WO2003092847A2 - Water desalinization process and apparatus - Google Patents

Water desalinization process and apparatus Download PDF

Info

Publication number
WO2003092847A2
WO2003092847A2 PCT/US2003/013712 US0313712W WO03092847A2 WO 2003092847 A2 WO2003092847 A2 WO 2003092847A2 US 0313712 W US0313712 W US 0313712W WO 03092847 A2 WO03092847 A2 WO 03092847A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
air
designed
chamber
chambers
Prior art date
Application number
PCT/US2003/013712
Other languages
French (fr)
Other versions
WO2003092847A3 (en
Inventor
Jeffrey Ciudaj
Original Assignee
Desal, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Desal, Llc filed Critical Desal, Llc
Priority to NZ536005A priority Critical patent/NZ536005A/en
Priority to AU2003231258A priority patent/AU2003231258B2/en
Priority to JP2004501024A priority patent/JP2005524517A/en
Priority to MXPA04010729A priority patent/MXPA04010729A/en
Priority to EP03724394A priority patent/EP1499408A4/en
Publication of WO2003092847A2 publication Critical patent/WO2003092847A2/en
Publication of WO2003092847A3 publication Critical patent/WO2003092847A3/en
Priority to IL164873A priority patent/IL164873A/en
Priority to US10/977,408 priority patent/US7527711B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/34Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances
    • B01D3/343Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas
    • B01D3/346Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping with one or more auxiliary substances the substance being a gas the gas being used for removing vapours, e.g. transport gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0033Other features
    • B01D5/0036Multiple-effect condensation; Fractional condensation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/141Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the invention relates to a water desalinization process and device.
  • FIG. 1 is cross sectional view of the invention.
  • FIG. 2 is a top view of the blackened surface, wind walls and bottom shaft portion opening.
  • FIG. 3 is a perspective view of the blackened surface, wind walls, bottom shaft portion opening, and bottom shaft portion.
  • FIG. 4 depicts wind walls reflecting energy to the blackened surface.
  • FIG. 5 depicts the Nenturi effect channeling heated air and water vapor into the bottom shaft portion opening.
  • FIG. 6 depicts the heat transfer duct and the heat exchange to the heat transfer duct through the chamber upper zone, and the generally horizontal, stacked hollow cylinders.
  • FIG. 7 depicts the generally horizontal stacked hollow cylinders with water droplets from condensation removing heat from air as it passes through the cascading droplets.
  • the invention is a water desalinization device.
  • the invention is designed to deliver a continuous supply of fresh water through desalinization of seawater.
  • the invention 1 comprises a housing 2, preferably made of concrete, that has an upper zone 3 and a lower zone 4. Within the housing 2 are a series of interconnected chambers 5 with a first chamber 6 and a last chamber 7 in the series 5. The chambers are also preferably made of concrete.
  • the upper shaft portion 12 opens 14 into the first chamber 6 of the series 5 and the bottom shaft portion 13 opens 15 adjacent to the blackened surface 16.
  • Each of the chambers of the series has an upper zone 17 and a lower zone 18, as well as a plurality of sides 19, a ceiling 20, and a bottom 21.
  • the sides 19 are formed with ribbed walls by the slip-form method, thus allowing the forms to be slipped up while the concrete mixture is poured down, thus allowing the chambers to be built quite large and tall, yet with increased strength.
  • the water droplets that condensate on the sides 19 flow more easily through the folds in the sides and drip 23 to the lower zone 18 of the chamber.
  • the ceilings 20 of the chambers are textured, preferably in an egg-crate-like surface, in order to provide surfaces with increased surface area for water to condensate on and drip 23 to the lower zone 18 of the chamber.
  • Each of the chambers has at least one upper temperature zone and at least one lower temperature zone, each of which may be of a different temperature from the other upper and lower temperature zones of the other chambers.
  • the bottom of each chamber 21, located within the lower zone 18, is a water collection basin 26 to collect the water drips 23.
  • a blackened surface 16 is connected to the bottom shaft portion 13 and lies partially submerged 30 on the shore of a body of water 31.
  • the blackened surface 16, preferably generally made of concrete and shore-like, through the absorption of solar energy, heats air and evaporates water as it is washed up onto the blackened surface by the wave action 32 of the water body 31.
  • a water drainage throughway 33 at the lower zone 18 and bottom 21 of the chamber has a termination end 34 with an exit port 35 and is designed to drain desalinized water from the basin 26 and out the exit port 35 using gravity.
  • At least one water reservoir 36 which may also be made of concrete, is connected to the water drainage throughway exit port 35 and is designed to retain water, also by using gravity.
  • the heat transfer duct 40 has an influx portion 41 and an efflux portion 44 that undergoes a Venturi effect 45 as air leaves the structure.
  • the influx portion 41 begins and opens 46 near the body of water 31 and serves as an air intake.
  • the efflux portion 44 terminates and opens 47 at the air exhaust port 48 and expels warm air into the air exhaust port.
  • FIG. 2 depicts the blackened surface 16 that is connected to the bottom shaft portion 13 and the bottom shaft portion opening 15.
  • the blackened surface 16 preferably generally made of concrete or a combination of concrete and vinyl additives and shaped shore-like, is designed to be in contact with an external body of water 31, as waves 32 provide a constant supply of water to be evaporated and continuously clean the surface of salt residue.
  • the concave wind walls 50 are designed to evaporate water generally into the bottom shaft portion opening 15.
  • the concave wind walls 50 preferably white and made of concrete, are adjacent to the blackened surface 16, as seen in FIG. 4.
  • the heat transfer duct influx 41 supply also can be seen here.
  • the concave wind walls 50 are designed to be reflective surfaces to direct solar energy 51 to the blackened surface 16 to assist in water evaporation 52.
  • the concave wind walls 50 also channel air and water vapor 52 towards the bottom shaft portion opening 15.
  • the Venturi effect of the wind walls on the air movement increases the velocity and air pressure as slow moving air and water vapor moves towards the narrow end of the Venturi 53 from the bottom shaft portion opening 15 at the bottom shaft portion 13 thus becoming accelerated.
  • FIG. 6 depicts heat rising 60 to the upper zone 17 of the chambers where it is absorbed by the heat transfer duct 40. This allows the cooler, water-laden air to condense on the egg-crate-like textured ceiling and drip down the folds in the walls, forming droplets 23 that fall to the basin 26 below.
  • the horizontal hollow cylinders 61 are pitched slightly downward 62 in the direction of the airflow 63.
  • the generally horizontally stacked hollow cylinders 61 direct air and water vapor 63 from one chamber to the next in the series 5 and allow water to drip 23 and drain to the basins 26 of the chambers. Condensation droplets 64 are shown flowing from, the lower end 65 of the horizontal hollow cylinders 61.
  • the generally horizontally stacked hollow cylinders 61 downward pitch 62 allows water vapor to condensate and drip 64 through the directed air and water vapor 63 from the lower stacked hollow cylinders.
  • This partial end view of horizontally stacked hollow cylinders 61 shows the cascade of water droplets 64 that removes heat, therefore cooling the warm air as it moves 63 through the cascade 64, allowing for increased condensation in the next chamber.
  • the invention housing 2 preferably made of concrete, may reach heights of hundreds of feet (possibly over sixty meters in height); the size and ratios of the invention components are site-dependent. The height should prohibit contamination of the chambers 5 by non-evaporated water, including salt water.
  • the blackened surface 16 may be composed of blended concrete, including vinyl additives, for wear resistance.
  • the evaporation rate is increased due to the solar energy being absorbed by the blackened surface 16 and the increased surface temperature of the blackened surface.
  • Rising air through the Venturi shaft draws a breeze through the bottom shaft portion opening 15 from over the body of water 31. This draft pushes rising hot air and evaporated water to the narrow end of the Venturi of the concave wind walls 50.
  • the curved ends of the concave wind walls 50 maximize the collection of air flows from any given direction from above the surface of the body of water 31 and to redirect said air flows into the concave wind wall Venturi 53.
  • the collected hot air and evaporated water are forced up the vertical Venturi wind shaft 10, causing an increase in air velocity and pressure.
  • the water in the air begins to condense on the textured concrete ceiling 20 and/or ribbed sides 19 of the chambers. As water droplets fall 23, they are collected in a basin 26 at the bottom 21 of the chambers. The collected water flows by way of the water drainage throughway 33 from chamber to chamber and exits the housing at the water drainage exit port 35 where water is channeled to at least one water reservoir 36.

Abstract

A continuous supply of fresh water achieved through desalinization by a system of Venturi shafts to increase the velocity and pressure of air flow allowing for increased condensation and processing of evaporated water through a structure (1) that incorporates a blackened evaporation surface (16), concave Venturi wind walls (50), a vertical Venturi wind shaft (10), condensation chambers (5) connected by horizontally stacked hollow cylinders (61), a heat transfer duct (40) that draws cool air from a water body, vents hot air through an air exhaust port (48), and a water drainage port (35) that flows water to a reservoir (36).

Description

TITLE OF INVENTION
PROCESS AND STRUCTURE FOR SUPERACCELERATING NATURE,
PRODUCING A CONTINUOUS SUPPLY OF FRESH WATER FROM SALT
WATER BY USING SOLAR, WIND, AND WAVE ENERGY.
TECHNICAL FIELD The invention relates to a water desalinization process and device.
BACKGROUND ART
The process of desalting water to create fresh water is not a new idea, it has been used for centuries by civilizations around the world. By boiling salt water and collecting the steam, the simplest of men could have fresh water from the oceans. Although the process has become much more refined, virtually all desalinization techniques require enormous amounts of energy, enormous amounts of labor in maintenance, and they all create, as a by-product, enormous amounts of concentrated brine pollutants that must be disposed of. With all of the requirements of energy and maintenance along with the problem of pollutants it has become costly to produce fresh water from seawater. Reverse osmosis has been an approach that utilizes a membrane that allows water to pass through with very little salinity. Even though membrane technology continues to improve, it will always require energy, maintenance, and waste disposal.
There is a long-felt need for a water desalinization device that uses only passive energy sources including solar, wind, and wave energy to deliver a continuous source of fresh water without any measurable waste product.
DISCLOSURE OF INVENTION
It is an object of this invention to produce fresh water using only passive energy sources including solar, wind, and wave energy. Another object of the invention is to harness and use passive energy sources to "Super Accelerate" the desalinization process. A further object of the invention is to generate continuous fresh water without using any source of generated energy, without the cost of labor or maintenance, and without any measurable waste product. It is another object of the invention to produce a steady source of fresh water with little additional cost beyond the construction of the device itself. Yet another object of the invention is to be built of concrete or similar material that will allow the structure of this invention to last for a long time.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS
FIG. 1 is cross sectional view of the invention.
FIG. 2 is a top view of the blackened surface, wind walls and bottom shaft portion opening.
FIG. 3 is a perspective view of the blackened surface, wind walls, bottom shaft portion opening, and bottom shaft portion.
FIG. 4 depicts wind walls reflecting energy to the blackened surface.
FIG. 5 depicts the Nenturi effect channeling heated air and water vapor into the bottom shaft portion opening.
FIG. 6 depicts the heat transfer duct and the heat exchange to the heat transfer duct through the chamber upper zone, and the generally horizontal, stacked hollow cylinders.
FIG. 7 depicts the generally horizontal stacked hollow cylinders with water droplets from condensation removing heat from air as it passes through the cascading droplets.
BEST MODE FOR CARRYING OUT THE INVENTION
The invention is a water desalinization device. The invention is designed to deliver a continuous supply of fresh water through desalinization of seawater.
Referring now to FIG. 1, the invention 1 comprises a housing 2, preferably made of concrete, that has an upper zone 3 and a lower zone 4. Within the housing 2 are a series of interconnected chambers 5 with a first chamber 6 and a last chamber 7 in the series 5. The chambers are also preferably made of concrete.
A generally vertical wind shaft 10, preferably made of concrete, is shaped to create a Venturi effect 11 between the upper shaft portion 12 and the bottom shaft portion 13. The upper shaft portion 12 opens 14 into the first chamber 6 of the series 5 and the bottom shaft portion 13 opens 15 adjacent to the blackened surface 16. Each of the chambers of the series has an upper zone 17 and a lower zone 18, as well as a plurality of sides 19, a ceiling 20, and a bottom 21.
The sides 19 are formed with ribbed walls by the slip-form method, thus allowing the forms to be slipped up while the concrete mixture is poured down, thus allowing the chambers to be built quite large and tall, yet with increased strength. The water droplets that condensate on the sides 19 flow more easily through the folds in the sides and drip 23 to the lower zone 18 of the chamber.
The ceilings 20 of the chambers are textured, preferably in an egg-crate-like surface, in order to provide surfaces with increased surface area for water to condensate on and drip 23 to the lower zone 18 of the chamber. Each of the chambers has at least one upper temperature zone and at least one lower temperature zone, each of which may be of a different temperature from the other upper and lower temperature zones of the other chambers. The bottom of each chamber 21, located within the lower zone 18, is a water collection basin 26 to collect the water drips 23.
A blackened surface 16 is connected to the bottom shaft portion 13 and lies partially submerged 30 on the shore of a body of water 31. The blackened surface 16, preferably generally made of concrete and shore-like, through the absorption of solar energy, heats air and evaporates water as it is washed up onto the blackened surface by the wave action 32 of the water body 31.
A water drainage throughway 33 at the lower zone 18 and bottom 21 of the chamber has a termination end 34 with an exit port 35 and is designed to drain desalinized water from the basin 26 and out the exit port 35 using gravity. At least one water reservoir 36, which may also be made of concrete, is connected to the water drainage throughway exit port 35 and is designed to retain water, also by using gravity.
The heat transfer duct 40 has an influx portion 41 and an efflux portion 44 that undergoes a Venturi effect 45 as air leaves the structure. The influx portion 41 begins and opens 46 near the body of water 31 and serves as an air intake. The efflux portion 44 terminates and opens 47 at the air exhaust port 48 and expels warm air into the air exhaust port.
Referring now to FIGS. 2 - 5, FIG. 2 depicts the blackened surface 16 that is connected to the bottom shaft portion 13 and the bottom shaft portion opening 15. The blackened surface 16, preferably generally made of concrete or a combination of concrete and vinyl additives and shaped shore-like, is designed to be in contact with an external body of water 31, as waves 32 provide a constant supply of water to be evaporated and continuously clean the surface of salt residue.
Referring now to FIG. 3, depicted are the Venturi shaped concave wind walls 50, blackened surface 16, and the bottom shaft portion opening 15. The blackened surface 16 is designed to evaporate water generally into the bottom shaft portion opening 15. The concave wind walls 50, preferably white and made of concrete, are adjacent to the blackened surface 16, as seen in FIG. 4. The heat transfer duct influx 41 supply also can be seen here. The concave wind walls 50 are designed to be reflective surfaces to direct solar energy 51 to the blackened surface 16 to assist in water evaporation 52.
As seen in FIG. 5, the concave wind walls 50 also channel air and water vapor 52 towards the bottom shaft portion opening 15. The Venturi effect of the wind walls on the air movement increases the velocity and air pressure as slow moving air and water vapor moves towards the narrow end of the Venturi 53 from the bottom shaft portion opening 15 at the bottom shaft portion 13 thus becoming accelerated.
Referring now to FIGS. 6 and 7, FIG. 6 depicts heat rising 60 to the upper zone 17 of the chambers where it is absorbed by the heat transfer duct 40. This allows the cooler, water-laden air to condense on the egg-crate-like textured ceiling and drip down the folds in the walls, forming droplets 23 that fall to the basin 26 below. The horizontal hollow cylinders 61 are pitched slightly downward 62 in the direction of the airflow 63. The generally horizontally stacked hollow cylinders 61 direct air and water vapor 63 from one chamber to the next in the series 5 and allow water to drip 23 and drain to the basins 26 of the chambers. Condensation droplets 64 are shown flowing from, the lower end 65 of the horizontal hollow cylinders 61.
Referring now to FIG. 7, the generally horizontally stacked hollow cylinders 61 downward pitch 62 allows water vapor to condensate and drip 64 through the directed air and water vapor 63 from the lower stacked hollow cylinders. This partial end view of horizontally stacked hollow cylinders 61 shows the cascade of water droplets 64 that removes heat, therefore cooling the warm air as it moves 63 through the cascade 64, allowing for increased condensation in the next chamber.
The invention housing 2, preferably made of concrete, may reach heights of hundreds of feet (possibly over sixty meters in height); the size and ratios of the invention components are site-dependent. The height should prohibit contamination of the chambers 5 by non-evaporated water, including salt water. The blackened surface 16 may be composed of blended concrete, including vinyl additives, for wear resistance.
As water from the body of water 31 washes up on the blackened surface 16, the evaporation rate is increased due to the solar energy being absorbed by the blackened surface 16 and the increased surface temperature of the blackened surface. Rising air through the Venturi shaft draws a breeze through the bottom shaft portion opening 15 from over the body of water 31. This draft pushes rising hot air and evaporated water to the narrow end of the Venturi of the concave wind walls 50. The curved ends of the concave wind walls 50 maximize the collection of air flows from any given direction from above the surface of the body of water 31 and to redirect said air flows into the concave wind wall Venturi 53.
The collected hot air and evaporated water are forced up the vertical Venturi wind shaft 10, causing an increase in air velocity and pressure. As hot air and evaporated water exits the vertical Venturi shaft 14 and enters the chambers there is a sudden decrease in air pressure. As the air flow slows and hot air rises to the upper zone of the chambers 17, the hot air surrounds the heat transfer duct 40 and heat is absorbed by the heat transfer duct 40.
The water in the air begins to condense on the textured concrete ceiling 20 and/or ribbed sides 19 of the chambers. As water droplets fall 23, they are collected in a basin 26 at the bottom 21 of the chambers. The collected water flows by way of the water drainage throughway 33 from chamber to chamber and exits the housing at the water drainage exit port 35 where water is channeled to at least one water reservoir 36.
As air pressure increases in the first chamber 6 it forces the water-laden air through the series of generally horizontal stacked hollow cylinders 61 comiecting the first chamber 6 to the next chamber (and likewise subsequent chambers in the same manner) where the air will repeat the condensation cycle that occurred in the first chamber. As air passes through the stacked horizontal hollow cylinders 61, condensation collects along the inside walls of the cylinders. The cylinders are slightly pitched 62 towards the direction of the airflow 63 allowing all condensation to flow down and out of the cylinders into the next chamber. This creates a cascade effect of water flowing 64 from the ends of all the stacked, horizontal hollow cylinders 61.
As warm air passes slowly 63 through this cascade of droplets 64, it continues to cool, allowing for increased condensation rates in this next chamber. After the air has passed through the last, preferably third, chamber 7, it is drawn upward through the vertical Venturi exhaust shaft, and then at an angle over the tops of the chambers where it collects radiant heat from the preceding chambers, and then through at least one Venturi portion, and finally out the air exhaust port 48. Cool air from the surface of water body 31, preferably an ocean in a hot part of the world, enters the heat transfer duct 40 and provides cool temperatures that absorb the heat radiation into the heat transfer duct 40. This heat that is absorbed into the heat transfer duct 40 then radiates upwards through the duct and is released at the efflux portion drawing cooler air in behind it.
The previously described versions of the present invention have many advantages, including use of passive energy to generate fresh water with no measurable waste product. Thus, the problems that may be associated with previous attempts at desalinization are solved. It is important to note, however, that the invention does not require that all these advantages need be incorporated into every embodiment of the invention.
Although the present invention has been described in considerable detail with reference to certain preferred embodiments thereof, other embodiments or versions are possible. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred embodiments contained herein.

Claims

CLAIMSI claim:
1. A process for desalinizing water, said process comprising: providing a blackened surface in contact with a body of water so as to heat air and evaporate said water from said blackened surface; channeling said heated air and water vapor upward through a vertical Venturi wind shaft creating an adiabatic pressure variance so as to release said water vapor into a first chamber of a series of interconnected chambers; allowing said water vapor to condensate within said chambers; draining said desalinized water from said chambers; expelling said heated air from said chambers; and, retaining said desalinized water.
2. The process according to claim 1 wherein said desalinized water is retained in at least one reservoir.
3. A desalinization device to be used on the shore of a body of water, comprising:
a. a housing, said housing with considerable height relative to said shore of said body of water;
b. a series of interconnected chambers within said housing; said series of chambers having at least one first chamber and at least one last chamber in said series, with each of said chambers having at least one upper temperature zone and at least one lower temperature zone, each of which may be of a different temperature from the other upper and lower temperature zones of the other chambers;
c. a generally vertical wind shaft connected to said housing, said shaft designed to create a Venturi effect, and said shaft having an upper shaft portion and a bottom shaft portion, said upper shaft portion opening into said first chamber and said bottom shaft portion having an opening; d. each said chamber having an upper zone and a lower zone, and each said chamber having a plurality of sides, a ceiling, and a bottom, said bottom located within said lower zone and designed to serve as a water collection basin;
e. a blackened surface connected to said bottom shaft portion and said bottom shaft portion opening, said blackened surface designed to be in contact with an external body of water and said blackened surface further designed to absorb solar energy and to evaporate said water from said external body of water and to heat air, causing it to rise creating air movement into said bottom shaft portion opening;
f. a water drainage throughway at said bottom and lower zone of said chamber, said water drainage throughway having a termination end, and said water drainage throughway designed so that gravity drains said water from said basin;
g. an air exhaust port connected to said last chamber of said chamber series, said air exhaust port designed to expel air that has passed through said chambers out of said last chamber and said housing and further designed to create at least one Venturi effect, as air leaves the structure roughly to match the velocity of air entering the structure; and,
h. at least one water reservoir, said water reservoir connected to said water drainage throughway termination end and designed to retain water, at least temporarily.
4. The desalinization device of claim 3, wherein said interconnections of said series of chambers comprise generally horizontally stacked hollow cylinders, said generally horizontally stacked hollow cylinders designed to direct air and water vapor, said cylinders designed to be pitched at an angle to allow said water to drip and drain to said basins of said chambers.
5. The desalinization device of claim 4, wherein said horizontally stacked hollow cylinders are further designed to allow said water vapor that condensates to drip through said directed air and water vapor in order to cool said directed air and water vapor by removing heat from the air as it passes through the cascading droplets.
6. The desalinization device of claim 3, wherein said chamber sides and ceiling comprise a textured surface, said textured surface designed to provide increased surface area on which water condensates.
7. The desalinization device of claim 3 further comprising a heat transfer duct with an influx located above the surface of said body of water positioned to intake air without heating it prior to influx and the efflux located near the air exhaust port and a body that runs through the structure collecting radiant heat.
8. The desalinization device of claim 3 further comprising concave wind walls adjacent to said blackened surface, said wind walls designed to be reflective surfaces to direct energy to said blackened surface and further designed to channel said water vapor into said bottom shaft portion opening.
9. The desalinization device of claim 8 further comprising concave wind walls with curved ends to maximize the collection of air flows from any given direction from above the surface of said body of water and to redirect said air flows into the wind wall Venturi and to said vertical wind shaft connected to said housing.
10. The desalinization device of claim 3 wherein said housing, said chamber, said shaft, said wind walls, and said blackened surface are comprised of concrete.
11. The desalinization device of claim 10 wherein said shaft, said wind walls, and said blackened surface are comprised of concrete with vinyl additives.
12. The desalinization device of claim 3 wherein said water drainage throughway further comprises an exit port.
13. A desalinization device, comprising :
a. a housing, said housing with an upper zone and a lower zone;
b. a series of interconnected chambers within said housing; said series of chambers having at least one first chamber and at least one last chamber in said series; c. a generally vertical wind shaft connected to said housing, said shaft designed to create a Venturi effect, and said shaft having an upper shaft portion and a bottom shaft portion, said upper shaft portion opening into said first chamber and said bottom shaft portion having an opening larger than the opening at the top of the vertical Venturi shaft;
d. each said chamber having an upper zone and a lower zone, and each said chamber having a plurality of sides, a ceiling, and a bottom, said ceiling being textured, said texture designed to provide surfaces for water to condensate on, and said sides being ribbed designed to allow the droplets of water to run down the sides, and said bottom located within said lower zone and designed to serve as a water collection basin;
e. a blackened surface connected to said bottom shaft portion and said bottom shaft portion opening, said blackened surface designed to be in contact with an external body of water and said blackened surface further designed to absorb solar energy and to evaporate said water from said external body of water and to heat air, causing it to rise creating air movement into said bottom shaft portion opening;
f. a water drainage throughway at said bottom and lower zone of said chamber, said water drainage throughway having a termination end, said termination end having an exit port, and said water drainage throughway designed so that gravity drains said water from said basin and delivers said water to said exit port;
g. a vertical Venturi exhaust shaft connected to said last chamber of said chamber series, said vertical Venturi exhaust shaft designed to direct and expel air that has passed through said chambers out of said last chamber and said housing and further designed to create at least one Venturi effect forcing air upward and over the tops of said chambers to collect radiant heat, and expel it through an air exhaust port located at the top of said structure;
h. at least one water reservoir, said water reservoir connected to said water drainage port and designed to retain water; i. generally horizontally stacked hollow cylinders, said generally horizontally stacked hollow cylinders designed to direct air and water vapor, said cylinders designed to be pitched at an angle to allow said water to drip and drain to said basins of said chambers and further designed to allow said water vapor that condensates to drip through said directed air and water vapor in order to cool said directed air and water vapor by removing heat from the air as it passes through the cascading droplets;
j. concave wind walls adjacent to said blackened surface, said wind walls designed to be reflective surfaces to direct energy to said blackened surface and further designed to channel said water vapor into said bottom shaft portion opening; and,
k. said concave wind walls having curved ends to maximize the collection of air flows from any given direction from above the surface of said body of water and to redirect said air flows into the wind wall Venturi and to said vertical wind shaft connected to said housing.
14. The desalinization device of claim 13 further comprising a heat transfer duct with an influx located above the surface of said body of water positioned to intake air without heating it prior to influx and the efflux located near the air exhaust port and a body that runs through the structure collecting radiant heat.
15. The desalinization device of claim 13 wherein said housing, said chamber, said shaft, said wind walls and said blackened surface are comprised of concrete.
16. The desalinization device of claim 13 wherein said shaft, said wind walls, and said blackened surface are comprised of concrete with vinyl additives.
PCT/US2003/013712 2002-05-02 2003-04-30 Water desalinization process and apparatus WO2003092847A2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
NZ536005A NZ536005A (en) 2002-05-02 2003-04-30 Water desalinization process and apparatus using solar heating, condensation and the Venturi effect
AU2003231258A AU2003231258B2 (en) 2002-05-02 2003-04-30 Water desalinization process and apparatus
JP2004501024A JP2005524517A (en) 2002-05-02 2003-04-30 Method and structure for accelerating nature and allowing continuous supply of fresh water from salt water using solar, wind and wave energy
MXPA04010729A MXPA04010729A (en) 2002-05-02 2003-04-30 Process and structure for superaccelerating nature, producing a continuous supply of fresh water from salt water by using solar, wind, and wave energy.
EP03724394A EP1499408A4 (en) 2002-05-02 2003-04-30 Process and structure for superaccelerating nature, producing a continuous supply of fresh water from salt water by using solar, wind, and wave energy
IL164873A IL164873A (en) 2002-05-02 2004-10-27 Process and structure for superaccelerating nature, producing a continuous supply of fresh water from salt water by using solar, wind and wave energy
US10/977,408 US7527711B2 (en) 2003-04-30 2004-10-29 Process and structure for superaccelerating nature, producing a continuous supply of fresh water from salt water by using solar, wind, and wave energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37776902P 2002-05-02 2002-05-02
US60/377,769 2002-05-02

Publications (2)

Publication Number Publication Date
WO2003092847A2 true WO2003092847A2 (en) 2003-11-13
WO2003092847A3 WO2003092847A3 (en) 2004-04-15

Family

ID=29401566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/013712 WO2003092847A2 (en) 2002-05-02 2003-04-30 Water desalinization process and apparatus

Country Status (10)

Country Link
EP (1) EP1499408A4 (en)
JP (1) JP2005524517A (en)
CN (1) CN1649652A (en)
AR (1) AR039781A1 (en)
AU (1) AU2003231258B2 (en)
IL (1) IL164873A (en)
MX (1) MXPA04010729A (en)
NZ (1) NZ536005A (en)
WO (1) WO2003092847A2 (en)
ZA (1) ZA200408754B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2281240A1 (en) * 2005-04-04 2007-09-16 Gustavo Fraile Riberas Desalination plant for desalinating sea water, comprises pumping group for sending water from sea to accumulator associated with purification unit, where boiling takes place by electrical resistors and condensation by cooling devices
US8028438B2 (en) * 2004-07-02 2011-10-04 Aqualizer, Llc Moisture condensation control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100542971C (en) * 2007-08-14 2009-09-23 王胜果 Machine for desalination of sea water by using billow energy
CN105883952B (en) * 2016-06-30 2018-10-19 厦门理工学院 Wave power oscillatory type solar energy sea water desalination apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219387A (en) * 1977-12-19 1980-08-26 Gruntman Leonard R Solar still
US4319141A (en) * 1980-06-30 1982-03-09 Schmugge Frederick K Turbine configurations using wind and solar power
US4507916A (en) * 1979-07-02 1985-04-02 Anderson Max F Wind generating means
US6327994B1 (en) * 1984-07-19 2001-12-11 Gaudencio A. Labrador Scavenger energy converter system its new applications and its control systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3257291A (en) * 1962-02-05 1966-06-21 Gerber Scient Instr Company In Means for desalting sea water by solar heat and air convection
DE2507593A1 (en) * 1975-02-21 1976-09-02 Ralf Horst Krauss Potable water production - by solar energy evaporation of mountain lake water
JPS582478Y2 (en) * 1978-09-29 1983-01-17 川崎重工業株式会社 Solar thermal distillation equipment
FR2652077B1 (en) * 1989-09-15 1991-10-31 Blondel Guy PROCESS AND PLANT FOR THE PRODUCTION OF FRESHWATER BY DISTILLATION OF SEA WATER, BRINE, SWIMMING POOLS OR FROM THE INDUSTRY, AT A LOW COST OF PRODUCTION.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219387A (en) * 1977-12-19 1980-08-26 Gruntman Leonard R Solar still
US4507916A (en) * 1979-07-02 1985-04-02 Anderson Max F Wind generating means
US4319141A (en) * 1980-06-30 1982-03-09 Schmugge Frederick K Turbine configurations using wind and solar power
US6327994B1 (en) * 1984-07-19 2001-12-11 Gaudencio A. Labrador Scavenger energy converter system its new applications and its control systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1499408A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8028438B2 (en) * 2004-07-02 2011-10-04 Aqualizer, Llc Moisture condensation control system
ES2281240A1 (en) * 2005-04-04 2007-09-16 Gustavo Fraile Riberas Desalination plant for desalinating sea water, comprises pumping group for sending water from sea to accumulator associated with purification unit, where boiling takes place by electrical resistors and condensation by cooling devices

Also Published As

Publication number Publication date
CN1649652A (en) 2005-08-03
IL164873A0 (en) 2005-12-18
EP1499408A4 (en) 2005-11-16
IL164873A (en) 2008-06-05
AR039781A1 (en) 2005-03-02
ZA200408754B (en) 2006-07-26
JP2005524517A (en) 2005-08-18
MXPA04010729A (en) 2005-02-17
EP1499408A2 (en) 2005-01-26
AU2003231258A1 (en) 2003-11-17
AU2003231258B2 (en) 2010-07-08
NZ536005A (en) 2010-08-27
WO2003092847A3 (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US4235679A (en) High performance solar still
KR101236861B1 (en) Energy saving fresh water production equipment
US7527711B2 (en) Process and structure for superaccelerating nature, producing a continuous supply of fresh water from salt water by using solar, wind, and wave energy
US7328584B2 (en) Fresh water extraction device
CN107720863A (en) A kind of groove type solar sea water desalinating unit based on film distillation
AU2003231258B2 (en) Water desalinization process and apparatus
CN1142106C (en) Spray driven evaporation-condensation sea water desalter
CN106277120A (en) Boats and ships solar seawater desalination TRT
CN106277123A (en) Boats and ships solar seawater desalination TRT
CN105936521B (en) A kind of desalination plant
CN209635926U (en) Falling film evaporation couples absorption refrigeration high-salt sewage processing equipment
US20030188962A1 (en) Distillation system
AU2003289681B2 (en) Method and plant for desalinating salt-containing water
SU987324A1 (en) Solar desalinator
CN103015486A (en) Factory-like sewage volatilization elimination and atmosphere form conversion water collecting device
RU2677153C1 (en) Water distiller
DE202007013079U1 (en) Solar seawater desalination plant with power plant
CN109502868A (en) A kind of control method of Trinity structure sewage treatment
CN211651281U (en) Energy-conserving hydraulic turbine is counterflow tower for cooling tower
CN106693418B (en) Strong brine high dispersive dehydration equipment
SU1139708A1 (en) Solar desalinating unit
RU2767342C1 (en) Autonomous universal desalination plant
HU201714B (en) Process and apparatus for distilating fluids particularly desalinizing sea-water
CN106745422A (en) The processing method of strong brine concentrate
CN105060381B (en) Solar seawater desalination device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 3185/DELNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003231258

Country of ref document: AU

Ref document number: 536005

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2004/08754

Country of ref document: ZA

Ref document number: 200408754

Country of ref document: ZA

Ref document number: PA/A/2004/010729

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2004501024

Country of ref document: JP

Ref document number: 20038099683

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2003724394

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003724394

Country of ref document: EP