WO2003084688A3 - Method and system for providing a thin film - Google Patents

Method and system for providing a thin film Download PDF

Info

Publication number
WO2003084688A3
WO2003084688A3 PCT/US2003/009861 US0309861W WO03084688A3 WO 2003084688 A3 WO2003084688 A3 WO 2003084688A3 US 0309861 W US0309861 W US 0309861W WO 03084688 A3 WO03084688 A3 WO 03084688A3
Authority
WO
WIPO (PCT)
Prior art keywords
metal layer
irradiated
thin film
mask
microstructure
Prior art date
Application number
PCT/US2003/009861
Other languages
French (fr)
Other versions
WO2003084688A2 (en
Inventor
James S Im
Jae Beom Choi
Original Assignee
Univ Columbia
James S Im
Jae Beom Choi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Columbia, James S Im, Jae Beom Choi filed Critical Univ Columbia
Priority to AU2003220611A priority Critical patent/AU2003220611A1/en
Publication of WO2003084688A2 publication Critical patent/WO2003084688A2/en
Publication of WO2003084688A3 publication Critical patent/WO2003084688A3/en
Priority to US10/953,312 priority patent/US7399359B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76867Barrier, adhesion or liner layers characterized by methods of formation other than PVD, CVD or deposition from a liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/066Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/16Heating of the molten zone
    • C30B13/22Heating of the molten zone by irradiation or electric discharge
    • C30B13/24Heating of the molten zone by irradiation or electric discharge using electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors

Abstract

Figure 1 shows the method and system for generating a metal thin film (170) with a uniform crystalline orientation and a controlled crystalline microstructure are provided. For example, a metal layer is irradiated with a pulse laser (111) to completely melt the film throughout its entire thickness. The metal layer can then resolidify to form grains with a substantially uniform orientation. The resolidified metal layer can be irradiated with a sequential lateral solidification technique to modify the crystalline microstructure (e.g., create larger grains, single-crystal regions, grain boundary controlled microstructures, etc.) The metal layer can be irradiated by patterning a beam using a mask (150) which includes a first region capable of attenuating (130) the pulsed laser and a second region allowing complete irradiation of sections of the thin film being impinged by the masked laser beam. An inverse dot-patterned mask (150) can be used, the microstructure that may have substantially the same as the geometric pattern as that of the dots of the mask.
PCT/US2003/009861 2002-04-01 2003-04-01 Method and system for providing a thin film WO2003084688A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003220611A AU2003220611A1 (en) 2002-04-01 2003-04-01 Method and system for providing a thin film
US10/953,312 US7399359B2 (en) 2002-04-01 2004-09-29 Method and system for providing a thin film with a controlled crystal orientation using pulsed laser induced melting and nucleation-initiated crystallization

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US36918602P 2002-04-01 2002-04-01
US60/369,186 2002-04-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/953,312 Continuation US7399359B2 (en) 2002-04-01 2004-09-29 Method and system for providing a thin film with a controlled crystal orientation using pulsed laser induced melting and nucleation-initiated crystallization

Publications (2)

Publication Number Publication Date
WO2003084688A2 WO2003084688A2 (en) 2003-10-16
WO2003084688A3 true WO2003084688A3 (en) 2004-07-15

Family

ID=28791932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/009861 WO2003084688A2 (en) 2002-04-01 2003-04-01 Method and system for providing a thin film

Country Status (4)

Country Link
US (1) US7399359B2 (en)
AU (1) AU2003220611A1 (en)
TW (1) TWI272640B (en)
WO (1) WO2003084688A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859436B2 (en) 1996-05-28 2014-10-14 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8883656B2 (en) 2002-08-19 2014-11-11 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification
US9012309B2 (en) 2007-09-21 2015-04-21 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US9466402B2 (en) 2003-09-16 2016-10-11 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7318866B2 (en) 2003-09-16 2008-01-15 The Trustees Of Columbia University In The City Of New York Systems and methods for inducing crystallization of thin films using multiple optical paths
US7164152B2 (en) 2003-09-16 2007-01-16 The Trustees Of Columbia University In The City Of New York Laser-irradiated thin films having variable thickness
WO2005034193A2 (en) 2003-09-19 2005-04-14 The Trustees Of Columbia University In The City Ofnew York Single scan irradiation for crystallization of thin films
US7645337B2 (en) 2004-11-18 2010-01-12 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US8221544B2 (en) 2005-04-06 2012-07-17 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
KR101287314B1 (en) 2005-12-05 2013-07-17 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 Systems and methods for processing a film, and thin films
TWI418037B (en) 2007-09-25 2013-12-01 Univ Columbia Methods of producing high uniformity in thin film transistor devices fabricated on laterally crystallized thin films by changing the shape, size, or laser beam
US8012861B2 (en) 2007-11-21 2011-09-06 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
WO2009067688A1 (en) 2007-11-21 2009-05-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8569155B2 (en) 2008-02-29 2013-10-29 The Trustees Of Columbia University In The City Of New York Flash lamp annealing crystallization for large area thin films
WO2010056990A1 (en) 2008-11-14 2010-05-20 The Trustees Of Columbia University In The City Of New York Systems and methods for the crystallization of thin films
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
US20150075756A1 (en) * 2012-03-28 2015-03-19 Carrier Corporation Surface treatment for corrosion resistance of aluminum
WO2016154316A1 (en) 2015-03-24 2016-09-29 Cummins Emission Solutions, Inc. Integrated aftertreatment system
US10366920B2 (en) 2016-06-30 2019-07-30 International Business Machines Corporation Location-specific laser annealing to improve interconnect microstructure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388146B1 (en) * 1998-01-28 2002-05-14 Sharp Kabushiki Kaisha Polymerizable compound, polymerizable resin composition, cured polymer and liquid crystal display device
US6407012B1 (en) * 1997-12-26 2002-06-18 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display and infrared irradiating device
US6468845B1 (en) * 1992-12-25 2002-10-22 Hitachi, Ltd. Semiconductor apparatus having conductive thin films and manufacturing apparatus therefor
US6495067B1 (en) * 1999-03-01 2002-12-17 Fuji Photo Film Co., Ltd. Liquid crystal compound, liquid crystal mixture or composition, electrolyte comprising the same, electrochemical cell and photo-electrochemical cell containing the electrolyte
US6511718B1 (en) * 1997-07-14 2003-01-28 Symetrix Corporation Method and apparatus for fabrication of thin films by chemical vapor deposition
US6521492B2 (en) * 2000-06-12 2003-02-18 Seiko Epson Corporation Thin-film semiconductor device fabrication method

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2030468A5 (en) 1969-01-29 1970-11-13 Thomson Brandt Csf
US4017380A (en) * 1975-07-18 1977-04-12 Gulf Research & Development Company Sequential residue hydrodesulfurization and thermal cracking operations in a common reactor
US4075263A (en) * 1976-04-13 1978-02-21 Rohm And Haas Company Process for preventing hydrolytic degradation of linear saturated aromatic polyesters comprising a thermoplastic saturated aromatic polyester and a moisture scavenger polymer
US4234358A (en) 1979-04-05 1980-11-18 Western Electric Company, Inc. Patterned epitaxial regrowth using overlapping pulsed irradiation
US4309225A (en) 1979-09-13 1982-01-05 Massachusetts Institute Of Technology Method of crystallizing amorphous material with a moving energy beam
EP0191503A3 (en) 1980-04-10 1986-09-10 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
US4382658A (en) 1980-11-24 1983-05-10 Hughes Aircraft Company Use of polysilicon for smoothing of liquid crystal MOS displays
US4456371A (en) 1982-06-30 1984-06-26 International Business Machines Corporation Optical projection printing threshold leveling arrangement
US4691983A (en) 1983-10-14 1987-09-08 Hitachi, Ltd. Optical waveguide and method for making the same
US4639277A (en) 1984-07-02 1987-01-27 Eastman Kodak Company Semiconductor material on a substrate, said substrate comprising, in order, a layer of organic polymer, a layer of metal or metal alloy and a layer of dielectric material
JPH084067B2 (en) 1985-10-07 1996-01-17 工業技術院長 Method for manufacturing semiconductor device
JPH0732124B2 (en) 1986-01-24 1995-04-10 シャープ株式会社 Method for manufacturing semiconductor device
US4793694A (en) 1986-04-23 1988-12-27 Quantronix Corporation Method and apparatus for laser beam homogenization
JPS62293740A (en) 1986-06-13 1987-12-21 Fujitsu Ltd Manufacture of semiconductor device
US4758533A (en) * 1987-09-22 1988-07-19 Xmr Inc. Laser planarization of nonrefractory metal during integrated circuit fabrication
USRE33836E (en) 1987-10-22 1992-03-03 Mrs Technology, Inc. Apparatus and method for making large area electronic devices, such as flat panel displays and the like, using correlated, aligned dual optical systems
US5204659A (en) 1987-11-13 1993-04-20 Honeywell Inc. Apparatus and method for providing a gray scale in liquid crystal flat panel displays
JP2569711B2 (en) 1988-04-07 1997-01-08 株式会社ニコン Exposure control device and exposure method using the same
US5523193A (en) 1988-05-31 1996-06-04 Texas Instruments Incorporated Method and apparatus for patterning and imaging member
JP2706469B2 (en) 1988-06-01 1998-01-28 松下電器産業株式会社 Method for manufacturing semiconductor device
US4940505A (en) 1988-12-02 1990-07-10 Eaton Corporation Method for growing single crystalline silicon with intermediate bonding agent and combined thermal and photolytic activation
JP2802449B2 (en) 1990-02-16 1998-09-24 三菱電機株式会社 Method for manufacturing semiconductor device
US5233207A (en) 1990-06-25 1993-08-03 Nippon Steel Corporation MOS semiconductor device formed on insulator
JP2973492B2 (en) 1990-08-22 1999-11-08 ソニー株式会社 Crystallization method of semiconductor thin film
US5032233A (en) 1990-09-05 1991-07-16 Micron Technology, Inc. Method for improving step coverage of a metallization layer on an integrated circuit by use of a high melting point metal as an anti-reflective coating during laser planarization
JP3213338B2 (en) 1991-05-15 2001-10-02 株式会社リコー Manufacturing method of thin film semiconductor device
US5373803A (en) 1991-10-04 1994-12-20 Sony Corporation Method of epitaxial growth of semiconductor
US5285236A (en) 1992-09-30 1994-02-08 Kanti Jain Large-area, high-throughput, high-resolution projection imaging system
US5291240A (en) 1992-10-27 1994-03-01 Anvik Corporation Nonlinearity-compensated large-area patterning system
JPH076960A (en) 1993-06-16 1995-01-10 Fuji Electric Co Ltd Forming method of polycrystalline semiconductor thin film
US5453594A (en) 1993-10-06 1995-09-26 Electro Scientific Industries, Inc. Radiation beam position and emission coordination system
US5395481A (en) 1993-10-18 1995-03-07 Regents Of The University Of California Method for forming silicon on a glass substrate
US5529951A (en) 1993-11-02 1996-06-25 Sony Corporation Method of forming polycrystalline silicon layer on substrate by large area excimer laser irradiation
US5496768A (en) 1993-12-03 1996-03-05 Casio Computer Co., Ltd. Method of manufacturing polycrystalline silicon thin film
US6130009A (en) 1994-01-03 2000-10-10 Litel Instruments Apparatus and process for nozzle production utilizing computer generated holograms
JPH07249591A (en) 1994-03-14 1995-09-26 Matsushita Electric Ind Co Ltd Laser annealing method for semiconductor thin film and thin-film semiconductor element
US5456763A (en) 1994-03-29 1995-10-10 The Regents Of The University Of California Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon
JP3326654B2 (en) 1994-05-02 2002-09-24 ソニー株式会社 Method of manufacturing semiconductor chip for display
US5756364A (en) 1994-11-29 1998-05-26 Semiconductor Energy Laboratory Co., Ltd. Laser processing method of semiconductor device using a catalyst
TW303526B (en) 1994-12-27 1997-04-21 Matsushita Electric Ind Co Ltd
US5844588A (en) 1995-01-11 1998-12-01 Texas Instruments Incorporated DMD modulated continuous wave light source for xerographic printer
EP0822881B1 (en) 1995-04-26 2009-08-12 Minnesota Mining And Manufacturing Company Laser imaging ablation method
US5742426A (en) 1995-05-25 1998-04-21 York; Kenneth K. Laser beam treatment pattern smoothing device and laser beam treatment pattern modulator
TW297138B (en) 1995-05-31 1997-02-01 Handotai Energy Kenkyusho Kk
US5721606A (en) 1995-09-07 1998-02-24 Jain; Kanti Large-area, high-throughput, high-resolution, scan-and-repeat, projection patterning system employing sub-full mask
US6444506B1 (en) 1995-10-25 2002-09-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing silicon thin film devices using laser annealing in a hydrogen mixture gas followed by nitride formation
JP3240258B2 (en) 1996-03-21 2001-12-17 シャープ株式会社 Semiconductor device, thin film transistor and method for manufacturing the same, and liquid crystal display device and method for manufacturing the same
WO1997045827A1 (en) 1996-05-28 1997-12-04 The Trustees Of Columbia University In The City Of New York Crystallization processing of semiconductor film regions on a substrate, and devices made therewith
US6555449B1 (en) 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
JP3917698B2 (en) 1996-12-12 2007-05-23 株式会社半導体エネルギー研究所 Laser annealing method and laser annealing apparatus
US5861991A (en) 1996-12-19 1999-01-19 Xerox Corporation Laser beam conditioner using partially reflective mirrors
US5986807A (en) 1997-01-13 1999-11-16 Xerox Corporation Single binary optical element beam homogenizer
JP3642546B2 (en) 1997-08-12 2005-04-27 株式会社東芝 Method for producing polycrystalline semiconductor thin film
US6014944A (en) 1997-09-19 2000-01-18 The United States Of America As Represented By The Secretary Of The Navy Apparatus for improving crystalline thin films with a contoured beam pulsed laser
KR100284708B1 (en) 1998-01-24 2001-04-02 구본준, 론 위라하디락사 How to crystallize silicon thin film
JP2000066133A (en) 1998-06-08 2000-03-03 Sanyo Electric Co Ltd Laser light irradiation device
US6326286B1 (en) 1998-06-09 2001-12-04 Lg. Philips Lcd Co., Ltd. Method for crystallizing amorphous silicon layer
KR100292048B1 (en) 1998-06-09 2001-07-12 구본준, 론 위라하디락사 Manufacturing Method of Thin Film Transistor Liquid Crystal Display
KR100296109B1 (en) 1998-06-09 2001-10-26 구본준, 론 위라하디락사 Thin Film Transistor Manufacturing Method
KR100296110B1 (en) 1998-06-09 2001-08-07 구본준, 론 위라하디락사 Method of manufacturing thin film transistor
US6072631A (en) 1998-07-09 2000-06-06 3M Innovative Properties Company Diffractive homogenizer with compensation for spatial coherence
JP3156776B2 (en) 1998-08-03 2001-04-16 日本電気株式会社 Laser irradiation method
GB9819338D0 (en) 1998-09-04 1998-10-28 Philips Electronics Nv Laser crystallisation of thin films
US6326186B1 (en) * 1998-10-15 2001-12-04 Novozymes A/S Method for reducing amino acid biosynthesis inhibiting effects of a sulfonyl-urea based compound
US6081381A (en) 1998-10-26 2000-06-27 Polametrics, Inc. Apparatus and method for reducing spatial coherence and for improving uniformity of a light beam emitted from a coherent light source
US6313435B1 (en) 1998-11-20 2001-11-06 3M Innovative Properties Company Mask orbiting for laser ablated feature formation
US6120976A (en) 1998-11-20 2000-09-19 3M Innovative Properties Company Laser ablated feature formation method
KR100290787B1 (en) 1998-12-26 2001-07-12 박종섭 Manufacturing Method of Semiconductor Memory Device
US6203952B1 (en) 1999-01-14 2001-03-20 3M Innovative Properties Company Imaged article on polymeric substrate
US6162711A (en) 1999-01-15 2000-12-19 Lucent Technologies, Inc. In-situ boron doped polysilicon with dual layer and dual grain structure for use in integrated circuits manufacturing
KR100327087B1 (en) 1999-06-28 2002-03-13 구본준, 론 위라하디락사 Laser annealing method
JP2001023918A (en) 1999-07-08 2001-01-26 Nec Corp Semiconductor thin-film forming apparatus
US6190985B1 (en) 1999-08-17 2001-02-20 Advanced Micro Devices, Inc. Practical way to remove heat from SOI devices
US6573531B1 (en) 1999-09-03 2003-06-03 The Trustees Of Columbia University In The City Of New York Systems and methods using sequential lateral solidification for producing single or polycrystalline silicon thin films at low temperatures
JP2001144170A (en) 1999-11-11 2001-05-25 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
US6368945B1 (en) 2000-03-16 2002-04-09 The Trustees Of Columbia University In The City Of New York Method and system for providing a continuous motion sequential lateral solidification
US6830993B1 (en) 2000-03-21 2004-12-14 The Trustees Of Columbia University In The City Of New York Surface planarization of thin silicon films during and after processing by the sequential lateral solidification method
CN1404627A (en) 2000-10-10 2003-03-19 纽约市哥伦比亚大学托管会 Method and apparatus for processing thin metal layer
US6582827B1 (en) 2000-11-27 2003-06-24 The Trustees Of Columbia University In The City Of New York Specialized substrates for use in sequential lateral solidification processing
TW546684B (en) 2000-11-27 2003-08-11 Univ Columbia Process and mask projection system for laser crystallization processing of semiconductor film regions on a substrate
US6621044B2 (en) 2001-01-18 2003-09-16 Anvik Corporation Dual-beam materials-processing system
TW521310B (en) 2001-02-08 2003-02-21 Toshiba Corp Laser processing method and apparatus
WO2002086954A1 (en) 2001-04-19 2002-10-31 The Trustee Of Columbia University In The City Of New York Method and system for providing a single-scan, continuous motion sequential lateral solidification
JP2005525689A (en) 2001-08-27 2005-08-25 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク Improving the uniformity of polycrystalline thin-film transistors by microstructure misalignment
US6767804B2 (en) * 2001-11-08 2004-07-27 Sharp Laboratories Of America, Inc. 2N mask design and method of sequential lateral solidification
US6526585B1 (en) 2001-12-21 2003-03-04 Elton E. Hill Wet smoke mask

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468845B1 (en) * 1992-12-25 2002-10-22 Hitachi, Ltd. Semiconductor apparatus having conductive thin films and manufacturing apparatus therefor
US6511718B1 (en) * 1997-07-14 2003-01-28 Symetrix Corporation Method and apparatus for fabrication of thin films by chemical vapor deposition
US6407012B1 (en) * 1997-12-26 2002-06-18 Seiko Epson Corporation Method of producing silicon oxide film, method of manufacturing semiconductor device, semiconductor device, display and infrared irradiating device
US6388146B1 (en) * 1998-01-28 2002-05-14 Sharp Kabushiki Kaisha Polymerizable compound, polymerizable resin composition, cured polymer and liquid crystal display device
US6495067B1 (en) * 1999-03-01 2002-12-17 Fuji Photo Film Co., Ltd. Liquid crystal compound, liquid crystal mixture or composition, electrolyte comprising the same, electrochemical cell and photo-electrochemical cell containing the electrolyte
US6521492B2 (en) * 2000-06-12 2003-02-18 Seiko Epson Corporation Thin-film semiconductor device fabrication method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8859436B2 (en) 1996-05-28 2014-10-14 The Trustees Of Columbia University In The City Of New York Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
US8883656B2 (en) 2002-08-19 2014-11-11 The Trustees Of Columbia University In The City Of New York Single-shot semiconductor processing system and method having various irradiation patterns
US9466402B2 (en) 2003-09-16 2016-10-11 The Trustees Of Columbia University In The City Of New York Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
US9012309B2 (en) 2007-09-21 2015-04-21 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification

Also Published As

Publication number Publication date
US20060006464A1 (en) 2006-01-12
TWI272640B (en) 2007-02-01
TW200421413A (en) 2004-10-16
WO2003084688A2 (en) 2003-10-16
AU2003220611A8 (en) 2003-10-20
US7399359B2 (en) 2008-07-15
AU2003220611A1 (en) 2003-10-20

Similar Documents

Publication Publication Date Title
WO2003084688A3 (en) Method and system for providing a thin film
EP1020934A3 (en) Laser processing of a thin film
WO2005029551A3 (en) Processes and systems for laser crystallization processing of film regions on a substrate utilizing a line-type beam, and structures of such film regions
WO2004017382A3 (en) Process and system for laser crystallization processing of film regions on a substrate to provide substantial uniformity within areas in such regions and edge areas thereof, and a structure of such film regions
EP1816673A3 (en) Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidification
US8411713B2 (en) Process and system for laser crystallization processing of film regions on a substrate to minimize edge areas, and structure of such film regions
US7259081B2 (en) Process and system for laser crystallization processing of film regions on a substrate to provide substantial uniformity, and a structure of such film regions
TW200733239A (en) Line scan sequential lateral solidification of thin films
WO2007022302A3 (en) High throughput crystallization of thin films
AU1323901A (en) Contour forming of metals by laser peening
WO2007067541A3 (en) Systems and methods for processing a film, and thin films
WO2004075263A3 (en) System and process for processing a plurality of semiconductor thin films which are crystallized using sequential lateral solidification techniques
WO2005029548A3 (en) System and process for providing multiple beam sequential lateral solidification
CA2308598A1 (en) Laser beam cutting method for cutting laminates for applying to the skin
WO2005125288A3 (en) Method of fabricating an electrochemical device using ultrafast pulsed laser deposition
WO2007016557A3 (en) Via hole machining for microwave monolithic integrated circuits
JP2015521108A (en) Workpiece processing method and processing apparatus using laser beam
WO2005029138A3 (en) Systems and methods for inducing crystallization of thin films using multiple optical paths
WO2005029549A3 (en) Method and system for facilitating bi-directional growth
JP2004526575A5 (en)
AU2003287857A1 (en) Method for the introduction of an integrated predetermined rupture line in a planar expansive body
JP2003088976A5 (en)
WO2005097501A3 (en) System for and method of manufacturing gravure printing plates
TW200702720A (en) Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
WO2004011181A3 (en) Method and apparatus for removing minute particle(s) from a surface

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10953312

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10953312

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP