WO2004008516A1 - Method of forming film and film forming apparatus - Google Patents

Method of forming film and film forming apparatus Download PDF

Info

Publication number
WO2004008516A1
WO2004008516A1 PCT/JP2003/008804 JP0308804W WO2004008516A1 WO 2004008516 A1 WO2004008516 A1 WO 2004008516A1 JP 0308804 W JP0308804 W JP 0308804W WO 2004008516 A1 WO2004008516 A1 WO 2004008516A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
processing vessel
film forming
raw material
Prior art date
Application number
PCT/JP2003/008804
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Yamasaki
Yoshihide Tada
Susumu Arima
Koumei Matsuzawa
Kazuhito Nakamura
Yumiko Kawano
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to AU2003281012A priority Critical patent/AU2003281012A1/en
Publication of WO2004008516A1 publication Critical patent/WO2004008516A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase

Definitions

  • the present invention generally relates to film forming techniques.
  • the present invention relates to a method and an apparatus for forming a metal oxide film by a CVD method or the like.
  • ultra-LS 1 formed by cutting-edge technology especially 01 ⁇ : (0711 & 11 ⁇ c Random Access Memory)
  • an extremely thin oxide film is used for the capacitor insulation film and the gut insulation film with miniaturization.
  • These insulating films in order to thin or further miniaturization while reducing the leakage current, large membrane of dielectric constant, for example, specific dielectric constant 8. 6-10. 55 of A1 2 0 3 film and the dielectric constant from 50 to 120 of Ta 2 ⁇ 5 film or the like is used.
  • these ferroelectric films and high-dielectric films are formed by a CVD method or the like, and then formed by a modification method by a post-treatment such as a heat treatment.
  • a post-treatment such as a heat treatment.
  • ALD Atomic Layer Deposition: a method in which multiple types of source gases are alternately supplied one by one. Techniques for forming by a method are being studied. In particular, to form a ferroelectric film or a high-dielectric film, it is necessary to use various organometallic compounds including constituent metal elements as raw materials.
  • An object of the present invention is to provide a film forming method and a film forming method capable of reducing the concentration of impurities such as residual carbon and obtaining a good quality metal oxide film.
  • a film forming method for forming a metal oxide film using an organometallic compound as a raw material is provided.
  • a film forming method is provided.
  • a film forming method for forming a metal oxide film using an organometallic compound as a raw material a film forming method for forming a metal oxide film using an organometallic compound as a raw material
  • a film forming method is provided.
  • a film forming method for forming a metal oxide film using an organometallic compound as a raw material a film forming method for forming a metal oxide film using an organometallic compound as a raw material
  • the activated oxygen gas is generated by activating at least one of O 2 , NO, and N 20 using a remote plasma generator or an ozonizer. May be. Further, in order to alternately supply the organic metal gas and the activated oxygen gas to the processing vessel, it is desirable to evacuate the inside of the processing vessel or to perform purging with a third type of gas when replacing these gases. This can prevent unnecessary reactions from occurring during the supply of these gases to the processing container.
  • the concentration of impurities such as residual carbon in the metal oxide film is remarkably reduced.
  • An oxide film can be obtained.
  • FIG. 1 is a sectional view showing a configuration example of a film forming apparatus 200 applicable to the embodiment of the present invention.
  • FIG. 2 is a flowchart showing a first embodiment of the method for forming a metal oxide film according to the present invention.
  • FIG. 3 is a cross-sectional view showing a configuration example of another film forming apparatus 200 applicable to the embodiment of the present invention.
  • FIG. 4 is a flowchart showing a second embodiment of the method for forming a metal oxide film according to the present invention.
  • the film forming apparatus 200 has a processing container 201 formed in a cylindrical shape or a box shape from, for example, aluminum.
  • a mounting table 203 on which the semiconductor substrate 101 is mounted is provided in the processing container 201.
  • the mounting table 203 is supported by a column 202 erected at the bottom of the processing container 201.
  • a resistance heater 204 is embedded as a heating means.
  • a ring-shaped support member 206 is provided below the mounting table 203, and a plurality of L-shaped lifter pins 205 are provided.
  • the support member 206 passes through the lifter pin holes 208 and the semiconductor substrate. Extends toward 101.
  • the support member 206 is moved up and down by a push-up bar 207 penetrating the bottom of the processing vessel 201, and the lifter pin 205 is moved up and down by the up and down movement of the support member 206.
  • the lower end of the push-up rod 2007 is connected to the actuator 210 via a bellows 209 which can be expanded and contracted in order to keep the inside of the processing vessel 201 airtight.
  • a clamp member 211 made of aluminum nitride or the like for holding the peripheral portion of the semiconductor substrate 101 is provided on a peripheral portion of the mounting table 203.
  • the clamp member 211 is connected to the support member 206 via a connecting rod 211, and is moved up and down integrally with the lifter pin 205.
  • the lifter pins 205 and the connecting rods 212 are formed of alumina or the like.
  • a wall portion 21 3 made of aluminum is formed on the outer peripheral side of the mounting table 203, and an upper portion of the wall portion 2 13 is bent in a horizontal direction to form a bent portion 2 14.
  • the upper surface of the bent portion 214 is substantially flush with the upper surface of the mounting table 203, and is separated from the outer periphery of the mounting table 203 by a small distance. It has been done.
  • This cylindrical wall portion 2 13 defines an inert gas purge on the back side of the mounting table 203.
  • a plurality of contact protrusions 2 16 are arranged on the inner peripheral side of the ring-shaped clamp member 211 at substantially equal intervals along the circumferential direction.
  • the lower end surface contacts the upper surface of the peripheral portion of the semiconductor substrate 101, and restrains the semiconductor substrate 101 with respect to the mounting table 203.
  • the gap formed between the contact projections 2 16 and the semiconductor substrate 101 at the time of clamping functions as a first gas purge gap 2 17. Further, the peripheral edge of the clamp member 211 is disposed above the bent portion 214 of the wall portion 211, and the ring-shaped gap formed by these is formed as the second gas purge gap 218. Function as This allows the inert gas in the inert gas purge chamber 2 15 to flow out of the first gas purge gap 2 17 and the second gas purge gap 2 18 into the processing space. .
  • a gas nozzle 220 constituting a part of the inert gas supply means 219 is provided at the bottom of the processing vessel 201.
  • the gas flow path 222 includes a flow controller 222 such as a mass flow controller and on-off valves 222, 245.
  • a flow controller 222 such as a mass flow controller and on-off valves 222, 245.
  • One end of the gas flow path 223 is connected to a gas nozzle 220, and the other end of the gas flow path 223 is an inert gas storing an inert gas such as Ar gas or He gas.
  • an exhaust port 225 is provided on the peripheral edge of the bottom of the processing container 201, and the exhaust port 225 is evacuated so that the inside of the processing container 201 can be maintained at a predetermined degree of vacuum.
  • An exhaust path 226 with a pump (not shown) is connected.
  • a gate valve 227 that is opened and closed when the semiconductor substrate 101 is carried in and out is provided on a side wall of the processing container 201.
  • a shower head 228 is provided as a processing gas supply means for introducing raw material gas and the like into the processing vessel 201.
  • the shower head 228 has a head body 229 formed in a circular box shape from, for example, aluminum or the like, and a gas inlet port 230 is provided on a ceiling portion of the head body 229. Is provided.
  • a raw material supply path including a raw material container (not shown) for storing a solid or liquid raw material is connected to the gas inlet 230.
  • the raw material gas introduced into the processing container 201 as described above is generated by vaporizing the raw material in the raw material container, and is conveyed to the processing container 201 by a carrier gas such as an Ar gas. .
  • a carrier gas such as an Ar gas.
  • Numerous gas injection holes 231 for discharging gas supplied to the head main body 229 to the processing space are provided below the head main body 229.
  • a diffusion plate 2 33 having a large number of gas distribution holes 2 32 is provided inside the head body 2 29 so as to supply gas evenly to the semiconductor substrate 101. Good.
  • Cartridge heaters 234 and 235 are provided to prevent adhesion.
  • the film forming apparatus 200 is provided with a means for introducing activated oxygen gas into the processing vessel 201 to reduce the concentration of impurities such as residual carbon in the formed film.
  • the processing container 201 of the film forming apparatus 200 according to the present invention is provided with an activated gas supply port 241 for introducing an activated oxygen gas.
  • the gas introduction path 2 4 2 connected to the activated gas supply port 2 4 1, ⁇ 2, NO, remote plasma generator 2 4 3 to activate the N 2 0 gas is provided.
  • the remote plasma generator 243 converts the oxygen gas into a plasma using a microwave, but may use an ICP plasma, a parallel plate plasma, an ECR plasma, a DC plasma, or an RF plasma in addition to the microwave. Also remote Instead of the plasma generator 243, an ozonizer that converts ozone gas into ozone using far ultraviolet rays may be used.
  • the gas introduction path 242 for supplying the activated oxygen gas is a force connected to the side wall of the processing vessel 201, and the gas introduction path 242 is, for example, a shear head 2. 2 8 may be connected.
  • the shower head 228 is provided with separate gas passages for the raw material gas and the activated oxygen gas, and these gases are mixed only when the gas is introduced into the processing vessel 201. It is configured to be.
  • FIG. 2 is a flowchart showing a first embodiment of a method for forming a metal oxide film according to the present invention using the above-described film forming apparatus 200. Hereinafter, each process shown in FIG. 2 will be described.
  • Step 100 The semiconductor substrate 101 is loaded into the processing container 201 by the transfer arm and placed on the mounting table 203 heated to a predetermined temperature, for example, 300 ° C. in advance.
  • the pressure in the processing vessel 201 is maintained at a predetermined pressure, for example, 133 Pa (1 OT orr) while flowing Ar gas.
  • Step 110 Oxygen gas activated by the remote plasma generator 243 is introduced into the processing vessel 201 via the activated gas supply port 241, and the semiconductor substrate 101 is activated as described above.
  • the treatment vessel 201 is exposed to the oxygen gas, and the pressure in the processing vessel 201 is maintained at a predetermined pressure, for example, 2666 Pa (2 Torr), and is maintained for a predetermined time, for example, 60 seconds.
  • Step 120 While the oxygen gas activated by the remote plasma generator 243 is introduced into the processing vessel 201, the raw gas transported by a carrier gas such as Ar gas is processed into the processing vessel 20. 1 is intermittently introduced via a gas inlet 2 30. This step 120 repeats a cycle of, for example, circulating the source gas for 10 seconds and stopping for 20 seconds, a plurality of times.
  • a carrier gas such as Ar gas
  • the present inventors used a TM A (trimethylaluminum two ⁇ beam) an organometallic compound as a raw material, depositing the A 1 2 0 3 film by a film forming method of the first embodiment described above, the conventional It was compared carbon content of a 1 2 0 3 film and film formed by specific film forming method.
  • the oxygen gas and the carrier gas carried through the ozonizer were used to carry the film.
  • the sent source gas flows into the shower head from different flow paths.
  • the flow path in the shear head is also divided (ie, a post-mix type shower head), and these gases are mixed for the first time in the processing vessel.
  • the semiconductor substrate is carried into the processing container by the transfer arm, and placed on a mounting table heated so that the substrate temperature becomes 300 ° C., and the semiconductor substrate is heated by Ar gas. While maintaining the pressure of the processing container at 1330 Pa (10 To rr) for 60 seconds.
  • step 110 while flowing oxygen gas at a flow rate of 500 sccm (1 sccm means that a fluid at 0 ° C./1 atm. Flows 1 cm 3 ) through the ozonizer,
  • the pressure in the processing container was maintained at 266 Pa (2 Torr) for 60 seconds.
  • the TMA gas carried by the Ar gas at a flow rate of 200 sccm while the oxygen gas at a flow rate of 500 sccm passed through the ozonizer was passed through the processing vessel (temperature of the raw material vessel: 60 ° C). ) was intermittently circulated through the treatment vessel.
  • the TMA gas flow Z stop was repeated 5 times in a cycle of flowing the source gas for 10 seconds and stopping for 20 seconds.
  • the present inventors formed a metal oxide film by the film forming method of the first embodiment using other organometallic compounds, and adjusted the impurity concentration in the formed metal oxide film. Was investigated.
  • the Ta 2 O 5 film is formed according to the present embodiment using the organometallic compound Ru (E t C p) 2 , the T 2 O 5 film is formed without introducing the activated oxygen gas. as compared with the case of forming the a 2 0 5 film, the carbon content in the film per unit volume in the same manner that is least 1 order of magnitude lower it was confirmed.
  • the film forming apparatus 200 includes a raw material supply path 11, an activated gas supply path 13, a processing vessel 201, a heating mechanism 204, a mounting table 203, and a vacuum. It is constituted by an exhaust passage 226 provided with a pump 242.
  • the film forming apparatus 200 of the present embodiment has a configuration in which the raw material gas and the like are caused to flow in the lateral direction (the surface direction of the semiconductor substrate 101) in the processing container 201, so that the gas inlets 22, 24 Is provided on the side wall of the processing container 201.
  • the mounting table 203 is fixed in the support member 202 so that it is installed in the processing container 201.
  • the mounting table 203 mounts the semiconductor substrate 101 which is provided by a transfer arm (not shown).
  • the exhaust path 226 is provided on the side wall of the processing container 201.
  • the exhaust path 226 is connected to a vacuum pump 42 via a valve 41 for adjusting the exhaust gas flow rate.
  • a vacuum pump 42 By exhausting the gas in the processing vessel 201 through the exhaust path 222 by the vacuum pump 42, the inside of the processing vessel 201 is evacuated by the vacuum pump 42 and the processing vessel 201. , The ultimate degree of vacuum determined by the conductance of the exhaust pipe 40 and the conductance of the pulp 41 or a predetermined pressure can be maintained.
  • the raw material supply path 11 is provided with a mass flow controller 32 for controlling a carrier gas * such as an Ar gas supplied to the raw material container 30.
  • Raw material ⁇ Container TMA contains raw material TMA.
  • the carrier gas is transferred to the film forming apparatus 200 through the raw material supply path 11 by the carrier gas.
  • the activation gas supply path 13 is provided with an ozonizer 33 for ozonizing oxygen gas using far ultraviolet rays.
  • the ozonizer 133 activates (ozonizes) oxygen gas supplied from a gas source (not shown).
  • the activated oxygen gas is supplied into the processing vessel 201 through the activation gas supply path 13 and the gas inlet 24.
  • the remote plasma generator 24 3 as described in the first embodiment may be used instead of the oscillator 13.
  • valves V 3 and V 4 are provided in the raw material supply path 11 and the activation gas supply path 13, respectively. , Controlled by opening and closing V4. The driving of the valves V3 and V4 is realized by a control device (not shown).
  • FIG. 4 is a flowchart showing a second embodiment of the method for forming a metal oxide film according to the present invention using the above-described film forming apparatus 200. Hereinafter, each process shown in FIG. 4 will be described.
  • Step 200 The semiconductor substrate 101 is loaded into the processing container 201 by the transfer arm and placed on the mounting table 203 heated to a predetermined temperature, for example, 300 ° C. in advance.
  • Step 210) Oxygen gas activated by the ozonizer 133 is introduced into the processing vessel 201 via the gas inlet 24, and the processing vessel 201 is maintained at a predetermined pressure.
  • Step 220 The gas supply is stopped, and the processing vessel 201 is evacuated or purged with a purge gas.
  • Step 230 TMA gas carried by a carrier gas such as Ar gas is introduced into the processing vessel 201 via the gas inlet 22 to maintain the processing vessel 201 at a predetermined pressure.
  • a carrier gas such as Ar gas
  • Step 240 The gas supply is stopped, and the processing container 201 is evacuated or purged with a purge gas.
  • Membrane shape Is done.
  • a l 2 0 3 film has a desired ff, returns Ri (Step 2 1 0) to (Step 2 4 0) a predetermined times up.
  • the present inventors as in the first embodiment described above, it was investigated impurity concentration of A 1 2 0 3 film which is more formed on the film formation method of the second embodiment.
  • a 1 2 0 3 film formed by the second embodiment A 1 2 0 3 which is formed by introducing H 2 0 gas instead of the active I spoon oxygen gas in Step 2 1 0 It was confirmed that the carbon content in the film was reduced by 50% or more compared to the film.
  • a plurality of film forming apparatuses 200 of the second embodiment may be applied to a cluster tool apparatus capable of continuous processing.
  • the raw material gas and the activated oxygen gas are alternately supplied to the respective processing vessels 201 of the cluster tool device at different phases.
  • the source gas is introduced while introducing the activated oxygen gas into the processing vessel 201, but these gases are simultaneously introduced into the processing vessel 201.
  • the same effect can be obtained.

Abstract

A method of forming a metal oxide film from an organometallic compound as a raw material, characterized in that it comprises the steps of feeding activated oxygen gas through a first flow channel to a treating container and simultaneously with this step or after or during the step, feeding an organometallic gas through a second flow channel to the treating container. Thus, the content of impurities such as residual carbon can be lowered, thereby enabling obtaining a metal oxide film of high quality.

Description

成膜方法及び成膜装置 技術分野  Film forming method and film forming apparatus
本発明は、 一般に成膜技術に関する。 特には、 本発明は、 CVD法等による金 属酸化膜の成膜方法及び成膜装置に関する。 背景技術  The present invention generally relates to film forming techniques. In particular, the present invention relates to a method and an apparatus for forming a metal oxide film by a CVD method or the like. Background art
最先端技術により形成される超 LS 1、特に01 ^: (0711 &11^ c Ra n d om Ac c e s s Memo r y) では、 微細化に伴い膜厚が極めて薄い酸化 膜がキャパシタ絶縁膜やグート絶縁膜に用いられている。 これらの絶縁膜には、 リーク電流の低減を図りつつ薄膜化若しくは一層の微細化を図るために、 比誘電 率の大きな膜、例えば比誘電率 8. 6-10. 55の A1203膜や比誘電率 50 〜120の Ta25膜等が用いられている。 With ultra-LS 1 formed by cutting-edge technology, especially 01 ^: (0711 & 11 ^ c Random Access Memory), an extremely thin oxide film is used for the capacitor insulation film and the gut insulation film with miniaturization. Used. These insulating films, in order to thin or further miniaturization while reducing the leakage current, large membrane of dielectric constant, for example, specific dielectric constant 8. 6-10. 55 of A1 2 0 3 film and the dielectric constant from 50 to 120 of Ta 25 film or the like is used.
従来、これらの強誘電体膜や高誘電体膜は、 CVD法等により形成され、その後、 熱処理等の後処理により改質させる方法で形成されている。 しカゝし、このような方 法では膜の堆積と改質処理を別々に行う必要があり、また改質工程で用いられる酸 素雰囲気中での高温熱処理に起因して、 様々な問題が発生する。  Conventionally, these ferroelectric films and high-dielectric films are formed by a CVD method or the like, and then formed by a modification method by a post-treatment such as a heat treatment. However, in such a method, it is necessary to separately perform film deposition and modification treatment, and various problems are caused by high-temperature heat treatment in an oxygen atmosphere used in the modification process. appear.
また、最近では、これらの強誘電体膜や高誘電体膜を A L D法( A t o m i c L a y e r De p o s i t i on:複数種の原料ガスを 1種類ずつ交互に供給して 成膜を行なう方法) や MOCVD法により形成する技術が研究されている。 特に 強誘電体膜や高誘電体膜を形成する には、構成金属元素を含む様々な有機金属 化合物を原料に使う必要がある。  Recently, these ferroelectric films and high-dielectric films have been formed by ALD (Atomic Layer Deposition: a method in which multiple types of source gases are alternately supplied one by one) to form films. Techniques for forming by a method are being studied. In particular, to form a ferroelectric film or a high-dielectric film, it is necessary to use various organometallic compounds including constituent metal elements as raw materials.
しかしながら、 上述したような有機金属化合物を用いた成膜処理においては、 当該有機金属化合物に由来する C (炭素) 等の不純物が形成した膜に残留してし まうという問題点があった。 特にゲート絶縁膜やキャパシタ絶縁膜の成膜に有機 金属化合物を用いた には、不純物の混入によりリーク電流が生じやすくなり、 絶縁膜の電気的特性を劣化させてしまうとレヽぅ問題点があった。 発明の開示 However, in the film forming process using an organometallic compound as described above, there is a problem that impurities such as C (carbon) derived from the organometallic compound remain in the formed film. In particular, when an organometallic compound is used for forming a gate insulating film or a capacitor insulating film, leakage current is likely to occur due to mixing of impurities, and there is a problem that the electrical characteristics of the insulating film are deteriorated. Was. Disclosure of the invention
本発明の目的は、 残留炭素などの不純物濃度を低下させることができ、 良質な 金属酸化膜を得ることができる成膜方法及び成難置を することにある。 本発明の第 1の局面によれば、 有機金属化合物を原料として金属酸化膜を成膜 する成膜方法であって、  An object of the present invention is to provide a film forming method and a film forming method capable of reducing the concentration of impurities such as residual carbon and obtaining a good quality metal oxide film. According to a first aspect of the present invention, there is provided a film forming method for forming a metal oxide film using an organometallic compound as a raw material,
活性化した酸素ガスを第 1の流路を介して処理容器に供給する工程と、 該工程と同時に、 上記処理容器に第 2の流路を介して有機金属ガスを供給する 工程とを含むことを特徴とする、 成膜方法が提供される。  A step of supplying the activated oxygen gas to the processing vessel through the first flow path; and, simultaneously with this step, a step of supplying an organic metal gas to the processing vessel through the second flow path. A film forming method is provided.
本発明の第2の局面によれば、 有機金属化合物を原料として金属酸化膜を成膜 する成膜方法であって、 According to a second aspect of the present invention, there is provided a film forming method for forming a metal oxide film using an organometallic compound as a raw material,
活性ィ匕した酸素ガスを第 1の流路を介して処理容器に供給する工程と、 該工程後に、 上記処理容器に第 2の流路を介して有機金属ガスを供給する工程 とを含むことを特徴とする、 成膜方法が提供される。  A step of supplying the activated oxygen gas to the processing vessel through the first flow path; and, after this step, a step of supplying an organometallic gas to the processing vessel through the second flow path. A film forming method is provided.
また、 本発明の第 3の局面によれば、 有機金属化合物を原料として金属酸化膜 を成膜する成膜方法であって、  According to a third aspect of the present invention, there is provided a film forming method for forming a metal oxide film using an organometallic compound as a raw material,
活性ィ匕した酸素ガスを第 1の流路を介して処理容器に供給する工程と、 該工程中に、 上記処理容器に第2の流路を介して有機金属ガスを断続的に供給 する工程とを含むことを特徴とする、 成膜方法が提供される。 A step of supplying the activated oxygen gas to the processing vessel through the first flow path, and a step of intermittently supplying the organometallic gas to the processing vessel through the second flow path during the step. And a film forming method is provided.
また、 本発明の更なるその他の局面によれば、 上述の成膜方法を使用する成膜 装置が提供される。  According to still another aspect of the present invention, there is provided a film forming apparatus using the above-described film forming method.
何れの局面にぉ、ても、 活性化した酸素ガスは、 リモートブラズマ発生器若し くはォゾナイザーを用いて、 02, NO若しくは N20のうちの少なくとも 1種の ガスを活性化して生成されてよい。 また、 処理容器に有機金属ガス及び活性化し た酸素ガスを交互に供給する には、 これらのガスの入れ替え時に、 処理容器 内を真空排気或いは第 3種のガスによるパージを行なうことが望ましい。 これに より、 処理容器へのこれらのガスの供給中において、 不要な反応が生じることを 防止できる。 In any case, the activated oxygen gas is generated by activating at least one of O 2 , NO, and N 20 using a remote plasma generator or an ozonizer. May be. Further, in order to alternately supply the organic metal gas and the activated oxygen gas to the processing vessel, it is desirable to evacuate the inside of the processing vessel or to perform purging with a third type of gas when replacing these gases. This can prevent unnecessary reactions from occurring during the supply of these gases to the processing container.
以上の本発明によれば、 活性化した酸素ガスを用いて金属酸化膜を形成するこ とで、 金属酸化膜中の残留炭素などの不純物濃度が著しく低下され、 良質な金属 酸化膜を得ることができる。 特に本発明の第 3の局面によれば、 従来の熱 C VD 法により形成される膜に比べ、 被覆性、 平滑性、 膜の純度が良好な金属酸化膜を 得ることができる。 According to the present invention described above, by forming a metal oxide film using an activated oxygen gas, the concentration of impurities such as residual carbon in the metal oxide film is remarkably reduced. An oxide film can be obtained. In particular, according to the third aspect of the present invention, it is possible to obtain a metal oxide film having better coverage, smoothness, and film purity than a film formed by a conventional thermal CVD method.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
本発明の他の目的、 特徴及び利点は添付の図面を参照しながら以下の詳細な説 明を読むことにより一層明瞭となるであろう。  Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.
図 1は、 本発明の実施に適用できる成膜装置 2 0 0の構成例を示す断面図であ る。  FIG. 1 is a sectional view showing a configuration example of a film forming apparatus 200 applicable to the embodiment of the present invention.
図 2は、 本発明による金属酸化膜の成膜方法の第 1の実施形態を示すフローチ ヤートである。  FIG. 2 is a flowchart showing a first embodiment of the method for forming a metal oxide film according to the present invention.
図 3は、 本発明の実施に適用できるその他の成膜装置 2 0 0の構成例を示す断 面図である。  FIG. 3 is a cross-sectional view showing a configuration example of another film forming apparatus 200 applicable to the embodiment of the present invention.
図 4は、 本発明による金属酸化膜の成膜方法の第 2の実施形態を示すフローチ ヤートである。 発明を実施するための最良の形態  FIG. 4 is a flowchart showing a second embodiment of the method for forming a metal oxide film according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
まず、 本究明による成膜方法の説明に先立ち、 本発明による成膜方法を実現す る C VD成膜装置 2 0 0の構成例について説明する。  First, prior to the description of the film forming method according to the present invention, a configuration example of a CVD film forming apparatus 200 that realizes the film forming method according to the present invention will be described.
図 1を参照するに、 この成膜装置 2 0 0は、 例えばアルミニウムにより円筒形 若しくは箱型に形成された処理容器 2 0 1を有する。この処理容器 2 0 1内には、 半導体基板 1 0 1が載置される載置台 2 0 3が設けられる。この載置台 2 0 3は、 処理容器 2 0 1の底部に立設された支柱 2 0 2により支持される。 載置台 2 0 3 の内部には、 加熱手段として抵抗加熱ヒータ 2 0 4が埋設される。  Referring to FIG. 1, the film forming apparatus 200 has a processing container 201 formed in a cylindrical shape or a box shape from, for example, aluminum. A mounting table 203 on which the semiconductor substrate 101 is mounted is provided in the processing container 201. The mounting table 203 is supported by a column 202 erected at the bottom of the processing container 201. Inside the mounting table 203, a resistance heater 204 is embedded as a heating means.
载置台 2 0 3の下方には、 リング状の支持部材 2 0 6が設けられ、 複数の L字 状のリフタピン 2 0 5力 この支持部材 2 0 6からリフタピン穴 2 0 8を通って 半導体基板 1 0 1に向かって延在する。 この支持部材 2 0 6は、 処理容器 2 0 1 の底部を貫通する押し上げ棒 2 0 7により上下移動させられ、 この支持部材 2 0 6の上下移動により、 リフタピン 2 0 5が半導体基板 1 0 1を持ち上げることに なる。 押し上げ棒 2 0 7の下端は、 処理容器 2 0 1において内部の気密状態を保 持するために伸縮可能なベローズ 2 0 9を介してァクチユエータ 2 1 0に接続さ れる。 A ring-shaped support member 206 is provided below the mounting table 203, and a plurality of L-shaped lifter pins 205 are provided. The support member 206 passes through the lifter pin holes 208 and the semiconductor substrate. Extends toward 101. The support member 206 is moved up and down by a push-up bar 207 penetrating the bottom of the processing vessel 201, and the lifter pin 205 is moved up and down by the up and down movement of the support member 206. To lift Become. The lower end of the push-up rod 2007 is connected to the actuator 210 via a bellows 209 which can be expanded and contracted in order to keep the inside of the processing vessel 201 airtight.
载置台 2 0 3の周縁部には、 窒化アルミニウム等から形成される、 半導体基板 1 0 1の周縁部を保持するためのクランプ部材 2 1 1が設けられる。 クランプ部 材 2 1 1は、 支持部材 2 0 6に連結棒 2 1 2を介して連結されており、 リフタピ ン 2 0 5と一体的に上下移動させられる。 尚、 リフタピン 2 0 5や連結棒 2 1 2 等はアルミナ等により形成される。  A clamp member 211 made of aluminum nitride or the like for holding the peripheral portion of the semiconductor substrate 101 is provided on a peripheral portion of the mounting table 203. The clamp member 211 is connected to the support member 206 via a connecting rod 211, and is moved up and down integrally with the lifter pin 205. Incidentally, the lifter pins 205 and the connecting rods 212 are formed of alumina or the like.
載置台 2 0 3の外周側には、 アルミニウムからなる壁部 2 1 3が形成され、 壁 部 2 1 3の上部は、 水平方向に曲げ加工され、 屈曲部 2 1 4が形成される。 この 屈曲部 2 1 4の上面は、 载置台 2 0 3の上面と略同一平面状にあり、 載置台 2 0 3の外周よりも僅かな距離だけ離間され、 この間に連結棒 2 1 2が挿通されてい る。 この円筒形の壁部 2 1 3は、 載置台 2 0 3の裏側に不活性ガスパージを画成 している。  A wall portion 21 3 made of aluminum is formed on the outer peripheral side of the mounting table 203, and an upper portion of the wall portion 2 13 is bent in a horizontal direction to form a bent portion 2 14. The upper surface of the bent portion 214 is substantially flush with the upper surface of the mounting table 203, and is separated from the outer periphery of the mounting table 203 by a small distance. It has been done. This cylindrical wall portion 2 13 defines an inert gas purge on the back side of the mounting table 203.
また、リング状のクランプ部材 2 1 1の内周側には、複数の接触突起 2 1 6が、 周方向に沿って略等間隔で配設されており、 クランプ時には、 接触突起 2 1 6の 下端面が、 半導体基板 1 0 1の周縁部の上面と接触し、 載置台 2 0 3に対して半 導体基板 1 0 1を拘束する。  A plurality of contact protrusions 2 16 are arranged on the inner peripheral side of the ring-shaped clamp member 211 at substantially equal intervals along the circumferential direction. The lower end surface contacts the upper surface of the peripheral portion of the semiconductor substrate 101, and restrains the semiconductor substrate 101 with respect to the mounting table 203.
尚、 クランプ時において各接触突起 2 1 6の間に形成される半導体基板 1 0 1 との間隙は、 第 1のガスパージ用間隙 2 1 7として機能する。 また、 クランプ部 材 2 1 1の周縁部は、 壁部 2 1 3の屈曲部 2 1 4の上方に配置され、 これらが形 成するリング状の間隙は、 第 2のガスパージ用間隙 2 1 8として機能する。 これ により、 不活†生ガスパージ室 2 1 5内の不活性ガスは、 処理空間に第 1のガスパ ージ用間隙 2 1 7及び第 2のガスパージ用間隙 2 1 8力 ら流出できるようになる。 処理容器 2 0 1の底部には、 不活性ガス供給手段 2 1 9の一部を構成するガス ノズル 2 2 0が設けられる。 ガス流路 2 2 3は、 マスフローコントローラのよう な流量制御器 2 2 1及ぴ開閉弁 2 2 2, 2 4 5を有する。 このガス流路 2 2 3の 一端は、 ガスノズル 2 2 0に接続され、 ガス流路 2 2 3の他端は、 例えば A rガ スゃ H eガスのような不活性ガスを貯留する不活性ガス源 2 2 4に接続される。 また、 処理容器 2 0 1の底部の周縁部には、 排気口 2 2 5が設けられ、 排気口 2 2 5には、 処理容器 2 0 1内を所定の真空度に維持できるように、 真空ポンプ (図示せず) を備えた排気路 2 2 6が接続される。 また、 処理容器 2 0 1の側壁 には、 半導体基板 1 0 1を搬出入する際に開閉されるゲートバルブ 2 2 7が設け られる。 The gap formed between the contact projections 2 16 and the semiconductor substrate 101 at the time of clamping functions as a first gas purge gap 2 17. Further, the peripheral edge of the clamp member 211 is disposed above the bent portion 214 of the wall portion 211, and the ring-shaped gap formed by these is formed as the second gas purge gap 218. Function as This allows the inert gas in the inert gas purge chamber 2 15 to flow out of the first gas purge gap 2 17 and the second gas purge gap 2 18 into the processing space. . At the bottom of the processing vessel 201, a gas nozzle 220 constituting a part of the inert gas supply means 219 is provided. The gas flow path 222 includes a flow controller 222 such as a mass flow controller and on-off valves 222, 245. One end of the gas flow path 223 is connected to a gas nozzle 220, and the other end of the gas flow path 223 is an inert gas storing an inert gas such as Ar gas or He gas. Connected to gas source 2 24. In addition, an exhaust port 225 is provided on the peripheral edge of the bottom of the processing container 201, and the exhaust port 225 is evacuated so that the inside of the processing container 201 can be maintained at a predetermined degree of vacuum. An exhaust path 226 with a pump (not shown) is connected. A gate valve 227 that is opened and closed when the semiconductor substrate 101 is carried in and out is provided on a side wall of the processing container 201.
—方、 載置台 2 0 3と対向する処理容器 2 0 1の天井部には、 原料ガス等を処 理容器 2 0 1内に導入する処理ガス供給手段としてシャワーへッド 2 2 8が設け られる。 シャワーへッド 2 2 8は、 例えばアルミニウム等により円形箱型に成形 されたへッド本体 2 2 9を有し、 このへッド本体 2 2 9の天井部にはガス流入口 2 3 0が設けられる。 このガス流入口 2 3 0には、 固体若しくは液体の原料を収 容する原料容器 (図示せず) を備えた原料供給路が接続される。 尚、 上述の如く 処理容器 2 0 1に導入される原料ガスは、 原料容器内の原料を気化することによ り生成され、 A rガス等のキャリアガスにより処理容器 2 0 1に搬送される。 へッド本体 2 2 9の下部には、 へッド本体 2 2 9に供給されたガスを処理空間 へ放出するための多数のガス噴射孔 2 3 1が配設される。 また、 へッド本体 2 2 9の内部には、 半導体基板 1 0 1に均等にガスを供給するように、 多数のガス分 散孔 2 3 2を有する拡散板 2 3 3が配設されてよい。 また、 処理容器 2 0 1の側 壁内及びシャワーへッド 2 2 8の側壁内には、 処理容器 2 0 1及ぴシャワーへッ ド 2 2 8への原料や反応副生成物の凝縮や付着を防止するため、 カートリッジヒ —タ 2 3 4, 2 3 5がそれぞれ設けられる。  On the other hand, on the ceiling of the processing vessel 201 facing the mounting table 203, a shower head 228 is provided as a processing gas supply means for introducing raw material gas and the like into the processing vessel 201. Can be The shower head 228 has a head body 229 formed in a circular box shape from, for example, aluminum or the like, and a gas inlet port 230 is provided on a ceiling portion of the head body 229. Is provided. A raw material supply path including a raw material container (not shown) for storing a solid or liquid raw material is connected to the gas inlet 230. The raw material gas introduced into the processing container 201 as described above is generated by vaporizing the raw material in the raw material container, and is conveyed to the processing container 201 by a carrier gas such as an Ar gas. . Numerous gas injection holes 231 for discharging gas supplied to the head main body 229 to the processing space are provided below the head main body 229. In addition, a diffusion plate 2 33 having a large number of gas distribution holes 2 32 is provided inside the head body 2 29 so as to supply gas evenly to the semiconductor substrate 101. Good. In addition, in the side wall of the processing vessel 201 and the side wall of the shower head 228, condensation of raw materials and reaction by-products on the processing vessel 201 and the shower head 228 is prevented. Cartridge heaters 234 and 235 are provided to prevent adhesion.
本発明による成膜装置 2 0 0は、 形成された膜中における残留炭素などの不純 物濃度を低下させるベく、 処理容器 2 0 1に活性化した酸素ガスを導入するため の手段を備える。 具体的には、 本発明による成膜装置 2 0 0の処理容器 2 0 1に は、活性化した酸素ガスを導入する活性化ガス供給口 2 4 1が設けられる。 この 活性化ガス供給口 2 4 1に接続するガス導入経路 2 4 2には、 〇2、 NO、 N 20 ガスを活性化するリモートプラズマ発生器 2 4 3が設けられる。 The film forming apparatus 200 according to the present invention is provided with a means for introducing activated oxygen gas into the processing vessel 201 to reduce the concentration of impurities such as residual carbon in the formed film. Specifically, the processing container 201 of the film forming apparatus 200 according to the present invention is provided with an activated gas supply port 241 for introducing an activated oxygen gas. The gas introduction path 2 4 2 connected to the activated gas supply port 2 4 1, 〇 2, NO, remote plasma generator 2 4 3 to activate the N 2 0 gas is provided.
このリモートブラズマ発生器 2 4 3は、 マイクロ波により酸素ガスをブラズマ 化するものであるが、 マイクロ波以外に、 I C Pプラズマ、 平行平板プラズマ、 E C Rプラズマや D Cプラズマ、 R Fプラズマを用いてもよい。 また、 リモート プラズマ発生器 2 4 3に代わって、 遠紫外線を用いて酸素ガスをオゾン化するォ ゾナイザ一を利用してもよい。 The remote plasma generator 243 converts the oxygen gas into a plasma using a microwave, but may use an ICP plasma, a parallel plate plasma, an ECR plasma, a DC plasma, or an RF plasma in addition to the microwave. Also remote Instead of the plasma generator 243, an ozonizer that converts ozone gas into ozone using far ultraviolet rays may be used.
尚、 活性化した酸素ガスを供給するガス導入経路 2 4 2は、 図 1においては処 理容器 2 0 1の側壁に接続されている力、 ガス導入経路 2 4 2は、 例えばシャヮ 一ヘッド 2 2 8に接続されてもよい。 かかる場合、 シャワーヘッド 2 2 8には、 原料ガス及ぴ活性化した酸素ガスに対して各々別個にガス通路が設けられ、 処理 容器 2 0 1に導入された際に初めてこれらのガスが混合されるように構成される。 続レ、て、 本発明による金属酸化膜の成膜方法の第 1の実施形態にっレ、て説明す る。 図 2は、 上述の成膜装置 2 0 0を用いた本発明による金属酸化膜の成膜方法 の第 1の実施形態を示すフローチャートである。 以下、 図 2に示す各処理につい て説明する。  In FIG. 1, the gas introduction path 242 for supplying the activated oxygen gas is a force connected to the side wall of the processing vessel 201, and the gas introduction path 242 is, for example, a shear head 2. 2 8 may be connected. In such a case, the shower head 228 is provided with separate gas passages for the raw material gas and the activated oxygen gas, and these gases are mixed only when the gas is introduced into the processing vessel 201. It is configured to be. Next, a first embodiment of the method for forming a metal oxide film according to the present invention will be described. FIG. 2 is a flowchart showing a first embodiment of a method for forming a metal oxide film according to the present invention using the above-described film forming apparatus 200. Hereinafter, each process shown in FIG. 2 will be described.
(ステップ 1 0 0 ) 処理容器 2 0 1に半導体基板 1 0 1を搬送アームにより搬 入して予め所定の温度例えば 3 0 0°Cに加熱した載置台 2 0 3に載置し、 更に、 A rガスを流しながら処理容器 2 0 1の圧力を所定の圧力例えば 1 3 3 0 P a ( 1 O T o r r ) に維持する。  (Step 100) The semiconductor substrate 101 is loaded into the processing container 201 by the transfer arm and placed on the mounting table 203 heated to a predetermined temperature, for example, 300 ° C. in advance. The pressure in the processing vessel 201 is maintained at a predetermined pressure, for example, 133 Pa (1 OT orr) while flowing Ar gas.
(ステップ 1 1 0 ) リモートプラズマ発生器 2 4 3により活性化された酸素ガ スを処理容器 2 0 1に活性化ガス供給口 2 4 1を介して導入し、 半導体基板 1 0 1が上記活性化した酸素ガスに曝された状態とし、 処理容器 2 0 1の圧力を所定 の圧力例えば 2 6 6 P a ( 2 T o r r ) に保ち所定時間例えば 6 0秒、保持する。  (Step 110) Oxygen gas activated by the remote plasma generator 243 is introduced into the processing vessel 201 via the activated gas supply port 241, and the semiconductor substrate 101 is activated as described above. The treatment vessel 201 is exposed to the oxygen gas, and the pressure in the processing vessel 201 is maintained at a predetermined pressure, for example, 2666 Pa (2 Torr), and is maintained for a predetermined time, for example, 60 seconds.
(ステップ 1 2 0 ) リモートプラズマ発生器 2 4 3により活性ィ匕された酸素ガ スを処理容器 2 0 1に導入しつつ、 A rガス等のキヤリァガスにより搬送した原 料ガスを処理容器 2 0 1にガス流入口 2 3 0を介して断続的に導入する。 このス テツプ 1 2 0は、 例えば 1 0秒間原料ガスを流通し、 2 0秒間停止するといった サイクルを複数回繰り返すものであってよレ、。  (Step 120) While the oxygen gas activated by the remote plasma generator 243 is introduced into the processing vessel 201, the raw gas transported by a carrier gas such as Ar gas is processed into the processing vessel 20. 1 is intermittently introduced via a gas inlet 2 30. This step 120 repeats a cycle of, for example, circulating the source gas for 10 seconds and stopping for 20 seconds, a plurality of times.
[成膜例]  [Deposition example]
本発明者らは、 原料として有機金属化合物である TM A (トリメチルアルミ二 ゥム)を用いて、上述した第 1の実施形態の成膜方法により A 1 203膜を成膜し、 従来的な成膜方法により形成した A 1 203膜と膜中の炭素量の比較を行った。 尚、本成膜例では、ォゾナイザーに流通させた酸素ガスとキャリアガスにより搬 送された原料ガスは、シャワーヘッドには異なる流路から流入する。また、シャヮ 一へッド内の流路も分力れており(即ち、ポストミックスタイプのシャワーへッド)、 処理容器内で初めてこれらのガスが混合される。 The present inventors used a TM A (trimethylaluminum two © beam) an organometallic compound as a raw material, depositing the A 1 2 0 3 film by a film forming method of the first embodiment described above, the conventional It was compared carbon content of a 1 2 0 3 film and film formed by specific film forming method. Note that, in this film forming example, the oxygen gas and the carrier gas carried through the ozonizer were used to carry the film. The sent source gas flows into the shower head from different flow paths. In addition, the flow path in the shear head is also divided (ie, a post-mix type shower head), and these gases are mixed for the first time in the processing vessel.
まず、 上記ステップ 100に従い、 処理容器に半導体基板を搬送アームにより 搬入し、 基板温度が 300 °Cになるように加熱した載置台に載置し、 半導体基板 を昇温するために、 A rガスを流しながら処理容器の圧力を 1330Pa (10 To r r) に保ち、 60秒、保持した。  First, according to step 100 described above, the semiconductor substrate is carried into the processing container by the transfer arm, and placed on a mounting table heated so that the substrate temperature becomes 300 ° C., and the semiconductor substrate is heated by Ar gas. While maintaining the pressure of the processing container at 1330 Pa (10 To rr) for 60 seconds.
次いで、 上記ステップ 110に従い、 ォゾナイザーに流通させた流量 500 s c cm ( 1 s c c mは、 0°C · 1気圧の流体が 1 c m3流れることを意味する) の酸素ガスを処理容器に流通させつつ、 処理容器の圧力を 266Pa (2To r r ) に保ちつつ 60秒保持した。 Then, according to the above step 110, while flowing oxygen gas at a flow rate of 500 sccm (1 sccm means that a fluid at 0 ° C./1 atm. Flows 1 cm 3 ) through the ozonizer, The pressure in the processing container was maintained at 266 Pa (2 Torr) for 60 seconds.
次いで、 上記ステップ 120に従い、 ォゾナイザーに流通させた流量 500 s c cmの酸素ガスを処理容器に流通させつつ、 流量 200 s c cmの A rガスに より搬送した TMAガス (原料容器の温度: 60°C) を処理容器に断続的に流通 させた。 T M Aガスの流通 Z停止は、 10秒間原料ガスを流通し、 20秒間停止 するサイクルで 5回繰り返した。  Then, according to the above step 120, the TMA gas carried by the Ar gas at a flow rate of 200 sccm while the oxygen gas at a flow rate of 500 sccm passed through the ozonizer was passed through the processing vessel (temperature of the raw material vessel: 60 ° C). ) Was intermittently circulated through the treatment vessel. The TMA gas flow Z stop was repeated 5 times in a cycle of flowing the source gas for 10 seconds and stopping for 20 seconds.
この結果、厚さ 15nmの A 1203膜が得られ、 不純物濃度は低く、 膜中の C (炭素) は、 2E 19 a t omsZcm3であった。 As a result, A 1 2 0 3 film having a thickness of 15nm is obtained, the impurity concentration is low, C (carbon) is in the film, was 2E 19 at omsZcm 3.
一方、 比較例として、 ォゾナイザーに流通させた酸素ガスの代わりに、 80°C の純水に流通させた流量 200 s c cmの 02ガスを流通させた。 上記例と同様 に、 原料容器の温度は 60°Cとし、 基板温度は 300°Cとした。 On the other hand, as a comparative example, instead of oxygen gas was passed through the Ozonaiza was circulated 0 2 gas flow rate 200 sc cm, which was passed through the pure water 80 ° C. As in the above example, the temperature of the raw material container was 60 ° C, and the substrate temperature was 300 ° C.
この結果、厚さ 13 nmの Al 203膜が得られ、 膜中の C (炭素) は、 5E2 0 a t o m s / cm であつに。 As a result, obtained Al 2 0 3 film having a thickness of 13 nm, C in the film (carbon) is thick at 5E2 0 atoms / cm.
以上の結果から、 本発明による成膜方法によると、 活性化した酸素ガスを導入 することなく A1203膜を形成した場合に比して、単位体積当たりの A 12 O 3膜 中の残留炭素量が 1 10以上低減され、非常に良質な A 1203膜を得ることが できることがわかった。 From the above results, according to the deposition method of the present invention, as compared with the case of forming the A1 2 0 3 film without introducing activated oxygen gas per unit volume A 1 2 O 3 film of amount of residual carbon is reduced 1 10 or more, it was found that it is possible to obtain very good a 1 2 0 3 film.
同様に、 本発明者らは、 その他の有機金属化合物を用いて、 第 1の実施形態の 成膜方法により金属酸化膜を形成し、 当該形成した金属酸化膜中の不純物濃度に ついて調査した。 Similarly, the present inventors formed a metal oxide film by the film forming method of the first embodiment using other organometallic compounds, and adjusted the impurity concentration in the formed metal oxide film. Was investigated.
その結果、 有機金属化合物である R u (E t C p ) 2を用いて、 本実施形態に より T a 2 O 5膜を形成した場合にも、活性化した酸素ガスを導入することなく T a 205膜を形成した場合に比して、同様に単位体積当たりの膜中の炭素量が少な くとも 1桁低くなることが確認された。 As a result, even when the Ta 2 O 5 film is formed according to the present embodiment using the organometallic compound Ru (E t C p) 2 , the T 2 O 5 film is formed without introducing the activated oxygen gas. as compared with the case of forming the a 2 0 5 film, the carbon content in the film per unit volume in the same manner that is least 1 order of magnitude lower it was confirmed.
次 、で、 上述した熱 C VD法に代わつて、 複数種のガスを交互供給することに よって、 上述の金属酸化膜を成膜する本発明による方法について説明する。  Next, a method according to the present invention for forming the above-described metal oxide film by alternately supplying a plurality of types of gases instead of the above-described thermal CVD method will be described.
まず、 本発明による成膜方法の説明に先立ち、 本発明による成膜方法を実現す る成膜装置 2 0 0の構成例について説明する。 尚、 以下では、 一例として、 TM A (トリメチルアルミニウム) を原料とする A 1 203膜の成膜処理を実現する成 膜装置 2 0 0の構成例を説明する。 · First, before describing the film forming method according to the present invention, a configuration example of a film forming apparatus 200 that realizes the film forming method according to the present invention will be described. In the following, as an example, a configuration example of a TM A A 1 2 0 3 film deposition apparatus to achieve a film forming process 2 0 0 to (trimethyl aluminum) raw material. ·
図 3を参照するに、 この成膜装置 2 0 0は、 原料供給路 1 1、 活性化ガス供給 路 1 3、 処理容器 2 0 1、 加熱機構 2 0 4、 载置台 2 0 3、 及び真空ポンプ 4 2 を備えた排気路 2 2 6等により構成されている。本実施形態の成膜装置 2 0 0は、 処理容器 2 0 1内において原料ガス等を横方向 (半導体基板 1 0 1の面方向) に 流す構成であるため、 ガス流入口 2 2, 2 4は処理容器 2 0 1の側壁に設けられ ている。  Referring to FIG. 3, the film forming apparatus 200 includes a raw material supply path 11, an activated gas supply path 13, a processing vessel 201, a heating mechanism 204, a mounting table 203, and a vacuum. It is constituted by an exhaust passage 226 provided with a pump 242. The film forming apparatus 200 of the present embodiment has a configuration in which the raw material gas and the like are caused to flow in the lateral direction (the surface direction of the semiconductor substrate 101) in the processing container 201, so that the gas inlets 22, 24 Is provided on the side wall of the processing container 201.
载置台 2 0 3は、 支持部材 2 0 2により固定されることより、 処理容器 2 0 1 内に設置されている。 この載置台 2 0 3は、 図示しない搬送アームにより ¾Λさ れる半導体基板 1 0 1を載置する。  The mounting table 203 is fixed in the support member 202 so that it is installed in the processing container 201. The mounting table 203 mounts the semiconductor substrate 101 which is provided by a transfer arm (not shown).
排気路 2 2 6は、 処理容器 2 0 1の側壁に設置されている。 この排気路 2 2 6 は、 排気ガス流量を調節するバルブ 4 1を介して真空ポンプ 4 2に接続されてい る。 真空ポンプ 4 2により、 排気路 2 2 6を介して処理容器 2 0 1内のガスを排 気することにより、 処理容器 2 0 1内を真空ポンプ 4 2の排気能力と、 処理容器 2 0 1 ,排気管 4 0,パルプ 4 1のコンダクタンスにより定められた到達真空度、 或いは所定の圧力に維持することができる。  The exhaust path 226 is provided on the side wall of the processing container 201. The exhaust path 226 is connected to a vacuum pump 42 via a valve 41 for adjusting the exhaust gas flow rate. By exhausting the gas in the processing vessel 201 through the exhaust path 222 by the vacuum pump 42, the inside of the processing vessel 201 is evacuated by the vacuum pump 42 and the processing vessel 201. , The ultimate degree of vacuum determined by the conductance of the exhaust pipe 40 and the conductance of the pulp 41 or a predetermined pressure can be maintained.
原料供給路 1 1には、 原料容器 3 0に供給する A rガス等のキヤリァガスの流 * 御を行なうマスフローコントローラ 3 2が設けられる。 原料 ·容器 3 0内には 原料である TMAが収容される。 TMAガスは、 バブリング等により原料を気ィ匕 して生成され、 上記キヤリァガスによって原料供給路 1 1を通って成膜装置 2 0 0まで搬送されていく。 The raw material supply path 11 is provided with a mass flow controller 32 for controlling a carrier gas * such as an Ar gas supplied to the raw material container 30. Raw material · Container TMA contains raw material TMA. For TMA gas, boil the raw material The carrier gas is transferred to the film forming apparatus 200 through the raw material supply path 11 by the carrier gas.
活性化ガス供給路 1 3には、 遠紫外線を用いて酸素ガスをオゾン化するォゾナ ィザー 3 3が設けられる。 ォゾナイザ一 3 3は、 ガス源 (図示せず) より供給さ れる酸素ガスを活性化 (オゾン化) する。 活性ィ匕した酸素ガスは、活性化ガス供 給路 1 3を通りガス流入口 2 4を介して処理容器 2 0 1内に供給される。 尚、 ォ ゾナイザ一 3 3に代わつて、 第 1の実施形態で説明したようなリモートブラズマ 発生器 2 4 3を用いてもよい。  The activation gas supply path 13 is provided with an ozonizer 33 for ozonizing oxygen gas using far ultraviolet rays. The ozonizer 133 activates (ozonizes) oxygen gas supplied from a gas source (not shown). The activated oxygen gas is supplied into the processing vessel 201 through the activation gas supply path 13 and the gas inlet 24. It should be noted that the remote plasma generator 24 3 as described in the first embodiment may be used instead of the oscillator 13.
また、 図示は省略するが、 原料供給路 1 1および活性ィ匕ガス供給路 1 3には、 バルブ V 3, V 4がそれぞれ設けられており、 各ガスの流通 Z停止は、 各バルブ V 3 , V 4の開閉により制御される。 このバルブ V 3, V 4の駆動は、 図示しな い制御装置により実現される。  Although illustration is omitted, valves V 3 and V 4 are provided in the raw material supply path 11 and the activation gas supply path 13, respectively. , Controlled by opening and closing V4. The driving of the valves V3 and V4 is realized by a control device (not shown).
続レ、て、 本発明による金属酸化膜の成膜方法の第 2の実施形態にっレヽて説明す る。 図 4は、 上述の成膜装置 2 0 0を用いた本発明による金属酸化膜の成膜方法 の第 2の実施形態を示すフローチャートである。 以下、 図 4に示す各処理につい て説明する。  Next, a second embodiment of the method for forming a metal oxide film according to the present invention will be described. FIG. 4 is a flowchart showing a second embodiment of the method for forming a metal oxide film according to the present invention using the above-described film forming apparatus 200. Hereinafter, each process shown in FIG. 4 will be described.
(ステップ 2 0 0 ) 処理容器 2 0 1に半導体基板 1 0 1を搬送アームにより搬 入し、 予め所定の温度例えば 3 0 0°Cに加熱した載置台 2 0 3に載置する。  (Step 200) The semiconductor substrate 101 is loaded into the processing container 201 by the transfer arm and placed on the mounting table 203 heated to a predetermined temperature, for example, 300 ° C. in advance.
(ステップ 2 1 0 ) ォゾナイザ一 3 3により活性ィ匕された酸素ガスを処理容器 2 0 1にガス流入口 2 4を介して導入し、 処理容器 2 0 1を所定の圧力に保持す る。  (Step 210) Oxygen gas activated by the ozonizer 133 is introduced into the processing vessel 201 via the gas inlet 24, and the processing vessel 201 is maintained at a predetermined pressure.
(ステップ 2 2 0 ) ガス供給を停止して、 処理容器 2 0 1を真空排気若しくは パージガスによりパージする。  (Step 220) The gas supply is stopped, and the processing vessel 201 is evacuated or purged with a purge gas.
(ステップ 2 3 0 ) A rガス等のキャリアガスにより搬送した TMAガスを処 理容器 2 0 1にガス流入口 2 2を介して導入し、 処理容器 2 0 1を所定の圧力に 保持する。  (Step 230) TMA gas carried by a carrier gas such as Ar gas is introduced into the processing vessel 201 via the gas inlet 22 to maintain the processing vessel 201 at a predetermined pressure.
(ステップ 2 4 0 ) ガス供給を停止して、 処理容器 2 0 1を真空排気若しくは パージガスによりパージする。以上の (ステップ 2 1 0 ) から (ステップ 2 4 0 ) までの処理により、半導体基板 1 0 1の表面には分子層レベルの A 1 2 O。膜が形 成される。 (Step 240) The gas supply is stopped, and the processing container 201 is evacuated or purged with a purge gas. The process of the above (Step 2 1 0) to (Step 2 4 0), the semiconductor substrate 1 0 1 of the surface molecular layer level A 1 2 O. Membrane shape Is done.
(ステップ 2 5 0 ) A l 203膜が所望の ffとなるように、 (ステップ 2 1 0 ) から (ステップ 2 4 0 ) までを所定の回 り返す。 As (Step 2 5 0) A l 2 0 3 film has a desired ff, returns Ri (Step 2 1 0) to (Step 2 4 0) a predetermined times up.
本発明者らは、 上述の第 1の実施形態と同様に、 第 2の実施形態の成膜方法に より形成した A 1 203膜中の不純物濃度について調査した。 The present inventors, as in the first embodiment described above, it was investigated impurity concentration of A 1 2 0 3 film which is more formed on the film formation method of the second embodiment.
その結果、 第 2の実施形態により形成した A 1 203膜は、上記ステップ 2 1 0 で活性ィ匕された酸素ガスの代わりに H20ガスを導入して形成した A 1 203膜に 比して、膜中の炭素量が 5 0 %以上低減されることが確認された。 As a result, A 1 2 0 3 film formed by the second embodiment, A 1 2 0 3 which is formed by introducing H 2 0 gas instead of the active I spoon oxygen gas in Step 2 1 0 It was confirmed that the carbon content in the film was reduced by 50% or more compared to the film.
尚、 第 2の実施形態の成膜装置 2 0 0は、 連続処理が可能なクラスタツール装 置に複数適用してもよい。 かかる 、 クラスタツール装置の各処理容器 2 0 1 には、 原料ガス及び活性化した酸素ガスが異なる位相で交互に供給される。 以上、本発明の好ましい実施例について詳説したが、 本発明は、 上述した実施 例に制限されることはなく、 本発明の範囲を逸脱することなく、 上述した実施例 に種々の変形及び置換を加えることができる。  Note that a plurality of film forming apparatuses 200 of the second embodiment may be applied to a cluster tool apparatus capable of continuous processing. The raw material gas and the activated oxygen gas are alternately supplied to the respective processing vessels 201 of the cluster tool device at different phases. Although the preferred embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications and substitutions can be made to the above-described embodiment without departing from the scope of the present invention. Can be added.
例えば、 上述した第 1の実施形態では、 活性化された酸素ガスを処理容器 2 0 1に導入しつつ原料ガスを導入するものであつたが、 これらのガスを処理容器 2 0 1に同時に導入することとしても、 同等の効果を得ることができる。  For example, in the above-described first embodiment, the source gas is introduced while introducing the activated oxygen gas into the processing vessel 201, but these gases are simultaneously introduced into the processing vessel 201. The same effect can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 有機金属化合物を原料として金属酸化膜を成膜する成膜方法であって、 活性化した酸素ガスを第 1の流路を介して処理容器に供給する工程と、 該工程と同時に、 上記処理容器に第 2の流路を介して有機金属ガスを供給する 工程とを含むことを特徴とする、 成膜方法。 1. A film forming method for forming a metal oxide film using an organometallic compound as a raw material, comprising: supplying an activated oxygen gas to a processing vessel via a first flow path; Supplying the organometallic gas to the processing vessel via the second flow path.
2. 有機金属化合物を原料として金属酸化膜を成膜する成膜方法であって、 活性化した酸素ガスを第 1の流路を介して処理容器に供給する工程と、 該ェ程後に、 上記処理容器に第 2の流路を介して有機金属ガスを供給する工程 とを含むことを特 ί敷とする、 成膜方法。 2. A film forming method for forming a metal oxide film using an organometallic compound as a raw material, comprising: supplying an activated oxygen gas to a processing vessel via a first flow path; Supplying the organometallic gas to the processing vessel via the second flow path.
3. 有機金属化合物を原料として金属酸化膜を成膜する成膜方法であって、 活性化した酸素ガスを第 1の流路を介して処理容器に供給する工程と、 該工程中に、 上記処理容器に第 2の流路を介して有機金属ガスを断続的に供給 する工程とを含むことを特徴とする、 成膜方法。 3. A film forming method for forming a metal oxide film using an organometallic compound as a raw material, comprising: supplying an activated oxygen gas to a processing vessel via a first flow path; Intermittently supplying the organometallic gas to the processing vessel via the second flow path.
4. 上記活性化した酸素ガスは、 02, NO若しくは Ν20のうちの少なくと も 1種のガスを活性化して生成される、 請求項 1乃至 3のうちいずれか 1項記載 の成膜方法。 4. Oxygen gas above activated, 0 2, NO or even a New 2 least one of 0 is generated by activating one gas, formed of any one of claims 1 to 3 Membrane method.
5. 上記有機金属ガスは、 ΤΜΑガスである、 請求項 1乃至 3のうちいずれ か 1項記載の成膜方法。 5. The film forming method according to claim 1, wherein the organometallic gas is a gas.
6. 請求項 1乃至 5のうちいずれか 1項記載の成膜方法を使用する、 6. Use the film forming method according to any one of claims 1 to 5,
PCT/JP2003/008804 2002-07-10 2003-07-10 Method of forming film and film forming apparatus WO2004008516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003281012A AU2003281012A1 (en) 2002-07-10 2003-07-10 Method of forming film and film forming apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002201535A JP2004047634A (en) 2002-07-10 2002-07-10 Method and apparatus for depositing film
JP2002-201535 2002-07-10

Publications (1)

Publication Number Publication Date
WO2004008516A1 true WO2004008516A1 (en) 2004-01-22

Family

ID=30112571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008804 WO2004008516A1 (en) 2002-07-10 2003-07-10 Method of forming film and film forming apparatus

Country Status (3)

Country Link
JP (1) JP2004047634A (en)
AU (1) AU2003281012A1 (en)
WO (1) WO2004008516A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079152A1 (en) 2004-10-20 2006-08-03 Resmed Limited Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction
US10871669B2 (en) 2014-11-26 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1020634C2 (en) * 2002-05-21 2003-11-24 Otb Group Bv Method for passivating a semiconductor substrate.
JP2005302876A (en) * 2004-04-08 2005-10-27 Denso Corp Tunnel magnetoresistive element, its manufacturing method and manufacturing equipment
JP3935478B2 (en) 2004-06-17 2007-06-20 キヤノン株式会社 Method for manufacturing electron-emitting device, electron source using the same, method for manufacturing image display device, and information display / reproduction device using the image display device
WO2006090645A1 (en) * 2005-02-24 2006-08-31 Hitachi Kokusai Electric Inc. Semiconductor device manufacturing method and substrate processing apparatus
JP5176358B2 (en) * 2007-03-27 2013-04-03 東京エレクトロン株式会社 Film forming apparatus and film forming method
AT9603U3 (en) * 2007-08-16 2008-08-15 Avl List Gmbh ROTATION THINNER FOR FLUID FLOWS
KR101111494B1 (en) * 2008-02-18 2012-02-23 미쯔이 죠센 가부시키가이샤 Atomic deposition apparatus and atomic layer deposition method
JP2012069956A (en) * 2011-10-11 2012-04-05 Denso Corp Tunnel magnetoresistance effect element, and method and device for manufacturing the same
JP2015149461A (en) 2014-02-10 2015-08-20 東京エレクトロン株式会社 Metal oxide film forming method and film forming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439030A (en) * 1987-08-05 1989-02-09 Toshiba Corp Formation of thin film
JPH05102040A (en) * 1991-10-07 1993-04-23 Tokyo Electron Ltd Film formation method
US20010024871A1 (en) * 1998-04-24 2001-09-27 Fuji Xerox Co. Semiconductor device and method and apparatus for manufacturing semiconductor device
WO2002015243A1 (en) * 2000-08-11 2002-02-21 Tokyo Electron Limited Device and method for processing substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439030A (en) * 1987-08-05 1989-02-09 Toshiba Corp Formation of thin film
JPH05102040A (en) * 1991-10-07 1993-04-23 Tokyo Electron Ltd Film formation method
US20010024871A1 (en) * 1998-04-24 2001-09-27 Fuji Xerox Co. Semiconductor device and method and apparatus for manufacturing semiconductor device
WO2002015243A1 (en) * 2000-08-11 2002-02-21 Tokyo Electron Limited Device and method for processing substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079152A1 (en) 2004-10-20 2006-08-03 Resmed Limited Method and apparatus for detecting ineffective inspiratory efforts and improving patient-ventilator interaction
US10871669B2 (en) 2014-11-26 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11372276B2 (en) 2014-11-26 2022-06-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US11635648B2 (en) 2014-11-26 2023-04-25 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device

Also Published As

Publication number Publication date
AU2003281012A1 (en) 2004-02-02
JP2004047634A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US11377732B2 (en) Reactant vaporizer and related systems and methods
JP5075325B2 (en) TiN film deposition in a batch reactor
US8492258B2 (en) Method of manufacturing semiconductor device and substrate processing apparatus
TWI516631B (en) Batch cvd method and apparatus for semiconductor process
JP4449226B2 (en) Metal oxide film modification method, metal oxide film formation method, and heat treatment apparatus
EP1649076B1 (en) Apparatus and method for chemical source vapor pressure control
JP4803578B2 (en) Deposition method
KR101561018B1 (en) Process gas delivery for semiconductor process chamber
US20090035946A1 (en) In situ deposition of different metal-containing films using cyclopentadienyl metal precursors
KR101737215B1 (en) Method and apparatus of manufacturing semiconductor device, and computer program
KR100606398B1 (en) Film formation method for semiconductor processing
WO2007102333A1 (en) Methods of depositing ruthenium film and memory medium readable by computer
WO2005096362A1 (en) Method and apparatus for forming metal silicate film, and method for manufacturing semiconductor device
JP2008124184A (en) Manufacturing method of semiconductor device
WO2004008516A1 (en) Method of forming film and film forming apparatus
JP3968869B2 (en) Film forming method and film forming apparatus
WO2022004520A1 (en) Film forming method and film forming device
JP2004047660A (en) Apparatus and method for forming film
JPH1079378A (en) Film forming method and device thereof
JP2013199673A (en) Method for forming ruthenium oxide film and method for cleaning treatment container for forming ruthenium oxide film
JP3713380B2 (en) Method and apparatus for forming thin film
JP2006216597A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase