are dispersed, they are solidified by freeze-drying, drying under reduced pressure, spray-drying, or the like, and can be added to distilled water for injection and administered before use.
  • the above-mentioned injections include, if appropriate, isotonicity agents (sodium chloride, glycerin, sorbitol, pudose, etc.) and pH adjusters (carbonic acid, acetic acid, oxalic acid, citric acid, phosphoric acid) , Hydrochloric acid, sodium hydroxide or a salt thereof, for example, sodium carbonate, sodium hydrogen carbonate, etc.), a preservative [P-hydroxybenzoic acid esters (methinoleestenole, ethinoleestenole, propinoleestenole, Butyl alcohol, benzyl alcohol, chlorobutanol, sorbic acid, boric acid].
  • isotonicity agents sodium chloride, glycerin,
  • microsphere manufacturing apparatus of the present invention used for manufacturing microspheres in a closed system is for efficiently performing the microsphere manufacturing method of the present invention, and in the microsphere manufacturing method of the present invention,
  • the equipment used to carry out step (d-1) is?
  • the following are examples of the precipitator, microsphere storage tank, and cross-flow filtration device.
  • the emulsifier and the microsphere storage tank are connected so that the emulsion obtained by the emulsifier can be transferred to the microphone mouth sphere storage tank having an organic solvent distillation function;
  • Part of the emulsion which is the content of the emulsion from the microsphere storage tank, is conducted to the mouthpiece filter, and the filtrate passing through the filter is returned to the microsphere storage tank, while the filtrate is converted into an aqueous solution as an emulsifier.
  • the micro-fiber storage tank, the cross-flow filtration device and the emulsification device are connected so that they can be guided to the same.
  • the microsphere storage tank does not necessarily have to have an organic solvent distillation function.
  • an apparatus in which an emulsifying apparatus, a microsphere storage tank, and a mouthpiece filtering apparatus are configured as follows may be used.
  • an emulsifying apparatus, a microsphere, and the like are used as the apparatuses for performing the method of performing the step of performing the filtrate generated in the cross-flow filtration apparatus as an aqueous solution without circulating the aqueous solution.
  • a storage tank and a cross-mouth filtration apparatus configured as follows are listed.
  • step (d-2) When using a water-miscible organic solvent having a boiling point lower than that of water, an emulsifier, a microsphere storage tank, and a cross-flow filtration device must be used as devices for performing step (d-2). It is also possible to use one configured as follows.
  • the emulsion is repeatedly or continuously performed little by little, so that the capacity of the emulsifying apparatus is much larger than the case where the whole emulsion is manufactured at once when manufacturing microspheres.
  • the size can be reduced, and the capacity of the microsphere storage tank is preferably set to lZ10 to lZ10.
  • the emulsifying device is designed so that the drug-containing polymer liquid and the aqueous solution are introduced, and it is conceivable that the drug-containing polymer liquid and the aqueous solution can be introduced into the emulsifying device from the tanks storing the drug-containing polymer and the aqueous solution, respectively.
  • the filtrate from the microsphere storage tank storing the aqueous solution is passed through a cross-flow filtration device in advance without providing a tank storing the aqueous solution.
  • the circulation process may be started by introducing the aqueous solution obtained as above into the emulsifier.
  • the emulsifying device may have a function of adjusting the introduction rate of the drug-containing polymer solution and the aqueous solution (including the case where the filtrate is circulated). Function to control the amount of drug-containing polymer solution introduced according to the filtrate discharge speed from the flow filtration device (the aqueous solution introduction speed into the emulsification device), when the filtrate (aqueous solution in the emulsification device) reaches a certain amount A function to introduce a certain amount of drug-containing polymer solution into the emulsifier, while the filtrate (aqueous solution in the emulsifier) is continuously introduced into the emulsifier, and when the organic solvent concentration in the filtrate falls below a certain level, it becomes constant Amount of drug-containing polymer solution is introduced, and the drug-containing polymer solution is regularly introduced while maintaining the filtrate discharge speed from the cross-floor single filtration device (the aqueous solution introduction speed into the emulsifier) at a constant rate. Function etc. It may have.
  • the emulsifier is connected to the microsphere storage tank so that the resulting emulsion can be transferred to the microsphere storage tank.
  • the drug-containing polymer solution and aqueous solution should be introduced into the emulsifier from the top or side of the emulsifier to emulsify, and the resulting emulsion should be transferred to the microsphere storage tank from below.
  • the drug-containing polymer solution and aqueous solution may be introduced into the emulsifier from below or from the side of the emulsifier, and emulsified by the emulsifier, and the resulting emulsion may be formed in the upper part of the milker. It may be laid out so that it is automatically transferred to the microsphere storage tank in such a way that it overflows from the reservoir.
  • the emulsifying apparatus is of a batch type, that is, intermittently performed, and when the filtrate from the cross-flow filtration apparatus is circulated and used as an aqueous solution, the emulsion generated by using the flow of the filtrate is emulsified. May be transferred to a microsphere storage tank.
  • the microsphere storage tank those of various materials exemplified in the description of the microsphere manufacturing method can be used. Further, as described in the microsphere manufacturing method, the tank has various organic solvent distillation functions. Things. In the microsphere production method of the present invention, even if the microsphere production volume is large, the volume of the aqueous solution occupying most of the volume of the emulsion does not increase. The size can be reduced, and the size of the microsphere storage tank required for industrial production of 1 kg of microspheres can be suppressed to about 10 to 100 liters.
  • the cross-flow filtration device for example, a commercially available one exemplified in the description of the microsphere production method or the like can be appropriately used.
  • the microsphere air storage tank and the cross-floor single-filtration device ensure that the emulsion, which is the contents of the microsphere storage tank, is conducted to the cross-floor single-filtration device so that only the permeate that does not pass through the filtration membrane is returned to the microsphere storage tank.
  • the filtrate from the cross-flow filtration device is connected to the emulsification device or discharged outside the device.
  • connection path for leading the filtrate of the cross-flow filtration device to the emulsification device a solvent distillation function for distilling the organic solvent from the filtrate may be added.
  • An appropriate solvent evaporator may be provided separately, or The organic solvent evaporating function used for the fair accumulation tank can be used as appropriate.
  • each connection path may have a transfer promoting function such as a pump, if necessary, for transferring the emulsion, filtrate, etc., such as a tube pump, a magnet pump, a gear pump, a centrifugal pump, a diaphragm pump, etc. Can be used.
  • microsphere production apparatus of the present invention is small-sized, It is easy to make and is an excellent microsphere industrial manufacturing device.
  • the filtrate is discharged out of the apparatus or when the organic solvent is distilled off by the organic solvent evaporator, make sure that the organic solvent in the filtrate and the evaporated organic solvent are not exposed to the atmosphere. It is preferable to recover the organic solvent and reuse it as necessary.
  • Adsorption methods include fiber-shaped activated carbon adsorption equipment, general-purpose black-mouth carbon exhaust gas recovery equipment, small-sized black-mouth carbon exhaust gas recovery equipment, low-concentration carbon-mouth carbon exhaust gas recovery equipment, granular activated carbon adsorption equipment, and spherical form Activated carbon fluidized bed adsorption equipment, compression cryogenic condensation equipment, etc. (see “Handbook for Appropriate Use of Black Carbon”, pages 85 to 93) are used. More specifically, commercially available products such as Kurimoto Steel Works' solvent recovery 'Deodorizer "Ameig”, Toyobo's low-concentration solvent gas adsorption' Concentrator "Halonitar” "can be used as they are.
  • FIGS. 1 and 2 show an example of an apparatus layout that can be used for manufacturing a microsphere according to the manufacturing method of the present invention.
  • the drug-containing polymer liquid is led from the drug-containing polymer liquid storage tank (4) to the emulsifier (1), while the aqueous solution is initially pre-filled in the microsphere storage tank (2), From then on, it is conducted to the cross-flow filtration device (3), and the filtrate that has not been filtered is returned to the microsphere storage tank (2), and only the filtrate is led to the emulsification device (1), and the emulsion formed after emulsification is formed.
  • the content of the emulsion is conducted to the cross-floor single filtration device (3), and the filtrate that has not been filtered is returned to the microsphere storage tank (2), and the filtrate is returned to the microsphere storage tank (2). It is led to the emulsifying device (1) and is emulsified with the drug-containing polymer liquid guided from the drug-containing polymer liquid storage tank (4). The emulsion thus obtained is transferred to a microsphere storage tank, and the above operation is performed cyclically.
  • the drug-containing polymer liquid and the aqueous solution are led from the drug-containing polymer liquid storage tank (4) and the aqueous solution storage tank (5) to the emulsifier (1), respectively.
  • the emulsion is transferred to the microsphere storage tank (2), and the content of the emulsion is conducted to the cross-flow filtration device (3).
  • the unfiltered passing liquid is returned to the microsphere storage tank (2), and the filtrate is discharged.
  • the drug-containing polymer liquid and the aqueous solution from the drug-containing polymer liquid storage tank (4) and the aqueous solution storage tank (5) are respectively guided to the emulsifier (1) and emulsified.
  • the emulsion thus obtained is transferred to a microsphere storage tank, and the above operation is repeated.
  • the emulsifying apparatus (1) may be a continuous emulsifying apparatus or an apparatus for emulsifying by discontinuous batch processing.
  • the microsphere storage tank (2) may have a function of distilling an organic solvent by spraying gas onto the liquid surface, or a function of distilling an organic solvent by a hollow fiber membrane module. When the organic solvent is miscible with water, it may not have an organic solvent distillation function.
  • Microsphere production was performed using the microsphere production equipment shown in Fig. 1 (emulsification by discontinuous batch processing, using a microsphere storage tank with a function to distill organic solvent using a hollow fiber membrane module).
  • the hollow fiber membrane module fitted with (NA GA SEP flat type M 60-600 L- 3600;; effective area 1.8 m 2 Eiyanagi Kogyo) therein, agitator (CLM- 0. 5 SD) with a stainless steel micro Sufuea , the pre-Me, 0.1% poly Bulle alcohol storage tank (manufactured by Emutekuekku closed tank; capacity 20 liters) (Gosenoru EG- 40; saponification value 86.
  • the average particle size of the microsphere freeze-dried product is determined by dispersing an appropriate amount of the freeze-dried product in a dilute solution of polyoxetylene sorbitan fatty acid ester (Tween 80, Nikko Chemicals), and using a particle size distribution analyzer (Shimadzu SALD-1100). )), The average particle size was 4.9 ⁇ .
  • the recovery ratio which is the ratio of the weight of the freeze-dried microspheres to the total weight of the used polylactic acid and leuprolide acetate, was 9%.
  • the concentration of the test solution was determined by interpolating in advance to a calibration curve prepared from a standard solution prepared by dissolving methylene chloride in 1,4-dioxane containing bromoform (2.9 mg Zm 1).
  • methylene chloride content of the microsphere particles was calculated from the weight of the microsphere particles, it was 174 Oppm.
  • the contents of the microsphere storage tank were introduced into the cross-flow filtration device at a rate of 6 liters / minute, and the filtrate was allowed to flow into the emulsification device at a speed of 12 OmlZ minutes, which was obtained in Example 11 (1).
  • the filtrate was allowed to flow into the emulsification device at a speed of 12 OmlZ minutes, which was obtained in Example 11 (1).
  • a freeze-dried microsphere powder was obtained in the same manner as in Example 1, except that the test was performed after 16, 21, 26, 31, 37 and 43 minutes.
  • the average particle size measured in the same manner as in Example 1 was 6.33 X m, and the recovery was 78.
  • Example 1 The amount of leuprolide acetate in the microsphere particles was calculated in the same manner as in Example 1. As a result, it was 8.87%.
  • the content of methylene chloride in the microsphere particles from the microsphere powder was calculated in the same manner as in Example 1. 7 ppm.
  • Reuprolide acetate manufactured by Bachem; drug content: 90.
  • the solid solution was obtained by drying under reduced pressure for 1 ⁇ in a 31-sicator. To this solid solution was added 40 g of methylene chloride to make a completely clear solution.
  • Microsphere production was performed using the microsphere production equipment shown in Fig. 1 (emulsification by discontinuous batch processing, using a microsphere storage tank with an organic solvent distillation function using a hollow fiber membrane module).
  • a filter Durapore, GVWP
  • Example 1 The average particle size measured in the same manner as in Example 1 was 5.49 im, and the recovery was 74.7%.
  • the amount of leuprolide acetate in the microsphere particles was calculated in the same manner as in Example 1, it was 10.05%, and the methylene chloride content of the microsphere particles from the microsphere powder was calculated in the same manner as in Example 1.
  • Example 3 The dried microsphere powder obtained in Example 3 was weighed into a 5 ml 1 volume glass vial (manufactured by West) so as to obtain 30.Omg as leuprolide acetate (298.5 mg as microsphere). 0.22 / xm filter
  • Example 3 The freeze-dried microspheres obtained in Example 3 were mixed with 0.1% polyoxetylene sorbitan fatty acid ester (Twe n80 manufactured by Nikko Chemicals), 0.5% strength lipoxymethylcellulose sodium O Kikkolate FTS manufactured by chilin Chemical Industry Co., Ltd. — 1, viscosity (anhydrous 1%): 30-50 mPas, 5% D—mannitol A 1.5 mL aqueous solution was added, and the microspheres were dispersed to prepare a preparation for administration.
  • Polyoxetylene sorbitan fatty acid ester Tewe n80 manufactured by Nikko Chemicals
  • 0.5% strength lipoxymethylcellulose sodium O Kikkolate FTS manufactured by chilin Chemical Industry Co., Ltd.
  • viscosity anhydrous 1%): 30-50 mPas, 5% D—mannitol A 1.5 mL aqueous solution was added, and the microspheres were dispersed to prepare a preparation for administration.
  • the present invention provides an extremely excellent method for industrial production of drug-containing microspheres and an apparatus for producing the same.

Description

明 細 書 マイクロスフェアの製法及び製造装置
技術分野
本発明は、 循環プロセスによるマイクロスフェアの効率的な製法及びこの方法 に使用するマイクロスフェア製造装置に関するものであり、 乳化装置、 マイクロ スフエア蓄積タンク及びク口スフ口一濾過装置を組合わせた循環プロセスにより 効率よくマイクロスフェアを製造することができる。
背景技術
薬物を含有するマイクロスフェアの製造方法としては、 水中乾燥法、 相分離法、 嘖霧乾燥法、 溶媒拡散法等様々な方法が知られているが、 水中乾燥法にも、 o/
Wエマルシヨン (例えば、 特開平 4— 4 6 1 1 5号公報 (第 1—6頁)、 特開平 6 - 3 2 7 3 2号公報 (第 1 _ 8頁)参照)、 S /O/Wエマルション (例えば、 特開 平 8— 1 5 1 3 2 1号公報 (第 1 0—1 5頁参照)、 W/O/Wエマルション(例 えば、 特開平 6— 1 4 5 0 4 6号公報 (第 1— 1 1頁)、 特開平 9— 2 2 1 4 1 7 号公報 (第 1一 1 1頁)参照)又は OZOZWエマルション (例えば、 特開平 6— 2 1 1 6 4 8号公報 (第 1—8頁)参照)を使用する方法がある。 また、 これらエマ ルシヨンから有機溶媒を除去する方法として、 溶媒留去による方法等が知られて いる。
エマルションから有機溶媒を留去する方法では、 水中乾燥法に使用するェマル シヨンの製法として、 通常、 油相(o、 s/o, wZo又は oZo)を水相に添加 し、 一度に、 必要となるエマルシヨンの全量を調製する方法が一般的である(例 えば、 特開平 4一 4 6 1 1 5号公報 (第 1一 6頁)、 特開平 6— 1 4 5 0 4 6号公 報 (第 1一 1 1頁)参照)。
ところで、 水中乾燥法によるマイクロスフエァ製造で必要となる乳化機には、 バッチ槽内に設けてパッチ処理するもの、 バッチ槽外に設けて連続処理に適する ものが種々知られている [例えば、 「化学工業の進歩 2 4 攪拌 ·混合」 1 9 9 0年発行稹書店第 1 8 7— 1 9 1頁参照] 。
また、 「乳化 ·分散技術応用ハンドブック」 1 9 8 7年発行、 サイエンスフォ 一ラム社、 1 9 8 7年 2月 2 5日、 第 1 4 0— 1 4 3頁、 第 4 7 2— 4 7 4頁に は、 水中乾燥法によるエマルション利用のマイクロカプセル技術が説明されてい ると共に、 スタティックミキサーの 1つであるスケャミキサーによって連続混合 することも説明されており、 連続乳化によりエマルシヨンを形成してマイクロス フェアを製造した例も知られている(例えば、 特開平 8— 2 5 9 4 6 0号公報 (第 1 2頁)、 米国特許第 5 9 4 5 1 2 6号公報 (第 1—1 2頁)参照)。
しかしながら、 これらマイクロスフェア製法では、 いずれも、 一度に大量のマ イクロスフェアを製造するには、 大量のエマルションを一挙に水中乾燥するため、 有機溶媒留去装置を大きくせざるを得ないという問題があつた。
また、 膜濾過の方法としては、 対象流体の全量を膜によって処理するデッドェ ンド型濾過と膜を透過する流体と直角に対象流体を流し、 対象流体を部分的に濾 過するクロスフロー濾過とがあるが (例えば、 ピーディーエイ ·ジャーナノレ .ォ プ■ ファーマシューティカノレ ·サイエンス &テクノロジー(PDA Journal of Pharmaceutical Science & Technology)第 5 0巻、 第 4号、 第 2 5 2— 2 6 1貞 ( 1 9 9 6年)参照)、 目詰まりを生じ難く、 大量処理に適するクロスフロー濾過 は水処理等に利用されてきており、 水中乾燥法により製造したマイクロスフェア の回収、 洗浄等にクロスフロー濾過を利用した例も知られるようになってきてい る(例えば、 米国特許第 6 2 9 4 2 0 4号公報 (第 6— 8頁)、 国際公開 WO 9 6 / 3 5 4 1 4号パンフレッ ト(第 1 1、 1 2頁)参照)。
更に、 マイクロスフェア製造工程で得られるマイクロスフェア懸濁液の連続相 を、 濾過を利用して水及び製剤化媒体で置き換える装置も提案されている(例え ば、 米国特許第 6 2 7 0 8 0 2号公報 (第 1一 1 0頁)参照)。 発明の開示
本発明の方法は、 水中乾燥法によるマイクロスフェア製造において、 反復プロ セスでマイクロスフェアを製造することにより、 マイクロスフェア製造装置を小 型ィ匕して、 雑菌の混入を抑制し、 環境問題となる有機溶媒の放出を防止するため に装置自体の密閉化を容易にすると共に、 品質の優れたマイクロスフエアの製法 を提供することを目的とする。
本発明者らは、 少量のマイクロスフェア製造を繰り返し行い、 生成するマイク 口スフエアを蓄積するプロセスを用いれば、 マイクロスフエァ製造装置を小型ィ匕 し、 品質の優れたマイクロスフェアを製造することができ、 また、 マイクロスフ エアの製造スケールを自在に調整できることを見出し、 本発明を完成した。 即ち、 本発明は次の循環工程からなるマイクロスフェアの製法に関する。
(a) 薬物、 生体内適合性かつ生体内分解性の水難溶性ポリマー及び水より低 沸点の有機溶媒を含む薬物含有ポリマー液を乳化装置中で水性溶液に乳化して、 薬物含有ポリマー液が水性溶液に分散したエマルションを生成し、
(b) 得られるエマルションをマイクロスフェア蓄積タンクに移し、
(c) マイクロスフェア蓄積タンクよりエマルションの一部をクロスフロー濾 過装置に導通し、
(d-1)- i) クロスフロー濾過装置通過液をマイクロスフェア蓄積タンクに 戻し、
( d— 1 )一 i i) 上記ク口スフ口一濾過装置からの濾液を工程 ( a )の水性溶液 として循環利用して、 工程( a )〜( d— 1 )を繰り返し、 かつ、 水より低沸点の有 機溶媒が水非混和性である場合には、 この循環過程の中で、 マイクロスフェア蓄 積タンクでの有機溶媒留去を行う力、 或いは
(d-2)- i) クロスフロー濾過装置通過液をマイクロスフェア蓄積タンクに 戻し、
(d-2)- i i) 上記クロスフロー濾過装置からの濾液を工程(a)の水性溶液 として循環利用することなく排出し、 新たな水性溶液を用いて工程( a )〜( d— 2)を繰り返し、 かつ、 水より低沸点の有機溶媒が水非混和性である場合には、 この循環の過程の中で、 マイクロスフェア蓄積タンクでの有機溶媒留去を行い、
(e) (d— 1)又は(d— 2)の過程終了後に、 マイクロスフェア蓄積タンク中 のマイクロスフェアを回収する。
本発明の方法によれば、 乳化装置で製造され、 マイクロスフェア蓄積タンクに 移されたエマルシヨン力 ら、 クロスフ口一濾過により水性溶液部分のみを効率よ く分離できるため、 エマルシヨン製造を繰り返し行っても、 マイクロスフェア蓄 積タンク中のエマルシヨンの容量増加を抑制することができ、 また、 1回の乳ィ匕 を小規模とすることができるため、 乳化を均一に行いやすく、 品質のよいマイク ロスフェアを製造することができる。 図面の簡単な説明
第 1図は水性溶液を循環利用するマイクロスフエァ製造装置のレイアウトを示 す。
第 2図は水性溶液を循環利用しないマイクロスフェア製造装置のレイアウトを 示す。
符号の説明
( 1 )乳化装置
( 2 )マイクロスフェア蓄積タンク
( 3 )クロスフロー濾過装置
( 4 )薬物含有ポリマー液貯蔵タンク
( 5 )水†生溶液貯蔵タンク 発明を実施するための最良の形態
本発明の方法の各工程について、 以下、 詳細に説明する。
工程(a )における、 薬物、 生体内適合性かつ生体内分解性の水難溶性ポリマー 及び水より低沸点の有機溶媒を含む薬物含有ポリマー液としては、 例えば、 次の ものをあげることができる。 '
(i) 生体内適合性かつ生体内分解性の水難溶性ポリマー及び薬物が水より低沸 点の有機溶媒に溶解された溶液 ( O )
(ii) 生体内適合性カゝっ生体内分解性の水難溶性ポリマーが水より低沸点の有 機溶媒に溶解し、 これに薬物が懸濁された懸濁液 ( S /O)
(iii) 生体内適合性かつ生体内分解性の水難溶性ポリマーが水より低沸点の有 機溶媒に溶解し、 これに薬物の水溶液が分散された分散液 (W/O)
(iv) 水より低沸点の有機溶媒中に、 一方の生体内適合性力つ生体內分解性の ' 水難溶性ポリマーが溶解されており、 このポリマー溶液中に、 他方の生体内適合 性かつ生体内分解性の水難溶性ポリマーの同有機溶媒溶液が分散されており、 分 散されてレヽるポリマー溶液中に薬物が溶解又は懸濁されている分散液 (o/o) 薬物及びポリマーの有機溶媒溶液に溶解して(i)の溶液 (O)を調製する場合、 ポリマーの有機溶媒溶液中のポリマー濃度はポリマーの種類、 分子量などによつ て変動するが、 通常、 1〜8 0重量%であり、 2 0〜6 0重量%とするのが好ま しい。 また、 ポリマーの 0 . 1〜4 0重量0 /0の薬物を溶解するのが好ましく、 1 〜 3 0重量0 /0の薬物をポリマーの有機溶媒溶液に溶解するのがマイクロスフェア 中への薬物含量を向上させる上では好ましい。
また、 薬物の有機溶媒に対する溶解度が低い場合には、 薬物及びポリマーを共 に溶解する溶媒系に溶解後、 溶媒を留去して一且薬物及びポリマーからなる固溶 体を形成し、 得られた固溶体を有機溶媒に溶解することにより、 有機溶媒溶液と することもできる(米国特許第 5 5 5 6 6 4 2号/特開平 6— 3 2 7 3 2号公報)。 薬物をポリマーの有機溶媒溶液に懸濁して(ii)の懸濁液 ( S /O)を調製する場 合には、 (i)の溶液(O)の場合と同様のポリマーの有機溶媒溶液に、 ポリマーの 0 . 1〜4 0重量%の薬物を懸濁するのが好ましく、 とりわけ、 1〜3 0重量% の薬物をポリマーの有機溶媒溶液に懸濁するのがマイクロスフェア中への薬物含 量を向上させる上では好ましい。 ポリマーの有機溶媒溶液に薬物を懸濁する場合、 薬物は有機溶媒に溶解性でなければよレ、。
薬物のポリマーの有機溶媒溶液への懸濁は、 ホモジナイザー、 ソニケ一ター等 を用いて行うことができ、 薬物をポリマーの有機溶媒溶液に懸濁後、 直ぐに、 水 性溶液に乳化するのが好ましい。
また、 薬物をポリマーの有機溶媒溶液に懸濁する場合、 生成するマイクロスフ エアの粒子径にもよるが、 マイクロスフェアからの初期バーストを抑制するため には、 薬物を微粒子化しておくのがよく、 薬物の平均粒子径を生成するマイクロ スフエアの平均粒子径の l Z 5〜l / l 0 0 0 0、 より好ましくは l Z l 0〜1
1 0 0 0とするのが好ましい。
ポリマーの有機溶媒溶液に懸濁する薬物の微粒子化は、 粉砕法、 晶析法、 スプ レードライ法等の慣用の方法により行うことができる。 粉砕法による場合には、 ジェットミル、 ハンマーミル、 回転ボールミル、 振動 ポールミル、 ビーズミル、 シェーカーミノレ、 ロッドミル、 チューブミル等の '眞用 の粉砕機で物理的に粉碎することにより、 薬物を微粒子化することができる。 晶析法による場合には、 薬物を一且適当な溶媒に溶解させた後、 p H調整、 温 度変化、 溶媒 J且成の変更等を行って薬物を晶析させ、 濾過、 遠心分離等の方法で 回収することにより、 薬物を微粒子化することができる。
また、 スプレードライ法による場合には、 薬物を適当な溶媒に溶解させ、 この 溶液をスプレーノズルを用いてスプレードライヤーの乾燥室内に噴霧し、 極めて 短時間に噴霧液滴内の溶媒を揮発させることにより、 薬物を微粒子化することが できる。
更に、 ペプチド性薬物については、 薬物活性を保持しながら、 微粒子化を行う ため、 例えば、 次の方法を適宜適用することができる。
(A)ゼラチン等の水溶性高分子物質とポリぺプチドを含む水溶液をスプレード ライヤ一で微粒子化する方法 (特開平 4一 3 6 2 3 3号公報)
(B)ポリペプチドと水溶性高分子物質を含む水溶液を凍結乾燥し、 得られた凍 結乾燥物をジェットミルによって微粉砕する方法 (特開平 8— 2 2 5 4 5 4号公 報)
(C)ポリペプチド水溶液をアセトン中に添加し、 ポリペプチド微粒子を晶析さ せる方法 [ジャーナノレ ·ォプ ·ェンカプスレーシヨン(Journal of
Encapsulation) 1 4 ( 2 )卷、 2 2 5〜 2 4 1ページ( 1 9 9 7年)]
(D)界面活性剤とポリぺプチドとを水中で混合し、 これを急速乾燥する方法 (特開平 9— 3 1 5 9 9 7号公報)
(E)ポリぺプチド水溶液に、 水混和性有機溶媒もしくは揮発性塩類を添加し、 凍結乾燥する方法 (特開平 1 1— 3 2 2 6 3 1号公報)
( F )ポリぺプチドとポリエチレングリコールの混合水溶液を凍結乾燥し、 有機 溶媒にてポリエチレンダリコールを溶解する方法 (特開平 1 1一 3 0 2 1 5 6号 公報)
(G)ポリぺプチド及び相分離誘起剤を含有する水溶液の凍結物に、 ポリぺプチ ド非溶解性の水混和性有機溶媒を添加し、 凍結物中の相分離誘起剤及び氷を溶解 03011557
7 し、 得られるポリぺプチド微粒子分散液からポリぺプチド微粒子を回収する方法 (国際公開 WOO 2/30449号パンフレツ ト)
ポリマーの有機溶媒溶液中に薬物水溶液を分散して (iii)の分散液 (W/O)を 調製する方法は、 薬物が水溶性であり、 かつ、 ポリマーを溶解する有機溶媒が水 非混和性である場合に適用することができ、 とりわけ、 n—ォクタノール Z水に 対する分配比が 0.1以下の薬物に適用するのが好ましい。
薬物水溶液中の薬物濃度は、 通常、 0.1重量%以上 (薬物の溶解度以下)であ り、 1重量0 X»以上であるのが好ましい。 また、 (i)の溶液(O)の場合と同様のポ リマーの有機溶媒溶液に 0.1〜 30重量0 /0、 とりわけ 1〜 20重量0 /0の薬物水 溶液を分散するのが好ましい。
薬物水溶液には、 薬物以外に他の添加物を含有していてもよく、 添加物として は、 例えば、 安定化剤(アルブミン、 ゼラチン、 エチレンジァミン四酢酸4ナト リゥム、 デキストリン、 亜硫酸水素ナトリウム、 ポリエチレンダリコール等)、 保存剤 [ p—ヒ ドロキシ安息香酸エステル類 (メチルエステル、 ェチルエステル、 プロピルエステル、 プチルエステル)等]、 pH調整剤(炭酸、 酢酸、 シユウ酸、 クェン酸、 リン酸、 塩酸、 水酸ィ匕ナトリウム又はこれらの塩、 例えば、 炭酸ナト リゥム、 炭酸水素ナトリウム等)をあげることができる。
また、 ペプチド性薬物の場合には、 薬物水溶液に、 薬物保持性物質 (ゼラチン、 寒天、 ポリビニルアルコール、 塩基性アミノ酸(アルギニン、 ヒスチジン、 リジ ン等))を添 ¾してもよい。
薬物水溶液をポリマーの有機溶媒溶液に分散する場合、 マイクロスフェアの粒 子径にもよるが、 薬物水溶液の液滴の平均粒子径が生成するマイクロスフェアの 平均粒子径の 1Z5〜: LZ10000、 より好ましくは 1/10〜; L/1000 とするのが好ましく、 ホモジナイザー、 ソニケ一ター等を用いて分散を行うのが 好ましい。 また、 薬物水溶液をポリマーの有機溶媒溶液に分散後、 直ぐに、 7性 溶液に孚 W匕するのが好ましい。
(iv)の分散液(0 0)を調製する場合、 上記 (i)溶液 (Ο)又は (ii)の懸濁液(S 0)の場合と同様に、 薬物を一方のポリマー溶液に溶解又は懸濁した後、 その 溶液又は懸濁液を、 上記 (iii)の分散液 (WZO)を調製した場合と同様に、 これ P2003/011557
8 と非混和性の他のポリマー溶液に分散することによつて製造することができる。 また、 ポリマーの有機溶媒溶液としては、 いずれも(i)の溶液(O)の場合と同様 のものを適宜使用することができる。
生体内適合性かつ生体内分解性の水難溶性ポリマーとしては、 製剤分野で一般 に使用される生体内適合性かつ生体内分解性の水難溶性ポリマーをいずれも使用 することができる。 ここに、 水難溶性のポリマーとは、 25 °Cにおいて、 ポリマ 一 1 gを溶角旱するのに水 1000 g以上が必要となるものをいう。
生体内適合性かつ生体内分解性の水難溶性ポリマーとしては、 例えば、 ヒドロ キシ脂肪酸のポリエステル、 ポリ一 α—シァノアクリル酸エステル、 ポリアミノ 酸等をあげることができる。 このうち、 ヒドロキシ脂肪酸のポリエステルとして は、 平均分子量 2000〜800000のものが好ましく、 平均分子量 5000 〜200000のものがより好ましく、 平均分子量が 5000〜 50000のも のが最も好ましい。
ヒドロキシ月旨肪酸のポリエステルの具体例としては、 ポリ乳酸、 乳酸ーグリコ 一ル酸共重合体、 2—ヒドロキシ酪酸一グリコ一ル酸共重合体、 ポリ一 —ヒド ロキシ酪酸等をあげることができる。 乳酸一ダリコール酸共重合体は乳酸 Ζダリ コーノレ酸のモノレ比が 90/10〜30/70のものが好ましく、 80/20〜4 0/60のものがより好ましい。 一方、 2—ヒドロキシ酪酸ーグリコール酸共重 合体は 2—ヒドロキシ酪酸/グリコール酸のモル比が 9 θΖΐ Ο〜3 θΖ70の ものが好ましく、 80/20~40 60のものがより好ましい。
水より低沸点の有機溶媒とは、 同圧下での沸点が水の沸点よりも低い有機溶媒 のことであり、 水混和性のもの及び水非混和性のもののいずれもが含まれる。 水より低沸点の水混和性有機溶媒とは、 水より低沸点であると共に、 水と如何 なる割合でも完全に混和するものであり、 例えば、 水混和性ケトン系溶媒 (ァセ トン等)、 水混和性エーテル系溶媒 (テトラヒドロフラン等)、 二トリル系溶媒(ァ セトニトリル等)をあげることができ、 アセトンが好ましい。
水より低沸点の水非混和性の有機溶媒とは、 水より低沸点であると共に、 水に 対して、 水の量の 10容量%以下しか混和しないものであり、 例えば、 ハロゲン 化脂肪族炭化水素系溶媒 (塩化メチレン、 クロ口ホルム、 四塩化炭素、 クロロェ PC画 00雇 1557
9 タン、 ジクロロェタン、 トリクロ口エタン等)、 脂肪族エステル系溶媒 (酢酸ェチ ル等)、 芳香族炭化水素系溶媒 (ベンゼン等)、 脂肪族炭化水素系溶媒(n—へキサ ン、 n—ペンタン、 シクロへキサン等)、 水非混和性エーテル系溶媒 (ジェチルェ 一テル、 ジイソプロピノレエ一テル、 メチルイソプチルエーテル、 メチル tert.— プチルエーテル等)をあげることができ、 ハロゲン化脂肪族炭化水素系溶媒、 月旨 肪族エステル系溶媒が好ましく、 塩化メチレン、 クロ口ホルム、 酢酸ェチルがよ り好ましい。
本発明の方法が適用される薬物の具体例としては、 例えば、 抗腫; ぺプチ ド性薬物、 抗生物質、 解熱■鎮痛 ·消炎剤、 鎮咳去痰剤、 鎮静剤、 筋弛緩剤、 抗 てんかん剤、 抗潰瘍剤、 抗うつ剤、 抗アレルギー剤、 強心剤、 不整脈治療剤、 血 管拡張剤、 降圧利尿剤、 糖尿病治療剤、 抗脂血症剤、 抗凝血剤、 止血剤、 抗結核 剤、 ホルモン剤、 麻薬拮抗剤、 骨吸収抑制剤、 骨形成促進剤、 骨折治癒促進剤、 軟骨疾患修復治療剤、 血管新生抑制剤、 抗嘔吐剤などが挙げられる。
抗腫瘍剤としては、 たとえばパクリタキセル、 ブレオマイシン、 メトトレキセ ート、 ァクチノマイシン D、 マイトマイシン C,硫酸ビンブラスチン、 硫酸ビン クリスチン、 ダウノノレビシン、 ドキソノレビシン、 ネオ力ノレチノスタチン、 シトシ ンァラビノシド、 フルォロゥラシル、 テトラヒ ドロフリルー 5—フルォロゥラシ ル、 クレスチン、 ピシバニ一ノレ、 レンチナン、 タモキシフェン、 レバミゾーノレ、 べスタチン、 アジメキソン、 シスプラチン、 力ノレポプラチン、 塩酸イリノテカン などが挙げられる。
ペプチド性薬物としては、 インスリン、 ソマトスタチン、 サンドスタチン、 成 長ホルモン、 プロラタチン、 副腎皮質刺激ホルモン(A C T H:)、 AC T H誘導体、 メラノサイト刺激ホルモン (M S H)、 甲状腺ホルモン放出ホルモン(T R H)、 甲 状腺刺激ホルモン(T S H)、 黄体形成ホルモン( L H)、 黄体形成ホルモン放出ホ ルモン(L HR H)およびその誘導体、 卵胞刺激ホルモン(F S H)、 バソプレツシ ン、 デスモプレシン、 ォキシトシン、 カルシトユン、 エルカトニン、 副甲状腺ホ ノレモン(P T H)、 グゾレ力ゴン、 ガストリン、 セクレチン、 パンクレイォザィミン、 コレシストキニン、 アンジォテンシン、 ヒト胎盤ラクトーゲン、 ヒト絨毛性ゴナ ドトロピン(H C G)、 エンケフアリン、 エンケフアリン誘導体、 エンドルフィン、 キヨウトルフィン、 インターフェロン類 (例えば、 α、 β、 γ型等)、 インター口 ィキン類 (例えば、 1、 2、 3、 4、 5、 6、 7、 8、 9、 10、 11、 12等)、 タフトシン、 サイモポイエチン、 サイモシン、 サイモスチムリン、 胸腺液性因子 (THF)、 血中胸腺因子(FTS)、 並びにその誘導体およびその他の胸腺因子、 fl重瘍壊死因子(TNF)、 ケモカイン類およびその誘導体、 ミニサイト力イン類お ょぴその誘導体、 コロニー誘発因子(CSF、 GCSF、 GMCSF、 MC S F 等)、 モチリン、 ダイノノレフィン、 ボムべシン、 ニューロテンシン、 セ /レレイン、 ブラジキン、 ゥロキナーゼ、 ァスパラキナーゼ、 カリクレイン、 サブスタンス P、 インスリン様成長因子(I GF— I、 I GF- I 1)、 神経成長因子(NGF)、 細 胞増殖因子(EGF、 TGF—ひ、 TGF— 、 PDGF、 塩酸 FGF、 塩基性
FGF等)、 骨形成因子(BMP)、 神経栄養因子(NT— 3、 NT— 4、 CNTF、 GDNF、 BDNF等)、 血液凝固因子の第 V I I I因子、 第 I X因子、 塩化リ ゾチーム、 ポリミキシン B、 コリスチン、 グラミシジン、 バシトラシン、 エリス ロポェチン(EPO)、 トロンボポェチン(TP O)等が挙げられる。
抗生物質としては、 例えばゲンタマイシン、 ジべカシン、 カネンドマイシン、 リビドマイシン、 トプラマイシン、 アミカシン、 フラジオマイシン、 シソマイシ ン、 塩酸テトラサイクリン、 塩酸ォキシテトラサイクリン、 ロリテトラサイタリ ン、 塩酸ドキシサイクリン、 アンピシリン、 ピぺラシリン、 チカルシリン、 ァス ポキシシリン、 セファロチン、 セファロリジン、 セフォチアム、 セフスロジン、 セフメノキシム、 セフメタゾー^/、 セファゾリン、 セフォタキシム、 セフオペラ ゾン、 セフチゾキシム、 モキサラクタム、 チェナマイシン、 スノレファゼシン、 ァ ズスレオナム等が挙げられる。
解熱'鎮痛 '消炎剤としては、 例えばサリチル酸、 スルピリン、 フルフエナム 酸、 ジクロフエナック、 インドメタシン、 モルヒネ、 塩酸ペチジン、 酒石酸レポ ルファノール、 ォキシモルフオン等が挙げられる。
鎮咳去痰剤としては、 例えば塩酸エフェドリン、 塩酸メチルエフェドリン、 塩 酸ノス力ピン、 リン酸コディン、 リン酸ジヒドロコディン、 塩酸ァロクラマイド、 塩酸クロフエダノール、 塩酸ピコペリダミン、 クロペラスチン、 塩酸プロトキ口 ール、 塩酸イソプロテレノール、 硫酸サルプタモール、 硫酸テレブタリン等が挙 げられる。
鎮静剤としては、 例えばクロルプロマジン、 プロクロルペラジン、 トリフロぺ ラジン、 硫酸ァトロピン、 臭化メチルスコポラミン等が挙げられる。
筋弛緩剤としては、 例えばメタンスルホン酸プリジノール、 塩化ッポクラリン、 臭化パンクロニゥム等が挙げられる。
抗てんかん剤としては、 例えばフエニトイン、 エトサクシミド、 ァセタゾラミ ドナトリゥム、 クロルジァゼポキシド等が挙げられる。
抗潰瘍剤としては、 例えばメトク口プロミド、 塩酸ヒスチジン等が挙げられる。 抗うつ剤としては、 例えばイミブラミン、 クロミプラミン、 ノキシプチリン、 硫酸フェネルジン等が挙げられる。
抗ァレルギ一剤としては、 例えば塩酸ジフェンヒドラミン、 マレイン酸ク口ル フエ二ラミン、 塩酸トリべレナミン、 塩酸メトジラミン、 塩酸クレミゾール、 塩 酸ジフエニルペラリン、 塩酸メトキシフエナミン等が挙げられる。
強心剤としては、 例えばトランスパイォキソカンファー、 テオフィロール、 ァ ミノフィリン、 塩酸ェチレフリン等が挙げられる。
不整脈治療剤としては、 例えばアジミライド、 プロプラノロール、 アルプレノ ロール、 ブフエトロール、 ォキシプレノロール等が挙げられる。
血管拡張剤としては、 例えば塩酸ォキシフエドリン、 塩酸ジルチアゼム、 塩酸 トラゾリン、 へキソベンジン、 硫酸バメタン等が挙げられる。
降圧利尿剤としては、 例えばへキサメトェゥムプロミド、 ペントリニゥム、 塩 · 酸メカミルァミン、 塩酸ェカラジン、 クロエジン等が挙げられる。
糖尿病治療剤としては、 例えばダリミジンナトリウム、 ダリピザィド、 塩酸フ ェンフオルミン、 塩酸プフォルミン、 メ トフオルミン等が挙げられる。
抗脂血症剤としては、 例えばメパロチン、 プラバスタチンナトリウム、 シンパ スタチン、 フノレパスタチン、 クリノフイブラート、 クロフイブラート、 シンフィ ブラート、 ベザフイブラート等が挙げられる。
抗凝血剤としては、 例えばへパリンナトリゥム等が挙げられる。
止血剤としては、 例えばトロンポプラスチン、 トロンビン、 メナジオン亜硫酸 水素ナトリウム、 ァセトメナフトン、 ε—アミノカプロン酸、 トラネキサム酸、 カルバゾク口ムスルホン酸ナトリゥム、 ァドレノクロムモノアミノグァ二ジンメ タンスルホン酸塩等が挙げられる。
抗結核剤としては、 例えばィソニアジド、 エタンブトーゾレ、 パラアミノサリチ ル酸等が挙げられる。
ホルモン剤としては、 例えばプレドニゾロン、 リン酸ナトリゥムプレドニゾリ ゾロン、 デキサメタゾン塩酸ナトリウム、 リン酸へキセストローノレ、 メチマゾー ル等が挙げられる。
麻薬拮抗剤としては、 例えば酒石酸レバロルフアン、 塩酸ナロルフイン、 塩酸 ナロキソン等が挙げられる。
骨吸収抑制剤としては、 例えばイブリフラボン、 アレンドロネート、 チルド口 ネート等が挙げられる。
骨形成促進剤としては、 例えば骨形成因子(B M P)、 副甲状腺ホルモン(P T H)、 細胞増殖因子(T G F— ]3等)、 インスリン様成長因子(I G F— I等)など のポリぺプチド等が挙げられる。
骨折治癒促進剤、 軟骨疾患修復治療剤としては、 ホスホジエステラーゼ4阻害 薬 (PCT/JP O 2 / 0 4 9 3 0、 PCT/JP02/ 0 4 9 3 1 )等が挙げられる。
血管新生抑制剤としては、 例えば血管新生抑制ステロイ ド、 フマギリン、 フマ ギロール誘導体、 アンジォスタチン、 エンドスタチン等が挙げられる。
抗嘔吐剤としては、 オンダンセトロン、 トロピセトロンなどの 5—ヒドロキシ トリプタミンタイプ 3受容体拮抗薬、 ニューロキエン 1受容体拮抗薬等があげら れる。
上記薬物は、 遊離のものであっても、 その薬理学的に許容される塩であっても よい。 例えば、 薬物がアミノ基等の塩基性基を有する化合物である場合、 無機酸 (例えば、 塩酸、 硫酸、 硝酸等)または有機酸 (例えば、 炭酸、 コハク酸等)との塩 の形で用いることもできる。 また、 薬物がカルボキシル基等の酸性基を有する場 合、 無機塩基 (例えば、 ナトリウム、 カリウム等のアルカリ金属)または有機塩基 化合物 (例えば、 トリェチルァミン等の有機ァミン類、 アルギェン等の塩基性ァ ミノ酸類)との塩の形で用いることもできる。
また、 薬物が塩を形成しているためにマイクロスフェアへの取込率が低い場合 には、 遊離の形に変換して用いてもよい。 遊離の形に変換するには、 酸付加塩の 場合には、 塩基性水溶液 (例えば、 炭酸水素アルカリ金属水溶液、 炭酸アルカリ 金属水溶液、 水酸化アル力リ金属水溶液、 リン酸アル力リ金属水溶液、 リン酸水 素アルカリ金属水溶液、 弱塩基性緩衝液など)で処理した後、 有機溶媒で抽出す ればよく、 塩基付加塩の場合には、 弱酸性水溶液 (例えば、 塩化アンモニゥム水 溶液、 弱酸性緩衝液など)で処理したのち、 有機溶媒で抽出すればよい。 抽出液 からは、 慣用の方法で溶媒を留去すれば遊離の形の薬物を得ることができる。 薬物をポリマーの有機溶媒溶液に溶解するか又は懸濁するカゝ、 或いは薬物の水 溶液をポリマーの有機溶媒溶液に分散するかは、 薬物の特性 (水より低沸点の有 機溶媒に対する溶解度、 有機溶媒に対する安定性、 水溶性等)、 必要となるマイ クロスフェアからの薬物溶出特性、 含量、 粒子径等に応じて適宜選択することが できるが、 薬物が有機溶媒で変性し易いときには、 薬物をポリマーの有機溶媒溶 液に懸濁するか又は薬物の水溶液をポリマーの有機溶媒溶液に分散することもで 含る。
薬物含有ポリマー液を水性溶液に乳化する際に使用する乳化装置としては、 プ 口ペラ式攪拌機、 タービン型攪拌機、 高圧乳化機、 超音波分散装置、 スタティッ クミキサ一、 内部せん断 (液一液せん断)を利用した高速回転式ホモジナイザ一等 の既知の乳化装置をあげることができ、 内部せん断 (液一液せん断)を利用した高 速回転式ホモジナイザ一(ェムテクニック社クレアミックス、 シルバーソン社ハ イシァーインライン式ミキサー等)を使用すれば、 乳化強度を上げることができ るため、 粘度の高い薬物含有ポリマー液を用いても、 粒子径の小さい液滴が水性 溶液中に形成され、 粒子径の小さいマイクロスフェアを製造することができる。 乳化はバッチ処理でも、 連続処理でも行うことができ、 バッチ処理の場合には、 T. K.アジホモミクサ一、 T. K.コンビミックス、 T. K.ホモジエツター、 ェム テクニック社クレアミックス連続パッチ式又はバッチ式システム等を使用するこ とができ、 一方、 連続乳化を行う場合には、 高速剪断型分散乳化機 (例えば、 特 殊機化工業製 T. K.ホモミックラインフロー)、 ィンライン型攪拌装置 (例えば、 特殊機化工業製 T. .パイプラィンホモミクサー、 シルバーソン社製ハイシァー インライン式ミキサー、 ェムテクユック社製クレアミックス連続式システム、 ス ケャミキサ一)等を使用することができる。
連続乳化の場合には、 得られるエマルションを連続的にマイクロスフェア蓄積 タンクに移し、 パッチ処理の場合には、 得られるエマルシヨンをバッチ毎に蓄積 タンクに移すのが好ましい。
乳化をバッチ処理で行う場合には、 乳化装置の容量はマイクロスフェア蓄積タ ンクの容量の 1 1 0 0 0〜l Z l 0であるのが好ましい。 バッチ処理の場合、 乳化は 3 0分以内、 とりわけ 1 0分以内で行うのが好ましく、 一方、 連続処理の 場合、 乳化装置中の平均滞留時間が 1 0分以内、 とりわけ 5分以内であるのが好 ましい。
水性溶液は、 ポリマーの有機溶媒溶液に水混和性有機溶媒を用いる場合と水非 混和性の有機溶媒を用いる場合とで、 使用できるものが異なる。
ポリマーの有機溶媒溶液に水混和性の有機溶媒を用いる場合には、 例えば、 国 際公開 WO 0 1 / 8 0 8 3 5号パンフレットに記載されたように、 水混和性の有 機溶媒とは混和せず、 かつ、 ポリマーを溶解しない溶媒を水と共に含む均一溶液 を使用することが好ましく、 炭素数 1〜4の 1価アルコール等を含んでいてもよ い。 この場合、 水ーグリセリン、 水性ェタノ一ルーグリセリン等の均一混合溶液 等を使用するのが好ましい。
水混和性の有機溶媒とは混和せず、 つ、 ポリマーを溶解しない溶媒の水性溶 液中での濃度は、 2 5〜 9 5重量0 /0であり、 好ましくは 5 0〜 9 0重量0 /0、 より 好ましくは 6 0〜8 0重量 °/0である。
また、 水性溶液は乳化安定剤を含んでいてもよく、 ?しィ匕安定剤としては、 ポリ ビニノレアルコール、 ポリビュルピロリ ドン、 メチルセルロース、 ヒドロキシプロ ピルセルロース、 アラビアゴム、 キトサン、 ゼラチン、 レシチン、 血清アルブミ ン、 非イオン性界面活性剤 [ポリォキシエチレンソルビタン脂肪酸エステル(日光 ケミカルズ製 T w e e n 8 0、 6 0 )、 ポリオキシエチレンヒマシ油誘導体(日光 ケミカルズ製 H C O— 6 0、 H C O— 5 0)〕をあげることができる。 乳化安定化 剤は水性溶液中に、 0 . 0 0 1〜: L 0重量0 /0、 とりわけ 0 . 0 1〜 2重量%添加す るのが好ましい。
一方、 ポリマーの有機溶媒溶液に水非混和性の有機溶媒を用いる場合には、 水 性溶液は、 純粋な水であってもよく、 必要に応じて、 乳ィ匕安定剤を含んでいても 良い。 乳化安定剤としては、 水混和性有機溶媒を用いる場合と同様のものを同程 度の濃度で使用することができる。
本件の製法では、 一度に大量のエマルシヨン調製を行う必要がないため、 乳化 装置を小規模なものとすることができる。 また、 乳化装置を小規模とすることが できるため、 攪袢抵抗を小さくすることができ、 薬物含有ポリマー液及び水性溶 液全体の乳化の程度を均一にし易く、 エマルションの液滴粒子径のバラツキが少 なく、 かつ、 粒子径の小さい液滴のエマルシヨンを生成することができ、 また、 乳化時間が短くなるため、 薬物の水性溶液への漏出も抑制できる。
更に、 本発明の方法では、 乳化はパッチ処理及び連続処理のいずれでも実施す ることができる力 バッチ処理の方が連続乳化よりも、 乳化される薬物含有ポリ マー液及び水性溶液の乳化時間についてのパラツキが少なく、 また、 液滴の粒子 径をモニターしながら享し化速度を調整しゃすいため、 液滴の粒子径のバラッキが より少なく、 かつ、 粒子径の小さい液滴のエマルシヨンを生成しやすい。 また、 乳化のたぴ毎に、 R性溶液を入れ替えるため、 乳化工程において、 エマルシヨン の水相における有機溶媒濃度を一定レベル以下に保つことができ、 薬物含量の低 下、 粒子径の変動等の品質の低下を生じにくい等の点で好ましい。
連続乳化の場合も、 バッチ処理による場合も、 乳化に用いられる水性溶液の容 量は薬物含有ポリマー液の容量の 1 0 ~ 3 0 0倍とするのが好ましく、 連続的に 乳化を行う場合には、 乳化処理時間に、 乳ィ匕装置に導入される水性溶液の容量と 薬物含有ポリマー液の容量との比によって算出される。
ポリマー液の比率を低下させれば、 乳化段階で、 薬物含有ポリマー液の液滴か らある程度の有機溶媒が水性溶液に浸出するため、 乳化段階である程度、 液滴の 固化が生じやすくなる。
なお、 化直後のエマルシヨンにおける液滴は、 乳化装置、 マイクロスフェア 蓄積タンクにおいて、 次第に有機溶媒が、 水性溶媒中に浸出し、 また、 留去され て固化し、 マイクロスフェアとなるが、 マイクロスフェア形成過程においては、 形成途中のマイクロスフェアも含めて液滴と総称する力 上記でマイクロスフエ ァの平均粒子径と対比される液滴の平均粒子径は、 乳化直後の液滴における粒子 径である。
このように薬物含有ポリマー液を水性溶液に乳化して得られる、 薬物含有ポリ マー液が水性溶液に分散したエマルシヨンとしては、 例えば、 次のようなェマル ションをあげることができる。
(i) 生体内適合性かつ生体内分解性の水難溶性ポリマー及び薬物が水より低沸 点の有機溶媒に溶解された溶液が、 更に水性溶液に分散されているエマルション (O/W)
(ii) 生体内適合性かつ生体内分解性の水難溶性ポリマーが水より低沸点の有 機溶媒に溶解し、 これに薬物が懸濁された懸濁液が、 更に水性溶液に分散されて いるエマルシヨン(S /OZW)
(iii) 生体内適合性かつ生体内分解性の水難溶性ポリマーが水より低沸点の有 機溶媒に溶解し、 これに薬物の水溶液が分散された分散液が、 更に水性溶液に分 散されているエマルシヨン(wZoZw)
(iv) 水より低沸点の有機溶媒中に、 一方の生体内適合性かつ生体内分解性の 水難溶性ポリマーが溶解されており、 このポリマー溶液中に、 他方の生体内適合 性かつ生体内分解性の水難溶性ポリマーの同有機溶媒溶液が分散されており、 分 散されているポリマー溶液中に薬物が溶解又は懸濁されている分散液が、 更に水 性溶液に分散されているエマルション (O/O/W)
工程(b )において使用するエマルシヨン蓄積タンクは、 エマルシヨン、 ェマル ションの構成成分に対して反応性を有しない材質で形成されたものが好ましく、 例えば、 ステンレス製、 テフロン製、 テフロンコーティング製、 グラスライニン グ等のものをあげることができる。
水より低沸点の有機溶媒が水非混和性である場合には、 エマルション蓄積タン クは、 有機溶媒留去機能を有している必要がある力 一方、 水より低沸点の有機 溶媒が水混和性である場合には、 有機溶媒が水性溶液に溶解するため、 エマルシ ョン蓄積タンクは有機溶媒留去機能を有していなくてもよレ、が、 有機溶媒留去機 能を有していてもよい。 また、 いずれの有機溶媒の場合も、 乳化段階で有機溶媒 が水性溶液に溶出され、 薬物含有ポリマー液の液滴がある程度固化していれば、 有機溶媒を留去しなくても、 エマルシヨンをクロスフ口一濾過に付すことが可能 である。
有機溶媒留去機能としては、 (A)加温、 減圧等を組合せて有機溶媒を留去する 方法、 ( B )外水相と気相との接触面積、 エマルションの循環■攪拌速度を規定す ると共に、 液面付近で気体を吹き付ける方法 (特開平 9一 2 2 1 4 1 8号公報)、 ( C)中空糸膜モジュールを用いて急速に有機溶媒を留去する方法 (国際公開 WO
0 1 / 8 3 5 9 4号パンフレツト)等によるものを挙げることができる。
中空糸膜モジュールとしては、 シリコンゴム製浸透気化膜 (特に、 ポリジメチ ルシロキサンで形成された浸透気化膜)、 多孔質ポリテトラフルォロエチレンに シリコンゴムが充填された膜 (特開平 5— 1 5 7 4 9号公報等)、 ポリビュルアル コール混合膜等の浸透気化膜 (ケミカルエンジニアリング 1 9 9 8年 3月号 2 5 〜2 9頁参照)を利用したものを好適に使用することができ、 例えば、 永柳工業 株式会社製シリコーン膜モジュール 「NAGA S E P」 、 東レ株式会社製脱気膜 エレメント 「S G— 1 0 0シリーズ」 、三菱レイョン株式会社製三層複合中空糸 膜 (脱気膜モジュール)、 大日本インキ化学株式会社製 「S E P AR E L」 中空糸 膜モジュール等の市販のものを適宜使用することができる。
また、 マイクロスフェア蓄積タンクの内容物を均一にした上で、 その一部をク ロスフロー濾過装置に導通させるため、 マイクロスフェア蓄積タンクはエマルシ ヨンを流動させるための攪拌翼、 マグネティックスターラー等の攪拌機能、 又は エマルシヨンの下部より一部を吸引して上部に戻すためのポンプ機能を有してい るのが好ましい。
工程( c )におけるクロスフ口一濾過は、 処理対象となるエマルションを濾過膜 と並行に流すことにより、 処理対象中の液体成分の一部が濾過膜を透過する濾過 方法であり、 濾過膜に並行に流れるエマルションの水性溶液の一部が濾過されて、 濾過膜の逆側に濾液として透過し、 残りのエマルションは濾過膜に並行に流れる。 エマルションの流れる方向が濾過膜と並行であるため、 目詰まりを生じ難く、 濾 過効率の低下が抑制されている。
濾過膜としては、 所望のマイクロスフェアの平均粒子径の 1 / 3 0 0〜1 3 の孔径の孔を有するものが好ましく、 一般に 0. 0 1〜1 0 /x niの孔径を有する ものが好ましい。 クロスフロー濾過に使用する濾過膜は、 マイクロスフェア蓄積 タンクの容量 1リットル当たり、 0 . 0 0 1〜0 . l m 2の濾過膜面積を有するも のが好ましい。
クロスフロー濾過装置としては、 ポリビユリデンフルオライド、 再生セルロー スヽ ポリエーテルスルホン、 親水性ポリエーテルスルホン、 ポリアミド複合膜等 のポリマーで形成された濾過膜が、 平板状に積層され、 又は微細円筒の束の形と されることにより、 単位体積当たりの表面積を大きくしたものを好適に使用する ことができ、 例えば、 ミリポア社製プロスタック、 ザルトリウス社製ザルトコン、 ポール社製ウルチクリーン、 キュノ社製マイクロフロー等を使用することができ る。
また、 クロスフロー濾過を実施するに際しては、 クロスフロー濾過装置からの 濾液排出速度が同装置へのエマルション導通速度の 1 / 1 0 0〜 1 / 3となるよ うに調整するのが好ましい。
工程( d— 1 )及び工程( d— 2 )において、 クロスフ口一濾過装置の濾過膜を透 過せず、 その表面を通過した通過液は、 マイクロスフェア蓄積タンクに戻される。 この通過液は、 クロスフ口一濾過装置に導通されたエマルシヨンのうち、 濾液を 除いたものであり、 クロスフロー濾過により、 エマルシヨンの量が濾液の分だけ 減少することとなる。
工程(d— 1 )では、 濾液を工程(a )の水性溶液として循環利用して、 これと薬 物含有ポリマー液とを用いて乳化を行い、 工程( b )〜工程( d— 1 )を繰り返すが、 必要に応じて、 濾液から、 水より低沸点の有機溶媒を留去した後、 工程(a )の水 性溶液として使用することもできる。 この有機溶媒の留去は、 通常、 濾過装置と 乳化装置を繋ぐ連絡通路において、 適当な溶媒留去装置を設置して行うことがで さる。
このように、 濾液を乳ィ匕工程の水性溶液として循環利用するため、 タンクの中 には、 乳化の回数が増えるに従って、 薬物含有ポリマー液の液滴が固化して生成 したマイクロスフェアが蓄積することとなり、 1度に大量のマイクロスフェアを 製造する場合と比べて、 小規模な乳化装置、 小規模なマイクロスフェア蓄積タン クで工業的スケールでのマイクロスフェアを製造することが可能となる。
また、 本発明の方法によれば、 マイクロスフェア製造装置の小型化と共に、 小 型化による密閉系の作成 '維持が容易となり、 外部からの雑菌の混入抑制、 有機 溶媒の大気中への放散を防止することができ、 カゝつ、 乳化の回数を調整するだけ で必要量に応じたマイクロスフェアの製造が可能となる。
更に、 水性溶液が乳化安定化剤を含む場合には、 水性溶液に含まれる乳化安定 ィ匕剤も循環利用されるため、 その消費量を抑制することもでき、 乳化段階等で水 性溶液に薬物が漏出した場合でも、 薬物は循環利用される水性溶液に残るため、 必要に応じて、 マイクロスフェアの回収後に、 水性溶液から薬物を回収すること も可能となる。
—方、 工程( d— 2 )では、 濾液を工程( a )の水性溶液として循環利用すること なく、 新たな水性溶液と薬物含有ポリマー液とを用いて学し化を行い、 工程(b ) ~ 工程(d— 2 )を繰り返す。
この場合、 乳化速度を調整して、 濾液量と実質的に同じ量だけのエマルシヨン をマイクロスフエア蓄積タンクに移すようにすれば、 マイクロスフェア蓄積タン クのエマ/レションの量を実質的に一定にすることにより、 マイクロスフェア蓄積 タンクを小型化することができ、 工程(a )〜工程(d— 2 )を繰り返すことにより、 乳化の回数に応じて、 薬物含有ポリマー液の液滴が固化して生成したマイクロス エアが蓄積することとなり、 工程(d— 1 )の場合と同様、 小規模な乳化装置、 小 規模なマイクロスフ ア蓄積タンクにより工業的スケー でマイクロスフェアを 製造することが可能となる。
また、 密閉系の作成 ·維持が容易となり、 外部からの雑菌の混入抑制、 有機溶 媒の大気中への放散防止、 マイクロスフェア製造量の調整も容易となる。 更に、 乳化に使用する水性溶液として予め調製した同一組成の水性溶液を使用すること ができるため、 濾液を循環利用する場合に比べて、 乳化段階での均一†生を保ちや すい。
上述したように、 工程(c )でクロスフロー濾過装置を導通した際に得られる濾 液は、 (d— 1 )工程のように水性溶液として循環使用してもよく、 また(d— 2 ) 工程のように循環使用することなく排出させてもよいが、 循環使用される場合、 水より低沸点の有機溶媒が水混和性であるときは、 循環使用される濾液中に含有 される該有機溶媒を循環中に付加的に留去してもよい。 それによつて水性溶媒中 の有機溶媒量をさらに低減させて、 溶媒除去 ·エマルション形成の促進を図るこ とができる。
—方、 水より低沸点の有機溶媒が水非混和性である場合は、 循環過程の中でマ イクロスフェア蓄積タンクで有機溶媒を留去するが、 その留去が充分でない場合 には、 工程(d— 1 )又は工程(d— 2 )の終了後、 工程(e )のマイクロスフェア回 収の前に、 クロスフロー濾過を止めて、 マイクロスフェア蓄積タンクでの有機溶 媒留去を継続することにより、 マイクロスフェアからの有機溶媒留去を補足して もよい。 なお、 このようなマイクロスフェア蓄積タンクでの水非混和性有機溶媒 の留去が完全でなく、 マイクロスフェアの形成上あるいは残留有機溶媒の規制の 観点からより完全な有機溶媒の留去が求められる場合には、 マイクロスフェア蓄 積タンクでの有機溶媒留去に加えて、 その溶媒除去効率を上げる手段を講じても よい。 例えば、 (d— 1 )の場合には、 クロスフロー濾過を継続し、 濾液からの有 機溶媒留去を行い、 留去後の濾液を乳化工程に付すことなく乳化装置を素通りさ せるかまたは別途設けたパイプを通してマイクロスフェア蓄積タンクに戻す操作 を継続し、 (d— 2 )の場合には、 クロスフロー濾過を継続し、 濾液の量に相当す る新たな水性溶液をマイクロスフェア蓄積タンクに導入することにより、 マイク ロスフェアからの有機溶媒留去を補うことができる。
なお、 本発明方法によるマイクロスフェアの製造は、 (& )ェ程から((1—1 )ま たは(d— 2 )工程までを繰り返し、 所望量のマイクロスフェアがマイクロスフエ ァ蓄積タンクに蓄積されるまで行われ、 その終了点は該蓄積タンクの大きさ、 各 マイクロスフェアの所望量等によっても左右されるが、 生成したマイクロスフエ ァを長時間蓄積タンク内に貯蔵しておくことはマイクロスフェアの品質管理上好 ましくなく、 従って、 マイクロスフェア生成に要する処理時間が 2日以内とする のが好ましく、 さらに好ましくは処理時間を 1日以内とする。 かくして生成した マイクロスフェアは工程(e )で回収される。
工程( e )において、 マイクロスフエァ蓄積タンクに蓄積した懸濁液からマイク ロスフェアを回収するには、濾過(クロスフロー濾過、 デッドエンド型濾過等)、 遠心分離等により回収することができる。
クロスフロー濾過によってマイクロスフェアを回収する場合には、 マイクロス フェア製造に使用したクロスフロー濾過装置をそのまま利用して、 懸濁液中の水 性溶液を除去してマイクロスフェアの回収を効率的に行うことができ、 更に、 マ イク口スフエア蓄積タンクに洗浄液を導入して、 クロスフ口一濾過装置に循環す れば、 クロスフロー濾過を利用して、 マイクロスフェアの洗浄を行うこともでき、 マイクロスフェア製造工程だけでなく、 回収、 洗浄までを密閉系中で行うことが 可能となる。
また、 回収の際、 所望の粒子径のマイクロスフェアを得るために、 適切な目開 きの大きさを有する篩にかけることにより、 マイクロスフエアの粒子径を更に整 えることができ、 目開きが 1 5 0 μ π!〜 5 μ ΐηの篩にかけて注射剤に使用するの が好ましい。
なお、 本件方法で得られるマイクロスフェアには、 有機溶媒の留去を行う程度 により、 マイクロスフェア中に有機溶媒が残留する場合があるが、 次の方法によ り、 留去することが可能である。
( I )回収されたマイクロスフェアを水相中で、 ポリマーの溶解に使用した有機 溶媒の沸点以上 (水の沸点以下)に加温する方法 (特開 2 0 0 0— 2 3 9 1 5 2号 公報)。
( I I )回収されたマイクロスフェアを高融点添加物で覆つた後、 加温乾燥する 方法 (特開平 9一 2 2 1 4 1 7号公報)。
こうして得られるマイクロスフェアは、 細粒剤、 懸濁剤、 埋め込み製剤、 注射 剤、 貼付剤等として使用することができ、 経口投与、 非経口投与 [筋肉内投与、 皮下投与、 血管内投与、 経皮投与、 経粘膜投与(口腔、 膣、 直腸粘膜投与等) ]す ることができる。
マイクロスフェアを注射剤、 経口ドライシ口ップ等の懸濁剤として使用する場 合には、 分散剤 (非イオン性界面活性剤、 ポリオキシエチレンヒマシ油誘導体、 セルロース系増粘剤)を加えた液剤とするのが好ましく、 また、 上記分散剤、 吸 湿防止剤、 凝集防止剤(マンニトール、 ソルビトール、 ラクトース、 ブドウ糖、 キシリ トーノレ、 マゾレトース、 ガラクトース、 シュクロース、 デキストラン)等の 賦形剤の水溶液にマイクロスフェアを分散後、 凍結乾燥、 減圧乾燥、 噴霧乾燥等 の方法で固形化し、 用時に、 注射用蒸留水等に添加して投与することもできる。 上記注射剤(固形化したものも含む)には、 適宜、 等張化剤 (塩化ナトリウム、 グリセリン、 ソルビトール、 プドウ糖等)、 p H調整剤 (炭酸、 酢酸、 シユウ酸、 クェン酸、 リン酸、 塩酸、 水酸化ナトリウム又はこれらの塩、 例えば、 炭酸ナト リウム、 炭酸水素ナトリウム等)、 保存剤 [ P—ヒドロキシ安息香酸エステル類 (メチノレエステノレ、 ェチノレエステノレ、 プロピノレエステノレ、 プチノレエステノレ)、 ベン ジルアルコール、 クロロブタノール、 ソルビン酸、 ホウ酸]を添加することもで 含る。
また、 密閉系でマイクロスフェアを製造するために使用する本発明のマイクロ スフエァ製造装置は、 本発明のマイクロスフエァ製法を効率的に実施するための ものであり、 本発明のマイクロスフェア製法において、 工程(d— 1 )を実施する 場合の装置として、 ?し化装置、 マイクロスフェア蓄積タンク及びクロスフロー濾 過装置が次のように構成されたものがあげられる。
(i)薬物含有ポリマー液及び水性溶液が乳化装置に導入できるような構造を有 する、
(ii) 乳化装置で得られるエマルションを有機溶媒留去機能を有するマイク口 スフエア蓄積タンクに移すことができるように、 乳化装置とマイクロスフェア蓄 積タンクとが連結される、
(iii) マイクロスフェア蓄積タンクから内容物であるエマルションの一部をク 口スフ口一濾過装置に導通し、 濾過装置通過液はマイクロスフェア蓄積タンクに 戻され、 一方、 濾液は水性溶液として乳化装置に導カれるように、 マイクロスフ エア蓄積タンク、 クロスフロー濾過装置及び乳化装置が連結される。
また、 水より低沸点の有機溶媒として、 水混和性のものを使用する場合には、 必ずしも、 マイクロスフエァ蓄積タンクが有機溶媒留去機能を有していなくても よいため、 工程(d— 1 )を実施する場合の装置として、 乳化装置、 マイクロスフ エア蓄積タンク及びク口スフ口一濾過装置が次のように構成されたものを使用す ることもできる。
(i)薬物含有ポリマー液及び水性溶液が乳化装置に導入できるような構造を有 する、
(ii) 乳化装置で得られるエマルシヨンをマイクロスフェア蓄積タンクに移す ことができるように、 ?し化装置とマイクロスフェア蓄積タンクとが連結される、 (iii) マイクロスフェア寧積タンクから内容物であるエマルシヨンの一部をク 口スフ口一濾過装置に導通し、 濾過装置通過液はマイクロスフエァ蓄積タンクに 戻され、 一方、 濾液は水性溶液として乳化装置に導かれるように、 マイクロスフ エア蓄積タンク、 クロスフロー濾過装置及び乳化装置が連結される。
—方、 本発明のマイクロスフェア製法において、 クロスフロー濾過装置で生じ る濾液を水性溶液として循環利用することなく行う工程 _ 2 )を経る方法を実 施する場合の装置として、 乳化装置、 マイクロスフェア蓄積タンク及びクロスフ 口一濾過装置が次のように構成されたものがあげられる。
(i) 薬物含有ポリマー液及び水性溶液が乳化装置に導入できるような構造を有 する、
(ii) 乳ィヒ装置で得られるエマルションを有機溶媒留去機能を有するマイク口 スフェア蓄積タンクに移すことができるように、 乳化装置とマイクロスフェア蓄 積タンクとが連結される、
(iii) マイクロスフェア蓄積タンクから内容物であるエマルシヨンをクロスフ ロー濾過装置に導通し、 通過液はマイクロスフェア蓄積タンクに戻され、 濾液が 装置外に排出されるように、 マイクロスフエァ蓄積タンク及ぴク口スフ口一濾過 装置が連結される。
また、 水より低沸点の有機溶媒として、 水混和性のものを使用する場合には、 工程(d— 2 )を実施する装置として、 乳化装置、 マイクロスフェア蓄積タンク及 びクロスフロー濾過装置が次のように構成されたものを使用することもできる。
(i)薬物含有ポリマー液及び水性溶液が乳化装置に導入できるような構造を有 する、
(ii) 乳化装置で得られるエマルションをマイクロスフェア蓄積タンクに移す ことができるように、 乳ィ匕装置とマイクロスフェア蓄積タンクとが連結される、
(iii) マイクロスフェア蓄積タンクから内容物であるエマノレションをクロスフ ロー濾過装置に導通し、 通過液はマイクロスフェア蓄積タンクに戻され、 濾液が 装置外に排出されるように、 マイクロスフェア蓄積タンク及びクロスフロー濾過 装置が連結される。 これらマイクロスフェア製造装置において、 乳化装置としては、 上記マイクロ スフェア製法の説明において例示した種々の乳化装置を目的に合わせて適宜使用 することができ、 また、 連続乳化装置であっても、 バッチ処理による乳化装置で あってもよい。 すなわち、 乳化処理を連続的に行うのではなく、 乳化装置への薬 物含有ポリマー液と水性溶液および Zまたはクロスフロー濾過装置からの濾液と の導入を断続的に行ってもよい。
本発明のマイクロスフエァ製造装置では、 少量ずつ繰り返し又は連続的に乳ィ匕 を行うため、 乳化装置の容量は、 マイクロスフェア製造する際のエマルシヨン全 量を一度に製造する場合と比べ、 遥かに小型化することができ、 マイクロスフエ ァ蓄積タンクの容量の l Z l 0〜l Z l O O Oとするのが好ましい。
また、 乳化装置には、 薬物含有ポリマー液及び水性溶液が導入されるようにな つており、 薬物含有ポリマー及び水性溶液をそれぞれ貯蔵したタンクから乳化装 置に導入できるようにしておくことが考えられるが、 工程(d _ l )を実施する場 合には、 水性溶液を貯蔵したタンクを設けることなく、 予め、 性溶液を貯蔵し たマイクロスフェア蓄積タンクからクロスフロー濾過装置を経由して、 濾液とし て得られる水性溶液を乳化装置に導入することにより、 循環プロセスを開始して あよい。
乳化装置は薬物含有ポリマー液及び水性溶液 (濾液を循環利用する場合も含む) の導入速度を調節する機能を有していてもよく、 例えば、 濾液を水性溶液として 循環利用する場合には、 クロスフロー濾過装置からの濾液排出速度 (乳化装置へ の水性溶液導入速度)に応じて薬物含有ポリマー液の導入量を制御する機能、 濾 液 (乳化装置中の水性溶液)が一定量となった時点で一定量の薬物含有ポリマー液 を導入する機能、 濾液 (乳化装置中の水性溶液)を乳化装置に連続的に導入しなが ら、 濾液中の有機溶媒濃度が一定以下となつた時点で一定量の薬物含有ポリマー 液を導入する機能、 クロスフ口一濾過装置からの濾液排出速度 (乳化装置への水 性溶液導入速度)を一定に維持しながら、 定期的に薬物含有ポリマー液を導入す る機能等を有するものであってもよい。
乳化装置は生成するエマルシヨンをマイクロスフエア蓄積タンクに移すことが できるよう、 マイクロスフェア蓄積タンクに連結されている。 連続乳化を行う場合には、 例えば、 乳化装置の上方又は横方向から薬物含有ポ リマー液及び水性溶液を乳化装置に導入して乳化を行い、 生成するエマルション を下方からマイクロスフェア蓄積タンクに移すようにレイァゥトされていてもよ く、 また、 乳化装置の下方又は横方向から薬物含有ポリマー液及び水性溶液を乳 化装置に導入して乳化装置で乳化を行い、 生成するエマルシヨンが乳ィヒ装置上部 からオーバーフローするようにしてマイクロスフェア蓄積タンクに自動的に移さ れるようにレイアウトされていてもよい。
また、 乳化装置をバッチ式、 すなわち断続的に行う場合にも、 クロスフロー濾 過装置からの濾液を水性溶液として循環利用する場合には、 その濾液のフローを 利用して生成したエマルシヨンを乳化装置からマイクロスフェア蓄積タンクに移 してもよい。
マイクロスフェア蓄積タンクとしては、 上記マイクロスフェア製法の説明にお いて例示した種々の材質のものを使用することができ、 また、 上記マイクロスフ エア製法において説明した通り、種々の有機溶媒留去機能を有するものである。 本発明のマイクロスフェア製法では、 マイクロスフェア製造量が大きくなつて も、 エマルションの容積の大部分を占める水性溶液の部分の容量が増加しないた め、 この方法を実施するためのマイクロスフェア蓄積タンクは小型化することが でき、 マイクロスフェア 1 k gを工業的に製造するのに必要となるマイクロスフ エア蓄積タンクの大きさは 1 0〜1 0 0リツトノレ程度に抑えることができる。 クロスフロー濾過装置も、 例えば、 上記マイクロスフェア製法の説明において 例示した市販されているもの等を適宜使用することができる。
マイクロスフェア蓄積タンクの内容物であるエマルシヨンがクロスフ口一濾過 装置に導通され、 濾過膜を透過しない通過液のみがマイクロスフェア蓄積タンク に戻されるように、 マイクロスフエア蓄積タンクとクロスフ口一濾過装置が連結 され、 一方、 クロスフロー濾過装置からの濾液は乳化装置に導かれるか又は装置 外に排出されるよう連結されている。
また、 クロスフロー濾過装置の濾液を乳化装置に導く連結経路においては、 濾 液から有機溶媒を留去するための溶媒留去機能が付加されていてもよく、 その付 加的溶媒留去は、 適当な溶媒留去装置を別途設けてもよく、 あるいはマイクロス フェア蓄積タンクに使用される有機溶媒留去機能を適宜使用することができる。 更に、 各連結経路においては、 エマルシヨン、 濾液等の移送のため、 必要に応 じて、 ポンプ等の移送促進機能を持たせてもよく、 チューブポンプ、 マグネット ポンプ、 ギアポンプ、 遠心ポンプ、 ダイアフラムポンプ等の移送手段を使用する ことができる。
マイクロスフエァ製造に使用されることが多い塩化メチレン等の有機溶媒をェ 業的に使用する場合には、 外部への有機溶媒の放散を防止できる密閉系製造装置 を用いることが環境問題上必要であり [1999年 7月 13日付きで交付された 「特定ィ匕 学物質の環境への排出量の把握等および管理の改善の促進に関する法律」 および 2000年 3月 29日付政令]、 また、 医薬として使用されるマイクロスフェアの無菌化、 菌汚染防止という点でも密閉系でのマイクロスフェア製造が必須であるが、 本発 明のマイクロスフェア製造装置は小型ィ匕されているため、 密閉系の作成が容易で あり、 マイクロスフェアの工業的製造装置として優れている。
また、 濾液が装置外に排出される場合及び有機溶媒留去装置で有機溶媒が留去 される場合には、 濾液中の有機溶媒及び留去された有機溶媒が大気中に皿され ないよう、 有機溶媒を回収し、 必要に応じて再利用するのが好ましい。
有機溶媒の回収法としては、 冷却して液化させる方法、 冷水へ導通する方法或 いは多孔性粒子に導通して吸着させる方法などがある。 吸着方法としては、 維維 状活性炭吸着装置、 汎用型クロ口カーボン排出ガス回収装置、 小型クロ口カーボ ン排出ガス回収装置、 低濃度クロ口カーボン排出ガス回収装置、 粒状活性炭素吸 着装置、 球状活性炭流動床吸着装置、 圧縮深冷凝縮装置等( 「クロ口カーボン適 正使用ハンドブック」 8 5〜9 3頁参照)が用いられる。 より具体的には、 栗本 鐡工所溶剤回収 '脱臭装置 「ァメーグ」 、 東洋紡製低濃度溶剤ガス吸着 '濃縮処 理装置 「ハロニーター」 等の市販のものをそのまま使用することができる。
つぎに実施例及び参考例をあげて本発明を更に具体的に説明するが、 本発明は これらに限定されるものではない。
(マイクロスフエァ製造装置の例)
本発明の製法によるマイクロスフエァ製造に使用され得る装置レイアウトの例 を第 1図及び第 2図に示す。 第 1図においては、 薬物含有ポリマー液貯蔵タンク(4 )から薬物含有ポリマー 液を乳化装置(1 )に導き、 一方、 当初、 水性溶液はマイクロスフェア蓄積タンク ( 2 )に予め充填されており、 これからクロスフロー濾過装置(3 )に導通され、 濾 過されなかった通過液はマイクロスフェア蓄積タンク(2 )に戻され、 濾液のみが 乳化装置(1 )に導かれて、 乳化後、 生成するエマルシヨンをマイクロスフェア蓄 積タンク( 2 )に移し、 内容物であるエマルシヨンはクロスフ口一濾過装置( 3 )に 導通され、 濾過されなかった通過液はマイクロスフェア蓄積タンク(2 )に戻され、 濾液は乳化装置(1 )に導かれ、 薬物含有ポリマー液貯蔵タンク(4 )から導かれる 薬物含有ポリマー液と共に乳化される。 こうして得られるエマルシヨンはマイク ロスフェア蓄積タンクに移され、 上記操作が循環的に行われる。
第 2図においては、 薬物含有ポリマー液貯蔵タンク(4 )及び水性溶液貯蔵タン ク( 5 )からそれぞれ薬物含有ポリマー液及び水性溶液を乳化装置( 1 )に導き、 乳 化後、 生成するエマルシヨンをマイクロスフェア蓄積タンク(2 )に移し、 内容物 であるエマルシヨンはクロスフロー濾過装置(3 )に導通され、 濾過されなかった 通過液はマイクロスフェア蓄積タンク(2 )に戻され、 濾液は排出され、 新たに、 薬物含有ポリマー液貯蔵タンク(4 )及び水性溶液貯蔵タンク( 5 )からそれぞれ薬 物含有ポリマー液及び水性溶液が乳化装置(1 )に導力、れ、 乳化される。 こうして 得られるエマルションはマイクロスフェア蓄積タンクに移され、 上記操作が反復 的に行われる。
第 1図及び第 2図の装置において、 乳化装置( 1 )としては、 連続乳化装匱であ つてもよく、 非連続的なバッチ処理により乳化を行う装置であってもよい。 また、 マイクロスフェア蓄積タンク( 2 )は、 液面への気体吹付けによる有機溶媒留去機 能、 中空糸膜モジュールによる有機溶媒留去機能等の付いたものであってもよい 力 低沸点の有機溶媒が水混和性である場合には、 有機溶媒留去機能を有しない ものであってもよい。
実施例 1
( 1 )酢酸リュープロライド レ ヒェム (Bachem)社製;薬物含有率: 9 0 .
4 %] 1 g及びポリ乳酸 (平均分子量: 1 7 5 0 0 ; ベーリンガー■ィンゲルノ、 ィム(Boehringer Ingelheim)社製 R E S OME R R 2 0 2 H) 9 gに、 塩化メチ レン 40 m 1及びエタノーノレ 10 m 1を添加して完全に溶解した。 この溶液より、 ロータリー式エバポレータ を用いて、 60°Cで 3時間溶媒を留去し、 生成物を デシケーター中で 1晚減圧乾燥して固溶体を得た。 この固溶体に塩化メチレン 2 0 gを添加し、 完全に澄明な溶液とした。
( 2 )第 1図に示すマイクロスフェア製造装置(非連続的なバツチ処理による乳 化、 中空糸膜モジュールによる有機溶媒留去機能付マイクロスフェア蓄積タンク を使用)にて、 マイクロスフェア製造を行った。 即ち、 中空糸膜モジュール(NA GA SEP平板タイプ M 60-600 L- 3600 ;有効面積 1.8 m2;永柳 工業製)を内部に装着した、 攪拌機(CLM— 0. 5 SD)付ステンレス製マイクロ スフエア蓄積タンク(密閉タンク ;容量 20リットル;ェムテクエック製)に、 予 め、 0. 1%ポリビュルアルコール(ゴセノール EG— 40 ;ケン化度 86. 5— 89.0モル0 /0 ; 日本合成化学工業製)水溶液 15リツトルを入れ、 40 Orpmで 撹拌を行う。 更に、 中空糸膜モジュール内に 15リツトノレ/分で窒素ガスを導通 する。 タンク内のポリビュルアルコール水溶液をチューブポンプ(ミリポア製 : XX80EL000)を用いて、 クロスフロー濾過装置(プロスタック ;膜孔径:
0.65 μ m、 総膜面積: 0.332 m2; ミリポア製)に 10リツトル Z分の速 度で導き、 クロスフロー濾過膜への負荷圧を 0.03〜0.05MP aとして得ら れる濾液をチューブポンプ(ミリポア製: XX8200115)で乳化装置 (容 量: 350ml ; クレアミックス(Clearmix) CLM— 1.5 S ; ローター: R 4 ;スクリーン: S 1.5— 24 ;ェムテクニック製)に 25 Om 1 分の速度で 流入させた。 一方、 上記( 1 )で得られた溶液 22 m 1をシリンジに充填し、 2分 毎に、 2 m 1ずつ 2〜 3秒間で、 乳化装置に注入した。 16000 r p mで乳ィ匕 を行い、 濾液の流入により乳化装置からオーバーフローするエマルションを攪拌 機付ステンレス製マイクロスフェア蓄積タンクに導いた。 上記( 1 )で得られた溶 液の最後の注入から 1分後迄、 ?し化を継続し、 最後の注入から 5分後に、 濾液側 のチューブポンプを停止して、 乳化装置への濾液流入を止めた(クロスフロー濾 過装置への循環は継続)。 その後、 室温にて、 1時間、 中空糸膜モジュール內に 15リツトル /分で窒素ガスを導通して、 エマルションから有機溶媒を留去した。
(3)有機溶媒を留去後、 再び濾夜側のチューブポンプを運転し、 250ml/ 分の割合で得られた濾液を廃棄した。 マイクロスフェア蓄積タンクの内容物の容 量が約 3リットルとなった時点で、 クロスフロー濾過を継続しながら、 タンク上 部より、 精製水 12リツトルを 25 Oml 分の速度で添加した。 その後、 濾過 を継続して、 マイクロスフェア蓄積タンクの内容物の容量を約 1リットルとした。 マイクロスフェア蓄積タンクの内容物をガラスビーカーに移し、 更に、 マイクロ スフエア蓄積タンクに精製水 1リットルを入れ、 クロスフロー濾過装置内を循環 させて洗浄した後、 内容物をビーカーに移して、 残存するマイクロスフェアをビ 一力一に回収した。 残存マイクロスフェアの回収操作を再度繰り返した後、 得ら れたマイクロスフェア懸濁液約 3リットルを遠心分離(2000 r pm、 10分) して、 マイクロスフェアを分取した。
(4)分取したマイクロスフェアをシャーレに移し、 少量の精製水を加え、 凍結 乾燥装置 [RLE-52ES;共和真空技術 (株)製] にて一 40 °Cで凍結後、 2 0°C、 0. 1 torr(l 3.3 P a)で 15時間以上乾燥することにより、 マイクロ スフエア凍結乾燥末を得た。
マイクロスフエァ凍結乾燥品の平均粒子径は、 凍結乾燥品をポリォキシェチレ ンソルビタン脂肪酸エステル(日光ケミカルズ製 Twe e n 80)の希薄溶液に適 量分散させ、 粒度分布測定装置 (島津製作所製 S A LD— 1100)にて測定した ところ、 平均粒子径は 4.9 μιηであった。
使用したポリ乳酸及び酢酸リュープロライドの合計重量に対するマイクロスフ エア凍結乾燥品重量の比率である回収率はマ 9 %であつた。
マイクロスフェア凍結乾燥品 5m gにァセトニトリル 1.5 m 1を添加して溶 解し、 その後、 0.5M塩化ナトリゥム水溶液 3. 5mlを添加し、 2000 r p mで 10分間遠心分離して沈殿物を除去し、 上清 200 μ ΐに移動相 [26% (VZV)ァセトニトリル/ 0.05Mリン酸 1カリウム(pH2. 5)] 800 /xl を加えて H P L C装置 [力ラム充填剤: Nucleosil 100— 5C18 (GL - science) ;カラム温度: 40°C;流速: 1.0ml Z分;検出波長 : 280 η m] で測定し、 酢酸リュープロライドの酢酸緩衝溶液 (pH4.7) を使用して 別途作成した検量線から、 マイクロスフェア粒子中の酢酸リュープロライド量を 算出したところ、 9. 13%であった。 プロモホルム(ナカライテスタ製; 2. 9mg/m 1 )を含有する 1, 4—ジォ キサン (高速液体クロマトグラフィー用;片山化学製) 1m lにマイクロスフェア 粉末 25 ra gを溶解し、 試験液とした。 この試験液 2 μ 1をガスクロマトグラム 装置 (本体 GC— l 4Β、 インテグレータ CR— 7 Α;島津製作所製)で測定し [カラム充填剤:ガスクロパック 54 (GLサイエンス製) ;カラム† 1 6
0°C;検出器: F I D;検出器温度: 1 70°C;注入温度: 180°C;移動気 体:窒素;流速 : 60m l /分、 Air; 40 k P a、 H2; 60 k P a ]、 予め、 ブロモホルム(2. 9mgZm 1)を含有する 1, 4一ジォキサンに塩化メチレンを 溶解した標準液により作成した検量線に内挿して試験液濃度を求め、 これと使用 したマイクロスフェアの重量とからマイクロスフェア粒子の塩化メチレン含有率 を算出したところ、 1 74 O p pmであった。
実施例 2
マイクロスフェア蓄積タンクの内容物をクロスフロー濾過装置に 6リットル/ 分の速度で導き、 濾液を乳化装置に 1 2 Om l Z分の速度で流入させ、 実施例 1 一(1)で得られた溶液の乳化装置への注入を最初の注入後、 2、 5、 8、 1 2、
16、 21、 26、 3 1、 37及ぴ 43分後に行った以外は実施例 1と同様にし て、 マイクロスフエァ凍結乾燥末を得た。
実施例 1と同様に測定した平均粒子径は 6. 33 X mであり、 回収率は 78.
8%であった。 マイクロスフェア粒子中の酢酸リュープロライド量を実施例 1と 同様に算出したところ、 8.87%であり、 マイクロスフェア粉末からマイクロ スフエア粒子の塩化メチレン含有率を実施例 1と同様に算出したところ、 702 p p mであつ 7こ。
実施例 3
( 1 )酢酸リユープロライド [バヒュム(Bachem)社製;薬物含有率: 90.
4%] 2. 4 g及ぴポリ乳酸 (平均分子量: 1 7500 ; ベーリンガー■ィンゲ ノレハイム(Boehringer Ingelheim)社製 R E S OME R R 202 H) 1 8. 0 gに、 塩化メチレン 8 Om l及びエタノール 2 Om 1を添加して完全に溶解した。 この 溶液を膜孔径 0. 22 μπιのフィルター(Durapore、 GVWP)で濾過した後、 口 一タリー式エバポレーターを用いて、 60°Cで 3時間溶媒を留去し、 生成物をデ TJP2003/011557
31 シケーター中で 1晚減圧乾燥して固溶体を得た。 この固溶体に塩化メチレン 40 gを添加し、 完全に澄明な溶液とした。
( 2 )第 1図に示すマイクロスフエア製造装置 (非連続的なバッチ処理による乳 化、 中空糸膜モジュールによる有機溶媒留去機能付マイクロスフェア蓄積タンク を使用)にて、 マイクロスフェア製造を行った。 即ち、 中空糸膜モジュール(N A GASEP平板タイプ M60-600 L-3600 ;有効面積 1.8m2;永柳 工業製)を内部に装着した、 攪抻機(CLM— 0.5 SD)付ステンレス製マイクロ スフエア蓄積タンク(密閉タンク ;容量 20リットル;ェムテクエック製)に、 予 め膜孔径 0.22^πιのフィルター(Durapore、 G VW P )で濾過した 0. 1 %ポリ ビエルアルコール(ゴセノール EG— 40 ;ケン化度 86.5— 89.0モル0 /0 ; 日本合成化学工業製)水溶液 15リットルを入れ、 400 r pmで撹拌を行う。 更に、 中空糸膜モジュール内に 25リットル/分で窒素ガスを導通する。 タンク 内のポリビュルアルコール水溶液をチューブポンプ(ミリポア製 : XX 80 E L 000)を用いて、 クロスフロー濾過装置(プロスタック ;膜孔径: 0. 65 m、 総膜面積: 0.332 m2;ミリポア製)に 10リットル/分の速度で導き、 ク口 スフロー濾過膜への負荷圧を 0.03〜 0.05 MP aとして得られる濾液をチュ ーブポンプ(ミリポア製 : XX 8200115)で乳化装置 (容量: 350ml ; クレアミックス(Clearmix) CLM— 1.5 S ; ローター: R4 ;スタリーン: S 1.5-24 ;ェムテクニック製)に 25 Om 1/分の速度で流入させた。 一方、 上記( 1 )で得られた溶液 22 m 1をシリンジに充填し、 2分毎に、 2mlずつ 2 〜3秒間で、 乳化装置に注入した。 16000 r pmで乳化を行い、 濾液の流入 により乳化装置からオーバーフローするエマルションを攪拌機付ステンレス製マ ィクロスフェア蓄積タンクに導いた。 上記( 1 )で得られた溶液の最後の注入から 1分後迄、 乳化を継続し、 最後の注入から 5分後に、 濾液側のチューブポンプを 停止して、 乳化装置への濾液流入を止めた(クロスフ口一濾過装置への循環は継 続)。 その後、 室温にて、 2時間、 中空糸膜モジュール内に 25リットル ^ /分で 窒素ガスを導通して、 エマルションから有機溶媒を留去した。
(3)有機溶媒を留去後、 再ぴ濾液側のチューブポンプを運転し、 250mlZ 分の割合で得られた濾液を廃棄した。 マイクロスフェア蓄積タンクの内容物の容 量が約 3リットノレとなった時点で、 クロスフロー濾過を継続しながら、 タンク上 部より、 精製水 12リットルを 250 m 1ノ分の速度で添加した。 その後、 濾過 を継続して、 マイクロスフェア蓄積タンクの内容物の容量を約 1リットルとした。 マイクロスフェア蓄積タンクの内容物をガラスビーカーに移し、 更に、 マイクロ スフェア蓄積タンクに精製水 1リツトルを入れ、 クロスフ口一濾過装置内を循環 させて洗浄した後、 内容物をビーカーに移して、 残存するマイクロスフェアをビ 一力一に回収した。 残存マイクロスフェアの回収操作を再度繰り返した。
(4)得られたマイクロスフェア懸濁液約 3リットルをステンレス製トレイに移 し、 凍結乾燥装置 [RL— 100BS ;共和真空技術 (株)製] にて一 40 でで 凍結後、 20° (:、 0. ltorr(l 3.3 P a)で約 40時間乾燥することにより、 マ イクロスフェア凍結乾燥末を得た。
実施例 1と同様に測定した平均粒子径は 5.49 i mであり、 回収率は 74. 7%であった。 マイクロスフェア粒子中の酢酸リュープロライド量を実施例 1と 同様に算出したところ、 10.05%であり、 マイクロスフェア粉末からマイク ロスフェア粒子の塩化メチレン含有率を実施例 1と同様に算出したところ、 70
9 p mであった。
実施例 4
実施例 3で得られたマイクロスフエァ乾燥末を酢酸リュープロライドとして 30. Omg (マイクロスフェアとして 298. 5 m g )となるように 5 m 1容量の ガラスバイアル (West製)に秤取した。 さらに膜孔径 0.22 /xmのフィルター
(Durapore、 GVWP)で濾過した 2%デキストラン 40 (S&D Chemicals)水溶 液を 2.5ml添加した。 軽くかき混ぜた後、 凍結乾燥装置(RL— 100BS ; 共和真空技術 (株)製)にて一 40 °Cで凍結後、 20 °C、 0. 1 torr (13. 3 P a) で約 18時間乾燥することにより、 マイクロスフェア凍結乾燥品を得た。
実施例 5
実施例 3で得られたマイクロスフエァ凍結乾燥品に、 0.1 %ポリォキシェチ レンソルビタン脂肪酸エステル(日光ケミカルズ製 Twe e n80)、 0. 5%力 ルポキシメチルセルロースナトリウム Oチリン化学工業株式会社製キッコレー ト FTS— 1、 粘度(無水 1%) : 30〜50mP a · s] 、 5 %D—マンニトー ル水溶液 1 . 5 m Lを加え、 マイクロスフェアを分散させて投与用製剤とした。 産業上の利用の可能性
本発明によれば、 水中乾燥法によるマイクロスフエァ製造の過程でク口スフ口 一濾過装置を用いることにより小型ィ匕された密閉系のマイクロスフェア製造装置 とすることができ、 環境上問題となる有機溶媒の放出を防ぎ、 品質の優れたマイ クロスフェアを製造することができる。 したがって、 本発明は、 薬物含有マイク ロスフェアの工業的な製造に極めて優れた方法ならびにその製造装置を提供する ものである。

Claims

請 求 の 範 囲 1. 次の工程からなるマイクロスフェアの製法。 (a) 薬物、 生体內適合性かつ生体内分解性の水難溶性ポリマー及び水より低 沸点の有機溶媒を含む薬物含有ポリマー液を乳化装置中で水性溶液に乳化して、 薬物含有ポリマー液が水性溶液に分散したエマルションを生成し、 ( b ) 得られるエマルションをマイクロスフェア蓄積タンクに移し、 (c) マイクロスフェア蓄積タンクよりエマルションの一部をクロスフロー濾 過装置に導通し、 (d— 1)一 i) クロスフロー濾過装置通過液をマイクロスフェア蓄積タンクに 戻し、
( d— 1 )一 i i) 上記ク口スフ口一濾過装置からの濾液を工程 ( a )の水性溶液 として循環利用して、 工程(a)〜(d— 1)を繰り返し、 つ、 水より低沸点の有 機溶媒が水非混和性である場合には、 この循環過程の中で、 マイクロスフェア蓄 積タンクでの有機溶媒留去を行うカヽ 或いは
(d-2)- i ) クロスフロー濾過装置通過液をマイクロスフェア蓄積タンクに 戻し、
(d-2)- i i) 上記ク口スフ口一濾過装置からの濾液を工程 ( a )の水性溶液 として循環利用することなく排出し、 新たな水性溶液を用いて工程( a )〜( d— 2)を繰り返し、 かつ、 水より低沸点の有機溶媒が水非混和性である場合には、 こめ循環の過程の中で、 マイクロスフェア蓄積タンクでの有機溶媒留去を行い、
(e) (d— 1)又は(d— 2)の過程終了後に、 マイクロスフェア蓄積タンク中 のマイクロスフェアを回収する。
2. 薬物含有ポリマー液が次のいずれかである請求項 1記載の方法。
(i) 生体内適合性かつ生体内分解性の水難溶性ポリマー及び薬物が水より低沸 点の有機溶媒に溶解された溶液、
(ii) 生体内適合性かつ生体内分解性の水難溶性ポリマーが水より低沸点の有 機溶媒に溶解し、 このポリマー溶液に薬物が懸濁された懸濁液、
(iii) 生体内適合性かつ生体内分解性の水難溶性ポリマーが水より低沸点の有 機溶媒に溶解し、 このポリマー溶液に薬物の水溶液が分散された分散液、
(iv) 水より低沸点の有機溶媒中に、 一方の生体内適合性かつ生体内分解性の 水難溶' I生ポリマーが溶解されており、 このポリマー溶液中に、 他方の生体内適合 性かつ生体内分解性の水難溶性ポリマーの同有機溶媒溶液が分散されており、 分 散されているポリマー溶液中に薬物が溶解又は懸濁されている分散液。
3 . 工程(a )の乳化を連続的に行い、 得られるエマルシヨンを連続的にマイ クロスフェア蓄積タンクに移す請求項 1又は 2記載の方法。
4 . 工程(a )の乳化をバッチ処理で行い、 得られるエマルシヨンをパッチ毎 にマイクロスフェア蓄積タンクに移す請求項 1又は 2記載の方法。
5 . 水より低沸点の有機溶媒が水非混和性であり、 マイクロスフェア蓄積タ ンク中のエマルシヨン液から、 加温、 減圧、 気体の吹付け又は中空糸膜モジユー ルによる気化促進或いはこれらの組合わせにより、 水より低沸点の有機溶媒を留 去する請求項 1〜 4の 、ずれか 1つに記載の方法。
6 . マイクロスフェア蓄積タンク中のエマルシヨン液から、 中空糸膜モジュ ールによる気化促進により、 水より低沸点の有機溶媒を留去する請求項 5に記載 の方法。
7 . 水より低沸点の有機溶媒がハロゲン化脂肪族炭化水素系溶媒である請求 項 6記載の方法。
8 . 水より低沸点の有機溶媒が水混和性であり、 マイクロスフェア蓄積タン ク中のエマルション液から、 水より低沸点の有機溶媒の留去を行わない請求項 1
〜 4のいずれか 1つに記載の方法。
9 . 水より低沸点の有機溶媒が水混和性ケトン系溶媒である請求項 8に記載 の方法。
1 0. 薬物含有ポリマー液が、 水より低沸点の水混和性有機溶媒中に薬物が 懸濁し、 生体内適合性かつ生体内分解性の水難溶性ポリマーが溶解された溶液で あり、 水性溶液が、 該水混和性有機溶媒と非混和性であり、 力 、 水混和性であ る溶媒を含む均一水性溶液である請求項 8記載の方法。
1 1 . 工程(d— 1 )又は工程(d— 2 )の過程において、 タンク内のエマルシ ョンの液量が実質的に一定となるよう、 クロスフ口一濾過の濾液排出速度と乳化 装置からマイクロスフェア蓄積タンクへのエマルション流入速度とが実質的に同 一にされている請求項 1又は 2に記載の方法。
1 2. マイクロスフェア蓄積タンクの容量が、 バッチ処理用乳化装置の容量 の 1 0〜 1000倍の範囲である請求項 4に記載の方法。
1 3. クロスフ口一濾過装置の濾過膜の孔径が所望マイクロスフエアの平均 粒子径の 1/300〜 1/3であり、 クロスフ口一濾過装置からの濾液排出速度 が同装置へのエマルション導通速度の lZl 00〜 1/3となるように調整され ている請求項 1〜 12のいずれか 1つに記載の方法。
14. クロスフロー濾過装置の濾過膜の孔径が 0. 01〜10 / mである請 求項 1 3記載の方法。
1 5. 乳化を内部せん断 (液一液せん断)を利用した高速回転式ホモジナイザ 一で行う請求項 1〜 14のいずれか 1つに記載の方法。
1 6. 工程( a )において、 薬物含有ポリマー液に対して、 水性溶液を 1〜 1 000容量倍用いて乳化を行う請求項 1〜 1 5のいずれか 1つに記載の方法。
1 7. 工程( d— 1 )の過程を行う請求項 1記載の製法。
1 8. 工程( d— 2 )の過程を行う請求項 1記載の製法。
1 9. 生体内適合性かつ生体内分解性の水難溶性ポリマーがヒドロキシ脂肪 酸のポリエステルである請求項 1〜 1 8のいずれか 1つに記載の方法。
20. マイクロスフェアの回収をデッドエンド型濾過、 クロスフロー濾過又 は遠心分離或いはこれらの組合わせで行う請求項 1〜1 9のいずれか 1つに記載 の方法。
2 1. マイクロスフェア回収後、 水性溶液から薬物を回収する請求項 1 7記 載の方法。
22. 請求項 1〜21のいずれか 1つに記載の方法でマイクロスフェアを製 造し、 得られたマイクロスフェアを、 更に、 必要に応じて、 S武形剤の水溶液に分 散後、 凍結乾燥処理を行い、 マイクロスフェア凍結乾燥品を製造する方法。
23. 請求項 22記載の方法で得られるマイクロスフエァ凍結乾燥品。
24. 乳化装置、 マイクロスフェア蓄積タンク及びクロスフロー濾過装置が 次のように構成された、 薬物、 生体内適合性カゝっ生体内分解性の水難溶性ポリマ 一及び水より低沸点の有機溶媒を含む薬物含有ポリマー液及び水性溶液から、 密 閉系でマイクロスフェアを製造するための装置。
(i)薬物含有ポリマー液及び水性溶液が乳化装置に導入できるような構造を有 する、
(ii) 乳化装置で得られるエマルションを有機溶媒留去機能を有するマイク口 スフェア蓄積タンクに移すことができるように、 乳化装置とマイクロスフェア蓄 積タンクとが連結される、
(iii) マイクロスフェア蓄積タンクから内容物であるエマルションの一部をク 口スフ口一濾過装置に導通し、 濾過装置通過液はマイクロスフェア蓄積タンクに 戻され、 一方、 濾液は水性溶液として乳化装置に導かれるように、 マイクロスフ ェァ蓄積タンク、 クロスフ口一濾過装置及び乳化装置が連結される。
2 5 . マイクロスフェア蓄積タンクが有する、 有機溶媒留去機能が中空糸膜 モジュールによる気化促進機能を有するものである請求項 2 4記載の装置。
2 6 . 乳化装置、 マイクロスフェア蓄積タンク及びクロスフロー濾過装置が 次のように構成された、 薬物、 生体内適合性力 生体内分解性の水難溶性ポリマ 一及び水より低沸点の水混和性有機溶媒を含む薬物含有ポリマー液及ぴ水性溶液 力 ら、 密閉系でマイクロスフェアを製造するための装置。
(i) 薬物含有ポリマー液及び水性溶液が乳化装置に導入できるような構造を 有する、
(ii) 乳化装置で得られるエマルシヨンをマイクロスフェア蓄積タンクに移す ことができるように、 乳化装置とマイク口スフエア蓄積タンクとが連結される、 (iii) マイクロスフェア蓄積タンクから内容物であるエマ/レションの一部をク 口スフ口一濾過装置に導通し、 濾過装置通過液はマイクロスフエァ蓄積タンクに 戻され、 一方、 濾液は水性溶液として乳化装置に導かれるように、 マイクロスフ エア蓄積タンク、 クロスフロー濾過装置及び乳化装置が連結される。
2 7 . 乳化装置、 マイクロスフェア蓄積タンク及びクロスフロー濾過装置が 次のように構成された、 薬物、 生体內適合性カゝっ生体内分解性の水難溶性ポリマ 一及び水より低沸点の有機溶媒を含む薬物含有ポリマー液及び水性溶液から、 密 閉系でマイクロスフェアを製造するための装置。 (i) 薬物含有ポリマー液及び水性溶液が乳化装置に導入できるような構造を有 する、
(ii) 乳化装置で得られるエマルションを有機溶媒留去機能を有するマイクロ スフェア蓄積タンクに移すことができるように、 乳化装置とマイクロスフェア蓄 積タンクとが連結される、
(iii) マイクロスフェア蓄積タンクから内容物であるエマルションをクロスフ ロー濾過装置に導通し、 通過液はマイクロスフェア蓄積タンクに戻され、 濾液が 装置外に排出されるように、 マイクロスフェア蓄積タンク及びクロスフロー濾過 装置が連結される。
2 8 . マイクロスフェア蓄積タンクが有する、 有機溶媒留去機能が中空糸膜 モジュールによる気化促進機能である請求項 2 7記載の装置。
2 9 . 乳化装置、 マイクロスフェア蓄積タンク及びクロスフロー濾過装置が 次のように構成された、 薬物、 生体内適合性かつ生体内分解性の水難溶性ポリマ 一及び水より低沸点の水混和性有機溶媒を含む薬物含有ポリマー液及び水性溶液 から、 密閉系でマイクロスフェアを製造するための装置。
(i) 薬物含有ポリマー液及び水性溶液が乳化装置に導入できるような構造を有 する、
(ii) 乳化装置で得られるエマルシヨンをマイクロスフェア蓄積タンクに移す ことができるように、 しィ匕装置とマイクロスフェア蓄積タンクとが連結される、 (iii) マイクロスフェア蓄積タンクから内容物であるエマルシヨンをクロスフ ロー濾過装置に導通し、 通過液はマイクロスフェア蓄積タンクに戻され、 濾液が 装置外に排出されるように、 マイクロスフエア蓄積タンク及ぴク口スフ口一濾過 装置が連結される。
3 0 . マイクロスフェア蓄積タンクの容量が、 1度に製造されるマイクロス フェア 1 k g当たり、 1 0〜 1 0 0リツトルであり、 かつ、 乳化装置容量の 1 0
〜; L 0 0 0倍である請求項 2 4 ~ 2 9のいずれか 1つに記載の装置。
3 1 . クロスフ口一濾過装置における濾過膜の孔径が 0 . 0 1〜 1 0 μ mで あり、 クロスフ口一濾過装置からの濾液排出速度とマイクロスフェア蓄積タンク へのエマルション流入速度とを調整する機能を有する請求項 2 4〜 3 0のいずれ カ 1つに記載の装置。
PCT/JP2003/011557 2002-09-11 2003-09-10 マイクロスフェアの製法及び製造装置 WO2004024056A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002497723A CA2497723A1 (en) 2002-09-11 2003-09-10 Method for preparation of microspheres and apparatus therefor
EP03795361A EP1537846A1 (en) 2002-09-11 2003-09-10 Process for the production of microspheres and unit therefor
AU2003262048A AU2003262048A1 (en) 2002-09-11 2003-09-10 Process for the production of microspheres and unit therefor
JP2004535927A JP4690040B2 (ja) 2002-09-11 2003-09-10 マイクロスフェアの製法及び製造装置
CN03823839XA CN1688275B (zh) 2002-09-11 2003-09-10 微球的制备方法
US10/526,503 US20050271731A1 (en) 2002-09-11 2003-09-10 Process for the production of microspheres and unit therefor
US11/727,287 US20070182040A1 (en) 2002-09-11 2007-03-26 Method for preparation of microsphere and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002265468 2002-09-11
JP2002-265468 2002-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/727,287 Division US20070182040A1 (en) 2002-09-11 2007-03-26 Method for preparation of microsphere and apparatus therefor

Publications (1)

Publication Number Publication Date
WO2004024056A1 true WO2004024056A1 (ja) 2004-03-25

Family

ID=31986585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011557 WO2004024056A1 (ja) 2002-09-11 2003-09-10 マイクロスフェアの製法及び製造装置

Country Status (8)

Country Link
US (2) US20050271731A1 (ja)
EP (1) EP1537846A1 (ja)
JP (1) JP4690040B2 (ja)
KR (1) KR100681213B1 (ja)
CN (2) CN1688275B (ja)
AU (1) AU2003262048A1 (ja)
CA (1) CA2497723A1 (ja)
WO (1) WO2004024056A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517824A (ja) * 2011-04-21 2014-07-24 アレジー セラピューティクス (ユーケー) リミテッド ワクチン組成物を調製するプロセス
WO2016098875A1 (ja) * 2014-12-19 2016-06-23 富士フイルム株式会社 リポソームの製造方法及びリポソーム製造装置
JP2017523128A (ja) * 2014-07-07 2017-08-17 アントリアバイオ インコーポレイテッドAntriabio,Inc. 生分解性微粒子からの溶媒抽出
JP2018038962A (ja) * 2016-09-07 2018-03-15 株式会社富士薬品 粒子含有組成物を製造するためのシステム及び方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US8728525B2 (en) 2004-05-12 2014-05-20 Baxter International Inc. Protein microspheres retaining pharmacokinetic and pharmacodynamic properties
WO2005112893A1 (en) 2004-05-12 2005-12-01 Baxter International Inc. Microspheres comprising protein and showing injectability at high concentrations of said agent
WO2005112885A2 (en) 2004-05-12 2005-12-01 Baxter International Inc. Oligonucleotide-containing microspheres, their use for the manufacture of a medicament for treating diabetes type 1
EP1853228A4 (en) * 2005-03-01 2012-07-18 Sun Pharma Advanced Res Co Ltd METHOD FOR THE PRODUCTION OF MICROBALLS OR MICRO CAPSULES
CN100374194C (zh) * 2006-07-19 2008-03-12 北京工业大学 无机氧化物或金属纳米粒子的制备方法及设备
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US8641900B2 (en) * 2009-11-05 2014-02-04 Taiwan Biotech Co., Ltd Method and device for continuously preparing microspheres, and collection unit thereof
CN101862266B (zh) * 2010-06-01 2012-10-10 中国人民解放军第三〇九医院 单分散性凝胶微球成型装置
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
US8871052B2 (en) 2012-01-31 2014-10-28 Eastman Chemical Company Processes to produce short cut microfibers
CN103769018B (zh) * 2012-10-25 2016-10-26 上海市肿瘤研究所 改性凝集素包裹的磁性大分子脂质体微球、制备方法及应用
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
KR101543507B1 (ko) * 2013-05-15 2015-08-11 씨제이헬스케어 주식회사 연속 공정의 미립구의 제조 방법 및 이로부터 제조된 미립구
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
CN104525068B (zh) * 2014-12-13 2017-01-18 复旦大学 一种聚乳酸基二元共聚物中空微球的制备方法
JP6316182B2 (ja) 2014-12-19 2018-04-25 富士フイルム株式会社 リポソームの製造方法及びリポソーム製造装置
FR3031914B1 (fr) * 2015-01-27 2019-06-07 Calyxia Procede d'encapsulation
CN105301160A (zh) * 2015-11-02 2016-02-03 万特制药(海南)有限公司 一种用气相色谱法分离测定克利贝特中间体化学纯度的方法
CN105726313A (zh) * 2016-04-25 2016-07-06 上海东富龙科技股份有限公司 一种集成式微球制备装置
CN106040116B (zh) * 2016-07-05 2019-04-26 中国工程物理研究院激光聚变研究中心 一种制备大直径高球形度聚合物空心微球的方法
TWI631985B (zh) * 2016-10-26 2018-08-11 財團法人金屬工業研究發展中心 微粒製造方法
KR101932005B1 (ko) * 2017-04-13 2018-12-27 주식회사 엠씨테크 순환 탱크를 구비한 조대입자 제조용 막 유화장치
CN111097389B (zh) * 2018-10-25 2022-03-15 中国石油化工股份有限公司 交联马来酸离聚物微球连续化生产系统和方法
CN111100239B (zh) * 2018-10-25 2022-03-01 中国石油化工股份有限公司 制备交联马来酸酯离聚物微球的系统和方法
JP7325993B2 (ja) * 2019-03-29 2023-08-15 日東電工株式会社 エマルションの製造方法および製造装置
KR102212717B1 (ko) * 2019-11-08 2021-02-08 환인제약 주식회사 지속 방출을 위한 마이크로스피어 및 이의 제조 방법
CN111036157A (zh) * 2019-12-09 2020-04-21 安徽工业大学 一种从锦纶纤维中制备尼龙微球的方法及应用
CN113509899A (zh) * 2020-04-10 2021-10-19 柏迪发瑞(上海)医药科技有限公司 反应装置、微球制备装置及萃取方法、及脂质体载药方法
JP6852943B1 (ja) * 2020-05-08 2021-03-31 エム・テクニック株式会社 主剤が均一に分散されたマイクロスフェアー及びそれを含有する徐放性製剤
CN112237787B (zh) * 2020-10-23 2022-04-01 马鞍山中经悦怿生命科技有限公司 过滤颗粒的生产设备及方法
KR102259589B1 (ko) 2020-11-30 2021-06-02 (주)인벤티지랩 미소구체 제조 시스템 및 미소구체 제조 방법
KR102283250B1 (ko) * 2020-12-24 2021-07-29 (주)인벤티지랩 용매 제거 장치 및 이를 이용한 미소구체 제조 방법
CN113426366B (zh) * 2021-05-12 2023-02-10 浙江工业大学 一种可溶性壳聚糖-pvp复合物乳化剂及其制备方法与应用
CN113244108B (zh) * 2021-06-04 2023-08-25 胡振华 聚合物微球的制备方法以及制备装置
CN113398849A (zh) * 2021-08-05 2021-09-17 山东采采医疗科技有限公司 一种可快速拆装膜乳化装置及其应用
CN113908784B (zh) * 2021-10-22 2023-12-26 广西大学 一种利用反相悬浮技术制备微球的免清洗方法和装置
EP4201511A1 (en) * 2021-12-22 2023-06-28 Inventage Lab Inc. Solvent removing apparatus and method of manufacturing microsphere using the same
KR102403990B1 (ko) * 2021-12-22 2022-05-31 (주)인벤티지랩 용매 제거 장치 및 이를 이용한 미소구체 제조 방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446115A (ja) 1990-06-13 1992-02-17 Eisai Co Ltd マイクロスフィアの製造法
JPH0632732A (ja) 1992-07-16 1994-02-08 Tanabe Seiyaku Co Ltd 徐放性マイクロスフェア製剤の製造方法
JPH06145046A (ja) 1992-08-07 1994-05-24 Takeda Chem Ind Ltd 水溶性薬物のマイクロカプセルの製造法
JPH06211648A (ja) 1992-10-01 1994-08-02 Tanabe Seiyaku Co Ltd 徐放性多核マイクロスフェア製剤およびその製法
JPH08151321A (ja) 1994-09-30 1996-06-11 Takeda Chem Ind Ltd 徐放剤
JPH08259460A (ja) 1995-01-23 1996-10-08 Takeda Chem Ind Ltd 徐放性製剤の製造法
JPH09221417A (ja) 1995-12-15 1997-08-26 Takeda Chem Ind Ltd 注射用徐放性製剤の製造法
US5945126A (en) 1997-02-13 1999-08-31 Oakwood Laboratories L.L.C. Continuous microsphere process
WO2000040221A1 (en) * 1998-12-30 2000-07-13 Alkermes Controlled Therapeutics Inc. Ii Preparation of microparticles having a selected release profile
US6291013B1 (en) * 1999-05-03 2001-09-18 Southern Biosystems, Inc. Emulsion-based processes for making microparticles
WO2001083594A1 (fr) * 2000-04-28 2001-11-08 Tanabe Seiyaku Co., Ltd. Procede de preparation d'une microsphere
JP2001522870A (ja) * 1997-11-14 2001-11-20 スカイファーマ インコーポレーテッド 多小胞リポソームの製造

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394265B1 (en) * 1987-07-29 1994-11-02 The Liposome Company, Inc. Method for size separation of particles
US5948441A (en) * 1988-03-07 1999-09-07 The Liposome Company, Inc. Method for size separation of particles
JP3116311B2 (ja) * 1990-06-13 2000-12-11 エーザイ株式会社 マイクロスフィアの製法
ES2034891B1 (es) * 1991-08-08 1993-12-16 Cusi Lab Procedimiento de elaboracion en continuo de sistemas coloidales dispersos, en forma de nanocapsulas o nanoparticulas.
EP0595030A3 (en) * 1992-10-01 1995-06-07 Tanabe Seiyaku Co Composition of microspheres with several delayed release nuclei and its preparation process.
US6117455A (en) * 1994-09-30 2000-09-12 Takeda Chemical Industries, Ltd. Sustained-release microcapsule of amorphous water-soluble pharmaceutical active agent
ES2177592T3 (es) * 1995-07-05 2002-12-16 Europ Economic Community Nanoparticulas biocompatibles y biodegradables para la absorcion y administracion de medicamentos proteinicos.
DE19545257A1 (de) * 1995-11-24 1997-06-19 Schering Ag Verfahren zur Herstellung von morphologisch einheitlichen Mikrokapseln sowie nach diesem Verfahren hergestellte Mikrokapseln
CA2192773C (en) * 1995-12-15 2008-09-23 Hiroaki Okada Production of sustained-release preparation for injection
KR0162872B1 (ko) * 1996-04-01 1998-12-01 김은영 용매추출법을 이용한 생분해성 고분자 미립구의 개선된 제조방법 및 이를 이용한 국소염증 질환 치료용 미립구의 제조방법
US6270802B1 (en) * 1998-10-28 2001-08-07 Oakwood Laboratories L.L.C. Method and apparatus for formulating microspheres and microcapsules
DE19925184A1 (de) * 1999-05-26 2000-11-30 Schering Ag Kontinuierliches Verfahren zur Herstellung von morphologisch einheitlichen Mikro- und Nanopartikeln mittels Mikromischer sowie nach diesem Verfahren hergestellte Partikel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0446115A (ja) 1990-06-13 1992-02-17 Eisai Co Ltd マイクロスフィアの製造法
JPH0632732A (ja) 1992-07-16 1994-02-08 Tanabe Seiyaku Co Ltd 徐放性マイクロスフェア製剤の製造方法
JPH06145046A (ja) 1992-08-07 1994-05-24 Takeda Chem Ind Ltd 水溶性薬物のマイクロカプセルの製造法
JPH06211648A (ja) 1992-10-01 1994-08-02 Tanabe Seiyaku Co Ltd 徐放性多核マイクロスフェア製剤およびその製法
JPH08151321A (ja) 1994-09-30 1996-06-11 Takeda Chem Ind Ltd 徐放剤
JPH08259460A (ja) 1995-01-23 1996-10-08 Takeda Chem Ind Ltd 徐放性製剤の製造法
JPH09221417A (ja) 1995-12-15 1997-08-26 Takeda Chem Ind Ltd 注射用徐放性製剤の製造法
US5945126A (en) 1997-02-13 1999-08-31 Oakwood Laboratories L.L.C. Continuous microsphere process
JP2001522870A (ja) * 1997-11-14 2001-11-20 スカイファーマ インコーポレーテッド 多小胞リポソームの製造
WO2000040221A1 (en) * 1998-12-30 2000-07-13 Alkermes Controlled Therapeutics Inc. Ii Preparation of microparticles having a selected release profile
US6291013B1 (en) * 1999-05-03 2001-09-18 Southern Biosystems, Inc. Emulsion-based processes for making microparticles
WO2001083594A1 (fr) * 2000-04-28 2001-11-08 Tanabe Seiyaku Co., Ltd. Procede de preparation d'une microsphere

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014517824A (ja) * 2011-04-21 2014-07-24 アレジー セラピューティクス (ユーケー) リミテッド ワクチン組成物を調製するプロセス
JP2017523128A (ja) * 2014-07-07 2017-08-17 アントリアバイオ インコーポレイテッドAntriabio,Inc. 生分解性微粒子からの溶媒抽出
WO2016098875A1 (ja) * 2014-12-19 2016-06-23 富士フイルム株式会社 リポソームの製造方法及びリポソーム製造装置
JP2018038962A (ja) * 2016-09-07 2018-03-15 株式会社富士薬品 粒子含有組成物を製造するためのシステム及び方法

Also Published As

Publication number Publication date
CN101229098B (zh) 2012-02-29
CN1688275A (zh) 2005-10-26
CN101229098A (zh) 2008-07-30
KR100681213B1 (ko) 2007-02-09
US20050271731A1 (en) 2005-12-08
JPWO2004024056A1 (ja) 2006-01-05
JP4690040B2 (ja) 2011-06-01
EP1537846A1 (en) 2005-06-08
KR20050042808A (ko) 2005-05-10
AU2003262048A1 (en) 2004-04-30
CA2497723A1 (en) 2004-03-25
US20070182040A1 (en) 2007-08-09
CN1688275B (zh) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4690040B2 (ja) マイクロスフェアの製法及び製造装置
US7011776B2 (en) Method and apparatus for preparing microspheres
KR101862416B1 (ko) 마이크로입자를 제조하기 위한 에멀전-기반 방법 및 이 방법과 함께 사용하기 위한 워크헤드 조립체
US6777002B1 (en) Process for microencapsulation of water soluble substances
US20030075817A1 (en) Process for producing microsphere
WO2002058672A2 (en) Microparticles of biodegradable polymer encapsulating a biologically active substance
JP5513504B2 (ja) 薬物を含有した生分解性微粒子の調製方法
EP1277465A1 (en) Process for producing microsphere
JP3709808B2 (ja) マイクロスフェアの製法
EP1353648A2 (en) Microparticles of biodegradable polymer encapsulating a biologically active substance
JP2000239152A (ja) 微粒子中に残存する有機溶媒の除去方法
US11052046B2 (en) Method for preparing micro-particles by double emulsion technique
AU2002224721A1 (en) Microparticles of biodegradable polymer encapsulating a biologically active substance

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2497723

Country of ref document: CA

Ref document number: 2004535927

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10526503

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 353/CHENP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003795361

Country of ref document: EP

Ref document number: 1020057004164

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1200500305

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 2003823839X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020057004164

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003795361

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1-2005-500502

Country of ref document: PH

WWG Wipo information: grant in national office

Ref document number: 1020057004164

Country of ref document: KR