WO2004001963A1 - Elektronisches bauelement mit einem mehrlagensubstrat und herstellungsverfahren - Google Patents

Elektronisches bauelement mit einem mehrlagensubstrat und herstellungsverfahren Download PDF

Info

Publication number
WO2004001963A1
WO2004001963A1 PCT/DE2003/001465 DE0301465W WO2004001963A1 WO 2004001963 A1 WO2004001963 A1 WO 2004001963A1 DE 0301465 W DE0301465 W DE 0301465W WO 2004001963 A1 WO2004001963 A1 WO 2004001963A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
multilayer substrate
chip
component according
chip component
Prior art date
Application number
PCT/DE2003/001465
Other languages
English (en)
French (fr)
Inventor
Andreas Przadka
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to JP2004514540A priority Critical patent/JP4778228B2/ja
Priority to US10/521,253 priority patent/US7795728B2/en
Priority to KR1020047021118A priority patent/KR100954030B1/ko
Priority to CN038149338A priority patent/CN1663120B/zh
Publication of WO2004001963A1 publication Critical patent/WO2004001963A1/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0542Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a lateral arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0557Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the other elements being buried in the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • H05K1/141One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors

Definitions

  • the invention relates to an electronic component or module with a chip component, in particular a filter, and a multilayer substrate and a method for mounting the Chi component on the multilayer substrate.
  • An electronic module is a highly integrated component which comprises one or more circuits monolithically integrated in a multilayer substrate and fulfills various functions, for example in the terminal of a mobile communication system.
  • An electronic module can e.g. B. realize the function of an antenna switch, a duplexer, a diplexer, a coupler, etc.
  • a module can contain one or more chip components and discrete circuit or components which are arranged on the top side of the multilayer substrate with the integrated circuit elements.
  • balun can be integrated directly into the structure of the chip component, or a chip component with asymmetrical inputs or outputs with a downstream balun made of discrete individual elements can be used.
  • a balun can be designed as a compact individual component.
  • the output impedance of a chip component is perfectly matched to the input impedance of the subsequent stage or that the input impedance of a chi component is perfectly matched to the output impedance of the upstream stage.
  • the chip components therefore require an electrical matching network in order to adapt to their circuit environment.
  • Such a device can include inductors, capacitors and delay lines and essentially serves to adapt the impedance of a component to the external environment. It is known that a matching network can be implemented with discrete individual components, the chip component being soldered onto a printed circuit board together with the discrete individual components.
  • a SAW component with a multi-layer carrier substrate e.g. made of ceramic
  • a multi-layer carrier substrate e.g. made of ceramic
  • which comprises integrated matching elements can be attached and electrically connected by means of a flip-chip arrangement or by means of wire bonding, see e.g. B. US 5,459,368.
  • further passive or active discrete circuit elements can be arranged on the upper side of the carrier substrate.
  • the production of such components is complex and costly since SAW chips or the circuit elements mentioned are electrically connected to the carrier substrate using different connection techniques. If a chip component z. B. is connected in a receiving branch before or between two LNAs (low noise amplifier), the terminal impedance values that occur are generally between 50 and 200 ohms.
  • the impedances of the upstream and downstream stages are known, there is in principle the possibility of realizing the chip component in such a way that its input and output impedances correspond to the required values.
  • the entire component had to be completely redeveloped for each application with the specified input or output impedance (eg 25, 50, 200 ohms).
  • the object of the present invention is to provide a highly integrated component which comprises a chip component, a multilayer substrate electrically connected to it and an impedance converter.
  • the invention provides an electronic component which comprises a) a multi-layer substrate, b) at least one Chi component with external contacts and c) at least one impedance converter (monolithically) integrated in the multi-layer substrate.
  • the at least one chip component is arranged on the top of the multilayer substrate and with the integrated one Impedance converter electrically connected.
  • a chip component is understood to mean a “bare” chip with electronic structures or a packaged chip with such structures.
  • an impedance converter is understood to mean an electronic circuit which fulfills an impedance transformation, i. H. which changes an actual impedance value characteristic of a chip component or for all chip components of the same type to a predetermined target value.
  • an impedance transformation i. H. which changes an actual impedance value characteristic of a chip component or for all chip components of the same type to a predetermined target value.
  • H. an impedance transformation
  • these are not only significant differences between the actual and target impedance values (e.g. an impedance multiplication from 50 to 200 ohms), but also relatively small differences of less than 100%, but at least 5% between the actual and target impedance values (e.g. by an impedance change from 46 to 50 ohms).
  • an adaptation or impedance adaptation means a desired impedance change of a maximum of 5%, e.g. B. to compensate for a manufacturing mismatch.
  • An advantage of the component according to the invention is that, in contrast to known solutions, the impedance converter required for an impedance transformation is not arranged on a printed circuit board but is integrated in the multilayer substrate, the same multilayer substrate carrying a chip component.
  • the total area requirement is particularly low with this arrangement, since the integration takes place in the vertical direction.
  • a compact block comprising the multilayer substrate with the integrated impedance converter ensures the required impedance transformation and can be prefabricated as standard. This block can quickly and easily transform the characteristic actual impedance of chip components to be produced as standard to another required output impedance value. Thereby the new development of the entire chip component and the associated time and cost losses are spared.
  • the component according to the invention can additionally comprise one or more discrete passive or active circuit elements.
  • the circuit elements mentioned are arranged on the upper side of the multilayer substrate.
  • the discrete passive or active circuit elements can form at least part of the following circuits: a high-frequency switch, a matching circuit, an antenna switch, a diode switch, a transistor switch, a high-pass filter, a low-pass filter, a band-pass filter, a band-stop filter, a power amplifier, a preamplifier , an LNA, a diplexer, a duplexer, a coupler, a directional coupler, a memory element, a balun, a mixer or an oscillator.
  • the integrated circuit elements can, for example, implement electrical connections between an antenna and the bandpass filters in the receive or transmit path of a component according to the invention constructed as a duplexer and also serve to improve electrical filter properties in general and in particular to isolate the receive and transmit ports from one another.
  • the integrated circuit elements are preferably arranged in a multilayer ceramic, for example one
  • LTTC ceramic low temperature cofired ceramics
  • the multilayer substrate has both internal electrical connections on the upper side for contacting the at least one chip component and possibly with the at least one discrete circuit element and external electrodes on the underside for establishing an electrical connection of the component with an external printed circuit board, for example that of a terminal.
  • FIG. 1 shows the basic structure of a component according to the invention in a schematic cross section (FIG. 1 a) and a view of a component according to the invention from above (FIG. 1 b)
  • FIG. 2 shows an advantageous embodiment of a component according to the invention with an integrated coil and with an integrated capacitor
  • the component shown in FIG. 1 a is constructed as a multilayer component with a multilayer substrate MS, at least one chip component CB being arranged on the upper side of the multilayer substrate.
  • the chip component can either be a “bare” chip with electronic structures or a chip with a housing GE. It is possible that the chip component also contains a multilayer substrate with integrated passive or active circuit elements.
  • a passive or active circuit element is understood to mean in particular an inductance, a capacitance, a delay line, a resistor, a diode or a transistor.
  • a discreet passive or Active circuit element can also include any combination of the above-mentioned passive or active components in a compact component.
  • the chip component embodied as a “bare” chip can be attached to the multilayer substrate by means of bond wire or flip chip technology or can be electrically connected to circuit elements integrated therein.
  • the chip component can be a chip with one or more filter circuits (filter chip), for example SAW components such as SAW filters, BAW filters, LC chip filters, stripline filters or microwave ceramic filters.
  • filter chip for example SAW components such as SAW filters, BAW filters, LC chip filters, stripline filters or microwave ceramic filters.
  • the at least one chip component CB is electrically connected to an impedance converter IW integrated in the multilayer substrate MS.
  • the multilayer substrate can also contain at least one further integrated circuit element. Another possibility is that several last-mentioned integrated circuit elements form part of the following circuits: a high-frequency switch, a matching circuit, an antenna switch, a diode switch, one
  • Transistor switch a high-pass filter, a low-pass filter, a bandpass filter, a bandstop filter, a power amplifier, an LNA, a preamplifier, a diplexer, a duplexer, a coupler, a directional coupler, a memory element, a balun, a mixer or an oscillator.
  • the integrated circuit elements are preferably designed in a manner known per se as conductor tracks or any metal surfaces in, on or between the individual layers of the multilayer substrate (substrate layers), as vertical plated-through holes DK in the multilayer substrate or as a combination of these elements. It is possible that some of the integrated visual elements - eg. B. at least part of a matching circuit - on the top of the multi-layer substrate for later fine adjustment, for example by partially removing the existing conductor tracks or by adding discrete circuit elements, is formed.
  • a plurality of chip components arranged on the upper side of the multilayer substrate can either have a common impedance converter or a common matching circuit or individual impedance converters or individual matching circuits.
  • the multilayer substrate can contain, for example, layers of ceramic, silicon, oxides (eg silicon oxide) or organic materials.
  • the outer electrodes AE1 of the component according to the invention on the underside of the flour layer substrate can represent SMD contacts.
  • At least one discrete passive or active circuit element SE can be seen in FIG. 1a on the upper side of the multilayer substrate MS.
  • FIG. 1b shows the top view of a component according to the invention with two chip components CB1 and CB2 and three discrete circuit elements SEI, SE2 and SE3.
  • the discrete circuit elements have electrodes EL.
  • a component according to the invention can have one or more signal inputs or outputs, each signal input or signal output can be symmetrical or asymmetrical per se.
  • a coil and / or a capacitor between the two symmetrical signal lines may be added as further basic elements.
  • a housed chi component for example a SAW chip, hereinafter referred to as SAW filter
  • SAW filter is placed on the surface of a multilayer substrate (for example an LTCC or HTCC
  • the impedance converter consists of a series inductance, which is connected to the output of the chip component or the SAW filter and connects this to an outer electrode on the underside of the multilayer substrate.
  • the outer electrode is used to solder the entire component onto a circuit board.
  • the series inductance is realized by structured conductor tracks or conductor track sections LA (as indicated in FIG. 2), which lie below an electrical contact suitable for soldering the chip component or the SAW filter (outer electrode of the chip component).
  • the conductor tracks are separated from one another by dielectric layers of the multilayer substrate.
  • the chip component or the SAW filter is preferably arranged so that its output electrode is located directly above the outer electrode AE1 on the underside of the multilayer substrate.
  • the coil winding is preferably arranged under the chip component in such a way that it does not lie directly below active filter structures of the chip component, since otherwise undesirable electromagnetic couplings arise which affect the electrical component properties affect.
  • Other integrated components of the impedance converter in particular in the upper For this reason, most layers of the multilayer substrate should, if possible, be arranged under the external contacts of the chip component and not under active structures of the chip component.
  • a ground shield GS located in the lowermost layer of the multilayer substrate forms a capacitance to the turns of the series inductance above it, which represents an integrated coil. This induces mirror currents, which reduce the inductance value of the integrated coil.
  • a relatively large distance e.g. at least 150 ⁇ m with 100 ⁇ m wide conductor tracks
  • the underlying circuit comprises a series inductance (coil) connected to the output of the chip component and a capacitor to ground.
  • the capacitor to ground is formed as follows: a line is branched off at the connection of the coil on the side of the chip component, this line being largely formed with through contacts DK1, so that this line runs vertically downward in the multilayer substrate and on End meets a metal plate MP, which z. B. is separated from the ground shield layer GS by only one dielectric layer and forms a capacitor with the latter.
  • the element designated by reference symbol K is used here only for explanation.
  • the chip component has a symmetrical output.
  • the two contacts of the symmetrical output are preferably directly or symmetrically above the corresponding outer electrodes on the underside of the multilayer substrate.
  • the integrated coils e.g. B. series coils, which Are part of the integrated impedance converter, can be wound symmetrically or symmetrically in terms of displacement in the multilayer substrate.
  • a capacitance realized in the multilayer substrate is connected between the two contacts of the symmetrical output of the chip component.
  • the contacts mentioned are connected to parallel metal plates arranged in lower layers by means of plated-through holes.
  • an integrated impedance converter can contain a coil connected to ground.
  • One end of the coil is on the one hand to a ground shield surface, the z. B. is arranged in one of the lower layers of the multi-layer substrate, and on the other hand connected to an outer electrode of the chip component by means of a plated-through hole.

Abstract

Die Erfindung gibt ein hochintegriertes elektronisches Bau-element an, das aus zumindest einem Chip-Bauelement (CB), insbesondere einem mit akustischen Wellen arbeitenden Filter, und aus einem Mehrlagensubstrat (MS) besteht, wobei das Mehr-lagensubstrat integrierte Schaltungselemente zur Impedanz-transformation (IW) und weitere integrierte Schaltungselemen-te umfaßt und als Trägersubstrat für Chip-Bauelemente und auf dessen Oberseite angeordnete diskrete Schaltungselemente (SE) dient. Das erfindungsgemäße Bauelement erlaubt es, mehrere Signalverarbeitungs-Funktionen in einem kompakten Bauteil zu realisieren, wobei insbesondere die Impedanz eines auf dem Mehrlagensubstrat angeordneten Chip-Bauelements von einem charakteristischen auf einen anderen vorgegebenen Wert geän-dert werden soll.

Description

Beschreibung
Elektronisches Bauelement mit einem Mehrlagensubstrat und Herstellungsverfahren
Die Erfindung betrifft ein elektronisches Bauelement oder Modul mit einem Chip-Bauelement, insbesondere einem Filter, und einem Mehrlagensubstrat sowie ein Verfahren zur Montage des Chi -Bauelements auf dem Mehrlagensubstrat.
Ein elektronisches Modul ist ein hochintegriertes Bauelement, das eine oder mehrere in einem Vielschichtsubstrat monolithisch integrierte Schaltungen umfaßt und verschiedene Funktionalitäten, beispielsweise im Endgerät eines mobilen Kommunikationssystems, erfüllt.
Ein elektronisches Modul kann z. B. die Funktion eines Antennenschalters, eines Duplexers, eines Diplexers, eines Kopplers usw. realisieren.
Ein Modul kann außer den integrierten Schaltungen ein oder mehrere Chip-Bauelemente sowie diskrete Schaltungs- bzw. Bauelemente enthalten, welche auf der Oberseite des Viel- schichtsubstrats mit den integrierten Schaltungselementen an- geordnet sind.
Häufig ist es notwendig, ein symmetrisches Signal an der Ausgangsseite eines Chip-Bauelements zu erhalten. Hierzu kann entweder ein Balun direkt in die Struktur des Chip- Bauelements integriert werden, oder es kann ein Chip- Bauelement mit unsymmetrischen Ein- bzw. Ausgängen mit einem nachgeschalteten Balun aus diskreten Einzelelementen verwendet werden. Ein solcher Balun kann als kompakter Einzelbaustein ausgeführt werden.
Um einen höheren Integrationsgrad zu erreichen, ist es möglich, das Chip-Bauelement mit vor- und nachgeschalteten Funk- tionsblöcken auf einem gemeinsamen dielektrischen Substrat anzuordnen. Auf diese Weise erhält man z. B. Frontendmodule für zeitgeduplexte Systeme wie GSM900/1800/1900, wenn SAW- Filter (SAW = Surface Acoustic Wave) gemeinsam mit den Schal- tungselementen eines Antennenschalters auf einem mehrlagigen Keramiksubstrat angeordnet werden. Die Schaltungselemente des Antennenschalters können dabei teilweise im Vielschichtsub- strat integriert sein.
Zur optimalen Signalübertragung im Bereich des Paßbandes ist es notwendig, daß die Ausgangsimpedanz eines Chip-Bauelements an die Eingangsimpedanz der nachfolgenden Stufe bzw. daß die Eingangsimpedanz eines Chi -Bauelements an die Ausgangsimpedanz der vorgeschalteten Stufe perfekt angepaßt ist. Zur An- passung an ihre Schaltungsumgebung benötigen die Chip- Bauelemente also ein elektrisches Anpaßnetzwerk. Ein solches kann Induktivitäten, Kapazitäten und Verzögerungsleitungen umfassen und dient im wesentlichen dazu, die Impedanz eines Bauelements der äußeren Umgebung anzupassen. Es ist bekannt, daß ein Anpaßnetzwerk mit diskreten Einzelkomponenten ausgeführt werden kann, wobei das Chip-Bauelement zusammen mit den diskreten Einzelkomponenten auf einer Leiterplatte aufgelötet wird.
Es ist bekannt, daß ein SAW-Bauelement mit einem mehrschichtigen Trägersubstrat (z. B. aus Keramik), welches integrierte Anpaßelemente umfaßt, mittels Flip-Chip-Anordnung oder mittels Drahtbonden befestigt und elektrisch verbunden sein kann, siehe z. B. Druckschrift US 5,459,368. Neben einem oder mehreren SAW-Chips können dabei weitere passive oder aktive diskrete Schaltungselemente auf der Oberseite des Trägersubstrats angeordnet sein. Die Herstellung von solchen Bauteilen ist jedoch aufwendig und kostspielig, da SAW-Chips bzw. genannte Schaltungselemente mit unterschiedlichen Verbindungs- techniken mit dem Trägersubstrat elektrisch verbunden werden. Wenn ein Chip-Bauelement z. B. in einem Empfangszweig vor einem oder zwischen zwei LNAs (low noise amplifier) geschaltet ist, so liegen die auftretenden Terminal-Impedanzwerte in der Regel zwischen 50 und 200 Ohm. Wenn die Impedanzen der vor- und nachgeschalteten Stufen bekannt sind, besteht prinzipiell die Möglichkeit, das Chip-Bauelement so zu realisieren, daß seine Ein- bzw. Ausgangsimpedanzen den erforderlichen Werten entsprechen. Bei bisher bekannten Chip-Bauelementen mußte man für jede Anwendung mit der vorgegebenen Ein- bzw. Ausgangsim- pedanz (z. B. 25, 50, 200 Ohm) das gesamte Bauteil komplett neu entwickeln.
Der Bereich verfügbarer Terminal -Impedanzen bei Bauelementen ist jedoch oft (insbesondere bei SAW-Bauelementen) eingeschränkt .
Man kann außerdem externe, mit diskreten Einzelkomponenten ausgeführte Impedanzwandler heranziehen. Im letzteren Fall ergibt sich erhöhter Platzbedarf. Zusätzlich leidet die Zuverlässigkeit der Gesamtkonstruktion aufgrund der notwendigen Verbindungsstellen.
Aufgabe der vorliegenden Erfindung ist es, ein hochintegriertes Bauelement anzugeben, welches ein Chip-Bauelement, ein mit ihm elektrisch verbundenes Mehrlagensubstrat und einen Impedanzwandler umfaßt.
Diese Aufgabe wird erfindungsgemäß durch ein Bauelement mit den Merkmalen von Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung gehen aus weiteren Ansprüchen hervor.
Die Erfindung gibt ein elektronisches Bauelement an, welches a) ein Mehrlagensubstrat, b) zumindest ein Chi -Bauelement mit Außenkontakten und c) zumindest einen im Mehrlagensubstrat (monolitisch) integrierten Impedanzwandler umfaßt. Das zumindest eine Chip-Bauelement ist dabei auf der Oberseite des Mehrlagensubstrats angeordnet und mit dem integrierten Impedanzwandler elektrisch verbunden.
Unter einem Chip-Bauelement versteht man einen „nackten" Chip mit elektronischen Strukturen oder einen eingehäusten Chip mit solchen Strukturen.
Unter einem Impedanzwandler versteht man im Sinne der Erfindung eine elektronische Schaltung, welche eine Impedanztransformation erfüllt, d. h. welche einen für ein Chip-Bauelement bzw. für alle Chip-Bauelemente gleicher Art charakteristische Ist-Impedanzwerte auf einen vorgegebenen Soll-Wert ändert. Es handelt sich dabei nicht nur um erhebliche Unterschiede zwischen den Ist- und Soll-Impedanzwerten (z. B. um eine Impedanzvervielfachung von 50 auf 200 Ohm) , sondern auch um rela- tiv kleine Unterschiede von weniger als 100 %, aber mindestens 5 % zwischen den Ist- und Soll-Impedanzwerten (z. B. um eine Impedanzänderung von 46 auf 50 Ohm) . Dagegen wird in der vorliegenden Anmeldung unter einer Anpassung bzw. Impedanzanpassung eine gewünschte Impedanz nderung um maximal 5 % ver- standen, z. B. um eine fertigungsbedingte Fehlanpassung auszugleichen.
Ein Vorteil des erfindungsgemäßen Bauelements besteht darin, daß der zu einer Impedanztransformation erforderliche Impe- danzwandler im Gegensatz zu bekannten Lösungen nicht auf einer Leiterplatte angeordnet, sondern im Mehrlagensubstrat integriert ist, wobei dasselbe Mehrlagensubstrat ein Chip- Bauelement trägt . Der gesamte Flächenbedarf ist bei dieser Anordnung besonders gering, da die Integration in vertikaler Richtung stattfindet. Ein kompakter das Mehrlagensubstrat mit dem integrierten Impedanzwandler umfassender Block gewährleistet die erforderliche Impedanztransformation und kann standardmäßig vorgefertigt werden. Dieser Block kann die charakteristische Ist-Impedanz von standardmäßig herzustellenden Chip-Bauelementen einfach und schnell auf einen anderen erforderlichen Ausgangs-Impedanzwert transformieren. Dadurch wird die Neuentwicklung des gesamten Chip-Bauelements und die damit verbundenen Zeit- und Kostenverluste erspart.
In einer vorteilhaften Ausführungsform kann das erfindungsge- mäße Bauelement zusätzlich ein oder mehrere diskrete passive oder aktive Schaltungselemente umfassen. Dabei sind die genannten Schaltungselemente auf der Oberseite des Mehrlagensubstrats angeordnet.
Die diskreten passiven oder aktiven Schaltungselemente können zumindest einen Teil folgender Schaltungen bilden: eines Hochfrequenz-Schalters, einer Anpaßschaltung, eines Antennenschalters, eines Diodenschalters, eines Transistorschalters, eines Hochpaßfilters, eines Tiefpaßfilters, eines Bandpaßfil- ters, eines Bandsperrfilters, eines Leistungsverstärkers, eines Vorverstärkers, eines LNAs, eines Diplexers, eines Duple- xers, eines Kopplers, eines Richtungskopplers, eines Speicherelements, eines Baluns, eines Mischers oder eines Oszillators .
Die integrierten Schaltungselemente können beispielsweise elektrische Verbindungen zwischen einer Antenne und den Bandpaßfiltern im Empfangs- bzw. Sendepfad eines als Duplexer aufgebauten erfindungsgemäßen Bauelements realisieren und zu- sätzlich der Verbesserung elektrischer Filtereigenschaften allgemein und insbesondere der Isolation von Empfangs- und Sendeports gegeneinander dienen.
Die integrierten Schaltungselemente sind vorzugsweise in ei- ner mehrlagigen Keramik angeordnet, beispielsweise einer
LTTC-Keramik (= low temperature cofired ceramics) . Eine solche Keramik in LTTC-Ausführung erlaubt eine hohe Integrationsdichte von Netzwerkelementen. Alternativ dazu kann ein Mehrlagensubstrat Lagen aus HTCC (= high temperature cofired ceramics), Silizum und anderen Halbleitern (z. B. GaAs, SiGe, Siliziumoxid, andere Oxide) oder organischen Materialien (z. B. Laminate, Kunststoff) umfassen. Das Mehrlagensubstrat weist sowohl interne elektrische Anschlüsse auf der Oberseite zum Kontaktieren mit dem zumindest einen Chip-Bauelement und ggf. mit dem zumindest einen dis- kreten Schaltungselement als auch Außenelektroden auf der Unterseite zur Herstellung einer elektrischen Verbindung des Bauelements mit einer externen Leiterplatte, beispielsweise derjenigen eines Endgeräts, auf.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen und den dazugehörigen Figuren näher erläutert . Die Figuren dienen dabei nur der Erläuterung und sind nicht maßstabsgetreu. Gleiche Elemente sind mit gleichen Bezugszeichen bezeichnet.
Figur 1 zeigt den prinzipiellen Aufbau eines erfindungsgemäßen Bauelements im schematischen Querschnitt (Figur la) und eine Ansicht eines erfindungsgemäßen Bauelements von oben (Figur lb)
Figur 2 zeigt eine vorteilhafte Ausführungsform eines erfindungsgemäßen Bauteils mit einer integrierten Spule und mit einem integrierten Kondensator
Das in Figur la dargestellte Bauelement ist als Mehrschichtbauelement mit einem Mehrlagensubstrat MS aufgebaut, wobei auf der Oberseite des Mehrlagensubstrats zumindest ein Chip- Bauelement CB angeordnet ist. Das Chip-Bauelement kann entweder ein „nackter" Chip mit elektronischen Strukturen oder ein Chip mit einem Gehäuse GE sein. Es ist möglich, daß das Chip- Bauelement außerdem ein Vielschichtsubstrat mit integrierten passiven oder aktiven Schaltungselementen enthält.
Unter einem passiven oder aktiven Schaltungselement versteht man im Sinne der Erfindung insbesondere eine Induktivität, eine Kapazität, eine Verzögerungsleitung, einen Widerstand, eine Diode oder einen Transistor. Ein diskretes passives oder aktives Schaltungselement kann hier darüber hinaus eine beliebige Kombination der oben genannten passiven oder aktiven Bauelemente in einem kompakten Bauteil umfassen.
Das als „nackter" Chip ausgebildete Chip-Bauelement kann mittels Bonddraht- oder Flip-Chip-Technik auf dem Mehrlagensubstrat befestigt bzw. mit darin integrierten Schaltungselementen elektrisch verbunden sein. Die Außenkontakte AE eines Chip-Bauelements können außerdem SMD-Kontakte (SMD = Surface Mounted Design/Device) sein.
Das Chip-Bauelement kann einen oder mehrere mit akustischen Oberflächen- bzw. Volumenwellen arbeitende Resonatoren, SAW- bzw. BAW-Resonatoren oder FBAR genannt (SAW = Surface Acou- stic Wave, BAW = Bulk Acoustic Wave, FBAR = Thin Film Bulk Acoustic Wave Resonator) , umfassen.
Das Chip-Bauelement kann ein Chip mit einer oder mehreren Filterschaltungen (Filter-Chip) sein, beispielsweise SAW- Bauelemente wie SAW-Filter, BAW-Filter, LC Chip Filter, Streifenleitungsfilter oder Mikrowellenkeramik-Filter.
Das zumindest eine Chip-Bauelement CB ist mit einem im Mehrlagensubstrat MS integrierten Impedanzwandler IW elektrisch verbunden. Das Mehrlagensubstrat kann außerdem zumindest ein weiteres integriertes Schaltungselement enthalten. Eine weitere Möglichkeit besteht darin, daß mehrere zuletzt genannte integrierte Schaltungselemente einen Teil folgender Schaltungen bilden: eines Hochfrequenz-Schalters, einer Anpaßschal- tung, eines Antennenschalters, eines Diodenschalters, eines
Transistorschalters, eines Hochpaßfilters, eines Tiefpaßfilters, eines Bandpaßfilters, eines Bandsperrfilters, eines Leistungsverstärkers, eines LNAs, eines Vorverstärkers, eines Diplexers, eines Duplexers, eines Kopplers, eines Richtungs- kopplers, eines Speicherelements, eines Baluns, eines Mischers oder eines Oszillators. Dabei sind die integrierten Schaltungselemente vorzugsweise in einer an sich bekannten Weise als Leiterbahnen oder beliebig geformte Metallflächen in, auf oder zwischen den einzelnen Lagen des Mehrlagensubstrats (Substratlagen) , als verti- kale Durchkontaktierungen DK im Mehrlagensubstrat oder als Kombination dieser Elemente ausgebildet. Es ist möglich, daß ein Teil der integrierten Sehaltungsele ente - z. B. zumindest ein Teil einer Anpaßschaltung - auf der Oberseite des Mehrlagensubstrats zur späteren Feinanpassung, beispielsweise durch teilweise Abtragen der vorhandenen Leiterbahnen oder durch nachträgliches Hinzufügen diskreter Schaltungselemente, ausgebildet ist .
Mehrere auf der Oberseite des Mehrlagensubstrats angeordnete Chip-Bauelemente können entweder einen gemeinsamen Impedanzwandler bzw. eine gemeinsame Anpaßschaltung oder individuelle Impedanzwandler bzw. individuelle Anpaßschaltungen haben.
Das Mehrlagensubstrat kann beispielsweise Lagen aus Keramik, Silizium, Oxiden (z. B. Siliziumoxid) oder organischen Materialien enthalten.
Die Außenelektroden AE1 des erfindungsgemäßen Bauelements auf der Unterseite des Mehlagensubstrats können SMD-Kontakte dar- stellen.
Weiterhin ist in Figur la auf der Oberseite des Mehrlagensubstrats MS zumindest ein diskretes passives oder aktives Schaltungselement SE zu sehen.
Figur lb zeigt die Draufsicht auf ein erfindungsgemäßes Bauelement mit zwei Chip-Bauelementen CB1 und CB2 und drei diskreten Schaltungselementen SEI, SE2 und SE3. Die diskreten Schaltungselemente weisen Elektroden EL auf .
Ein erfindungsgemäßes Bauelement kann einen oder mehr Signaleingänge bzw. -ausgänge haben, wobei jeder Signaleingang bzw. Signalausgang für sich symmetrisch oder unsymmetrisch sein kann. Im Falle symmetrischer Signaleingänge bzw. Signal- ausgänge kommen evtl. als weitere Grundelemente eine Spule und/oder ein Kondensator zwischen den beiden symmetrischen Signalleitungen hinzu.
In einer weiteren vorteilhaften Ausführungsform wird ein ge- häustes Chi -Bauelement (beispielsweise ein SAW-Chip, im Weiteren SAW-Filter genannt) auf der Oberfläche eines Mehrlagen- Substrats (beispielsweise einer LTCC- oder HTCC-
Mehrlagenkeramik) mit einem integrierten Impedanzwandler angeordnet . Der Impedanzwandler besteht aus einer Serieninduktivität, welche an den Ausgang des Chip-Bauelements bzw. des SAW-Filters angeschlossen ist und diesen mit einer Außenelek- trode auf der Unterseite des Mehrlagensubstrats verbindet. Die Außenelektrode dient zum Anlöten des Gesamtbauteils auf einer Leiterplatte. Die Serieninduktivität wird durch strukturierte Leiterbahnen bzw. Leiterbahnabschnitte LA (wie in Figur 2 angedeutet) realisiert, welche unterhalb eines zum Anlöten des Chip-Bauelements bzw. des SAW-Filters geeigneten elektrischen Kontakts (Außenelektrode des Chip-Bauelements) liegen. Die Leiterbahnen sind durch dielektrische Lagen des Mehrlagensubstrats voneinander getrennt. Dabei sind die Leiterbahnen der einzelnen in der Figur 2 links angedeuteten Leiterebenen LE mittels Durchkontaktierungen DK so miteinander verbunden, daß sich eine fortlaufende Spulenwindung ergibt. Hierbei wird das Chip-Bauelement bzw. das SAW-Filter vorzugsweise so angeordnet, daß sich dessen Ausgangselektrode direkt über der Außenelektrode AE1 auf der Unterseite des Mehrlagensubstrats befindet. Die Spulenwindung ist bei einem mit akustischen Wellen arbeitenden Chip-Bauelement vorzugsweise so unter dem Chip-Bauelement angeordnet, daß sie nicht direkt unterhalb von aktiven Filterstrukturen des Chip- Bauelements liegt, da andernfalls unerwünschte elektromagne- tische Verkopplungen entstehen, welche die elektrischen Bauteil-Eigenschaften beeinträchtigen. Auch andere integrierte Komponenten des Impedanzwandlers, insbesondere in den ober- sten Lagen des Mehrlagensubstrats, sollten aus diesem Grund nach Möglichkeit unter den Außenkontakten des Chip- Bauelements und nicht unter aktiven Strukturen des Chip- Bauelements angeordnet werden.
Eine in der untersten Lage des Mehrlagensubstrats befindliche Masseabschirmung GS bildet eine Kapazität zu den Windungen der darüberliegenden Serieninduktivität, die eine integrierte Spule darstellt. Dadurch werden Spiegelströme induziert, wel- ehe den Induktivitätswert der integrierten Spule verringern. Durch Einhaltung eines relativ großen Abstands (z. B. mindestens 150 μm bei 100 μm breiten Leiterbahnen) zwischen der Spule und der unteren Schirmlage können größere Induktivi- tätswerte erzielt werden.
In der in Figur 2 dargestellten Ausführungsform des erfindungsgemäßen Bauelements kann dessen Ausgangsimpedanz von einem höheren auf einen niedrigeren Impedanzwert transformiert werden. Die zugrundeliegende Schaltung umfaßt eine an den Ausgang des Chip-Bauelements angeschlossene Serieninduktivität (Spule) und einen Kondensator nach Masse. Der Kondensator nach Masse wird folgendermaßen gebildet : eine Leitung wird am Anschluß der Spule auf der Seite des Chip-Bauelements abgezweigt, wobei diese Leitung zum größten Teil mit Durchkontak- tierungen DKl ausgebildet ist, so daß diese Leitung im Mehrlagensubstrat vertikal nach unten verläuft und am Ende auf eine Metallplatte MP trifft, welche z. B. durch nur eine dielektrische Lage von der Masseschirmlage GS getrennt ist und mit der Letzteren einen Kondensator bildet. Das mit Bezugs- zeichen K bezeichnete Element dient hier nur zur Erläuterung.
Bei einer weiteren vorteilhaften Ausführungsform der Erfindung weist das Chip-Bauelement einen symmetrischen Ausgang auf. Dabei liegen die beiden Kontakte des symmetrischen Aus- gangs vorzugsweise direkt bzw. symmetrisch über den entsprechenden Außenelektroden an der Unterseite des Mehrlagensubstrats. Die integrierten Spulen, z. B. Serienspulen, welche Bestandteil des integrierten Impedanzwandlers sind, können im Mehrlagensubstrat symmetrisch oder verschiebungssymmetrisch gewickelt sein.
Es ist möglich, daß zwischen den beiden Kontakten des symmetrischen Ausgangs des Chip-Bauelements eine im Mehrlagensubstrat realisierte Kapazität geschaltet ist . Dabei werden die genannten Kontake mit in tiefer liegenden Lagen angeordneten parallelen Metallplatten mittels Durchkontaktierungen verbun- den.
In einer weiteren Ausführungsform kann ein integrierter Impedanzwandler eine nach Masse geschaltete Spule enthalten. Dabei wird ein Ende der Spule einerseits an eine Masseschirm- fläche, die z. B. in einer der unteren Lagen des Mehrlagensubstrats angeordnet ist, und andererseits mittels einer Durchkontaktierung an eine Außenelektrode des Chip- Bauelements angeschlossen.
Es besteht die Möglichkeit, daß das zumindest eine auf der
Oberseite des Mehrlagensubstrats angeordnete Chip-Bauelement CB bzw. ein oder mehrere Schaltungselemente SE mit einer Vergußmasse, beispielsweise Globtop, z. B. mit Gießharzen auf Epoxidbasis, mechanisch stabilisiert werden.

Claims

Patentansprüche
1. Elektronisches Bauelement, enthaltend: - ein Mehrlagensubstrat (MS) , - zumindest ein Chip-Bauelement (CB) mit Außenkontakten (AE) , wobei das zumindest eine Chip-Bauelement (CB) auf der Oberseite des Mehrlagensubstrats (MS) angeordnet ist, dadurch gekennzeichnet, daß im Mehrlagensubstrat (MS) zumindest ein integrierter Impe- danzwandler (IW) angeordnet ist, wobei das zumindest eine Chip-Bauelement (CB) mit dem zumindest einen integrierten Impedanzwandler (IW) elektrisch verbunden ist.
2. Bauelement nach Anspruch 1, bei dem die Außenkontakte (AE) des zumindest einen Chip- Bauelements (CB) SMD-Kontakte darstellen.
3. Bauelement nach Anspruch 1 oder 2 , bei dem das Mehrlagensubstrat (MS) neben dem Impedanzwand- 1er zumindest ein weiteres integriertes passives oder aktives Schaltungselement umfaßt.
4. Bauelement nach zumindest einem der Ansprüche 1 bis 3, bei dem das zumindest eine Chip-Bauelement (CB) zumindest eine Filter-Schaltung umfaßt.
5. Bauelement nach zumindest einem der Ansprüche 1 bis 4 , bei dem das zumindest eine Chip-Bauelement (CB) zumindest einen mit akustischen Oberflächenwellen arbeitenden Reso- nator umfaßt.
6. Bauelement nach zumindest einem der Ansprüche 1 bis 5, bei dem das zumindest eine Chip-Bauelement (CB) zumindest einen mit akustischen Volumenwellen arbeitenden Resonator umfaßt.
7. Bauelement nach zumindest einem der Ansprüche 1 bis 6 , bei dem das zumindest eine Chip-Bauelement (CB) ein Mikrowellenkeramik-Filter ist.
8. Bauelement nach zumindest einem der Ansprüche 1 bis 7 , bei dem das zumindest eine Chip-Bauelement (CB) ein LC Chip Filter ist.
9. Bauelement nach zumindest einem der Ansprüche 1 bis 8 , bei dem das zumindest eine Chip-Bauelement (CB) ein Streifenleitungsfilter ist.
10.Bauelement nach zumindest einem der Ansprüche 1 bis 9, bei dem zumindest ein diskretes passives oder aktives Schaltungselement (SE) auf der Oberseite des Mehrlagensubstrats (MS) angeordnet ist.
11.Bauelement nach zumindest einem der Ansprüche 1 bis 10, bei dem das zumindest eine auf der Oberfläche des Mehrla- gensubstrats angeordnete diskrete Schaltungselement (SE) zumindest einen Teil eines Hochfrequenz-Schalters, einer Anpaßschaltung, eines Impedanzwandlers, eines Antennenschalters, eines Diodenschalters, eines Hochpaßfilters, eines Tiefpaßfilters, eines Bandpaßfilters, eines Bandsperrfilters, eines Leistungsverstärkers, eines Diple- xers, eines Duplexers, eines Kopplers, eines Richtungs- kopplers, eines Speicherelements, eines Baluns oder eines Mischers bildet.
12.Bauelement nach zumindest einem der Ansprüche 1 bis 11, bei dem das zumindest eine auf der Oberfläche des Mehrlagensubstrats angeordnete diskrete Schaltungselement (SE) zumindest einen Teil eines Hochfrequenz-Schalters, eines Duplexers oder eines Diplexers bildet, wobei das genannte Schaltungselement das zumindest eine Chip-Bauelement (CB) mit einer Antenne verbindet .
13.Bauelement nach zumindest einem der Ansprüche 1 bis 12, bei dem das zumindest eine im Mehrlagensubstrat (MS) integrierte Schaltungselement zumindest einen Teil eines Hochfrequenz-Schalters, einer Anpaßschaltung, eines Antennen- Schalters, eines Diodenschalters, eines Hochpaßfilters, eines Tiefpaßfilters, eines Bandpaßfilters, eines Bandsperrfilters, eines Leistungsverstärkers, eines Diple- xers, eines Duplexers, eines Kopplers, eines Richtungs- kopplers, eines Speicherelements, eines Baluns oder eines Mischers bildet.
14.Bauelement nach Anspruch 13, bei dem zumindest ein Teil einer im Mehrlagensubstrat integrierten Anpaßschaltung als eine oder mehrere Leiterbah- nen auf der Oberseite des Mehrlagensubstrats zur späteren Feinanpassung ausgebildet ist.
15. Bauelement nach zumindest einem der Ansprüche 1 bis 14, bei dem das Mehrlagensubstrat (MS) mehrere Anpaßschaltun- gen umfaßt.
16.Bauelement nach zumindest einem der Ansprüche 1 bis 15, bei dem das Mehrlagensubstrat (MS) Keramiklagen enthält.
17.Bauelement nach zumindest einem der Ansprüche 1 bis 16, bei dem das Mehrlagensubstrat (MS) Lagen aus Silizium oder Siliziumoxid enthält.
18.Bauelement nach zumindest einem der Ansprüche 1 bis 17, bei dem das Mehrlagensubstrat (MS) Lagen aus einem organischen Material, beispielsweise Kunststoff oder Laminat, enthält .
19.Bauelement nach zumindest einem der Ansprüche 1 bis 18, bei dem zumindest ein Eingang und/oder zumindest ein Ausgang des zumindest einen Chip-Bauelements (CB) zur Führung eines unsymmetrischen Signals dient.
20.Bauelement nach zumindest einem der Ansprüche 1 bis 19, bei dem der zumindest eine Eingang und/oder der zumindest eine Ausgang des zumindest einen Chip-Bauelements (CB) zur Führung eines symmetrischen Signals dient.
21.Bauelement nach zumindest einem der Ansprüche 1 bis 20, bei dem Masseanschlüsse des zumindest einen Chip- Bauelements (CB) mit einer zumindest teilweise im Mehrlagensubstrat integrierten Anpaßschaltung gegen Bezugsmasse des Gesamtbauteils geschaltet sind, wobei die genannte Anpaßschaltung zumindest ein Element, ausgewählt aus einer Spule, einem Kondensator oder einem Leitungsabschnitt, um- faßt.
22.Bauelement nach zumindest einem der Ansprüche 1 bis 21, bei dem sowohl das zumindest eine Chip-Bauelement (CB) als auch das zumindest eine auf der Oberseite des Mehrlagen- Substrats (MS) angeordnete diskrete Sehaltungselement (SE) SMD-Elemente (Surface Mounted Design Elemente) darstellen.
23.Bauelement nach zumindest einem der Ansprüche 1 bis 22, bei dem das zumindest eine Chip-Bauelement (CB) ein Gehäu- se (GE) mit Außenkontakten (AE) umfaßt.
24.Bauelement nach zumindest einem der Ansprüche 1 bis 23, bei dem das zumindest eine Chip-Bauelement (CB) mittels Drahtbonden mit dem Mehrlagensubstrat (MS) verbunden ist.
25. Bauelement nach zumindest einem der Ansprüche 1 bis 23, bei dem das zumindest eine Chip-Bauelemente (CB) mittels Flip-Chip-Technik mit dem Mehrlagensubstrat (MS) verbunden ist .
26.Verfahren zur Herstellung des Bauelements nach zumindest einem der Ansprüche 23 bis 25 mit folgenden Schritten: - Einbau eines Chips in ein Gehäuse (GE) , - Montage des Gehäuses auf ein Mehrlagensubstrat (MS) .
27.Verfahren nach Anspruch 26, wobei das zumindest eine diskrete Schaltungselement (SE) auf die Oberseite des Mehrlagensubstrats (MS) montiert wird.
28.Verfahren nach Anspruch 27, wobei das zumindest eine Chip-Bauelement (CB) und das zumindest eine Schaltungselement (SE) in gleicher Weise auf die Oberseite des Mehrlagensubstrats (MS) befestigt werden.
29.Verfahren nach zumindest einem der Ansprüche 26 bis 28, wobei das zumindest eine auf der Oberseite des Mehrlagen- Substrats angeordnete Chip-Bauelement (CB) bzw. das zumindest eine Schaltungselement (SE) mit einer Vergußmasse mechanisch stabilisiert werden.
PCT/DE2003/001465 2002-06-25 2003-05-07 Elektronisches bauelement mit einem mehrlagensubstrat und herstellungsverfahren WO2004001963A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004514540A JP4778228B2 (ja) 2002-06-25 2003-05-07 多層基板を備えた電子部品
US10/521,253 US7795728B2 (en) 2002-06-25 2003-05-07 Electronic component
KR1020047021118A KR100954030B1 (ko) 2002-06-25 2003-05-07 다층 기판을 갖는 전자 소자 및 그 제조 방법
CN038149338A CN1663120B (zh) 2002-06-25 2003-05-07 具有一个多层衬底的电子组件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10228328.1 2002-06-25
DE10228328A DE10228328A1 (de) 2002-06-25 2002-06-25 Elektronisches Bauelement mit einem Mehrlagensubstrat und Herstellungsverfahren

Publications (1)

Publication Number Publication Date
WO2004001963A1 true WO2004001963A1 (de) 2003-12-31

Family

ID=29761391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001465 WO2004001963A1 (de) 2002-06-25 2003-05-07 Elektronisches bauelement mit einem mehrlagensubstrat und herstellungsverfahren

Country Status (6)

Country Link
US (1) US7795728B2 (de)
JP (1) JP4778228B2 (de)
KR (1) KR100954030B1 (de)
CN (1) CN1663120B (de)
DE (1) DE10228328A1 (de)
WO (1) WO2004001963A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165049A (ja) * 2004-12-02 2006-06-22 Murata Mfg Co Ltd 電子部品装置
DE102006022580A1 (de) * 2006-05-15 2007-11-22 Epcos Ag Elektrisches Bauelement
WO2011009868A1 (de) * 2009-07-21 2011-01-27 Epcos Ag Filterschaltung mit verbesserter filtercharakteristik

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4343082B2 (ja) * 2003-12-25 2009-10-14 アルプス電気株式会社 電子回路ユニット、及びその製造方法
DE102004003884A1 (de) * 2004-01-26 2005-08-11 Epcos Ag Chip-Bauelement mit Resonatoren und Verwendung dafür
DE102004031397A1 (de) * 2004-06-29 2006-01-26 Epcos Ag Duplexer
DE102004032928B4 (de) * 2004-07-07 2013-03-07 Epcos Ag RF-Modul mit verbesserter Integration
DE102004058064A1 (de) * 2004-12-01 2006-06-08 Siemens Ag Biochemisches Halbleiterchiplabor mit angekoppeltem Adressier- und Steuerchip und Verfahren zur Herstellung desselben
JP2007128939A (ja) 2005-11-01 2007-05-24 Taiyo Yuden Co Ltd 高周波モジュール
CN1972561A (zh) * 2005-11-23 2007-05-30 鸿富锦精密工业(深圳)有限公司 印刷电路板
US7327030B2 (en) * 2005-12-16 2008-02-05 Atmel Corporation Apparatus and method incorporating discrete passive components in an electronic package
DE102007019082B4 (de) * 2007-04-23 2018-04-05 Snaptrack Inc. Frontendmodul
DE102007020288B4 (de) * 2007-04-30 2013-12-12 Epcos Ag Elektrisches Bauelement
KR100862886B1 (ko) 2007-05-25 2008-10-13 전자부품연구원 다이플렉서
KR101393771B1 (ko) * 2007-06-28 2014-05-13 엘지이노텍 주식회사 프론트 앤드 모듈 및 그 제조 방법
US7956713B2 (en) * 2007-09-25 2011-06-07 Intel Corporation Forming a helical inductor
JP4438864B2 (ja) * 2007-12-28 2010-03-24 株式会社村田製作所 基板及びこれを備えた電子装置
KR101018785B1 (ko) * 2008-11-28 2011-03-03 삼성전기주식회사 전자기 밴드갭 구조물 및 회로 기판
DE102009012516B4 (de) * 2009-03-10 2011-02-10 Epcos Ag Mehrlagensubstrat für hochintegriertes Modul
KR101215303B1 (ko) * 2009-07-21 2012-12-26 한국전자통신연구원 엘티씨씨 인덕터를 포함하는 전자 장치
JP5170174B2 (ja) * 2010-06-28 2013-03-27 株式会社村田製作所 モジュール
KR101059485B1 (ko) 2010-08-12 2011-08-25 연세대학교 산학협력단 동위상 전력 분배기
DE102010034914A1 (de) * 2010-08-20 2012-02-23 Epcos Ag Duplexer mit Balun
WO2012101858A1 (ja) * 2011-01-25 2012-08-02 株式会社村田製作所 Dc-dcコンバータモジュールおよび多層基板
CN103636124B (zh) 2011-07-08 2017-02-22 株式会社村田制作所 电路模块
US9058455B2 (en) 2012-01-20 2015-06-16 International Business Machines Corporation Backside integration of RF filters for RF front end modules and design structure
DE102012207833A1 (de) * 2012-05-10 2013-11-14 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bildung einer Spule in einer Leiterplatte
US9246467B2 (en) * 2012-05-31 2016-01-26 Texas Instruments Incorporated Integrated resonator with a mass bias
CN103078157B (zh) * 2013-01-16 2016-03-30 天津大学 一种压电声波双工器模块
US20150223323A1 (en) * 2014-02-05 2015-08-06 Colin Patrick O'Flynn Footprint for Prototyping High Frequency Printed Circuit Boards
WO2015162656A1 (ja) * 2014-04-21 2015-10-29 株式会社日立製作所 多層プリント基板
WO2019065027A1 (ja) * 2017-09-29 2019-04-04 株式会社村田製作所 ハイブリッドフィルタ装置およびマルチプレクサ
DE102017130924B3 (de) * 2017-12-21 2019-05-16 RF360 Europe GmbH Hybridfilter
KR102454368B1 (ko) * 2018-01-22 2022-10-14 삼성전자주식회사 메모리 패키지 및 반도체 패키지
DE102018105091A1 (de) * 2018-03-06 2019-09-12 RF360 Europe GmbH HF-Filter, HF-Filterkomponente und Verfahren zur Herstellung eines HF-Filters
KR102084066B1 (ko) * 2018-06-12 2020-03-04 주식회사 모다이노칩 적층형 소자
US10573803B1 (en) * 2018-08-21 2020-02-25 Semiconductor Components Industries, Llc Current sensor packages with through hole in semiconductor
JP7252770B2 (ja) * 2019-02-01 2023-04-05 太陽誘電株式会社 高周波デバイスおよびマルチプレクサ
WO2020239221A1 (en) * 2019-05-29 2020-12-03 Huawei Technologies Co., Ltd. Integrated component and porwer switching device
CN110602866B (zh) * 2019-08-01 2021-03-09 苏州浪潮智能科技有限公司 一种减少远端参考电源噪声影响信号质量的方法和系统
CN111669129B (zh) * 2020-06-05 2023-06-20 中国电子科技集团公司第十三研究所 放大器芯片
WO2022199522A1 (zh) * 2021-03-23 2022-09-29 偲百创(深圳)科技有限公司 射频滤波器及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637871A1 (de) * 1993-08-06 1995-02-08 Matsushita Electric Industrial Co., Ltd. Schaltungsbaustein mit akustischer Oberflächenwellenanordnung
US6154940A (en) * 1996-03-08 2000-12-05 Matsushita Electric Industrial Co., Ltd. Electronic part and a method of production thereof
US20020011907A1 (en) * 2000-06-27 2002-01-31 Toru Yamada Multilayer ceramic device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600907A (en) * 1985-03-07 1986-07-15 Tektronix, Inc. Coplanar microstrap waveguide interconnector and method of interconnection
US4912547A (en) * 1989-01-30 1990-03-27 International Business Machines Corporation Tape bonded semiconductor device
KR920702545A (ko) * 1990-06-26 1992-09-04 아이자와 스스무 반도체 장치 및 그 제조 방법
JPH05183273A (ja) 1990-09-07 1993-07-23 Hitachi Ltd 多層配線基板装置とその製造方法ならびにそれを用いた電子装置
US5818699A (en) * 1995-07-05 1998-10-06 Kabushiki Kaisha Toshiba Multi-chip module and production method thereof
JP2817717B2 (ja) * 1996-07-25 1998-10-30 日本電気株式会社 半導体装置およびその製造方法
JP2877132B2 (ja) * 1997-03-26 1999-03-31 日本電気株式会社 多層プリント基板とその製造方法
JP2917964B2 (ja) * 1997-05-02 1999-07-12 日本電気株式会社 半導体装置構造及びその製造方法
TW347936U (en) * 1997-11-28 1998-12-11 Delta Electronics Inc Apparatus for oscillator
US6081171A (en) * 1998-04-08 2000-06-27 Nokia Mobile Phones Limited Monolithic filters utilizing thin film bulk acoustic wave devices and minimum passive components for controlling the shape and width of a passband response
US6274937B1 (en) * 1999-02-01 2001-08-14 Micron Technology, Inc. Silicon multi-chip module packaging with integrated passive components and method of making
US6218729B1 (en) * 1999-03-11 2001-04-17 Atmel Corporation Apparatus and method for an integrated circuit having high Q reactive components
JP3527164B2 (ja) 2000-03-01 2004-05-17 三菱電機株式会社 高周波回路基板
JP2002111218A (ja) * 2000-06-27 2002-04-12 Matsushita Electric Ind Co Ltd セラミック積層デバイス
US6407929B1 (en) * 2000-06-29 2002-06-18 Intel Corporation Electronic package having embedded capacitors and method of fabrication therefor
US6356453B1 (en) * 2000-06-29 2002-03-12 Amkor Technology, Inc. Electronic package having flip chip integrated circuit and passive chip component
US6970362B1 (en) * 2000-07-31 2005-11-29 Intel Corporation Electronic assemblies and systems comprising interposer with embedded capacitors
JP4049239B2 (ja) 2000-08-30 2008-02-20 Tdk株式会社 表面弾性波素子を含む高周波モジュール部品の製造方法
US6388207B1 (en) * 2000-12-29 2002-05-14 Intel Corporation Electronic assembly with trench structures and methods of manufacture
TW511415B (en) * 2001-01-19 2002-11-21 Matsushita Electric Ind Co Ltd Component built-in module and its manufacturing method
JP2002252297A (ja) * 2001-02-23 2002-09-06 Hitachi Ltd 多層回路基板を用いた電子回路装置
US6713860B2 (en) * 2002-02-01 2004-03-30 Intel Corporation Electronic assembly and system with vertically connected capacitors
JP4318417B2 (ja) * 2001-10-05 2009-08-26 ソニー株式会社 高周波モジュール基板装置
US6765298B2 (en) * 2001-12-08 2004-07-20 National Semiconductor Corporation Substrate pads with reduced impedance mismatch and methods to fabricate substrate pads
US7190083B1 (en) * 2002-01-07 2007-03-13 Vixs Systems, Inc. High frequency integrated circuit using capacitive bonding
US6642811B2 (en) * 2002-01-30 2003-11-04 International Business Machines Corporation Built-in power supply filter for an integrated circuit
US6673697B2 (en) * 2002-04-03 2004-01-06 Intel Corporation Packaging microelectromechanical structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0637871A1 (de) * 1993-08-06 1995-02-08 Matsushita Electric Industrial Co., Ltd. Schaltungsbaustein mit akustischer Oberflächenwellenanordnung
US6154940A (en) * 1996-03-08 2000-12-05 Matsushita Electric Industrial Co., Ltd. Electronic part and a method of production thereof
US20020011907A1 (en) * 2000-06-27 2002-01-31 Toru Yamada Multilayer ceramic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006165049A (ja) * 2004-12-02 2006-06-22 Murata Mfg Co Ltd 電子部品装置
JP4720162B2 (ja) * 2004-12-02 2011-07-13 株式会社村田製作所 電子部品装置
DE102006022580A1 (de) * 2006-05-15 2007-11-22 Epcos Ag Elektrisches Bauelement
US7821358B2 (en) 2006-05-15 2010-10-26 Epcos Ag Electrical component
DE102006022580B4 (de) * 2006-05-15 2014-10-09 Epcos Ag Elektrisches Bauelement
WO2011009868A1 (de) * 2009-07-21 2011-01-27 Epcos Ag Filterschaltung mit verbesserter filtercharakteristik
US9019045B2 (en) 2009-07-21 2015-04-28 Epcos Ag Filter circuit having improved filter characteristic

Also Published As

Publication number Publication date
US7795728B2 (en) 2010-09-14
US20050230812A1 (en) 2005-10-20
KR100954030B1 (ko) 2010-04-20
KR20050013159A (ko) 2005-02-02
CN1663120B (zh) 2011-06-22
JP2005531138A (ja) 2005-10-13
JP4778228B2 (ja) 2011-09-21
DE10228328A1 (de) 2004-01-22
CN1663120A (zh) 2005-08-31

Similar Documents

Publication Publication Date Title
WO2004001963A1 (de) Elektronisches bauelement mit einem mehrlagensubstrat und herstellungsverfahren
DE10225202B4 (de) Mit akustischen Wellen arbeitendes Bauelement mit einem Anpassnetzwerk
DE60313409T2 (de) Akustisches Bandsperrenfilter
DE60219712T2 (de) Herstellung von integrierten abstimmbaren/umschaltbaren passiven Mikro- und Millimeterwellenmodulen
EP1683275B1 (de) Schaltung mit verringerter einfügedämpfung und bauelement mit der schaltung
DE602005002547T2 (de) Passive signalverarbeitungskomponenten auf flüssigkristallpolymer- und mehrschichtpolymerbasis für hf-/drahtlos-mehrband-anwendungen
DE10024956C2 (de) Antennenduplexer
DE10115719B4 (de) Sende-Empfangs-Umschalt-Anordnung
DE10248493A1 (de) Verzweigungsfilter und Kommunikationsvorrichtung
WO2007036221A1 (de) Multiband-schaltung
WO2006002720A1 (de) Duplexer
DE102014102518B4 (de) Package für ein abstimmbares Filter
WO2014032883A1 (de) Duplexer
DE102004037818B4 (de) Filteranordnung mit zwei Volumenwellenresonatoren
DE102004016399A1 (de) Hochfrequenzmodul und Funkvorrichtung
EP2891244A1 (de) Multiplexer mit verringerten intermodulationsprodukten
DE102005003834A1 (de) Film-Bulk-Acoustic-Resonator-Filter mit unbalancierter-balancierter Eingabe-Ausgabe-Struktur
EP0947030B1 (de) Mikrowellenfilter
DE10321247B4 (de) Verlustarmes Sendemodul
DE102006017072A1 (de) Filter und Duplexer
DE202021101905U1 (de) Hochfrequenzmodul und Kommunikationsgerät
DE10225201A1 (de) Abstimmbares Filter und Verfahren zur Frequenzabstimmung
DE102004032928B4 (de) RF-Modul mit verbesserter Integration
DE102004040967B4 (de) Schaltung mit hoher Isolation zwischen Sende- und Empfangspfad und Bauelement mit der Schaltung
DE202021101986U1 (de) Hochfrequenzmodul und Kommunikationsgerät

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

WWE Wipo information: entry into national phase

Ref document number: 2004514540

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038149338

Country of ref document: CN

Ref document number: 1020047021118

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047021118

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10521253

Country of ref document: US