WO2004003556A1 - Vorrichtung und verfahren zum elektrochemischen nachweis - Google Patents

Vorrichtung und verfahren zum elektrochemischen nachweis Download PDF

Info

Publication number
WO2004003556A1
WO2004003556A1 PCT/EP2003/006566 EP0306566W WO2004003556A1 WO 2004003556 A1 WO2004003556 A1 WO 2004003556A1 EP 0306566 W EP0306566 W EP 0306566W WO 2004003556 A1 WO2004003556 A1 WO 2004003556A1
Authority
WO
WIPO (PCT)
Prior art keywords
working electrodes
biochemical
operational amplifier
working
electrode
Prior art date
Application number
PCT/EP2003/006566
Other languages
English (en)
French (fr)
Inventor
Jürgen SCHÜLEIN
Björn GRASSL
Jörg HASSMANN
Original Assignee
november Aktiengesellschaft Gesellschaft für Molekulare Medizin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10229210A external-priority patent/DE10229210A1/de
Priority claimed from DE2002129374 external-priority patent/DE10229374C1/de
Application filed by november Aktiengesellschaft Gesellschaft für Molekulare Medizin filed Critical november Aktiengesellschaft Gesellschaft für Molekulare Medizin
Priority to DE50310708T priority Critical patent/DE50310708D1/de
Priority to JP2004516635A priority patent/JP2005531759A/ja
Priority to AU2003279777A priority patent/AU2003279777A1/en
Priority to EP03740302A priority patent/EP1518123B1/de
Publication of WO2004003556A1 publication Critical patent/WO2004003556A1/de
Priority to US10/517,436 priority patent/US7169289B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry

Definitions

  • the invention relates to a device and a method for the electrochemical detection of at least one biochemical molecule contained in a liquid from a group of predetermined biochemical molecules.
  • the invention particularly relates to a device for the detection of pathogens in a body fluid, for. B. blood.
  • a method is known from US Pat. No. 5,830,343 in which the voltage drop across a plurality of working electrodes can be measured simultaneously using a multipotentiostat. Each working electrode is acted upon independently of the others with a special predetermined potential against the reference electrode. As a result, potentials form between the working electrodes during the measurement. This complicates the evaluation of the currents measured on the other working electrodes.
  • a method for the electrochemical detection of molecules contained in a solution is known from US Pat. No. 5,149,629, in which measurements are carried out sequentially with a plurality of working electrodes. Such a measurement is time-consuming.
  • US 4,315,753 describes a method and a device for the simultaneous determination of the concentration of second oxygen-containing gases.
  • the device has a potentiostat with two current followers which are interconnected to generate a difference signal. With the known device it is not possible to specifically detect several biochemical molecules contained in a solution.
  • US 4,655,880 discloses an apparatus for the detection of glucose. Two working electrodes are used, one of which is coated with the glucose oxidase enzyme. The other working electrode is uncoated and is used to measure the substrate. Simultaneous measurement of different biochemical molecules is not possible with the known device.
  • a biosensor is known from DE 100 15 818 AI. It is used to detect an analyte contained in a solution
  • the proposed biosensor is relatively complex to manufacture. A simultaneous detection of several biochemical molecules contained in a liquid is therefore not possible.
  • the object of the invention is to eliminate the disadvantages of the prior art.
  • a device and a method are to be specified with which a simultaneous electrochemical detection of different biochemical molecules contained in a liquid can be carried out simply, inexpensively and quickly.
  • measurement results that are as accurate as possible should be achievable.
  • a device for the electrochemical detection of a liquid contained provided with a biochemical molecule from a group of predetermined biochemical molecules is provided with a biochemical molecule from a group of predetermined biochemical molecules
  • a potentiostat for generating a predetermined voltage curve between the working electrodes and the reference electrode
  • each of the working electrodes is followed by a current-voltage converter, the current-voltage converters keeping all working electrodes at the same potential and
  • the proposed device is simple. It enables rapid detection of at least one biochemical molecule contained in a body fluid, e.g. B. a pathogen.
  • the device can be easily adapted to the biochemical molecules to be detected by selecting a suitable coating on the working electrode.
  • the type and number of the biochemical molecules contained in the "group” is given by the number of working electrodes coated with different complementary biochemical molecules.
  • the device also enables a simultaneous electrochemical detection of several different biochemical molecules contained in the liquid. Only a single potentiostat is required for the simultaneous detection of different biochemical molecules to be detected. In this way, an identical, predetermined voltage curve is applied to all working electrodes at the same time.
  • each of the working electrodes can virtually contact the circuit ground via a current follower for the individual evaluation of the signals.
  • the working electrodes are coated with biochemical molecules complementary to the biochemical molecule to be detected.
  • the working electrodes are specific for the biochemical molecules to be detected.
  • At least one specific working electrode is provided for each biochemical molecule to be detected.
  • the complementary biochemical molecules bind specifically to the biochemical molecules to be detected.
  • a “plurality of working electrodes” is understood to mean more than two working electrodes.
  • a plurality of interconnected or capacitively coupled reference electrodes are provided. This allows the speed of the measurement to continue increase.
  • a plurality of mutually connected counter electrodes can also be provided.
  • the means for measuring expediently has an analog-digital converter. Furthermore, a multiplexer can be provided, so that a quasi-simultaneous or simultaneous measurement of the currents flowing through the working electrodes is possible.
  • the current-voltage converter is a current follower having a first operational amplifier, a non-inverting input of the operational amplifier being connected to ground and the inverting input of which is connected to the output of the first operational amplifier and to the working electrode via a first resistor.
  • a capacitor can be connected in parallel with the first resistor. Noise can thus be suppressed in a simple manner and the sensitivity can thus be increased.
  • different sized first resistors can be switched on between the inverting input and the output of the first operational amplifier.
  • the current measuring range can thus be varied in a simple manner.
  • the current measuring range can be set individually for each working electrode to the optimal range for the biochemical molecule to be detected.
  • the device is universally suitable for the detection of various biochemical molecules.
  • the biochemical molecule to be detected can be a nucleic acid and the complementary biochemical molecule can be nucleic acids complementary to the nucleic acid to be detected.
  • Nucleic acids change the current profile through the corresponding working electrode. Such a change indicates that the solution contains a nucleic acid which is complementary to the nucleic acid bound to the working electrode.
  • the biochemical molecules can also be synthetic single-stranded nucleic acids or their natural and / or synthetic analogs, antigens, proteins, such as antibodies, antibody fragments, derivatives of antibodies or antibody fragments, nucleic acid-binding proteins, receptors or ligands.
  • the potentiostat has a second operational amplifier connected as a voltage follower, to the non-inverting input of which the reference electrode is connected.
  • the potentiostat can also have a third operational amplifier, to the output of which the counter electrode is connected, the inverting input of which is connected to the output of the second operational amplifier via a second resistor and via a third
  • Resistor is connected to a device for generating a selectable target voltage, and the non-inverting input of the third operational amplifier is connected to ground. Furthermore, a capacitance can be switched on between the output of the third operational amplifier and its inverting input. This causes the regulation to stabilize.
  • a method for the electrochemical detection of at least one biochemical molecule contained in a liquid from a group of predetermined biochemical molecules is provided with the following steps: a) Providing an agent for absorbing the liquid, the agent having at least one counter and a reference electrode and a plurality of working electrodes, with at least one working electrode (AE1, AE2, AE3) being provided for the detection of each biochemical molecule respective complementary molecule is coated so that the biochemical molecules can be detected simultaneously,
  • the measurement takes place almost simultaneously or simultaneously. It is expediently carried out in parallel or by means of multiplexing.
  • the voltage applied between the working electrodes and the reference electrode can be regulated with a potentiostat.
  • the proposed method is relatively easy to carry out. It is universal and also enables the simultaneous detection of a large number of different biochemical molecules in a liquid.
  • a “plurality of working electrodes” is understood to mean more than two working electrodes.
  • the predefined voltage curve can be a voltage curve that changes during the measurement.
  • the voltage curve can be specified using a programmable voltage source.
  • the electrodes can be made of conventional materials, for example suitable metals such as gold, silver, platinum or the like. be made. However, it is also possible to produce the electrodes from carbon, in particular graphite.
  • the electrodes are coated in a conventional manner, in the case of nucleic acids for example by forming covalent bonds. Reference is made to MI Pividori, et al. (2000) Electrochemical genosensor design: Immobilization of oligonucleotides onto transducer surfaces and detection methods. Biosensors and Bioelectronics 15, 291-303.
  • Fig. 1 is a schematic circuit diagram
  • FIG. 2 shows a measurement result achieved with the circuit according to FIG. 1.
  • Liquid containing molecules can be, for example, a container 1 or a field on a surface made of an insulating material, for example on a chip.
  • the container 1 has working electrodes AE1, AE2, AE3, a counter electrode GE and a reference electrode RE.
  • the electrodes are made of silver, gold, platinum or graphite, for example.
  • the working electrodes AE1, AE2, AE3 are coated with molecules that are complementary to the biochemical molecules to be detected.
  • Each of the working electrodes AE1, AE2, AE3 is connected to a measuring device AD via a current-voltage converter S1, S2, S3.
  • the current-voltage converters S1, S2, S3 each have an operational amplifier OP1, the non-inverting input (OP1 +) of which is connected to the circuit ground.
  • OP1 + the non-inverting input
  • the inverting input OP1- of the first operational amplifier OP1 is connected to the working electrode AE1, AE2, AE3 and via a first resistor R1 to the output, which in turn is connected to the measuring device AD.
  • a capacitance (not shown here) can be connected in parallel with the first resistor R1. Different sized first resistors R1 can be provided, which can alternatively be switched on. The measuring range can be changed easily.
  • the reference symbol P denotes a potentiostat, the input of which is connected to a programmable voltage source (not shown here).
  • the potentiostat P comprises a second operational amplifier OP2 connected as a voltage follower and a third operational amplifier 0P3.
  • the non-inverting input 0P2 + of the second operational amplifier OP2 is connected to the reference electrode RE.
  • the inverting input OP2- of the second operational amplifier OP2 is connected to its output and, via a second resistor, to the inverting input OP3- of the third operational amplifier OP3.
  • the non-inverting input OP3 + of the third operational amplifier is connected to the circuit ground.
  • the programmable circuit source (not shown here) is via a third resistor R3 with the inverting input OP3- of the third operational amplifier OP3 and the second resistor OP2 connected.
  • the output of the third operational amplifier OP3 is connected to the counter electrode GE.
  • a further capacitance (not shown here) can be connected between the output of the third operational amplifier OP3 and its inverting input.
  • the measuring device AD can be an analog-to-digital converter with a multiplexer. This enables a quasi-simultaneous measurement of the currents flowing through the working electrodes AE1, AE2, AE3.
  • the output of the third operational amplifier OP3 connected to the counter electrode GE is activated during operation such that no voltage is present between its inputs OP3-, OP3 +.
  • the non-inverting input 0P3 + of the third operational amplifier 0P3 is connected to the circuit ground.
  • the inverting input OP3 is also virtually at ground and thus at the same potential as the working electrodes AE1, AE2, AE3.
  • the current flowing through the third resistor R3 is equal to the current flowing through the second resistor R2.
  • the second resistor R2 is expediently selected to be the same as the third resistor R3, as a result of which the proportionality constant is fixed at the value -1.
  • the third resistor R3 can be replaced by several resistors, as a result of which several inputs, for example for modulation, are obtained.
  • FIG. 2 shows the result of measurements carried out with the circuit according to the invention.
  • uncoated working electrodes have been brought into contact with a solution containing DNA.
  • the measurement was carried out by means of differential pulse voltammetry.
  • the current difference measured at the working electrode is plotted in FIG. 2 before and after a voltage modulation.
  • the left peak shows the oxidation of guanine from DNA adsorbed on the working electrode.
  • the right peak shows the oxidation of
  • the results are plotted which have been obtained by measurement on a first working electrode AE1 and on a second working electrode AE2.
  • the present measurement only shows an unspecific detection of DNA in a solution.
  • a suitable coating of the working electrodes it is possible within the scope of the invention to detect specifically predetermined DNA or the like in a solution.
  • the number of specifically to be detected DNA sequences or the like depends on the number of working electrodes used.

Abstract

Die Erfindung betrifft eine Vorrichtung zum elektrochemischen Nachweis zumindest eines in einer Flüssigkeit enthaltenen biochemischen Moleküls aus einer Gruppe vorgegebener biochemischer Moleküle miteinem mindestens eine Referenz- (RE) und mindestens eine Ge-genelektrode (GE) sowie einer Vielzahl an Arbeitselektroden (AE1, AE2, AE3) aufweisenden Mittel (1) zur Aufnahme der Flüssigkeit, wobei zum Nachweis jedes biochemischen Moleküls zumindest eine Arbeitselektrode (AE1, AE2, AE3) vorgesehen ist, die mit einem zum jeweiligen biochemischen Molekül komplementären Molekül beschichtet ist, so dass die biochemi-schen Moleküle simultan nachweisbar sind,einem Potentiostaten (P) zur Erzeugung eines vorgegebenen Spannungsverlaufs zwischen den Arbeitselektroden (AE1, AE2, AE3) und der Referenzelektrode (RE),wobei jeder der Arbeitselektroden (AE1, AE2, AE3) ein Strom-Spannungskonverter (S1, S2, S3) nachgeschaltet ist, wobei die Strom-Spannungskonverter (S1, S2, S3) sämtliche Arbeitselektroden (AE1, AE2, AE3) auf demselben Potenzial halten, undeinem Mittel (Ad) zum Messen der durch die Arbeitselektroden (AE1, AE2, AE3) fließendenStröme.

Description

Vorrichtung und Verfahren zum elektrochemischen Nachweis
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum elektrochemischen Nachweis zumindest eines in einer Flüssig- keit enthaltenen biochemischen Moleküls aus einer Gruppe vorgegebener biochemischer Moleküle. Die Erfindung betrifft insbesondere eine Vorrichtung zum Nachweis von Krankheitserregern in einer Körperflüssigkeit, z. B. Blut.
Zur Messung elektrochemischer Potenziale werden nach dem
Stand der Technik Potentiostaten mit zwei oder mehreren Arbeitselektroden verwendet. Potentiostaten mit mehreren Arbeitselektroden werden auch als Multipotentiostaten bezeichnet. Solche Multipotentiostaten weisen eine Referenzelektro- de, eine Gegenelektrode und mehrere Arbeitselektroden auf. Die Spannung zwischen einer Arbeitselektrode und der Referenzelektrode wird über die zwischen der Gegenelektrode und der jeweiligen Arbeitselektrode anliegende Spannung geregelt. Ein vorgegebener Spannungsverlauf zwischen jeder der Arbeit- selektroden und der Referenzelektrode wird für jede Arbeitselektrode separat erzeugt.
Aus der US 5,830,343 ist ein Verfahren bekannt, bei dem mittels eines Multipotentiostaten simultan die über eine Viel- zahl von Arbeitselektroden abfallende Spannung gemessen werden kann. Dabei wird jede Arbeitselektrode unabhängig von den anderen mit einem besonderen vorgegebenen Potenzial gegen die Referenzelektrode beaufschlagt. Infolgedessen bilden sich während der Messung zwischen den Arbeitselektroden Potenziale aus. Das macht die Auswertung der an den übrigen Arbeitselektroden gemessenen Ströme kompliziert. Aus der US 5,149,629 ist ein Verfahren zur elektrochemischen Detektion von in einer Lösung enthaltenen Molekülen bekannt, bei dem sequenziell mit mehreren Arbeitselektroden gemessen wird. Die Durchführung einer solchen Messung ist zeitaufwän- dig.
Die US 4,315,753 beschreibt ein Verfahren und eine Vorrichtung zur gleichzeitigen Ermittlung der Konzentration zweiter Sauerstoffhaltiger Gase. Die Vorrichtung weist einen Poten- tiostaten mit zwei Stromfolgern auf, die zur Erzeugung eines Differenzsignals miteinander verschalten sind. Mit der bekannten Vorrichtung ist es nicht möglich, mehrere in einer Lösung enthaltene biochemische Moleküle spezifisch nachzuweisen.
Die US 4,655,880 offenbart eine Vorrichtung zum Nachweis von Glucose. Dabei werden zwei Arbeitselektroden verwendet, von denen eine mit dem Glucose-Oxidase-Enzym beschichtet ist. Die andere Arbeitselektrode ist unbeschichtet und dient der Mes- sung des Untergrunds. Eine simultane Messung unterschiedlicher biochemischer Moleküle ist mit der bekannten Vorrichtung nicht möglich.
Aus Paeschke, Manfred et al . : Voltammetric Multichannel Meas- urements Using Silicon Fabricated Microelectrode Arrays; in: Electroanalysis 1996, 8, Nr. 10; Seiten 891 bis 898 ist ein voltammetrisches Verfahren unter Verwendung eines Vielkanal - potentiostaten beschrieben. Der beschriebene Vielkanalpoten- tiostat ist aufwändig herzustellen. Angesehen davon, ergeben sich in der Praxis bei der Messung häufig Stabilitätsprobleme. Ein spezifischer Nachweis von in einer Lösung enthaltenen biochemischen Molekülen ist damit nur eingeschränkt möglich. Die DE 41 36 779 AI beschreibt eine Vorrichtung zum simultanen Nachweis verschiedener Gaskomponenten. Die Vorrichtung umfasst verschiedene Arbeitselektroden, eine gemeinsame Gegenelektrode sowie eine gemeinsame Referenzelektrode. Mit der Vorrichtung kann das Potenzial jeder Arbeitselektrode separat geregelt werden. Die entsprechende Regelungsschaltung ist kompliziert und störanfällig.
Aus der DE 100 15 818 AI ist ein Biosensor bekannt. Zum Nach- weis eines in einer Lösung enthaltenen Analyten wird dessen
Oxidations- und Reduktionspotential an jeweils einer Elektrode gemessen. Es sind also zwei Elektroden pro nachzuweisendem Analyt notwendig. Der vorgeschlagene Biosensor ist relativ aufwändig herzustellen. Ein gleichzeitiger Nachweis mehrerer in einer Flüssigkeit enthaltener biochemischer Moleküle ist damit nicht möglich.
Aufgabe der Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere eine Vor- richtung und ein Verfahren angegeben werden, mit denen ein simultaner elektrochemischer Nachweis von in einer Flüssigkeit enthaltenen unterschiedlichen biochemischen Molekülen einfach, kostengünstig und schnell durchführbar ist. Nach einem weiteren Ziel der Erfindung sollen möglichst genaue Mes- sergebnisse erzielbar sein.
Diese Aufgabe wird durch die Merkmale der Ansprüche 1 und 12 gelöst. Zweckmäßige Ausgestaltungen ergeben sich aus den Merkmalen der Ansprüche 2 bis 11, 13 und 14.
Nach Maßgabe der Erfindung ist eine Vorrichtung zum elektrochemischen Nachweis eines in einer Flüssigkeit enthaltenen biochemischen Moleküls aus einer Gruppe vorgegebener biochemischer Moleküle vorgesehen mit
einem mindestens eine Referenz- und mindestens eine Gegene- lektrode sowie eine Vielzahl an Arbeitselektroden aufweisenden Mittel zur Aufnahme der Flüssigkeit, wobei zum Nachweis jedes biochemischen Moleküls zumindest eine Arbeitselektrode (AEl, AE2 , AE3) vorgesehen ist, die mit einem zum jeweiligen biochemischen Molekül komplementären Molekül beschichtet ist, so dass die biochemischen Moleküle simultan nachweisbar sind,
einem Potentiostaten zur Erzeugung eines vorgegebenen Spannungsverlaufs zwischen den Arbeitselektroden und der Referenzelektrode ,
wobei jeder der Arbeitselektroden ein Strom-Spannungskonverter nachgeschaltet ist, wobei die Strom-Spannungskonverter sämtliche Arbeitselektroden auf demselben Potenzial halten und
einem Mittel zum Messen der durch die Arbeitselektroden fließenden Ströme.
Die vorgeschlagene Vorrichtung ist einfach aufgebaut. Sie er- möglicht einen schnellen Nachweis zumindest eines in einer Körperflüssigkeit enthaltenen biochemischen Moleküls, z. B. eines Krankheitserregers. Die Vorrichtung lässt sich einfach durch die Wahl einer geeigneten Beschichtung der Arbeitselektrode an die nachzuweisenden biochemischen Moleküle anpassen. Die Art und die Anzahl der in der "Gruppe" enthaltenen biochemischen Moleküle ist durch die Anzahl der mit unterschiedlichen komplementären biochemischen Molekülen beschichteten Arbeitselektroden gegeben. Die Vorrichtung ermöglicht auch einen simultanen elektrochemischen Nachweis mehrerer unterschiedlicher in der Flüssigkeit enthaltener biochemischer Moleküle. Zum simultanen Nachweis unterschiedlicher nachzuweisender biochemischer Moleküle ist lediglich ein einziger Po- tentiostat erforderlich. Damit wird an sämtliche Arbeitselektroden gleichzeitig ein identischer vorgegebener Spannungsverlauf angelegt. Indem sämtliche Arbeitselektroden auf demselben Potenzial gehalten werden, ist es möglich, die durch die Arbeitselektroden fließenden Ströme parallel zu messen. Dazu kann jede der Arbeitselektroden über einen Stromfolger zur individuellen Auswertung der Signale virtuell an der Schaltungsmasse anliegen. Zum spezifischen Nachweis der in der Flüssigkeit enthaltenen biochemischen Moleküle sind die Arbeitselektroden mit zum nachzuweisenden biochemischen Mole- kül komplementären biochemischen Molekülen beschichtet. Die Arbeitselektroden sind spezifisch für die nachzuweisenden biochemischen Molekülen. Für jedes nachzuweisende biochemische Molekül ist zumindest eine spezifische Arbeitselektrode vorgesehen. Die komplementären biochemischen Moleküle binden spezifisch an den nachzuweisenden biochemischen Moleküle. Infolge der Ausbildung einer aus dem nachzuweisenden biochemischen Molekül und dem komplementären biochemischen Molekül gebildeten Verbindung ändert sich das elektrochemische Signal der Arbeitselektrode.
Unter einer "Vielzahl von Arbeitselektroden" werden im Sinne der vorliegenden Erfindung mehr als zwei Arbeitselektroden verstanden.
Nach einer vorteilhaften Ausgestaltung sind mehrere miteinander verbundene oder kapazitiv gekoppelte Referenzelektroden vorgesehen. Damit kann die Geschwindigkeit der Messung weiter erhöht werden. In diesem Zusammenhang können auch mehrere miteinander verbundene Gegenelektroden vorgesehen sein.
Zweckmäßigerweise weist das Mittel zum Messen einen Analog- Digital-Wandler auf. Ferner kann ein Multiplexer vorgesehen sein, so dass eine quasi zeitgleiche bzw. simultane Messung der durch die Arbeitselektroden fließenden Ströme möglich ist.
Nach einer weiteren Ausgestaltung ist der Strom-Spannungskonverter ein einen ersten Operationsverstärker aufweisender Stromfolger, wobei ein nichtinvertierender Eingang des Operationsverstärkers an der Masse anliegt und dessen invertierender Eingang über einen ersten Widerstand mit dem Ausgang des ersten Operationsverstärkers und mit der Arbeitselektrode verbunden ist. Parallel zum ersten Widerstand kann eine Kapazität geschaltet sein. Damit kann auf einfache Weise ein Rauschen unterdrücktund somit die Sensitivität gesteigert werden. Zur Einstellung des Strommessbereichs können unterschiedlich große erste Widerstände zwischen dem invertierenden Eingang und dem Ausgang des ersten Operationsverstärkers einschaltbar sein. Damit kann in einfacher Weise der Strommessbereich variiert werden. Der Strommessbereich kann für jede Arbeits- elektrode individuell auf den für das nachzuweisende biochemische Molekül optimalen Bereich eingestellt werden. Die Vorrichtung ist universell für den Nachweis unterschiedlichster biochemischer Moleküle geeignet.
Beim nachzuweisenden biochemischen Molekül kann es sich um eine Nukleinsäure und beim komplementären biochemischen Molekül um zur nachzuweisenden Nukleinsäure komplementäre Nukleinsäuren handeln. Im Falle einer Hybridisierung solcher Nukleinsäuren ändert sich der Stromverlauf durch die entsprechende Arbeitselektrode. Eine solche Änderung zeigt an, dass in der Lösung eine Nukleinsäure enthalten ist, welche zur an der Arbeitselektrode gebundenen Nukleinsäure komplementär ist. Ein solcher Nachweis ist hoch sensitiv und äußerst spezifisch. Bei den biochemischen Molekülen kann es sich auch um synthetische einzelsträngige Nukleinsäuren oder deren natürliche und/oder synthetische Analoga, Antigene, Proteine, wie Antikörper, Antikörperfragmente, Derivate von Antikörpern oder Antikörperfragmenten, Nukleinsäure-bindende Proteine, Rezeptoren oder Liganden handeln.
In weiterer Ausgestaltung weist der Potentiostat einen als Spannungsfolger geschalteten zweiten Operationsverstärker auf, an dessen nicht invertierendem Eingang die Referenzelektrode angeschlossen ist. Der Potentiostat kann ferner einen dritten Operationsverstärker aufweisen, an dessen Ausgang die Gegenelektrode angeschlossen ist, dessen invertierender Eingang über einen zweiten Widerstand mit dem Ausgang des zwei- ten Operationsverstärkers verbunden und über einen dritten
Widerstand mit einer Einrichtung zur Erzeugung einer wählbaren Sollspannung angeschlossen ist, und wobei der nichtinver- tierende Eingang des dritten Operationsverstärkers an der Masse anliegt. Des Weiteren kann zwischen dem Ausgang des dritten Operationsverstärkers und dessen invertierenden Eingang eine Kapazität eingeschaltet sein. Das bewirkt eine Stabilisierung der Regelung.
Nach weiterer Maßgabe der Erfindung ist ein Verfahren zum elektrochemischen Nachweis zumindest eines in einer Flüssigkeit enthaltenen biochemischen Moleküls aus einer Gruppe vorgegebener biochemischer Moleküle mit folgenden Schritten vorgesehen: a) Bereitstellen eines Mittels zur Aufnahme der Flüssigkeit, wobei das Mittel mindestens eine Gegen- und eine Referenzelektrode sowie eine Vielzahl von Arbeitselektroden aufweist, wobei zum Nachweis jedes biochemischen Moleküls zumindest eine Arbeitselektrode (AEl, AE2 , AE3) vorgesehen ist, die mit einem zum jeweiligen biochemischen Molekül komplementären Molekül beschichtet ist, so dass die biochemischen Moleküle simultan nachweisbar sind,
b) Inkontaktbringen der Flüssigkeit mit den Arbeits-, Gegen- und Referenzelektroden,
c) gleichzeitiges Anlegen eines vorgegebenen Spannungsver- laufs zwischen den Arbeitselektroden und der Referenzelektrode und
d) Messen der durch die Arbeitselektroden fließenden Ströme, wobei während der Messung sämtliche Arbeitselektro- den auf demselben Potenzial gehalten werden.
Die Messung erfolgt quasi zeitgleich bzw. simultan. Sie wird zweckmäßigerweise parallel oder mittels Multiplexen durchgeführt. Dabei kann die zwischen den Arbeitselektroden und der Referenzelektrode anliegende Spannung mit einem Potentiostaten geregelt werden. Das vorgeschlagene Verfahren ist relativ einfach durchführbar. Es ist universell und ermöglicht auch den simultanen Nachweis einer Vielzahl unterschiedlicher biochemischer Moleküle in einer Flüssigkeit.
Unter einer "Vielzahl von Arbeitselektroden" werden im Sinne der vorliegenden Erfindung mehr als zwei Arbeitselektroden verstanden. Bei dem vorgegebenen Spannungsverlauf kann es sich um einen sich während der Messung veränderlichen Spannungsverlauf handeln. Der Spannungsverlauf kann mittels einer programmierbaren Spannungsquelle vorgegeben werden.
Die Elektroden können aus herkömmlichen Materialien, beispielsweise geeigneten Metallen wie Gold, Silber, Platin oder dgl . hergestellt sein. Es ist aber auch möglich, die Elektroden aus Kohlenstoff, insbesondere Grafit, herzustellen. Die Beschichtung der Elektroden erfolgt in herkömmlicher Weise, im Falle von Nukleinsäuren beispielsweise durch Ausbildung von kovalenten Bindungen. Es wird verwiesen auf MI Pividori , et al . (2000) Electrochemical genosensor design : Immobilisa - tion of oligonucleotides onto transducer surfaces and detec- tion methods . Biosensors and Bioelectronics 15, 291 -303 .
Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen:
Fig. 1 ein schematisches Schaltbild und
Fig. 2 ein mit der Schaltung gemäß Fig. 1 erzieltes Messergebnis .
Ein Mittel zur Aufnahme der die nachzuweisenden biochemischen
Moleküle enthaltenden Flüssigkeit kann z.B. ein Behälter 1 oder ein Feld auf einer aus einem isolierenden Material hergestellten Fläche, z.B. auf einem Chip, sein. Der Behälter 1 weist Arbeitselektroden AEl, AE2 , AE3 , eine Gegenelektrode GE sowie eine Referenzelektrode RE auf. Die Elektroden sind z.B. aus Silber, Gold, Platin oder Grafit hergestellt. Die Arbeitselektroden AEl, AE2 , AE3 sind mit zu den nachzuweisenden biochemischen Molekülen komplementären Moleküle beschichtet. Jede der Arbeitselektroden AEl, AE2 , AE3 ist über eine Strom- Spannungskonverter Sl, S2, S3 mit einer Messvorrichtung AD verbunden.
Die Strom-Spannungskonverter Sl, S2 , S3 weisen jeweils einen Operationsverstärker OP1 auf, dessen nichtinvertierender Eingang (OP1+) an Schaltungsmasse anliegt. Infolgedessen werden sämtliche Arbeitselektroden AEl, AE2 , AE3 auf demselben Potenzial gehalten. Der invertierende Eingang OP1- des ersten Operationsverstärkers OP1 ist mit der Arbeitselektrode AEl, AE2 , AE3 und über einen ersten Widerstand Rl mit dem Ausgang verbunden, der wiederum mit der Messvorrichtung AD in Verbindung steht. Zur Rauschunterdrückung kann parallel zum ersten Widerstand Rl eine (hier nicht gezeigte) Kapazität geschaltet sein. Es können unterschiedlich große erste Widerstände Rl vorgesehen sein, welche alternativ einschaltbar sind. So kann auf einfache Weise der Messbereich geändert werden.
Mit dem Bezugszeichen P ist ein Potentiostat bezeichnet, des- sen Eingang mit einer (hier nicht gezeigten) programmierbaren Spannungsquelle verbunden ist. Der Potentiostat P umfasst einen als Spannungsfolger geschalteten zweiten Operationsverstärker OP2 und einen dritten Operationsverstärker 0P3. Der nichtinvertierende Eingang 0P2+ des zweiten Operationsver- stärkers OP2 ist an die Referenzelektrode RE angeschlossen.
Der invertierende Eingang OP2- des zweiten Operationsverstärkers OP2 ist mit dessen Ausgang und über einen zweiten Widerstand mit dem invertierenden Eingang OP3 - des dritten Operationsverstärkers OP3 verbunden. Der nichtinvertierende Ein- gang OP3+ des dritten Operationsverstärkers liegt an Schaltungsmasse. Die (hier nicht gezeigte) programmierbare Schaltungsquelle ist über einen dritten Widerstand R3 mit dem invertierenden Eingang OP3- des dritten Operationsverstärkers OP3 sowie dem zweiten Widerstand OP2 verbunden. Der Ausgang des dritten Operationsverstärkers OP3 ist mit der Gegenelektrode GE verbunden. Zwischen dem Ausgang des dritten Operationsverstärkers OP3 und dessen invertierenden Eingang kann ei- ne (hier nicht gezeigte) weitere Kapazität eingeschaltet sein.
Bei der Messvorrichtung AD kann es sich um einen Analog-Digital -Wandler mit Multiplexer handeln. Das ermöglicht eine quasi zeitgleiche Messung der durch die Arbeitselektroden AEl, AE2, AE3 fließenden Ströme.
Indem die Referenzelektrode RE an den nichtinvertierenden Eingang OP2+ des zweiten Operationsverstärkers OP2 ange- schlössen ist, erhält man einen Spannungsfolger mit einer sehr hohen Eingangsimpedanz. Ein durch die Referenzelektrode RE fließender Elektrolysestrom wird damit wirkungsvoll unterbunden. Infolgedessen wird eine besonders genaue Messung erreicht .
Der mit der Gegenelektrode GE verbundene Ausgang des dritten Operationsverstärkers OP3 wird im Betrieb so angesteuert, dass zwischen dessen Eingängen OP3-, OP3+ keine Spannung anliegt. Der nichtinvertierende Eingang 0P3+ des dritten Opera- tionsverstarkers 0P3 liegt an Schaltungsmasse an. Infolgedessen liegt auch der invertierende Eingang OP3- virtuell auf Masse und damit auf demselben Potenzial wie die Arbeitselektroden AEl, AE2 , AE3. Bei geeigneter Regelung ist der durch den dritten Widerstand R3 fließende Strom gleich dem durch den zweiten Widerstand R2 fließenden Strom. Da die Spannung über dem zweiten Widerstand R2 dem Betrag nach gleich der Spannung zwischen der Referenzelektrode RE und den Arbeitselektroden AEl, AE2 , AE3 ist, kann das Potenzial der Arbeitse- lektroden AEl, AE2 , AE3 gegen die Referenzelektrode RE durch eine proportionale Spannung am Eingang U des Potentiostaten P vorgegeben werden. In der Praxis wird zweckmäßigerweise der zweite Widerstand R2 gleich dem dritten Widerstand R3 gewählt, wodurch die Proportionalitätskonstante auf den Wert -1 festgelegt wird. Alternativ kann in diesem Fall eines addierenden Potentiostaten P der dritte Widerstand R3 durch mehrere Widerstände ersetzt werden, wodurch mehrere Eingänge, z.B. zur Modulation, erhalten werden.
Nach einer Variation an der Schaltung ist es möglich, die Strom-Spannungskonverter Sl, S2 , S3 im Frequenzgang zu beschränken. Dadurch kann das Gesamtrauschen vermindert werden. Eine solche Beschränkung im Frequenzgang kann durch Kondensa- toren erreicht werden, die jeweils parallel zum ersten Widerstand Rl geschaltet werden. Zur Vergrößerung des Strommessbereichs kann es von Vorteil sein, die ersten Widerstände Rl , ggf. mit dazu parallel geschalteten Kondensatoren, mittels Relais oder analoger elektronischer Schalter oder einer Kom- bination der beiden schaltbar auszuführen.
Fig. 2 zeigt das Ergebnis von mit der erfindungsgemäßen Schaltung durchgeführten Messungen. Dazu sind unbeschichtete Arbeitselektroden mit einer DNA enthaltenden Lösung in Kon- takt gebracht worden. Die Messung ist erfolgt mittels Diffe- renzialpulsvoltammetrie . Aufgetragen in Fig. 2 ist über der Spannung die an der Arbeitselektrode gemessene Stromdifferenz jeweils vor und nach einer Spannungsmodulation. Der linke Pe- ak zeigt die Oxidation von Guanin von an der Arbeitselektrode adsorbierter DNA. Der rechte Peak zeigt die Oxidation von
Adenin. Es sind die Ergebnisse aufgetragen welche durch Messung an einer ersten Arbeitselektrode AEl und an einer zweiten Arbeitselektrode AE2 gewonnen worden sind. Die vorliegende Messung zeigt lediglich einen unspezifischen Nachweis von DNA in einer Lösung. Bei einer geeigneten Beschichtung der Arbeitselektroden ist es im Rahmen der Erfindung möglich, spezifisch vorgegebene DNA oder dgl. in einer Lösung nachzuweisen. Die Anzahl der spezifisch nachzuweisenden DNA-Sequenzen oder dgl. hängt ab von der Anzahl der verwendeten Arbeitselektroden.
Bezugszeichenliste
1 Behälter
OP1, 2, 3 erster, zweiter, dritter Operationsverstärker P Potentiostat
Sl, 2, 3 erster, zweiter, dritter Strom-Spannungskonverter
Rl, 2, 3 erster, zweiter, dritter Widerstand
AD Messvorrichtung AEl, 2, 3 Arbeitselektroden
GE Gegenelektrode
RE Referenzelektrode
U Ausgang einer programmierbaren Spannungsquelle

Claims

Patentansprüche
1. Vorrichtung zum elektrochemischen Nachweis zumindest eines in einer Flüssigkeit enthaltenen biochemischen Moleküls aus einer Gruppe vorgegebener biochemischer Moleküle mit
einem mindestens eine Referenz- (RE) und mindestens eine Gegenelektrode (GE) sowie eine Vielzahl an Arbeitselektroden (AEl, AE2 , AE3) aufweisenden Mittel (1) zur Aufnahme der Flüssigkeit, wobei zum Nachweis jedes biochemischen Moleküls zumindest eine Arbeitselektrode (AEl, AE2 , AE3) vorgesehen ist, die mit einem zum jeweiligen biochemischen Molekül komplementären Molekül beschichtet ist, so dass die biochemischen Moleküle simultan nachweisbar sind,
einem Potentiostaten (P) zur Erzeugung eines vorgegebenen Spannungsverlaufs zwischen den Arbeitselektroden (AEl, AE2 , AE3) und der Referenzelektrode (RE) ,
wobei jeder der Arbeitselektroden (AEl, AE2 , AE3) ein Strom-
Spannungskonverter (Sl, S2, S3) nachgeschaltet ist, wobei die Strom-Spannungskonverter (Sl, S2 , S3) sämtliche Arbeitselektroden (AEl, AE2 , AE3) auf demselben Potenzial halten, und
einem Mittel (AD) zum Messen der durch die Arbeitselektroden (AEl, AE2, AE3) fließenden Ströme.
2. Vorrichtung nach Anspruch 1, wobei mehrere miteinander verbundene oder kapazitiv gekoppelte Referenzelektroden (RE) vorgesehen sind.
3. Vorrichtung nach Anspruch 1 oder 2, wobei mehrere miteinander verbundene Gegenelektroden (GE) vorgesehen sind.
4. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das Mittel (AD) zum Messen einen Analog-Digital-Wandler aufweist .
5. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei der Strom-Spannungskonverter (Sl, S2 , S3) ein einen ersten Operationsverstärker (OP1) aufweisenden Stromfolger ist, wobei ein nichtinvertierender Eingang (OP1+) des ersten Operationsverstärkers (OP1) an Masse anliegt und dessen inver- tierender Eingang (OP1-) über einen ersten Widerstand (Rl) mit dem Ausgang des ersten Operationsverstärkers (OP1) und mit der Arbeitselektrode (AEl) verbunden ist.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, wo- bei parallel zum ersten Widerstand (Rl) eine Kapazität geschaltet ist.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei zur Einstellung des Strommessbereichs unterschiedlich große erste Widerstände (Rl) zwischen den invertierenden Eingang (OP1-) und den Ausgang des ersten Operationsverstärkers (0P1) einschaltbar sind.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, wo- bei das nachzuweisende biochemische Molekül eine Nukleinsäure und die komplementären biochemischen Moleküle zur nachzuweisenden Nukleinsäure komplementäre Nukleinsäuren sind.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, wo- bei der Potentiostat (P) einen als Spannungsfolger geschalteten zweiten Operationsverstärker (OP2) aufweist, an dessen nichtinvertierendem Eingang (OP2+) die Referenzelektrode (RE) angeschlossen ist .
10. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei der Potentiostat (P) einen dritten Operationsverstärker (OP3) aufweist, an dessen Ausgang die Gegenelektrode (GE) angeschlossen ist, dessen invertierender Eingang (OP3-) über einen zweiten Widerstand (R2) mit dem Ausgang des zweiten
Operationsverstärkers (OP2) verbunden und über einen dritten Widerstand (R3) an einer Einrichtung zur Erzeugung einer wählbaren Sollspannung angeschlossen ist, und wobei der nichtinvertierende Eingang (OP3+) des dritten Operationsver- stärkers (OP3) an Masse anliegt.
11. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei zwischen dem Ausgang des dritten Operationsverstärkers
(OP3) und dessen invertierenden Eingang (0P3-) eine Kapazität eingeschaltet ist.
12. Verfahren zum elektrochemischen Nachweis zumindest eines in einer Flüssigkeit enthaltenen biochemischen Moleküls aus einer Gruppe vorgegebener biochemischer Moleküle mit folgen- den Schritten:
a) Bereitstellen eines Mittels (1) zur Aufnahme der Flüssigkeit, wobei das Mittel (1) mindestens eine Gegen- (GE) und eine Referenzelektrode (RE) sowie eine Vielzahl von Arbeitse- lektroden (AEl, AE2 , AE3) aufweist, wobei zum Nachweis jedes biochemischen Moleküls zumindest eine Arbeitselektrode (AEl, AE2 , AE3) vorgesehen ist, die mit einem zum jeweiligen biochemischen Molekül komplementären Molekül beschichtet ist, so dass die biochemischen Moleküle simultan nachweisbar sind,
b) Inkontaktbringen der Flüssigkeit mit den Arbeits- (AEl, AE2, AE3) , Gegen- (GE) und Referenzelektroden (RE) , c) gleichzeitiges Anlegen eines vorgegebenen Spannungsverlaufs zwischen den Arbeitselektroden (AEl, AE2 , AE3) und der Referenzelektrode (RE) und
d) Messen der durch die Arbeitselektroden (AEl, AE2 , AE3) fließenden Ströme, wobei während der Messung sämtliche Arbeitselektroden (AEl, AE2 , AE3) auf demselben Potenzial gehalten werden.
13. Verfahren nach Anspruch 13, wobei das Messen parallel oder mittels Multiplexen durchgeführt wird.
14. Verfahren nach einem der Ansprüche 13 oder 14, wobei die zwischen den Arbeitselektroden (AEl, AE2 , AE3) und der Refe- renzelektrode (RE) anliegende Spannung mit einem Potentiostaten (P) geregelt wird.
PCT/EP2003/006566 2002-06-28 2003-06-23 Vorrichtung und verfahren zum elektrochemischen nachweis WO2004003556A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50310708T DE50310708D1 (de) 2002-06-28 2003-06-23 Vorrichtung und verfahren zum elektrochemischen nachweis
JP2004516635A JP2005531759A (ja) 2002-06-28 2003-06-23 電気化学検出装置および方法
AU2003279777A AU2003279777A1 (en) 2002-06-28 2003-06-23 Electrochemical detection method and device
EP03740302A EP1518123B1 (de) 2002-06-28 2003-06-23 Vorrichtung und verfahren zum elektrochemischen nachweis
US10/517,436 US7169289B2 (en) 2002-06-28 2005-02-10 Electrochemical detection method and device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10229210.8 2002-06-28
DE10229210A DE10229210A1 (de) 2002-06-28 2002-06-28 Vorrichtung zur Detektion eines Analyten
DE2002129374 DE10229374C1 (de) 2002-06-29 2002-06-29 Vorrichtung und Verfahren zum elektrochemischen Nachweis
DE10229374.0 2002-06-29

Publications (1)

Publication Number Publication Date
WO2004003556A1 true WO2004003556A1 (de) 2004-01-08

Family

ID=30001494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/006566 WO2004003556A1 (de) 2002-06-28 2003-06-23 Vorrichtung und verfahren zum elektrochemischen nachweis

Country Status (7)

Country Link
US (1) US7169289B2 (de)
EP (1) EP1518123B1 (de)
JP (1) JP2005531759A (de)
AT (1) ATE412899T1 (de)
AU (1) AU2003279777A1 (de)
DE (1) DE50310708D1 (de)
WO (1) WO2004003556A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530789A (ja) * 2005-02-10 2008-08-07 エーエスエムエル ネザーランズ ビー.ブイ. 液浸液、露光装置および露光方法
CZ305358B6 (cs) * 2014-09-30 2015-08-12 Vysoké Učení Technické V Brně Potenciostat

Families Citing this family (144)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527026B2 (en) 1997-03-04 2013-09-03 Dexcom, Inc. Device and method for determining analyte levels
US7192450B2 (en) 2003-05-21 2007-03-20 Dexcom, Inc. Porous membranes for use with implantable devices
US7657297B2 (en) * 2004-05-03 2010-02-02 Dexcom, Inc. Implantable analyte sensor
US6001067A (en) 1997-03-04 1999-12-14 Shults; Mark C. Device and method for determining analyte levels
US6862465B2 (en) 1997-03-04 2005-03-01 Dexcom, Inc. Device and method for determining analyte levels
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US8346337B2 (en) 1998-04-30 2013-01-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8688188B2 (en) 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US9066695B2 (en) 1998-04-30 2015-06-30 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6949816B2 (en) 2003-04-21 2005-09-27 Motorola, Inc. Semiconductor component having first surface area for electrically coupling to a semiconductor chip and second surface area for electrically coupling to a substrate, and method of manufacturing same
US8465425B2 (en) 1998-04-30 2013-06-18 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8974386B2 (en) 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8480580B2 (en) 1998-04-30 2013-07-09 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
US6560471B1 (en) 2001-01-02 2003-05-06 Therasense, Inc. Analyte monitoring device and methods of use
ES2357887T3 (es) 2001-06-12 2011-05-03 Pelikan Technologies Inc. Aparato para mejorar la tasa de éxito de obtención de sangre a partir de una punción capilar.
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
WO2002100460A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Electric lancet actuator
AU2002348683A1 (en) 2001-06-12 2002-12-23 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
EP1404232B1 (de) 2001-06-12 2009-12-02 Pelikan Technologies Inc. Gerät und verfahren zur entnahme von blutproben
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US7316700B2 (en) 2001-06-12 2008-01-08 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
US20030032874A1 (en) 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6702857B2 (en) 2001-07-27 2004-03-09 Dexcom, Inc. Membrane for use with implantable devices
US9282925B2 (en) 2002-02-12 2016-03-15 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8010174B2 (en) 2003-08-22 2011-08-30 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US9247901B2 (en) 2003-08-22 2016-02-02 Dexcom, Inc. Systems and methods for replacing signal artifacts in a glucose sensor data stream
US8260393B2 (en) 2003-07-25 2012-09-04 Dexcom, Inc. Systems and methods for replacing signal data artifacts in a glucose sensor data stream
US8858434B2 (en) 2004-07-13 2014-10-14 Dexcom, Inc. Transcutaneous analyte sensor
US7175642B2 (en) * 2002-04-19 2007-02-13 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8372016B2 (en) * 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US7648468B2 (en) * 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) * 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7708701B2 (en) 2002-04-19 2010-05-04 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
US7134999B2 (en) 2003-04-04 2006-11-14 Dexcom, Inc. Optimized sensor geometry for an implantable glucose sensor
WO2004103147A2 (en) * 2003-05-02 2004-12-02 Pelikan Technologies, Inc. Method and apparatus for a tissue penetrating device user interface
US7875293B2 (en) * 2003-05-21 2011-01-25 Dexcom, Inc. Biointerface membranes incorporating bioactive agents
ES2347248T3 (es) 2003-05-30 2010-10-27 Pelikan Technologies Inc. Procedimiento y aparato para la inyeccion de fluido.
US7850621B2 (en) 2003-06-06 2010-12-14 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US8423113B2 (en) 2003-07-25 2013-04-16 Dexcom, Inc. Systems and methods for processing sensor data
JP2007500336A (ja) 2003-07-25 2007-01-11 デックスコム・インコーポレーテッド 電気化学センサーに用いる電極システム
US20190357827A1 (en) 2003-08-01 2019-11-28 Dexcom, Inc. Analyte sensor
US8275437B2 (en) 2003-08-01 2012-09-25 Dexcom, Inc. Transcutaneous analyte sensor
US9135402B2 (en) 2007-12-17 2015-09-15 Dexcom, Inc. Systems and methods for processing sensor data
US20070208245A1 (en) * 2003-08-01 2007-09-06 Brauker James H Transcutaneous analyte sensor
US8845536B2 (en) 2003-08-01 2014-09-30 Dexcom, Inc. Transcutaneous analyte sensor
US7591801B2 (en) 2004-02-26 2009-09-22 Dexcom, Inc. Integrated delivery device for continuous glucose sensor
US20100168657A1 (en) * 2003-08-01 2010-07-01 Dexcom, Inc. System and methods for processing analyte sensor data
US6931327B2 (en) 2003-08-01 2005-08-16 Dexcom, Inc. System and methods for processing analyte sensor data
US8160669B2 (en) 2003-08-01 2012-04-17 Dexcom, Inc. Transcutaneous analyte sensor
US7959569B2 (en) 2003-08-01 2011-06-14 Dexcom, Inc. System and methods for processing analyte sensor data
US8369919B2 (en) 2003-08-01 2013-02-05 Dexcom, Inc. Systems and methods for processing sensor data
US8761856B2 (en) 2003-08-01 2014-06-24 Dexcom, Inc. System and methods for processing analyte sensor data
US7774145B2 (en) 2003-08-01 2010-08-10 Dexcom, Inc. Transcutaneous analyte sensor
US7519408B2 (en) 2003-11-19 2009-04-14 Dexcom, Inc. Integrated receiver for continuous analyte sensor
US7920906B2 (en) 2005-03-10 2011-04-05 Dexcom, Inc. System and methods for processing analyte sensor data for sensor calibration
US20140121989A1 (en) 2003-08-22 2014-05-01 Dexcom, Inc. Systems and methods for processing analyte sensor data
WO2005033659A2 (en) 2003-09-29 2005-04-14 Pelikan Technologies, Inc. Method and apparatus for an improved sample capture device
US9351680B2 (en) 2003-10-14 2016-05-31 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a variable user interface
US20050090607A1 (en) * 2003-10-28 2005-04-28 Dexcom, Inc. Silicone composition for biocompatible membrane
US9247900B2 (en) 2004-07-13 2016-02-02 Dexcom, Inc. Analyte sensor
US11633133B2 (en) 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8364231B2 (en) 2006-10-04 2013-01-29 Dexcom, Inc. Analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
EP1711790B1 (de) 2003-12-05 2010-09-08 DexCom, Inc. Kalibrationsmethoden für einen kontinuierlich arbeitenden analytsensor
US8532730B2 (en) 2006-10-04 2013-09-10 Dexcom, Inc. Analyte sensor
US8287453B2 (en) 2003-12-05 2012-10-16 Dexcom, Inc. Analyte sensor
EP1711791B1 (de) * 2003-12-09 2014-10-15 DexCom, Inc. Signalverarbeitung für kontinuierlich arbeitenden analytsensor
US8668656B2 (en) 2003-12-31 2014-03-11 Sanofi-Aventis Deutschland Gmbh Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7637868B2 (en) * 2004-01-12 2009-12-29 Dexcom, Inc. Composite material for implantable device
US8808228B2 (en) 2004-02-26 2014-08-19 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
US20050245799A1 (en) * 2004-05-03 2005-11-03 Dexcom, Inc. Implantable analyte sensor
US8277713B2 (en) * 2004-05-03 2012-10-02 Dexcom, Inc. Implantable analyte sensor
US8792955B2 (en) 2004-05-03 2014-07-29 Dexcom, Inc. Transcutaneous analyte sensor
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
EP1765194A4 (de) 2004-06-03 2010-09-29 Pelikan Technologies Inc Verfahren und gerät für eine flüssigkeitsentnahmenvorrichtung
US7857760B2 (en) 2004-07-13 2010-12-28 Dexcom, Inc. Analyte sensor
US8452368B2 (en) 2004-07-13 2013-05-28 Dexcom, Inc. Transcutaneous analyte sensor
US20060270922A1 (en) * 2004-07-13 2006-11-30 Brauker James H Analyte sensor
US7905833B2 (en) 2004-07-13 2011-03-15 Dexcom, Inc. Transcutaneous analyte sensor
US8565848B2 (en) 2004-07-13 2013-10-22 Dexcom, Inc. Transcutaneous analyte sensor
US20080242961A1 (en) * 2004-07-13 2008-10-02 Dexcom, Inc. Transcutaneous analyte sensor
US7783333B2 (en) * 2004-07-13 2010-08-24 Dexcom, Inc. Transcutaneous medical device with variable stiffness
JP4742544B2 (ja) * 2004-09-08 2011-08-10 凸版印刷株式会社 遺伝子チェック装置及び方法
US20060167382A1 (en) * 2004-12-30 2006-07-27 Ajay Deshmukh Method and apparatus for storing an analyte sampling and measurement device
EP1835848A4 (de) * 2004-12-30 2009-07-29 Pelikan Technologies Inc Verfahren und gerät für analyten-messungstestzeit
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
JP2008528976A (ja) * 2005-01-26 2008-07-31 ラピッド ラボラトリー マイクロシステムズ インコーポレイテッド 電気化学的な測定結果を高速で得るための装置及び方法
US8060174B2 (en) 2005-04-15 2011-11-15 Dexcom, Inc. Analyte sensing biointerface
EP1991110B1 (de) 2006-03-09 2018-11-07 DexCom, Inc. Systeme und verfahren zur aufbereitung von analytensensordaten
US7920907B2 (en) 2006-06-07 2011-04-05 Abbott Diabetes Care Inc. Analyte monitoring system and method
US20080306434A1 (en) 2007-06-08 2008-12-11 Dexcom, Inc. Integrated medicament delivery device for use with continuous analyte sensor
EP4159114B1 (de) 2007-10-09 2024-04-10 DexCom, Inc. Integriertes insulin-abgabesystem mit kontinuierlichem glucosesensor
US8417312B2 (en) 2007-10-25 2013-04-09 Dexcom, Inc. Systems and methods for processing sensor data
FR2923296B1 (fr) * 2007-11-02 2009-11-20 Commissariat Energie Atomique Potentiostat multi-voies ayant un potentiel de contre-electrode ajustable.
US8290559B2 (en) 2007-12-17 2012-10-16 Dexcom, Inc. Systems and methods for processing sensor data
US20090209883A1 (en) * 2008-01-17 2009-08-20 Michael Higgins Tissue penetrating apparatus
CA2715628A1 (en) 2008-02-21 2009-08-27 Dexcom, Inc. Systems and methods for processing, transmitting and displaying sensor data
US8396528B2 (en) 2008-03-25 2013-03-12 Dexcom, Inc. Analyte sensor
US9386944B2 (en) 2008-04-11 2016-07-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte detecting device
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
US9446194B2 (en) 2009-03-27 2016-09-20 Dexcom, Inc. Methods and systems for promoting glucose management
US20110027458A1 (en) 2009-07-02 2011-02-03 Dexcom, Inc. Continuous analyte sensors and methods of making same
EP2496936B1 (de) * 2009-10-16 2018-02-21 Microchips Biotech, Inc. Mehrkanal-potentiostat für eine biosensoranordnung und verwendungsverfahren
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
WO2012142502A2 (en) 2011-04-15 2012-10-18 Dexcom Inc. Advanced analyte sensor calibration and error detection
JP5689020B2 (ja) * 2011-05-12 2015-03-25 日置電機株式会社 微量成分検出装置および微量成分検出方法
US9983167B2 (en) * 2014-10-31 2018-05-29 Zansors, Llc Multichannel potentiostat analyzer system and methods
JP7231963B2 (ja) * 2017-02-21 2023-03-02 国立大学法人山形大学 電気化学計測装置
US20200138344A1 (en) * 2017-06-04 2020-05-07 B.G. Negev Technologies And Applications Ltd., At Ben-Gurion University Electrochemical detection device and method
CN212438615U (zh) 2017-10-24 2021-02-02 德克斯康公司 可穿戴设备
US11331022B2 (en) 2017-10-24 2022-05-17 Dexcom, Inc. Pre-connected analyte sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315753A (en) * 1980-08-14 1982-02-16 The United States Of America As Represented By The Secretary Of The Interior Electrochemical apparatus for simultaneously monitoring two gases
US4655880A (en) * 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US5149629A (en) * 1987-04-07 1992-09-22 Ramot University Authority For Applied Research And Industrial Development Ltd. Coulometric assay system
US5217112A (en) * 1991-09-04 1993-06-08 Almon Amy C Voltametric analysis apparatus and method
US20010029048A1 (en) * 1998-03-16 2001-10-11 University Of Cincinnati Simultaneous multianalyte electrochemical assay based on spatial resolution

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US792231A (en) * 1904-04-01 1905-06-13 Nat Tube Co Art of cross-rolling tubular bodies or blanks in a heated state.
US2176155A (en) * 1936-09-03 1939-10-17 Timken Roller Bearing Co Apparatus for elongating and decreasing the wall thickness of tubular blanks
FR2266557B1 (de) * 1974-04-05 1977-10-14 Valti Fabr Tubes Roulements
DE2652759C3 (de) * 1976-11-16 1980-05-22 Mannesmann Ag, 4000 Duesseldorf Lösbare Verbindung zwischen einem Dorn und der Dornstange eines Schrägwalzwerkes
JPS5913924B2 (ja) * 1979-12-25 1984-04-02 日本鋼管株式会社 穿孔圧延機用芯金
DE3114177C2 (de) * 1981-04-03 1984-08-23 Mannesmann AG, 4000 Düsseldorf Verfahren zum Herstellen eines Arbeitswerkzeuges zur spanlosen Warmverformung von Stahl und Warmarbeitswerkzeug
US4488556A (en) * 1982-06-03 1984-12-18 Critikon, Inc. AC Mode operation of chemfet devices
JPS63101744A (ja) * 1986-10-18 1988-05-06 Matsushita Electric Works Ltd 液中成分定量装置
JPH02224806A (ja) * 1989-02-28 1990-09-06 Nkk Corp 継目無し鋼管製造用プラグ
JPH04264246A (ja) * 1991-02-19 1992-09-21 Matsushita Electric Ind Co Ltd バイオセンサ
DE4136779A1 (de) 1991-11-08 1993-05-13 Bayer Ag Vorrichtung zum simultanen nachweis verschiedener gaskomponenten
US5260663A (en) * 1992-07-14 1993-11-09 Anatel Corporation Methods and circuits for measuring the conductivity of solutions
DE4424355C2 (de) 1994-07-11 1996-07-18 Fraunhofer Ges Forschung Verfahren zur elektrochemischen Analyse
JPH10180315A (ja) * 1996-12-27 1998-07-07 Kawasaki Steel Corp 継目無鋼管圧延用プラグおよび継目無鋼管の製造方法
JP3271547B2 (ja) * 1997-01-23 2002-04-02 ダイキン工業株式会社 センサ装置
JP3214561B2 (ja) * 1998-07-02 2001-10-02 日本電気株式会社 酵素電極およびそれを用いたバイオセンサ、測定器
JP2001021526A (ja) * 1999-07-02 2001-01-26 Akebono Brake Res & Dev Center Ltd バイオセンサーを用いた試料溶液の測定方法
DE10015818A1 (de) 2000-03-30 2001-10-18 Infineon Technologies Ag Biosensor und Verfahren zum Ermitteln makromolekularer Biopolymere mit einem Biosensor
JP2002017352A (ja) * 2000-04-28 2002-01-22 Fuji Photo Film Co Ltd 核酸試料検出用具及び電気化学的検出方法
US6818109B2 (en) * 2000-09-29 2004-11-16 Kabushiki Kaisha Toshiba Nucleic acid detections sensor
US20030022150A1 (en) * 2001-07-24 2003-01-30 Sampson Jeffrey R. Methods for detecting a target molecule
MXPA05006286A (es) * 2002-12-12 2006-01-27 Sumitomo Metal Ind Procedimiento de fabricacion de tubos de acero sin costura.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315753A (en) * 1980-08-14 1982-02-16 The United States Of America As Represented By The Secretary Of The Interior Electrochemical apparatus for simultaneously monitoring two gases
US4655880A (en) * 1983-08-01 1987-04-07 Case Western Reserve University Apparatus and method for sensing species, substances and substrates using oxidase
US5149629A (en) * 1987-04-07 1992-09-22 Ramot University Authority For Applied Research And Industrial Development Ltd. Coulometric assay system
US5217112A (en) * 1991-09-04 1993-06-08 Almon Amy C Voltametric analysis apparatus and method
US20010029048A1 (en) * 1998-03-16 2001-10-11 University Of Cincinnati Simultaneous multianalyte electrochemical assay based on spatial resolution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008530789A (ja) * 2005-02-10 2008-08-07 エーエスエムエル ネザーランズ ビー.ブイ. 液浸液、露光装置および露光方法
CZ305358B6 (cs) * 2014-09-30 2015-08-12 Vysoké Učení Technické V Brně Potenciostat

Also Published As

Publication number Publication date
JP2005531759A (ja) 2005-10-20
ATE412899T1 (de) 2008-11-15
US7169289B2 (en) 2007-01-30
AU2003279777A1 (en) 2004-01-19
DE50310708D1 (de) 2008-12-11
EP1518123A1 (de) 2005-03-30
US20050211571A1 (en) 2005-09-29
EP1518123B1 (de) 2008-10-29

Similar Documents

Publication Publication Date Title
EP1518123B1 (de) Vorrichtung und verfahren zum elektrochemischen nachweis
EP0527126B1 (de) Elektrochemische bestimmung der sauerstoffkonzentration
EP1789811B1 (de) Biosensor-Anordnung und Verfahren zum Ermitteln eines Sensorereignisses
WO2006000204A1 (de) Monolithisch integrierte hybridisierungs-sensor-anordnung und verfahren zu deren herstellung
WO2004001405A1 (de) Biosensor-array und verfahren zum betreiben eines biosensor-arrays
DE60107224T2 (de) Elektrochemisches biosensor-ablesemessgerät
DE112011105207T5 (de) Biomolekülinformationen-Analysevorrichtung
DE3033730C2 (de) Vorrichtung zum Feststellen chemischer Substanzen
WO1996001993A1 (de) Verfahren zur elektrochemischen analyse
DE10224567B4 (de) Sensor-Anordnung und Verfahren zum Betreiben einer Sensor-Anordnung
EP1328799B1 (de) Elektronische schaltung, sensoranordnung und verfahren zum verarbeiten eines sensorsignals
DE102006006347B3 (de) Sensorvorrichtung für ein elektrochemisches Messgerät und Verfahren zur Durchführung elektrochemischer Messungen
DE19947240B4 (de) Verfahren zum Betrieb einer Mischpotential-Abgassonde und Schaltungsanordnungen zur Durchführung der Verfahren
DE10229374C1 (de) Vorrichtung und Verfahren zum elektrochemischen Nachweis
EP0060533B1 (de) Elektroanalytische Messanordnung
EP2264445B1 (de) Coulometrischer Feuchtesensor und entsprechendes Verfahren
EP1208239B1 (de) Verfahren zum nachweis und zur quantifizierung von in einer flüssigkeit befindlichen ersten biopolymeren
AT407199B (de) Ph-sensor
EP0691408B1 (de) UV-polymerisierbare Enzympaste zur Herstellung von Biosensoren und damit hergestellte Biosensoren
DE19739317A1 (de) Elektrische Schaltung für einen elektrochemischen Sensor
DE2633941A1 (de) Analysengeraet und analyseverfahren
DE102006014825B4 (de) Schaltungsanordnung und Verfahren für die voltametrische Signalverarbeitung von Biosensoren
AT399779B (de) Ph-sensor
DE4444827C2 (de) Verfahren und Meßanordnung zum Erfassen eines Probenmaterials in einem Fluid mittels eines ISFET
EP2092319A1 (de) Vorrichtung und verfahren zur messung biologischer und elektronischer eigenschaften einer probe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003740302

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004516635

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10517436

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003740302

Country of ref document: EP