WO2003077761A1 - Blood analyzer - Google Patents

Blood analyzer Download PDF

Info

Publication number
WO2003077761A1
WO2003077761A1 PCT/JP2003/003247 JP0303247W WO03077761A1 WO 2003077761 A1 WO2003077761 A1 WO 2003077761A1 JP 0303247 W JP0303247 W JP 0303247W WO 03077761 A1 WO03077761 A1 WO 03077761A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
hemoglobin
blood
blood analyzer
light
Prior art date
Application number
PCT/JP2003/003247
Other languages
French (fr)
Japanese (ja)
Inventor
Shunji Egawa
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Publication of WO2003077761A1 publication Critical patent/WO2003077761A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors

Definitions

  • the present invention relates to a blood analyzer for non-invasively measuring a specific component in blood, particularly, hemoglobin in blood.
  • hemoglobin particularly hemoglobin A 1c in a state of being bound to blood glucose
  • Hemoglobin binds to glucose according to the glucose concentration in the blood. This is an irreversible reaction with a slow reaction time. Since the life span of red blood cells is about 120 days, hemoglobin A 1c reflects the average blood glucose level in the past month or two.
  • Methods for analyzing hemoglobin A1c include high performance liquid chromatography (HPLC) and immunoassay.
  • HPLC high performance liquid chromatography
  • immunoassay for example, as a commercially available hemoglobin Alc analyzer for the HP LC method, there is a Tosoh automatic glycohemoglobin analyzer HLC-723G7 (medical device license number 35BZ0019).
  • An ADAMS Master-DM-3310 medical device approval number 2100BZZ 00391 is an example of an immunoassay hemoglobin Alc analyzer.
  • hemoglobin A1c analyzers collect venous blood from patients and examine whole blood. Such a method of testing caused pain and discomfort to the patient during blood collection. In addition, since blood cannot be collected without doctors, nurses, and laboratory technicians, and because the equipment is large and expensive, it is used for medical examinations for diabetes and medical examinations in hospitals, etc. It could not be used easily. Further, as an apparatus for inspecting the blood components without blood sampling, analysis contents are different is Parusuokishime coater to measure oxygen saturation of arterial blood (hereinafter abbreviated as "Sp_ ⁇ 2".). An example of such a pulse oximeter is disclosed in Japanese Patent Publication No. 53-26437 as an optical blood measuring device.
  • This optical blood measurement According to the measurement device, the change in transmitted light due to the pulsation of the blood flow is measured in two wavelength bands of 630 nm and 900 nm, and the ratio of these two changes, that is, the ratio of the absorption coefficient, is determined. and calculates the Sp_ ⁇ 2 of arterial blood.
  • the component ratio of the two components of O carboxymethyl hemoglobin (H -0 2) the de O carboxymethyl hemoglobin (hereinafter abbreviated as "Hb”.) Measured at two wavelengths 630 nm and 900 nm It was done.
  • the pulse O carboxymethyl meters is for obtaining the component ratio of only 2 components of Hb-0 2 and Hb, the presence of local ports carboxymethyl hemoglobin combined with carbon monoxide (Hb-C ⁇ ) was ignored. This is because the presence of Hb-CO caused negligible errors in clinical settings, such as during and after surgery, in intensive care units, and during emergency transport.
  • Hb_CO the analysis target.
  • Figure 8 is a commercially available pulse O carboxymethyl meter one shows the results obtained indirectly to Mog Robin A 1 c from S p0 2.
  • the light source for this device is a light emitting diode with 660 ⁇ m and 940 nm.
  • the subjects of the measurement experiment were 5 diabetic patients and 22 normal subjects, a total of 27 cases. The total was categorized into 16 cases of non-smokers who did not smoke and 11 cases of smokers who smoked. did.
  • the Parusuokishime Isseki one display value S p0 2, in order to convert hemoglobin A 1 c corresponding value, and the processing of 100- S P_ ⁇ 2. For example, if Sp_ ⁇ 2 92%, hemoglobin A 1 c corresponding value is set to 8%.
  • the result of the measurement experiment was The number of cases (frequency) is shown.
  • hemoglobin A 1c equivalent was high only in diabetic patients and low in normal subjects. In the smoker group as well, diabetic patients showed high levels, but normal subjects showed high levels. Thus, in the case of a smoker, there is a risk that hemoglobin A 1c may be measured as a high value, and that a conventional pulse oximeter cannot accurately determine hemoglobin A 1c. It was revealed.
  • an object of the present invention is to provide a blood analyzer capable of non-invasively analyzing the concentration of glycated hemoglobin in blood used as various diagnostic and medical indicators. Disclosure of the invention
  • the blood analyzer of the present invention when measuring the concentration of a specific component from among blood components using light having a plurality of different wavelengths, measuring at least Darico's hemoglobin as the specific component. Specifically, it is characterized by measuring hemoglobin A1c.
  • the wavelength of at least one of the plurality of lights is set to a wavelength at which the absorbance ratio of dalicohaemoglobin is maximized.
  • a specific component in blood for example, glycohemoglobin can be measured by non-invasive method, and thus, the risk of infection due to blood collection can be eliminated.
  • the blood analyzer since the blood analyzer has a simple configuration and can be miniaturized, an inexpensive blood analyzer can be realized, and a patient can easily perform a test at home.
  • the blood analyzer of the present invention is characterized in that, in addition to the glycohemoglobin, oxyhemoglobin and carboxyhemoglobin are measured as the specific components.
  • the light of a plurality of different wavelengths is set to a wavelength near the maximum value of the absorbance ratio of carboxyhemoglobin and the maximum value of the absorbance ratio of oxyhemoglobin.
  • the molar extinction coefficient of the daricohemoglobin, the molar extinction coefficient of the oxyhemoglobin, and the molar extinction coefficient of the lipoxyhemoglobin are respectively k1, k2, and k3.
  • the first wavelength is set in a region of k3>kl> k2
  • the second wavelength is set to kl ⁇
  • the region is set in the region of k 3> k 2
  • the third wavelength is set in the region of k 1 k 2 k 3.
  • oxyhemoglobin and carboxyhemoglobin in addition to glycohemoglobin, oxyhemoglobin and carboxyhemoglobin can be directly measured in a non-invasive manner.
  • the measurement results are in a state in which carboxyhemoglobin is included in either dalicohemoglobin or oxyhemoglobin, so there is a point that accuracy is required.
  • the present invention does not cause such a problem.
  • the concentrations of glycohemoglobin, oxyhemoglobin, and lipoxyhemoglobin are measured based on the maximum value of the absorbance ratio and the wavelength near the maximum value of the absorbance ratio, so that accurate measurement can be performed.
  • the result can be obtained.
  • the wavelengths of ⁇ 3 are preferably wavelengths of 600 ⁇ : L000nm, and specifically, the first wavelength is a wavelength of 65 ⁇ 780nm, and the second wavelength is Preferably, the wavelength is between 600 and 600 nm, and the third wavelength is between 850 and 00 nm.
  • glycohemoglobin is sometimes is sometimes used to agree to hemoglobin A le (H b A lc - ⁇ 2), to be precise, in particular hemoglobin having a glycated hemoglobin caries Chino specific chemical structure A 1 c.
  • Many types of glycohemoglobin are known in addition to hemoglobin A1'c.
  • the present invention can be used not only for analysis of hemoglobin A1c but also for other types of analysis of glycohemoglobin. Therefore, in this specification, the term "glycated hemoglobin" refers to a broad concept including hemoglobin Alc as well as other types.
  • FIG. 1 is an external view of a blood analyzer according to an embodiment of the present invention, wherein (a) is a front view and (b) is a side view.
  • FIG. 2 is a mounting view of the blood analyzer according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a sensor unit structure of the blood analyzer according to the embodiment of the present invention.
  • FIG. 4 is a block diagram of the blood analyzer according to the embodiment of the present invention.
  • Figure 5 is hemoglobin A le (H b A lc- 0 2), O carboxymethyl hemoglobin (H b - 0 2), absorbance showing the change of the molar extinction coefficient at the wavelength of the local port carboxymethyl hemoglobin (H b-CO) It is a characteristic curve.
  • FIG. 7 is an external view of a blood analyzer according to another embodiment of the present invention.
  • FIG. 8 shows the results of measurements performed using a conventional pulse oximeter.
  • This blood analyzer is a blood analyzer for examining the proportions of various hemoglobins contained in red blood cells in blood.
  • the blood analyzer 10 is provided with an insertion hole 11 for inserting a measurement site on a side surface, and has a substantially cylindrical shape so that a subject's finger can be inserted.
  • a switch 12 for turning on the power and starting an analysis and a display 13 for displaying an analysis result are provided on the front.
  • the display 13 displays hemoglobin Ale, which is an indicator of blood sugar control.
  • the third finger (middle finger) of the right hand into the insertion hole 11 and support the blood analyzer 10 lightly with the second finger (index finger) and fourth finger (ring finger) on both sides. Turn your palm up.
  • the living tissue 1 to be measured is the third finger of the right hand.
  • switch 12 is pressed with another finger, for example, the first finger (thumb) in this position, the power is turned on and the analysis is started.
  • the analysis result can be easily read because the display 13 is facing upward.
  • the living tissue 1 to be inserted into the insertion hole 11 is the third finger of the right hand, but the present invention is not limited to this finger, and other fingers can be similarly measured. In addition, all fingers and toes can be measured.
  • the shape of the insertion hole 11 of the blood analyzer it is possible to measure the hemoglobin A 1c with the earlobe or nose as a measurement target.
  • the insertion hole 11 is formed by a substantially cylindrical holder 27 having a closed end.
  • the living tissue 1, which is a finger, is inserted into the tip of the holder 27 so as to abut it.
  • the holder 27 is provided with a light receiving filter 26 at a portion where a finger pad touches, and a diffusion plate 25 is provided on the opposite side of the light receiving filter 26.
  • the diffusion plate 25 is formed by molding a transparent polystyrene (PS) resin or an acrylic (PMMA) resin. Light emitting elements 21, 22, and 23 are arranged close to the outside of the diffusion plate 25.
  • the light-emitting elements 21, 22, and 23 are chip-type light-emitting diodes having peak emission wavelengths of ⁇ 1, ⁇ 2, and ⁇ 3, respectively. Light-emitting elements 21, 22, and 23 are arranged close to each other, but cannot emit light from the same position. Therefore, a diffusion plate 25 is provided in order to minimize an error caused by a difference in the position of the light emitting elements 21, 22, 23. By providing the diffusion plate 25, the point light emitted by the chip-type light emitting diode is converted into the surface light emitted by the diffusion plate 25, and the effect of the light path difference between the light emitting elements 21, 22, and 23 is eliminated. .
  • the light emitting elements 21, 22, and 23 are light emitting diodes, but laser diodes having excellent wavelength selectivity may be used.
  • the light receiving filter 26 receives only the light transmitted through the living tissue 1 from the light of the wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 respectively emitted from the light emitting elements 21, 22, and 23. That is, the light receiving filter 26 is an optical filter for attenuating fluorescent lights and sunlight, and reduces the influence of extraneous light leaking from the gap between the input hole 11 and the living tissue 1. In addition, the light receiving filter 26 also has a dustproof effect, so that cleaning can be easily performed.
  • the light receiving element 24 is disposed outside the light receiving filter 26.
  • the light receiving element 24 is a photodiode that receives light having wavelengths of ⁇ 1, ⁇ 2, and ⁇ 3.
  • the circuit board 30 mounts the light receiving element 24 and also mounts each unit (not shown) such as an arithmetic unit described later.
  • the calculation means obtains a change in photocurrent due to pulsation at each wavelength, and further calculates hemoglobin A1c. Its calculation The result is displayed by the display 13 connected to the circuit board 30.
  • a block diagram of the blood analyzer of this embodiment will be described with reference to FIG.
  • Light from these light emitting elements 21, 22, and 23 is applied to the finger as the living tissue 1.
  • the irradiated light is absorbed by various hemoglobins of the living tissue 1, but is also scattered by red blood cells.
  • the transmitted light is received by the light receiving elements 24 arranged facing each other with the living tissue 1 interposed therebetween.
  • the emission wavelengths ⁇ , ⁇ 2, and ⁇ 3 are in a relationship of ⁇ 1 and ⁇ 2 ⁇ 3, and are set to, for example, 630 nm, 680 nm, and 940 nm, respectively.
  • the light receiving element 24 receives the light emitted from the light emitting elements 21, 22, and 23, which is attenuated by passing through the living tissue 1 to have transmitted light amounts I1, 12, and I3.
  • the amplifier 32 converts the photocurrent of the light receiving element 24 into a voltage, and amplifies the voltage.
  • the transmitted light amounts I1, 12, and I3 at each wavelength include a pulsation component corresponding to a pulsation.
  • the output signal of the amplifier 32 is divided for each of the wavelengths ⁇ , ⁇ 2, and ⁇ 3, and supplied to the band-pass filters (BPF) 34, 35, and 36.
  • the BPFs 34, 35, and 36 remove high-frequency noise components contained in each signal, and further reduce the pulsating components of transmitted light at the respective wavelengths ⁇ 1, ⁇ 2, ⁇ 3 in the biological tissue 1. It outputs a corresponding amplitude signal, that is, a finger plethysmogram.
  • the pulsation extraction means (DET) 37, 38, 39 detects and extracts a signal corresponding to the amplitude value of the pulsation component of living tissue 1 for each wavelength from each output signal from the BPFs 34, 35, 36 ing. These detection signals correspond to the pulsatile components ⁇ 1, ⁇ 2, and ⁇ 3 of the transmitted light at the respective wavelengths; 1, ⁇ • 2, ⁇ 3 in the biological tissue 1, and are analog / digital converted data. .
  • the output signals ⁇ , ⁇ 2, ⁇ 3 of the DETs 37, 38, 39 are supplied to the calculating means 40, and the component ratios of various hemoglobins to all hemoglobins are calculated. Then, the display means 41 displays the component ratio of hemoglobin A 1c as the calculation result.
  • the calculation of the hemoglobin component ratio calculated by the calculating means 40 will be described. From the molar extinction coefficient of various hemoglobins and the absorbance of the living tissue 1, the component ratio of various hemoglobins, which are absorption components, is calculated by mathematical conversion.
  • X is HbAl c- ⁇ 2
  • y is Hb-0
  • z is the concentration (concentration in unit volume) of the Hb-CO.
  • k is a proportional constant representing the optical path length due to the blood vessel.
  • the absorbance by the biological tissue 1 at the wavelength 1 (i 1, 2, 3), the absorbing component mainly HbA 1 c- ⁇ 2, due to various hemoglobin Hb-0 2, H b-CO is there.
  • the component ratio X of HbA 1 c—O 2 is the ratio of the concentration of Hb A 1 c— ⁇ 2 to the concentration of total hemoglobin, and is given by equation (8).
  • ⁇ u has been described as a molar extinction coefficient, but if the concentrations of various hemoglobins are unknown, they can be treated as absorbance under the same concentration conditions. At this time, the dimensions change, but the basic idea is the same.
  • the absorption spectrum used in the absorption analysis will be described.
  • the electron spectrum derived from the electronic transition has a large absorption spectrum in the ultraviolet-visible region.
  • the vibration spectrum derived from molecular vibration has an absorption spectrum in the near infrared region, but the absorption itself is small.
  • analysis is difficult because the absorption by hemoglobin is small and the absorption by water molecules is large.
  • the emission wavelengths 1 ⁇ 2 and ⁇ 3 are visible from 600 nm to 1000 nm. Set from light and near-infrared light. Furthermore, when setting the emission wavelength by focusing on the difference in molar extinction coefficient, it is advisable to set it from the visible light region where the electronic spectrum appears, that is, from 600 nm to 780 nm.
  • FIG. 5 shows the measured P and light characteristic curves.
  • FIG. 6 shows the characteristic curves in which the ratio of the molar extinction coefficient of each type of hemoglobin is P and the light intensity ratio.
  • the vertical axis is the molar extinction coefficient of each hemoglobin component, and the horizontal axis is the wavelength.
  • the first k 1 molar extinction coefficient of HbAl c- 0 2 is a component
  • the molar extinction coefficient k 2 of the Hb-0 2 which is the second component is the third component Hb- C_ ⁇ molar absorption Let the coefficient be k3.
  • the first wavelength ⁇ ⁇ a wavelength having a large difference in molar extinction coefficient between various hemoglobins is selected.
  • FIG. 5 there is a large difference in the molar extinction coefficient near the wavelength of 630 nm.
  • Hb -CO, HbAl c- ⁇ 2, Hb_ ⁇ 2 that is, a k 3> k 1> k 2 .
  • the first wavelength ⁇ 1 is set from the range from 600 nm to 650 nm.
  • the emission wavelength ⁇ 1 is designed to be 63 O nm and an orange light-emitting diode is used, it is advantageous in terms of cost and delivery time in parts procurement.
  • the second wavelength ⁇ 2 is set from a region different from the molar extinction coefficient ratio at the previously set wavelength ⁇ 1. According to FIG. 5, in the region from 650 nm to 780 nm, when the molar extinction coefficient is arranged in descending order, HbAl c—O 2 , Hb—CO, Hb—O 2 , and HbAl c—O 2 and Hb—CO It turns out that it is reversed. That is, kl ⁇ k3> k2.
  • the second wavelength ⁇ 2 is set from the range of 650 nm to 780 nm.
  • the emission wavelength ⁇ 2 is 680 nm and a red emission diode is used, it is advantageous in terms of cost and delivery time in parts procurement.
  • This isosbestic characteristic shows a characteristic different from the ratio of the molar extinction coefficient at the wavelengths ⁇ and ⁇ 2.
  • the third wavelength ⁇ 3 is set from the range of 850 nm to 1000 nm. For example, if a design is made to use a 940 nm infrared light emitting diode, which is often used for optical communication using infrared light with an emission wavelength of ⁇ 3, it is advantageous in terms of cost and delivery time in parts procurement.
  • the component ratio of hemoglobin can be accurately calculated.
  • the wavelength of the light-emitting diode from the light-emitting diodes having a large supply amount, it is possible to design a more easily procured and inexpensive product.
  • an optical analyzer can reduce the error when measured at an absorption band (singular point) peculiar to a substance.
  • HbAl c- 0 2 shown in FIG. 5 the wavelength one molar extinction coefficient graph Hb-CO, and HbAl c- ⁇ 2 curve arrows and Moriaga One in which point (position of the wavelength ⁇ ⁇ ), Hb — The point where the CO curve rises slightly (the wavelength ⁇ 2 position) is the singular point.
  • HbAl c- ⁇ 2 Hb-wavelength of CO - difficult to find the singular point in the molar extinction coefficient graphs.
  • the present invention is, HbA 1 c- 0 2 shown in FIG. 6, Hb-0 2, Hb-CO based on the wavelength one molar absorbance ratio, locate the wavelength of the absorbance ratio is maximum, measurement results definitive in this wavelength From the analysis.
  • the method of setting the wavelengths ⁇ 1, ⁇ 2, ⁇ 3 having the maximum absorbance ratio is a method of obtaining the ratio of the molar extinction coefficient of various hemoglobins, that is, the absorbance ratio.
  • the absorbance ratio on the vertical axis in FIG. 6 is the ratio of the molar extinction coefficient of various hemoglobins, kj / (k1 + k2 + k3).
  • the horizontal axis is the wavelength.
  • the P and luminous intensity ratio are k 3 / (k 1 + k 2 + k 3).
  • the maximum of the absorbance ratio of Hb—CO is in the wavelength range from 600 nm to 650 nm. Therefore, the first wavelength 1 may be set from this wavelength region. In particular, it can be seen that it is almost maximum around 630 nm. This is because the absorption band of Hb—CO is in this region.
  • the maximum of the absorbance ratio of HbAl C_ ⁇ 2 it can be seen that from wavelength 650 nm to 780 nm region. Therefore, the second wavelength ⁇ 2 may be set from this wavelength region. In particular, it can be seen that it is almost maximum around 680 nm. This is because there is an absorption band of Hb A 1 c— ⁇ 2 in this region.
  • the third wavelength ⁇ 3 is set from this region.
  • the wavelengths ⁇ , ⁇ 2, and ⁇ 3 are set from the wavelengths at which the absorbance ratio of various hemoglobins is maximum or the absorbance ratio is maximum.
  • the maximum of the absorbance ratio may be obtained from the absorbance obtained by an experiment.
  • the calculation can be simplified by selecting the isosbestic point for the emission wavelength.
  • the third wavelength is already choose isosbestic point
  • the second wavelength may be chosen isosbestic point of the near with 650 nm HbAl c- ⁇ 2 and Hb-CO.
  • the equation (11) is obtained, and the calculation can be simplified.
  • 3 1 ( £ 22 8 33 ⁇ ⁇ 21 £ 32) + a 2 ( £ 11 ⁇ 32— ⁇ 11 £ 33 / + a 3 ( £ 11 £ 23— £ 11 £ 22)
  • a mass percent concentration such as a component ratio (%) of various hemoglobins in blood and a substance amount in a fixed volume such as an average blood sugar level (mg / d1) are determined. be able to.
  • both the component ratio and the blood glucose level can be displayed on the display unit of the blood analyzer, and in some cases, only the average blood glucose level can be displayed.
  • FIG. 7 is an external view of a blood analyzer according to another embodiment of the present invention. The difference between the blood analyzer of this embodiment and the blood analyzer shown in FIG.
  • Hb—CO carboxyhemoglobin
  • Hb—CO often binds to the carbon monoxide contained in tobacco smoke and can be used as an indicator of smoker health care.
  • Hb_C ⁇ can also be a cause of shortness of breath, and is therefore an important indicator of health care.
  • the non-invasive and inexpensive blood analyzer according to the present invention is a useful self-care means that not only can perform measurement without pain but also can improve treatment consciousness for diabetic patients. And it can prevent complications such as neuropathy, retinopathy and nephropathy. Furthermore, if the self-measurement of glycated hemoglobin is measured not only for diabetic patients but also for healthy adults, it will help prevent diabetes.

Abstract

A blood analyzer for measuring blood hemoglobin concentrations serving as indications in diagnosing diabetes or controlling blood glucose level. From characteristic curves showing the molar absorption coefficient ratios of three hemoglobin components including HbAlc-O2, Hb-O2 and Hb-CO, the wavelength at which the absorbance ratio of each component attains a peak or the wavelength at which the absorbance ratio of each component attains the maximum level is selected. Then the composition ratio of the hemoglobin components is calculated based on the molar absorption coefficients of the hemoglobin components at these wavelengths and the absorbances of a biological tissue at these wavelengths. Thus, the concentrations of the hemoglobin components are indicated non-invasively.

Description

明 細 書 血液分析装置 技術分野  Description Hematology analyzer Technical field
本発明は、 非侵襲で血液中の特定成分、 特に、 血液中のヘモグロビンを測定す る血液分析装置に関する。 背景技術  The present invention relates to a blood analyzer for non-invasively measuring a specific component in blood, particularly, hemoglobin in blood. Background art
従来から、 糖尿病の診断や血糖コントロールの状態を知るための指標として、 ヘモグロビン、 特に、 血液中のグルコースと結合した状態のヘモグロビン A 1 c が臨床的に利用されている。 へモグロビンは血液中のグルコース濃度に応じてグ ルコースと結合する。 これは反応時間の遅い不可逆反応である。 赤血球の寿命が 約 120日であることから、 ヘモグロビン A 1 cは過去 1〜2力月の平均血糖レ ベルを反映しているものといえる。  Conventionally, hemoglobin, particularly hemoglobin A 1c in a state of being bound to blood glucose, has been clinically used as an index for diagnosing diabetes and knowing the state of glycemic control. Hemoglobin binds to glucose according to the glucose concentration in the blood. This is an irreversible reaction with a slow reaction time. Since the life span of red blood cells is about 120 days, hemoglobin A 1c reflects the average blood glucose level in the past month or two.
ヘモグロビン A 1 cの分析方法としては、 高速液体クロマトグラフィー法 (H PLC法) や免疫法などがある。 例えば、 市販されている HP LC法のへモグロ ビン Al c分析装置としては、 東ソー自動グリコヘモグロビン分析計 HLC— 7 23 G 7 (医療用具許可番号 第 35BZ 0019号) がある。 また、 免疫法の ヘモグロビン Al c分析装置としては、 ADAMSマスタ一 DM— 3310 (医 療用具承認番号 2100BZZ 00391) がある。  Methods for analyzing hemoglobin A1c include high performance liquid chromatography (HPLC) and immunoassay. For example, as a commercially available hemoglobin Alc analyzer for the HP LC method, there is a Tosoh automatic glycohemoglobin analyzer HLC-723G7 (medical device license number 35BZ0019). An ADAMS Master-DM-3310 (medical device approval number 2100BZZ 00391) is an example of an immunoassay hemoglobin Alc analyzer.
これらのヘモグロビン A 1 c分析装置は、 患者の静脈血を採血して全血を検査 している。 このような検查方法は、 採血の際、 患者に苦痛と不快感を与えるもの であった。 また、 医師や看護婦、 検査技師がいないと採血できないことや、 装置 が大型化し高価であるため、 病院などにおいて糖尿病の診察を行うときや健康診 断のときに用いられるものであり、 家庭などで手軽に用いることはできなかつた。 また、 採血しないで血液成分を検査する装置として、 分析内容は異なるが動脈 血の酸素飽和度 (以下 「Sp〇2」 と略記する。 ) を測定するパルスォキシメー ターがある。 このようなパルスォキシメータ一の一例が、 日本国特公昭 53— 2 6437号公報に光学式血液測定装置として開示されている。 この光学式血液測 定装置によれば、 血流の脈動に起因する透過光の変化分を、 630 nmと 900 nmの二つの波長帯域において測定して、 この二つの変化分の比、 つまり吸光係 数の比から動脈血の Sp〇2を算出している。 この光学式血液測定装置では、 ォ キシヘモグロビン (H -02) とデォキシヘモグロビン (以下 「Hb」 と略記 する。 ) の 2成分の成分比を、 630 nmと 900 nmの 2波長で測定したもの であった。 These hemoglobin A1c analyzers collect venous blood from patients and examine whole blood. Such a method of testing caused pain and discomfort to the patient during blood collection. In addition, since blood cannot be collected without doctors, nurses, and laboratory technicians, and because the equipment is large and expensive, it is used for medical examinations for diabetes and medical examinations in hospitals, etc. It could not be used easily. Further, as an apparatus for inspecting the blood components without blood sampling, analysis contents are different is Parusuokishime coater to measure oxygen saturation of arterial blood (hereinafter abbreviated as "Sp_〇 2".). An example of such a pulse oximeter is disclosed in Japanese Patent Publication No. 53-26437 as an optical blood measuring device. This optical blood measurement According to the measurement device, the change in transmitted light due to the pulsation of the blood flow is measured in two wavelength bands of 630 nm and 900 nm, and the ratio of these two changes, that is, the ratio of the absorption coefficient, is determined. and calculates the Sp_〇 2 of arterial blood. In this optical blood measuring apparatus, the component ratio of the two components of O carboxymethyl hemoglobin (H -0 2) the de O carboxymethyl hemoglobin (hereinafter abbreviated as "Hb".), Measured at two wavelengths 630 nm and 900 nm It was done.
一般に、 パルスォキシメーターは、 Hb-02と Hbの 2成分のみの成分比を 求めるものであり、 一酸化炭素と結合したカルポキシヘモグロビン (Hb— C 〇) の存在は無視していた。 これは、 手術中や術後、 集中治療室、 救急の輸送中 などの臨床現場において、 Hb— COの存在が引き起こす誤差が、 無視できる程 度のものであったからである。 しかしながら、 高精度な測定結果が求められるよ うになつてきたことから、 H b _ C Oを分析対象とすることが考えられるように なった。 In general, the pulse O carboxymethyl meters is for obtaining the component ratio of only 2 components of Hb-0 2 and Hb, the presence of local ports carboxymethyl hemoglobin combined with carbon monoxide (Hb-C 〇) was ignored. This is because the presence of Hb-CO caused negligible errors in clinical settings, such as during and after surgery, in intensive care units, and during emergency transport. However, the need for high-precision measurement results has made it possible to consider Hb_CO as the analysis target.
その一例として、 日本国特開平 5— 228129号公報に、 動脈血中の Hb— 02と Hbおよび Hb— COの割合をそれぞれ測定できるようにした装置が開示 されている。 この装置によれば、 660 nm, 750 nm, 940 nmの三つの 光源で、 Hb— 02と Hbに加えて、 Hb— COの三つの成分比を算出して、 動 脈血の S p02を求めることができる。 As an example, in Japanese Unexamined Japanese Patent Publication No. 5-two hundred twenty-eight thousand one hundred twenty-nine, apparatus which can measure the respective percentage of Hb-0 2 and Hb and Hb-CO in arterial blood is disclosed. According to this device, in three of the light source of 660 nm, 750 nm, 940 nm , Hb- 0 2 and in addition to Hb, Hb-calculate the three component ratios of CO, S of arterial blood p0 2 Can be requested.
しかし、 上述した従来の技術は、 Hb— COを算出することはできるものの、 いずれも動脈血中のォキシヘモグロビン Hbの成分比である S p〇2を求めるも のであり、 糖尿病の診断や血糖コントロールの状態の指標とするへモグロビン A 1 c (HbAl c— 02) を直接求めることはできなかった。 However, although the above-described conventional techniques can calculate Hb-CO, they all determine the Sp 比2 , which is the component ratio of oxyhemoglobin Hb in arterial blood, and are used to diagnose diabetes and control glycemic control. Hemoglobin A 1 c (HbAl c — 0 2 ) could not be directly obtained as an indicator of the state of.
第 8図は、 市販のパルスォキシメータ一を用い、 S p02から間接的にへモグ ロビン A 1 cを求めた結果を示している。 なお、 この装置の光源には、 660 η mと 940 nmの発光ダイオードが使われている。 測定実験の被験者は、 糖尿病 患者 5症例、 正常者 22症例、 合計 27症例であり、 集計はたばこを吸う習慣が ない禁煙者群 16症例と、 たばこを吸う習慣がある喫煙者群 11症例に分類した。 パルスォキシメ一夕一の表示値 S p02を、 ヘモグロビン A 1 c相当値に変換す るために、 100— S p〇2の処理をしている。 例えば、 Sp〇2が 92%なら ば、 ヘモグロビン A 1 c相当値は 8%としている。 なお、 測定実験の結果は、 症 例数 (度数) を示してある。 Figure 8 is a commercially available pulse O carboxymethyl meter one shows the results obtained indirectly to Mog Robin A 1 c from S p0 2. The light source for this device is a light emitting diode with 660 ηm and 940 nm. The subjects of the measurement experiment were 5 diabetic patients and 22 normal subjects, a total of 27 cases.The total was categorized into 16 cases of non-smokers who did not smoke and 11 cases of smokers who smoked. did. The Parusuokishime Isseki one display value S p0 2, in order to convert hemoglobin A 1 c corresponding value, and the processing of 100- S P_〇 2. For example, if Sp_〇 2 92%, hemoglobin A 1 c corresponding value is set to 8%. The result of the measurement experiment was The number of cases (frequency) is shown.
禁煙者群ではヘモグロビン A 1 c相当値が糖尿病患者だけが高値を示し、 正常 者は低値を示した。 喫煙者群でも糖尿病患者は高値を示したものの、 正常者に高 値を示す症例が含まれていた。 このように喫煙者の場合には、 ヘモグロビン A 1 cを高値と測定してしまうおそれがあり、 従来技術によるパルスォキシメーター ではヘモグロビン A 1 cを正確に求められないことが、 測定実験からも明らかに なった。  In the non-smoker group, hemoglobin A 1c equivalent was high only in diabetic patients and low in normal subjects. In the smoker group as well, diabetic patients showed high levels, but normal subjects showed high levels. Thus, in the case of a smoker, there is a risk that hemoglobin A 1c may be measured as a high value, and that a conventional pulse oximeter cannot accurately determine hemoglobin A 1c. It was revealed.
そこで、 本発明は、 さまざまな診断や医療の指標として用いる血液中のグリコ ヘモグロビンの濃度を非侵襲で分析できる血液分析装置の提供を目的とする。 発明の開示  Accordingly, an object of the present invention is to provide a blood analyzer capable of non-invasively analyzing the concentration of glycated hemoglobin in blood used as various diagnostic and medical indicators. Disclosure of the invention
本発明の血液分析装置は、 血液の成分中から特定成分の濃度を、 異なる複数の 波長の光を用いて測定する場合において、 前記特定成分として、 少なくともダリ コへモグロビンを測定すること、 さらに具体的にはへモグロビン A 1 cを測定す ることを特徴としている。 そして、 前記複数の光うち、 少なくとも一つの光の波 長を、 ダリコヘモグロビンの吸光度比が極大値となる波長に設定したことを特徴 としている。  The blood analyzer of the present invention, when measuring the concentration of a specific component from among blood components using light having a plurality of different wavelengths, measuring at least Darico's hemoglobin as the specific component. Specifically, it is characterized by measuring hemoglobin A1c. The wavelength of at least one of the plurality of lights is set to a wavelength at which the absorbance ratio of dalicohaemoglobin is maximized.
本発明によれば、 非侵襲によって血液中の特定成分、 例えば、 グリコへモグロ ビンの測定を実現できるので、 採血にともなう感染の危険性を排除することがで きる。 また、 この血液分析装置は、 構成が簡単になり小型化することが可能なの で、 安価な血液分析装置を実現でき、 患者が在宅で気軽に検査できるようになる。 また、 本発明の血液分析装置は、 前記特定成分として、 前記グリコへモグロビ ンのほかに、 ォキシへモグロビンとカルポキシヘモグロビンを測定することを特 徵としている。 そして、 複数の異なる波長の光が、 前記カルポキシヘモグロビン の吸光度比の極大値およびォキシヘモグロビンの吸光度比の最大値付近の波長に 設定してある。  According to the present invention, a specific component in blood, for example, glycohemoglobin can be measured by non-invasive method, and thus, the risk of infection due to blood collection can be eliminated. In addition, since the blood analyzer has a simple configuration and can be miniaturized, an inexpensive blood analyzer can be realized, and a patient can easily perform a test at home. Further, the blood analyzer of the present invention is characterized in that, in addition to the glycohemoglobin, oxyhemoglobin and carboxyhemoglobin are measured as the specific components. The light of a plurality of different wavelengths is set to a wavelength near the maximum value of the absorbance ratio of carboxyhemoglobin and the maximum value of the absorbance ratio of oxyhemoglobin.
さらに、 本発明の血液分析装置は、 前記ダリコへモグロビンのモル吸光係数、 前記ォキシヘモグロビンのモル吸光係数および前記力ルポキシヘモグロビンのモ ル吸光係数をそれぞれ k 1 , k 2 , k 3としたとき、 前記複数の異なる波長の光 のうち、 第 1の波長を k 3 > k l〉k 2の領域に設定し、 第 2の波長を k l≥ k 3 > k 2の領域に設定し、 第 3の波長を k 1 k 2 k 3の領域に設定して ある。 Furthermore, in the blood analyzer of the present invention, the molar extinction coefficient of the daricohemoglobin, the molar extinction coefficient of the oxyhemoglobin, and the molar extinction coefficient of the lipoxyhemoglobin are respectively k1, k2, and k3. At this time, among the lights of the plurality of different wavelengths, the first wavelength is set in a region of k3>kl> k2, and the second wavelength is set to kl≥ The region is set in the region of k 3> k 2, and the third wavelength is set in the region of k 1 k 2 k 3.
本発明によれば、 非侵襲によって、 グリコヘモグロビンのほかにォキシへモグ ロビンとカルポキシヘモグロビンをも直接測定することができる。 すなわち、 力 ルボキシへモグロビン成分を測定できない分析装置においては、 カルポキシへモ グロビンが、 ダリコヘモグロビンあるいはォキシヘモグロビンのいずれかに含ま れた状態の測定結果となるため、 正確さにかける点があるが、 本発明にはそのよ うな問題は生じない。  According to the present invention, in addition to glycohemoglobin, oxyhemoglobin and carboxyhemoglobin can be directly measured in a non-invasive manner. In other words, in an analyzer that cannot measure the carboxyhemoglobin component, the measurement results are in a state in which carboxyhemoglobin is included in either dalicohemoglobin or oxyhemoglobin, so there is a point that accuracy is required. However, the present invention does not cause such a problem.
また、 本発明によれば、 吸光度比の極大値および吸光度比の最大値付近の波長 にもとづいてグリコヘモグロビンと、 ォキシヘモグロビンおよび、 力ルポキシへ モグロビンの濃度を測定しているので、 正確な測定結果を得ることができる。 第:!〜 3の波長は、 6 0 0〜: L 0 0 0 nmの波長であることが好ましく、 具体 的には、 第 1の波長が 6 5 0〜 7 8 0 n mの波長であり、 第 2の波長が 6 0 0〜 6 5 0 nmの波長であり、 第 3の波長が 8 5 0〜0 0 0 nmの波長であることが 好ましい。  Further, according to the present invention, the concentrations of glycohemoglobin, oxyhemoglobin, and lipoxyhemoglobin are measured based on the maximum value of the absorbance ratio and the wavelength near the maximum value of the absorbance ratio, so that accurate measurement can be performed. The result can be obtained. No :! The wavelengths of ~ 3 are preferably wavelengths of 600 ~: L000nm, and specifically, the first wavelength is a wavelength of 65 ~ 780nm, and the second wavelength is Preferably, the wavelength is between 600 and 600 nm, and the third wavelength is between 850 and 00 nm.
なお、 グリコヘモグロビンは、 ときとして、 ヘモグロビン A l e (H b A l c —〇2) と同意に用いられることがあるが、 正確には、 グリコヘモグロビンのう ちの特定の化学構造を有するものを特にヘモグロビン A 1 cという。 そして、 グ リコヘモグロビンには、 ヘモグロビン A 1' c以外にも多数の種類が知られている。 一方、 本発明は、 ヘモグロビン A 1 cの分析は勿論のこと、 グリコへモグロビ ンの他の種類の分析にも同様にして用いることができる。 したがって、 本明細書 において、 グリコヘモグロビンと称する場合は、 ヘモグロビン A l cはもちろん のこと、 他の種類をも含む広い概念をいう。 図面の簡単な説明 Incidentally, glycohemoglobin is sometimes is sometimes used to agree to hemoglobin A le (H b A lc -〇 2), to be precise, in particular hemoglobin having a glycated hemoglobin caries Chino specific chemical structure A 1 c. Many types of glycohemoglobin are known in addition to hemoglobin A1'c. On the other hand, the present invention can be used not only for analysis of hemoglobin A1c but also for other types of analysis of glycohemoglobin. Therefore, in this specification, the term "glycated hemoglobin" refers to a broad concept including hemoglobin Alc as well as other types. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施形態による血液分析装置の外観図であり、 (a ) は正 面図、 (b ) は側面図である。  FIG. 1 is an external view of a blood analyzer according to an embodiment of the present invention, wherein (a) is a front view and (b) is a side view.
第 2図は、 本発明の実施形態による血液分析装置の装着図である。  FIG. 2 is a mounting view of the blood analyzer according to the embodiment of the present invention.
第 3図は、 本発明の実施形態による血液分析装置のセンサ部構造を示す断面図 である。 第 4図は、 本発明の実施形態による血液分析装置のブロック図である。 FIG. 3 is a cross-sectional view showing a sensor unit structure of the blood analyzer according to the embodiment of the present invention. FIG. 4 is a block diagram of the blood analyzer according to the embodiment of the present invention.
第 5図は、 ヘモグロビン A l e (H b A l c— 0 2) 、 ォキシヘモグロビン (H b - 02) 、 カルポキシヘモグロビン (H b— C O) の各波長におけるモル 吸光係数の変化を示す吸光特性曲線である。 Figure 5 is hemoglobin A le (H b A lc- 0 2), O carboxymethyl hemoglobin (H b - 0 2), absorbance showing the change of the molar extinction coefficient at the wavelength of the local port carboxymethyl hemoglobin (H b-CO) It is a characteristic curve.
第 6図は、 H b A l c—〇2、 H b—〇2、 H b— C Oの各波長におけるモル 吸光係数の割合を示す特性曲線である。 6 is a characteristic curve showing the percentage of the molar absorption coefficient at each wavelength of H b A lc-〇 2, H b-〇 2, H b-CO.
第 7図は、 本発明の他の実施形態による血液分析装置の外観図である。  FIG. 7 is an external view of a blood analyzer according to another embodiment of the present invention.
第 8図は、 従来のパルスォキシメータ一を用いて行った測定の結果を示す。 発明を実施するための最良の形態  FIG. 8 shows the results of measurements performed using a conventional pulse oximeter. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面により本発明の実施の形態を詳述する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
第 1図 ) および (b ) は、 本発明の一実施形態にかかる血液分析装置の外 観図である。 この血液分析装置は、 血液中の赤血球に含まれる各種ヘモグロビン の割合を調べる血液分析装置である。  1) and (b) are external views of a blood analyzer according to one embodiment of the present invention. This blood analyzer is a blood analyzer for examining the proportions of various hemoglobins contained in red blood cells in blood.
血液分析装置 1 0は、 側面に、 測定部位を入れる挿入穴 1 1が設けてあり、 被 験者の指が入るようにほぼ円筒形状をしている。 また、 正面には電源を入れて分 析を開始させるスィッチ 1 2と、 分析結果を表示する表示器 1 3が設けられてい る。 表示器 1 3には血糖コントロールの指標となる、 ヘモグロビン A l eが表示 される。  The blood analyzer 10 is provided with an insertion hole 11 for inserting a measurement site on a side surface, and has a substantially cylindrical shape so that a subject's finger can be inserted. In addition, a switch 12 for turning on the power and starting an analysis and a display 13 for displaying an analysis result are provided on the front. The display 13 displays hemoglobin Ale, which is an indicator of blood sugar control.
次に、 第 2図にもとづいて、 本実施形態の血液分析装置の使用方法を説明する。 血液分析装置 1 0の揷入穴 1 1に指を挿入する。 標準的な指の使い方は、 右手 第 3指 (中指) を揷入穴 1 1に入れて、 両側の第 2指 (人差し指) と第 4指 (薬 指) で軽く血液分析装置 1 0を支えて、 手のひらを上に向ける。 これが測定時の 標準的な装着姿勢である。 この場合、 測定対象の生体組織 1は右手第 3指となる。 この姿勢のままで、 スィッチ 1 2を他の指、 例えば第 1指 (親指) で押せば、 電 源が入り分析が開始される。  Next, a method of using the blood analyzer of the present embodiment will be described with reference to FIG. Insert a finger into the insertion hole 11 of the blood analyzer 10. To use a standard finger, insert the third finger (middle finger) of the right hand into the insertion hole 11 and support the blood analyzer 10 lightly with the second finger (index finger) and fourth finger (ring finger) on both sides. Turn your palm up. This is the standard mounting posture during measurement. In this case, the living tissue 1 to be measured is the third finger of the right hand. When switch 12 is pressed with another finger, for example, the first finger (thumb) in this position, the power is turned on and the analysis is started.
分析結果は、 表示器 1 3が上を向いているので、 簡単に読み取ることができる。 ここでは揷入穴 1 1に入れる生体組織 1を、 指を右手第 3指としたが、 この指に 限るものではなく他の指でも同様に測ることができる。 また、 手足の指ならばす ベて測定対象とすることができる。 なお、 血液分析装置の挿入穴 1 1の形状を変えることにより、 耳たぶや鼻を測 定対象としてへモグロビン A 1 cを測定とすることもできる。 The analysis result can be easily read because the display 13 is facing upward. Here, the living tissue 1 to be inserted into the insertion hole 11 is the third finger of the right hand, but the present invention is not limited to this finger, and other fingers can be similarly measured. In addition, all fingers and toes can be measured. By changing the shape of the insertion hole 11 of the blood analyzer, it is possible to measure the hemoglobin A 1c with the earlobe or nose as a measurement target.
次に、 第 3図にもとづいて、 本実施形態の血液分析装置のセンサ部構造を説明 する。  Next, a sensor unit structure of the blood analyzer of the present embodiment will be described with reference to FIG.
揷入穴 1 1は、 先端が閉じたほぼ円筒形状のホルダ 2 7で形成してある。 この ホルダ 2 7の先端に、 指である生体組織 1を突当たるように挿入する。 ホルダ 2 7には、 指の腹が当たる部分に受光フィル夕 2 6を設け、 この受光フィルタ 2 6 の反対側には拡散板 2 5が設けてある。 拡散板 2 5は透明なポリスチレン (P S ) 樹脂やアクリル (P MMA) 樹脂を成形したものである。 拡散板 2 5の外側 には発光素子 2 1 , 2 2, 2 3が近接して配置されている。  The insertion hole 11 is formed by a substantially cylindrical holder 27 having a closed end. The living tissue 1, which is a finger, is inserted into the tip of the holder 27 so as to abut it. The holder 27 is provided with a light receiving filter 26 at a portion where a finger pad touches, and a diffusion plate 25 is provided on the opposite side of the light receiving filter 26. The diffusion plate 25 is formed by molding a transparent polystyrene (PS) resin or an acrylic (PMMA) resin. Light emitting elements 21, 22, and 23 are arranged close to the outside of the diffusion plate 25.
発光素子 2 1, 2 2 , 2 3は、 それぞれのピーク発光波長が λ 1, λ 2 , λ 3のチップ型発光ダイオードである。 発光素子 2 1, 2 2, 2 3は近接して配置 してあるが、 同一位置からの発光はできない。 そこで、 発光素子 2 1, 2 2 , 2 3の位置が異なることによる誤差を最小限にするため、 拡散板 2 5を設けてある。 拡散板 2 5を設けることによって、 チップ型発光ダイオードによる点発光を、 拡 散板 2 5による面発光に変換し、 発光素子 2 1 , 2 2 , 2 3の光路差による影響 を解消している。  The light-emitting elements 21, 22, and 23 are chip-type light-emitting diodes having peak emission wavelengths of λ1, λ2, and λ3, respectively. Light-emitting elements 21, 22, and 23 are arranged close to each other, but cannot emit light from the same position. Therefore, a diffusion plate 25 is provided in order to minimize an error caused by a difference in the position of the light emitting elements 21, 22, 23. By providing the diffusion plate 25, the point light emitted by the chip-type light emitting diode is converted into the surface light emitted by the diffusion plate 25, and the effect of the light path difference between the light emitting elements 21, 22, and 23 is eliminated. .
なお、 ここでは発光素子 2 1 , 2 2 , 2 3を発光ダイォ一ドとしたが、 波長選 択性のすぐれたレーザーダイォ一ドとすることもできる。  Here, the light emitting elements 21, 22, and 23 are light emitting diodes, but laser diodes having excellent wavelength selectivity may be used.
受光フィルタ 2 6は、 発光素子 2 1 , 2 2, 2 3からそれぞれ発せられた波長 λ 1 , λ 2 , λ 3の光のうち、 生体組織 1を透過した光だけを受けるようにし ている。 つまり、 受光フィルタ 2 6は、 蛍光燈や太陽光を減衰させるための光学 フィルタであり、 揷入穴 1 1と生体組織 1との隙間から漏れてくる外来光の影響 を少なくしている。 また、 受光フィルタ 2 6は防塵効果もあり、 清掃を簡単に行 なうことができるようにしてある。  The light receiving filter 26 receives only the light transmitted through the living tissue 1 from the light of the wavelengths λ 1, λ 2, and λ 3 respectively emitted from the light emitting elements 21, 22, and 23. That is, the light receiving filter 26 is an optical filter for attenuating fluorescent lights and sunlight, and reduces the influence of extraneous light leaking from the gap between the input hole 11 and the living tissue 1. In addition, the light receiving filter 26 also has a dustproof effect, so that cleaning can be easily performed.
受光フィルタ 2 6の外側には受光素子 2 4が配置されている。 受光素子 2 4は λ 1 , λ 2 , λ 3の波長の光を受光するフォトダイオードである。  The light receiving element 24 is disposed outside the light receiving filter 26. The light receiving element 24 is a photodiode that receives light having wavelengths of λ 1, λ 2, and λ 3.
回路基板 3 0は、 受光素子 2 4を実装するとともに、 後述する演算手段等の各 手段 (図示せず) を実装している。 演算手段は、 それぞれの波長における脈動に よる光電流の変化を求め、 さらにヘモグロビン A 1 cを算出している。 その算出 結果は、 回路基板 30に接続された表示器 13によって表示される。 The circuit board 30 mounts the light receiving element 24 and also mounts each unit (not shown) such as an arithmetic unit described later. The calculation means obtains a change in photocurrent due to pulsation at each wavelength, and further calculates hemoglobin A1c. Its calculation The result is displayed by the display 13 connected to the circuit board 30.
次に、 第 4図にもとづいて本実施形態の血液分析装置のプロック図を説明する。 第 1の波長 λ 1、 第 2の波長 λ 2、 第 3の波長 λ 3の光を発光する第 1の発 光素子 21、 第 2の発光素子 22、 第 3の発光素子 23があり、 これらは発光駆 動回路 31の出力を受けて順番に点灯する。 これらの発光素子 21, 22, 23 の光が、 生体組織 1である指に照射される。 照射された光は、 生体組織 1の各種 ヘモグロビンによって吸収されるが、 赤血球による散乱も起こしている。 生体組 織 1を挟んで対向して配置された受光素子 24によって透過光が受光される。 こ こでは、 発光波長 λ ΐ, λ 2, λ 3は、 λ 1く λ 2<ぇ 3の関係にあり、 例え ば 630 nm, 680 nm, 940 nmにそれぞれ設定されている。  Next, a block diagram of the blood analyzer of this embodiment will be described with reference to FIG. There are a first light emitting element 21, a second light emitting element 22, and a third light emitting element 23 which emit light of the first wavelength λ1, the second wavelength λ2, and the third wavelength λ3, respectively. Are turned on sequentially in response to the output of the light emitting drive circuit 31. Light from these light emitting elements 21, 22, and 23 is applied to the finger as the living tissue 1. The irradiated light is absorbed by various hemoglobins of the living tissue 1, but is also scattered by red blood cells. The transmitted light is received by the light receiving elements 24 arranged facing each other with the living tissue 1 interposed therebetween. Here, the emission wavelengths λΐ, λ2, and λ3 are in a relationship of λ1 and λ2 <ぇ 3, and are set to, for example, 630 nm, 680 nm, and 940 nm, respectively.
受光素子 24は、 発光素子 21, 22, 23から発せられた光が、 生体組織 1 を透過して減衰され、 透過光量 I 1, 12, I 3となった光を受けている。 増幅 器 32は、 受光素子 24の光電流を電圧変換し、 それを電圧増幅している。 なお、 各波長における透過光量 I 1, 12, I 3には、 脈動に相当する拍動成分が含ま れている。  The light receiving element 24 receives the light emitted from the light emitting elements 21, 22, and 23, which is attenuated by passing through the living tissue 1 to have transmitted light amounts I1, 12, and I3. The amplifier 32 converts the photocurrent of the light receiving element 24 into a voltage, and amplifies the voltage. The transmitted light amounts I1, 12, and I3 at each wavelength include a pulsation component corresponding to a pulsation.
マルチプレクサ (MPX) .33では、 増幅器 32の出力信号が、 λ ΐ, λ 2, λ 3の各波長ごとに振り分けられ、 バンドパスフィルタ (BPF) 34, 35, 36に供給される。 BPF 34, 35, 36は、 各信号中に含まれる高周波のノ ィズ成分が除去され、 さらに生体組織 1における各波長 λ 1, λ 2, λ 3につ いての透過光の拍動成分に相当する振幅信号、 つまり指尖容積脈波を出力する。 拍動抽出手段 (DET) 37, 38, 39は、 BPF 34, 35, 36からの 各出力信号より、 各波長ごとに生体組織 1の拍動成分の振幅値に相当する信号を 検出して取り出している。 これら検出信号は、 生体組織 1での各波長; 1, λ •2, λ 3における透過光の拍動成分 ΔΑ1、 ΔΑ2、 ΔΑ 3に対応したもので あり、 アナログ/デジタル変換されたデータである。 DET 37, 38, 39の 出力信号 ΔΑΙ, ΔΑ2, ΔΑ3は、 演算手段 40に供給されて、 全へモグロ ビンに対する各種ヘモグロビンの成分比が演算される。 そして、 表示手段 41で は演算結果であるへモグロビン A 1 cの成分比が表示される。  In the multiplexer (MPX) .33, the output signal of the amplifier 32 is divided for each of the wavelengths λΐ, λ2, and λ3, and supplied to the band-pass filters (BPF) 34, 35, and 36. The BPFs 34, 35, and 36 remove high-frequency noise components contained in each signal, and further reduce the pulsating components of transmitted light at the respective wavelengths λ1, λ2, λ3 in the biological tissue 1. It outputs a corresponding amplitude signal, that is, a finger plethysmogram. The pulsation extraction means (DET) 37, 38, 39 detects and extracts a signal corresponding to the amplitude value of the pulsation component of living tissue 1 for each wavelength from each output signal from the BPFs 34, 35, 36 ing. These detection signals correspond to the pulsatile components ΔΑ1, ΔΑ2, and ΔΑ3 of the transmitted light at the respective wavelengths; 1, λ • 2, λ3 in the biological tissue 1, and are analog / digital converted data. . The output signals ΔΑΙ, ΔΑ2, ΔΑ3 of the DETs 37, 38, 39 are supplied to the calculating means 40, and the component ratios of various hemoglobins to all hemoglobins are calculated. Then, the display means 41 displays the component ratio of hemoglobin A 1c as the calculation result.
次に、 演算手段 40で演算されるヘモグロビンの成分比の算出について説明す る。 各種ヘモグロビンのモル吸光係数と生体組織 1の吸光度から、 数学的変換によ り、 吸収成分である各種ヘモグロビンの成分比を算出する。 Next, the calculation of the hemoglobin component ratio calculated by the calculating means 40 will be described. From the molar extinction coefficient of various hemoglobins and the absorbance of the living tissue 1, the component ratio of various hemoglobins, which are absorption components, is calculated by mathematical conversion.
ここで、 モル吸光係数 £ Uは、 波長 λ i ( i = 1, 2, 3) における、 各種 ヘモグロビン j ( j = 1は HbA 1 c _02、 :| =2は1^13—02、 j = 3は H b-CO) のモル吸光係数であり、 実験などから得られた既知として极ぅことが できる。 Here, the molar extinction coefficient £ U is the value of various hemoglobins j (where j = 1 is HbA 1 c _0 2 ,: | = 2 is 1 ^ 13-0 2 , at wavelength λ i (i = 1, 2, 3), j = 3 is the molar extinction coefficient of Hb-CO), which can be known as obtained from experiments and the like.
Xは HbAl c—〇2、 yは Hb— 02、 zは Hb— COの濃度 (単位体積中 の濃度) である。 X is HbAl c-〇 2, y is Hb-0 2, z is the concentration (concentration in unit volume) of the Hb-CO.
kは血管による光路長を表す比例定数である。  k is a proportional constant representing the optical path length due to the blood vessel.
& ま、 波長 1 ( i = 1, 2, 3) における生体組織 1による吸光度であり、 吸収成分は主に HbA 1 c—〇2、 Hb— 02、 H b— C Oの各種ヘモグロビン によるものである。 & Also, the absorbance by the biological tissue 1 at the wavelength 1 (i = 1, 2, 3), the absorbing component mainly HbA 1 c-〇 2, due to various hemoglobin Hb-0 2, H b-CO is there.
ランベルト ·ベールの法則に従って、 (1) 、 (2) 、 (3) 式の連立方程式 が導かれる。  According to Lambert-Beer's law, the simultaneous equations (1), (2) and (3) are derived.
k( ε χ+ ε ry+ ε 13z) = a1 1 k( ε 21X+ ε 22^+ 23* ■(2) k(£31x+e32y+e33z) = a3 (3) この連立 3元 1次方程式を、 3次の行列式で表すと (4) 式となる。
Figure imgf000010_0001
k (ε χ + ε r y + ε 13 z) = a 1 1 k (ε 21 X + ε 22 ^ + 23 *) (2) k (£ 31 x + e32 y + e 33 z) = a 3 (3) If this simultaneous ternary linear equation is expressed by a cubic determinant, it becomes the following equation (4).
Figure imgf000010_0001
これを、 HbA 1 c - — o2 、 Hb—〇2 This is called HbA 1 c--o 2 , Hb-〇 2
て解くと、 それぞれ (5) 、 (6) 、 (7) 式となる。 ai £ 12 £ 13 Solving the equations gives equations (5), (6) and (7), respectively. a i £ 12 £ 13
ε 22 £ 23 ε 22 £ 23
1 33 £ 32 ε 33 1 3 3 £ 32 ε 33
X—  X—
k £ 11 £ 12 S 13 k £ 11 £ 12 S 13
£ 22 £ 23 £ 22 £ 23
£ 31 £ 32 ε 33 £ 31 £ 32 ε 33
31 ε 22 ε 33+32 £ 13 £ 32+33 £ 12 £ 23_31 £ 23 £ 32 α2 £ 12 £ 33一 33 £ 13 £ 22 3 1 ε 22 ε 33 +3 2 £ 13 £ 32 +3 3 £ 12 £ 23 _3 1 £ 23 £ 32 α 2 £ 12 £ 33 1-3 3 £ 13 £ 22
33 ,+ ε
Figure imgf000011_0001
13 21 し 32 し' 11 - 23 c 32 12 ε 21 £ 33£ 13 ε 22 ε
33, + ε
Figure imgf000011_0001
13 21 32 32 11 '11 -23 c 32 12 ε 21 £ 33 per £ 13 ε 22 ε ;
"(5)  "(Five)
31 £ 23 £ 31+32 £ 11 ε 33+33 £ 13 £ 21一 31 £ 21 £ 33— 32 S 13 ^ 31 33 S 11 £ 23 y= 3 1 £ 23 £ 31 +3 2 £ 11 ε 33 +3 3 £ 13 £ 21 one 3 1 £ 21 £ 33- 3 2 S 13 ^ 31 3 3 S 11 £ 23 y =
k(s S 22ε 33 + ε 12ε 23ε 31+ £ 13 £ 21 £ 32~ £ 11 £ 23 £ 32一 S 12 £ 21 ε 33— £ 13 £ 22 £ 31) k (s S 22 ε 33 + ε 12 ε 23 ε 31 + £ 13 £ 21 £ 32 ~ £ 11 £ 23 £ 32 S 12 £ 21 ε 33— £ 13 £ 22 £ 31)
…… (6) …… (6)
31 £ 21 £ 32+32 ε 12 ε 3 α3 £ 11 ^ 22 α1 £ 22 £ 31 °2 £ 11 £ 32 &3 £ 12 £ 21 k( ε 11 ε 22 £ 33+ ε 12 ε 23 £ 31+ £ 13 £ 21 £ 32— ^ 11 £ 23 £ 32一 £ 12£ 21 £ 33一 S 13 S 22 £ 31) 3 1 £ 21 £ 32 +3 2 ε 12 ε 3 α 3 £ 11 ^ 22 α 1 £ 22 £ 31 ° 2 £ 11 £ 32 & 3 £ 12 £ 21 k ( ε 11 ε 22 £ 33+ ε 12 ε 23 £ 31+ £ 13 £ 21 £ 32— ^ 11 £ 23 £ 32 per £ 12 £ 21 £ 33 per S 13 S 22 £ 31)
…… (7) ここで、 HbA 1 c— 02の成分比 Xは、 全ヘモグロビンの濃度に対する Hb A 1 c—〇2の濃度の割合であり、 (8) 式となる。 同様に、 Hb 〇2の成分 比 Y、 及び Hb— COの成分比 Ζは、 それぞれ (9) 、 (10) 式となる。 …… (7) Here, the component ratio X of HbA 1 c—O 2 is the ratio of the concentration of Hb A 1 c— 濃度2 to the concentration of total hemoglobin, and is given by equation (8). Similarly, Hb 〇 second component ratio Y, and Hb-CO component ratio Ζ of each (9) and (10).
X  X
X=  X =
x+y+z  x + y + z
ai( ε 22ε 33一 ε 23 £ 32) 2( £ 13 £ 32一 £ 12 £ 33 33ゝ £ 12 " 23一 £ 13 £ 22) ai ( ε 22 ε 33- ε 23 £ 32) 2 ( £ 13 £ 32 one £ 12 £ 33 3 3 ゝ£ 12 “23 one £ 13 £ 22)
ε 21、 ε 32~ ε ε 2233~ ε 31)+ ε 23( ε 31 - ε ε 21 , ε 32 ~ ε ε 2233 ~ ε 31 ) + ε 2331
+a2{ ε ε 33~ ε 32)+ ε 12( ε 3厂 ε 33)+ ε 13( ε 32- ε 31)} + a 2 {ε ε 33 ~ ε 32 ) + ε 123 Factory ε 33 ) + ε 133231 )}
(8) y (8) y
Y=  Y =
x+y+z  x + y + z
ai( £ 23 ε 31— ε 21 £ 33)+a2( ε 11 ε 33一 ε 13 ε 3l)+a3( ε 13 ε 21— ε 11 ε 23) ai ( £ 23 ε 31— ε 21 £ 33) + a 2 ( ε 11 ε 33- ε 13 ε 3l) + a 3 ( ε 13 ε 21— ε 11 ε 23)
a^S 21ε 33)+ ε 22( ε 33— Ε 31)+ £ 23( ε 31一 ε 32 +aJ £ "( Ε 33一 £ 32)+ £ 12( ε 31— £ 33)+ £ 13( ε 32— ε 31)) a ^ S 21ε 33) + ε 22 ( ε 33— Ε 31) + £ 23 ( ε 31- ε 32 + a J £ 33- £ 32) + £ 12 ( ε 31— £ 33 ) + £ 13 32— ε 31 ))
+a3{ ε "( ε 22 - ε 23)+ ε 12( ε 23 - ε 21) + ε 13( ε 21— ε 22)} + a 3 {ε "(ε 2223 ) + ε 122321 ) + ε 1321 — ε 22 )}
'(9) x+y+z  '(9) x + y + z
ai( ε 21 ε 32一 ε 22 £ 3i)+a2( £ 12 £ 31一 £ 11 ε 32)+ ( £ 11 ε 22一 ε 12 £ 21) ai ( ε 21 ε 32- ε 22 £ 3i) + a 2 ( £ 12 £ 31- £ 11 ε 32) + ( £ 11 ε 22- ε 12 £ 21)
ai( ε 21 32一 ε 33)+ £ 22( 533— ε 31)+ ε 23( ε 31一 ε 32ai ( ε 21 32- ε 33) + £ 22 ( 5 33— ε 31) + ε 23 ( ε 31- ε 32
+a2{ ε "( ε 33 - ε 32)+ ε 12( ε 31~ ε 33)+ ε ε 32- ε 31)1 + a 2 {ε "(ε 3332 ) + ε 1231 ~ ε 33 ) + ε ε 3231 ) 1
+a3{ ε "( ε 22- ε 23)+ ε 12( ε 23 - ε 21) + ε ε ε 22)} + a 3 {ε "(ε 2223 ) + ε 122321 ) + ε ε ε 22 )}
…… (10) なお、 各種ヘモグロビンの成分比 X Υ Ζでは、 比例定数 kは消去されてい る。 これは血管による光路長が未知であっても解けることを示している。  …… (10) Note that the proportionality constant k has been eliminated from the component ratios X Υ の of various hemoglobins. This indicates that the optical path length due to the blood vessel can be solved even if it is unknown.
また、 ε uをモル吸光係数として説明したが、 各種ヘモグロビンの濃度が不明 な場合には、 同一濃度条件での吸光度として扱うこともできる。 このときにはデ ィメンジョンが変わるが、 基本的な考え方は同じである。 Also, ε u has been described as a molar extinction coefficient, but if the concentrations of various hemoglobins are unknown, they can be treated as absorbance under the same concentration conditions. At this time, the dimensions change, but the basic idea is the same.
これまでに、 HbAl c—〇2 Hb—〇2 Hb— COの各波長におけるモ ル吸光係数から数学的変換によって、 成分比を算出できることを説明した。 しか し、 光の吸収を利用する吸光分析では、 測定精度の向上や計算の簡略化を考える と発光波長の設定方法には工夫が必要である。 基本的にはそれぞれのへモグロビ ン成分のモル吸光係数に特徴がある特異波長を設定する。 So far, the mathematical transformation from molar extinction coefficient at the wavelength of HbAl c-〇 2 Hb-〇 2 Hb-CO, has been described to be able to calculate the component ratio. However, in absorption spectroscopy using light absorption, it is necessary to devise a method for setting the emission wavelength in order to improve measurement accuracy and simplify calculations. Basically, set a specific wavelength that is characteristic of the molar extinction coefficient of each hemoglobin component.
吸光分析で使われる吸収スぺクトルについて説明する。 電子遷移由来の電子ス ベクトルは、 紫外可視領域に大きな吸収スペクトルが現れる。 しかし、 600 η m未満の波長ではヘモグロビンによる吸収が強く、 生体組織を通した透過光が少 なくなるために、 透過光を検出することは困難である。 また、 分子振動由来の振 動スぺクトルは、.近赤外領域に吸収スぺクトルが現れるが吸収自体は小さい。 特 に、 1000 nmを超えた波長では、 ヘモグロビンによる吸収は小さく、 水分子 による吸収が大きくなることから、 分析するのは困難である。  The absorption spectrum used in the absorption analysis will be described. The electron spectrum derived from the electronic transition has a large absorption spectrum in the ultraviolet-visible region. However, at wavelengths less than 600 ηm, it is difficult to detect transmitted light because the absorption by hemoglobin is strong and the transmitted light through living tissue is reduced. In addition, the vibration spectrum derived from molecular vibration has an absorption spectrum in the near infrared region, but the absorption itself is small. In particular, at wavelengths above 1000 nm, analysis is difficult because the absorption by hemoglobin is small and the absorption by water molecules is large.
そこで、 発光波長え 1 λ 2, λ 3は、 600 nmから 1000 nmの可視 光及び近赤外光から設定する。 さらに、 モル吸光係数の違いに着目して発光波長 を設定する場合には、 電子スペクトルが現れる可視光領域つまり、 600 nmか ら 780 nmの領域から設定すると良い。 Therefore, the emission wavelengths 1 λ2 and λ3 are visible from 600 nm to 1000 nm. Set from light and near-infrared light. Furthermore, when setting the emission wavelength by focusing on the difference in molar extinction coefficient, it is advisable to set it from the visible light region where the electronic spectrum appears, that is, from 600 nm to 780 nm.
ここで、 HbAl c— 02、 Hb— 02、 H b _ C Oの各波長におけるモル吸 光係数の変化を分光光度計によつて測定した。 第 5図にその測定結果である P及光 特性曲線を示す。 また各種へモグロビンの各波長におけるモル吸光係数の違いが 良くわかるように、 第 6図に各種ヘモグロビンのモル吸光係数の割合を、 P及光度 比として特性曲線を示した。 Here, HbAl c- 0 2, Hb- 0 2, and the change of the molar absorption light coefficient at each wavelength H b _ CO and by connexion measured spectrophotometer. Fig. 5 shows the measured P and light characteristic curves. In addition, in order to clearly understand the difference in the molar extinction coefficient of each type of hemoglobin at each wavelength, FIG. 6 shows the characteristic curves in which the ratio of the molar extinction coefficient of each type of hemoglobin is P and the light intensity ratio.
第 5図にもとづいて、 本実施形態の血液分析装置における波長 λ 1, λ 2, λ 3の設定方法について説明する。  A method for setting the wavelengths λ 1, λ 2 and λ 3 in the blood analyzer according to the present embodiment will be described with reference to FIG.
縦軸は各種へモグロビン成分のモル吸光係数、 横軸は波長である。  The vertical axis is the molar extinction coefficient of each hemoglobin component, and the horizontal axis is the wavelength.
第 1の成分である HbAl c— 02のモル吸光係数を k 1、 第 2の成分である Hb-02のモル吸光係数を k 2、 第 3の成分である Hb— C〇のモル吸光係数 を k 3とする。 The first k 1 molar extinction coefficient of HbAl c- 0 2 is a component, the molar extinction coefficient k 2 of the Hb-0 2 which is the second component is the third component Hb- C_〇 molar absorption Let the coefficient be k3.
第 1の波長 λ ΐは、 各種ヘモグロビンでのモル吸光係数の違いが大きい波長 を選ぶ。 第 5図によれば、 波長 630 nm付近でモル吸光係数の違いが大きい。 600 n mから 650 nmの領域で、 モル吸光係数が大きい順に並べると、 Hb -CO, HbAl c—〇2、 Hb_〇2つまり、 k 3 > k 1 > k 2となっている。 この 600 nmから 650 nmの領域から第 1の波長 λ 1を設定する。 例えば、 発光波長 λ 1を 63 O nmとして、 橙色の発光ダイオードを使用するように設 計すれば、 部品調達においてコスト及び納期などで有利である。 As the first wavelength λ 波長, a wavelength having a large difference in molar extinction coefficient between various hemoglobins is selected. According to FIG. 5, there is a large difference in the molar extinction coefficient near the wavelength of 630 nm. In 650 nm region from 600 nm, when arranged in descending order of molar extinction coefficients, Hb -CO, HbAl c-〇 2, Hb_〇 2 that is, a k 3> k 1> k 2 . The first wavelength λ 1 is set from the range from 600 nm to 650 nm. For example, if the emission wavelength λ1 is designed to be 63 O nm and an orange light-emitting diode is used, it is advantageous in terms of cost and delivery time in parts procurement.
第 2の波長 λ 2は、 先に設定した波長 λ 1におけるモル吸光係数の割合と違 つた領域から設定する。 第 5図によれば、 650nmから 780 nmの領域で、 モル吸光係数が大きい順に並べると、 HbAl c— 02、 Hb— CO、 Hb— O 2となり、 HbAl c— 02と Hb— COが逆転していることがわかる。 つまり、 k l≥k 3>k2となっている。 この 650 nmから 780 nmの領域から第 2の波長 λ 2を設定する。 例えば発光波長 λ 2を 680 nmとして、 赤色の発 光ダイォードを使用すれば、 部品調達においてコスト及び納期などで有利である。 勿論、 660 nmや 700 nmの赤色の発光ダイオードが部品調達しやすいなら ば、 それを使って設計してもよい。 第 3の波長 λ 3は、 先に設定した波長え 1及び λ 2におけるモル吸光係数の 割合と違った領域から設定する。 850n mから 1000 nmの領域では、 Hb Al e— 02、 Hb— 02、 Hb— COのモル吸光係数の違いはほとんどない。 つまり、 k l=k 2 = k 3である、 この等吸収ということが、 波長 λ ΐ及び λ 2におけるモル吸光係数の割合と違った特徴を示している。 この 850 nmから 1000 nmの領域から第 3の波長 λ 3を設定する。 例えば、 発光波長 λ 3を 赤外光による光通信用として良く使われる 940 nmの赤外光の発光ダイォード を使用するように設計すれば、 部品調達においてコス卜及び納期などで有利であ る。 The second wavelength λ 2 is set from a region different from the molar extinction coefficient ratio at the previously set wavelength λ 1. According to FIG. 5, in the region from 650 nm to 780 nm, when the molar extinction coefficient is arranged in descending order, HbAl c—O 2 , Hb—CO, Hb—O 2 , and HbAl c—O 2 and Hb—CO It turns out that it is reversed. That is, kl≥k3> k2. The second wavelength λ 2 is set from the range of 650 nm to 780 nm. For example, if the emission wavelength λ 2 is 680 nm and a red emission diode is used, it is advantageous in terms of cost and delivery time in parts procurement. Of course, if 660 nm or 700 nm red light-emitting diodes can be easily procured, the design may be made using them. The third wavelength λ 3 is set from a region different from the ratio of the molar extinction coefficient at the wavelengths 1 and λ 2 set previously. In the 1000 nm region 850n m, Hb Al e- 0 2 , Hb- 0 2, Hb- difference in molar extinction coefficient of CO is little. That is, kl = k 2 = k 3. This isosbestic characteristic shows a characteristic different from the ratio of the molar extinction coefficient at the wavelengths λΐ and λ 2. The third wavelength λ 3 is set from the range of 850 nm to 1000 nm. For example, if a design is made to use a 940 nm infrared light emitting diode, which is often used for optical communication using infrared light with an emission wavelength of λ3, it is advantageous in terms of cost and delivery time in parts procurement.
このように、 光源となる発光素子の波長を適正に選ぶことにより、 正確なへモ グロビンの成分比を算出できる。  As described above, by appropriately selecting the wavelength of the light emitting element serving as the light source, the component ratio of hemoglobin can be accurately calculated.
また、 発光ダイオードの波長を供給量の多い波長の発光ダイオードからを選ん で設計することによって、 さらに調達しやすく、 安価な製品を設計できるという 効果がある。  In addition, by selecting the wavelength of the light-emitting diode from the light-emitting diodes having a large supply amount, it is possible to design a more easily procured and inexpensive product.
ところで、 光学式分析装置では、 物質に特有の吸収帯 (特異点) で測定すると 誤差を小さくできることが知られている。 たとえば、 第 5図に示す HbAl c— 02、 Hb— COの波長一モル吸光係数グラフでは、 HbAl c—〇2曲線のや や盛り上がつている箇所 (波長 λ ΐの位置) と、 Hb— CO曲線のやや盛り上 がっている箇所 (波長 λ 2の位置) が特異点となる。 しかしながら、 第 5図に 示すように、 HbAl c—〇2、 Hb— COの波長—モル吸光係数グラフでは特 異点を見つけにくい。 このため、 第 5図にもとづいた方法によって発光素子の波 長を決定する場合は、 測定に最も適した波長がわかりにくく、 設定した波長が最 良の波長からずれ、 測定精度を低下させることがあった。 By the way, it is known that an optical analyzer can reduce the error when measured at an absorption band (singular point) peculiar to a substance. For example, HbAl c- 0 2 shown in FIG. 5, the wavelength one molar extinction coefficient graph Hb-CO, and HbAl c-〇 2 curve arrows and Moriaga One in which point (position of the wavelength λ ΐ), Hb — The point where the CO curve rises slightly (the wavelength λ 2 position) is the singular point. However, as shown in FIG. 5, HbAl c-〇 2, Hb-wavelength of CO - difficult to find the singular point in the molar extinction coefficient graphs. For this reason, when determining the wavelength of a light-emitting element by the method based on Fig. 5, it is difficult to determine the wavelength that is most suitable for measurement, and the set wavelength may deviate from the best wavelength, thereby reducing measurement accuracy. there were.
そこで、 本発明は、 第 6図に示す HbA 1 c— 02、 Hb— 02、 Hb— CO 波長一モル吸光度比にもとづいて、 吸光度比が極大の波長を見つけ、 この波長に おける測定結果から分析を行っている。 Accordingly, the present invention is, HbA 1 c- 0 2 shown in FIG. 6, Hb-0 2, Hb-CO based on the wavelength one molar absorbance ratio, locate the wavelength of the absorbance ratio is maximum, measurement results definitive in this wavelength From the analysis.
第 6図もとづいて、 吸光度比が最大の波長 λ 1, λ 2, λ 3の設定方法を具 体的に説明する。 この波長 λ ΐ, λ 2, え 3の設定方法は、 各種ヘモグロビン のモル吸光係数の割合、 つまり吸光度比から求める方法である。  Based on FIG. 6, a method of setting the wavelengths λ1, λ2, λ3 having the maximum absorbance ratio will be specifically described. The method of setting the wavelengths λΐ, λ2, and 3 is a method of obtaining the ratio of the molar extinction coefficient of various hemoglobins, that is, the absorbance ratio.
第 6図の縦軸の吸光度比は、 各種へモグロビンのモル吸光係数の割合であり、 k j / (k 1 + k 2 + k 3) としている。 また、 横軸は波長である。 The absorbance ratio on the vertical axis in FIG. 6 is the ratio of the molar extinction coefficient of various hemoglobins, kj / (k1 + k2 + k3). The horizontal axis is the wavelength.
まず、 第 3の成分である Hb— COに着目すると、 P及光度比は k 3/ (k 1 + k 2 + k 3 ) である。 ここで、 Hb— COの吸光度比の極大が、 波長 600 nm から 650 nmの領域にあることがわかる。 したがって、 この波長領域から第 1 の波長え 1を設定すればよい。 特に、 630 nm付近でほぼ極大となっている ことがわかる。 Hb— COの吸収帯がこの領域にあるためである。  First, focusing on the third component, Hb—CO, the P and luminous intensity ratio are k 3 / (k 1 + k 2 + k 3). Here, it can be seen that the maximum of the absorbance ratio of Hb—CO is in the wavelength range from 600 nm to 650 nm. Therefore, the first wavelength 1 may be set from this wavelength region. In particular, it can be seen that it is almost maximum around 630 nm. This is because the absorption band of Hb—CO is in this region.
次に、 第 1成分である HbAl c—〇2に着目すると、 HbAl c_〇2の吸 光度比の極大が、 波長 650 nmから 780 nmの領域にあることがわかる。 し たがって、 この波長領域から第 2の波長 λ 2を設定すればよい。 特に、 680 nm付近ではほぼ極大となっていることがわかる。 この領域に Hb A 1 c—〇2 の吸収帯があるためである。 Next, focusing on HbAl c-〇 2 is a first component, the maximum of the absorbance ratio of HbAl C_〇 2, it can be seen that from wavelength 650 nm to 780 nm region. Therefore, the second wavelength λ 2 may be set from this wavelength region. In particular, it can be seen that it is almost maximum around 680 nm. This is because there is an absorption band of Hb A 1 c—〇 2 in this region.
さらに、 第 2成分である Hb—〇2に着目すると、 波長 850 nmから 100 0 nmの領域において、 Hb—02の吸光度比が極大または最大となることがわ かる。 したがって、 この領域から第 3の波長 λ 3を設定する。 このように、 そ れぞれ波長 λ ΐ, λ 2, λ 3は、 各種ヘモグロビンの吸光度比が極大、 あるい は吸光度比が最大となる波長から設定されている。 Further, paying attention to Hb-〇 2 is a second component, in the region of 100 0 nm wavelength 850 nm, Cal Kotogawa absorbance ratio of Hb-0 2 becomes maximum or maximum. Therefore, the third wavelength λ 3 is set from this region. As described above, the wavelengths λ, λ2, and λ3 are set from the wavelengths at which the absorbance ratio of various hemoglobins is maximum or the absorbance ratio is maximum.
このように吸光度比が極大、 あるいは吸光度比が最大となる発光波長を照射し て分析を行うと、 高精度な分析結果を得ることが可能となる。  As described above, when the analysis is performed by irradiating an emission wavelength at which the absorbance ratio is maximum or the absorbance ratio is maximum, it is possible to obtain a highly accurate analysis result.
なお、 吸光度比の極大は、 実験によって求めた吸光度から得たものであっても よい。  The maximum of the absorbance ratio may be obtained from the absorbance obtained by an experiment.
さらに、 発光波長に等吸収点を選ぶことによって、 計算を簡略化することがで きる。 第 3の波長はすでに等吸収点を選んでいるが、 第 2の波長を 650 nm付 近の HbAl c—〇2と Hb— COの等吸収点を選ぶことができる。 グリコへモ グロビンの算出式を (8) 式に示したが、 波長 λ 3を HbAl c—〇2、 Hb— 02、 Hb— COの等吸収点として、 ε 31= ε 32= ε33 とする。 さらに波長 λ 2を HbAl c—〇2、 Hb— COの等吸収点として、 ε21= ε23とすると、 (11) 式となり、 計算を簡略化することができる。 χ= 31( £ 22833一 ^ 21 £ 32)+a2 ( £ 11 ε 32— ε 11 £ 33/+a3( £ 11 £ 23— £ 11 £ 22) Furthermore, the calculation can be simplified by selecting the isosbestic point for the emission wavelength. Although the third wavelength is already choose isosbestic point, the second wavelength may be chosen isosbestic point of the near with 650 nm HbAl c-〇 2 and Hb-CO. Showed calculation formula of Mo-globin to glycolide in (8), HbAl c-〇 2 wavelength λ 3, Hb- 0 2, as isosbestic point of Hb-CO, and ε 31 = ε 32 = ε33 . Further, if the wavelength λ 2 is set as an equal absorption point of HbAl c−〇 2 and Hb—CO and ε21 = ε23, the equation (11) is obtained, and the calculation can be simplified. χ = 3 1 ( £ 22 8 33 ^ ^ 21 £ 32) + a 2 ( £ 11 ε 32— ε 11 £ 33 / + a 3 ( £ 11 £ 23— £ 11 £ 22)
21 22)( ε 31一 ε 33ノ なお、 血液中のヘモグロビン A 1 c (HbAl c— 02) の成分比 (%) と平 均血糖値 (mg/d l) との間には、 次の表に示すような関係があることから、 上記方法によって、 HbA 1 c— 02の成分比を求めると、 平均血糖値をも求め ることができる。 21 22) ( ε 31- ε 33 The relationship between the component ratio (%) of hemoglobin A 1 c (HbAl c- 0 2 ) in blood and the average blood glucose level (mg / dl) is as shown in the following table. , by the above method, when obtaining the component ratio of HbA 1 c- 0 2, it can therefore be found even an average blood glucose level.
Figure imgf000016_0001
したがって、 本発明における血液成分の濃度として、 血液中の各種へモグロビ ンの成分比 (%) などの質量パーセント濃度や、 平均血糖値 (mg/d 1) など の一定体積中の物質量を求めることができる。
Figure imgf000016_0001
Therefore, as the concentration of the blood component in the present invention, a mass percent concentration such as a component ratio (%) of various hemoglobins in blood and a substance amount in a fixed volume such as an average blood sugar level (mg / d1) are determined. be able to.
また、 血液分析装置の表示部に、 成分比と血糖値の両方を表示することもでき、 場合によつては、 平均血糖値のみを表示するようにすることもできる。  In addition, both the component ratio and the blood glucose level can be displayed on the display unit of the blood analyzer, and in some cases, only the average blood glucose level can be displayed.
第 7図は本発明の他の実施形態にかかる血液分析装置の外観図を示す。 この実 施形態の血液分析装置が、 第 1図に示した血液分析装置と異なるのは、 表示器 1 FIG. 7 is an external view of a blood analyzer according to another embodiment of the present invention. The difference between the blood analyzer of this embodiment and the blood analyzer shown in FIG.
3にグリコヘモグロビンを表示するほかに、 カルボキシヘモグロビン H b-CO の成分比を表示していることである。 この Hb— COは、 たばこの煙に含まれる 一酸化炭素と結合することが多く、 喫煙者の健康管理の指標とすることができる。 特に、 肺機能の低下した肺気腫の患者にとっては、 Hb_C〇は息切れの原因に もなるので、 健康管理の重要な指標となる。 産業上の利用可能性 In addition to displaying glycohemoglobin in Fig. 3, it also indicates the component ratio of carboxyhemoglobin Hb-CO. This Hb—CO often binds to the carbon monoxide contained in tobacco smoke and can be used as an indicator of smoker health care. In particular, for patients with emphysema with reduced pulmonary function, Hb_C〇 can also be a cause of shortness of breath, and is therefore an important indicator of health care. Industrial applicability
糖尿病は食事療法と運動療法を気長に続けなければならない。 それは強い意志 を持ち続けて、 治療に専念することが必要である。 在宅で気軽にグリコへモグロ ビンを自己測定できれば、 それを正常値に近づけようとする意志を、 絶やさずに 持ち続けることができる。 つまり、 本発明における非侵襲で安価な血液分析装置 は、 単に苦痛を伴なわずに測定できるということだけでなく、 糖尿病患者にとつ て治療意識の向上も期待できる有用なセルフケア手段となる。 そして、 神経障害、 網膜症、 腎症などの合併症予防になる。 さらに、 グリコヘモグロビンの自己測定 が、 糖尿病患者だけでなく、 健常な成人も測定するように大衆化すれば、 糖尿病 の予防にもつながるのである。  Diabetes must be patient on diet and exercise. It needs to remain strong and dedicated to treatment. If you can easily measure glycohemoglobin at home at home, you can maintain your willingness to bring it close to normal. In other words, the non-invasive and inexpensive blood analyzer according to the present invention is a useful self-care means that not only can perform measurement without pain but also can improve treatment consciousness for diabetic patients. And it can prevent complications such as neuropathy, retinopathy and nephropathy. Furthermore, if the self-measurement of glycated hemoglobin is measured not only for diabetic patients but also for healthy adults, it will help prevent diabetes.

Claims

請 求 の 範 囲 The scope of the claims
1. 血液の成分中から特定成分の濃度を、 異なる複数の波長の光を用いて測定す る血液分析装置において、 1. A blood analyzer that measures the concentration of a specific component in blood components using light of different wavelengths.
前記特定成分として、 少なくともグリコヘモグロビンの濃度を測定することを 特徴とした血液分析装置。  A blood analyzer, wherein at least the concentration of glycohemoglobin is measured as the specific component.
2. 前記グリコヘモグロビンが、 ヘモグロビン Al cであることを特徴とした請 求の範囲 1記載の血液分析装置。 2. The blood analyzer according to claim 1, wherein said glycated hemoglobin is hemoglobin Alc.
3. 前記複数の光うち、 少なくとも一つの光の波長を、 グリコヘモグロビンの吸 光度比が極大値となる波長に設定したことを特徵とする請求の範囲 1又は 2記載 の血液分析装置。 3. The blood analyzer according to claim 1, wherein a wavelength of at least one of the plurality of lights is set to a wavelength at which the absorbance ratio of glycated hemoglobin is a maximum value.
4. 前記特定成分として、 前記グリコへモグロビンのほかに、 才キシへモグロピ ンとカルボキシへモグロビンを含むことを特徴とした請求の範囲 1〜 3のいずれ か一項に記載の血液分析装置。 4. The blood analyzer according to any one of claims 1 to 3, wherein, as the specific component, in addition to the glycohemoglobin, human hemoglobin and carboxyhemoglobin are included.
5. 前記複数の異なる波長の光が、 前記複数の特定成分の吸光度比の極大値また は最大値付近の波長に設定されていることを特徴とした請求の範囲 4記載の血液 分析装置。 5. The blood analyzer according to claim 4, wherein the light of the plurality of different wavelengths is set to a wavelength near a maximum value or a maximum value of the absorbance ratio of the plurality of specific components.
6. 前記グリコヘモグロビンのモル吸光係数、 前記ォキシヘモグロビンのモル吸 光係数および前記カルボキシへモグロビンのモル吸光係数をそれぞれ k 1, k 2, k 3としたとき、 前記複数の異なる波長の光のうち、 第 1の波長を k 3>k l> k 2の領域に設定し、 第 2の波長を k 1≥k 3>k 2の領域に設定し、 第 3の 波長を k l^k 2 k 3の領域に設定したことを特徴とする請求の範囲 4又は 5記載の血液分析装置。 6. When the molar absorption coefficient of the glycohemoglobin, the molar absorption coefficient of the oxyhemoglobin, and the molar absorption coefficient of the carboxyhemoglobin are k1, k2, and k3, respectively, The first wavelength is set in the region of k3> kl> k2, the second wavelength is set in the region of k1≥k3> k2, and the third wavelength is set in kl ^ k2k3 6. The blood analyzer according to claim 4, wherein the blood analyzer is set in a region of the blood analyzer.
7. 前記第 1〜 3の波長が、 600〜 1000 nmの波長であることを特徴とし た請求の範囲 6記載の血液分析装置。 7. The first to third wavelengths are wavelengths of 600 to 1000 nm. 7. The blood analyzer according to claim 6, wherein:
8. 前記第 1の波長が、 650〜 780 nmの波長であることを特徴とした請求 の範囲 6又は 7記載の血液分析装置。 8. The blood analyzer according to claim 6, wherein the first wavelength is a wavelength of 650 to 780 nm.
9. 前記第 2の波長が、 600〜 650n mの波長であることを特徴とした請求 の範囲 6又は 7記載の血液分析装置。 9. The blood analyzer according to claim 6, wherein the second wavelength is a wavelength of 600 to 650 nm.
10. 前記第 3の波長が、 850〜1000 nmの波長であることを特徴とした 請求の範囲 6又は 7記載の血液分析装置。 10. The blood analyzer according to claim 6, wherein the third wavelength is a wavelength of 850 to 1,000 nm.
PCT/JP2003/003247 2002-03-18 2003-03-18 Blood analyzer WO2003077761A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002073675A JP2005253478A (en) 2002-03-18 2002-03-18 Hemoglobin analyzer
JP2002-073675 2002-03-18

Publications (1)

Publication Number Publication Date
WO2003077761A1 true WO2003077761A1 (en) 2003-09-25

Family

ID=28035258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003247 WO2003077761A1 (en) 2002-03-18 2003-03-18 Blood analyzer

Country Status (2)

Country Link
JP (1) JP2005253478A (en)
WO (1) WO2003077761A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2476369A1 (en) * 2007-03-27 2012-07-18 Masimo Laboratories, Inc. Multiple wavelength optical sensor
WO2013104629A1 (en) * 2012-01-13 2013-07-18 Kaptalia Monitoring Oximeter
US8965471B2 (en) 2007-04-21 2015-02-24 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US9167995B2 (en) 2005-03-01 2015-10-27 Cercacor Laboratories, Inc. Physiological parameter confidence measure
CN105748089A (en) * 2016-02-01 2016-07-13 刘进 Method and device for monitoring oxygen supply parameters
TWI555504B (en) * 2014-06-06 2016-11-01 國立交通大學 System for intrinsic shape functions of blood pulse and its method
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
WO2019138374A1 (en) * 2018-01-09 2019-07-18 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of advanced glycation end-products (age)
US10729402B2 (en) 2009-12-04 2020-08-04 Masimo Corporation Calibration for multi-stage physiological monitors
US11039768B2 (en) 2018-01-09 2021-06-22 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of hemoglobin
US11154224B2 (en) 2018-01-09 2021-10-26 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of hematocrit concentration

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951757B2 (en) * 2006-12-11 2012-06-13 国立大学法人九州大学 Blood vessel information analyzer
US8260556B2 (en) * 2008-08-21 2012-09-04 Bio-Rad Laboratories, Inc. Calibration surface method for determination on of analyte ratios
JP5443395B2 (en) 2009-01-07 2014-03-19 パナソニック株式会社 Biological information measuring device and control method thereof
SG186961A1 (en) * 2010-07-08 2013-02-28 Glucostats System Pte Ltd Apparatus and method for predicting a parameter in the blood stream of a subject
WO2016151676A1 (en) * 2015-03-20 2016-09-29 オリンパス株式会社 Image processing device, image processing method, and biological observation device
JP6846152B2 (en) * 2016-10-03 2021-03-24 浜松ホトニクス株式会社 Blood glucose measuring device, blood glucose calculation method and blood glucose calculation program
EP3555592A4 (en) 2016-12-16 2019-10-30 Siemens Healthcare Diagnostics Inc. Simultaneous measurement of multiple analytes of a liquid assay
CN110710982B (en) * 2019-10-17 2023-01-13 京东方科技集团股份有限公司 Method for acquiring model for detecting hemoglobin concentration and method for detecting hemoglobin concentration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016577A1 (en) * 1999-08-31 2001-03-08 Cme Telemetrix Inc. Method for determination of analytes using nir, adjacent visible spectrum and discrete nir wavelengths
JP2001212114A (en) * 2000-02-02 2001-08-07 Matsushita Electric Ind Co Ltd Blood sugar meter
JP2002085385A (en) * 2000-09-21 2002-03-26 Sadako Honda Method and apparatus for measuring blood sugar value
JP2002202258A (en) * 2000-12-28 2002-07-19 Bios Ikagaku Kenkyusho:Kk Spectroscopic blood sugar level measuring instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001016577A1 (en) * 1999-08-31 2001-03-08 Cme Telemetrix Inc. Method for determination of analytes using nir, adjacent visible spectrum and discrete nir wavelengths
JP2001212114A (en) * 2000-02-02 2001-08-07 Matsushita Electric Ind Co Ltd Blood sugar meter
JP2002085385A (en) * 2000-09-21 2002-03-26 Sadako Honda Method and apparatus for measuring blood sugar value
JP2002202258A (en) * 2000-12-28 2002-07-19 Bios Ikagaku Kenkyusho:Kk Spectroscopic blood sugar level measuring instrument

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9351675B2 (en) 2005-03-01 2016-05-31 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US11545263B2 (en) 2005-03-01 2023-01-03 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US11430572B2 (en) 2005-03-01 2022-08-30 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10984911B2 (en) 2005-03-01 2021-04-20 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US9167995B2 (en) 2005-03-01 2015-10-27 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US9241662B2 (en) 2005-03-01 2016-01-26 Cercacor Laboratories, Inc. Configurable physiological measurement system
US10123726B2 (en) 2005-03-01 2018-11-13 Cercacor Laboratories, Inc. Configurable physiological measurement system
US10856788B2 (en) 2005-03-01 2020-12-08 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
US10327683B2 (en) 2005-03-01 2019-06-25 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US9549696B2 (en) 2005-03-01 2017-01-24 Cercacor Laboratories, Inc. Physiological parameter confidence measure
US9750443B2 (en) 2005-03-01 2017-09-05 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
US10251585B2 (en) 2005-03-01 2019-04-09 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
EP2476369A1 (en) * 2007-03-27 2012-07-18 Masimo Laboratories, Inc. Multiple wavelength optical sensor
US10251586B2 (en) 2007-04-21 2019-04-09 Masimo Corporation Tissue profile wellness monitor
US10980457B2 (en) 2007-04-21 2021-04-20 Masimo Corporation Tissue profile wellness monitor
US9848807B2 (en) 2007-04-21 2017-12-26 Masimo Corporation Tissue profile wellness monitor
US11647923B2 (en) 2007-04-21 2023-05-16 Masimo Corporation Tissue profile wellness monitor
US8965471B2 (en) 2007-04-21 2015-02-24 Cercacor Laboratories, Inc. Tissue profile wellness monitor
US11534087B2 (en) 2009-11-24 2022-12-27 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US10750983B2 (en) 2009-11-24 2020-08-25 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US9839381B1 (en) 2009-11-24 2017-12-12 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
US10729402B2 (en) 2009-12-04 2020-08-04 Masimo Corporation Calibration for multi-stage physiological monitors
US11571152B2 (en) 2009-12-04 2023-02-07 Masimo Corporation Calibration for multi-stage physiological monitors
FR2985656A1 (en) * 2012-01-13 2013-07-19 Kaptalia Monitoring OXYMETER
WO2013104629A1 (en) * 2012-01-13 2013-07-18 Kaptalia Monitoring Oximeter
TWI555504B (en) * 2014-06-06 2016-11-01 國立交通大學 System for intrinsic shape functions of blood pulse and its method
CN105748089A (en) * 2016-02-01 2016-07-13 刘进 Method and device for monitoring oxygen supply parameters
CN105748089B (en) * 2016-02-01 2018-10-26 刘进 A kind of oxygen is for parameter monitoring method and monitoring device
CN112203576A (en) * 2018-01-09 2021-01-08 美敦力监测股份有限公司 Systems and methods for non-invasively monitoring advanced glycation end products (AGEs)
US11154224B2 (en) 2018-01-09 2021-10-26 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of hematocrit concentration
US11051727B2 (en) 2018-01-09 2021-07-06 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of advanced glycation end-products (AGE)
US11039768B2 (en) 2018-01-09 2021-06-22 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of hemoglobin
WO2019138374A1 (en) * 2018-01-09 2019-07-18 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of advanced glycation end-products (age)
US11918351B2 (en) 2018-01-09 2024-03-05 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of hemoglobin

Also Published As

Publication number Publication date
JP2005253478A (en) 2005-09-22

Similar Documents

Publication Publication Date Title
WO2003077761A1 (en) Blood analyzer
US10238346B2 (en) System and method for a biosensor integrated in a vehicle
US6615064B1 (en) Non-invasive blood component analyzer
US7239905B2 (en) Active pulse blood constituent monitoring
JP2004113353A (en) Blood analyzer
US6931268B1 (en) Active pulse blood constituent monitoring
Wang et al. Noninvasive hemoglobin measurement using unmodified smartphone camera and white flash
US6968221B2 (en) Low-cost method and apparatus for non-invasively measuring blood glucose levels
CA2441017C (en) Method and apparatus for improving the accuracy of noninvasive hematocrit measurements
Yoon et al. Multiple diagnosis based on photoplethysmography: Hematocrit, SpO2, pulse, and respiration
EP0831738B1 (en) Active pulse blood constituent monitoring
JP2003275192A (en) Blood analyzer
JP2004290545A (en) Blood analyzer
Raikhel Accuracy of noninvasive and invasive point-of-care total blood hemoglobin measurement in an outpatient setting
JP2004290544A (en) Blood analyzer
EP0693900A1 (en) System and method for noninvasive hematocrit monitoring
JPH05508336A (en) Non-invasive measurement of blood sugar levels
CA2383725A1 (en) Method for determination of analytes using nir, adjacent visible spectrum and discrete nir wavelengths
JP2004248820A (en) Blood analyzer
Aldrich et al. Length-normalized pulse photoplethysmography: A noninvasive method to measure blood hemoglobin, bronx, NY
Nirupa et al. Non-invasive measurement of hemoglobin content in blood
Kashish et al. Design of low power pulse oximeter for early detection of hypoxemia
Pavithra et al. Low cost non-invasive medical device for measuring hemoglobin
JPH0666633U (en) Pulse oximeter
JP2008194488A (en) Apparatus for determining concentration of hemoglobin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP