WO2003046640A1 - Single-panel projection type image display apparatus - Google Patents

Single-panel projection type image display apparatus Download PDF

Info

Publication number
WO2003046640A1
WO2003046640A1 PCT/JP2002/012288 JP0212288W WO03046640A1 WO 2003046640 A1 WO2003046640 A1 WO 2003046640A1 JP 0212288 W JP0212288 W JP 0212288W WO 03046640 A1 WO03046640 A1 WO 03046640A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image display
color
display panel
rectangular
Prior art date
Application number
PCT/JP2002/012288
Other languages
French (fr)
Japanese (ja)
Inventor
Shigekazu Yamagishi
Hiroshi Miyai
Atsushi Hatakeyama
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2003046640A1 publication Critical patent/WO2003046640A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/123Multibeam scanners, e.g. using multiple light sources or beam splitters

Definitions

  • the present invention relates to a single-panel projection image display apparatus that performs color display using one light valve as a modulation unit.
  • LCD projectors which are the mainstay of the large-size video market, use a light source lamp, a condenser lens, and a projection lens to enlarge and form an image on a liquid crystal panel (light valve) on a screen.
  • the systems currently in practical use can be broadly divided into two types: three-plate type and single-plate type.
  • the former three-panel LCD projector In the former three-panel LCD projector, light from a white light source is separated into three primary colors of red, green, and blue by color separation optics, and the light is modulated by three monochrome liquid crystal panels. An image of each of the three primary colors is formed. After that, these images are synthesized by the color synthesis optical system and projected on the screen by one projection lens.
  • This method can use the entire spectrum of white light from the light source, so the light utilization is high, but the compensatory adjustment between the three liquid crystal panels, the color separation optical system, the color synthesis optical system, and the liquid crystal panel It is relatively expensive because it requires a mechanism.
  • Fig. 11 shows the schematic configuration of this image display device.
  • the color separation optical system 921 is composed of dichroic mirrors 921a and 921b and two reflection mirrors 921c and 921d.
  • the dichroic mirror 921a reflects blue light and transmits green light and red light.
  • the dichroic mirror 921b reflects red light and transmits green light and blue light.
  • the dichroic mirror 921a and the dichroic mirror 921b are intersected.
  • the blue light 9 32 is reflected by the dichroic mirror — 9 2 1a, reflected by the reflecting mirror 9 2 1d, and the opening 9 of the lighting section 9 2 2 Pass through 2 2 b.
  • the red light 9333 is reflected by the dichroic mirror 921b, reflected by the reflection mirror 9221c, and passes through the opening 9222r of the illumination section 9222.
  • the green light 9334 passes through both the dichroic mirrors 921a and 921b, and passes through the opening 922g of the illumination section 922.
  • the openings 922 r, 922 g, and 922 b of the illumination section 922 are formed in a band shape (rectangular shape), and red, green, and blue light beams are emitted from these openings adjacently. Is done.
  • Each of the band-like color lights emitted from the illumination unit 922 passes through the scanning optical system 9224.
  • a single transmissive light valve (display panel) illuminates 9 23 different areas in a strip shape. Due to the action of the rotating prism 924a constituting the scanning optical system 924, the red, green, and blue strips of color light scan the light valve 923 from bottom to top. When the band-shaped illumination region of a certain color light exceeds the uppermost end of the effective area of the light valve 923, the band-shaped illumination region of the color light reappears at the lowermost end of the effective region of the light valve 923. In this way, continuous scanning with red, green, and blue light can be performed over the entire effective area of the light valve 923.
  • the color light that illuminates each row on the light valve 923 changes every moment, and a light valve driving device (not shown) drives each pixel with information according to the illuminated color light. This means that each row of the light valve 923 is driven three times for each field of the video signal to be displayed.
  • the drive signal input to each row is a color signal corresponding to the color light illuminating the row among the signals of the image to be displayed.
  • Each color light modulated by the light valve 923 is enlarged and projected on a screen (not shown) by the projection lens 925.
  • the light from the white light source is separated into the three primary colors, so that the light from the light source can be used with almost no loss, and the light use efficiency can be increased.
  • each pixel on the light valve sequentially displays red, green, and blue, it is possible to provide a high-quality image without color shift, which is a problem with the three-plate type described above.
  • the rotating prism 9224a when each color light from the illumination unit 922 passes through the rotating prism 9224a, the light flux is not restricted.
  • the size (rotation radius) of the rotating prism 9 24 a must be adjusted to the size of the illumination area of the light emitted from the illumination section 9 22.
  • the rotating prism 9 24 a is large and heavy. . Therefore, it was an obstacle in reducing the size and weight of the device.
  • the present invention solves the above-mentioned problems of the conventional single-panel type image display device, includes a color light scanning optical system that sequentially scans light pulp with each color light, has high light use efficiency, and can display a high-quality image.
  • Another object of the present invention is to provide a color image display device capable of reducing the size of the device.
  • a single-panel projection-type image display device includes a rectangular light emitting unit, and emits red, green, and blue light of different colors.
  • a first optical unit for condensing light from the light source a rotating polygon mirror that rotates about an axis, reflects the light condensed by the first optical unit, and scans, and has an F-seater lens function.
  • An image display panel that modulates the brightness of light for each pixel; a drive circuit that drives each pixel of the image display panel with a signal corresponding to a color of light incident on the pixel; Red, green formed by and modulated by the signal
  • a projection optical system for enlarging and projecting each blue color light on a screen, so that light emitted from an arbitrary point of the surface light source enters the rotating polygon mirror as parallel light.
  • the surface emitting light source is disposed at a focal position of the first optical unit.
  • FIG. 1 is an overall configuration diagram of a single-panel projection image display device according to Embodiment 1 of the present invention.
  • FIG. 2 shows a single-panel projection image display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram showing an optical system from a surface-emitting light source to a rotary polygon mirror.
  • FIG. 3 is a side view showing spots formed on the reflection surface of the rotary polygon mirror of the single-plate projection image display device according to Embodiment 1 of the present invention.
  • FIGS. 4A to 4F show how the reflected light from the rotating polygon mirror changes in the single-panel projection image display apparatus according to Embodiment 1 of the present invention, and how each color light illuminates the image display panel.
  • FIG. 6 is a diagram showing a state in which is scanned.
  • FIG. 5 is an exploded perspective view showing a configuration of a transmission type image display panel used in the single-panel projection type image display device according to Embodiment 1 of the present invention.
  • FIG. 6 is an overall configuration diagram of a single-panel projection image display device according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic perspective view of a rod portion used in a single-panel projection image display device according to Embodiment 2 of the present invention.
  • FIG. 8A is a front view of a first lens array constituting the lens array integrator optical means
  • FIG. 8B is a front view of a second lens array constituting the lens array integrator optical means.
  • FIG. 9 is an overall configuration diagram of a single-panel projection image display device according to Embodiment 3 of the present invention.
  • FIG. 10 is an explanatory diagram showing the positional relationship between the components of the single-panel projection-type image display device according to Embodiments 1 and 2 of the present invention.
  • FIG. 11 is a schematic configuration diagram of a conventional single-panel projection image display device using a scanning optical system.
  • FIG. 12 is a cross-sectional view showing details of a color separation optical system used in the image display device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the single-plate projection type image forming apparatus of the present invention has a rectangular light emission.
  • a surface emitting light source that emits red, green, and blue light of different colors; a first optical unit that collects light from the surface emitting light source;
  • a rotating polygon mirror for reflecting and scanning the light condensed by the optical means, and a second optical means having an F-seater lens function and condensing the light reflected by the rotating polygon mirror; and
  • An image display panel comprising: a plurality of pixels arranged in a plurality of pixels; an image display panel that modulates, for each of the pixels, the brightness of each of red, green, and blue color lights that have passed through the second optical unit;
  • a driving circuit for driving a pixel with a signal corresponding to the color of light incident on the pixel; and a red, green, and blue rectangular color light formed on the image display panel and modulated by the signal.
  • a projection optical system for enlarging and projecting on the screen As the light emitted from any point
  • the single-panel projection image display device of the present invention capable of projecting a high-quality image further includes a light source unit including a white light source and a reflector, and a rod unit having a rectangular opening.
  • a color separation optical system that separates the light into red, green, and blue light, and the respective color lights from the color separation optical system respectively enter to form rectangular images of the red, green, and blue light, respectively.
  • three first condenser lenses In this case, the three surface emitting light sources correspond to the three first condenser lenses, and the rectangular light emitting portion corresponds to the rectangular image formed on the first condenser lens.
  • a red light, a green light and a blue light are obtained by a color separation optical system using a white light source, a high utilization efficiency of the light from the white light source can be realized.
  • an image formed on the rotary polygon mirror and an entrance pupil of the projection optical system have a conjugate relationship.
  • the rotating polygon mirror rotates and scans the reflected light, the position of the image (spot) on the rotating polygon mirror does not change, so that the image on the rotating polygon mirror and the entrance pupil of the projection lens are conjugated.
  • the smallest image that does not move can be formed at the position of the entrance pupil of the projection lens. Therefore, light can be used efficiently even with a small projection lens.
  • the image display panel may be a transmissive liquid crystal display panel.
  • the image display panel may be a reflective liquid crystal display panel or a reflective mirror device.
  • a first lens array in which a microphone aperture lens having a rectangular opening having the same shape is two-dimensionally arranged in place of the rod integrator optical means, and the first lens array is configured.
  • a second lens array in which the same number of microlenses are two-dimensionally arranged.
  • FIG. 1 is a schematic configuration diagram of a single-panel projection image display device according to Embodiment 1 of the present invention.
  • the single-panel projection type image display device of the present embodiment has a surface-emitting light source unit.
  • first optical means 202 rotating polygon mirror 203
  • second optical means 204 image display panel 205
  • image display panel drive circuit 206 projection optical system 2 It is made up of 0-7.
  • the surface emitting light source unit 201 includes a light emitting unit 208 R that emits red light, a light emitting unit 208 G that emits green light, and a light emitting unit 208 B that emits blue light.
  • 8 R, 208 G and 208 G are rectangular surface emitting light sources.
  • Each of the light-emitting portions 208 R, 208 G, and 208 G is a light source that emits each color light at a constant light emission angle ⁇ , which is close to an ideal light source.
  • each light-emitting unit 208R, 208G, and 208G can be realized by, for example, an LED array in which a plurality of red, green, and blue light-emitting LED elements are arranged. .
  • an electroluminescent (EL) element may be used.
  • the first optical means 202 includes a condenser lens 210.
  • 208 R, 208 G, and 208 B are arranged at the focal position of the condenser lens 210.
  • FIG. 2 is a diagram for explaining the principle of the present invention.
  • the explanation focuses on red light.
  • the rectangular light emitting portion 208R is an aggregate of point light sources, and light emitted from an arbitrary point A emits radially at an angle.
  • the light emitted from the point A enters the rotary polygon mirror 203 via the condenser lens 210.
  • the light emitted from the same point A becomes parallel light after passing through the condenser lens 210 and enters the rotating polygon mirror 203.
  • point B which is different from point A
  • the emitted light also becomes parallel light after passing through the condenser lens 210 and enters the rotating polygon mirror 203.
  • the condition for the light emitted from the same point to become parallel light after passing through the condenser lens 210 is that the rectangular light emitting parts 208 R, 208 G, and 208 B are focused at a focal length of F. This is to dispose it at the focal position of the lens 210.
  • light emitted from any point of the rectangular light-emitting portions 208 R, 208 G, and 208 B of each color light becomes parallel light when incident on the rotating polygon mirror 203. Since the first optical means 202 is arranged as described above, the rotating polygon mirror is used for the light emitted from any point of the rectangular light emitting portions 208 R, 208 G, and 208 B.
  • the light incident on the same reflecting surface of 203 is reflected at the same angle and is incident on the second optical means 204, and at the same point on the image display panel 205 by the function of the F-theta lens. It is collected. That is, the surface-emitting light source unit 201 and the first optical unit are arranged so that the rectangular light emitting units 208 R, 208 G, and 208 B and the image display panel 205 have a conjugate relationship. 202, a rotating polygon mirror 203, a second optical means 204, and an image display panel 205 are arranged. Image display panel 20 if the light emitted from any of the rectangular light emitting sections 208 R, 208 G, and 208 B does not become parallel light when entering the rotating polygon mirror 203. (5) The image on the top is blurred, and cannot be corresponded to the video signal, which is a factor of image quality deterioration.
  • the rectangular light-emitting portions 208 R, 208 G, and 208 B are surface light sources that emit light at a constant small light-emitting angle, and are close to ideal surface light sources, but the light-emitting angle ⁇ is large.
  • a condenser lens is arranged for each color light between the rectangular light emitting sections 208 R, 208 G, and 208 B and the first optical means 202, and the rectangular light emitting section is formed. It is preferable that the light from the sections 208 R, 208 G, and 208 B be efficiently guided to the first optical means 202.
  • each color light emitted from the first optical means 202 is focused on the reflection surface 222 of the rotating polygon mirror 203, and each color light is partially superimposed on each other.
  • To form a set 220 it is desirable that there is no overlapping portion between the adjacent spots 220.
  • the size of the spot 220 is determined by the emission angle characteristics on the light source side, when a light source having a spread emission characteristic is used, It is more efficient to superimpose the spots 220 on each other as in this embodiment.
  • the shape of the spot 220 formed on the rotary polygon mirror 203 is a shape in which the dimension in the moving direction of the reflection surface 222 of the rotary polygon mirror 203 is short.
  • the point (intersection) at which the principal rays of red, green, and blue light incident on the rotating polygon mirror 203 intersect with the virtual circumscribed circle of the rotating polygon mirror 203 is defined as the rotation polygon.
  • the light that has entered and reflected the rotating polygon mirror 203 enters second optical means 204 that is a scanning optical system.
  • the second optical means 204 has the function of an F / C lens which determines the illumination position on the image display panel 205 depending on the incident angle of the incident light.
  • the light incident on the second optical means 204 at an incident angle + ⁇ p illuminates one end of the effective display section of the image display panel 205, and the second optical means 204 at an incident angle of 10p.
  • FIGS. 4A to 4F show the rotation of the rotating polygon mirror 203 and the accompanying change in the lighting state of the image display panel 205 with each color light at regular time intervals.
  • the illumination area of red light, the illumination area of green light, and the illumination area of blue light are denoted by R, G, and B, respectively. Is shown.
  • R, G, and B indicate a red light principal ray, a green light principal ray, and a blue light principal ray, respectively, and an arrow indicates It shows the traveling direction of light.
  • the arrow 203a indicates the direction of rotation of the rotating polygon mirror 203.
  • red, green, and blue light are incident on the common reflecting surface 2 23a of the rotating polygon mirror 203, and the red light moves on the reflecting surface as shown in the figure.
  • the green light reflects at a slightly smaller reflection angle than the red light
  • the blue light reflects at a smaller reflection angle than the green light. Therefore, each color light enters the second optical means 204 at a different angle.
  • rectangular images of the rectangular light emitting portions 208 R, 208 G, and 208 B of each color light are formed at different positions on the image display panel 205 as shown in the figure.
  • a red light illumination region, a green light illumination region, and a blue light illumination region are formed in this order from the right.
  • the length of the short side of the rectangular illumination area of each color light is / of the length of the effective display section of the image display panel 205 in the scanning direction 205 a.
  • rectangular images of the rectangular light-emitting portions 208 R, 208 G, and 208 B of the respective color lights are formed at different positions on the image display panel 205 as shown in the figure. That is, a green light illumination region, a blue light illumination region, and a red light illumination region are sequentially formed on the image display panel 205.
  • Rectangular images of the light parts 208R, 208G, and 208B are formed as shown in the figure. That is, on the image display panel 205, a blue light illumination area, a red light illumination area, and a green light illumination area are formed in order from the right.
  • the rectangular illumination area (rectangular image) formed by the red, green, and blue color lights formed on the image display panel 205 moves sequentially in the scanning direction 205a.
  • the principal rays of adjacent color light enter the rotary polygon mirror 203 with an interval corresponding to an angle ⁇ pZ3 with respect to the rotation axis of the rotary polygon mirror 203. From the above, the principal ray of each color light reaches the ridgeline between the reflecting surfaces 223 of the rotating polygon mirror 203 (the boundary between the adjacent reflecting surfaces 223) at the same time interval.
  • the above-mentioned switching from time tl to t6 is performed continuously at the same time interval, and as described above, all three color lights are scanned at the same angle of ⁇ 0 p. Lighting with reduced flicker can be performed. As shown in FIG.
  • the image display panel 205 includes a transmissive liquid crystal panel 212, an incident-side polarizing plate 211 serving as a polarizer provided on the incident side, and an exit-side polarizing plate. It is composed of an exit-side polarizing plate 214 serving as an analyzer.
  • the incident-side polarizing plate 2 13 is set, for example, to transmit light polarized in the short-side direction 2 13 a of the rectangular outer shape and absorb light polarized in a direction perpendicular to the direction.
  • the light transmitted through the incident side polarizing plate 21 enters the transmission type liquid crystal panel 21.
  • a large number of pixels are arranged in the liquid crystal panel 212, and the polarization direction of the transmitted light can be changed for each pixel opening by an external signal.
  • the output-side polarizing plate 214 has polarization characteristics in a direction orthogonal to the incident-side polarizing plate 211. That is, the emission-side polarizing plate 214 has a transmission axis in the long side direction 21a of the rectangular outer shape, and transmits light polarized in this direction. Therefore, the light that has entered the undriven pixels of the liquid crystal panel 212 and has been transmitted with the polarization direction changed by 90 degrees will have its polarization direction coincident with the transmission axis of the exit-side polarizing plate 214. Here it can be transmitted.
  • the image display panel drive circuit 206 drives each pixel of the liquid crystal panel 212 of the image display panel 205 with a signal corresponding to the color of light incident on the pixel. I do. Thus, the rectangular image of each color light incident on the image display panel 205 is modulated for each pixel, and an image is formed.
  • the liquid crystal panel 212 constituting the image display panel 205 has an incident angle dependency, it is necessary to set a small angle difference of the incident light within the effective display surface.
  • a telecentric optical system configuration is adopted so that the principal rays of each color light emitted from the second optical means 204 are parallel to each other.
  • the light transmitted through the image display panel 205 is a projection lens 210 Leads to.
  • the projection lens 207 also has a configuration corresponding to telecentric light.
  • An image of the spot 220 on the rotating polygon mirror 203 is formed on the entrance pupil of the projection lens 207. Even if the rotating polygon mirror 203 rotates and scans the reflected light, the position of the spot 220 on the rotating polygon mirror 203 does not change. By making the entrance pupil of the projection lens 207 have a shared relationship, the smallest image that does not move can be formed at the position of the entrance pupil of the projection lens 207. Therefore, light can be used efficiently even with a small projection lens.
  • the rectangular images of the rectangular light-emitting portions 208 R, 208 G, and 208 B of the respective color lights that are formed and scrolled on the image display panel 205 are displayed on the image display panel driving circuit 2.
  • a color image can be displayed on a screen (not shown) arranged in front of the projection lens 207.
  • each color light shown in FIGS. 4A to 4F is performed at a high speed. (It is preferable that at least one unit of FIGS. 4A to 4F is performed at least once within one field time.) ), Images for each color are synthesized on the observer's retina, and are recognized as color images without color separation.
  • the image forming apparatus of the present embodiment has a structure in which each pixel on the image display panel 205 displays red, green, and blue as compared with the conventional three-panel liquid crystal projector. Therefore, there is no need for a mechanism for adjusting the compatibility between image liquid crystal panels as in the three-panel type, and a high-quality image without color shift can be provided. Furthermore, compared to conventional single-panel LCD projectors, since no color filter is used as the color selection means, red, green, and blue light can be used without loss, so high light use efficiency can be realized.
  • each color light from the illumination section 922 passes through the rotating four-sided prism 924a. Therefore, in order to scan each color light, two separated surfaces of the prisms 924a are required, and it is difficult to reduce the effective light flux, and there is a problem that the entire apparatus becomes large.
  • the scanning of each color light is performed using the rotating polygon mirror 203, so that the effective light flux of the light incident on the reflection surface 222 is large. Can be reduced. Therefore, it is possible to reduce the size of the reflecting surface 223, to reduce the size of the rotating polygon mirror 203, and to reduce the size of the motor for rotating the mirror. These make it possible to reduce the size, weight, and cost of the entire device.
  • a transmissive liquid crystal display device is used as the image display panel 205.
  • any display device that modulates incident light and performs display may be used.
  • Type mirror devices can also be applied.
  • a device capable of high-speed response is required. At this time, it is necessary to optimize the optical system (especially the second optical means) according to the display device used.
  • the light source units according to the first embodiment each have a rectangular shape, and have a constant light emission angle ( ⁇ ), A near-ideal surface-emitting light source that emits red, green, and blue light.
  • the light source section has a more practical configuration, and the white light from the white light source is shaped into a rectangle, and separated into red, green, and blue to form a rectangular light of each color. It has gained.
  • FIG. 6 is a schematic configuration diagram of a single-panel projection image forming apparatus according to the second embodiment.
  • the single-panel projection image forming apparatus according to the second embodiment includes a light source section 330, a rod integrator optical device 3 1, 3, color separation optical system 3 1, 4, surface emitting light source section 301, first optical means 202, rotating polygon mirror 203, second optical means 204, image display panel 2 05, an image display panel drive circuit 206, and a projection lens 207.
  • Components having the same functions as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the light source unit 330 has the same configuration as that of the first embodiment after the first optical unit 202.
  • the light source unit 330 emits white light by generating an arc between the electrodes.
  • the light-emitting body 311 is disposed at the first focal position, and includes a reflector 312 having an elliptical reflecting surface for condensing light at the second focal position.
  • a white light source a known white light source such as a halogen lamp can be used instead of a discharge lamp.
  • a reflector having a parabolic mirror instead of an ellipsoidal mirror and a condenser lens can be used.
  • the rod integrator optical means 3 13 is composed of a mouth portion 3 25 in which four reflecting mirrors 3 24 are combined into a rectangular tube shape with its reflecting surface inside.
  • the rod integrator optical means 3 13 is not limited to the configuration shown in FIG. 7, and for example, a prism having a quadrangular prism shape may be used. Can also.
  • the rod portion 325 is arranged so that the position of one opening (first opening) of the rectangular shape coincides with the second focal point of the reflector 131.
  • a condensing lens 315 is arranged at the position of the other rectangular opening (second opening) of the rod portion 325.
  • the condenser lens 315 condenses the light from the second opening of the rod section 325, and forms the second opening shape image as a rectangular uniform illumination area in the front.
  • a rod integrator optical means is used.
  • a lens array integrator composed of two groups of lens arrays, a first lens array and a second lens array, is used.
  • Optical means can also be used.
  • the lens array integrator optical means comprises a first lens array 32 6 in which microlenses having the same shape of rectangular apertures are arranged two-dimensionally, and as shown in FIG. 8B.
  • the microphone lens includes a microphone lens constituting the first lens array 326 and a second lens array 327 in which the same number of microlenses corresponding to one-to-one correspondence are arranged two-dimensionally.
  • the second lens array 327 is composed of the same number of microlenses as the light source images 328 formed by the microlenses of the first lens array 326.
  • the lens array integrator optical means is disposed between the condenser lens 3 15 and the color separation optical system 3 14 in place of the rod section 3 25 of the rod integrator optical means 3 13 in FIG. You.
  • the white light from the light source section 330 is condensed by the condensing lens 315, enters the first lens array 326 of the lens array integrator optical means, and the second lens array 327 Superimposes each microphone aperture lens image of the first lens array 326 in front of it to form a rectangular uniform illumination area.
  • a color separation optical system 314 is provided between the condenser lens 315 and the rectangular uniform illumination area.
  • the white light incident here is decomposed into red, green, and blue color lights by a red reflection dichroic mirror 316 and a blue reflection dichroic mirror 131 arranged at an angle to the optical path.
  • the green light passes through the two dichroic mirrors 316 and 317 and reaches the first condenser lens 309G.
  • the red light reflected by the red reflection dichroic mirror 316 passes through a first relay lens 318, a first mirror 319, a second relay lens 322 and a first condenser lens. Up to 309 R.
  • the blue light reflected by the blue reflection dichroic mirror 3 1 7 passes through the third relay lens 3 2 1, the second mirror 3 2 2, the fourth relay lens 3 2 3 and the first condenser lens 3 In this way, the first condensing lens 309R, 309G, and 309B for each color light is placed on the rectangular uniform illumination area (the second aperture of the rod section 325). A rectangular image is formed for each color.
  • the first condensing lenses 309R, 309G, and 309B on which the rectangular images of red, green, and blue are formed in this manner are provided by the surface-emitting light source unit 3 0 Functions as 1.
  • the light that has passed through the first condensing lenses 309R, 309G, and 309B for each color light is incident on the second condensing lens 310 that forms the first optical unit 202. Since the second condenser lens 310 and thereafter are the same as in FIG. 1, the description is omitted.
  • the light emitting units of the respective color lights are provided on the first condensing lenses 309 R, 309 G, and 309 B for the respective color lights. Rectangular uniform illumination areas (rectangular images) corresponding to 208 R, 208 G, and 208 B are formed, respectively.
  • the first condenser lenses 309R, 309G, and 309B are located at the focal position of the second condenser lens 310 so that light is incident as Is done. Further, the rectangular uniform illumination area on the first condensing lenses 309R, 309G, and 309B for each color light and the image display panel 205 are arranged so as to have a conjugate relationship.
  • the spot (light source image) 220 on the rotary polygon mirror 203 and the entrance pupil of the projection lens 207 are arranged in a conjugate relationship.
  • FIG. 9 is a schematic configuration diagram of a single-panel projection image forming apparatus according to the third embodiment.
  • the single-panel projection image forming apparatus according to the third embodiment includes a light source section 43 0 and a surface-emitting light source section 40. 1, first optical means 402, rotating polygon mirror 203, second optical means 204, image display panel 205, image display panel drive circuit 206, projection lens 207 ing.
  • first optical means 402 rotating polygon mirror 203
  • second optical means 204 rotating polygon mirror 203
  • image display panel 205 image display panel drive circuit 206
  • projection lens 207 projection lens
  • the light source section 430 includes a red light source section 407, a green light source section 408, and a blue light source section 409 for emitting red, green, and blue light, respectively, and each of them emits light.
  • the light emitting sections 408 R, 408 G, and 408 B having a rectangular shape are provided on the sides.
  • the light of each color emitted from the light emitting sections 408 R, 408 G, 408 B enters the first condenser lens 409 R, 409 G, 409 B for each color light I do.
  • Each color light emitted from the first condenser lens 409 R, 409 G, 409 B enters the second condenser lens 411 R, 410 G, 410 B for each color light I do.
  • the respective color lights emitted from the second condenser lenses 410R, 410G and 410B enter the reflection surface on the outer periphery of the rotary polygon mirror 203 in the same manner as in the first embodiment.
  • the second condenser lens 410R, 410G, 410B is used to rotate the image of the light emitting section 408R, 408G, 408B on the rotating polygon mirror 203. Is formed on the image display panel 205 through the second optical means 204. After rotating polygon mirror 203
  • the configuration of the stage is the same as that of the first embodiment, and the description is omitted.
  • first condenser lenses 409R, 409G, and 409B are arranged at the focal positions of the second condenser lenses 410R, 410G, and 410B so that the light is incident.
  • the rectangular uniform illumination area on the first condenser lenses 409R, 409G, and 409B and the image display panel 205 are arranged so as to have a conjugate relationship.
  • the spot (light source image) 220 on the rotary polygon mirror 203 and the entrance pupil of the projection lens 207 are arranged so as to have a conjugate relationship.
  • the first condenser lenses 409R, 409G, and 409B are arranged close to the light emitting portions 408R, 408G, and 408B of the respective color lights, and Although the light is efficiently guided to the second condenser lens 410R, 410G, 410B, the light emission angle of the light from the light exit section 408R, 408G, 408B is reduced. If possible, the first condenser lenses 409R, 409G, and 409B can be omitted. In that case, the light emitting portions 408 R, 408 G, and 408 B constitute the surface emitting light source portion 401, as in the first embodiment.
  • the light emitting portions 408R, 408G, and 408B are arranged at the focal positions of the second condenser lenses 410R, 410G, and 410B. Further, the light emitting sections 408R, 408G, 408B and the image display panel 205 are arranged so as to have a conjugate relationship.
  • the first optical means 402 is constituted by the second condenser lenses 410R, 410G, and 410B for each color light.
  • the first optical means 402 may be configured using a lens common to each color light.
  • FIG. 10 illustrates the gist of the present invention while comparing the first embodiment with the second embodiment.
  • the upper row (I) corresponds to the first embodiment
  • the lower row (II) corresponds to the second embodiment
  • 9 correspond to the symbols in FIGS. 1 and 6, respectively.
  • the reflection due to the reflection of the rotating polygon mirror 203 was not taken into consideration, and the main component of the green light among the red, green, and blue color lights shown in FIGS. Each component is shown on the same line with the light ray as the center line.
  • the rectangular light emitting portions 208 R, 208 G, and 208 B are arranged such that light emitted from any point on 208 B enters the rotating polygon mirror 203 as parallel light. It is arranged at the focal position of the condenser lens 210 (the focal length of the condenser lens 210 is F).
  • a rectangular uniform illumination area corresponding to the rectangular light-emitting portions 208 R, 208 G, and 208 B of each color light in the upper stage (I) is formed on the color filter 309 B for each color. Therefore, the light emitted from an arbitrary point on the first condensing lens 309R, 309G, 309B for each color light is incident on the rotating polygon mirror 203 as parallel light.
  • the first condenser lens 310 R, 309 G, and 309 B are the focal point of the second condenser lens 310 (the focal length of the second condenser lens 310 is F) Distributed to.
  • the distance between the upper (I) rectangular light emitting portions 208 R, 208 G, and 208 B and the condenser lens 210, and the lower (II) first condenser lens for each color light The distance between 309 R, 309 G, 309 B and the second condenser lens 310 is strict. It is not necessary that the focal length be exactly equal to the focal length F, and the focal length may be slightly moved back and forth as long as the effects of the present invention can be maintained.
  • the components are further arranged such that the spot 220 on the rotary polygon mirror 203 and the entrance pupil position of the projection lens 207 have a conjugate relationship. Even if the rotating polygon mirror 203 rotates and scans, the position of the spot 220 on the rotating polygon mirror 203 does not change, so the spot 220 on the rotating polygon mirror 203 and the projection lens 2
  • the entrance pupil of the projection lens 207 By making the entrance pupil of the projection lens 207 have a conjugate relationship, the smallest image that does not move can be formed at the position of the entrance pupil of the projection lens 207. Therefore, light can be used efficiently even with a small projection lens.

Abstract

Color lights from a red, a green, and a blue surface emitting light source (201) of rectangular shape are reflected by a rotary multi-face mirror (203) to form a rectangular illumination area of each color light moving in one direction on an image display panel (205). Each pixel of the image display panel (205) is driven by a signal corresponding to the incident color light. An image on the image display panel (205) is enlarged/projected by a projection optical system (207). The surface emitting light source (201) is arranged at a focal point of first optical means (202), so that light emitted from an arbitrary point on the surface emitting light source (201) is incident as parallel light onto the rotary multi-face mirror (203). Thus, it is possible to form an image of the surface emitting light source (201) on the image display panel (205) without any out-of-focus portion, thereby forming an image of a high resolution.

Description

明 細 書 単板式投写型画像表示装置 技術分野  Description Single-panel projection image display device Technical field
本発明は 1枚のライ卜バルブを変調手段として用いてカラー表示を行 う単板式投写型画像表示装置に関する。 背景技術  The present invention relates to a single-panel projection image display apparatus that performs color display using one light valve as a modulation unit. Background art
現在、 大型映像市場の主力である液晶プロジェクタ一は、 液晶パネル (ライトバルブ) の画像を光源ランプと集光レンズと投写レンズとを用 いてスクリーン上に拡大、 結像させるものである。 現在実用化されてい る方式は 3板式と単板式の大きく 2つに分けることができる。  Currently, LCD projectors, which are the mainstay of the large-size video market, use a light source lamp, a condenser lens, and a projection lens to enlarge and form an image on a liquid crystal panel (light valve) on a screen. The systems currently in practical use can be broadly divided into two types: three-plate type and single-plate type.
前者の 3板式液晶プロジェクタ一では、 白色光源からの光を色分解光 学系により赤、 緑、 青の 3原色の色光に分光した後、 それらの光を 3枚 のモノクロ液晶パネルにより変調し、 3原色の画像をそれぞれ形成する 。 その後、 これらの画像を色合成光学系で合成して、 1つの投写レンズ でスクリーン上に投写する。  In the former three-panel LCD projector, light from a white light source is separated into three primary colors of red, green, and blue by color separation optics, and the light is modulated by three monochrome liquid crystal panels. An image of each of the three primary colors is formed. After that, these images are synthesized by the color synthesis optical system and projected on the screen by one projection lens.
この方式は光源からの白色光の全スぺクトルを利用できるため光利用 率は高いが、 3枚の液晶パネル、 色分解光学系、 色合成光学系、 及び液 晶パネル間のコンパージエンス調整機構を必要とするため比較的高価で ある。  This method can use the entire spectrum of white light from the light source, so the light utilization is high, but the compensatory adjustment between the three liquid crystal panels, the color separation optical system, the color synthesis optical system, and the liquid crystal panel It is relatively expensive because it requires a mechanism.
これに対し、 従来の単板式液晶プロジェクタ一では、 モザイク状の力 ラーフィルター付き液晶パネル上に形成した画像を単純にスクリーンに 拡大投写するだけなのでコンパクトで低価格である。 しかしながら、 こ の方式では光源からの白色光のうち、 色選択手段であるカラーフィル夕 一において不要な色光を吸収することによって所望の色を得ているためIn contrast, conventional single-panel LCD projectors are compact and inexpensive because they simply enlarge and project the image formed on the mosaic-shaped LCD panel with a color filter onto the screen. However, in this method, of the white light from the light source, a color filter as a color selection means is used. Because the desired color is obtained by absorbing unnecessary color light in one
、 液晶パネルに入射した白色光の 1 Z 3以下しか透過 (又は反射) せず 、 光利用率が低く、 高輝度の画像が得られにくい。 光源を明るくすれば 表示画像の明るさを向上させることができるが、 カラーフィルターの光 吸収による発熱及び耐光性に対する問題が残されており、 高輝度化を図 る上で大きな障害となっていた。 However, only 1Z3 or less of white light incident on the liquid crystal panel is transmitted (or reflected), the light utilization is low, and it is difficult to obtain a high-luminance image. Increasing the brightness of the light source can improve the brightness of the displayed image, but it still has problems with heat generation and light resistance due to light absorption of the color filter, which has been a major obstacle to achieving high brightness. .
このような問題に対する単板式画像表示装置が特開平 4 _ 3 1 6 2 9 6号公報で提案されている。 この画像表示装置の概略構成を図 1 1に示 す。  A single-plate image display device for solving such a problem has been proposed in Japanese Patent Application Laid-Open No. 4-316926. Fig. 11 shows the schematic configuration of this image display device.
光源部 9 2 0から発せられた白色光は色分解光学系 9 2 1に導かれる 。 色分解光学系 9 2 1は、 図 1 2に示すように、 ダイクロイツクミラー 9 2 1 a , 9 2 1 bと 2枚の反射ミラー 9 2 1 c, 9 2 1 dとからなる 。 ダイクロイツクミラー 9 2 1 aは青色光を反射して緑色光及び赤色光 を透過する。 また、 ダイクロイツクミラー 9 2 1 bは赤色光を反射して 緑色光及び青色光を透過する。 これらのダイクロイツクミラー 9 2 1 a とダイクロイツクミラ一 9 2 1 bとは交差して設置されている。 光源部 9 2 0からの白色光 9 3 1のうち、 青色光 9 3 2はダイクロイックミラ — 9 2 1 aで反射され、 反射ミラー 9 2 1 dで反射され、 照明部 9 2 2 の開口 9 2 2 bを通過する。 また、 赤色光 9 3 3は、 ダイクロイツクミ ラー 9 2 1 bで反射され、 反射ミラ一 9 2 1 cで反射され、 照明部 9 2 2の開口 9 2 2 rを通過する。 また、 緑色光 9 3 4はダイクロイックミ ラ一 9 2 1 a, 9 2 1 bの双方を透過して、 照明部 9 2 2の開口 9 2 2 gを通過する。 照明部 9 2 2の開口 9 2 2 r, 9 2 2 g , 9 2 2 bは帯 状 (矩形状) に形成されており、 これらの開口から赤、 緑、 青の色光が 隣接して出射される。  White light emitted from the light source section 920 is guided to the color separation optical system 921. As shown in FIG. 12, the color separation optical system 921 is composed of dichroic mirrors 921a and 921b and two reflection mirrors 921c and 921d. The dichroic mirror 921a reflects blue light and transmits green light and red light. The dichroic mirror 921b reflects red light and transmits green light and blue light. The dichroic mirror 921a and the dichroic mirror 921b are intersected. Of the white light 9 31 from the light source 9 20, the blue light 9 32 is reflected by the dichroic mirror — 9 2 1a, reflected by the reflecting mirror 9 2 1d, and the opening 9 of the lighting section 9 2 2 Pass through 2 2 b. The red light 9333 is reflected by the dichroic mirror 921b, reflected by the reflection mirror 9221c, and passes through the opening 9222r of the illumination section 9222. The green light 9334 passes through both the dichroic mirrors 921a and 921b, and passes through the opening 922g of the illumination section 922. The openings 922 r, 922 g, and 922 b of the illumination section 922 are formed in a band shape (rectangular shape), and red, green, and blue light beams are emitted from these openings adjacently. Is done.
照明部 9 2 2を出射した帯状の各色光は、 走査光学系 9 2 4を通って 単一の透過型ライトバルブ (表示パネル) 9 2 3の異なる領域をそれぞ れ帯状に照明する。 走査光学系 9 2 4を構成する回転プリズム 9 2 4 a の作用により、 赤、 緑、 青の帯状の各色光はライトバルブ 9 2 3上を下 から上に走査する。 ある色光の帯状照明領域がライトバルブ 9 2 3の有 効域の最上端を越えると、 その色光の帯状照明領域がライトバルブ 9 2 3の有効域の最下端に再び現れる。 このようにして、 ライトバルブ 9 2 3の有効域の全域にわたって赤、 緑、 青の各色光による連続走査が可能 となる。 ライトバルブ 9 2 3上の各行を照明する色光は刻々変化し、 ラ イトバルブ駆動装置 (図示せず) は、 各画素を、 照明される色光に応じ た情報で駆動する。 これはライトバルブ 9 2 3の各行が、 表示すべき映 像信号の各フィールド毎に 3回駆動されることを意味する。 個別の行に それぞれ入力される駆動信号は、 表示すべき画像の信号のうち、 その行 を照明する色光に応じた色信号である。 ライトバルブ 9 2 3で変調され た各色光は投写レンズ 9 2 5によりスクリーン (図示せず) 上に拡大投 写される。 Each of the band-like color lights emitted from the illumination unit 922 passes through the scanning optical system 9224. A single transmissive light valve (display panel) illuminates 9 23 different areas in a strip shape. Due to the action of the rotating prism 924a constituting the scanning optical system 924, the red, green, and blue strips of color light scan the light valve 923 from bottom to top. When the band-shaped illumination region of a certain color light exceeds the uppermost end of the effective area of the light valve 923, the band-shaped illumination region of the color light reappears at the lowermost end of the effective region of the light valve 923. In this way, continuous scanning with red, green, and blue light can be performed over the entire effective area of the light valve 923. The color light that illuminates each row on the light valve 923 changes every moment, and a light valve driving device (not shown) drives each pixel with information according to the illuminated color light. This means that each row of the light valve 923 is driven three times for each field of the video signal to be displayed. The drive signal input to each row is a color signal corresponding to the color light illuminating the row among the signals of the image to be displayed. Each color light modulated by the light valve 923 is enlarged and projected on a screen (not shown) by the projection lens 925.
このような構成によれば、 白色光源からの光を 3原色に分解するので 光源からの光をほぼ損失なく使え、 光利用効率を高く出来る。 また、 ラ イトバルブ上の各画素は、 それぞれが赤緑青表示を順に行うから、 先に 示した 3板式で問題となる色ずれもなく、 高画質映像を提供できる。  According to such a configuration, the light from the white light source is separated into the three primary colors, so that the light from the light source can be used with almost no loss, and the light use efficiency can be increased. In addition, since each pixel on the light valve sequentially displays red, green, and blue, it is possible to provide a high-quality image without color shift, which is a problem with the three-plate type described above.
しかしながら、 以上に示した構成では、 照明部 9 2 2からの各色光は 前記回転プリズム 9 2 4 aを透過する際、 光束が絞られない。 回転プリ ズム 9 2 4 aの大きさ (回転半径) は照明部 9 2 2から出射される光の 照明領域に合わせた大きさにする必要があり、 回転プリズム 9 2 4 aは 大きく、 重くなる。 従って装置を小型化、 軽量化する上では障害となつ ていた。  However, in the above-described configuration, when each color light from the illumination unit 922 passes through the rotating prism 9224a, the light flux is not restricted. The size (rotation radius) of the rotating prism 9 24 a must be adjusted to the size of the illumination area of the light emitted from the illumination section 9 22. The rotating prism 9 24 a is large and heavy. . Therefore, it was an obstacle in reducing the size and weight of the device.
また回転プリズム 9 2 4 aを回動させる強力なモーターが必要となる から装置の大型化、 高価格化を招く。 発明の開示 Also, a powerful motor that rotates the rotating prism 9 2 4 a is required This leads to larger equipment and higher prices. Disclosure of the invention
本発明は、 上記の従来の単板式画像表示装置の問題点を解決し、 ライ トパルプを各色光で順次走査を行う色光走査光学系を備え、 光利用効率 が高く、 高画質の画像が表示でき、 装置の小型化が可能なカラ一画像表 示装置を提供することを目的とする。  The present invention solves the above-mentioned problems of the conventional single-panel type image display device, includes a color light scanning optical system that sequentially scans light pulp with each color light, has high light use efficiency, and can display a high-quality image. Another object of the present invention is to provide a color image display device capable of reducing the size of the device.
上記の目的を達成するために、 本発明の単板式投写型画像表示装置は 、 矩形形状の発光部を備え、 赤、 緑、 青それぞれの異なる色光を発する 3つの面発光光源と、 前記面発光光源からの光を集光する第 1の光学 手段と、 軸を中心に回転し、 前記第 1の光学手段で集光された光を反射 し走査する回転多面鏡と、 Fシーターレンズ機能を有し、 前記回転多面 鏡で反射された光を集光する第 2の光学手段と、 マトリクス状に配され た複数の画素を備え、 前記第 2の光学手段を通過した赤、 緑、 青の各色 光の明るさを前記画素毎に変調する画像表示パネルと、 前記画像表示パ ネルの前記各画素をその画素に入射する光の色に応じた信号で駆動する 駆動回路と、 前記画像表示パネル上に形成され、 且つ前記信号によって 変調された赤、 緑、 青の各矩形形状の色光をスクリーン上に拡大投写す る投写光学系とを備え、 前記面発光光源の任意の点から発した光が前記 回転多面鏡に平行光となって入射するように、 前記面発光光源を前記第 1の光学手段の焦点位置に配したことを特徴とする。 図面の簡単な説明  In order to achieve the above object, a single-panel projection-type image display device according to the present invention includes a rectangular light emitting unit, and emits red, green, and blue light of different colors. A first optical unit for condensing light from the light source, a rotating polygon mirror that rotates about an axis, reflects the light condensed by the first optical unit, and scans, and has an F-seater lens function. A second optical unit for condensing the light reflected by the rotating polygon mirror; and a plurality of pixels arranged in a matrix, each color of red, green, and blue having passed through the second optical unit. An image display panel that modulates the brightness of light for each pixel; a drive circuit that drives each pixel of the image display panel with a signal corresponding to a color of light incident on the pixel; Red, green formed by and modulated by the signal A projection optical system for enlarging and projecting each blue color light on a screen, so that light emitted from an arbitrary point of the surface light source enters the rotating polygon mirror as parallel light. The surface emitting light source is disposed at a focal position of the first optical unit. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態 1に係る単板式投写型画像表示装置の全 体構成図である。  FIG. 1 is an overall configuration diagram of a single-panel projection image display device according to Embodiment 1 of the present invention.
図 2は、 本発明の実施の形態 1に係る単板式投写型画像表示装置にお いて、 面発光光源から回転多面鏡に至る光学系を示した模式図である。 図 3は、 本発明の実施の形態 1に係る単板式投写型画像表示装置の回 転多面鏡の反射面に形成されるスポットを示した側面図である。 FIG. 2 shows a single-panel projection image display device according to Embodiment 1 of the present invention. FIG. 2 is a schematic diagram showing an optical system from a surface-emitting light source to a rotary polygon mirror. FIG. 3 is a side view showing spots formed on the reflection surface of the rotary polygon mirror of the single-plate projection image display device according to Embodiment 1 of the present invention.
図 4 A〜図 4 Fは、 本発明の実施の形態 1に係る単板式投写型画像表 示装置において、 回転多面鏡からの反射光の変化の様子と、 画像表示パ ネルを照明する各色光が走査される様子とを示した図である。  FIGS. 4A to 4F show how the reflected light from the rotating polygon mirror changes in the single-panel projection image display apparatus according to Embodiment 1 of the present invention, and how each color light illuminates the image display panel. FIG. 6 is a diagram showing a state in which is scanned.
図 5は、 本発明の実施の形態 1に係る単板式投写型画像表示装置に使 用される透過型画像表示パネルの構成を示した分解斜視図である。 図 6は、 本発明の実施の形態 2に係る単板式投写型画像表示装置の全 体構成図である。  FIG. 5 is an exploded perspective view showing a configuration of a transmission type image display panel used in the single-panel projection type image display device according to Embodiment 1 of the present invention. FIG. 6 is an overall configuration diagram of a single-panel projection image display device according to Embodiment 2 of the present invention.
図 7は、 本発明の実施の形態 2に係る単板式投写型画像表示装置に使 用されるロッド部の概略斜視図である。  FIG. 7 is a schematic perspective view of a rod portion used in a single-panel projection image display device according to Embodiment 2 of the present invention.
図 8 Aは、 レンズアレイインテグレータ光学手段を構成する第 1のレ ンズアレイの正面図、 図 8 Bは、 レンズアレイインテグレータ光学手段 を構成する第 2のレンズアレイの正面図である。  FIG. 8A is a front view of a first lens array constituting the lens array integrator optical means, and FIG. 8B is a front view of a second lens array constituting the lens array integrator optical means.
図 9は、 本発明の実施の形態 3に係る単板式投写型画像表示装置の全 体構成図である。  FIG. 9 is an overall configuration diagram of a single-panel projection image display device according to Embodiment 3 of the present invention.
図 1 0は、 本発明の実施の形態 1及び 2に係る単板式投写型画像表示 装置の各構成要素の位置関係を示した説明図である。  FIG. 10 is an explanatory diagram showing the positional relationship between the components of the single-panel projection-type image display device according to Embodiments 1 and 2 of the present invention.
図 1 1は、 走査光学系を使用した従来の単板式投写型画像表示装置の 概略構成図である。  FIG. 11 is a schematic configuration diagram of a conventional single-panel projection image display device using a scanning optical system.
図 1 2は、 図 1 1の画像表示装置に使用される色分解光学系の詳細を 示した断面図である。 発明を実施するための最良の形態  FIG. 12 is a cross-sectional view showing details of a color separation optical system used in the image display device of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
上述の通り、 本発明の単板式投写型画像形成装置は、 矩形形状の発光 部を備え、 赤、 緑、 青それぞれの異なる色光を発する 3つの面発光光源 と、 前記面発光光源からの光を集光する第 1の光学手段と、 軸を中心に 回転し、 前記第 1の光学手段で集光された光を反射し走査する回転多面 鏡と、 Fシ一ターレンズ機能を有し、 前記回転多面鏡で反射された光を 集光する第 2の光学手段と、 マトリクス状に配された複数の画素を備え 、 前記第 2の光学手段を通過した赤、 緑、 青の各色光の明るさを前記画 素毎に変調する画像表示パネルと、 前記画像表示パネルの前記各画素を その画素に入射する光の色に応じた信号で駆動する駆動回路と、 前記画 像表示パネル上に形成され、 且つ前記信号によって変調された赤、 緑、 青の各矩形形状の色光をスクリーン上に拡大投写する投写光学系とを備 え、 前記面発光光源の任意の点から発した光が前記回転多面鏡に平行光 となって入射するように、 前記面発光光源を前記第 1の光学手段の焦点 位置に配したことを特徴とする。 As described above, the single-plate projection type image forming apparatus of the present invention has a rectangular light emission. A surface emitting light source that emits red, green, and blue light of different colors; a first optical unit that collects light from the surface emitting light source; A rotating polygon mirror for reflecting and scanning the light condensed by the optical means, and a second optical means having an F-seater lens function and condensing the light reflected by the rotating polygon mirror; and An image display panel, comprising: a plurality of pixels arranged in a plurality of pixels; an image display panel that modulates, for each of the pixels, the brightness of each of red, green, and blue color lights that have passed through the second optical unit; A driving circuit for driving a pixel with a signal corresponding to the color of light incident on the pixel; and a red, green, and blue rectangular color light formed on the image display panel and modulated by the signal. A projection optical system for enlarging and projecting on the screen As the light emitted from any point of the light source is incident as parallel light onto the rotating polygon mirror, characterized in that arranged the surface emitting light source at the focal position of the first optical means.
これによれば、 カラーフィルターを使用せず、 各色光専用の画素を有 しないライトバルブを用いてカラ一表示を行うことが可能となる。 従つ て、 光利用効率が高く、 高解像度の表示が可能になる。 更に、 回転多面 鏡を用いて走査光学系を構成することで、 小型 ·低コストの画像表示装 置を提供できる。  According to this, it is possible to perform color display using a light valve that does not have a pixel dedicated to each color light without using a color filter. Therefore, light use efficiency is high and high-resolution display is possible. Furthermore, by forming a scanning optical system using a rotating polygon mirror, a small and low-cost image display device can be provided.
また、 第 1の光学手段が各色の面発光光源の任意の点からの光を平行 光として回転多面鏡に導くので、 画像表示パネル上に各色光の発光部の 矩形像がボケなく形成される。 よって、 高画質映像の投写が可能となる 本発明の上記の単板式投写型画像表示装置が、 更に、 白色光源及びリ フレク夕一からなる光源部と、 矩形形状の開口部を有するロッド部を備 え、 前記光源部からの光を集光して均一な強さの光を出射するロッドィ ンテグレー夕光学手段と、 前記ロッドインテグレー夕光学手段からの光 を赤、 緑、 青の各色光に分解する色分解光学系と、 前記色分解光学系か らの前記各色光がそれぞれ入射し、 赤、 緑、 青の各色光の矩形像がそれ ぞれ形成される 3個の第 1集光レンズとを備えていてもよい。 この場合 、 前記 3つの面発光光源が前記 3個の第 1集光レンズに該当し、 前記矩 形形状の発光部が前記第 1集光レンズ上に形成された前記矩形像に該当 する。 In addition, since the first optical means guides light from an arbitrary point of the surface emitting light source of each color as parallel light to the rotating polygon mirror, a rectangular image of the light emitting portion of each color light is formed on the image display panel without blur. . Therefore, the single-panel projection image display device of the present invention capable of projecting a high-quality image further includes a light source unit including a white light source and a reflector, and a rod unit having a rectangular opening. A rod integration optical means for condensing light from the light source unit and emitting light of uniform intensity; and a light from the rod integrator optical means. And a color separation optical system that separates the light into red, green, and blue light, and the respective color lights from the color separation optical system respectively enter to form rectangular images of the red, green, and blue light, respectively. And three first condenser lenses. In this case, the three surface emitting light sources correspond to the three first condenser lenses, and the rectangular light emitting portion corresponds to the rectangular image formed on the first condenser lens.
かかる好ましい実施形態によれば、 白色光源を用い、 色分解光学系で 赤、 緑、 青の各色光を得るので、 白色光源からの光の高い利用効率を実 現できる。  According to such a preferred embodiment, since a red light, a green light and a blue light are obtained by a color separation optical system using a white light source, a high utilization efficiency of the light from the white light source can be realized.
また、 本発明において、 前記回転多面鏡上に形成される像と前記投写 光学系の入射瞳とが共役の関係にあることが好ましい。  In the present invention, it is preferable that an image formed on the rotary polygon mirror and an entrance pupil of the projection optical system have a conjugate relationship.
回転多面鏡が回転し反射光を走査しても、 回転多面鏡上の像 (スポッ ト) の位置は変動しないから、 回転多面鏡上の像と投写レンズの入射瞳 とを共役の関係にすることで、 投写レンズの入射瞳の位置に、 動くこと のない最も小さな像を形成することができる。 従って、 小型の投写レン ズでも効率よく光を利用できる。  Even if the rotating polygon mirror rotates and scans the reflected light, the position of the image (spot) on the rotating polygon mirror does not change, so that the image on the rotating polygon mirror and the entrance pupil of the projection lens are conjugated. Thus, the smallest image that does not move can be formed at the position of the entrance pupil of the projection lens. Therefore, light can be used efficiently even with a small projection lens.
また、 本発明において、 前記画像表示パネルが透過型液晶表示パネル であってもよい。 あるいは、 前記画像表示パネルが反射型液晶表示パネ ル又は反射型ミラーデバイスであってもよい。  In the present invention, the image display panel may be a transmissive liquid crystal display panel. Alternatively, the image display panel may be a reflective liquid crystal display panel or a reflective mirror device.
また、 本発明において、 前記ロッドインテグレー夕光学手段に代えて 、 同形状矩形開口を備えたマイク口レンズを 2次元的に配してなる第 1 のレンズアレイと、 前記第 1のレンズアレイを構成するマイクロレンズ と同数のマイクロレンズを 2次元的に配してなる第 2のレンズアレイと からなるレンズアレイインテグレータ光学手段を備えていてもよい。 以下に、 本発明にかかる単板式投写型画像表示装置の実施の形態を図 面を用いて詳細に説明する。 (実施の形態 1 ) Further, in the present invention, a first lens array in which a microphone aperture lens having a rectangular opening having the same shape is two-dimensionally arranged in place of the rod integrator optical means, and the first lens array is configured. And a second lens array in which the same number of microlenses are two-dimensionally arranged. Hereinafter, embodiments of a single-panel projection image display device according to the present invention will be described in detail with reference to the drawings. (Embodiment 1)
図 1は本発明の実施の形態 1の単板式投写型画像表示装置の概略構成 図である。 本実施の形態の単板式投写型画像表示装置は、 面発光光源部 FIG. 1 is a schematic configuration diagram of a single-panel projection image display device according to Embodiment 1 of the present invention. The single-panel projection type image display device of the present embodiment has a surface-emitting light source unit.
2 0 1、 第 1の光学手段 2 0 2、 回転多面鏡 2 0 3、 第 2の光学手段 2 0 4、 画像表示パネル 2 0 5、 画像表示パネル駆動回路 2 0 6、 投写光 学系 2 0 7からなつている。 210, first optical means 202, rotating polygon mirror 203, second optical means 204, image display panel 205, image display panel drive circuit 206, projection optical system 2 It is made up of 0-7.
以下、 その構成及び動作について説明する。  Hereinafter, the configuration and operation will be described.
面発光光源部 2 0 1は、 赤色光を発する発光部 2 0 8 R、 緑色光を発 する発光部 2 0 8 G、 青色光を発する発光部 2 0 8 Bを備え、 各発光部 2 0 8 R , 2 0 8 G , 2 0 8 Gは矩形形状の面発光光源である。 各発光 部 2 0 8 R , 2 0 8 G , 2 0 8 Gは一定の発光角度 αで各色光を発光す る理想に近い光源である。 各発光部 2 0 8 R, 2 0 8 G , 2 0 8 Gは、 高輝度青色 L E Dの出現に伴い、 例えば、 赤、 緑、 青の各色光の L E D 素子を複数並べた L E Dアレイにより実現できる。 あるいは、 エレクト 口ルミネッセンス (E L ) 素子を用いてもよい。  The surface emitting light source unit 201 includes a light emitting unit 208 R that emits red light, a light emitting unit 208 G that emits green light, and a light emitting unit 208 B that emits blue light. 8 R, 208 G and 208 G are rectangular surface emitting light sources. Each of the light-emitting portions 208 R, 208 G, and 208 G is a light source that emits each color light at a constant light emission angle α, which is close to an ideal light source. With the emergence of high-intensity blue LEDs, each light-emitting unit 208R, 208G, and 208G can be realized by, for example, an LED array in which a plurality of red, green, and blue light-emitting LED elements are arranged. . Alternatively, an electroluminescent (EL) element may be used.
第 1の光学手段 2 0 2は集光レンズ 2 1 0からなる。 各色光の矩形形 状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bの任意の点から発した光が回転 多面鏡 2 0 3に平行光となって入射するように、 発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bを集光レンズ 2 1 0の焦点位置に配してある。  The first optical means 202 includes a condenser lens 210. A rectangular light-emitting part for each color light, a light-emitting part such that light emitted from any point of 208 R, 208 G, and 208 B becomes parallel light and enters the rotating polygon mirror 203. 208 R, 208 G, and 208 B are arranged at the focal position of the condenser lens 210.
この点について図 2を用いて詳しく説明する。  This will be described in detail with reference to FIG.
図 2は本発明の原理について説明するための図である。 赤色光に着目 して説明する。 矩形形状発光部 2 0 8 Rは点光源の集合体であり、 ある 任意の点 Aから出射する光は角度ひで放射状に発光する。 点 Aから発せ られた光は集光レンズ 2 1 0を経由して回転多面鏡 2 0 3に入射する。 この時、 同じ点 Aから発した光は集光レンズ 2 1 0を通過後に平行光 となって回転多面鏡 2 0 3に入射する。 同様に点 Aとは異なる点 Bから 発した光も集光レンズ 2 1 0を通過後に平行光となって回転多面鏡 2 0 3に入射する。 同一点から発した光が集光レンズ 2 1 0を通過後に平行 光となるための条件は、 矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 B を焦点距離 Fの集光レンズ 2 1 0の焦点位置に配置することである。 上述のように、 各色光の矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bの任意の点から発した光が回転多面鏡 2 0 3への入射時に平行光にな るように第 1の光学手段 2 0 2が配置されていることから、 矩形形状発 光部 2 0 8 R、 2 0 8 G、 2 0 8 Bの任意の点から発した光のうち回転 多面鏡 2 0 3の同じ反射面に入射した光は同じ角度で反射され第 2の光 学手段 2 0 4に入射し、 その Fシータ一レンズの機能により画像表示パ ネル 2 0 5上の同じ点に集光される。 すなわち、 矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bと画像表示パネル 2 0 5とが共役の関係になる ように、 面発光光源部 2 0 1、 第 1の光学手段 2 0 2、 回転多面鏡 2 0 3、 第 2の光学手段 2 0 4、 画像表示パネル 2 0 5が配置されている。 矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bの任意の点から発した光 が回転多面鏡 2 0 3への入射時に平行光にならない場合には画像表示パ ネル 2 0 5上の像にボケが生じ映像信号との対応がとれず画質低下の要 因となる。 FIG. 2 is a diagram for explaining the principle of the present invention. The explanation focuses on red light. The rectangular light emitting portion 208R is an aggregate of point light sources, and light emitted from an arbitrary point A emits radially at an angle. The light emitted from the point A enters the rotary polygon mirror 203 via the condenser lens 210. At this time, the light emitted from the same point A becomes parallel light after passing through the condenser lens 210 and enters the rotating polygon mirror 203. Similarly, from point B which is different from point A The emitted light also becomes parallel light after passing through the condenser lens 210 and enters the rotating polygon mirror 203. The condition for the light emitted from the same point to become parallel light after passing through the condenser lens 210 is that the rectangular light emitting parts 208 R, 208 G, and 208 B are focused at a focal length of F. This is to dispose it at the focal position of the lens 210. As described above, light emitted from any point of the rectangular light-emitting portions 208 R, 208 G, and 208 B of each color light becomes parallel light when incident on the rotating polygon mirror 203. Since the first optical means 202 is arranged as described above, the rotating polygon mirror is used for the light emitted from any point of the rectangular light emitting portions 208 R, 208 G, and 208 B. The light incident on the same reflecting surface of 203 is reflected at the same angle and is incident on the second optical means 204, and at the same point on the image display panel 205 by the function of the F-theta lens. It is collected. That is, the surface-emitting light source unit 201 and the first optical unit are arranged so that the rectangular light emitting units 208 R, 208 G, and 208 B and the image display panel 205 have a conjugate relationship. 202, a rotating polygon mirror 203, a second optical means 204, and an image display panel 205 are arranged. Image display panel 20 if the light emitted from any of the rectangular light emitting sections 208 R, 208 G, and 208 B does not become parallel light when entering the rotating polygon mirror 203. (5) The image on the top is blurred, and cannot be corresponded to the video signal, which is a factor of image quality deterioration.
なお、 上記の実施の形態では、 矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bは一定の小さな発光角度 で発光する理想に近い面光源とした が、 発光角度 αが大きな場合には、 矩形形状発光部 2 0 8 R、 2 0 8 G 、 2 0 8 Bと第 1の光学手段 2 0 2との間に各色光ごとに集光レンズを 配置して、 矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bからの光を効 率よく第 1の光学手段 2 0 2に導くのが好ましい。  In the above embodiment, the rectangular light-emitting portions 208 R, 208 G, and 208 B are surface light sources that emit light at a constant small light-emitting angle, and are close to ideal surface light sources, but the light-emitting angle α is large. In such a case, a condenser lens is arranged for each color light between the rectangular light emitting sections 208 R, 208 G, and 208 B and the first optical means 202, and the rectangular light emitting section is formed. It is preferable that the light from the sections 208 R, 208 G, and 208 B be efficiently guided to the first optical means 202.
第 1の光学手段 2 0 2を出射した各色光は、 図 3に示したように、 回 転多面鏡 2 0 3の反射面 2 2 3上に、 相互に一部重畳した各色光のスポ ット 2 2 0を形成する。 もちろん隣り合うスポット 2 2 0間に重畳部が 無いことが望ましいが、 このスポット 2 2 0の大きさは光源側の出射角 特性で決まることから、 広がりのある出射特性をもつ光源を用いる場合 は本実施の形態のようにスポット 2 2 0を相互に重畳させたほうが効率 的に有利になる。 As shown in FIG. 3, each color light emitted from the first optical means 202 is focused on the reflection surface 222 of the rotating polygon mirror 203, and each color light is partially superimposed on each other. To form a set 220. Of course, it is desirable that there is no overlapping portion between the adjacent spots 220. However, since the size of the spot 220 is determined by the emission angle characteristics on the light source side, when a light source having a spread emission characteristic is used, It is more efficient to superimpose the spots 220 on each other as in this embodiment.
この場合、 回転多面鏡 2 0 3の反射面 2 2 3と画像表示パネル 2 0 5 とが共役の関係にないことから、 反射面 2 2 3上で色光の重畳があって も問題はない。 伹し、 各色光のスポット 2 2 0が回転多面鏡 2 0 3の反 射面 2 2 3に対して大きいと、 反射面 2 2 3からはみ出す光は損失とな ることから、 スポット 2 2 0は小さいことが望ましいことは言うまでも ない。  In this case, since there is no conjugate relationship between the reflecting surface 223 of the rotating polygon mirror 203 and the image display panel 205, there is no problem even if color light is superimposed on the reflecting surface 223. However, if the spot 220 of each color light is larger than the reflecting surface 222 of the rotating polygon mirror 203, the light protruding from the reflecting surface 222 becomes a loss, so the spot 220 Needless to say, it is desirable to be small.
また、 スポット 2 2 0の形状に合わせて回転多面鏡 2 0 3の反射面 2 2 3を大きくすると回転多面鏡 2 0 3全体が大きくなり、 装置が大型化 してしまう。 従って、 回転多面鏡 2 0 3上に形成されるスポット 2 2 0 の形状は回転多面鏡 2 0 3の反射面 2 2 3の移動方向における寸法が短 い形状であることが望ましい。  In addition, if the reflecting surface 223 of the rotating polygon mirror 203 is increased according to the shape of the spot 220, the entire rotating polygon mirror 203 becomes large, and the apparatus becomes large. Therefore, it is desirable that the shape of the spot 220 formed on the rotary polygon mirror 203 is a shape in which the dimension in the moving direction of the reflection surface 222 of the rotary polygon mirror 203 is short.
また、 図 1に示すように、 回転多面鏡 2 0 3に入射する赤、 緑、 青の 各色光の主光線が回転多面鏡 2 0 3の仮想の外接円と交わる点 (交点) を回転多面鏡 2 0 3の回転軸から見たとき、 隣り合う交点が回転軸に対 してなす角度 (中心角) は (ここで 0 ρ = 3 6 0度 Ζ回転多面 鏡 2 0 3の反射面 2 2 3の総数) である。  As shown in Fig. 1, the point (intersection) at which the principal rays of red, green, and blue light incident on the rotating polygon mirror 203 intersect with the virtual circumscribed circle of the rotating polygon mirror 203 is defined as the rotation polygon. When viewed from the axis of rotation of mirror 203, the angle (center angle) between adjacent intersections with respect to the axis of rotation is (where 0 ρ = 360 degrees). 2 3 total number).
回転多面鏡 2 0 3に入射し反射された光は、 走査光学系である第 2の 光学手段 2 0 4に入射する。 第 2の光学手段 2 0 4は、 入射光の入射角 によって画像表示パネル 2 0 5上の照明位置が決まる Fシ一夕一レンズ の機能を有している。 回転多面鏡 2 0 3への入射光は回転多面鏡 2 0 3 の回転によって ± 0 ρ ( 0 ρ = 3 6 0度/回転多面鏡 2 0 3の反射面 2 2 3の総数) の角度で走査される。 入射角度 + Θ pで第 2の光学手段 2 0 4に入射した光は画像表示パネル 2 0 5の有効表示部の一端を照明し 、 また入射角度一 0 pで第 2の光学手段 2 0 4に入射した光は画像表示 パネル 2 0 5の有効表示部の他端を照明するように設定されている。 横 一列に隣接して並べられた矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bと画像表示パネル 2 0 5の有効表示部とは共役の関係にあることから 、 矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bのそれぞれの矩形像が 画像表示パネル 2 0 5の有効表示部に形成される。 また、 各色光の矩形 像の短辺長さは、 画像表示パネル 2 0 5の有効表示部の走査方向におけ る長さの 1 Z 3の長さである。 The light that has entered and reflected the rotating polygon mirror 203 enters second optical means 204 that is a scanning optical system. The second optical means 204 has the function of an F / C lens which determines the illumination position on the image display panel 205 depending on the incident angle of the incident light. The light incident on the rotating polygon mirror 203 is reflected by the rotation of the rotating polygon mirror 203 ± 0 ρ (0 ρ = 360 ° / reflecting surface 2 of the rotating polygon mirror 203). (Total number of 2 3). The light incident on the second optical means 204 at an incident angle + Θp illuminates one end of the effective display section of the image display panel 205, and the second optical means 204 at an incident angle of 10p. Is set to illuminate the other end of the effective display section of the image display panel 205. Since the rectangular light emitting portions 208 R, 208 G, 208 B arranged side by side in a row and the effective display portion of the image display panel 205 have a conjugate relationship, the rectangular shape is used. The respective rectangular images of the light emitting portions 208 R, 208 G, and 208 B are formed on the effective display portion of the image display panel 205. The length of the short side of the rectangular image of each color light is 1Z3, which is the length of the effective display section of the image display panel 205 in the scanning direction.
画像表示パネル 2 0 5の有効表示部を照明する各色光の矩形像が走査 される様子を図 4 A〜図 4 Fを用いて説明する。  The manner in which a rectangular image of each color light illuminating the effective display unit of the image display panel 205 is scanned will be described with reference to FIGS. 4A to 4F.
図 4 A〜図 4 Fは、 回転多面鏡 2 0 3の回転と、 これに伴う画像表示 パネル 2 0 5の各色光による照明状態の変化とを一定時間間隔おきに示 したものである。 それぞれにおいて、 右側に示した画像表示パネル 2 0 5の照明状態を示した図において、 赤色光による照明領域、 緑色光によ る照明領域、 及び青色光による照明領域をそれぞれ R、 G、 Bで示して いる。 また、 左側の回転多面鏡 2 0 3の回転と各色光の反射状態を示し た図において、 R、 G、 Bはそれぞれ赤色光主光線、 緑色光主光線、 青 色光主光線を示し、 矢印は光の進行方向を示している。 矢印 2 0 3 aは 回転多面鏡 2 0 3の回転方向を示している。  4A to 4F show the rotation of the rotating polygon mirror 203 and the accompanying change in the lighting state of the image display panel 205 with each color light at regular time intervals. In each of the figures showing the illumination state of the image display panel 205 shown on the right side, the illumination area of red light, the illumination area of green light, and the illumination area of blue light are denoted by R, G, and B, respectively. Is shown. In the figure showing the rotation of the rotating polygon mirror 203 on the left side and the reflection state of each color light, R, G, and B indicate a red light principal ray, a green light principal ray, and a blue light principal ray, respectively, and an arrow indicates It shows the traveling direction of light. The arrow 203a indicates the direction of rotation of the rotating polygon mirror 203.
時間 T = t 1においては (図 4 A )、 回転多面鏡 2 0 3の共通する反 射面 2 2 3 aに赤緑青の各色光が入射し、 図のように赤色光が反射面の 移動方向に最も大きな反射角で反射し、 緑色光は赤色光よりもやや小さ な反射角度で反射し、 青色光は緑色光よりも更に小さな反射角度で反射 する。 よって、 各色光は第 2光学手段 2 0 4に異なる角度で入射するこ ととなり、 画像表示パネル 2 0 5上の異なる位置に各色光の矩形形状発 光部 2 0 8 R、 2 0 8 G、 2 0 8 Bの矩形像が図示したように形成され る。 すなわち、 画像表示パネル 2 0 5上には、 右から順に赤色光照明領 域、 緑色光照明領域、 青色光照明領域が形成される。 各色光の矩形状の 照明領域の短辺長さは、 画像表示パネル 2 0 5の有効表示部の走査方向 2 0 5 aの長さの 1 / 3である。 At time T = t1 (Fig. 4A), red, green, and blue light are incident on the common reflecting surface 2 23a of the rotating polygon mirror 203, and the red light moves on the reflecting surface as shown in the figure. The green light reflects at a slightly smaller reflection angle than the red light, and the blue light reflects at a smaller reflection angle than the green light. Therefore, each color light enters the second optical means 204 at a different angle. Thus, rectangular images of the rectangular light emitting portions 208 R, 208 G, and 208 B of each color light are formed at different positions on the image display panel 205 as shown in the figure. That is, on the image display panel 205, a red light illumination region, a green light illumination region, and a blue light illumination region are formed in this order from the right. The length of the short side of the rectangular illumination area of each color light is / of the length of the effective display section of the image display panel 205 in the scanning direction 205 a.
時間 T = t 1から回転多面鏡 2 0 3が所定角度だけ回転した時間 T = t 2においては (図 4 B )、 緑色光及び青色光は回転多面鏡 2 0 3の共 通する反射面 2 2 3 aに入射するが、 赤色光は回転してきた新たな反射 面 2 2 3 bに入射する。 このとき、 特に赤色光の反射面への入射角が急 激に変化して小さくなることから、 反射角も急に小さくなる。 従って、 図のように、 緑色光が反射面の移動方向に最も大きな反射角で反射し、 青色光は緑色光よりもやや小さな反射角度で反射し、 赤色光は青色光よ りも更に小さな反射角度で反射する。 よって、 画像表示パネル 2 0 5上 の異なる位置に各色光の矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 B の矩形像が図示したように形成される。 すなわち、 画像表示パネル 2 0 5上には、 おから順に緑色光照明領域、 青色光照明領域、 赤色光照明領 域が形成される。  At time T = t2 when the rotating polygon mirror 203 is rotated by a predetermined angle from the time T = t1 (Fig. 4B), the green light and the blue light are reflected by the common reflecting surface 2 of the rotating polygon mirror 203. The red light is incident on 23a, but the red light is incident on the new reflecting surface 22b. At this time, particularly, the angle of incidence of the red light on the reflecting surface sharply changes and becomes smaller, so that the angle of reflection also becomes smaller. Therefore, as shown in the figure, green light reflects at the largest reflection angle in the direction of movement of the reflection surface, blue light reflects at a slightly smaller reflection angle than green light, and red light reflects even less than blue light. Reflect at an angle. Accordingly, rectangular images of the rectangular light-emitting portions 208 R, 208 G, and 208 B of the respective color lights are formed at different positions on the image display panel 205 as shown in the figure. That is, a green light illumination region, a blue light illumination region, and a red light illumination region are sequentially formed on the image display panel 205.
時間 T = t 2から回転多面鏡 2 0 3が更に所定角度だけ回転した時間 T = t 3においては (図 4 C )、 青色光のみが反射面 2 2 3 aに入射し 、 緑色光及び赤色光は共通する反射面 2 2 3 bに入射する。 このとき、 特に緑色光の反射面への入射角が急激に変化して小さくなることから、 反射角も急に小さくなる。 従って、 図のように、 青色光が反射面の移動 方向に最も大きな反射角で反射し、 赤色光は青色光よりもやや小さな反 射角度で反射し、 緑色光は赤色光よりも更に小さな反射角度で反射する 。 よって、 画像表示パネル 2 0 5上の異なる位置に各色光の矩形形状発 光部 208 R、 208 G、 208 Bの矩形像が図示したように形成され る。 すなわち、 画像表示パネル 20 5上には、 右から順に青色光照明領 域、 赤色光照明領域、 緑色光照明領域が形成される。 At time T = t3, when the rotating polygon mirror 203 is further rotated by a predetermined angle from time T = t2 (FIG. 4C), only blue light is incident on the reflecting surface 222a, and green light and red light are emitted. Light is incident on the common reflecting surface 2 2 3b. At this time, particularly, the angle of incidence of the green light on the reflecting surface is suddenly changed and becomes small, so that the reflection angle is also suddenly reduced. Therefore, as shown in the figure, blue light reflects at the largest reflection angle in the direction of movement of the reflecting surface, red light reflects at a slightly smaller reflection angle than blue light, and green light reflects even less than red light. Reflect at an angle. Therefore, a rectangular shape of each color light is generated at different positions on the image display panel 205. Rectangular images of the light parts 208R, 208G, and 208B are formed as shown in the figure. That is, on the image display panel 205, a blue light illumination area, a red light illumination area, and a green light illumination area are formed in order from the right.
時間 T= t 3から回転多面鏡 20 3が更に所定角度だけ回転した時間 T= t 4においては (図 4D)、 赤緑青の各色光が共通する反射面 2 2 At time T = t4, when the rotating polygon mirror 203 is further rotated by a predetermined angle from time T = t3 (FIG. 4D), the reflection surface 2 2 where red, green, and blue light are common
3 bに入射する。 これは上記時間 T= t l (図 4A) と同じ位置関係と なり、 画像表示パネル 2 0 5の各色光による照明状態も同じとなる。 さらに、 回転多面鏡 2 0 3が所定角度だけ回転した時間 T= t 5にお いては (図 4 E)、 緑色光及び青色光は共通する反射面 2 2 3 bに入射 し、 赤色光は新たな反射面 22 3 cに入射する。 これは上記時間 T= tIt is incident on 3 b. This has the same positional relationship as the time T = t1 (FIG. 4A), and the illumination state of the image display panel 205 with each color light is also the same. Further, at the time T = t5 when the rotating polygon mirror 203 is rotated by a predetermined angle (FIG. 4E), the green light and the blue light are incident on the common reflecting surface 222b, and the red light is It is incident on a new reflecting surface 22 3 c. This is the time T = t
2 (図 4 B) と同じ位置関係となり、 画像表示パネル 2 0 5の各色光に よる照明状態も同じとなる。 2 (FIG. 4B), and the illumination state of the image display panel 205 with each color light is also the same.
さらに、 回転多面鏡 2 0 3が所定角度だけ回転した時間 T= t 6にお いては (図 4 F)、 青色光は反射面 2 2 3 bに入射し、 緑色光及び赤色 光は共通する反射面 22 3 cに入射する。 これは上記時間 T= t 3 (図 Furthermore, at the time T = t6 when the rotating polygon mirror 203 is rotated by a predetermined angle (FIG. 4F), the blue light is incident on the reflecting surface 222b, and the green light and the red light are common. The light enters the reflection surface 22 3 c. This is the above time T = t 3 (Fig.
4 C) と同じ位置関係となり、 画像表示パネル 20 5の各色光による照 明状態も同じとなる。 4C), and the illuminated state of the image display panel 205 with each color light is the same.
以上のように、 画像表示パネル 2 05に形成される、 赤緑青の各色光 による矩形状の照明領域 (矩形像) は、 走査方向 2 05 aの向きに順に 移動する。 図 4 A〜図 4 Fでは特定の期間 (時間 T= t l〜!; 6) のみ を示したが、 回転多面鏡 2 03は連続回転していることから、 各色光の 照明領域は画像表示パネル 20 5上を左から右に (走査方向 20 5 aの 向きに) 連続的に移動し (走査され)、 右端に到達した色光の照明領域 は左端に戻って再度左から右への移動を行う。 このとき、 先に説明した ように隣り合う色光の主光線は回転多面鏡 2 03の回転軸に対しておよ そ角度 Θ pZ3に相当する間隔を有して回転多面鏡 20 3に入射するこ とから、 各色光の主光線は同じ時間的間隔で回転多面鏡 2 0 3の反射面 2 2 3間の稜線 (隣り合う反射面 2 2 3間の境界) を迎える。 上記の時 間 t l〜 t 6の切り替えを同じ時間間隔で連続的に行ない、 先に述べた ように 3つの色光がいずれも同じ ± 0 pの角度で走査されることから、 色ムラ、 輝度ムラ、 フリッカーが抑えられた照明を行うことができる。 画像表示パネル 2 0 5は、 図 5に示したように、 透過型液晶パネル 2 1 2と、 入射側に備えられた偏光子である入射側偏光板 2 1 3と、 出射 側に備えられた検光子である出射側偏光板 2 1 4とからなる。 入射側偏 光板 2 1 3は、 例えば矩形の外形形状の短辺方向 2 1 3 aに偏光した光 を透過し、 これに直交する方向に偏光した光を吸収するように設定され ている。 入射側偏光板 2 1 3を透過した光は透過型液晶パネル 2 1 2に 入射する。 液晶パネル 2 1 2には多数の画素が配列形成されており、 外 部信号により各画素開口毎に透過光の偏光方向を変えることが出来る。 ここでは画素を駆動しない場合には入射光の偏光方向を 9 0度回転させ て透過させ、 駆動した場合には偏光方向を変化させること無く透過させ るものとする。 出射側偏光板 2 1 4は入射側偏光板 2 1 3と直交した方 向の偏光特性を有する。 即ち、 出射側偏光板 2 1 4は、 矩形の外形形状 の長辺方向 2 1 aに透過軸を有し、 この方向に偏光した光を透過する 。 従って、 液晶パネル 2 1 2の駆動されていない画素に入射して、 偏光 方向を 9 0度変えられて透過した光は、 その偏光方向が出射側偏光板 2 1 4の透過軸と一致するためここを透過することができる。 一方、 液晶 パネル 2 1 2の駆動された画素に入射して、 偏光方向を変えられずに透 過した光は、 その偏向方向が出射側偏光板 2 1 4の透過軸と直交するた めここで吸収される。 As described above, the rectangular illumination area (rectangular image) formed by the red, green, and blue color lights formed on the image display panel 205 moves sequentially in the scanning direction 205a. 4A to 4F show only a specific period (time T = tl ~ !; 6), but since the rotating polygon mirror 203 is continuously rotating, the illumination area of each color light is represented by the image display panel. It moves continuously (scans) from left to right (in the direction of scanning direction 205a) on top of 205, and the illuminated area of the colored light that reaches the right end returns to the left end and moves from left to right again . At this time, as described above, the principal rays of adjacent color light enter the rotary polygon mirror 203 with an interval corresponding to an angle ΘpZ3 with respect to the rotation axis of the rotary polygon mirror 203. From the above, the principal ray of each color light reaches the ridgeline between the reflecting surfaces 223 of the rotating polygon mirror 203 (the boundary between the adjacent reflecting surfaces 223) at the same time interval. The above-mentioned switching from time tl to t6 is performed continuously at the same time interval, and as described above, all three color lights are scanned at the same angle of ± 0 p. Lighting with reduced flicker can be performed. As shown in FIG. 5, the image display panel 205 includes a transmissive liquid crystal panel 212, an incident-side polarizing plate 211 serving as a polarizer provided on the incident side, and an exit-side polarizing plate. It is composed of an exit-side polarizing plate 214 serving as an analyzer. The incident-side polarizing plate 2 13 is set, for example, to transmit light polarized in the short-side direction 2 13 a of the rectangular outer shape and absorb light polarized in a direction perpendicular to the direction. The light transmitted through the incident side polarizing plate 21 enters the transmission type liquid crystal panel 21. A large number of pixels are arranged in the liquid crystal panel 212, and the polarization direction of the transmitted light can be changed for each pixel opening by an external signal. Here, when the pixel is not driven, the polarization direction of the incident light is rotated by 90 degrees and transmitted, and when driven, the incident light is transmitted without changing the polarization direction. The output-side polarizing plate 214 has polarization characteristics in a direction orthogonal to the incident-side polarizing plate 211. That is, the emission-side polarizing plate 214 has a transmission axis in the long side direction 21a of the rectangular outer shape, and transmits light polarized in this direction. Therefore, the light that has entered the undriven pixels of the liquid crystal panel 212 and has been transmitted with the polarization direction changed by 90 degrees will have its polarization direction coincident with the transmission axis of the exit-side polarizing plate 214. Here it can be transmitted. On the other hand, light incident on the driven pixels of the liquid crystal panel 212 and transmitted without changing the polarization direction is transmitted here because the polarization direction is orthogonal to the transmission axis of the exit-side polarizing plate 214. Is absorbed by.
画像表示パネル駆動回路 2 0 6は、 画像表示パネル 2 0 5の液晶パネ ル 2 1 2の各画素を、 当該画素に入射する光の色に対応した信号で駆動 する。 これにより、 画像表示パネル 2 0 5に入射する各色光の矩形像は 各画素毎に変調され、 画像が形成される。 The image display panel drive circuit 206 drives each pixel of the liquid crystal panel 212 of the image display panel 205 with a signal corresponding to the color of light incident on the pixel. I do. Thus, the rectangular image of each color light incident on the image display panel 205 is modulated for each pixel, and an image is formed.
画像表示パネル 2 0 5を構成する液晶パネル 2 1 2は入射角依存性を 有することから、 有効表示面内において入射光の角度差は小さく設定す る必要がある。 ここでは第 2の光学手段 2 0 4より出射される各色光の 主光線が平行になるようにテレセントリック光学系構成を採用している 画像表示パネル 2 0 5を透過した光は投写レンズ 2 0 7に至る。 この 投写レンズ 2 0 7もテレセントリックな光に対応した構成になっている ことは言うまでもない。  Since the liquid crystal panel 212 constituting the image display panel 205 has an incident angle dependency, it is necessary to set a small angle difference of the incident light within the effective display surface. Here, a telecentric optical system configuration is adopted so that the principal rays of each color light emitted from the second optical means 204 are parallel to each other. The light transmitted through the image display panel 205 is a projection lens 210 Leads to. It goes without saying that the projection lens 207 also has a configuration corresponding to telecentric light.
投写レンズ 2 0 7の入射瞳上には回転多面鏡 2 0 3上のスポット 2 2 0の像が形成されている。 回転多面鏡 2 0 3が回転し反射光を走査して も、 回転多面鏡 2 0 3上のスポット 2 2 0の位置は変動しないから、 回 転多面鏡 2 0 3上のスポット 2 2 0と投写レンズ 2 0 7の入射瞳とを共 役の関係にすることで、 投写レンズ 2 0 7の入射瞳の位置に、 動くこと のない最も小さな像を形成することができる。 従って、 小型の投写レン ズでも効率よく光を利用できる。  An image of the spot 220 on the rotating polygon mirror 203 is formed on the entrance pupil of the projection lens 207. Even if the rotating polygon mirror 203 rotates and scans the reflected light, the position of the spot 220 on the rotating polygon mirror 203 does not change. By making the entrance pupil of the projection lens 207 have a shared relationship, the smallest image that does not move can be formed at the position of the entrance pupil of the projection lens 207. Therefore, light can be used efficiently even with a small projection lens.
このようにして、 画像表示パネル 2 0 5上に形成され、 スクロールさ れる各色光の矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bの矩形像を 画像表示パネル駆動回路 2 0 6によって変調することにより、 投写レン ズ 2 0 7の前方に配置されたスクリーン (図示せず) 上にカラー画像を 表示することができる。  In this way, the rectangular images of the rectangular light-emitting portions 208 R, 208 G, and 208 B of the respective color lights that are formed and scrolled on the image display panel 205 are displayed on the image display panel driving circuit 2. By modulating with a 06, a color image can be displayed on a screen (not shown) arranged in front of the projection lens 207.
図 4 A〜図 4 Fに示した各色光の走査は高速で行なわれるから ( 1フ ィ一ルド時間内に図 4 A〜図 4 Fからなる 1単位が少なくとも 1回以上 行なわれることが好ましい)、 観察者の網膜上には各色ごとの画像が合 成されて、 色分離のないカラー画像として認識される。 以上のように構成することで、 従来の 3板式液晶プロジェクタ一と比 較して、 本実施の形態の画像形成装置は、 画像表示パネル 2 0 5上の各 画素が赤、 緑、 青の表示を行うので、 3板式のような画像液晶パネル間 のコンパ一ジエンス調整機構が必要なく、 色ずれのない高画質映像を提 供することができる。 さらに、 従来の単板式液晶プロジェクターと比較 すると、 色選択手段であるカラーフィルターを使用していないため、 赤 、 緑、 青の各色光を損失なく使えることから高い光利用効率を実現でき る。 The scanning of each color light shown in FIGS. 4A to 4F is performed at a high speed. (It is preferable that at least one unit of FIGS. 4A to 4F is performed at least once within one field time.) ), Images for each color are synthesized on the observer's retina, and are recognized as color images without color separation. By configuring as described above, the image forming apparatus of the present embodiment has a structure in which each pixel on the image display panel 205 displays red, green, and blue as compared with the conventional three-panel liquid crystal projector. Therefore, there is no need for a mechanism for adjusting the compatibility between image liquid crystal panels as in the three-panel type, and a high-quality image without color shift can be provided. Furthermore, compared to conventional single-panel LCD projectors, since no color filter is used as the color selection means, red, green, and blue light can be used without loss, so high light use efficiency can be realized.
図 1 1に示した従来の表示装置では、 照明部 9 2 2からの各色光が回 転する 4面プリズム 9 2 4 aを透過する。 従って、 各色光を走査させる ためにはプリズム 9 2 4 aの離間した 2面が必要となり、 有効光束の小 形化が困難で、 装置全体が大型化してしまうという問題があった。 これ に対して、 本実施の形態の画像形成装置では、 各色光の走査を回転多面 鏡 2 0 3を用いて行っているので、 反射面 2 2 3に入射する光の有効光 束の大きさを小さくすることができる。 従って、 反射面 2 2 3を小さく して、 回転多面鏡 2 0 3を小さくでき、 更に、 これを回転させるモータ 一も小型化できる。 これらにより装置全体の小型化、 軽量化、 コストダ ゥンを実現できる。  In the conventional display device shown in FIG. 11, each color light from the illumination section 922 passes through the rotating four-sided prism 924a. Therefore, in order to scan each color light, two separated surfaces of the prisms 924a are required, and it is difficult to reduce the effective light flux, and there is a problem that the entire apparatus becomes large. On the other hand, in the image forming apparatus of the present embodiment, the scanning of each color light is performed using the rotating polygon mirror 203, so that the effective light flux of the light incident on the reflection surface 222 is large. Can be reduced. Therefore, it is possible to reduce the size of the reflecting surface 223, to reduce the size of the rotating polygon mirror 203, and to reduce the size of the motor for rotating the mirror. These make it possible to reduce the size, weight, and cost of the entire device.
なお、 上記実施の形態 1では画像表示パネル 2 0 5として透過型液晶 方式の表示デバイスを使用したが、 入射光を変調して表示を行う表示デ パイスであればよく、 反射型液晶方式、 反射型ミラ一デバイス等も応用 可能である。 ただし、 高速応答可能なデバイスが必要なことは言うまで もない。 このとき使用する表示デバイスに合わせて光学系 (特に第 2の 光学手段) を最適化する必要がある。  In the first embodiment, a transmissive liquid crystal display device is used as the image display panel 205. However, any display device that modulates incident light and performs display may be used. Type mirror devices can also be applied. However, it goes without saying that a device capable of high-speed response is required. At this time, it is necessary to optimize the optical system (especially the second optical means) according to the display device used.
(実施の形態 2 )  (Embodiment 2)
実施の形態 1の光源部は、 それぞれ矩形形状で、 一定の発光角度 (α ) で赤、 緑、 青の各色光を発光する理想に近い面発光光源とした。 これ に対して本実施の形態では、 光源部をより実用的な構成にしており、 白 色光源からの白色光を矩形整形し、 赤、 緑、 青に分光して各色光の矩形 形状光を得ている。 The light source units according to the first embodiment each have a rectangular shape, and have a constant light emission angle (α ), A near-ideal surface-emitting light source that emits red, green, and blue light. On the other hand, in the present embodiment, the light source section has a more practical configuration, and the white light from the white light source is shaped into a rectangle, and separated into red, green, and blue to form a rectangular light of each color. It has gained.
以下、 本実施の形態 2について図 6, 図 7および図 8を用いて説明す る。 図 6は本実施の形態 2の単板式投写型画像形成装置の概略構成図で あり、 本実施の形態 2の単板式投写型画像形成装置は、 光源部 3 3 0、 ロッドインテグレー夕光学手段 3 1 3、 色分解光学系 3 1 4、 面発光光 源部 3 0 1、 第 1の光学手段 2 0 2、 回転多面鏡 2 0 3、 第 2の光学手 段 2 0 4、 画像表示パネル 2 0 5、 画像表示パネル駆動回路 2 0 6、 投 写レンズ 2 0 7から成っている。 実施の形態 1と同一機能を有する構成 要素には同一の符号を付して、 それらについての詳細な説明を省略する 。 第 1の光学手段 2 0 2より後段以降は実施の形態 1と同じ構成である 光源部 3 3 0は、 電極間にアークを発生させることで白色光を発する 放電ランプ 3 1 1と、 放電ランプ 3 1 1の発光体が第 1の焦点位置に配 置され、 第 2の焦点位置に光を集光する楕円形状の反射面を備えたリフ レク夕一 3 1 2とからなる。 なお、 白色光源としては放電ランプに代え てハロゲンランプなどの周知の白色光源を用いることができる。 また、 楕円面鏡ではなく放物面鏡を備えたリフレクタ一と集光レンズとを用い ることもできる。  Hereinafter, Embodiment 2 will be described with reference to FIGS. 6, 7, and 8. FIG. FIG. 6 is a schematic configuration diagram of a single-panel projection image forming apparatus according to the second embodiment. The single-panel projection image forming apparatus according to the second embodiment includes a light source section 330, a rod integrator optical device 3 1, 3, color separation optical system 3 1, 4, surface emitting light source section 301, first optical means 202, rotating polygon mirror 203, second optical means 204, image display panel 2 05, an image display panel drive circuit 206, and a projection lens 207. Components having the same functions as those of the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The light source unit 330 has the same configuration as that of the first embodiment after the first optical unit 202. The light source unit 330 emits white light by generating an arc between the electrodes. The light-emitting body 311 is disposed at the first focal position, and includes a reflector 312 having an elliptical reflecting surface for condensing light at the second focal position. As a white light source, a known white light source such as a halogen lamp can be used instead of a discharge lamp. Also, a reflector having a parabolic mirror instead of an ellipsoidal mirror and a condenser lens can be used.
光源部 3 3 0からの光はロッドインテグレー夕光学手段 3 1 3に入射 する。 ロッドインテグレー夕光学手段 3 1 3は、 図 7のように、 4つの 反射ミラー 3 2 4を、 その反射面を内側にして角筒状に組み合わせた口 ッド部 3 2 5からなる。 ロッドインテグレ一タ光学手段 3 1 3としては 、 図 7の構成に限定されず、 例えば四角柱形状のプリズムを用いること もできる。 Light from the light source section 330 enters the rod integrator optical means 3 13. As shown in FIG. 7, the rod integrator optical means 3 13 is composed of a mouth portion 3 25 in which four reflecting mirrors 3 24 are combined into a rectangular tube shape with its reflecting surface inside. The rod integrator optical means 3 13 is not limited to the configuration shown in FIG. 7, and for example, a prism having a quadrangular prism shape may be used. Can also.
ロッド部 3 2 5は、 その矩形形状の一方の開口 (第 1の開口) 位置が リフレクタ一 3 1 2の第 2の焦点に合致するよう配置される。 ロッド部 3 2 5の矩形形状の他方の開口 (第 2の開口) 位置には集光レンズ 3 1 5が配置される。 集光レンズ 3 1 5は、 ロッド部 3 2 5の第 2の開口か らの光を集光し、 第 2の開口形状像を前方に矩形均一照明域として形成 する。  The rod portion 325 is arranged so that the position of one opening (first opening) of the rectangular shape coincides with the second focal point of the reflector 131. A condensing lens 315 is arranged at the position of the other rectangular opening (second opening) of the rod portion 325. The condenser lens 315 condenses the light from the second opening of the rod section 325, and forms the second opening shape image as a rectangular uniform illumination area in the front.
なお、 本実施の形態ではロッドインテグレー夕光学手段を用いている 力 これに代えて、 第 1のレンズアレイと第 2のレンズアレイとの 2群 のレンズアレイで構成されるレンズァレイインテグレ一タ光学手段を使 用することもできる。  In this embodiment, a rod integrator optical means is used. Instead, a lens array integrator composed of two groups of lens arrays, a first lens array and a second lens array, is used. Optical means can also be used.
レンズアレイインテグレー夕光学手段は、 図 8 Aに示すように、 同形 状の矩形開口を備えたマイクロレンズを 2次元的に配した第 1のレンズ アレイ 3 2 6と、 図 8 Bに示すように、 第 1のレンズアレイ 3 2 6を構 成するマイク口レンズと 1対 1に対応する同数のマイクロレンズを 2次 元的に配した第 2のレンズアレイ 3 2 7とからなる。 第 2のレンズァレ ィ 3 2 7は図 8 Bに示すように第 1のレンズアレイ 3 2 6の各マイクロ レンズにより形成される光源像 3 2 8と同数のマイクロレンズにより構 成されている。  As shown in FIG. 8A, the lens array integrator optical means comprises a first lens array 32 6 in which microlenses having the same shape of rectangular apertures are arranged two-dimensionally, and as shown in FIG. 8B. The microphone lens includes a microphone lens constituting the first lens array 326 and a second lens array 327 in which the same number of microlenses corresponding to one-to-one correspondence are arranged two-dimensionally. As shown in FIG. 8B, the second lens array 327 is composed of the same number of microlenses as the light source images 328 formed by the microlenses of the first lens array 326.
レンズァレイインテグレ一タ光学手段は図 6のロッドインテグレー夕 光学手段 3 1 3のロッド部 3 2 5に代えて集光レンズ 3 1 5と色分解光 学系 3 1 4との間に配置される。 光源部 3 3 0からの白色光は、 集光レ ンズ 3 1 5で集光され、 レンズアレイインテグレー夕光学手段の第 1の レンズアレイ 3 2 6に入射し、 第 2のレンズアレイ 3 2 7は第 1のレン ズアレイ 3 2 6の各マイク口レンズ像をその前方に重畳して矩形均一照 明域を形成する。 集光レンズ 3 1 5と上記矩形均一照明域との間には色分解光学系 3 1 4が備えられている。 ここに入射した白色光は光路に対し斜めに配置さ れた赤反射ダイクロイツクミラー 3 1 6及び青反射ダイクロイツクミラ 一 3 1 7で赤、 緑、 青の色光に分解される。 緑色光は上記両ダイクロイ ックミラ一 3 1 6, 3 1 7を透過して第 1の集光レンズ 3 0 9 Gに至る 。 赤反射ダイクロイツクミラー 3 1 6で反射された赤色光は第 1のリレ 一レンズ 3 1 8, 第 1のミラー 3 1 9, 第 2のリレーレンズ 3 2 0を経 て第 1の集光レンズ 3 0 9 Rに至る。 青反射ダイクロイツクミラー 3 1 7で反射された青色光は第 3のリレーレンズ 3 2 1 , 第 2のミラ一 3 2 2 , 第 4のリレーレンズ 3 2 3を経て第 1の集光レンズ 3 0 9 Bに至る このようにして色光別の第 1集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 B上には矩形均一照明域 (ロッド部 3 2 5の第 2の開口の矩形像) が各 色毎に形成される。 本実施の形態では、 このようにして赤、 緑、 青の各 色の矩形像が形成される第 1集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 B が面発光光源部 3 0 1として機能する。 The lens array integrator optical means is disposed between the condenser lens 3 15 and the color separation optical system 3 14 in place of the rod section 3 25 of the rod integrator optical means 3 13 in FIG. You. The white light from the light source section 330 is condensed by the condensing lens 315, enters the first lens array 326 of the lens array integrator optical means, and the second lens array 327 Superimposes each microphone aperture lens image of the first lens array 326 in front of it to form a rectangular uniform illumination area. A color separation optical system 314 is provided between the condenser lens 315 and the rectangular uniform illumination area. The white light incident here is decomposed into red, green, and blue color lights by a red reflection dichroic mirror 316 and a blue reflection dichroic mirror 131 arranged at an angle to the optical path. The green light passes through the two dichroic mirrors 316 and 317 and reaches the first condenser lens 309G. The red light reflected by the red reflection dichroic mirror 316 passes through a first relay lens 318, a first mirror 319, a second relay lens 322 and a first condenser lens. Up to 309 R. The blue light reflected by the blue reflection dichroic mirror 3 1 7 passes through the third relay lens 3 2 1, the second mirror 3 2 2, the fourth relay lens 3 2 3 and the first condenser lens 3 In this way, the first condensing lens 309R, 309G, and 309B for each color light is placed on the rectangular uniform illumination area (the second aperture of the rod section 325). A rectangular image is formed for each color. In the present embodiment, the first condensing lenses 309R, 309G, and 309B on which the rectangular images of red, green, and blue are formed in this manner are provided by the surface-emitting light source unit 3 0 Functions as 1.
色光別第 1集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 Bを透過した光は 、 第 1の光学手段 2 0 2を構成する第 2集光レンズ 3 1 0に入射する。 第 2集光レンズ 3 1 0以降は図 1と同様であるため説明を省略する。 各色光の発光部に関し、 本実施の形態 2では色光別第 1集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 B上に、 実施の形態 1の各色光の矩形形状発 光部 2 0 8 R、 2 0 8 G、 2 0 8 Bに相当する矩形均一照明域 (矩形像 ) がそれぞれ形成される。 従って、 実施の形態 1と同様に、 色光別第 1 集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 B上の任意の点から発した光が 回転多面鏡 2 0 3に平行光となって入射するように、 第 1集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 Bは第 2集光レンズ 3 1 0の焦点位置に配置 される。 また、 色光別第 1集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 B上 の矩形均一照明域と画像表示パネル 2 0 5とは共役の関係になるように 配置される。 The light that has passed through the first condensing lenses 309R, 309G, and 309B for each color light is incident on the second condensing lens 310 that forms the first optical unit 202. Since the second condenser lens 310 and thereafter are the same as in FIG. 1, the description is omitted. In the second embodiment, the light emitting units of the respective color lights are provided on the first condensing lenses 309 R, 309 G, and 309 B for the respective color lights. Rectangular uniform illumination areas (rectangular images) corresponding to 208 R, 208 G, and 208 B are formed, respectively. Therefore, as in the first embodiment, light emitted from an arbitrary point on the first condensing lens 309R, 309G, and 309B for each color light is parallel to the rotating polygon mirror 203. The first condenser lenses 309R, 309G, and 309B are located at the focal position of the second condenser lens 310 so that light is incident as Is done. Further, the rectangular uniform illumination area on the first condensing lenses 309R, 309G, and 309B for each color light and the image display panel 205 are arranged so as to have a conjugate relationship.
また実施の形態 1と同様に、 回転多面鏡 2 0 3上のスポット (光源像 ) 2 2 0と投写レンズ 2 0 7の入射瞳とが共役の関係になるように配置 されている。  Further, similarly to Embodiment 1, the spot (light source image) 220 on the rotary polygon mirror 203 and the entrance pupil of the projection lens 207 are arranged in a conjugate relationship.
(実施の形態 3 )  (Embodiment 3)
本発明の実施の形態 3を図 9を用いて説明する。 図 9は本実施の形態 3の単板式投写型画像形成装置の概略構成図であり、 本実施の形態 3の 単板式投写型画像形成装置は、 光源部 4 3 0、 面発光光源部 4 0 1、 第 1の光学手段 4 0 2、 回転多面鏡 2 0 3、 第 2の光学手段 2 0 4、 画像 表示パネル 2 0 5、 画像表示パネル駆動回路 2 0 6、 投写レンズ 2 0 7 から成っている。 実施の形態 1と同一機能を有する構成要素には同一の 符号を付して、 それらについての詳細な説明を省略する。  Embodiment 3 of the present invention will be described with reference to FIG. FIG. 9 is a schematic configuration diagram of a single-panel projection image forming apparatus according to the third embodiment. The single-panel projection image forming apparatus according to the third embodiment includes a light source section 43 0 and a surface-emitting light source section 40. 1, first optical means 402, rotating polygon mirror 203, second optical means 204, image display panel 205, image display panel drive circuit 206, projection lens 207 ing. The components having the same functions as in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
光源部 4 3 0は、 赤、 緑、 青の各色光を射出する赤色光光源部 4 0 7 、 緑色光光源部 4 0 8、 及び青色光光源部 4 0 9を有し、 それぞれは光 射出側に矩形の形状の光射出部 4 0 8 R、 4 0 8 G、 4 0 8 Bを備える 。 光射出部 4 0 8 R、 4 0 8 G、 4 0 8 Bから射出された各色の光は色 光別の第 1集光レンズ 4 0 9 R、 4 0 9 G、 4 0 9 Bに入射する。 第 1 集光レンズ 4 0 9 R、 4 0 9 G、 4 0 9 Bを出射した各色光は、 色光別 の第 2集光レンズ 4 1 0 R、 4 1 0 G、 4 1 0 Bに入射する。 第 2集光 レンズ 4 1 0 R、 4 1 0 G、 4 1 0 Bを出射した各色光は、 回転多面鏡 2 0 3の外周上の反射面に実施の形態 1と同様に入射する。 第 2集光レ ンズ 4 1 0 R、 4 1 0 G、 4 1 0 Bは、 光射出部 4 0 8 R、 4 0 8 G、 4 0 8 Bの各像を回転多面鏡 2 0 3上の反射面、 第 2の光学手段 2 0 4 を介して画像表示パネル 2 0 5上に形成する。 回転多面鏡 2 0 3より後 段の構成は実施の形態 1と同様であるので説明を省略する。 The light source section 430 includes a red light source section 407, a green light source section 408, and a blue light source section 409 for emitting red, green, and blue light, respectively, and each of them emits light. The light emitting sections 408 R, 408 G, and 408 B having a rectangular shape are provided on the sides. The light of each color emitted from the light emitting sections 408 R, 408 G, 408 B enters the first condenser lens 409 R, 409 G, 409 B for each color light I do. Each color light emitted from the first condenser lens 409 R, 409 G, 409 B enters the second condenser lens 411 R, 410 G, 410 B for each color light I do. The respective color lights emitted from the second condenser lenses 410R, 410G and 410B enter the reflection surface on the outer periphery of the rotary polygon mirror 203 in the same manner as in the first embodiment. The second condenser lens 410R, 410G, 410B is used to rotate the image of the light emitting section 408R, 408G, 408B on the rotating polygon mirror 203. Is formed on the image display panel 205 through the second optical means 204. After rotating polygon mirror 203 The configuration of the stage is the same as that of the first embodiment, and the description is omitted.
本実施の形態においては、 面発光光源部 40 1を構成する第 1集光レ ンズ 40 9 R、 40 9 G、 409 B上の任意の点から発した光が回転多 面鏡 20 3に平行光となって入射するように、 第 1集光レンズ 409 R 、 409 G、 409 Bは第 2集光レンズ 4 1 0 R、 4 1 0 G、 41 0 B の焦点位置に配置される。 また、 第 1集光レンズ 40 9 R、 409 G、 40 9 B上の矩形均一照明域と画像表示パネル 2 0 5とは共役の関係に なるように配置される。  In the present embodiment, light emitted from an arbitrary point on the first condenser lenses 409 R, 409 G, and 409 B constituting the surface emitting light source section 401 is parallel to the rotating polygon mirror 203. The first condenser lenses 409R, 409G, and 409B are arranged at the focal positions of the second condenser lenses 410R, 410G, and 410B so that the light is incident. The rectangular uniform illumination area on the first condenser lenses 409R, 409G, and 409B and the image display panel 205 are arranged so as to have a conjugate relationship.
また実施の形態 1と同様に、 回転多面鏡 203上のスポット (光源像 ) 220と投写レンズ 2 07の入射瞳とが共役の関係になるように配置 されている。  Further, similarly to Embodiment 1, the spot (light source image) 220 on the rotary polygon mirror 203 and the entrance pupil of the projection lens 207 are arranged so as to have a conjugate relationship.
なお、 本実施の形態では、 第 1集光レンズ 40 9 R、 40 9 G、 40 9 Bを各色光の光射出部 40 8 R、 40 8 G、 40 8 Bに近接して配置 し、 各色光を効率よく第 2集光レンズ 4 1 0 R、 4 1 0 G、 4 1 0 Bに 導いているが、 光射出部 40 8 R、 40 8 G、 408 Bからの光の発光 角度を小さくできれば第 1集光レンズ 40 9 R、 40 9 G、 409 Bを 省略することができる。 その場合、 実施の形態 1と同様に、 光射出部 4 08 R、 408 G、 40 8 Bが面発光光源部 40 1を構成する。 すなわ ち、 光射出部 408 R、 40 8 G、 40 8 Bが第 2集光レンズ 41 0 R 、 4 1 0 G、 41 0 Bの焦点位置に配置される。 また、 光射出部 40 8 R、 40 8 G、 408 Bと画像表示パネル 20 5とは共役の関係になる ように配置される。  In the present embodiment, the first condenser lenses 409R, 409G, and 409B are arranged close to the light emitting portions 408R, 408G, and 408B of the respective color lights, and Although the light is efficiently guided to the second condenser lens 410R, 410G, 410B, the light emission angle of the light from the light exit section 408R, 408G, 408B is reduced. If possible, the first condenser lenses 409R, 409G, and 409B can be omitted. In that case, the light emitting portions 408 R, 408 G, and 408 B constitute the surface emitting light source portion 401, as in the first embodiment. That is, the light emitting portions 408R, 408G, and 408B are arranged at the focal positions of the second condenser lenses 410R, 410G, and 410B. Further, the light emitting sections 408R, 408G, 408B and the image display panel 205 are arranged so as to have a conjugate relationship.
また、 本実施の形態においては、 第 1の光学手段 402が色光別の第 2集光レンズ 4 1 0 R、 41 0 G、 41 0 Bにより構成されている。 こ のような構成では、 隣り合う色光を重畳させると、 けられを生じて光利 用効率が低下する。 また、 けられを生じないようにするためには各色光 の重畳を排除する必要があり、 装置の小型化が困難になる場合がある。 従って、 実施の形態 1と同様に、 第 1の光学手段 4 0 2を各色光に共通 するレンズを用いて構成してもよい。 Further, in the present embodiment, the first optical means 402 is constituted by the second condenser lenses 410R, 410G, and 410B for each color light. In such a configuration, when adjacent color lights are superimposed, the light is efficiently used and the light utilization efficiency is reduced. Also, in order not to cause eclipse, It is necessary to eliminate the superposition of images, which may make it difficult to reduce the size of the device. Therefore, as in the first embodiment, the first optical means 402 may be configured using a lens common to each color light.
図 1 0は実施の形態 1と実施の形態 2をそれぞれ比較しながら本発明 の要点を図示したものである。  FIG. 10 illustrates the gist of the present invention while comparing the first embodiment with the second embodiment.
上段 ( I ) は実施の形態 1に対応し、 下段 (Π) は実施の形態 2に対 応する。 また、 図 9の各符号はそれぞれ図 1, 図 6の各符号に対応して いる。 また、 各構成要素の位置関係をわかりやすくするため、 回転多面 鏡 2 0 3の反射による折り返しを考慮せず、 且つ図 1 , 図 6の赤、 緑、 青の各色光のうち、 緑光の主光線を中心線として各構成要素を同一線上 に図示している。  The upper row (I) corresponds to the first embodiment, and the lower row (II) corresponds to the second embodiment. 9 correspond to the symbols in FIGS. 1 and 6, respectively. In addition, in order to make it easy to understand the positional relationship between the constituent elements, the reflection due to the reflection of the rotating polygon mirror 203 was not taken into consideration, and the main component of the green light among the red, green, and blue color lights shown in FIGS. Each component is shown on the same line with the light ray as the center line.
上段 ( I ) において、 各色光の矩形形状発光部 2 0 8 R、 2 0 8 G、 In the upper part (I), the rectangular light emitting portions 208 R, 208 G,
2 0 8 B上の任意の点から発した光が回転多面鏡 2 0 3に平行光となつ て入射するように、 矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bは集 光レンズ 2 1 0の焦点位置 (集光レンズ 2 1 0の焦点距離を Fとする) に配される。 The rectangular light emitting portions 208 R, 208 G, and 208 B are arranged such that light emitted from any point on 208 B enters the rotating polygon mirror 203 as parallel light. It is arranged at the focal position of the condenser lens 210 (the focal length of the condenser lens 210 is F).
下段 (II) においては、 色光別第 1集光レンズ 3 0 9 R、 3 0 9 G、 In the lower stage (II), the first condenser lens for each color light 3 09 R, 3 09 G,
3 0 9 B上には上段 ( I ) の各色光の矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bに相当する矩形均一照明域が各色毎に形成される。 従って 、 色光別第 1集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 B上の任意の点か ら発した光が回転多面鏡 2 0 3に平行光となって入射するように、 第 1 集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 Bは第 2集光レンズ 3 1 0の焦 点位置 (第 2集光レンズ 3 1 0の焦点距離を Fとする) に配される。 なお、 上段 ( I ) の矩形形状発光部 2 0 8 R、 2 0 8 G、 2 0 8 Bと 集光レンズ 2 1 0との間の距離、 下段 (II) の色光別第 1集光レンズ 3 0 9 R、 3 0 9 G、 3 0 9 Bと第 2集光レンズ 3 1 0との間の距離は厳 密に焦点距離 Fと等しくする必要はなく、 本発明の効果を維持できる範 囲であれば若干前後に移動しても良い。 A rectangular uniform illumination area corresponding to the rectangular light-emitting portions 208 R, 208 G, and 208 B of each color light in the upper stage (I) is formed on the color filter 309 B for each color. Therefore, the light emitted from an arbitrary point on the first condensing lens 309R, 309G, 309B for each color light is incident on the rotating polygon mirror 203 as parallel light. , The first condenser lens 310 R, 309 G, and 309 B are the focal point of the second condenser lens 310 (the focal length of the second condenser lens 310 is F) Distributed to. The distance between the upper (I) rectangular light emitting portions 208 R, 208 G, and 208 B and the condenser lens 210, and the lower (II) first condenser lens for each color light The distance between 309 R, 309 G, 309 B and the second condenser lens 310 is strict. It is not necessary that the focal length be exactly equal to the focal length F, and the focal length may be slightly moved back and forth as long as the effects of the present invention can be maintained.
本発明ではさらに、 回転多面鏡 2 0 3上のスポット 2 2 0と投写レン ズ 2 0 7の入射瞳位置とが共役の関係になるように各構成要素が配置さ れている。 回転多面鏡 2 0 3が回転し走査を行っても、 回転多面鏡 2 0 3上のスポット 2 2 0の位置は変動しないから、 回転多面鏡 2 0 3上の スポット 2 2 0と投写レンズ 2 0 7の入射瞳とを共役の関係にすること で、 投写レンズ 2 0 7の入射瞳の位置に、 動くことのない最も小さな像 を形成することができる。 従って、 小型の投写レンズでも効率よく光を 利用できる。  In the present invention, the components are further arranged such that the spot 220 on the rotary polygon mirror 203 and the entrance pupil position of the projection lens 207 have a conjugate relationship. Even if the rotating polygon mirror 203 rotates and scans, the position of the spot 220 on the rotating polygon mirror 203 does not change, so the spot 220 on the rotating polygon mirror 203 and the projection lens 2 By making the entrance pupil of the projection lens 207 have a conjugate relationship, the smallest image that does not move can be formed at the position of the entrance pupil of the projection lens 207. Therefore, light can be used efficiently even with a small projection lens.
以上に説明した実施の形態は、 いずれもあくまでも本発明の技術的内 容を明らかにする意図のものであって、 本発明はこのような具体例にの み限定して解釈されるものではなく、 その発明の精神と請求の範囲に記 載する範囲内でいろいろと変更して実施することができ、 本発明を広義 に解釈すべきである。  The embodiments described above are all intended to clarify the technical contents of the present invention, and the present invention should not be construed as being limited to such specific examples. However, various modifications can be made within the spirit of the invention and the scope described in the claims, and the invention should be interpreted in a broad sense.

Claims

請 求 の 範 囲 The scope of the claims
1 . 矩形形状の発光部を備え、 赤、 緑、 青それぞれの異なる色光を発 する 3つの面発光光源と、 1. Three surface emitting light sources that have rectangular light emitting parts and emit red, green, and blue light of different colors,
前記面発光光源からの光を集光する第 1の光学手段と、  First optical means for condensing light from the surface emitting light source,
軸を中心に回転し、 前記第 1の光学手段で集光された光を反射し走査 する回転多面鏡と、  A rotating polygon mirror that rotates about an axis and reflects and scans light collected by the first optical unit;
Fシ一夕一レンズ機能を有し、 前記回転多面鏡で反射された光を集光 する第 2の光学手段と、  A second optical unit having an F lens function, and condensing light reflected by the rotating polygon mirror;
マトリクス状に配された複数の画素を備え、 前記第 2の光学手段を通 過した赤、 緑、 青の各色光の明るさを前記画素毎に変調する画像表示パ ネルと、  An image display panel comprising a plurality of pixels arranged in a matrix, and modulating the brightness of each of red, green, and blue color lights passing through the second optical means for each of the pixels;
前記画像表示パネルの前記各画素をその画素に入射する光の色に応じ た信号で駆動する駆動回路と、  A drive circuit that drives each pixel of the image display panel with a signal corresponding to a color of light incident on the pixel;
前記画像表示パネル上に形成され、 且つ前記信号によって変調された 赤、 緑、 青の各矩形形状の色光をスクリーン上に拡大投写する投写光学 系とを備え、  A projection optical system that is formed on the image display panel, and that projects red, green, and blue rectangular color lights modulated by the signal on a screen in an enlarged manner.
前記面発光光源の任意の点から発した光が前記回転多面鏡に平行光と なって入射するように、 前記面発光光源を前記第 1の光学手段の焦点位 置に配したことを特徴とする単板式投写型画像表示装置。  The surface emitting light source is disposed at a focal position of the first optical unit such that light emitted from an arbitrary point of the surface emitting light source is incident on the rotating polygon mirror as parallel light. Single-panel projection image display device.
2 . 更に、 白色光源及びリフレクタ一からなる光源部と、  2. Further, a light source unit including a white light source and a reflector,
矩形形状の開口部を有するロッド部を備え、 前記光源部からの光を集 光して均一な強さの光を出射するロッドインテグレー夕光学手段と、 前記ロッドインテグレ一タ光学手段からの光を赤、 緑、 青の各色光に 分解する色分解光学系と、  A rod unit having a rectangular opening, a rod integrator optical unit that collects light from the light source unit and emits light of uniform intensity, and light from the rod integrator optical unit. A color separation optical system that separates the light into red, green, and blue light,
前記色分解光学系からの前記各色光がそれぞれ入射し、 赤、 緑、 青の 各色光の矩形像がそれぞれ形成される 3個の第 1集光レンズとを備え、 前記 3つの面発光光源が前記 3個の第 1集光レンズであり、 前記矩形形状の発光部が前記第 1集光レンズ上に形成された前記矩形 像である請求項 1に記載の単板式投写型画像表示装置。 Each of the color lights from the color separation optical system is incident, and the red, green, and blue light Three first condensing lenses each forming a rectangular image of each color light, wherein the three surface emitting light sources are the three first condensing lenses, and the rectangular light emitting unit is the The single-panel projection image display device according to claim 1, wherein the single image is the rectangular image formed on one condenser lens.
3 . 前記回転多面鏡上に形成される像と前記投写光学系の入射瞳とが 共役の関係にある請求項 1に記載の単板式投写型画像表示装置。  3. The single-plate projection image display device according to claim 1, wherein an image formed on the rotating polygon mirror and an entrance pupil of the projection optical system have a conjugate relationship.
4 . 前記画像表示パネルが透過型液晶表示パネルである請求項 1に記 載の単板式投写型画像表示装置。  4. The single-panel projection image display device according to claim 1, wherein the image display panel is a transmissive liquid crystal display panel.
5 . 前記画像表示パネルが反射型液晶表示パネル又は反射型ミラーデ パイスである請求項 1に記載の単板式投写型画像表示装置。  5. The single-plate projection type image display device according to claim 1, wherein the image display panel is a reflection type liquid crystal display panel or a reflection type mirror device.
6 . 前記ロッドインテグレー夕光学手段に代えて、 同形状矩形開口を 備えたマイク口レンズを 2次元的に配してなる第 1のレンズアレイと、 前記第 1のレンズアレイを構成するマイク口レンズと同数のマイクロレ ンズを 2次元的に配してなる第 2のレンズアレイとからなるレンズァレ レータ光学手段を備えた請求項 2に記載の単板式投写型画像  6. A first lens array in which a microphone aperture lens having a rectangular opening of the same shape is two-dimensionally arranged in place of the rod integrator optical means, and a microphone aperture lens constituting the first lens array 3. The single-plate projection image according to claim 2, further comprising a lens optics optical unit comprising a second lens array in which the same number of micro lenses are two-dimensionally arranged.
PCT/JP2002/012288 2001-11-27 2002-11-25 Single-panel projection type image display apparatus WO2003046640A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001360559 2001-11-27
JP2001-360559 2001-11-27

Publications (1)

Publication Number Publication Date
WO2003046640A1 true WO2003046640A1 (en) 2003-06-05

Family

ID=19171347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012288 WO2003046640A1 (en) 2001-11-27 2002-11-25 Single-panel projection type image display apparatus

Country Status (1)

Country Link
WO (1) WO2003046640A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888793B2 (en) 2003-09-15 2011-02-15 Nuvotronics, Llc Device package and methods for the fabrication and testing thereof
CN109470166A (en) * 2018-11-09 2019-03-15 业成科技(成都)有限公司 Structure light depth sense device and method for sensing
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003842A1 (en) * 1994-07-21 1996-02-08 Philips Electronics N.V. Single panel color image projection system having improved scanning
JPH1124164A (en) * 1997-07-03 1999-01-29 Randatsuku:Kk Color liquid crystal projector
WO2001077737A1 (en) * 2000-04-05 2001-10-18 Matsushita Electric Industrial Co., Ltd. Color image display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996003842A1 (en) * 1994-07-21 1996-02-08 Philips Electronics N.V. Single panel color image projection system having improved scanning
JPH1124164A (en) * 1997-07-03 1999-01-29 Randatsuku:Kk Color liquid crystal projector
WO2001077737A1 (en) * 2000-04-05 2001-10-18 Matsushita Electric Industrial Co., Ltd. Color image display apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888793B2 (en) 2003-09-15 2011-02-15 Nuvotronics, Llc Device package and methods for the fabrication and testing thereof
US8993450B2 (en) 2003-09-15 2015-03-31 Nuvotronics, Llc Device package and methods for the fabrication and testing thereof
US9410799B2 (en) 2003-09-15 2016-08-09 Nuvotronics, Inc. Device package and methods for the fabrication and testing thereof
US9647420B2 (en) 2003-09-15 2017-05-09 Nuvotronics, Inc. Package and methods for the fabrication and testing thereof
US9817199B2 (en) 2003-09-15 2017-11-14 Nuvotronics, Inc Device package and methods for the fabrication and testing thereof
US10319654B1 (en) 2017-12-01 2019-06-11 Cubic Corporation Integrated chip scale packages
US10553511B2 (en) 2017-12-01 2020-02-04 Cubic Corporation Integrated chip scale packages
CN109470166A (en) * 2018-11-09 2019-03-15 业成科技(成都)有限公司 Structure light depth sense device and method for sensing

Similar Documents

Publication Publication Date Title
JP4111074B2 (en) projector
US6511184B2 (en) Color image display apparatus
US6508554B2 (en) Projection-type image display apparatus
JP4082332B2 (en) Display device and projector
WO1998029773A1 (en) Image display
US6698895B2 (en) Projection image display
JP2004233996A (en) Color illuminator and image projection device adopting same
WO2014080869A1 (en) Projection-type video-image-displaying device
JP3653492B2 (en) Single-panel image display device
JP2006178349A (en) Rear projection video display device
JP4790228B2 (en) Illumination method and display device
JPH11281914A (en) Illuminating optical system and projector device using the system
JP4053212B2 (en) Color image display device
WO2001077737A1 (en) Color image display apparatus
US6843570B2 (en) Micro mirror device and projector employing the same
WO2001002906A1 (en) Projection image display
JP2007293033A (en) Image projector
WO2003046640A1 (en) Single-panel projection type image display apparatus
JP3747741B2 (en) Color image display device
JP4022130B2 (en) Single-plate projection display
JP2002182128A (en) Color filter device for image projection, and image projecting device
JP3596357B2 (en) Projection image display device with two light sources suitable for time-division driving
JP2007286516A (en) Projection type image display device
JP4574132B2 (en) Illumination device and color image display device using the same
JP2003255264A (en) Single plate projection image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase