WO2004023126A1 - Mounting method and manufacturing method for silicon micro sensor, and silicon micro sensor - Google Patents

Mounting method and manufacturing method for silicon micro sensor, and silicon micro sensor Download PDF

Info

Publication number
WO2004023126A1
WO2004023126A1 PCT/JP2003/011275 JP0311275W WO2004023126A1 WO 2004023126 A1 WO2004023126 A1 WO 2004023126A1 JP 0311275 W JP0311275 W JP 0311275W WO 2004023126 A1 WO2004023126 A1 WO 2004023126A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor element
case
adhesive member
silicon
sensor
Prior art date
Application number
PCT/JP2003/011275
Other languages
French (fr)
Japanese (ja)
Inventor
Shunsuke Maeda
Shogo Hamatani
Yoshihiko Kohmura
Takio Kojima
Takafumi Ooshima
Original Assignee
Ngk Spark Plug Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Spark Plug Co., Ltd. filed Critical Ngk Spark Plug Co., Ltd.
Priority to JP2004534147A priority Critical patent/JPWO2004023126A1/en
Publication of WO2004023126A1 publication Critical patent/WO2004023126A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6845Micromachined devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • G01F1/6842Structural arrangements; Mounting of elements, e.g. in relation to fluid flow with means for influencing the fluid flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment

Definitions

  • the present invention relates to a silicon microsensor configured by mounting a sensor element having a detection mechanism on a silicon substrate in a case.
  • silicon microsensors have been widely used in various applications, for example, when detecting gas property changes and measuring gas concentrations.
  • Some of the sensor elements used in such silicon microsensors have a structure in which a portion where a detection mechanism is provided is thinned by using semiconductor micromachining technology.
  • a gap is formed between a thinned portion and a non-thinned portion.
  • the structure of the sensor element having such a gap is referred to as a “diaphragm structure”.
  • a diaphragm structure is used, for example, in a silicon microsensor in which a detection mechanism detects gas heat of combustion by measuring the heat of combustion of the gas to thermally insulate the detection mechanism from other parts in the sensor element. It plays a role of reducing the heat capacity of the detection mechanism when the sensor element is mounted on the case.
  • the present invention solves the above-mentioned problems, and controls the positional relationship between the sensor element and the case after bonding the sensor element to the case to a desired positional relationship, thereby ensuring the basic performance of the silicon microsensor.
  • the following configuration was adopted.
  • a concave portion capable of accommodating the sensor element is formed in the case, at least a bottom surface of the concave portion that is in contact with the sensor element is formed flat;
  • a sheet-shaped adhesive member whose thickness has been adjusted in advance is disposed on the bottom surface of the concave portion, and the sensor element is fitted into the concave portion, and is fixed to the bottom surface by the adhesive member.
  • the second method of mounting a silicon microphone opening sensor of the present invention is a method of mounting a silicon microsensor for housing a sensor element having a detection mechanism on a silicon substrate in a case.
  • a concave portion capable of accommodating the sensor element is formed in the case, at least a bottom surface of the concave portion that is in contact with the sensor element is formed flat;
  • a sheet-like adhesive member having a size that can be inserted into the concave portion and having a thickness adjusted in advance is attached,
  • the sensor element is fitted into the recess, and is fixed to the bottom surface by the adhesive member.
  • a sheet-like adhesive member whose thickness has been adjusted in advance is disposed on the bottom surface of the concave portion provided in the case, and the sensor element is fitted into the concave portion. It is adhesively fixed to the bottom surface of the recess by an adhesive member.
  • a sheet-shaped adhesive member having a predetermined thickness is attached to the back surface of the sensor element, and the sensor element is provided in a case. It fits into the recess and is adhesively fixed to the bottom surface of the recess by an adhesive member.
  • the recess that can accommodate the sensor element is located on the surface of the case where the sensor element is located. It is formed at a certain depth on a certain placement surface, and the pre-adjusted thickness of the sheet-like adhesive member is determined by disposing the sensor element in the recess and bonding and fixing the sensor element element surface and the case. It is also preferable that the dimension is such that the plane is substantially flush with the plane. If mounting is performed using such a thick adhesive member, the surface of the sensor element and the surface of the case are substantially flush with each other in the mounted silicon microsensor. Therefore, it is possible to effectively prevent the flow of the detection target from being disturbed in the vicinity of the detection mechanism of the sensor element, and to ensure a smooth flow.
  • the dimension that is substantially flush means that the step between the element surface of the sensor element and the arrangement surface of the case is 0.3 mm or less.
  • a gap is provided in the sensor element by removing a part of the sensor element so that the place where the detection mechanism is arranged becomes thin, and a sheet-like adhesive member corresponds to the gap of the sensor element.
  • the location may have an opening having a shape corresponding to the opening of the gap.
  • the sheet-like adhesive member may be a member containing a thermosetting adhesive as a component. If such an adhesive member is used, the heated sensor element is fitted into the concave portion and pressure-bonded, so that the adhesive member can be bonded and fixed to the bottom surface. In such a case, the sensor element is heated in advance, and the remaining heat is used to fix the sensor element in the bonding recess, so that the mounting efficiency accompanying the bonding can be increased.
  • the method for manufacturing the silicon microphone opening sensor of the present invention is as follows. (A) preparing a detection mechanism on the surface of the silicon substrate;
  • (C) a step of preparing a case in which a recess for accommodating the sensor element is formed on an arrangement surface on a side where the sensor element is arranged;
  • the gist is that it is provided.
  • the sensor element is bonded to the concave portion by a sheet-like adhesive member interposed between the back surface of the element and the bottom surface of the concave portion of the case. For this reason, by changing the thickness of the bonding member at the manufacturing stage, the positional relationship between the case and the sensor element after bonding can be freely adjusted, and the desired position in the manufactured silicon microsensor can be adjusted. It is possible to get a relationship. By obtaining the desired positional relationship in this way, it becomes easier to ensure the basic performance of the silicon microsensor after manufacturing.
  • step (E) when the sensor element is bonded to the recess, an element surface of the sensor element and an arrangement surface of the case are substantially flush with each other; After the sensor element is bonded to the sensor element, a signal for electrically connecting the sensor element and the case is provided between the element surface of the sensor element bonded to the recess and the arrangement surface of the case. (G) mounting the signal line on the surface of the element or the arrangement surface of the case, and the detection mechanism. And a step of (H) molding a part, to which the signal line is attached, with a filler.
  • the space between the element surface or the case arrangement surface and the partition material is reduced.
  • a gap is less likely to be formed in the gap, and the filler is less likely to flow out of the gap when the portion where the signal line is mounted is molded with the filler. Therefore, it is possible to prevent the silicon microsensor from causing a defect such as detection failure or breakage due to the filler flowing out from the gap.
  • the terminal and the terminal It is also preferable to prepare a sheet-like bonding member having conductivity only in the direction to the electrodes.
  • the electrode of the sensor element and the terminal of the case are electrically connected via the bonding member. Accordingly, in the manufacturing stage, connection work such as bonding between the electrode of the sensor element and the terminal of the case becomes unnecessary, and the manufacturing efficiency can be improved.
  • the silicon microsensor of the present invention is the silicon microsensor of the present invention.
  • a sensor element having a structure in which a detection mechanism is disposed on a silicon substrate, and where the detection mechanism is disposed is thin;
  • the gist is that the adhesive member is a sheet-like member.
  • the sensor element has a sheet-like bonding portion. It is adhered to the bottom of the concave portion of the case via a material. Therefore, it is possible to freely control the positional relationship between the case and the sensor element by changing the thickness of the adhesive member, and it is easy to secure the basic performance of the silicon microphone opening sensor by controlling the positional relationship. .
  • Such a recess for accommodating the sensor element is formed at a predetermined depth on an arrangement surface, which is a surface of the case on which the sensor element is arranged, so that the element surface of the sensor element and the arrangement surface of the case are substantially flush. good.
  • Such problems may include, for example, generation of turbulence when a gas to be detected flows near the detection mechanism, and accumulation of dust on a step.
  • a gap is provided on the back surface of the sensor element so that the location where the detection mechanism is disposed is thin, and an adhesive member is provided at a location corresponding to the gap of the sensor element, corresponding to the opening of the gap. It is also possible to have a shape with a shaped opening. According to this configuration, when the sensor element is bonded to the concave portion of the case, even if unnecessary adhesive flows into the gap of the sensor element, the adhesive easily flows out of the opening. It can be prevented from adhering to the thinned part.
  • a configuration may be provided in which a recess having an internal space of a predetermined volume is provided at a position corresponding to the opening of the adhesive member on the bottom surface of the recess of the case.
  • a recess having an internal space of a predetermined volume is provided at a position corresponding to the opening of the adhesive member on the bottom surface of the recess of the case.
  • the sensor element is bonded and fixed to the recess, so that a gap that is continuous with the gap in the gap is provided. Therefore, even if a recess is not formed on the bottom surface of the recess of the case, the above-described gap can sufficiently secure the above-described damage prevention characteristics, and the manufacturing efficiency can be improved. Further, when the above-described recess is formed on the bottom surface of the recess of the case, since the air space is further enlarged by leaving no gap or communicating with the recess, the above-described damage prevention characteristics can be further improved. it can.
  • the case is provided with a terminal that is exposed at the location of the adhesive member on the bottom surface of the concave portion, and the sensor element is provided with an electrode connected to the detection mechanism on the side facing the exposed terminal of the case.
  • a sheet-shaped member having conductivity only in the direction between the terminal and the electrode can be used. In this case, connection between the electrode of the sensor element and the terminal of the case can be easily realized, and the configuration can be simplified.
  • FIG. 1 is an explanatory diagram showing a plan view of a catalytic combustion type combustible gas sensor 10 according to one embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing a cross section when the catalytic combustion type combustible gas sensor 10 shown in FIG. 1 is cut along line 2-2.
  • FIG. 3 is an explanatory diagram schematically showing the sensor element 50.
  • FIG. 4 shows the contact combustion type flammable gas sensor 10 before the sensor element 50 is mounted. It is explanatory drawing which shows a plane.
  • FIG. 5 is an explanatory diagram showing a cross-sectional shape of the contact combustion type combustible gas sensor 10 shown in FIG. 4 when cut along line 5-5.
  • FIG. 6 is an explanatory diagram showing the adhesive member 48.
  • FIG. 7 is an explanatory diagram showing a state in which the sensor element 50 is bonded to the bonding recess 41 and the signal line 57 is insulated.
  • FIG. 8 is an explanatory diagram showing a cross-sectional shape of the element case 40 shown in FIG. 7C taken along line 9-9.
  • FIG. 9 is an explanatory diagram showing a first modification.
  • FIG. 10 is an explanatory diagram showing a second modification.
  • FIG. 11 is an explanatory diagram showing a third modification.
  • FIG. 12 is an explanatory diagram showing a fourth modification.
  • FIG. 13 is an explanatory diagram showing a fifth modification.
  • FIG. 14 is an explanatory diagram showing a use state of the air flow meter 610 as the second embodiment.
  • FIG. 15 is a plan view of the air flow meter 6 10.
  • FIG. 16 is a front view of the air flow meter 6 10.
  • FIG. 17 is an explanatory diagram showing a cross-sectional shape taken along arrow 17--17 when the air flow shown in FIG. 16 is cut along the line 17-17.
  • FIG. 18 is an explanatory diagram showing the structure of the silicon microsensor 7 10 used in the air flow 6 10. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an explanatory view showing a plane of a contact combustion type combustible gas sensor 10 according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the contact combustion type combustible gas sensor 10 shown in FIG. It is explanatory drawing which shows the cross section when cut
  • the catalytic combustion type combustible gas sensor 10 (hereinafter referred to as gas sensor 10) is a sensor that detects the concentration of combustible gas by utilizing the fact that the electric resistance changes with the combustion of combustible gas.
  • gas sensor 10 is mounted on a fuel cell unit of an automobile and is used for the purpose of measuring hydrogen leakage.
  • the gas sensor 10 includes an element case 40 on which a semiconductor sensor element 50 is mounted, and a circuit board 80 connected to the element case 40.
  • the gas sensor 10 thus configured detects the gas to be measured entering the region of the element case 40 where the sensor element 50 is mounted, as indicated by the thick arrow in FIG. An electric signal corresponding to the measured gas amount is output to the circuit board 80.
  • the above-mentioned element case 40 is attached to a synthetic resin mounting housing 20 having an inlet 20 a to an outlet 20 b of the gas to be measured, as shown by a two-dot chain line in FIG.
  • a gas sensor may be configured, and the gas sensor may be used by attaching the mounting housing 20 to a pipe or the like forming a flow path of the gas to be measured.
  • FIG. 3 is an explanatory diagram schematically showing the sensor element 50.
  • FIG. 3 (A) shows the bottom surface of the sensor element 50
  • FIG. 3 (B) shows the cross-sectional shape of the sensor element 50 shown in FIG. 3 (A) when cut along the line 3B-13B.
  • the sensor element 50 includes a silicon substrate 51, insulating thin films 52a and 52b, a detecting mechanism 53, and an insulating protective film 55.
  • the silicon substrate 51 is a silicon flat plate having a length of 3 mm and a width of 5 mm.
  • An insulating thin film 52 a is formed on the upper layer of the silicon substrate 51.
  • the surface of the insulating thin film 52a becomes the element surface 50A of the sensor element 50.
  • a detection heater 53 a described later is provided on the element surface 50 A.
  • an insulating thin film 52b is formed except for a portion corresponding to a void 51a described later.
  • the front surface of the insulating thin film 52b becomes the back surface 50B of the sensor element 50.
  • the back surface 50 B of the element is bonded to the bottom surface 41 B of the bonding recess 41 of the element case 40 described below via the bonding member 48.
  • the insulating thin films 52a and 52b are made of an oxide film formed by oxidizing the silicon substrate 51, a silicon nitride film formed by CVD or the like, a nitride film, an oxynitride film, It is composed of one or more films such as a y film and a laminated film thereof.
  • the detection mechanism 53 includes a detection heater 53a and a catalyst film 53b located above the detection heater 53a.
  • the detection heater 53 a is usually a conductor having a large positive temperature resistance coefficient such as Pt (white gold), Ni_Cr (nickel-chromium), Au (gold) and Cr (chromium). Is formed by
  • the catalyst film 53b is a catalyst that promotes combustion of the gas to be measured, and its material can be appropriately selected depending on the target gas.
  • the catalyst when applied to a flammable gas such as hydrogen gas, the catalyst may be a single layer film of a noble metal such as Pt (platinum) and Pd (palladium), or Pt (white gold) and Pd ( palladium) or the like can be used that is supported on AI 2 0 3 (alumina) or S ⁇ 0 2 (silicon oxide).
  • a noble metal such as Pt (platinum) and Pd (palladium), or Pt (white gold) and Pd ( palladium) or the like can be used that is supported on AI 2 0 3 (alumina) or S ⁇ 0 2 (silicon oxide).
  • Ti titanium
  • Ta tantalum
  • Mo mo
  • W tungsten
  • Cr chromium
  • Nb niobium
  • the sensor element 50 has the diaphragm structure described above. That is, as shown in Fig. As described above, a part of the sensor element 50 is removed below the position where the detection mechanism 53 is provided so that the location where the detection mechanism 53 is provided has a thin shape, so that the truncated pyramid is formed. A void 51a having a shape is provided. A gap 51b having a predetermined volume is formed in the gap 51a. In this embodiment, the gap 51b has a volume of about 1 mm 3 , but the volume of the gap 51b can be appropriately determined by changing the shape of the gap 51a. The presence of such a gap 51b makes it possible to reduce the heat capacity of the detection mechanism 53 and to thermally insulate the detection mechanism 53 from the silicon substrate 51. Note that the insulating thin film 52b is not formed in the space 51a, and the silicon substrate 51 is exposed.
  • the insulating protective film 55 is made of the same material and forming method as the insulating thin films 52a and 52b, and is disposed so as to cover the wiring layer and the like between the detection heater 53a and the electrode 56. Is done. As a result, it is possible to prevent the wiring between the detection heater 53 a and the electrode 56 from being contaminated or damaged.
  • the electrode 56 is a lead-out portion of a wiring connected to the detection heater 53a.
  • four electrodes 56 are exposed on the element surface 50A via the contact holes (see FIG. 1).
  • the material of the electrodes 56 can be AI (aluminum) or Au (gold).
  • Au (gold) Au
  • Ti titanium
  • Ta tantalum
  • Mo molybdenum
  • W tungsten
  • Cr chromium
  • Nb niobium
  • FIG. 4 is an explanatory view showing a plane of the contact combustion type combustible gas sensor 10 before the sensor element 50 is mounted.
  • FIG. 5 is a diagram showing the contact combustion type combustible gas sensor 10 shown in FIG.
  • FIG. 5 is an explanatory diagram showing a cross-sectional shape taken along line 5-5 of FIG.
  • the resin-molded element case 40 is provided with an arrangement surface 4OA on which the sensor element 50 is arranged on the side where the gas to be measured flows.
  • This arrangement surface 4OA is provided with a bonding recess 41 in which the sensor element 50 is housed.
  • the back surface 50B of the sensor element 50 is bonded to the bottom surface 41B of the bonding recess 41 via the bonding member 48 (see FIG. 2).
  • the configuration of the bonding member 48 will be described together with a later-described manufacturing process of the gas sensor 10.
  • a recess 42 having a predetermined depth is formed on the bottom surface of the bonding recess 41.
  • the recess 42 is formed at a position substantially opposed to the gap 51 a of the sensor element 50 when the sensor element 50 is bonded to the bonding recess 41 (see FIG. 2).
  • a detection mechanism is provided. Since the volume of air existing in a sealed state around a thin portion (hereinafter referred to as a thin film portion) increases, the pressure rise of the sealed air near the thin film portion is suppressed. Therefore, breakage of the thin film portion can be effectively prevented.
  • the opening area of the recess 42 on the bottom surface of the bonding recess 41 is based on the opening area of the void 51 a on the back surface 50 B of the sensor element 50.
  • the recesses 42 are included in the voids 51a on the element back surface 50B.
  • the element surface 50A of the sensor element 50 is substantially flush with the arrangement surface 40A of the element case 40. Has become.
  • the element case 40 has four conductive paths between the sensor element 50 and the circuit board 80.
  • the leads 45 are buried. One end of each lead 45 is drawn out of the element case 40 and connected to the circuit board 80. The other end of each lead 45 is exposed on the arrangement surface 40A of the element case 40, and is formed as a terminal 45a.
  • the terminal 45a is used for connection with each electrode 56 on the element surface 50A (see FIGS. 1 and 2).
  • the signal line 57 is molded with a filler 58b formed from a low-viscosity insulating resin material. Further, the arrangement surface 40 A of the element case 40 to the element surface 50 A of the sensor element 50 are divided into a part where the detection mechanism 53 is provided and a part where the signal line 57 is provided. A partitioning material 58a is provided.
  • the partition member 58a serves to prevent the filler 58b poured into the portion where the signal line 57 is provided from flowing into the portion where the detection mechanism 53 is provided.
  • the filling material 58b is blocked by the partitioning material 58a when trying to flow into the portion where the detection mechanism 53 is provided.
  • the partitioning member 58a can prevent the detection mechanism 53 from being damaged due to the outflow of the filler 58b to the detection mechanism 53.
  • a resin such as epoxy or urethane may be used as a resin material of the filler 58b and the partitioning material 58a, and the viscosity may be adjusted by changing the degree of polymerization of these resins.
  • the partition member 58a formed of a resin plate may be adhered to the arrangement surface 40A of the element case 40 or the element surface 50A of the sensor element 50.
  • the flammable gas such as hydrogen in the gas to be measured comes into contact with the catalyst film 53b and burns.
  • the combustion heat generated by baking is transmitted to the detection heater 53a, so that the electric resistance value of the detection heater 53a using a material having a positive temperature coefficient of resistance increases.
  • the increased electric resistance value is transmitted to the circuit board 80 through the electrodes 56, the signal lines 57, and the leads 45 in the form of electric signals.
  • the circuit board 80 compares the received electric resistance value with a predetermined reference value of electric resistance, and measures the concentration of the flammable gas based on the difference between the two.
  • an element case 40, a circuit board 80, a sensor element 50, and an adhesive member 48 having the shapes shown in FIGS. 3 to 5 are prepared.
  • the element case 40 can be manufactured by resin injection molding in which the leads 45 are inserted.
  • FIG. 6 shows the configuration of the prepared adhesive member 48.
  • FIG. 6 (A) shows a flat surface of the adhesive member 48
  • FIG. 6 (B) shows an arrow when the adhesive member 48 shown in FIG. 6 (A) is cut along the line 7B-7B. It shows a sectional view.
  • the adhesive member 48 is a sheet-like member in which both front and back surfaces are adhesive surfaces, and each adhesive surface has thermosetting properties.
  • the planar shape (sticking area) of the adhesive member 48 can be freely determined by cutting the base sheet into an appropriate shape.
  • an adhesive member 48 having a bonding area substantially equal to the bottom surface 41 B of the bonding concave portion 41 is employed.
  • a hole 48p is formed by cutting the sheet of the area of the portion 51a in a hollow shape.
  • the bonding member 48 when the sensor element 50 is completely bonded to the bonding recess 41, the bonding member 48 is formed such that the element surface 5OA of the sensor element 50 and the arrangement surface 4OA of the element case 40 are arranged. It has a thickness d1 that realizes a substantially flush state (see FIG. 2). Specifically, when mounting the sensor element 50 with a thickness of 400 tm in the bonding recess 41 with a depth of 500, an adhesive member 48 with a sheet thickness of 100 tmm was adopted. I have.
  • the bonding member 48 may be appropriately selected from those having a sheet thickness of 10 Atm or more and have a suitable thickness.
  • an adhesive member that realizes reliable adhesion of the sensor element 50 to the adhesive concave portion 41 with a sheet thickness of 10 or less appears, such an adhesive member may be employed. It is. Epoxy, polyimide, or the like can be used as a material of the adhesive member 48 described above.
  • FIG. 7 is an explanatory diagram showing a state in which the sensor element 50 is bonded to the bonding recess 41 and the signal line 57 is insulated.
  • FIG. 7 schematically shows a cross section of a main part corresponding to FIG.
  • the sensor element 50 is mounted on the bottom surface 41 B of the bonding recess 41 of the element case 40 via the bonding member 48. Attach. Specifically, first, after laying the adhesive member 48 on the bottom surface 41B, the element back surface 50B of the appropriately heated sensor element 50 is placed on the laid adhesive member 48, The sensor element 50 is crimped from the element surface 50 A direction.
  • the residual heat radiated from the sensor element 50 is transmitted to the front and back surfaces of the adhesive member 48, so that the thermosetting adhesive on the front and back surfaces of the adhesive member 48 becomes tacky.
  • the back surface of the sensor element 50 is placed on the bottom surface 41B. 50 B is glued.
  • the procedure for bonding the sensor element 50 to the element case 40 is as follows: after bonding the bonding member 48 to the element surface 5OA of the sensor element 50, the sensor element 50 is bonded to the bonding recess 41. It can be changed to a procedure in which the sensor element 50 is placed on the bottom surface 41B and the sensor element 50 is crimped from the element surface 50A direction. Further, since the bonding member 48 has a hole 48p corresponding to the area of the gap 51a or the recess 42, the element back surface 50B near the outer periphery of the gap 51a is formed. A certain gap outer peripheral back surface 50 Bg (the portion shown by hatching in FIG. 6 (A)) is adhered to the adhesive member 48 over the entire surface.
  • the space 51b in the space 51a is sealed. Therefore, the outside air (indicated by the white arrow in FIG. 6A) sneaking from the element surface 50 A side of the sensor element 50 is prevented from entering the void 51 b and the recess 42. You.
  • the space 51b in the space 51a is formed through the hole 48p.
  • Suitable communication with the recesses 42 prevents the adhesive member 48 from blocking the recesses 42 and the adhesive member 48 from entering the recesses 42. Is done.
  • the adhesive member 48 is sheet-shaped, unnecessary adhesive flows into the voids 51a and the recesses 42 and solidifies, and the air in the voids 51a and the recesses 42 is aired. There is no such thing as volume reduction. Therefore, it is possible to sufficiently secure the favorable breakage prevention characteristics of the sensor element 50 having the diaphragm structure.
  • the signal line 57 is molded with an insulating resin material.
  • the sensor A partition member 58a is erected in the form of a vertical wall by applying a high-viscosity insulating resin material on the element surface 50A of the element 50 and on the arrangement surface 40A of the element case 40.
  • the partition member 58a is formed of a high-viscosity (15 OPa-s or more) insulating resin material that rises when placed on the upper surface of the sensor element 50.
  • the signal line 57 is covered with a filler 58b by pouring a low-viscosity insulating resin material from above the signal line 57.
  • FIG. 7 (C) shows a cross-sectional shape of the element case 40 shown in FIG. 7 (C) taken along the line 9-9. As shown in FIG. 8, after the sensor element 50 is bonded to the bonding recess 41, the element surface 50A of the sensor element 50 and the arrangement surface 40A of the element case 40 are substantially flush. It becomes.
  • the sensor element 50 is bonded to the element case 40 by the interposition between the bottom surface 41 B of the bonding recess 41 and the element back surface 50 B.
  • This is realized by the sheet-like adhesive member 48 provided. Therefore, the positional relationship between the element case 40 and the sensor element 50 after the bonding can be freely adjusted by changing the planar shape, the thickness, and the like of the bonding member 48 in the manufacturing stage. For example, by changing the thickness of the adhesive member 48, the position of the element surface 50A of the sensor element 50 can be strictly controlled. By obtaining the desired positional relationship in this way, it becomes easier to ensure the basic performance of the silicon microsensor after manufacturing.
  • the gas to be measured is This prevents turbulent flow from hitting the step between the surface 5 OA and the arrangement surface 40 A of the element case 40, ensuring a smooth flow of the gas to be measured and improving the accuracy of gas concentration detection. be able to.
  • a partition member 58 a for molding the signal line 57 is provided between the element surface 50 A of the sensor element 50 and the arrangement surface 40 A of the element case 40.
  • the gas sensor 10 of the above-described embodiment is, for example, capable of detecting hydrogen in the fuel cell unit. It can be applied to sensors that detect leakage. That is, in the fuel cell unit, hydrogen and air (oxygen) are supplied to the hydrogen electrode and the air electrode, respectively, and electricity is generated by causing a chemical reaction between the hydrogen and air (oxygen). Battery unit It can be used as a sensor for detecting that hydrogen is mixed in a high-humidity part (a water introduction part for guiding water to the electrolyte of the fuel cell) in the vessel.
  • a high-humidity part a water introduction part for guiding water to the electrolyte of the fuel cell
  • FIG. 9 is an explanatory diagram showing a first modification.
  • FIG. 9 shows a cross section corresponding to FIG. 7 (C). As shown in FIG.
  • a gas sensor 110 has an electrode 156 on the element back surface 1508 side of the sensor element 150 and is electrically connected to the electrode 156.
  • the terminal 144 a of each lead 144 is provided so as to be exposed on the bottom surface 141 B of the bonding recess 144 of the element case 140.
  • a sheet-like bonding member 148 having anisotropic conductivity in this example, a bonding material having conductivity only in the thickness direction). Member
  • the partitioning material 5 8 is formed so as to surround the periphery of the four signal lines 57.
  • the partitioning material 58a is not limited to such a shape, but may be provided in another shape to prevent the inflow of the filler 58b into the detection mechanism 53 side. It is good.
  • a rod-shaped partition member 258a provided at a position that separates the signal line 57 area and the detection mechanism 53 area is used as an element. It is also possible to mount and fix to the inner peripheral wall of the case 40 facing the same, and to provide the partition member 258a using the wall of the element case 40.
  • FIG. 10 shows a plane corresponding to FIG.
  • the recess 42 is formed at a position facing the gap 51a, but the configuration may be such that the recess 42 is not formed.
  • FIG. 11 shows a third modification.
  • FIG. 11 shows a cross section of the gas sensor 310 corresponding to FIG. 7 (C).
  • FIG. 12 shows a cross section corresponding to FIG. 7 (C).
  • the thickness of the adhesive member 448 is made larger than the thickness d1 of the above-described embodiment, so that the element back surface 50 B
  • a gap 448 b is formed between the bottom of the bonding recess 441 and the bonding recess 441.
  • the gap 51b in the gap 51a can be formed without forming a recess in the bonding recess 441, which faces the gap 51a of the sensor element 50 at the manufacturing stage.
  • a communication gap 4 4 8b is provided to increase the air volume. Therefore, it is possible to secure the property of preventing the thin film portion from being damaged while further improving the production efficiency.
  • the gap 51b is provided by forming the gap 51a on the back surface 50B of the sensor element 50.However, the gap 51b may be provided in other forms. is there. For example, as shown in FIG.
  • a void 551b may be provided by forming a through hole in a side surface of the sensor element 50.
  • FIG. 13 shows a cross section corresponding to FIG. 3 (B).
  • the step of molding the signal line 57 is unnecessary or the case where the flow of the filler 58b into the detection mechanism 53 is prevented by other means (for example, In the case where the inner wall of the bonding recess 41 and the outer surface of the sensor element 50 are in close contact with each other, or when molding is performed using a filler that does not flow, At the time of bonding to the bonding recess 41, the element surface 50A and the arrangement surface 40A may not be substantially flush. In such a case, the adjustment of the height of the sensor element 50 and the adjustment of the area where the sensor element 50 is bonded to the bonding recess 41 are flexibly changed according to the thickness of the bonding member 48. Can be.
  • the present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the scope of the invention.
  • the sheet-shaped adhesive member 48 may be formed of a combination of two or more members.
  • the present invention is applied to the gas sensor 10 for detecting the concentration of flammable gas.However, the present invention is not limited to this. Exhaust gas) can also be applied. Further, the present invention can be applied to a flow rate sensor, an acceleration sensor, and the like.
  • FIG. 14 is a schematic diagram schematically showing an intake system of an internal combustion engine using this air flow system 6 10.
  • the intake system of the internal combustion engine 600 is provided with an air cleaner 632 ; an intake pipe 6330 and a surge tank 637 from the upstream, and the intake pipe 630 is made of silicon.
  • An air flow meter using a micro sensor is provided, and a throttle valve for adjusting the intake air amount is provided.
  • a fuel injection valve 6400 is provided at an intake port where the intake pipe 6300 is connected to the internal combustion engine 600.
  • the internal combustion engine 600 has a spark plug 645 that forms a spark in the cylinder when a high voltage is applied from the internal combustion engine 640, and a rotation that detects the rotation speed of the internal combustion engine 600.
  • a number sensor 650 and an EFI controller 620 that receives signals from these sensors and drives a fuel injection valve 640, an idler 640, and the like are also provided.
  • the EFI controller 620 receives the signal from the air flow meter 610, calculates the intake air amount Q, and, based on this and the rotational speed N of the internal combustion engine 600, is required for the internal combustion engine 600.
  • the fuel injection amount V is calculated.
  • the EFI controller 620 opens the fuel injection valve 640 for a time corresponding to the fuel injection amount V, thereby injecting the fuel pumped to the fuel delivery pipe 638 into the intake port. I do.
  • the injected fuel is sucked into a cylinder (combustion chamber) of the internal combustion engine 600 while mixing with intake air sucked through an intake pipe in a suction stroke in which a piston (not shown) descends.
  • the spark is formed by the spark formed in the spark plug 645.
  • the piston is pushed down by the explosive combustion generated by spark ignition, and the combustion energy of the fuel is taken out as kinetic energy through a crankshaft (not shown). Used for the purpose.
  • the intake air amount Q is precisely adjusted. It is necessary to perform detection with high responsiveness.
  • the air flow meter 6 10 used in the present embodiment is configured as a silicon micro sensor, and realizes high detection accuracy and responsiveness.
  • the configuration of the air flow meter 610 as the second embodiment will be described.
  • FIGS. 15 and 16 show the outer shape of the air flow meter 600 as the second embodiment.
  • FIG. 15 is a plan view of the air flow 6110
  • FIG. 16 is a front view thereof.
  • the air flow meter 6 10 has the detection section 6 12 disposed in the intake pipe 6 30 and the air flow meter 6 10 mounted on the intake pipe 6 30. And a connector 618 for making an electrical connection with the EFI controller 620.
  • the detecting portion 6 12 is a portion protruding into the flow of the intake air from the intake pipe 6 30, and an opening 700 is provided in front of the front end portion thereof as shown in FIG. 16. .
  • the opening 700 penetrates to the back of the detection unit 6 12.
  • FIG. 17 shows a cross section of the opening 700.
  • the opening 700 has a shape having a large opening cross-sectional area at the entrance and the smallest opening cross-sectional area at the center. Due to such a shape, the intake air flowing through the intake pipe 630 flows into and out of the opening 700 smoothly.
  • Intake pipe 6 3 Since there is a good proportional relationship between the total amount of intake air flowing through the inside of the cylinder and the amount of air flowing through the opening of the air flower, the air passes through the opening. By measuring the amount of air flowing through the intake pipe 630, the amount of intake air finally flowing into the internal combustion engine 600 can be detected.
  • FIG. 18 is an enlarged view of the structure of the silicon microsensor 710.
  • the basic shape of the silicon microsensor 7100 is the same as that of the first embodiment. That is, in the silicon microsensor 7100, a silicon substrate 720 is bonded and fixed to the bonding concave portion 735 provided in the case 715 via a sheet-shaped bonding member 740. Structure. The surface of the silicon substrate 720 is polished with extremely high precision and has a so-called mirror finish. On the surface of the silicon substrate 720, an insulating thin film 727 of silicon oxide is formed.
  • An air gap 730 is formed on the substantially central rear surface of the silicon substrate 720, and the portion where the detection mechanism is formed is thin.
  • a heater 725 is formed at the center, and an upstream sensor 721 and a downstream sensor 722 are formed on both sides thereof.
  • Each of the sensors 725 and 721 is a thin film of platinum or the like formed by a method such as sputtering.
  • the heater 725 and both sensors 721, 722 are formed inside the insulating thin film 727 corresponding to the thin portion.
  • the insulating thin film 727 can be formed by a thin film other than the oxide film.
  • the silicon microsensor 710 of the air flow unit 610 has a depth H1 of the bonding concave portion 735, the thickness d1 of the sheet-shaped bonding member 740, and the silicon microsensor 710.
  • the adhesive member 740 is placed at the bottom of the adhesive recess 735, and the silicon base is placed here.
  • the dimensional tolerance of each part was controlled so that the difference in height between the two was less than ⁇ 0.3 mm.
  • step There is a height difference (step) between the surface of the case 7 15 and the surface of the silicon substrate 720, and when the step is larger than a predetermined value, a vortex that cannot be overlooked in the air flowing through the opening 700, It may affect the accuracy of air volume detection described later.
  • the step since the step is set to ⁇ 0.3 mm or less, the flow of the air passing through the opening 700 is kept in an orderly laminar flow, and the required detection accuracy as the air flow meter 610 can be obtained.
  • the step between the surface of the case 7 15 and the surface of the silicon substrate 720 can be set to ⁇ 0.2 mm or less, more preferably 0.1 mm or less, by strictly controlling the dimensional tolerance. It is possible.
  • the plus sign indicates a case where the silicon substrate 720 on which the detection mechanism is formed is higher, and the minus sign indicates a case where it is lower. It is preferable that the silicon substrate 720 be projected so that the above difference is controlled in the range of 0.05 to 0.3 mm. Needless to say, a range of 0.05 to 0.2 mm or a range of 0.05 to 0.1 mm is also preferable in terms of maintaining high detection accuracy.
  • the remaining configuration of the airframe 610, such as wiring from the terminal of the connector 618 to the electrode of the silicon substrate 720, is basically performed in the same manner as in the first embodiment. Therefore, the description is omitted.
  • the method of detecting the amount of intake air by the silicon microsensor 710 whose structure is simply described above will be briefly described.
  • a constant current is applied to the heater 725 provided at the center of the thin portion of the silicon substrate 720, and a constant amount of heat is appear.
  • the heat generated in the heat sink 725 is transmitted to the surroundings through the air present in the opening 700, and raises the temperature of the two sensors 721 and 722 on both sides.
  • the sensors 72 1 and 72 2 are made of a material having a high temperature coefficient of resistance such as platinum.
  • the resistance of the sensor is basically determined by the specific resistance, the length and the cross-sectional area of the sensor.
  • the temperature coefficient of resistance of a material such as platinum is known. Therefore, by measuring the resistance values of both sensors 721, 722, the temperature can be known.
  • the two sensors 72 1 and 72 2 are made of the same material, have the same length, and have the same cross-sectional area so that their resistance values are equal at the same temperature.
  • the distance from the heater 72 5 to the upstream sensor 72 1 is equal to the distance from the downstream sensor 72 2. Therefore, if the amount of air passing through the opening 700 is zero, the temperature rises of both sensors are equal and the resistance values are basically equal.
  • the upstream sensor 721 and the downstream sensor 722 are connected so as to be arranged at opposing positions of a Wheatstone bridge composed of four resistors, and the other two resistors are connected.
  • the change in resistance due to the temperature change between the upstream sensor 721 and the downstream sensor 722 will be transferred to the heater bridge. More accurate detection is possible.
  • the amount of air flowing through the opening 700 and thus the amount of air flowing through the intake pipe 630 are measured by such a structure.
  • the portion where the heater 725 and both sensors 721, 722 are formed is made thin. Therefore, when the flow rate of the air flowing through the opening 700 changes and the state of heat transfer from the heater 72 changes, the temperatures of both sensors 72 1 and 72 2 also change immediately.
  • the silicon substrate 720 is housed and bonded in the bonding recess 735 by using a sheet-like bonding member 740, the silicon substrate 722 with respect to the height of the case 715 is provided.
  • the surface height can be controlled with high precision, and by making the two almost the same level, the flow of air flowing through the opening 700 will not be disturbed, and the air volume detection accuracy Can be kept high.
  • the resin case-molded element case 40 and the case 715 are described as the “case” in the claims, but the present invention is not limited thereto.
  • Ceramic substrate made of light, aluminum nitride, glass ceramic, etc., or resin such as epoxy resin, polyimide resin, BT resin, PPE resin, or composite material of these resins with fibers such as glass fiber or polyester fiber
  • a substrate made of a resin composite material in which a fluororesin having a three-dimensional network structure is impregnated with an epoxy resin or the like is included.
  • a substrate formed by combining a ceramic substrate with these resins and composite materials is also included.

Abstract

A mounting method for a silicon micro sensor capable of assuring the basic performances of the silicon micro sensor by controlling the positional relation between a sensor element and a case to a specified positional relation after the sensor element is adhered to the case, comprising the steps of adhering the rear surface (50B) of the sensor element (50) to the bottom surface (41B) of the adhesion recessed part (41) of a gas sensor (10) through a sheet-like adhesive member (48), wherein the adhesive member (48) has a thickness of (d1) to realize that the surface (50A) of the sensor element (50) is generally flush with the installation surface (40A) of the element case (40) when the sensor element (50) is completely adhered to the adhesion recessed part (41).

Description

明細書 シリコン製マイク口センサの実装方法、 製造方法およびシリコン製マイクロセ ンサ 技術分野  Description Mounting method and manufacturing method of silicon microphone opening sensor and silicon microsensor
本発明は、 シリコン製基板上に検出機構を備えたセンサ素子をケースに装着す ることにより構成されたシリコン製マイクロセンサに関する。 背景技術  The present invention relates to a silicon microsensor configured by mounting a sensor element having a detection mechanism on a silicon substrate in a case. Background art
従来、 シリコン製マイクロセンサは、 様々な用途、 例えば、 ガスの性状変化を 検出してガス濃度を測定するといつた用途に広く用いられている。 このようなシ リコン製マイクロセンサに使用されるセンサ素子には、 半導体マイクロマシニン グ技術を用いることにより、 検出機構が配設される部位を薄肉とした構造を有す るものがある。 この構造のセンサ素子では、 薄肉とされた部位と薄肉とされてい ない部位との間に空隙が形成される。 このような空隙を備えたセンサ素子の構造 のことを、以下、 「ダイヤフラム構造」と言う。 このようなダイヤフラム構造は、 例えば、 検出機構がガスの燃焼熱を検出することによりガス濃度を測定するシリ コン製マイクロセンサでは、 センサ素子において検出機構と他の部位とを熱的に 絶縁したり、 センサ素子がケースに装着された状態において検出機構の熱容量を 小さくする等の役割を果たしている。  Conventionally, silicon microsensors have been widely used in various applications, for example, when detecting gas property changes and measuring gas concentrations. Some of the sensor elements used in such silicon microsensors have a structure in which a portion where a detection mechanism is provided is thinned by using semiconductor micromachining technology. In the sensor element having this structure, a gap is formed between a thinned portion and a non-thinned portion. Hereinafter, the structure of the sensor element having such a gap is referred to as a “diaphragm structure”. Such a diaphragm structure is used, for example, in a silicon microsensor in which a detection mechanism detects gas heat of combustion by measuring the heat of combustion of the gas to thermally insulate the detection mechanism from other parts in the sensor element. It plays a role of reducing the heat capacity of the detection mechanism when the sensor element is mounted on the case.
上記ダイヤフラム構造を有するセンサ素子のケースへの装着は、 従来、 ケース とセンサ素子とをペース卜状の接着剤で接着することによって行なわれていた (例えば、 特開 2 0 0 1 — 1 2 9 8 6号公報参照) 。 発明の開示 Conventionally, the mounting of the sensor element having the diaphragm structure on the case has been performed by bonding the case and the sensor element with a paste-like adhesive. (See, for example, Japanese Patent Application Laid-Open No. 2001-129886). Disclosure of the invention
しかし、 上記従来の接着手法では、 ペースト状の接着剤はケースとセンサ素子 との接着の際に流動し得るため、 たとえ接着剤の使用量を一定に保っても接着範 囲における接着剤の均一な分布を実現することが難しく、 接着剤が固化した後に おけるケースとセンサ素子との位置関係について企図した通りの位置関係を得に くいという課題があった。 このようなケースとセンサ素子との位置関係は、 検出 機構の検出精度等のシリコン製マイク口センサの基本性能に影響し得る。従って、 上記の課題は、 シリコン製マイクロセンサの基本性能の向上という観点から解決 する必要性の高いものであった。  However, in the conventional bonding method described above, since the paste-like adhesive can flow when the case and the sensor element are bonded, even if the amount of the adhesive used is kept constant, the adhesive in the bonding range is uniform. It was difficult to achieve a precise distribution, and it was difficult to obtain the intended positional relationship between the case and the sensor element after the adhesive had solidified. Such a positional relationship between the case and the sensor element may affect the basic performance of the silicon microphone sensor such as the detection accuracy of the detection mechanism. Therefore, there is a high need to solve the above problem from the viewpoint of improving the basic performance of the silicon microsensor.
そこで本発明は、 上記の課題を解決し、 センサ素子をケースに接着した後にお けるセンサ素子とケースとの位置関係を所望の位置関係に制御し、 シリコン製マ イクロセンサの基本性能を確保することを目的として、 以下の構成を採つた。 本発明の第 1のシリコン製マイクロセンサの実装方法は、  Therefore, the present invention solves the above-mentioned problems, and controls the positional relationship between the sensor element and the case after bonding the sensor element to the case to a desired positional relationship, thereby ensuring the basic performance of the silicon microsensor. For the purpose, the following configuration was adopted. The mounting method of the first silicon microsensor of the present invention,
シリコン製基板上に検出機構を備えたセンサ素子を、 ケースに収納するシリコ ン製マイクロセンサの実装方法であって、  A method for mounting a silicon microsensor for housing a sensor element having a detection mechanism on a silicon substrate in a case,
前記ケースに、 前記センサ素子を収納可能な凹部を、 該凹部の少なくとも前記 センサ素子と接触する底面を平坦として形成し、  A concave portion capable of accommodating the sensor element is formed in the case, at least a bottom surface of the concave portion that is in contact with the sensor element is formed flat;
該凹部の底面に、 予め厚みを調整したシ一卜状の接着部材を配置し、 前記センサ素子を、 前記凹部に嵌め込んで、 前記接着部材により前記底面に接 着固定すること  A sheet-shaped adhesive member whose thickness has been adjusted in advance is disposed on the bottom surface of the concave portion, and the sensor element is fitted into the concave portion, and is fixed to the bottom surface by the adhesive member.
を要旨とする。 また、 本発明の第 2のシリコン製マイク口センサの実装方法は、 シリコン製基板上に検出機構を備えたセンサ素子を、 ケースに収納するシリコ ン製マイクロセンサの実装方法であって、 Is the gist. The second method of mounting a silicon microphone opening sensor of the present invention is a method of mounting a silicon microsensor for housing a sensor element having a detection mechanism on a silicon substrate in a case.
前記ケースに、 前記センサ素子を収納可能な凹部を、 該凹部の少なくとも前記 センサ素子と接触する底面を平坦として形成し、  A concave portion capable of accommodating the sensor element is formed in the case, at least a bottom surface of the concave portion that is in contact with the sensor element is formed flat;
前記センサ素子の裏面に、 前記凹部に挿入可能な大きさであり、 予め厚みを調 整したシー卜状の接着部材を貼付し、  On the back surface of the sensor element, a sheet-like adhesive member having a size that can be inserted into the concave portion and having a thickness adjusted in advance is attached,
前記センサ素子を、 前記凹部に嵌め込んで、 前記接着部材により前記底面に接 着固定すること  The sensor element is fitted into the recess, and is fixed to the bottom surface by the adhesive member.
を要旨とする。  Is the gist.
上記発明の第 1のシリコン製マイクロセンサの実装方法では、 ケースに設けら れた凹部の底面に予め厚みを調整したシー卜状の接着部材を配置し、 センサ素子 を、 凹部に嵌め込んで、 接着部材により凹部の底面に接着固定する。 また、 上記 発明の第 2のシリコン製マイクロセンサの実装方法では、 センサ素子の裏面に予 め厚みを調整したシ一卜状の接着部材を貼付し、 このセンサ素子を、 ケースに設 けられた凹部に嵌め込んで、 接着部材により凹部の底面に接着固定する。 このよ うにシート状の接着部材を用いて接着固定することにより、 実装段階において接 着部材の厚みを変えることによって、 接着後におけるケースとセンサ素子との位 置関係を自由に調節することが可能となリ、 実装後のシリコン製マイクロセンサ において所望の位置関係を得ることが可能となる。 このように所望の位置関係を 得ることで、 実装後におけるシリコン製マイクロセンサの基本性能を確保し易く なる。  In the first method for mounting a silicon microsensor of the invention, a sheet-like adhesive member whose thickness has been adjusted in advance is disposed on the bottom surface of the concave portion provided in the case, and the sensor element is fitted into the concave portion. It is adhesively fixed to the bottom surface of the recess by an adhesive member. In the second method for mounting a silicon microsensor of the present invention, a sheet-shaped adhesive member having a predetermined thickness is attached to the back surface of the sensor element, and the sensor element is provided in a case. It fits into the recess and is adhesively fixed to the bottom surface of the recess by an adhesive member. By bonding and fixing using a sheet-shaped bonding member in this way, the positional relationship between the case and the sensor element after bonding can be freely adjusted by changing the thickness of the bonding member at the mounting stage. Thus, it is possible to obtain a desired positional relationship in the mounted silicon microsensor. By obtaining a desired positional relationship in this way, it becomes easy to secure the basic performance of the silicon microsensor after mounting.
センサ素子を収納可能な凹部が、 センサ素子が配置される側のケースの表面で ある配置面に所定の深さで形成されており、 シー卜状の接着部材の予め調整され た厚みが、 凹部にセンサ素子を嵌めて接着固定した後で、 センサ素子の素子表面 とケースの配置面とが略面一になる寸法であることも好適である。 このような厚 みの接着部材を用いて実装すれば、 実装後のシリコン製マイクロセンサにおいて センサ素子の素子表面とケースの配置面とが略面一となる。 従って、 センサ素子 の検出機構付近において検出対象物の流れが乱れてしまうことを有効に防止し、 円滑な流れを確保することができる。 ここで、 略面一になる寸法とは、 センサ素 子の素子表面とケースの配置面との段差が、 0 . 3 m m以下であることを意味す る。 The recess that can accommodate the sensor element is located on the surface of the case where the sensor element is located. It is formed at a certain depth on a certain placement surface, and the pre-adjusted thickness of the sheet-like adhesive member is determined by disposing the sensor element in the recess and bonding and fixing the sensor element element surface and the case. It is also preferable that the dimension is such that the plane is substantially flush with the plane. If mounting is performed using such a thick adhesive member, the surface of the sensor element and the surface of the case are substantially flush with each other in the mounted silicon microsensor. Therefore, it is possible to effectively prevent the flow of the detection target from being disturbed in the vicinity of the detection mechanism of the sensor element, and to ensure a smooth flow. Here, the dimension that is substantially flush means that the step between the element surface of the sensor element and the arrangement surface of the case is 0.3 mm or less.
センサ素子に、 検出機構の配置された個所が薄肉形状となるようにセンサ素子 の一部を除去することにより空隙部を設け、 シ一卜状の接着部材が、 センサ素子 の空隙部に対応する箇所に、 該空隙部の開口に対応した形状の開口部を備える構 成としてもよい。 この構成によれば、 センサ素子をケースの凹部に接着する際、 不要な接着剤がセンサ素子の空隙部内に流れ込んで空隙部の薄肉形状とされた部 位 (薄肉部) に付着し、 接着剤の硬化工程等のセンサ素子に熱がかかる場合に薄 肉部が破損するといったことを防止することができる。  A gap is provided in the sensor element by removing a part of the sensor element so that the place where the detection mechanism is arranged becomes thin, and a sheet-like adhesive member corresponds to the gap of the sensor element. The location may have an opening having a shape corresponding to the opening of the gap. According to this configuration, when the sensor element is bonded to the concave portion of the case, unnecessary adhesive flows into the gap of the sensor element and adheres to the thinned portion (thin portion) of the gap. The thin portion can be prevented from being damaged when heat is applied to the sensor element in the curing step or the like.
シー卜状の接着部材を熱硬化性の接着剤を成分とする部材にしてもよい。 この ような接着部材を用いれば、 加熱されたセンサ素子を凹部に嵌め込んで圧着する ことにより、 接着部材による底面への接着固定を実現することが可能となる。 こ のような場合には、 予めセンサ素子を加熱しておき、 その余熱を利用してセンサ 素子が接着用凹部に接着固定されるので、 接着に伴う実装効率を高めることがで さる。  The sheet-like adhesive member may be a member containing a thermosetting adhesive as a component. If such an adhesive member is used, the heated sensor element is fitted into the concave portion and pressure-bonded, so that the adhesive member can be bonded and fixed to the bottom surface. In such a case, the sensor element is heated in advance, and the remaining heat is used to fix the sensor element in the bonding recess, so that the mounting efficiency accompanying the bonding can be increased.
本発明のシリコン製マイク口センサの製造方法は、 ( A ) シリコン製基板の表面に検出機構を準備する工程と、 The method for manufacturing the silicon microphone opening sensor of the present invention is as follows. (A) preparing a detection mechanism on the surface of the silicon substrate;
( B ) 該検出機構が配設される側の面である素子表面において、 前記検出機構 の配設個所が薄肉形状となるセンサ素子を準備する工程と、  (B) a step of preparing a sensor element having a thin-walled portion where the detection mechanism is disposed, on the element surface on the side where the detection mechanism is disposed;
( C ) 該センサ素子が配置される側の配置面に該センサ素子の収納用の凹部が 形成されたケースを準備する工程と、  (C) a step of preparing a case in which a recess for accommodating the sensor element is formed on an arrangement surface on a side where the sensor element is arranged;
( D ) シート状の接着部材を準備する工程と、  (D) a step of preparing a sheet-like adhesive member;
( E ) 前記凹部の底面と前記センサ素子の前記素子表面とは反対側の面である 素子裏面との間に前記接着部材を介在させて、 該凹部に該センサ素子を接着する 工程と  (E) adhering the sensor element to the recess by interposing the adhesive member between a bottom surface of the recess and an element back surface opposite to the element surface of the sensor element;
を備えたことを要旨とする。  The gist is that it is provided.
上記発明のシリコン製マイクロセンサの製造方法では、 センサ素子が、 その素 子裏面とケースの凹部の底面との間に介在されたシー卜状の接着部材により、 凹 部に接着される。 このため、 製造段階において接着部材の厚みを変えることによ り、 接着後におけるケースとセンサ素子との位置関係を自由に調節することが可 能となり、 製造後のシリコン製マイクロセンサにおいて所望の位置関係を得るこ とが可能となる。 このように所望の位置関係を得ることで、 製造後におけるシリ コン製マイクロセンサの基本性能を確保し易くなる。  In the method for manufacturing a silicon microsensor according to the above invention, the sensor element is bonded to the concave portion by a sheet-like adhesive member interposed between the back surface of the element and the bottom surface of the concave portion of the case. For this reason, by changing the thickness of the bonding member at the manufacturing stage, the positional relationship between the case and the sensor element after bonding can be freely adjusted, and the desired position in the manufactured silicon microsensor can be adjusted. It is possible to get a relationship. By obtaining the desired positional relationship in this way, it becomes easier to ensure the basic performance of the silicon microsensor after manufacturing.
上記の製造方法が、 前記工程 (E ) では、 前記凹部に前記センサ素子を接着す る際、 前記センサ素子の素子表面と前記ケースの配置面とを略面一とし、 更に ( F ) 前記凹部に前記センサ素子が接着された後において、 前記凹部に接着され た前記センサ素子の素子表面と前記ケースの配置面との間に、 前記センサ素子と 前記ケースとの間を電気的に接続する信号線を装着する工程と、 (G ) 前記素子 表面ないし前記ケースの配置面に、 前記信号線が装着された部位と前記検出機構 が配設された部位とを区画する区画材を設ける工程と、 (H ) 前記信号線が装着 された部位を充填材によりモールドする工程とを備えることとしてもよい。 セン サ素子の素子表面とケースの配置面とを略面一とした上で、 素子表面ないしケー スの配置面に区画材を設けることで、 素子表面ないしケースの配置面と区画材と の間に隙間が生じにくくなり、 信号線が装着された部位を充填材でモールドする 際に充填材が上記隙間から流出しにくくなる。 従って、 充填材が上記隙間から流 出することに起因するシリコン製マイクロセンサの検出不良や破損等の不具合の 発生を防止することができる。 In the manufacturing method described above, in the step (E), when the sensor element is bonded to the recess, an element surface of the sensor element and an arrangement surface of the case are substantially flush with each other; After the sensor element is bonded to the sensor element, a signal for electrically connecting the sensor element and the case is provided between the element surface of the sensor element bonded to the recess and the arrangement surface of the case. (G) mounting the signal line on the surface of the element or the arrangement surface of the case, and the detection mechanism. And a step of (H) molding a part, to which the signal line is attached, with a filler. By making the element surface of the sensor element and the arrangement surface of the case substantially flush with each other, and providing a partition material on the element surface or the case arrangement surface, the space between the element surface or the case arrangement surface and the partition material is reduced. A gap is less likely to be formed in the gap, and the filler is less likely to flow out of the gap when the portion where the signal line is mounted is molded with the filler. Therefore, it is possible to prevent the silicon microsensor from causing a defect such as detection failure or breakage due to the filler flowing out from the gap.
ケースが凹部の底面に露出する端子を備え、 センサ素子がケースの露出した端 子と面する側に検出機構に接続される電極を備える場合には、 上記の工程 (D ) において前記端子と前記電極との方向についてのみ導電性を有するシ一卜状の接 着部材を準備することも好適である。 こうすれば、 凹部にセンサ素子を接着する ことにより、センサ素子の電極とケースの端子とが接着部材を介して導通される。 従って、 製造段階において、 センサ素子の電極とケースの端子とのボンディング 等による接続作業が不要となり、 製造効率を高めることができる。  In the case where the case includes a terminal exposed on the bottom surface of the concave portion and the sensor element includes an electrode connected to the detection mechanism on a side facing the exposed terminal of the case, in the above step (D), the terminal and the terminal It is also preferable to prepare a sheet-like bonding member having conductivity only in the direction to the electrodes. In this case, by bonding the sensor element to the recess, the electrode of the sensor element and the terminal of the case are electrically connected via the bonding member. Accordingly, in the manufacturing stage, connection work such as bonding between the electrode of the sensor element and the terminal of the case becomes unnecessary, and the manufacturing efficiency can be improved.
本発明のシリコン製マイクロセンサは、  The silicon microsensor of the present invention,
シリコン製基板上に検出機構が配置され、 該検出機構の配置される個所が薄肉 とされた構造を有するセンサ素子と、  A sensor element having a structure in which a detection mechanism is disposed on a silicon substrate, and where the detection mechanism is disposed is thin;
該センサ素子の収納用の凹部が形成されたケースと、  A case in which a recess for housing the sensor element is formed,
前記凹部の底面に敷設されて該凹部と前記センサ素子とを接着する接着部材と を備え、  An adhesive member laid on the bottom surface of the concave portion and bonding the concave portion and the sensor element,
前記接着部材がシ一卜状の部材であることを要旨とする。  The gist is that the adhesive member is a sheet-like member.
上記発明のシリコン製マイクロセンサでは、 センサ素子が、 シート状の接着部 材を介してケースの凹部の底面に接着される。 従って、 接着部材の厚みを変更し てケースとセンサ素子との位置関係を自由に制御することが可能となり、 こうし た位置関係の制御によってシリコン製マイク口センサの基本性能を確保し易くな る。 In the silicon microsensor of the above invention, the sensor element has a sheet-like bonding portion. It is adhered to the bottom of the concave portion of the case via a material. Therefore, it is possible to freely control the positional relationship between the case and the sensor element by changing the thickness of the adhesive member, and it is easy to secure the basic performance of the silicon microphone opening sensor by controlling the positional relationship. .
こうしたセンサ素子の収納用の凹部は、 センサ素子が配置される側のケースの 表面である配置面に所定深さで形成し、 センサ素子の素子表面とケースの配置面 とを略面一としても良い。 こうすれば、 センサ素子の検出機構近傍において段差 などが生じることがなく、 段差の存在に起因する不具合を生じることがない。 こ うした不具合としては、 例えば検出機構近傍を検出対象である気体が流れる場合 の乱流の発生、 段差への塵埃の堆積などが考えられる。 もとより、 面一にしない ことで、 乱流などを発生させることが望ましい場合も存在する。 こうした場合に は、 接着部材の厚みを条件に応じて変更することで、 対応可能である。  Such a recess for accommodating the sensor element is formed at a predetermined depth on an arrangement surface, which is a surface of the case on which the sensor element is arranged, so that the element surface of the sensor element and the arrangement surface of the case are substantially flush. good. In this way, no step is formed near the detection mechanism of the sensor element, and no trouble is caused by the existence of the step. Such problems may include, for example, generation of turbulence when a gas to be detected flows near the detection mechanism, and accumulation of dust on a step. Of course, it is sometimes desirable to generate turbulence, etc. by not flushing. In such a case, it can be dealt with by changing the thickness of the adhesive member according to the conditions.
また、 センサ素子の素子裏面に、 検出機構の配置された箇所が薄肉形状となる ように空隙部を設け、 接着部材を、 センサ素子の空隙部に対応する箇所に、 空隙 部の開口に対応した形状の開口部を備えた形状とすることも可能である。 かかる 構成によれば、 センサ素子をケースの凹部に接着する際、 不要な接着剤がセンサ 素子の空隙部内に流れ込んだとしても、 開口部内に流出しやすいので、 接着剤が 空隙部の肉薄形状とされた部位 (肉薄部) に付着することを防止することができ る。  In addition, a gap is provided on the back surface of the sensor element so that the location where the detection mechanism is disposed is thin, and an adhesive member is provided at a location corresponding to the gap of the sensor element, corresponding to the opening of the gap. It is also possible to have a shape with a shaped opening. According to this configuration, when the sensor element is bonded to the concave portion of the case, even if unnecessary adhesive flows into the gap of the sensor element, the adhesive easily flows out of the opening. It can be prevented from adhering to the thinned part.
あるいは、 ケースの凹部の底面の、 接着部材の開口部に対応する位置に、 所定 の容積の内部空間を有する凹所を設ける構成としてもよい。 この構成によれば、 センサ素子の薄肉形状とされた部位の周辺に存する空気の体積が凹所内の空間分 だけ増加されるので、 薄肉形状とされた部位付近における空気の圧力上昇が生じ にくくなリ、 薄肉形状とされた部位の破損を有効に防止することができる。 シ一卜状の接着部材の予め調整された厚みを、 凹部にセンサ素子を嵌めて接着 固定した後で、 凹部の底面とセンサ素子の素子裏面との間の開口部内に所定の容 積の間隙が設けられる寸法とすることも好ましい。 こうすれば、 凹部にセンサ素 子を接着固定することにより、 空隙部内の空隙に連続する間隙が設けられる。 従 つて、 ケースの凹部の底面に凹所を形成しなくても、 上記の間隙によって上記の 破損防止特性を十全に確保することが可能となり、 製造効率を高めることができ る。 また、 ケースの凹部の底面に上記凹所を形成した場合には、 空隙が間隙ない し凹所に連通されて空気領域が更に拡大されるので、 上記の破損防止特性をより 一層向上することができる。 Alternatively, a configuration may be provided in which a recess having an internal space of a predetermined volume is provided at a position corresponding to the opening of the adhesive member on the bottom surface of the recess of the case. According to this configuration, since the volume of air existing around the thinned portion of the sensor element is increased by the space within the recess, the air pressure increases near the thinned portion. It is possible to effectively prevent damage to the thin and thin portions. After the sensor element is fitted and fixed in the recess by adjusting the thickness of the sheet-shaped adhesive member in advance, a gap having a predetermined volume is provided in the opening between the bottom surface of the recess and the back surface of the sensor element. It is also preferable to set the dimension to provide With this configuration, the sensor element is bonded and fixed to the recess, so that a gap that is continuous with the gap in the gap is provided. Therefore, even if a recess is not formed on the bottom surface of the recess of the case, the above-described gap can sufficiently secure the above-described damage prevention characteristics, and the manufacturing efficiency can be improved. Further, when the above-described recess is formed on the bottom surface of the recess of the case, since the air space is further enlarged by leaving no gap or communicating with the recess, the above-described damage prevention characteristics can be further improved. it can.
また、ケースに、その凹部の底面の接着部材の存在箇所に露出する端子を設け、 センサ素子に、 ケースの露出した端子と面する側に、 検出機構に接続される電極 を設け、 接着部材を、 端子と電極との方向についてのみ導電性を有するシ一卜状 の部材とすることができる。 こうすれば、 センサ素子の電極とケースの端子との 接続を容易に実現することができ、 構成を簡便にすることができる。 図面の簡単な説明  Further, the case is provided with a terminal that is exposed at the location of the adhesive member on the bottom surface of the concave portion, and the sensor element is provided with an electrode connected to the detection mechanism on the side facing the exposed terminal of the case. In addition, a sheet-shaped member having conductivity only in the direction between the terminal and the electrode can be used. In this case, connection between the electrode of the sensor element and the terminal of the case can be easily realized, and the configuration can be simplified. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施例である接触燃焼式可燃性ガスセンサ 1 0の平面を示 す説明図である。  FIG. 1 is an explanatory diagram showing a plan view of a catalytic combustion type combustible gas sensor 10 according to one embodiment of the present invention.
図 2は、 図 1 に示した接触燃焼式可燃性ガスセンサ 1 0を 2— 2線に沿って切 断したときの断面を示す説明図である。  FIG. 2 is an explanatory diagram showing a cross section when the catalytic combustion type combustible gas sensor 10 shown in FIG. 1 is cut along line 2-2.
図 3は、 センサ素子 5 0を模式的に表わす説明図である。  FIG. 3 is an explanatory diagram schematically showing the sensor element 50.
図 4は、 センサ素子 5 0が装着される前の接触燃焼式可燃性ガスセンサ 1 0の 平面を示す説明図である。 FIG. 4 shows the contact combustion type flammable gas sensor 10 before the sensor element 50 is mounted. It is explanatory drawing which shows a plane.
図 5は、 図 4に示した接触燃焼式可燃性ガスセンサ 1 0を 5— 5線に沿って切 断したときの矢視断面形状を示す説明図である。  FIG. 5 is an explanatory diagram showing a cross-sectional shape of the contact combustion type combustible gas sensor 10 shown in FIG. 4 when cut along line 5-5.
図 6は、 接着部材 4 8を示す説明図である。  FIG. 6 is an explanatory diagram showing the adhesive member 48.
図 7は、 接着用凹部 4 1 にセンサ素子 5 0が接着され、 信号線 5 7の絶縁処理 がなされる様子を示す説明図である。  FIG. 7 is an explanatory diagram showing a state in which the sensor element 50 is bonded to the bonding recess 41 and the signal line 57 is insulated.
図 8は、 図 7 ( C ) に示した素子ケース 4 0を 9— 9線に沿って切断したとき の矢視断面形状を示す説明図である。  FIG. 8 is an explanatory diagram showing a cross-sectional shape of the element case 40 shown in FIG. 7C taken along line 9-9.
図 9は、 第 1変形例を示す説明図である。  FIG. 9 is an explanatory diagram showing a first modification.
図 1 0は、 第 2変形例を示す説明図である。  FIG. 10 is an explanatory diagram showing a second modification.
図 1 1は、 第 3変形例を示す説明図である。  FIG. 11 is an explanatory diagram showing a third modification.
図 1 2は、 第 4変形例を示す説明図である。  FIG. 12 is an explanatory diagram showing a fourth modification.
図 1 3は、 第 5変形例を示す説明図である。  FIG. 13 is an explanatory diagram showing a fifth modification.
図 1 4は、 第 2実施例としてのェアフロメータ 6 1 0の使用状態を示す説明図 である。  FIG. 14 is an explanatory diagram showing a use state of the air flow meter 610 as the second embodiment.
図 1 5は、 ェアフロメータ 6 1 0の平面図である。  FIG. 15 is a plan view of the air flow meter 6 10.
図 1 6は、 ェアフロメータ 6 1 0の正面図である。  FIG. 16 is a front view of the air flow meter 6 10.
図 1 7は、 図 1 6に示したエアフロメ一夕 6 1 0を 1 7— 1 7線に沿って切断 したときの矢視断面形状を示す説明図である。  FIG. 17 is an explanatory diagram showing a cross-sectional shape taken along arrow 17--17 when the air flow shown in FIG. 16 is cut along the line 17-17.
図 1 8は、 エアフロメ一夕 6 1 0に用いられたシリコン製マイクロセンサ 7 1 0の構造を示す説明図である。 発明を実施するための最良の形態 以上説明した本発明の構成および作用を一層明らかにするために、 以下本発明 の実施の形態を、 以下の順序で説明する。 FIG. 18 is an explanatory diagram showing the structure of the silicon microsensor 7 10 used in the air flow 6 10. BEST MODE FOR CARRYING OUT THE INVENTION In order to further clarify the configuration and operation of the present invention described above, embodiments of the present invention will be described below in the following order.
に 第 1実施例 (接触燃焼式可燃性ガスセンサ 1 0) In the first embodiment (contact combustion type combustible gas sensor 10)
A— 1. 接触燃焼式可燃性ガスセンサ 1 0の全体構成  A— 1. Overall configuration of catalytic combustion type combustible gas sensor 10
A— 2. センサ素子 50の構成  A— 2. Configuration of sensor element 50
A— 3. 素子ケース 40の構成  A— 3. Configuration of element case 40
A- 4. ガス検出の仕組み  A- 4. Gas detection mechanism
B. 接触燃焼式可燃性ガスセンサ 1 0の製造工程  B. Manufacturing process of flammable gas sensor with contact combustion type 10
B— 1 . 素子ケース 40, 回路基板 80, センサ素子 50, 接着部材 48の準 備  B— 1. Preparation of element case 40, circuit board 80, sensor element 50, and adhesive member 48
B- 2. 接着部材 48の構成  B- 2. Structure of Adhesive 48
B - 3. センサ素子 50の素子ケース 40への接着  B-3. Adhesion of sensor element 50 to element case 40
B— 4. 信号線 5 7のモールド  B— 4. Mold of signal line 5 7
B- 5. 回路基板 80との接続  B- 5. Connection with circuit board 80
B— 6. 作用効果  B— 6. Effect
C. 変形例  C. Variations
D. 第 2実施例 (エアフロメ一夕 6 1 0)  D. Second Example (Air From Night 6 10)
D- 1 ェアフロメータ 6 1 0の使用例  Use example of D-1 air flow meter 6 10
D— 2 ェアフロメータの構成  D—2 Configuration of the flowmeter
D- 3 作用効果 に 実施例:  D- 3 Action and effect Example
A— 1. 接触燃焼式可燃性ガスセンサ 1 0の全体構成: 図 1は本発明の一実施例である接触燃焼式可燃性ガスセンサ 1 0の平面を示す 説明図であり、 図 2は図 1 に示した接触燃焼式可燃性ガスセンサ 1 0を 2— 2線 に沿って切断したときの断面を示す説明図である。 A— 1. Contact combustion type combustible gas sensor 10 Overall configuration: FIG. 1 is an explanatory view showing a plane of a contact combustion type combustible gas sensor 10 according to an embodiment of the present invention. FIG. 2 is a diagram showing the contact combustion type combustible gas sensor 10 shown in FIG. It is explanatory drawing which shows the cross section when cut | disconnected along.
接触燃焼式可燃性ガスセンサ 1 0 (以下、 ガスセンサ 1 0という) は、 可燃性 ガスの燃焼に伴って電気抵抗値が変化することを利用して可燃性ガスの濃度を検 出するセンサであり、 例えば、 自動車の燃料電池ユニットに搭載され、 水素の漏 れを測定する目的などに用いられる。  The catalytic combustion type combustible gas sensor 10 (hereinafter referred to as gas sensor 10) is a sensor that detects the concentration of combustible gas by utilizing the fact that the electric resistance changes with the combustion of combustible gas. For example, it is mounted on a fuel cell unit of an automobile and is used for the purpose of measuring hydrogen leakage.
ガスセンサ 1 0は、 半導体のセンサ素子 5 0が装着される素子ケース 4 0と、 この素子ケース 4 0に接続された回路基板 8 0とを備えている。 このように構成 されたガスセンサ 1 0は、 図 2に太矢印で示すように、 素子ケース 4 0のセンサ 素子 5 0が装着された領域に入ってきた被測定ガスをセンサ素子 5 0によって検 出し、 被測定ガス量に対応した電気信号を回路基板 8 0に出力する。  The gas sensor 10 includes an element case 40 on which a semiconductor sensor element 50 is mounted, and a circuit board 80 connected to the element case 40. The gas sensor 10 thus configured detects the gas to be measured entering the region of the element case 40 where the sensor element 50 is mounted, as indicated by the thick arrow in FIG. An electric signal corresponding to the measured gas amount is output to the circuit board 80.
なお、 上記の素子ケース 4 0を、 図 2に二点鎖線で示すように、 被測定ガスの 入口 2 0 aないし出口 2 0 bが形成された合成樹脂製の取付用筐体 2 0に装着し てガスセンサを構成し、 被測定ガスの流路を形成するパイプ等に取付用筐体 2 0 を装着してガスセンサを使用することとしてもよい。  In addition, the above-mentioned element case 40 is attached to a synthetic resin mounting housing 20 having an inlet 20 a to an outlet 20 b of the gas to be measured, as shown by a two-dot chain line in FIG. Then, a gas sensor may be configured, and the gas sensor may be used by attaching the mounting housing 20 to a pipe or the like forming a flow path of the gas to be measured.
A - 2 . センサ素子 5 0の構成:  A-2. Configuration of sensor element 50:
図 3はセンサ素子 5 0を模式的に表わす説明図である。 図 3 ( A ) はセンサ素 子 5 0の底面を表わし、 図 3 ( B ) は図 3 ( A ) に示したセンサ素子 5 0を 3 B 一 3 B線に沿って切断したときの断面形状を表わしている。 これらの図に示すよ うに、 センサ素子 5 0は、 シリコン製基板 5 1 と、 絶縁薄膜 5 2 a , 5 2 bと、 検出機構 5 3と、 絶縁保護膜 5 5とを備えている。  FIG. 3 is an explanatory diagram schematically showing the sensor element 50. FIG. 3 (A) shows the bottom surface of the sensor element 50, and FIG. 3 (B) shows the cross-sectional shape of the sensor element 50 shown in FIG. 3 (A) when cut along the line 3B-13B. Represents. As shown in these figures, the sensor element 50 includes a silicon substrate 51, insulating thin films 52a and 52b, a detecting mechanism 53, and an insulating protective film 55.
シリコン製基板 5 1は、 縦が 3 m m、 横が 5 m mのシリコン製の平板である。 シリコン製基板 5 1の上層には絶縁薄膜 5 2 aが形成されている。 この絶縁薄膜 5 2 aの表面がセンサ素子 5 0の素子表面 5 0 Aとなる。 この素子表面 5 0 Aに 後述する検知用ヒータ 5 3 aが配設される。 シリコン製基板 5 1の下層には、 後 述する空隙部 5 1 aに相当する部分を除いて、絶縁薄膜 5 2 bが形成されている。 この絶縁薄膜 5 2 bの表面がセンサ素子 5 0の素子裏面 5 0 Bとなる。 この素子 裏面 5 0 Bが、 後述する素子ケース 4 0の接着用凹部 4 1の底面 4 1 Bに接着部 材 4 8を介して接着される。 なお、 絶縁薄膜 5 2 a, 5 2 bは、 シリコン製基板 5 1を酸化することによって形成される酸化膜、 C V D等によって形成された窒 化硅素膜、 窒化膜、 酸窒化膜、 T a x O y膜及びこれらの積層膜等のひとつ以上 の膜によって構成される。 The silicon substrate 51 is a silicon flat plate having a length of 3 mm and a width of 5 mm. An insulating thin film 52 a is formed on the upper layer of the silicon substrate 51. The surface of the insulating thin film 52a becomes the element surface 50A of the sensor element 50. On the element surface 50 A, a detection heater 53 a described later is provided. In the lower layer of the silicon substrate 51, an insulating thin film 52b is formed except for a portion corresponding to a void 51a described later. The front surface of the insulating thin film 52b becomes the back surface 50B of the sensor element 50. The back surface 50 B of the element is bonded to the bottom surface 41 B of the bonding recess 41 of the element case 40 described below via the bonding member 48. The insulating thin films 52a and 52b are made of an oxide film formed by oxidizing the silicon substrate 51, a silicon nitride film formed by CVD or the like, a nitride film, an oxynitride film, It is composed of one or more films such as a y film and a laminated film thereof.
検出機構 5 3は、 検知用ヒー夕 5 3 aと、 この検知用ヒータ 5 3 aの上方に位 置する触媒膜 5 3 bから構成されている。検知用ヒータ 5 3 aは、通常、 P t (白 金) 、 N i _ C r (ニッケル—クロム) 、 A u (金) および C r (クロム) 等の 正の温度抵抗係数が大きい導電体によって形成されている。 触媒膜 5 3 bは、 被 測定ガスの燃焼を促す触媒であり、 対象となるガスによって適宜材質を選択する ことができる。 例えば、 水素ガス等の可燃性ガスに適用する場合には、 触媒とし て、 P t (白金) 及び P d (パラジウム) 等の貴金属の単層膜、 または P t (白 金)及び P d (パラジウム)等を A I 2 0 3 (アルミナ) や S ί 0 2 (酸化シリコン) に担持させたものを用いることができる。 また、 絶縁保護膜 5 5との密着強度を 向上させるために、 T i (チタン) 、 T a (タンタル) 、 M o (モリブデン) 、 W (タングステン) 、 C r (クロム) および N b (ニオブ) 等の金属層やこれら の金属酸化層を下層に設けることもできる。 The detection mechanism 53 includes a detection heater 53a and a catalyst film 53b located above the detection heater 53a. The detection heater 53 a is usually a conductor having a large positive temperature resistance coefficient such as Pt (white gold), Ni_Cr (nickel-chromium), Au (gold) and Cr (chromium). Is formed by The catalyst film 53b is a catalyst that promotes combustion of the gas to be measured, and its material can be appropriately selected depending on the target gas. For example, when applied to a flammable gas such as hydrogen gas, the catalyst may be a single layer film of a noble metal such as Pt (platinum) and Pd (palladium), or Pt (white gold) and Pd ( palladium) or the like can be used that is supported on AI 2 0 3 (alumina) or S ί 0 2 (silicon oxide). In order to improve the adhesion strength with the insulating protective film 55, Ti (titanium), Ta (tantalum), Mo (molybdenum), W (tungsten), Cr (chromium), and Nb (niobium) ) Or a metal oxide layer thereof can be provided as a lower layer.
センサ素子 5 0は、 既述したダイヤフラム構造を有している。 即ち、 図 3に示 すように、 検出機構 5 3が配設された位置の下方には、 検出機構 5 3の配設個所 が薄肉形状となるように、 センサ素子 5 0の一部を除去することにより、 角錐台 形状の空隙部 5 1 aが設けられている。 この空隙部 5 1 a内に所定の容積の空隙 5 1 bが形成される。本実施例では、空隙 5 1 bが約 1 m m 3の容積を有する構成 としたが、 空隙 5 1 bの容積は空隙部 5 1 aの形状を変更することにより適宜定 めることができる。 こうした空隙 5 1 bの存在により、 検出機構 5 3の熱容量を 小さくすることや検出機構 5 3とシリコン製基板 5 1 とを熱的に絶縁することが 可能となる。 なお、 空隙部 5 1 aの部位においては、 絶縁薄膜 5 2 bが形成され ず、 シリコン製基板 5 1が露出した状態とされている。 The sensor element 50 has the diaphragm structure described above. That is, as shown in Fig. As described above, a part of the sensor element 50 is removed below the position where the detection mechanism 53 is provided so that the location where the detection mechanism 53 is provided has a thin shape, so that the truncated pyramid is formed. A void 51a having a shape is provided. A gap 51b having a predetermined volume is formed in the gap 51a. In this embodiment, the gap 51b has a volume of about 1 mm 3 , but the volume of the gap 51b can be appropriately determined by changing the shape of the gap 51a. The presence of such a gap 51b makes it possible to reduce the heat capacity of the detection mechanism 53 and to thermally insulate the detection mechanism 53 from the silicon substrate 51. Note that the insulating thin film 52b is not formed in the space 51a, and the silicon substrate 51 is exposed.
絶縁保護膜 5 5は、 絶縁薄膜 5 2 a , 5 2 bと同様の材質及び形成方法により 作製され、 検知用ヒータ 5 3 aと電極 5 6との間の配線層等を覆うように配設さ れる。 これにより、 検知用ヒータ 5 3 aと電極 5 6との間の配線の汚染や損傷を 防止することができる。  The insulating protective film 55 is made of the same material and forming method as the insulating thin films 52a and 52b, and is disposed so as to cover the wiring layer and the like between the detection heater 53a and the electrode 56. Is done. As a result, it is possible to prevent the wiring between the detection heater 53 a and the electrode 56 from being contaminated or damaged.
電極 5 6は、 検知用ヒータ 5 3 aに接続される配線の引き出し部位である。 本 実施例では、 4個の電極 5 6がコンタクトホールを介して素子表面 5 0 Aに露出 している(図 1を参照)。電極 5 6の材質は A I (アルミニウム)または A u (金) を用いることができる。 さらに、 A u (金) を用いる場合は、 絶縁保護膜 5 5と の密着強度を向上させるために、 T i (チタン) 、 T a (タンタル) 、 M o (モ リブデン) 、 W (タングステン) 、 C r (クロム) および N b (ニオブ) 等の金 属層ゃこれらの金属酸化層を下層に設けることもできる。  The electrode 56 is a lead-out portion of a wiring connected to the detection heater 53a. In this embodiment, four electrodes 56 are exposed on the element surface 50A via the contact holes (see FIG. 1). The material of the electrodes 56 can be AI (aluminum) or Au (gold). When Au (gold) is used, Ti (titanium), Ta (tantalum), Mo (molybdenum), and W (tungsten) are used to improve the adhesion strength with the insulating protective film 55. , Cr (chromium) and Nb (niobium) metal layers. These metal oxide layers can be provided below.
A— 3 . 素子ケース 4 0の構成:  A— 3. Element case 40 configuration:
図 4は、 センサ素子 5 0が装着される前の接触燃焼式可燃性ガスセンサ 1 0の 平面を示す説明図であり、 図 5は図 4に示した接触燃焼式可燃性ガスセンサ 1 0 を 5— 5線に沿って切断したときの矢視断面形状を示す説明図である。 図 4ない し図 5に示すように、 樹脂成形された素子ケース 4 0は被測定ガスが流入される 側にセンサ素子 5 0が配置される配置面 4 O Aを備える。この配置面 4 O Aには、 センサ素子 5 0が収納される接着用凹部 4 1が設けられている。 この接着用凹部 4 1の底面 4 1 Bに、 センサ素子 5 0の素子裏面 5 0 Bが接着部材 4 8を介して 接着される (図 2を参照) 。 なお、 接着部材 4 8の構成については、 後述するガ スセンサ 1 0の製造工程と併せて説明する。 FIG. 4 is an explanatory view showing a plane of the contact combustion type combustible gas sensor 10 before the sensor element 50 is mounted. FIG. 5 is a diagram showing the contact combustion type combustible gas sensor 10 shown in FIG. FIG. 5 is an explanatory diagram showing a cross-sectional shape taken along line 5-5 of FIG. As shown in FIGS. 4 to 5, the resin-molded element case 40 is provided with an arrangement surface 4OA on which the sensor element 50 is arranged on the side where the gas to be measured flows. This arrangement surface 4OA is provided with a bonding recess 41 in which the sensor element 50 is housed. The back surface 50B of the sensor element 50 is bonded to the bottom surface 41B of the bonding recess 41 via the bonding member 48 (see FIG. 2). The configuration of the bonding member 48 will be described together with a later-described manufacturing process of the gas sensor 10.
接着用凹部 4 1の底面には、 所定の深さの凹所 4 2が形成されている。 この凹 所 4 2は、 センサ素子 5 0を接着用凹部 4 1 に接着した状態において、 センサ素 子 5 0の空隙部 5 1 aとほぼ対向する位置に形成される (図 2を参照) 。 このよ うに凹所 4 2と空隙部 5 1 a内の空隙 5 1 bとを対向させた状態でセンサ素子 5 0を接着用凹部 4 1 に装着した場合には、検出機構が配設された薄い部分(以下、 薄膜部という) の周辺に密閉された状態で存在する空気の体積が増大するため、 薄膜部付近の密閉された空気の圧力上昇が抑制される。 従って、 薄膜部の破損を 有効に防止することができる。  A recess 42 having a predetermined depth is formed on the bottom surface of the bonding recess 41. The recess 42 is formed at a position substantially opposed to the gap 51 a of the sensor element 50 when the sensor element 50 is bonded to the bonding recess 41 (see FIG. 2). When the sensor element 50 is mounted in the bonding recess 41 with the recess 42 facing the gap 51b in the gap 51a in this manner, a detection mechanism is provided. Since the volume of air existing in a sealed state around a thin portion (hereinafter referred to as a thin film portion) increases, the pressure rise of the sealed air near the thin film portion is suppressed. Therefore, breakage of the thin film portion can be effectively prevented.
また、 図 1ないし図 2に示すように、 接着用凹部 4 1の底面における凹所 4 2 の開口面積は、 センサ素子 5 0の素子裏面 5 0 Bにおける空隙部 5 1 aの開口面 積よりも若干小さい面積に形成されており、 凹所 4 2は素子裏面 5 0 Bにおける 空隙部 5 1 aに包含されている。  As shown in FIGS. 1 and 2, the opening area of the recess 42 on the bottom surface of the bonding recess 41 is based on the opening area of the void 51 a on the back surface 50 B of the sensor element 50. Are formed in a slightly smaller area, and the recesses 42 are included in the voids 51a on the element back surface 50B.
図 2に示すように、センサ素子 5 0を接着用凹部 4 1 に接着した状態において、 センサ素子 5 0の素子表面 5 0 Aは、 素子ケース 4 0の配置面 4 0 Aとほぼ同一 面になっている。  As shown in FIG. 2, when the sensor element 50 is bonded to the bonding recess 41, the element surface 50A of the sensor element 50 is substantially flush with the arrangement surface 40A of the element case 40. Has become.
素子ケース 4 0には、 センサ素子 5 0と回路基板 8 0の間の導通路として 4本 のリード 4 5が埋設されている。 各リード 4 5の一端は、 素子ケース 4 0外部に 引き出されており、 回路基板 8 0に接続される。 各リード 4 5の他端は、 素子ケ ース 4 0の配置面 4 0 Aに露出されており、 端子 4 5 aとして形成されている。 この端子 4 5 aは、 素子表面 5 0 Aの各電極 5 6との接続に用いられる (図 1お よび図 2を参照) 。 The element case 40 has four conductive paths between the sensor element 50 and the circuit board 80. The leads 45 are buried. One end of each lead 45 is drawn out of the element case 40 and connected to the circuit board 80. The other end of each lead 45 is exposed on the arrangement surface 40A of the element case 40, and is formed as a terminal 45a. The terminal 45a is used for connection with each electrode 56 on the element surface 50A (see FIGS. 1 and 2).
図 1および図 2に示したように、 信号線 5 7は、 低粘度の絶縁性樹脂材料から 形成された充填材 5 8 bによりモールドされている。 また、 素子ケース 4 0の配 置面 4 0 Aないしセンサ素子 5 0の素子表面 5 0 Aには、 検出機構 5 3が設けら れた部位と信号線 5 7が設けられた部位とを区画する区画材 5 8 aが設けられて いる。  As shown in FIGS. 1 and 2, the signal line 57 is molded with a filler 58b formed from a low-viscosity insulating resin material. Further, the arrangement surface 40 A of the element case 40 to the element surface 50 A of the sensor element 50 are divided into a part where the detection mechanism 53 is provided and a part where the signal line 57 is provided. A partitioning material 58a is provided.
区画材 5 8 aは、 信号線 5 7が設けられた部位に流し込まれた充填材 5 8 bが 検出機構 5 3が設けられた部位に流れ込むことを防止する役割を果たす。 充填材 5 8 bは、 検出機構 5 3が設けられた部位に流れ込もうとする際に区画材 5 8 a により堰き止められる。 こうした区画材 5 8 aにより、 充填材 5 8 bが検出機構 5 3に流出することに起因する検出機構 5 3の損傷を防止することができる。 なお、 上記の充填材 5 8 bおよび区画材 5 8 aの樹脂材料として、 エポキシや ウレタンなどの樹脂を用い、 これらの重合度を変えることにより粘度を調節して も差し支えない。 また、 樹脂製の板材で形成された区画材 5 8 aを、 素子ケース 4 0の配置面 4 0 Aないしセンサ素子 5 0の素子表面 5 0 Aに接着する構成とし ても差し支えない。  The partition member 58a serves to prevent the filler 58b poured into the portion where the signal line 57 is provided from flowing into the portion where the detection mechanism 53 is provided. The filling material 58b is blocked by the partitioning material 58a when trying to flow into the portion where the detection mechanism 53 is provided. The partitioning member 58a can prevent the detection mechanism 53 from being damaged due to the outflow of the filler 58b to the detection mechanism 53. It should be noted that a resin such as epoxy or urethane may be used as a resin material of the filler 58b and the partitioning material 58a, and the viscosity may be adjusted by changing the degree of polymerization of these resins. The partition member 58a formed of a resin plate may be adhered to the arrangement surface 40A of the element case 40 or the element surface 50A of the sensor element 50.
A - 4 . ガス検出の仕組み:  A-4. Gas detection mechanism:
上記のように構成されたガスセンサ 1 0では、 検出機構 5 3に被測定ガスが流 入されると、 被測定ガス中の水素などの可燃性ガスが触媒膜 5 3 bに接触して燃 焼し、 発生した燃焼熱が検知用ヒータ 5 3 aに伝わることで、 正の抵抗温度係数 の材料を用いた検知用ヒータ 5 3 aの電気抵抗値が増加する。 増加後の電気抵抗 値は、 電気信号の形態で、 電極 5 6, 信号線 5 7, リード 4 5を通じて回路基板 8 0に送出される。 回 ½基板 8 0は、 受け取った電気抵抗値を、 予め定められた 電気抵抗の基準値と比較し、両者の差異に基づいて可燃性ガスの濃度を測定する。 In the gas sensor 10 configured as described above, when the gas to be measured flows into the detection mechanism 53, the flammable gas such as hydrogen in the gas to be measured comes into contact with the catalyst film 53b and burns. The combustion heat generated by baking is transmitted to the detection heater 53a, so that the electric resistance value of the detection heater 53a using a material having a positive temperature coefficient of resistance increases. The increased electric resistance value is transmitted to the circuit board 80 through the electrodes 56, the signal lines 57, and the leads 45 in the form of electric signals. The circuit board 80 compares the received electric resistance value with a predetermined reference value of electric resistance, and measures the concentration of the flammable gas based on the difference between the two.
B . ガスセンサ 1 0の製造工程: B. Manufacturing process of gas sensor 10:
次に、 本実施例におけるガスセンサ 1 0を製造する工程について説明する。 B - 1 . 素子ケース 4 0, 回路基板 8 0, センサ素子 5 0, 接着部材 4 8の準 備:  Next, a process of manufacturing the gas sensor 10 in the present embodiment will be described. B-1. Preparation for element case 40, circuit board 80, sensor element 50, and adhesive member 48:
まず、 図 3ないし図 5に示した形状の素子ケース 4 0, 回路基板 8 0, センサ 素子 5 0と接着部材 4 8を準備する。 素子ケース 4 0は、 リード 4 5をインサー 卜した樹脂射出成形により製造することができる。  First, an element case 40, a circuit board 80, a sensor element 50, and an adhesive member 48 having the shapes shown in FIGS. 3 to 5 are prepared. The element case 40 can be manufactured by resin injection molding in which the leads 45 are inserted.
B— 2 . 接着部材 4 8の構成:  B— 2. Adhesive member 4 8 Configuration:
準備される接着部材 4 8の構成を図 6に示す。 図 6 ( A ) は接着部材 4 8の平 面を示し、 図 6 ( B ) は図 6 ( A ) に示した接着部材 4 8を 7 B— 7 B線に沿つ て切断したときの矢視断面形状を示している。  FIG. 6 shows the configuration of the prepared adhesive member 48. FIG. 6 (A) shows a flat surface of the adhesive member 48, and FIG. 6 (B) shows an arrow when the adhesive member 48 shown in FIG. 6 (A) is cut along the line 7B-7B. It shows a sectional view.
接着部材 4 8は表裏両面が粘着面とされたシー卜状の部材であり、 各粘着面は 熱硬化性を有する。 接着部材 4 8の平面形状 (貼付面積) は、 基となるシートを 適当な形状に切断することにより、 自由に定めることができる。 本実施例では、 図 6 ( A ) に示すように、 接着用凹部 4 1の底面 4 1 Bとほぼ同じ面積分の貼付 面積を有する接着部材 4 8を採用している。  The adhesive member 48 is a sheet-like member in which both front and back surfaces are adhesive surfaces, and each adhesive surface has thermosetting properties. The planar shape (sticking area) of the adhesive member 48 can be freely determined by cutting the base sheet into an appropriate shape. In the present embodiment, as shown in FIG. 6 (A), an adhesive member 48 having a bonding area substantially equal to the bottom surface 41 B of the bonding concave portion 41 is employed.
接着部材 4 8の略中央部には、 センサ素子 5 0の素子裏面 5 0 Bにおける空隙 部 5 1 aの面積分のシートがくり抜き形状で切除されることにより、 穴部 4 8 p が形成されている。 At the approximate center of the adhesive member 48, a gap at the back 50B of the sensor element 50 is provided. A hole 48p is formed by cutting the sheet of the area of the portion 51a in a hollow shape.
本実施例では、 接着部材 4 8は、 センサ素子 5 0が接着用凹部 4 1 に完全に接 着したときにセンサ素子 5 0の素子表面 5 O Aと素子ケース 4 0の配置面 4 O A とが略面一となる状態(図 2を参照)を実現する厚み d 1を有する。具体的には、 5 0 0 の深さの接着用凹部 4 1 に 4 0 0 t mの厚みのセンサ素子 5 0を装着 するに際して、 1 0 0 t m mのシート厚の接着部材 4 8を採用している。 この接 着部材 4 8は、 シート厚が 1 0 At m以上のものの中から好適な厚みのものを適宜 選択して採用することができる。 なお、 将来、 センサ素子 5 0の接着用凹部 4 1 への確実な接着を 1 0 以下のシー卜厚で実現する接着部材が出現した場合に は、 このような接着部材を採用することも可能である。 上記の接着部材 4 8の材 料としては、 エポキシやポリイミド等を用いることができる。  In the present embodiment, when the sensor element 50 is completely bonded to the bonding recess 41, the bonding member 48 is formed such that the element surface 5OA of the sensor element 50 and the arrangement surface 4OA of the element case 40 are arranged. It has a thickness d1 that realizes a substantially flush state (see FIG. 2). Specifically, when mounting the sensor element 50 with a thickness of 400 tm in the bonding recess 41 with a depth of 500, an adhesive member 48 with a sheet thickness of 100 tmm was adopted. I have. The bonding member 48 may be appropriately selected from those having a sheet thickness of 10 Atm or more and have a suitable thickness. In the future, if an adhesive member that realizes reliable adhesion of the sensor element 50 to the adhesive concave portion 41 with a sheet thickness of 10 or less appears, such an adhesive member may be employed. It is. Epoxy, polyimide, or the like can be used as a material of the adhesive member 48 described above.
B - 3 . センサ素子 5 0の素子ケース 4 0への接着:  B-3. Adhesion of sensor element 50 to element case 40:
図 7は接着用凹部 4 1 にセンサ素子 5 0が接着され、 信号線 5 7の絶縁処理が なされる様子を示す説明図である。 この図 7では図 2に対応する要部断面の様子 を略記して示している。 上記のように各部材が準備された後、 図 7 ( A ) に示す ように、 素子ケース 4 0の接着用凹部 4 1の底面 4 1 Bに、 接着部材 4 8を介し てセンサ素子 5 0を装着する。 具体的には、 まず、 底面 4 1 Bに接着部材 4 8を 敷設した後、 敷設された接着部材 4 8上に適度に加熱されたセンサ素子 5 0の素 子裏面 5 0 Bを配置し、 素子表面 5 0 A方向からセンサ素子 5 0を圧着する。 つ まり、 センサ素子 5 0から放射される余熱が接着部材 4 8の表裏面に伝わること により、 接着部材 4 8の表裏面の熱硬化性の粘着剤が粘着性を帯びる。 このよう な粘着性を帯びた状態での圧着により、 底面 4 1 Bにセンサ素子 5 0の素子裏面 5 0 Bが接着される。 センサ素子 5 0が接着用凹部 4 1 に完全に接着したときに は、 図 7 ( B ) に示すように、 センサ素子 5 0の素子表面 5 0 Aと素子ケース 4 0の配置面 4 0 Aとがほぼ同一面になる。 なお、 センサ素子 5 0を素子ケース 4 0に接着する手順は、 センサ素子 5 0の素子表面 5 O Aに接着部材 4 8を貼着し た後に、 このセンサ素子 5 0を接着用凹部 4 1の底面 4 1 Bに配置し、 素子表面 5 0 A方向からセンサ素子 5 0を圧着するという手順に変更することができる。 また、 接着部材 4 8には、 空隙部 5 1 aないし凹所 4 2の面積分の穴部 4 8 p が形成されているので、 空隙部 5 1 aの外周付近の素子裏面 5 0 Bである空隙部 外周裏面 5 0 B g (図 6 ( A ) において斜線ハッチングで示した部分) は、 その 全面において接着部材 4 8に接着する。 これにより空隙部 5 1 a内の空隙 5 1 b が封止される。 従って、 センサ素子 5 0の素子表面 5 0 A側から回り込んできた 外気 (図 6 ( A ) において白抜き矢印で示す) が空隙 5 1 bや凹所 4 2に進入す ることが防止される。 FIG. 7 is an explanatory diagram showing a state in which the sensor element 50 is bonded to the bonding recess 41 and the signal line 57 is insulated. FIG. 7 schematically shows a cross section of a main part corresponding to FIG. After each member is prepared as described above, as shown in FIG. 7 (A), the sensor element 50 is mounted on the bottom surface 41 B of the bonding recess 41 of the element case 40 via the bonding member 48. Attach. Specifically, first, after laying the adhesive member 48 on the bottom surface 41B, the element back surface 50B of the appropriately heated sensor element 50 is placed on the laid adhesive member 48, The sensor element 50 is crimped from the element surface 50 A direction. That is, the residual heat radiated from the sensor element 50 is transmitted to the front and back surfaces of the adhesive member 48, so that the thermosetting adhesive on the front and back surfaces of the adhesive member 48 becomes tacky. By pressure bonding in such an adhesive state, the back surface of the sensor element 50 is placed on the bottom surface 41B. 50 B is glued. When the sensor element 50 is completely bonded to the bonding recess 41, as shown in FIG. 7 (B), the element surface 50A of the sensor element 50 and the arrangement surface 40A of the element case 40 are provided. And become almost the same plane. Note that the procedure for bonding the sensor element 50 to the element case 40 is as follows: after bonding the bonding member 48 to the element surface 5OA of the sensor element 50, the sensor element 50 is bonded to the bonding recess 41. It can be changed to a procedure in which the sensor element 50 is placed on the bottom surface 41B and the sensor element 50 is crimped from the element surface 50A direction. Further, since the bonding member 48 has a hole 48p corresponding to the area of the gap 51a or the recess 42, the element back surface 50B near the outer periphery of the gap 51a is formed. A certain gap outer peripheral back surface 50 Bg (the portion shown by hatching in FIG. 6 (A)) is adhered to the adhesive member 48 over the entire surface. As a result, the space 51b in the space 51a is sealed. Therefore, the outside air (indicated by the white arrow in FIG. 6A) sneaking from the element surface 50 A side of the sensor element 50 is prevented from entering the void 51 b and the recess 42. You.
上記のような穴部 4 8 pが形成された接着部材 4 8を用いてセンサ素子 5 0を 接着することにより、 空隙部 5 1 a内の空隙 5 1 bは穴部 4 8 pを介して凹所 4 2に好適に連通され (図 2を参照) 、 接着部材 4 8が凹所 4 2を塞いでしまった り、接着部材 4 8が凹所 4 2に侵入してしまうといったことが防止される。また、 接着部材 4 8はシート状なので、 不要な接着剤が空隙部 5 1 a内や凹所 4 2内に 流れ込んで固化してしまい、 空隙部 5 1 a内や凹所 4 2内の空気の体積が少なく なってしまうといったことがない。 従って、 ダイヤフラム構造のセンサ素子 5 0 が有する良好な破損防止特性を十全に確保することができる。  By bonding the sensor element 50 using the bonding member 48 having the hole 48p formed as described above, the space 51b in the space 51a is formed through the hole 48p. Suitable communication with the recesses 42 (see FIG. 2) prevents the adhesive member 48 from blocking the recesses 42 and the adhesive member 48 from entering the recesses 42. Is done. Also, since the adhesive member 48 is sheet-shaped, unnecessary adhesive flows into the voids 51a and the recesses 42 and solidifies, and the air in the voids 51a and the recesses 42 is aired. There is no such thing as volume reduction. Therefore, it is possible to sufficiently secure the favorable breakage prevention characteristics of the sensor element 50 having the diaphragm structure.
B— 4 . 信号線 5 7のモールド:  B— 4. Mold of signal line 5 7:
次に、 信号線 5 7を絶縁性樹脂材でモールドする。 具体的には、 まず、 センサ 素子 5 0の素子表面 5 0 A上および素子ケース 4 0の配置面 4 0 A上に高粘度の 絶縁性樹脂材料を塗布することにより区画材 5 8 aを縦壁状に立設する。 区画材 5 8 aは、 センサ素子 5 0の上面に置かれたときに盛り上がるような高粘度 ( 1 5 O P a - s以上) の絶縁性樹脂材料から形成されている。 続いて、 信号線 5 7の 上方から低粘度の絶縁性樹脂材料を流し込むことにより信号線 5 7を充填材 5 8 bで被覆する。 本実施例では、 充填材 5 8 bとして、 低粘度 (1 5 0 P a ' s未 満、 好ましくは 1 5 P a ■ s以下) の樹脂材料を用いているため、 充填材 5 8 b は信号線 5 7の裏側にまで流れ込む。 これにより、 信号線 5 7は充填材 5 8 に 密着して覆われた状態となる。 こうした被覆後の状態を図 7 ( C ) に示した。 図 7 ( C ) に示した素子ケース 4 0を 9— 9線に沿って切断したときの矢視断 面形状を図 8に示す。 図 8に示すように、 センサ素子 5 0の接着用凹部 4 1への 接着後には、 センサ素子 5 0の素子表面 5 0 Aと素子ケース 4 0の配置面 4 0 A とが略面一状態となる。 よって、 センサ素子 5 0と素子ケース 4 0という異なる 部品の間に、 素子表面 5 O Aと配置面 4 O Aを跨いで区画材 5 8 aを設けた場合 に、 素子表面 5 0 Aと配置面 4 0 Aとの段差によって素子表面 5 0 Aと区画材 5 8 aとの間や配置面 4 O Aと区画材 5 8 aとの間に隙間が生じることがない。 従 つて、 このような隙間から充填材 5 8 bが検出機構 5 3方向に流出することが有 効に阻止され、 検出機構 5 3に向かおうとする充填材 5 8 bは区画材 5 8 aによ つて十全に堰き止められる。 Next, the signal line 57 is molded with an insulating resin material. Specifically, first, the sensor A partition member 58a is erected in the form of a vertical wall by applying a high-viscosity insulating resin material on the element surface 50A of the element 50 and on the arrangement surface 40A of the element case 40. The partition member 58a is formed of a high-viscosity (15 OPa-s or more) insulating resin material that rises when placed on the upper surface of the sensor element 50. Subsequently, the signal line 57 is covered with a filler 58b by pouring a low-viscosity insulating resin material from above the signal line 57. In the present embodiment, a resin material having a low viscosity (less than 150 Pa's, preferably less than 15 Pa ■ s) is used as the filler 58 b. It flows into the back of signal line 57. As a result, the signal line 57 is brought into close contact with the filler 58 and covered. The condition after such coating is shown in FIG. 7 (C). FIG. 8 shows a cross-sectional shape of the element case 40 shown in FIG. 7 (C) taken along the line 9-9. As shown in FIG. 8, after the sensor element 50 is bonded to the bonding recess 41, the element surface 50A of the sensor element 50 and the arrangement surface 40A of the element case 40 are substantially flush. It becomes. Therefore, when a partition member 58a is provided across the element surface 5OA and the arrangement surface 4OA between different components such as the sensor element 50 and the element case 40, the element surface 50A and the arrangement surface 4 There is no gap between the element surface 50A and the partition member 58a or between the arrangement surface 4OA and the partition member 58a due to the step difference from 0A. Therefore, the filler 58b is effectively prevented from flowing out of such a gap in the direction of the detection mechanism 53, and the filler 58b that is going to the detection mechanism 53 is a partitioning material 58a. Is completely blocked by.
B - 5 . 回路基板 8 0との接続:  B-5. Connection with circuit board 80:
次に、 素子ケース 4 0の各リード 4 5の一端を回路基板 8 0にハンダ付けする ことにより、 各リード 4 5の端子 4 5 aと回路基板 8 0との結線を行なう。 これ によりガスセンサ 1 0が完成する。 B— 6 . 作用効果: Next, one end of each lead 45 of the element case 40 is soldered to the circuit board 80, thereby connecting the terminal 45 a of each lead 45 to the circuit board 80. Thereby, the gas sensor 10 is completed. B— 6. Action and effect:
以上説明したように、 上記実施例のガスセンサ 1 0は、 センサ素子 5 0の素子 ケース 4 0への接着が、 接着用凹部 4 1の底面 4 1 Bと素子裏面 5 0 Bとの間に 介在されたシ一卜状の接着部材 4 8によって実現される。 従って、 製造段階にお いて接着部材 4 8の平面形状や厚み等を変えることにより、 接着後における素子 ケース 4 0とセンサ素子 5 0との位置関係を自由に調節することが可能となる。 例えば、 接着部材 4 8の厚みを変えることによりセンサ素子 5 0の素子表面 5 0 Aの位置を厳密に制御することができる。 このように所望の位置関係を得ること で、 製造後におけるシリコン製マイクロセンサの基本性能を確保し易くなる。 例えば、 上記実施例のように、 センサ素子 5 0の素子表面 5 0 Aと素子ケース 4 0の配置面 4 O Aとの高さ関係を略面一とした場合には、 被測定ガスが素子表 面 5 O Aと素子ケース 4 0の配置面 4 0 Aとの段差部分に当たって乱流を引き起 こすといった事態が防止され、 被測定ガスの円滑な流れを確保してガス濃度検出 の正確性を高めることができる。 また、 上記実施例のように、 センサ素子 5 0の 素子表面 5 0 Aと素子ケース 4 0の配置面 4 0 Aとの間に信号線 5 7のモールド 用の区画材 5 8 aを設ける場合には、 素子表面 5 0 Aや素子ケース 4 0の配置面 4 O Aと区画材 5 8 aとの隙間から充填材 5 8 bが流出して検出機構 5 3に充填 材 5 8 bが付着してしまうことが有効に阻止される。 従って、 検出機構 5 3によ る検出不良や検出機構 5 3自体の破損等の不具合の発生を防止することができる c なお、 上記実施例のガスセンサ 1 0は、 例えば、 燃料電池ユニットの水素の漏 れを検知するセンサに適用することができる。 即ち、 燃料電池ユニットでは、 水 素極と空気極とにそれぞれ水素、 空気 (酸素) を流し、 これを化学反応させるこ とにより電気を発生させており、 上記実施例のガスセンサ Ί 0を、 燃料電池ュニ ッ卜において湿度の高い箇所(水分を燃料電池セルの電解質まで導く水分導入部) に水素が混入しているのを検出するセンサとして用いることが可能である。 As described above, in the gas sensor 10 of the above embodiment, the sensor element 50 is bonded to the element case 40 by the interposition between the bottom surface 41 B of the bonding recess 41 and the element back surface 50 B. This is realized by the sheet-like adhesive member 48 provided. Therefore, the positional relationship between the element case 40 and the sensor element 50 after the bonding can be freely adjusted by changing the planar shape, the thickness, and the like of the bonding member 48 in the manufacturing stage. For example, by changing the thickness of the adhesive member 48, the position of the element surface 50A of the sensor element 50 can be strictly controlled. By obtaining the desired positional relationship in this way, it becomes easier to ensure the basic performance of the silicon microsensor after manufacturing. For example, as in the above embodiment, when the height relationship between the element surface 50 A of the sensor element 50 and the arrangement surface 4 OA of the element case 40 is substantially flush, the gas to be measured is This prevents turbulent flow from hitting the step between the surface 5 OA and the arrangement surface 40 A of the element case 40, ensuring a smooth flow of the gas to be measured and improving the accuracy of gas concentration detection. be able to. Further, as in the above embodiment, when a partition member 58 a for molding the signal line 57 is provided between the element surface 50 A of the sensor element 50 and the arrangement surface 40 A of the element case 40. The filler 58b flows out of the gap between the element surface 50A and the arrangement surface 4OA of the element case 40 and the partitioning material 58a, and the filler 58b adheres to the detection mechanism 53. Is effectively prevented. Accordingly, it is possible to prevent the occurrence of problems such as detection failure by the detection mechanism 53 and breakage of the detection mechanism 53 itself. C The gas sensor 10 of the above-described embodiment is, for example, capable of detecting hydrogen in the fuel cell unit. It can be applied to sensors that detect leakage. That is, in the fuel cell unit, hydrogen and air (oxygen) are supplied to the hydrogen electrode and the air electrode, respectively, and electricity is generated by causing a chemical reaction between the hydrogen and air (oxygen). Battery unit It can be used as a sensor for detecting that hydrogen is mixed in a high-humidity part (a water introduction part for guiding water to the electrolyte of the fuel cell) in the vessel.
C . 変形例: C. Variations:
上記実施例のガスセンサ 1 0の変形例について図 9から図 1 3を参照しつつ説 明する。 図 9から図 1 3に示すガスセンサ 1 1 0, 2 1 0, 3 1 0, 4 1 0ゃセ ンサ素子 5 5 0は、 上記実施例におけるガスセンサ 1 0やセンサ素子 5 0とほぼ 共通の各部を備える。 図 9ないし図 1 3では、 この共通の各部につき、 符号の十 の位以下を上記実施例で用いた符号と同じ数字ないし英字を用いて表わしている。 図 9は第 1変形例を示す説明図である。 この図 9では図 7 ( C ) に対応する断 面を示している。 図 9に示すように、 第 1変形例としてのガスセンサ 1 1 0は、 センサ素子 1 5 0の素子裏面 1 5 0 8側に電極1 5 6を設けると共に、 この電極 1 5 6と導通される各リード 1 4 5の端子 1 4 5 aを、 素子ケース 1 4 0の接着 用凹部 1 4 1の底面 1 4 1 Bに露出した状態で設けている。 こうしたセンサ素子 1 5 0を接着用凹部 1 4 1 に接着する際には、 異方導電性を有するシ一卜状接着 部材 1 4 8 (本例においては、 厚み方向にのみ導電性を示す接着部材) が用いら れる。こうすれば、接着用凹部 1 4 1 にセンサ素子 1 5 0を接着することにより、 センサ素子 1 5 0の電極 1 5 6と素子ケース 1 4 0の各端子 1 4 5 aとが接着部 材 1 4 8を介して導通される。 従って、 製造段階において、 センサ素子 1 5 0の 電極 1 5 6と素子ケース 1 4 0の各端子 1 4 5 aとを接続する工程や電極 1 5 6 と端子 1 4 5 aとの間の信号線をモールドする工程が不要となり、 製造効率を高 めることができる。  Modifications of the gas sensor 10 of the above embodiment will be described with reference to FIGS. 9 to 13. FIG. The gas sensors 110, 210, 310, 410 shown in FIGS. 9 to 13 are sensor elements 550 which are substantially common to the gas sensor 10 and the sensor element 50 in the above embodiment. Is provided. In FIG. 9 to FIG. 13, the tens place of the reference numerals of the common parts are represented by the same numerals or alphabets as the reference signs used in the above embodiment. FIG. 9 is an explanatory diagram showing a first modification. FIG. 9 shows a cross section corresponding to FIG. 7 (C). As shown in FIG. 9, a gas sensor 110 according to a first modification has an electrode 156 on the element back surface 1508 side of the sensor element 150 and is electrically connected to the electrode 156. The terminal 144 a of each lead 144 is provided so as to be exposed on the bottom surface 141 B of the bonding recess 144 of the element case 140. When such a sensor element 150 is bonded to the bonding concave portion 141, a sheet-like bonding member 148 having anisotropic conductivity (in this example, a bonding material having conductivity only in the thickness direction). Member) is used. In this case, by bonding the sensor element 150 to the bonding recessed part 141, the electrode 156 of the sensor element 150 and each terminal 144a of the element case 140 are bonded to each other. Conducted through 1 4 8. Therefore, in the manufacturing stage, the process of connecting the electrode 156 of the sensor element 150 to the terminals 145a of the element case 140 and the signal between the electrode 156 and the terminal 145a This eliminates the need for a wire molding step, thereby increasing manufacturing efficiency.
上記実施例では、 4本の信号線 5 7の周囲を取り囲むような形状の区画材 5 8 aを設けたが、 区画材 5 8 aはこのような形状のものに限られるものではなく、 充填材 5 8 bの検出機構 5 3側への流入を阻止するような他の形状で設けてもよ い。 例えば、 図 1 0に示す第 2変形例としてのガスセンサ 2 1 0のように、 信号 線 5 7領域と検出機構 5 3領域とを区切る位置に設けられた棒状の区画材 2 5 8 aを素子ケース 4 0の対向する内周壁に装着固定し、 素子ケース 4 0の壁を利用 して区画材 2 5 8 aを設けることも可能である。 なお、 図 1 0では図 1 に対応す る平面を示している。 In the above embodiment, the partitioning material 5 8 is formed so as to surround the periphery of the four signal lines 57. However, the partitioning material 58a is not limited to such a shape, but may be provided in another shape to prevent the inflow of the filler 58b into the detection mechanism 53 side. It is good. For example, as in a gas sensor 210 as a second modified example shown in FIG. 10, a rod-shaped partition member 258a provided at a position that separates the signal line 57 area and the detection mechanism 53 area is used as an element. It is also possible to mount and fix to the inner peripheral wall of the case 40 facing the same, and to provide the partition member 258a using the wall of the element case 40. FIG. 10 shows a plane corresponding to FIG.
上記実施例では、 空隙部 5 1 aと対向する位置に凹所 4 2を形成したが、 凹所 4 2を形成しない構成としてもよい。 こうした構成例を第 3変形例として図 1 1 に示した。 なお、 この図 1 1ではガスセンサ 3 1 0の図 7 ( C ) に対応する断面 を示している。  In the above embodiment, the recess 42 is formed at a position facing the gap 51a, but the configuration may be such that the recess 42 is not formed. Such a configuration example is shown in FIG. 11 as a third modification. FIG. 11 shows a cross section of the gas sensor 310 corresponding to FIG. 7 (C).
また、 凹所 4 2以外の態様で空隙部 5 1 aに連通される空間を形成することも 可能である。 こうした構成例を第 4変形例として図 1 2に示した。 この図 1 2で は図 7 ( C ) に対応する断面を示している。 図 1 2に示すように、 第 4変形例と してのガスセンサ 4 1 0では、 接着部材 4 4 8の厚みを上記実施例の厚み d 1よ リも厚くすることにより、 素子裏面 5 0 Bと接着用凹部 4 4 1の底面 4 4 1 Bと の間に間隙 4 4 8 bが形成されている。 こうすれば、 製造段階においてセンサ素 子 5 0の空隙部 5 1 aと対向する接着用凹部 4 4 1 に凹所を形成しなくても、 空 隙部 5 1 a内の空隙 5 1 bに連通される間隙 4 4 8 bが設けられ、 空気容積が拡 大される。 従って、 製造効率をより高めつつ、 薄膜部の破損防止特性を確保する ことができる。 なお、 上記の間隙 4 4 8 bと併せて接着用凹部 4 4 1 に凹所を形 成した場合には、 空隙が間隙 4 4 8 bないし凹所の双方に連通されて空気領域が より拡大されるので、 上記の破損防止特性をより一層向上することができる。 上記実施例では、 センサ素子 5 0の素子裏面 5 0 Bに空隙部 5 1 aを形成する ことにより空隙 5 1 bを設けたが、 これ以外の形態で空隙 5 1 bを設けることも 可能である。 例えば、 第 4変形例としてのセンサ素子 5 5 0を表わす図 1 3に示 すように、 センサ素子 5 0の側面に貫通穴を形成することにより空隙 5 5 1 bを 設けてもよい。 なお、 図 1 3では図 3 ( B ) に対応する断面を示している。 なお、 上記実施例ないし変形例において、 信号線 5 7をモールドする工程が不 要となる場合や、 充填材 5 8 bの検出機構 5 3への流れ込みが他の手段によって 防止される場合 (例えば、 接着用凹部 4 1の内側壁とセンサ素子 5 0の外側面と の密着が確保されている場合、 流動しない性質の充填材を用いてモールド処理す る場合) には、 センサ素子 5 0の接着用凹部 4 1への接着時において素子表面 5 0 Aと配置面 4 0 Aとが略面一でなくてもよい。 このような場合には、 センサ素 子 5 0の高さの調整やセンサ素子 5 0が接着用凹部 4 1 に接着される面積の調整 を、 接着部材 4 8の厚みに応じて柔軟に変えることができる。 It is also possible to form a space communicating with the gap 51 a in a mode other than the recess 42. Such a configuration example is shown in FIG. 12 as a fourth modification. FIG. 12 shows a cross section corresponding to FIG. 7 (C). As shown in FIG. 12, in the gas sensor 410 according to the fourth modification, the thickness of the adhesive member 448 is made larger than the thickness d1 of the above-described embodiment, so that the element back surface 50 B A gap 448 b is formed between the bottom of the bonding recess 441 and the bonding recess 441. In this way, the gap 51b in the gap 51a can be formed without forming a recess in the bonding recess 441, which faces the gap 51a of the sensor element 50 at the manufacturing stage. A communication gap 4 4 8b is provided to increase the air volume. Therefore, it is possible to secure the property of preventing the thin film portion from being damaged while further improving the production efficiency. When a recess is formed in the bonding recess 441 together with the gap 4448b, the air space is further expanded by communicating with both the gap 4448b and the recess. Therefore, the above-described breakage prevention characteristics can be further improved. In the above embodiment, the gap 51b is provided by forming the gap 51a on the back surface 50B of the sensor element 50.However, the gap 51b may be provided in other forms. is there. For example, as shown in FIG. 13 showing a sensor element 550 as a fourth modification, a void 551b may be provided by forming a through hole in a side surface of the sensor element 50. FIG. 13 shows a cross section corresponding to FIG. 3 (B). In the above-described embodiment or modified example, the case where the step of molding the signal line 57 is unnecessary or the case where the flow of the filler 58b into the detection mechanism 53 is prevented by other means (for example, In the case where the inner wall of the bonding recess 41 and the outer surface of the sensor element 50 are in close contact with each other, or when molding is performed using a filler that does not flow, At the time of bonding to the bonding recess 41, the element surface 50A and the arrangement surface 40A may not be substantially flush. In such a case, the adjustment of the height of the sensor element 50 and the adjustment of the area where the sensor element 50 is bonded to the bonding recess 41 are flexibly changed according to the thickness of the bonding member 48. Can be.
なお、 この発明は上記実施例に限られるものではなく、 その要旨を逸脱しない 範囲において種々の態様において実施することが可能である。 例えば、 シート状 の接着部材 4 8が 2以上の部材の組み合わせから構成されるものとしてもよい。 また、 上記実施例では、 本発明を可燃性ガスの濃度を検出するガスセンサ 1 0 に適用したが、 これに限定されるものではなく、 本発明を可燃性ガス以外のガス (例えば、 N O x等の排気ガス) の検出に適用することも可能である。 また、 本 発明を流量センサゃ加速度センサ等に適用することも可能である。  The present invention is not limited to the above embodiment, and can be implemented in various modes without departing from the scope of the invention. For example, the sheet-shaped adhesive member 48 may be formed of a combination of two or more members. Further, in the above embodiment, the present invention is applied to the gas sensor 10 for detecting the concentration of flammable gas.However, the present invention is not limited to this. Exhaust gas) can also be applied. Further, the present invention can be applied to a flow rate sensor, an acceleration sensor, and the like.
D . 第 2実施例 (エアフロメ一夕 6 1 0 ) : D. Second Example (Air From Night 610):
D - 1 ェアフロメータ 6 1 0の使用例 次に、 本発明の第 2実施例として、 気体の流量を計測するセンサとしてエアフ 口メータについて説明する。 図 1 4は、 このエアフロメ一夕 6 1 0を用いた内燃 機関の吸気系を模式的に示す模式図である。 図示するように、 内燃機関 6 0 0の 吸気系には、 上流からエアクリーナ 6 3 2 ; 吸気管 6 3 0, サージタンク 6 3 7 が設けられており、 吸気管 6 3 0には、 シリコン製マイクロセンサを用いたエア フロメ一夕 6 1 0と、 吸気量を調整するスロットルバルブ 6 3 5とが設けられて いる。 吸気管 6 3 0が内燃機関 6 0 0に接続する吸気ポー卜には燃料噴射バルブ 6 4 0が備えられている。 この他、 内燃機関 6 0 0には、 イダナイ夕 6 4 3から の高電圧の印加を受けてシリンダ内に火花を形成する点火プラグ 6 4 5, 内燃機 関 6 0 0の回転数を検出する回転数センサ 6 5 0、 これらのセンサからの信号を 受けて、 燃料噴射バルブ 6 4 0やイダナイ夕 6 4 3などを駆動する E F I コント ローラ 6 2 0なども備えられている。 Usage example of D-1 air flow meter 6 10 Next, as a second embodiment of the present invention, an air flow meter will be described as a sensor for measuring a gas flow rate. FIG. 14 is a schematic diagram schematically showing an intake system of an internal combustion engine using this air flow system 6 10. As shown in the figure, the intake system of the internal combustion engine 600 is provided with an air cleaner 632 ; an intake pipe 6330 and a surge tank 637 from the upstream, and the intake pipe 630 is made of silicon. An air flow meter using a micro sensor is provided, and a throttle valve for adjusting the intake air amount is provided. A fuel injection valve 6400 is provided at an intake port where the intake pipe 6300 is connected to the internal combustion engine 600. In addition, the internal combustion engine 600 has a spark plug 645 that forms a spark in the cylinder when a high voltage is applied from the internal combustion engine 640, and a rotation that detects the rotation speed of the internal combustion engine 600. A number sensor 650 and an EFI controller 620 that receives signals from these sensors and drives a fuel injection valve 640, an idler 640, and the like are also provided.
E F I コントローラ 6 2 0は、 ェアフロメータ 6 1 0からの信号を受けて吸入 空気量 Qを演算し、 これと内燃機関 6 0 0の回転数 Nとに基づいて、 内燃機関 6 0 0に必要とされる燃料噴射量 Vを演算する。 E F I コントローラ 6 2 0は、 こ の燃料噴射量 Vに応じた時間、 燃料噴射バルブ 6 4 0を開弁することにより、 燃 料デリバリパイプ 6 3 8に圧送された燃料を、 吸気ポー卜に噴射する。 噴射され た燃料は、 図示しないピストンが下降する吸引行程において、 吸気管を介して吸 引される吸入空気と混合しつつ、 内燃機関 6 0 0のシリンダ (燃焼室) 内に吸入 され、 ピストンの上昇に伴う圧縮行程の終期において、 点火プラグ 6 4 5に形成 される火花により点火される。 火花点火により生じる爆発燃焼により、 ピストン を押し下げられ、 燃料の燃焼エネルギは、 運動エネルギとして、 図示しないクラ ンクシャフトを介して外部に取り出され、 例えば車両の駆動輪を駆動するといつ た目的に用いられる。 The EFI controller 620 receives the signal from the air flow meter 610, calculates the intake air amount Q, and, based on this and the rotational speed N of the internal combustion engine 600, is required for the internal combustion engine 600. The fuel injection amount V is calculated. The EFI controller 620 opens the fuel injection valve 640 for a time corresponding to the fuel injection amount V, thereby injecting the fuel pumped to the fuel delivery pipe 638 into the intake port. I do. The injected fuel is sucked into a cylinder (combustion chamber) of the internal combustion engine 600 while mixing with intake air sucked through an intake pipe in a suction stroke in which a piston (not shown) descends. At the end of the compression stroke due to the rise, the spark is formed by the spark formed in the spark plug 645. The piston is pushed down by the explosive combustion generated by spark ignition, and the combustion energy of the fuel is taken out as kinetic energy through a crankshaft (not shown). Used for the purpose.
かかる内燃機関 6 0 0の制御において、 燃料と吸入空気の混合比を適正、 例え ばガソリンが燃料の場合にストィキな値 (空燃比 1 4 . 7 ) に保とうとすると、 吸入空気量 Qを精密にかつ応答性良く検出することが必要になる。 本実施例で用 いられるェアフロメータ 6 1 0は、 シリコン製マイクロセンサとして構成されて おり、 高い検出精度と応答性を実現している。 以下、 第 2実施例としてのエアフ 口メータ 6 1 0の構成について説明する。  In such control of the internal combustion engine 600, if the mixing ratio of fuel and intake air is properly maintained, for example, if gasoline is used as fuel to maintain a stoichiometric value (air-fuel ratio of 14.7), the intake air amount Q is precisely adjusted. It is necessary to perform detection with high responsiveness. The air flow meter 6 10 used in the present embodiment is configured as a silicon micro sensor, and realizes high detection accuracy and responsiveness. Hereinafter, the configuration of the air flow meter 610 as the second embodiment will be described.
D— 2 エアフロメ一夕の構成:  D— 2 Air Frome
第 2実施例としてのェアフロメータ 6 Ί 0の外形形状を図 1 5および図 1 6に 示した。図 1 5は、エアフロメ一夕 6 1 0の平面図、図 1 6はその正面図である。 このェアフロメータ 6 1 0は、 図 1 4ないし図 1 6に示すように、 吸気管 6 3 0 内に配置される検出部 6 1 2と、 吸気管 6 3 0にこのェアフロメータ 6 1 0を取 り付けるためのフランジ 6 1 5と、 E F I コントローラ 6 2 0との電気的な接続 を行なうためのコネクタ 6 1 8とを備える。 検出部 6 1 2は、 吸気管 6 3 0の吸 気の流れに突き出される部位であり、その先端部正面には、図 1 6に示すように、 開口部 7 0 0が設けられている。 この開口部 7 0 0は、 検出部 6 1 2の背面まで 貫通しており、 検出部 6 1 2が吸気管 6 3 0に差し込まれた状態でエアフロメ一 夕 6 1 0が取り付けられると、 吸気管 6 3 0を流れる吸入空気の一部は、 開口部 7 0 0を通り抜ける。  FIGS. 15 and 16 show the outer shape of the air flow meter 600 as the second embodiment. FIG. 15 is a plan view of the air flow 6110, and FIG. 16 is a front view thereof. As shown in FIGS. 14 to 16, the air flow meter 6 10 has the detection section 6 12 disposed in the intake pipe 6 30 and the air flow meter 6 10 mounted on the intake pipe 6 30. And a connector 618 for making an electrical connection with the EFI controller 620. The detecting portion 6 12 is a portion protruding into the flow of the intake air from the intake pipe 6 30, and an opening 700 is provided in front of the front end portion thereof as shown in FIG. 16. . The opening 700 penetrates to the back of the detection unit 6 12. When the air flow unit 6 10 is attached with the detection unit 6 12 inserted into the intake pipe 6 A part of the intake air flowing through the pipe 630 passes through the opening 700.
この開口部 7 0 0の部位における断面を図 1 7に示した。 図示するように、 開 口部 7 0 0は、 出入り口において開口断面積が大きく、 中心部で最も開口断面積 の小さな形状をしている。 かかる形状としているために、 吸気管 6 3 0内を流れ る吸入空気は、 スムーズにこの開口部 7 0 0に流れ込み、 流れ出る。 吸気管 6 3 0内を流れる全吸入空気の量と、 エアフロメ一夕 6 1 0の開口部 7 0 0を流れる 空気量との間には、 良い比例関係が成り立っているので、 開口部 7 0 0を通過す る空気量を測定すれば、 吸気管 6 3 0を流れ、 最終的に内燃機関 6 0 0に流れ込 む吸入空気量を検出することができる。 FIG. 17 shows a cross section of the opening 700. As shown in the figure, the opening 700 has a shape having a large opening cross-sectional area at the entrance and the smallest opening cross-sectional area at the center. Due to such a shape, the intake air flowing through the intake pipe 630 flows into and out of the opening 700 smoothly. Intake pipe 6 3 Since there is a good proportional relationship between the total amount of intake air flowing through the inside of the cylinder and the amount of air flowing through the opening of the air flower, the air passes through the opening. By measuring the amount of air flowing through the intake pipe 630, the amount of intake air finally flowing into the internal combustion engine 600 can be detected.
エアフロメ一夕 6 1 0の開口部 7 0 0の中心部には、 シリコン製マイクロセン サ 7 1 0が形成されている。 このシリコン製マイクロセンサ 7 1 0の構造を拡大 して図 1 8に示した。 シリコン製マイクロセンサ 7 1 0の基本的な形状は、 第 1 実施例と同様である。 即ち、 シリコン製マイクロセンサ 7 1 0は、 ケース 7 1 5 に設けられた接着用凹部 7 3 5に、 シート状の接着部材 7 4 0を介して、 シリコ ン製基板 7 2 0が接着固定された構造となっている。 シリコン製基板 7 2 0の表 面は、 きわめて高い精度に研磨されており、 いわゆる鏡面仕上げとなっている。 また、 シリコン製基板 7 2 0の表面には、 酸化シリコンの絶縁薄膜 7 2 7が形成 されている。 このシリコン製基板 7 2 0の略中央の裏面には、 空隙 7 3 0が形成 されており、 検出機構が形成されている部位は薄肉とされている。 この薄肉部に は、 中心にヒータ 7 2 5が、 その両側に上流側センサ 7 2 1 と下流側センサ 7 2 2とが形成されている。 ヒ一夕 7 2 5, 両センサ 7 2 1は、 いずれもスパッタリ ングなどの手法で形成された白金などの薄膜である。 なお、 ヒー夕 7 2 5, 両セ ンサ 7 2 1, 7 2 2は、 薄肉部に対応する絶縁薄膜 7 2 7の内部に形成されてい る。 絶縁薄膜 7 2 7は、 酸化膜以外の薄膜によっても形成可能である。  A silicon microsensor 7100 is formed at the center of the opening 7100 of the air flow 6110. FIG. 18 is an enlarged view of the structure of the silicon microsensor 710. The basic shape of the silicon microsensor 7100 is the same as that of the first embodiment. That is, in the silicon microsensor 7100, a silicon substrate 720 is bonded and fixed to the bonding concave portion 735 provided in the case 715 via a sheet-shaped bonding member 740. Structure. The surface of the silicon substrate 720 is polished with extremely high precision and has a so-called mirror finish. On the surface of the silicon substrate 720, an insulating thin film 727 of silicon oxide is formed. An air gap 730 is formed on the substantially central rear surface of the silicon substrate 720, and the portion where the detection mechanism is formed is thin. In the thin portion, a heater 725 is formed at the center, and an upstream sensor 721 and a downstream sensor 722 are formed on both sides thereof. Each of the sensors 725 and 721 is a thin film of platinum or the like formed by a method such as sputtering. The heater 725 and both sensors 721, 722 are formed inside the insulating thin film 727 corresponding to the thin portion. The insulating thin film 727 can be formed by a thin film other than the oxide film.
第 2実施例であるエアフロメ一夕 6 1 0のシリコン製マイクロセンサ 7 1 0は、 接着用凹部 7 3 5の深さ H 1が、 シー卜状接着部材 7 4 0の厚み d 1 とシリコン 製基板 7 2 0の厚み D 1 との総和に等しくされている (H 1 = d 1 + D 1 ) 。 こ のため、 接着用凹部 7 3 5の底部に接着部材 7 4 0を置き、 ここにシリコン製基 板 720を嵌め込んで接着部材 740により、 シリコン製基板 720を接着用凹 部 735に接着すると、シリコン製基板 7 20の表面とケース 7 1 5の表面とは、 ほぼ面一となる。 両者の高さの差は、 本実施例では、 ±0. 3 mm以下となるよ う、 各部の寸法公差を管理した。 ケース 7 1 5表面とシリコン製基板 720の表 面との間に高さの差 (段差) が存在し、 この段差が所定以上となると、 開口部 7 00を流れる空気に看過できない渦が生じ、 後述する空気量の検出精度の影響を 与えることがある。 本実施例では、 段差を ±0. 3 mm以下としたので、 開口部 700を通過する空気の流れは整然とした層流に保たれ、 ェアフロメータ 6 1 0 として必要な検出精度を得ることができる。 In the second embodiment, the silicon microsensor 710 of the air flow unit 610 has a depth H1 of the bonding concave portion 735, the thickness d1 of the sheet-shaped bonding member 740, and the silicon microsensor 710. The sum is equal to the sum of the thickness of the substrate 720 and the thickness D 1 (H 1 = d 1 + D 1). For this reason, the adhesive member 740 is placed at the bottom of the adhesive recess 735, and the silicon base is placed here. When the plate 720 is fitted and the silicon substrate 720 is bonded to the bonding recess 735 by the bonding member 740, the surface of the silicon substrate 720 and the surface of the case 7 15 are substantially flush. In the present embodiment, the dimensional tolerance of each part was controlled so that the difference in height between the two was less than ± 0.3 mm. There is a height difference (step) between the surface of the case 7 15 and the surface of the silicon substrate 720, and when the step is larger than a predetermined value, a vortex that cannot be overlooked in the air flowing through the opening 700, It may affect the accuracy of air volume detection described later. In the present embodiment, since the step is set to ± 0.3 mm or less, the flow of the air passing through the opening 700 is kept in an orderly laminar flow, and the required detection accuracy as the air flow meter 610 can be obtained.
ケース 7 1 5表面とシリコン製基板 7 20の表面との間の段差は、 寸法公差の 管理を厳しくすることにより、 ±0. 2 mm以下、 より好ましくは土 0. 1 mm 以下とすることも可能である。 なお、 プラスは検出機構が形成されたシリコン製 基板 720の方が高い場合、 マイナスは低い場合である。 シリコン製基板 7 20 を突出させ、上記の差を 0. 05~0. 3 mmの範囲に管理することが好ましい。 もとより、 更に 0. 05〜0. 2 mmの範囲、 あるいは 0. 05〜0. 1 mmの 範囲とすることも、 検出精度を高く維持するという点で好ましい。 なお、 エアフ ロメ一夕 6 1 0のその余の構成、 例えばコネクタ 6 1 8の端子からシリコン製基 板 720の電極への配線などは、 基本的に第 1実施例と同様に行なわれているの で、 その説明は省略する。  The step between the surface of the case 7 15 and the surface of the silicon substrate 720 can be set to ± 0.2 mm or less, more preferably 0.1 mm or less, by strictly controlling the dimensional tolerance. It is possible. The plus sign indicates a case where the silicon substrate 720 on which the detection mechanism is formed is higher, and the minus sign indicates a case where it is lower. It is preferable that the silicon substrate 720 be projected so that the above difference is controlled in the range of 0.05 to 0.3 mm. Needless to say, a range of 0.05 to 0.2 mm or a range of 0.05 to 0.1 mm is also preferable in terms of maintaining high detection accuracy. The remaining configuration of the airframe 610, such as wiring from the terminal of the connector 618 to the electrode of the silicon substrate 720, is basically performed in the same manner as in the first embodiment. Therefore, the description is omitted.
D- 3 作用効果:  D-3 Action and effect:
以上、 構造を簡略に説明したシリコン製マイクロセンサ 7 1 0による吸入空気 量の検出の手法について簡略に説明する。 シリコン製基板 720の薄肉部の中心 に設けられたヒータ 7 2 5には、 一定の電流が流され、 時間当たり一定の熱量を 発生する。 ヒ一夕 7 2 5で発生した熱は、 開口部 7 0 0内に存在する空気を介し て周囲に伝達され、 両脇の二つのセンサ 7 2 1 , 7 2 2の温度を上昇させる。 セ ンサ 7 2 1, 7 2 2は、 白金などの高い抵抗温度係数を有する材料から形成され ている。 センサの抵抗値は、 基本的には、 比抵抗、 センサ部分の長さおよび断面 積により定まる。 また、 白金などの材料の抵抗温度係数は公知である。 従って、 両センサ 7 2 1, 7 2 2の抵抗値を計測すれば、 その温度を知ることができる。 両センサ 7 2 1, 7 2 2は、 同温度でその抵抗値が等しくなるように、 同じ材料 を用い、 同じ長さ、 同じ断面積に形成されている。 また、 ヒータ 7 2 5から上流 側センサ 7 2 1 までの距離と、 下流側センサ 7 2 2までの距離は等しくされてい る。 従って、 開口部 7 0 0を通過する空気量が 0であれば、 両センサの温度上昇 は等しく、 抵抗値も基本的に等しくなる。 The method of detecting the amount of intake air by the silicon microsensor 710 whose structure is simply described above will be briefly described. A constant current is applied to the heater 725 provided at the center of the thin portion of the silicon substrate 720, and a constant amount of heat is appear. The heat generated in the heat sink 725 is transmitted to the surroundings through the air present in the opening 700, and raises the temperature of the two sensors 721 and 722 on both sides. The sensors 72 1 and 72 2 are made of a material having a high temperature coefficient of resistance such as platinum. The resistance of the sensor is basically determined by the specific resistance, the length and the cross-sectional area of the sensor. The temperature coefficient of resistance of a material such as platinum is known. Therefore, by measuring the resistance values of both sensors 721, 722, the temperature can be known. The two sensors 72 1 and 72 2 are made of the same material, have the same length, and have the same cross-sectional area so that their resistance values are equal at the same temperature. In addition, the distance from the heater 72 5 to the upstream sensor 72 1 is equal to the distance from the downstream sensor 72 2. Therefore, if the amount of air passing through the opening 700 is zero, the temperature rises of both sensors are equal and the resistance values are basically equal.
一方、 内燃機関 6 0 0の運転より内燃機関 6 0 0に流れ込む空気が吸気管 6 3 0内を流れ、 その一部が開口部 7 0 0を通過すると、 通電により熱を発生するヒ 一夕 7 2 5からの伝熱は、 開口部 7 0 0を流れる空気により下流側センサ 7 2 2 の温度上昇を高め、 上流側センサ 7 2 1の温度上昇を抑制するように働く。 その 程度は、 開口部 7 0 0を流れる空気量に比例する。 そこで、 例えば、 4つの抵抗 器から構成されるホイーストンブリッジの対向する位置に上流側センサ 7 2 1 と 下流側センサ 7 2 2とが配置されるように接続し、 他の二つの抵抗器をヒー夕 7 2 5からの伝熱の影響を受けない位置に配置すれば、 上流側センサ 7 2 1 と下流 側センサ 7 2 2との温度変化により抵抗値の変化を、 ホイ一ス卜ンプリッジによ り精度良く検出することができる。 本実施例のエアフロメ一夕 6 1 0では、 かか る構造により、 開口部 7 0 0を流れる空気量、 ひいては吸気管 6 3 0を流れる空 気量を計測している。 以上説明した第 2実施例のシリコン製マイクロセンサ 7 1 0を用いたェアフロ メータ 6 1 0では、 ヒータ 7 2 5および両センサ 7 2 1, 7 2 2が形成された部 位は肉薄とされているので、 開口部 7 0 0を流れる空気の流量が変化してヒー夕 7 2 5からの伝熱の状態が変わると、 両センサ 7 2 1 , 7 2 2の温度も直ちに変 化する。 このため、 空気量の検出において高い応答性を実現することができる。 また、 シリコン製基板 7 2 0は, シート状の接着部材 7 4 0を用いて接着用凹部 7 3 5に収納 ·接着されているので、 ケース 7 1 5の高さに対するシリコン製基 板 7 2 0の表面高さを精度良く管理することができ、 両者をほぼ面一とすること により、 開口部 7 0 0内を流れる空気の流れに乱れを生じさせることがなく、 空 気量の検出精度を高く維持することができる。 On the other hand, when the air flowing into the internal combustion engine 600 from the operation of the internal combustion engine 600 flows through the intake pipe 630 and a part of the air passes through the opening 700, heat is generated by energization. The heat transfer from 725 acts to increase the temperature rise of the downstream sensor 722 by the air flowing through the opening 700 and to suppress the temperature rise of the upstream sensor 721. The degree is proportional to the amount of air flowing through the opening 700. Therefore, for example, the upstream sensor 721 and the downstream sensor 722 are connected so as to be arranged at opposing positions of a Wheatstone bridge composed of four resistors, and the other two resistors are connected. If it is placed in a position that is not affected by the heat transfer from the heat sink 725, the change in resistance due to the temperature change between the upstream sensor 721 and the downstream sensor 722 will be transferred to the heater bridge. More accurate detection is possible. In the air flow meter 610 of the present embodiment, the amount of air flowing through the opening 700 and thus the amount of air flowing through the intake pipe 630 are measured by such a structure. In the air flow meter 610 using the silicon microsensor 710 of the second embodiment described above, the portion where the heater 725 and both sensors 721, 722 are formed is made thin. Therefore, when the flow rate of the air flowing through the opening 700 changes and the state of heat transfer from the heater 72 changes, the temperatures of both sensors 72 1 and 72 2 also change immediately. Therefore, high responsiveness can be realized in detecting the air amount. Also, since the silicon substrate 720 is housed and bonded in the bonding recess 735 by using a sheet-like bonding member 740, the silicon substrate 722 with respect to the height of the case 715 is provided. The surface height can be controlled with high precision, and by making the two almost the same level, the flow of air flowing through the opening 700 will not be disturbed, and the air volume detection accuracy Can be kept high.
また、 特許請求の範囲における 「ケース」 として、 上記実施例では、 樹脂成形 された素子ケース 4 0やケース 7 1 5を挙げたが、 これに限定されるものではな く、 例えば、 アルミナ、 厶ライ卜、 窒化アルミニウム、 ガラスセラミックなどか らなるセラミック基板、 或いは、 エポキシ樹脂、 ポリイミド樹脂、 B T樹脂、 P P E樹脂などの樹脂や、 これらの樹脂とガラス繊維やポリエステル繊維などの繊 維との複合材料、 三次元網目構造のフッ素樹脂にエポキシ樹脂などを含浸させた 樹脂複合材料を用いてなる基板も含まれる。 更に、 セラミック基板とこれらの樹 脂や複合材料とを組み合わせてなる基板なども含まれる。  In the above embodiments, the resin case-molded element case 40 and the case 715 are described as the “case” in the claims, but the present invention is not limited thereto. Ceramic substrate made of light, aluminum nitride, glass ceramic, etc., or resin such as epoxy resin, polyimide resin, BT resin, PPE resin, or composite material of these resins with fibers such as glass fiber or polyester fiber Also, a substrate made of a resin composite material in which a fluororesin having a three-dimensional network structure is impregnated with an epoxy resin or the like is included. Further, a substrate formed by combining a ceramic substrate with these resins and composite materials is also included.

Claims

請求の範囲 The scope of the claims
1 . シリコン製基板上に検出機構を備えたセンサ素子を、 ケースに収納する シリコン製マイクロセンサの実装方法であつて、 1. A method of mounting a silicon microsensor in which a sensor element with a detection mechanism is housed in a case on a silicon substrate.
前記ケースに、 前記センサ素子を収納可能な凹部を、 該凹部の少なくとも前記 センサ素子と接触する底面を平坦として形成し、  A concave portion capable of accommodating the sensor element is formed in the case, at least a bottom surface of the concave portion that is in contact with the sensor element is formed flat;
該凹部の底面に、 予め厚みを調整したシー卜状の接着部材を配置し、 前記センサ素子を、 前記凹部に嵌め込んで、 前記接着部材により前記底面に接 着固定する  A sheet-like adhesive member whose thickness is adjusted in advance is arranged on the bottom surface of the concave portion, and the sensor element is fitted into the concave portion, and is fixed to the bottom surface by the adhesive member.
シリコン製マイクロセンサの実装方法。  How to mount a silicon microsensor.
2 . シリコン製基板上に検出機構を備えたセンサ素子を、 ケースに収納する シリコン製マイクロセンサの実装方法であって、  2. A method for mounting a silicon microsensor in which a sensor element having a detection mechanism is housed in a case on a silicon substrate.
前記ケースに、 前記センサ素子を収納可能な凹部を、 該凹部の少なくとも前記 センサ素子と接触する底面を平坦として形成し、  A concave portion capable of accommodating the sensor element is formed in the case, at least a bottom surface of the concave portion that is in contact with the sensor element is formed flat;
前記センサ素子の裏面に、 前記凹部に挿入可能な大きさであり、 予め厚みを調 整したシー卜状の接着部材を貼付し、  On the back surface of the sensor element, a sheet-like adhesive member having a size that can be inserted into the concave portion and having a thickness adjusted in advance is attached,
前記センサ素子を、 前記凹部に嵌め込んで、 前記接着部材により前記底面に接 着固定する  The sensor element is fitted into the recess, and is fixed to the bottom surface by the adhesive member.
シリコン製マイクロセンサの実装方法。  How to mount a silicon microsensor.
3 . 請求項 1または 2に記載のシリコン製マイクロセンサの実装方法であつ て、  3. The method for mounting a silicon microsensor according to claim 1 or 2,
前記センサ素子を収納可能な凹部は、 前記センサ素子が配置される側の前記ケ ースの表面である配置面に所定の深さで形成されており、 前記シー卜状の接着部材の予め調整された厚みは、 前記凹部に前記センサ素子 を嵌めて接着固定した後で、 前記センサ素子の素子表面と前記ケースの前記配置 面とが略面一になる寸法である The recess capable of housing the sensor element is formed at a predetermined depth on an arrangement surface that is a surface of the case on the side where the sensor element is arranged, The pre-adjusted thickness of the sheet-shaped adhesive member is such that the element surface of the sensor element and the arrangement surface of the case are substantially flush after the sensor element is fitted into the recess and adhered and fixed. Dimensions
シリコン製マイクロセンサの実装方法。  How to mount a silicon microsensor.
4 . 請求項 1ないし 3のいずれかに記載のシリコン製マイクロセンサの実装 方法であって、  4. A method for mounting the silicon microsensor according to any one of claims 1 to 3, wherein
前記センサ素子には、 前記検出機構の配置された個所が薄肉形状となるように センサ素子の一部を除去することにより空隙部が設けられており、  The sensor element is provided with a void portion by removing a part of the sensor element so that the portion where the detection mechanism is arranged has a thin shape,
前記シート状の接着部材は、 前記センサ素子の空隙部に対応する箇所に、 該空 隙部の開口に対応した形状の開口部を備えた  The sheet-shaped adhesive member has an opening having a shape corresponding to the opening of the gap at a position corresponding to the gap of the sensor element.
シリコン製マイクロセンサの実装方法。  How to mount a silicon microsensor.
5 . 前記シート状の接着部材は、 熱硬化性の接着剤を成分とする部材である 請求項 1ないし 4のいずれかに記載のシリコン製マイクロセンサの実装方法。  5. The method for mounting a silicon microsensor according to claim 1, wherein the sheet-like adhesive member is a member containing a thermosetting adhesive as a component.
6 . 加熱された前記センサ素子を前記凹部に嵌め込んで圧着することにより、 前記接着部材による前記底面への接着固定を実現する 5に記載のシリコン製マイ クロセンサの実装方法。  6. The mounting method of the silicon microsensor according to 5, wherein the heated sensor element is fitted into the concave portion and pressure-bonded to realize bonding and fixing to the bottom surface by the bonding member.
7 . ( A ) シリコン製基板の表面に検出機構を準備する工程と、  7. (A) a step of preparing a detection mechanism on the surface of the silicon substrate;
( B ) 該検出機構が配設される側の面である素子表面において、 前記検出機構 の配設個所が薄肉形状となるセンサ素子を準備する工程と、  (B) a step of preparing a sensor element having a thin-walled portion where the detection mechanism is disposed, on the element surface on the side where the detection mechanism is disposed;
( C ) 該センサ素子が配置される側の配置面に該センサ素子の収納用の凹部が 形成されたケースを準備する工程と、  (C) a step of preparing a case in which a recess for accommodating the sensor element is formed on an arrangement surface on a side where the sensor element is arranged;
( D ) シート状の接着部材を準備する工程と、  (D) a step of preparing a sheet-like adhesive member;
( E ) 前記凹部の底面と前記センサ素子の前記素子表面とは反対側の面である 素子裏面との間に前記接着部材を介在させて、 該凹部に該センサ素子を接着する 工程と (E) the bottom surface of the recess and the surface of the sensor element opposite to the element surface Adhering the sensor element to the concave portion with the adhesive member interposed between the element and the back surface of the element;
を備えたシリコン製マイクロセンサの製造方法。  A method for manufacturing a silicon microsensor comprising:
8 . 請求項 7に記載のシリコン製マイクロセンサの製造方法であって、 前記工程 (E ) では、 前記凹部に前記センサ素子を接着する際、 前記センサ素 子の素子表面と前記ケースの配置面とを略面一とすると共に、  8. The method for manufacturing a silicon microsensor according to claim 7, wherein, in the step (E), when the sensor element is bonded to the recess, an element surface of the sensor element and an arrangement surface of the case. And almost the same,
( F ) 前記凹部に前記センサ素子が接着された後において、 前記凹部に接着さ れた前記センサ素子の素子表面と前記ケースの配置面との間に、 前記センサ素子 と前記ケースとの間を電気的に接続する信号線を装着する工程と、  (F) after the sensor element is bonded to the concave portion, between the element surface of the sensor element bonded to the concave portion and the arrangement surface of the case, and between the sensor element and the case. Attaching a signal line to be electrically connected;
( G ) 前記素子表面ないし前記ケースの配置面に、 前記信号線が装着された部 位と前記検出機構が配設された部位とを区画する区画材を設ける工程と、  (G) a step of providing a partitioning material on the element surface or the arrangement surface of the case to partition a portion where the signal line is mounted and a portion where the detection mechanism is disposed;
( H ) 前記信号線が装着された部位を充填材によりモールドする工程と を備えたシリコン製マイクロセンサの製造方法。  (H) a step of molding a portion to which the signal line is attached with a filler material.
9 . 請求項 7または 8に記載のシリコン製マイクロセンサの製造方法であつ て、  9. The method for manufacturing a silicon microsensor according to claim 7 or 8, wherein
前記ケースは、 前記凹部の底面に露出する端子を備え、  The case includes a terminal exposed on a bottom surface of the concave portion,
前記センサ素子は、 前記ケースの露出した端子と面する側に、 前記検出機構に 接続される電極を備え、  The sensor element includes an electrode connected to the detection mechanism on a side facing the exposed terminal of the case,
前記工程 (D ) で準備される接着部材は、 前記端子と前記電極との方向につい てのみ導電性を有するシー卜状の部材である  The adhesive member prepared in the step (D) is a sheet-like member having conductivity only in the direction of the terminal and the electrode.
シリコン製マイクロセンサの製造方法。  A method for manufacturing a silicon microsensor.
1 0 . シリコン製基板上に検出機構を備えたセンサ素子と、  10. A sensor element having a detection mechanism on a silicon substrate,
該センサ素子の収納用の凹部が形成されたケースと、 前記凹部の底面に敷設されて該凹部と前記センサ素子とを接着する接着部材と を備え、 A case in which a recess for housing the sensor element is formed, An adhesive member laid on the bottom surface of the concave portion and bonding the concave portion and the sensor element,
前記接着部材がシ一卜状の部材である  The adhesive member is a sheet-like member
シリコン製マイクロセンサ。  Silicon micro sensor.
1 1 . 前記センサ素子の収納用の凹部は、 前記センサ素子が配置される側の 前記ケースの表面である配置面に所定深さで形成されており、  1 1. The recess for accommodating the sensor element is formed at a predetermined depth on an arrangement surface that is a surface of the case on a side where the sensor element is arranged,
前記センサ素子の素子表面と前記ケースの前記配置面とが略面一である 請求項 1 0記載のシリコン製マイクロセンサ。  The silicon microsensor according to claim 10, wherein an element surface of the sensor element and the arrangement surface of the case are substantially flush.
1 2 . 前記センサ素子の素子裏面には、 前記検出機構の配置された箇所が薄 肉形状となるように空隙部が設けられており、  12. On the back surface of the sensor element, a void is provided so that the portion where the detection mechanism is disposed has a thin wall shape.
前記接着部材は、 前記センサ素子の前記空隙部に対応する箇所に、 前記空隙部 の開口に対応した形状の開口部を備えた  The adhesive member has an opening having a shape corresponding to the opening of the gap at a position corresponding to the gap of the sensor element.
請求項 1 0または 1 1記載のシリコン製マイクロセンサ。  The silicon microsensor according to claim 10 or 11.
1 3 . 前記ケースの前記凹部の底面には、 前記接着部材の前記開口部に対応 する位置に、 所定の容積の内部空間を有する凹所が設けられた請求項 1 2記載の シリコン製マイクロセンサ。  13. The silicon microsensor according to claim 12, wherein a recess having a predetermined volume of an internal space is provided at a position corresponding to the opening of the adhesive member on a bottom surface of the recess of the case. .
1 4 . 前記シート状の接着部材の予め調整された厚みは、 前記凹部の底面と 前記センサ素子の素子裏面との間の前記開口部内に所定の容積の間隙が設けられ る寸法である請求項 1 2または 1 3記載のシリコン製マイクロセンサ。  14. The pre-adjusted thickness of the sheet-like adhesive member is a dimension such that a gap having a predetermined volume is provided in the opening between the bottom surface of the concave portion and the back surface of the sensor element. 12. The silicon microsensor according to 12 or 13.
1 5 . 請求項 1 0ないし 1 4のいずれかに記載のシリコン製マイクロセンサ であって、  15. The silicon microsensor according to any one of claims 10 to 14, wherein
前記ケースは、 前記凹部の底面の前記接着部材の存在箇所に露出する端子を備 え、 前記センサ素子は、 前記ケースの露出した端子と面する側に、 前記検出機構に 接続される電極を備え、 The case includes a terminal that is exposed at a location where the adhesive member exists on a bottom surface of the concave portion, The sensor element includes an electrode connected to the detection mechanism on a side facing the exposed terminal of the case,
前記接着部材は、 前記端子と前記電極との方向についてのみ導電性を有するシ 一卜状の部材である  The adhesive member is a sheet-like member having conductivity only in a direction between the terminal and the electrode.
シリコン製マイクロセンサ。  Silicon micro sensor.
PCT/JP2003/011275 2002-09-03 2003-09-03 Mounting method and manufacturing method for silicon micro sensor, and silicon micro sensor WO2004023126A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004534147A JPWO2004023126A1 (en) 2002-09-03 2003-09-03 Silicon microsensor mounting method, manufacturing method, and silicon microsensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-257341 2002-09-03
JP2002257341 2002-09-03

Publications (1)

Publication Number Publication Date
WO2004023126A1 true WO2004023126A1 (en) 2004-03-18

Family

ID=31972988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011275 WO2004023126A1 (en) 2002-09-03 2003-09-03 Mounting method and manufacturing method for silicon micro sensor, and silicon micro sensor

Country Status (2)

Country Link
JP (1) JPWO2004023126A1 (en)
WO (1) WO2004023126A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111668A (en) * 2006-10-27 2008-05-15 Denso Corp Flow rate sensor and its manufacturing method
WO2010113712A1 (en) * 2009-03-31 2010-10-07 アルプス電気株式会社 Capacitance type humidity sensor and method for manufacturing same
WO2010140545A1 (en) * 2009-06-01 2010-12-09 アルプス電気株式会社 Moisture detecting sensor package and manufacturing method therefor
EP3421949A1 (en) * 2010-10-13 2019-01-02 Hitachi Automotive Systems, Ltd. Flow sensor and manufacturing method of the same and flow sensor module and manufacturing method of the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782319A (en) * 1986-02-10 1988-11-01 Marelli Autronica S.P.A. Pressure sensor
US5285690A (en) * 1992-01-24 1994-02-15 The Foxboro Company Pressure sensor having a laminated substrate
JPH116752A (en) * 1997-06-16 1999-01-12 Hitachi Ltd Thermal-type air flow-rate sensor
JP2000019042A (en) * 1998-07-02 2000-01-21 Omron Corp Semiconductor sensor and mounting structure
JP2001175969A (en) * 1999-12-17 2001-06-29 Yazaki Corp Device and method for detecting gas
JP2001304933A (en) * 2000-04-24 2001-10-31 Denso Corp Thermal flow rate sensor and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4782319A (en) * 1986-02-10 1988-11-01 Marelli Autronica S.P.A. Pressure sensor
US5285690A (en) * 1992-01-24 1994-02-15 The Foxboro Company Pressure sensor having a laminated substrate
JPH116752A (en) * 1997-06-16 1999-01-12 Hitachi Ltd Thermal-type air flow-rate sensor
JP2000019042A (en) * 1998-07-02 2000-01-21 Omron Corp Semiconductor sensor and mounting structure
JP2001175969A (en) * 1999-12-17 2001-06-29 Yazaki Corp Device and method for detecting gas
JP2001304933A (en) * 2000-04-24 2001-10-31 Denso Corp Thermal flow rate sensor and its manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111668A (en) * 2006-10-27 2008-05-15 Denso Corp Flow rate sensor and its manufacturing method
WO2010113712A1 (en) * 2009-03-31 2010-10-07 アルプス電気株式会社 Capacitance type humidity sensor and method for manufacturing same
JP5175974B2 (en) * 2009-03-31 2013-04-03 アルプス電気株式会社 Capacitive humidity sensor and manufacturing method thereof
US8776597B2 (en) 2009-03-31 2014-07-15 Alps Electric Co., Ltd. Capacitive type humidity sensor and manufacturing method thereof
WO2010140545A1 (en) * 2009-06-01 2010-12-09 アルプス電気株式会社 Moisture detecting sensor package and manufacturing method therefor
JP5269990B2 (en) * 2009-06-01 2013-08-21 アルプス電気株式会社 Manufacturing method of humidity detection sensor package
EP3421949A1 (en) * 2010-10-13 2019-01-02 Hitachi Automotive Systems, Ltd. Flow sensor and manufacturing method of the same and flow sensor module and manufacturing method of the same

Also Published As

Publication number Publication date
JPWO2004023126A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US6516785B1 (en) Air flow sensor
EP1895278A2 (en) Thermal type gas flow meter
US10345131B2 (en) Thermal flow meter
KR100642912B1 (en) Flow Rate Measuring Apparatus
JP6965358B2 (en) Thermal flow meter
EP2012097B1 (en) Intake air mass flow measurement device
JP2004028631A (en) Flow sensor
EP2236996A1 (en) Thermal type flow measuring device
US10876872B2 (en) Physical quantity detection device
US20030074963A1 (en) Flow rate sensor
JP2004093470A (en) Microsensor made of silicon
US6952968B2 (en) Device for detecting physical quantity having a housing with a groove
US8549914B2 (en) Sensor structure
JP4380028B2 (en) Pressure sensor
WO2004023126A1 (en) Mounting method and manufacturing method for silicon micro sensor, and silicon micro sensor
JP3671399B2 (en) Flow sensor
JP6734939B2 (en) Thermal flow meter
JP2012242298A (en) Flow rate detection device
JP3787509B2 (en) Heat resistance type air flow measuring device
WO2018142931A1 (en) Thermal-type flow meter
JP2004093471A (en) Microsensor made of silicon and its manufacturing method
CN113167620B (en) Physical quantity measuring device
WO2023148836A1 (en) Semiconductor device
JP3386988B2 (en) Heating resistance type flow measurement device
JP2000002573A (en) Gas flow rate measuring apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004534147

Country of ref document: JP

122 Ep: pct application non-entry in european phase