WO2003039667A1 - Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator - Google Patents

Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator Download PDF

Info

Publication number
WO2003039667A1
WO2003039667A1 PCT/IB2002/004507 IB0204507W WO03039667A1 WO 2003039667 A1 WO2003039667 A1 WO 2003039667A1 IB 0204507 W IB0204507 W IB 0204507W WO 03039667 A1 WO03039667 A1 WO 03039667A1
Authority
WO
WIPO (PCT)
Prior art keywords
approximately
tachycardia pacing
pacing energy
energy comprises
milliamps
Prior art date
Application number
PCT/IB2002/004507
Other languages
French (fr)
Inventor
Alan H. Ostroff
William J. Rissmann
Gary R. Mezack
Original Assignee
Cameron Health, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cameron Health, Inc. filed Critical Cameron Health, Inc.
Publication of WO2003039667A1 publication Critical patent/WO2003039667A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0504Subcutaneous electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/37512Pacemakers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3906Heart defibrillators characterised by the form of the shockwave
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3956Implantable devices for applying electric shocks to the heart, e.g. for cardioversion
    • A61N1/3962Implantable devices for applying electric shocks to the heart, e.g. for cardioversion in combination with another heart therapy
    • A61N1/39622Pacing therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/362Heart stimulators
    • A61N1/3621Heart stimulators for treating or preventing abnormally high heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3756Casings with electrodes thereon, e.g. leadless stimulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3968Constructional arrangements, e.g. casings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/38Applying electric currents by contact electrodes alternating or intermittent currents for producing shock effects
    • A61N1/39Heart defibrillators
    • A61N1/3975Power supply

Definitions

  • the present invention relates to an apparatus and method for performing electrical cardioversion/defib ⁇ llation and optional pacing of the heart via a totally subcutaneous non-transvenous system.
  • Defib ⁇ llation cardioversion is a technique employed to counter arrhythmic heart conditions including some tachycardias in the atria and/or ventricles.
  • electrodes are employed to stimulate the heart with electrical impulses or shocks, of a magnitude substantially greater than pulses used in cardiac pacing.
  • Shocks used for defibrillation therapy can comprise a b ⁇ hasic truncated exponential waveform.
  • pacing a constant current density is desired to reduce or eliminate variability due to the electrode/tissue interface
  • ICDs implantable cardioverter/defib ⁇ llators
  • the electrodes used in ICDs can be in the form of patches applied directly to epicardial tissue, or, more commonly, are on the distal regions of small cylindrical insulated catheters that typically enter the subclavian venous system, pass through the superior vena cava and, into one or more endocardial areas of the heart.
  • Such electrode systems are called intravascular or transvenous electrodes.
  • ICDs which are small enough to be implanted in the pectoral region.
  • advances in circuit design have enabled the housing of the ICD to form a subcutaneous electrode.
  • ICDs are now an established therapy for the management of life threatening cardiac rhythm disorders, primarily ventricular fibrillation (V-Fib). ICDs are very effective at treating V-Fib, but are therapies that still require significant surgery.
  • V-Fib ventricular fibrillation
  • transvenous ICD systems also increase cost and require specialized mterventional rooms and equipment as well as special skill for insertion. These systems are typically implanted by cardiac electrophysiologists who have had a great deal of extra training.
  • AED automatic external defib ⁇ llator
  • cutaneous patch electrodes rather than implantable lead systems, to effect defibrillation under the direction of a bystander user who treats the patient suffe ⁇ ng from V-Fib with a portable device containing the necessary electronics and power supply that allows defibrillation.
  • AEDs can be nearly as effective as an ICD for defib ⁇ llation if applied to the victim of ventricular fibrillation promptly, i.e., within 2 to 3 minutes of the onset of the ventricular fibrillation
  • AED therapy has great appeal as a tool for diminishing the ⁇ sk of death m public venues such as in air flight.
  • an AED must be used by another individual, not the person suffenng from the potential fatal rhythm. It is more of a public health tool than a patient-specific tool like an ICD.
  • a power supply for an implantable cardioverter-defib ⁇ llator for subcutaneous positioning between the third ⁇ b and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the mtrathorasic blood vessels and for providing anti-tachycardia pacing energy to the heart comprising a capacitor subsystem for sto ⁇ ng the anti-tachycardia pacing energy for delivery to the patient's heart, and a battery subsystem elect ⁇ cally coupled to the capacitor subsystem for providing the anti- tachycardia pacing energy to the capacitor subsystem.
  • FIG 1 is a schematic view of a Subcutaneous ICD (S-ICD) of the present invention.
  • FIG. 2 is a schematic view of an alternate embodiment of a subcutaneous electrode of the present invention.
  • FIG. 3 is a schematic view of an alternate embodiment of a subcutaneous electrode of the present invention
  • FIG. 4 is a schematic view of the S-ICD and lead of FIG. 1 subcutaneously implanted in the thorax of a patient;
  • FIG. 5 is a schematic view of the S-ICD and lead of FIG. 2 subcutaneously implanted in an alternate location within the thorax of a patient;
  • FIG 6 is a schematic view of the S-ICD and lead of FIG. 3 subcutaneously implanted in the thorax of a patient,
  • FIG. 7 is a schematic view of the method of making a subcutaneous path from the preferred incision and housing implantation point to a termination point for locating a subcutaneous electrode of the present invention
  • FIG 8 is a schematic view of an introducer set for performing the method of lead insertion of any of the described embodiments
  • FIG. 9 is a schematic view of an alternative S-ICD of the present invention illustrating a lead subcutaneously and se ⁇ iginously implanted in the thorax of a patient for use particularly in children;
  • FIG. 10 is a schematic view of an alternate embodiment of an S-ICD of the present invention.
  • FIG. 11 is a schematic view of the S-ICD of FIG. 10 subcutaneously implanted in the thorax of a patient
  • FIG. 12 is a schematic view of yet a further embodiment where the canister of the S-ICD of the present invention is shaped to be particularly useful in placing subcutaneously adjacent and parallel to a nb of a patient;
  • FIG. 13 is a schematic of a different embodiment where the canister of the S- ICD of the present invention is shaped to be particularly useful in placing subcutaneously adjacent and parallel to a ⁇ b of a patient;
  • FIG. 14 is a schematic view of a Unitary Subcutaneous ICD (US-ICD) of the present invention.
  • FIG. 15 is a schematic view of the US-ICD subcutaneously implanted in the thorax of a patient;
  • FIG 16 is a schematic view of the method of making a subcutaneous path from the preferred incision for implanting the US-ICD;
  • FIG. 17 is a schematic view of an introducer for performing the method of US- ICD implantation
  • FIG. 18 is an exploded schematic view of an alternate embodiment of the present invention with a plug-m portion that contains operational circuitry and means for generating cardioversion/defib ⁇ llation shock waves,
  • Fig. 19 is a graph that shows an example of a biphasic waveform for use in anti-tachycardia pacing in an embodiment of the present invention
  • Fig. 20 is a graph that shows an example of a monophonic waveform for use in anti-tachycardia pacing in an embodiment of the present invention.
  • the S-ICD consists of an elect ⁇ cally active canister 11 and a subcutaneous electrode 13 attached to the canister.
  • the canister has an electrically active surface 15 that is electrically insulated from the electrode connector block 17 and the canister housing 16 via insulating area 14.
  • the canister can be similar to numerous electrically active canisters commercially available in that the canister will contain a battery supply, capacitor and operational circuitry. Alternatively, the canister can be thm and elongated to conform to the intercostal space.
  • the circuitry will be able to monitor cardiac rhythms for tachycardia and fibnllation, and if detected, will initiate charging the capacitor and then delivering cardioversion /defibrillation energy through the active surface of the housing and to the subcutaneous electrode. Examples of such circuitry are described in U.S. Patent Nos. 4,693,253 and 5,105,810, the entire disclosures of which are herein inco ⁇ orated by reference.
  • the canister circuitry can provide cardioversion/ defibrillation energy m different types of waveforms.
  • a 100 uF biphasic waveform is used of approximately 10-20 ms total duration and with the initial phase containing approximately 2/3 of the energy, however, any type of waveform can be utilized such as monophasic, biphasic, multiphasic or alternative waveforms as is known in the art.
  • the circuitry can also provide transthoracic cardiac pacing energy. The optional circuitry will be able to monitor the heart for bradycardia and/or tachycardia rhythms.
  • the circuitry can then deliver appropriate pacing energy at appropriate intervals through the active surface and the subcutaneous electrode Pacing stimuli can be biphasic in one embodiment and similar in pulse amplitude to that used for conventional transthoracic pacing.
  • This same circuitry can also be used to deliver low amplitude shocks on the T- wave for induction of ventricular fibnllation for testing S-ICD performance in treating V-Fib as is described in U.S. Patent No. 5,129,392, the entire disclosure of which is hereby inco ⁇ orated by reference.
  • the circuitry can be provided with rapid induction of ventricular fibrillation or ventricular tachycardia using rapid ventricular pacing.
  • Another optional way for inducing vent ⁇ cular fibnllation would be to provide a continuous low voltage, I e., about 3 volts, across the heart du ⁇ ng the entire cardiac cycle.
  • Another optional aspect of the present invention is that the operational circuitry can detect the presence of atnal fibrillation as described in Olson, W.
  • Detection can be provided via R-R Cycle length instability detection algorithms. Once at ⁇ al fibnllation has been detected, the operational circuitry will then provide QRS synchronized atnal defib ⁇ llation/cardioversion using the same shock energy and waveshape characteristics used for ventricular defib ⁇ llation/ cardioversion.
  • the sensing circuitry will utilize the electronic signals generated from the heart and will primarily detect QRS waves.
  • the circuitry will be programmed to detect only ventncular tachycardias or fibrillations.
  • the detection circuitry will utilize in its most direct form, a rate detection algorithm that triggers charging of the capacitor once the ventncular rate exceeds some predetermined level for a fixed period of time- for example, if the ventricular rate exceeds 240 bpm on average for more than 4 seconds. Once the capacitor is charged, a confirmatory rhythm check would ensure that the rate persists for at least another 1 second before discharge. Similarly, termination algorithms could be instituted that ensure that a rhythm less than 240 bpm persisting for at least 4 seconds before the capacitor charge is drained to an internal resistor.
  • Detection, confirmation and termination algorithms as are described above and in the art can be modulated to increase sensitivity and specificity by examining QRS beat-to-beat uniformity, QRS signal frequency content, R-R interval stability data, and signal amplitude charactenstics all or part of which can be used to increase or decrease both sensitivity and specificity of S-ICD arrhythmia detection function.
  • the sense circuitry can check for the presence or the absence of respiration.
  • the respiration rate can be detected by monitoring the impedance across the thorax using subthreshold currents delivered across the active can and the high voltage subcutaneous lead electrode and monitoring the frequency in undulation in the waveform that results from the undulations of transthoracic impedance during the respiratory cycle If there is no undulation, then the patent is not respiring and this lack of respiration can be used to confirm the QRS findings of cardiac arrest The same technique can be used to provide information about the respiratory rate or estimate cardiac output as described in U S. Patent Nos. 6,095,987, 5,423,326, 4,450,527, the entire disclosures of which are inco ⁇ orated herein by reference.
  • the canister of the present invention can be made out of titanium alloy or other presently preferred electrically active canister designs. However, it is contemplated that a malleable canister that can conform to the curvature of the patient's chest will be preferred. In this way the patient can have a comfortable canister that conforms to the shape of the patient's nb cage. Examples of conforming canisters are provided m U S. Patent No. 5,645,586, the entire disclosure of which is herein inco ⁇ orated by reference. Therefore, the canister can be made out of numerous materials such as medical grade plastics, metals, and alloys.
  • the canister is smaller than 60 cc volume having a weight of less than 100 gms for long term wearabihty, especially in children
  • the canister and the lead of the S-ICD can also use fractal or wnnkled surfaces to increase surface area to improve defibrillation capability. Because of the primary prevention role of the therapy and the likely need to reach energies over 40 Joules, a feature of one embodiment is that the charge time for the therapy, is intentionally left relatively long to allow capacitor charging within the limitations of device size. Examples of small ICD housings are disclosed in U S Patents Nos. 5,597,956 and 5,405,363, the entire disclosures of which are herein inco ⁇ orated by reference Different subcutaneous electrodes 13 of the present invention are illustrated in
  • the lead 21 for the subcutaneous electrode is preferably composed of silicone or polyurethane insulation.
  • the electrode is connected to the canister at its proximal end via connection port 19 which is located on an electrically insulated area 17 of the canister.
  • the electrode illustrated is a composite electrode with three different electrodes attached to the lead.
  • an optional anchor segment 52 is attached at the most distal end of the subcutaneous electrode for anchoring the electrode into soft tissue such that the electrode does not dislodge after implantation.
  • the most distal electrode on the composite subcutaneous electrode is a coil electrode 27 that is used for delivering the high voltage cardioversion/ defibnllation energy across the heart.
  • the coil cardioversion/def ⁇ b ⁇ llation electrode is about 5-10 cm in length
  • Proximal to the coil electrode are two sense electrodes, a first sense electrode
  • the sense electrodes are spaced far enough apart to be able to have good QRS detection. This spacing can range from 1 to 10 cm with 4 cm being presently preferred.
  • the electrodes may or may not be circumferential with the preferred embodiment. Having the electrodes non-circumferential and positioned outward, toward the skin surface, is a means to minimize muscle artifact and enhance QRS signal quality.
  • the sensing electrodes are electrically isolated from the cardioversion defibnllation electrode via insulating areas 29. Similar types of cardioversion defibnllation electrodes are currently commercially available in a transvenous configuration For example, U.S. Patent No 5,534,022, the entire disclosure of which is herein inco ⁇ orated by reference, disclosures a composite electrode with a coil cardioversion/defibnllation electrode and sense electrodes.
  • FIG. 2 One such modification is illustrated in FIG. 2 where the two sensing electrodes 25 and 23 are non-circumferential sensing electrodes and one is located at the distal end, the other is located proximal thereto with the coil electrode located in between the two sensing electrodes.
  • the sense electrodes are spaced about 6 to about
  • FIG. 3 illustrates yet a further embodiment where the two sensing electrodes are located at the distal end to the composite electrode with the coil electrode located proximally thereto
  • the sensing of QRS waves can be earned out via sense electrodes on the canister housing or m combination with the cardioversion defibnllation coil electrode and/or the subcutaneous lead sensing electrode(s).
  • sensing could be performed via the one coil electrode located on the subcutaneous electrode and the active surface on the canister housing.
  • Another possibility would be to have only one sense electrode located on the subcutaneous electrode and the sensing would be performed by that one electrode and either the coil electrode on the subcutaneous electrode or by the active surface of the canister.
  • the use of sensing electrodes on the canister would eliminate the need for sensing electrodes on the subcutaneous electrode.
  • the subcutaneous electrode would be provided with at least one sense electrode, the canister with at least one sense electrode, and if multiple sense electrodes are used on either the subcutaneous electrode and/or the canister, that the best QRS wave detection combination will be identified when the S-ICD is implanted and this combination can be selected, activating the best sensing arrangement from all the existing sensing possibilities.
  • two sensing electrodes 26 and 28 are located on the electrically active surface 15 with electrical insulator nngs 30 placed between the sense electrodes and the active surface
  • the canister sense electrodes may also be placed on the electncally inactive surface of the canister. In the embodiment of FIG. 2, there are actually four sensing electrodes, two on the subcutaneous lead and two on the canister In the preferred embodiment, the ability to change which electrodes are used for sensing would be a programmable feature of the S-ICD to adapt to changes in the patient physiology and size (in the case of children) over time.
  • the programming could be done via the use of physical switches on the canister, or as presently preferred, via the use of a programming wand or via a wireless connection to program the circuitry within the canister.
  • the canister could be employed as either a cathode or an anode of the S-ICD cardioversion/defibnllation system. If the canister is the cathode, then the subcutaneous coil electrode would be the anode Likewise, if the canister is the anode, then the subcutaneous electrode would be the cathode
  • the active canister housing will provide energy and voltage intermediate to that available with ICDs and most AEDs
  • the typical maximum voltage necessary for ICDs using most biphasic waveforms is approximately 750 Volts with an associated maximum energy of approximately 40 Joules
  • the typical maximum voltage necessary for AEDs is approximately 2000-5000 Volts with an associated maximum energy of approximately 200-360 Joules depending upon the model and waveform used
  • the S- ICD and the US-ICD of the present invention uses maximum voltages in the range of about 50 to about 3500 Volts and is associated with energies of about 5 to about 350 Joules.
  • the capacitance of the devices can range from about 25 to about 200 micro farads
  • the S-ICD and US-ICD devices provide energy with a pulse width of approximately one millisecond to approximately 40 milliseconds
  • the devices can provide pacing current of approximately one milhamp to approximately
  • the sense circuitry contained within the canister is highly sensitive and specific for the presence or absence of life threatening ventncular arrhythmias.
  • the detection algorithm are programmable and the algorithm is focused on the detection of V-FIB and high rate V-TACH (>240 bpm).
  • V-FIB and high rate V-TACH >240 bpm.
  • the S-ICD of the present invention may rarely be used for an actual life-threatening event, the simplicity of design and implementation allows it to be employed in large populations of patients at modest risk with modest cost by non-cardiac electrophysiologists. Consequently, the S- ICD of the present invention focuses mostly on the detection and therapy of the most malignant rhythm disorders.
  • the upper rate range is programmable upward for use in children, known to have rapid supraventncular tachycardias and more rapid ventricular fibrillation. Energy levels also are programmable downward in order to allow treatment of neonates and infants.
  • FIG. 4 the optimal subcutaneous placement of the S-ICD of the present invention is illustrated
  • the actual location of the S-ICD is in a subcutaneous space that is developed during the implantation process.
  • the heart is not exposed dunng this process and the heart is schematically illustrated in the figures only for help in understanding where the canister and coil electrode are three dimensionally located in the left mid-clavicular line approximately at the level of the inframammary crease at approximately the 5th nb.
  • the lead 21 of the subcutaneous electrode traverses in a subcutaneous path around the thorax terminating with its distal electrode end at the posterior axillary line ideally just lateral to the left scapula This way the canister and subcutaneous cardioversion/defibnllation electrode provide a reasonably good pathway for current delivery to the majority of the ventncular myocardium.
  • FIG. 5 illustrates a different placement of the present invention.
  • the S-ICD canister with the active housing is located in the left postenor axillary line approximately lateral to the tip of the infenor portion of the scapula. This location is especially useful in children.
  • the lead 21 of the subcutaneous electrode traverses in a subcutaneous path around the thorax terminating with its distal electrode end at the anterior precordial region, ideally in the inframammary crease.
  • FIG. 6 illustrates the embodiment of FIG.
  • FIG. 7 schematically illustrates the method for implanting the S-ICD of the present invention.
  • An incision 31 is made in the left anterior axillary line approximately at the level of the cardiac apex This incision location is distinct from that chosen for S-ICD placement and is selected specifically to allow both canister location more medially in the left inframammary crease and lead positioning more posteriorly via the introducer set (described below) around to the left postenor axillary line lateral to the left scapula.
  • the incision can be anywhere on the thorax deemed reasonably by the implanting physician although in the preferred embodiment, the S-ICD of the present invention will be applied in this region
  • a subcutaneous pathway 33 is then created medially to the lnframmary crease for the canister and posteriorly to the left posterior axillary line lateral to the left scapula for the lead.
  • the S-ICD canister 11 is then placed subcutaneously at the location of the incision or medially at the subcutaneous region at the left lnframmary crease
  • the subcutaneous electrode 13 is placed with a specially designed curved introducer set 40 (see FIG. 8)
  • the introducer set comprises a curved trocar 42 and a stiff curved peel away sheath 44
  • the peel away sheath is curved to allow for placement around the rib cage of the patient in the subcutaneous space created by the trocar.
  • the sheath has to be stiff enough to allow for the placement of the electrodes without the sheath collapsing or bending
  • the sheath is made out of a biocompatible plastic material and is perforated along its axial length to allow for it to split apart into two sections
  • the trocar has a proximal handle 41 and a curved shaft 43
  • the distal end 45 of the trocar is tapered to allow for dissection of a subcutaneous path 33 in the patient.
  • the trocar is cannulated having a central Lumen 46 and terminating in an opening 48 at the distal end.
  • the curved peel away sheath 44 has a proximal pull tab 49 for breaking the sheath into two halves along its axial shaft 47.
  • the sheath is placed over a guidewire inserted through the trocar after the subcutaneous path has been created
  • the subcutaneous pathway is then developed until it terminates subcutaneously at a location that, if a straight line were drawn from the canister location to the path termination point the line would intersect a substantial portion of the left ventncular mass of the patient.
  • the guidewire is then removed leaving the peel away sheath.
  • the subcutaneous lead system is then inserted through the sheath until it is in the proper location. Once the subcutaneous lead system is in the proper location, the sheath is split in half using the pull tab 49 and removed. If more than one subcutaneous electrode is being used, a new curved peel away sheath can be used for each subcutaneous electrode.
  • the S-ICD will have prophylactic use in adults where chronic transvenous/epicardial ICD lead systems pose excessive risk or have already resulted in difficulty, such as sepsis or lead fractures. It is also contemplated that a major use of the S-ICD system of the present invention will be for prophylactic use in children who are at risk for having fatal arrhythmias, where chronic transvenous lead systems pose significant management problems Additionally, with the use of standard transvenous ICDs in children, problems develop during patient growth in that the lead system does not accommodate the growth. FIG.
  • FIG. 9 illustrates the placement of the S-ICD subcutaneous lead system such that he problem that growth presents to the lead system is overcome
  • the distal end of the subcutaneous electrode is placed in the same location as described above providing a good location for the coil cardioversion/defibnllation electrode 27 and the sensing electrodes 23 and 25.
  • the insulated lead 21 is no longer placed in a taught configuration. Instead, the lead is se ⁇ igmously placed with a specially designed introducer trocar and sheath such that it has numerous waves or bends.
  • a lead system with a distal tine or screw electrode anchoring system 52 can also be inco ⁇ orated into the distal tip of the lead to facilitate lead stability (see
  • FIG. 1 Other anchoring systems can also be used such as hooks, sutures, or the like.
  • FIGS 10 and 11 illustrate another embodiment of the present S-ICD invention.
  • the additional subcutaneous electrode 13' is essentially identical to the previously described electrode.
  • the cardioversion/defibnllation energy is delivered between the active surface of the canister and the two coil electrodes 27 and 27'.
  • provided in the canister is means for selecting the optimum sensing arrangement between the four sense electrodes
  • the two electrodes are subcutaneously placed on the same side of the heart. As illustrated in FIG. 6, one subcutaneous electrode 13 is placed infenorly and the other electrode 13' is placed superiorly. It is also contemplated with this dual subcutaneous electrode system that the canister and one subcutaneous electrode are the same polarity and the other subcutaneous electrode is the opposite polarity Turning now to FIGS. 12 and 13, further embodiments are illustrated where the canister 11 of the S-ICD of the present invention is shaped to be particularly useful in placing subcutaneously adjacent and parallel to a rib of a patient The canister is long, thin, and curved to conform to the shape of the patient's rib.
  • the canister has a diameter ranging from about 0.5 cm to about 2 cm without 1 cm being presently preferred.
  • the canister could have a rectangular or square cross sectional area as illustrated in FIG. 13 without falling outside of the scope of the present invention
  • the length of the canister can vary depending on the size of the patient's thorax. In an embodiment, the canister is about 5 cm to about 40 cm long.
  • the canister is curved to conform to the curvature of the ribs of the thorax. The radius of the curvature will vary depending on the size of the patient, with smaller radiuses for smaller patients and larger radiuses for larger patients.
  • the radius of the curvature can range from about 5 cm to about 35 cm depending on the size of the patient. Additionally, the radius of the curvature need not be uniform throughout the canister such that it can be shaped closer to the shape of the ribs.
  • the canister has an active surface, 15 that is located on the interior (concave) portion of the curvature and an inactive surface 16 that is located on the exterior (convex) portion of the curvature.
  • the leads of these embodiments which are not illustrated except for the attachment port 19 and the proximal end of the lead 21, can be any of the leads previously descnbed above, with the lead illustrated in FIG. 1 being presently preferred.
  • the circuitry of this canister is similar to the circuitry descnbed above. Additionally, the canister can optionally have at least one sense electrode located on either the active surface of the inactive surface and the circuitry within the canister can be programmable as described above to allow for the selection of the best sense electrodes. It is presently preferred that the canister have two sense electrodes 26 and
  • the electrodes are spaced from about 1 to about 10 cm apart with a spacing of about 3 cm being presently preferred.
  • the sense electrodes can be located on the active surface as described above. It is envisioned that the embodiment of FIG. 12 will be subcutaneously implanted adjacent and parallel to the left anterior 5th rib, either between the 4th and 5th nbs or between the 5th and 6th ribs. However other locations can be used
  • Another component of the S-ICD of the present invention is a cutaneous test electrode system designed to simulate the subcutaneous high voltage shock electrode system as well as the QRS cardiac rhythm detection system
  • This test electrode system is comprised of a cutaneous patch electrode of similar surface area and impedance to that of the S-ICD canister itself together with a cutaneous strip electrode comprising a defibnllation st ⁇ p as well as two button electrodes for sensing of the QRS.
  • Several cutaneous strip electrodes are available to allow for testing various bipole spacmgs to optimize signal detection comparable to the implantable system.
  • FIGS 14 to 18 depict particular US-ICD embodiments of the present invention
  • the various sensing, shocking and pacing circuitry, descnbed in detail above with respect to the S-ICD embodiments, may additionally be inco ⁇ orated into the following US-ICD embodiments.
  • S-ICD embodiment discussed above may be inco ⁇ orated, in whole or in part, into the US-ICD embodiments depicted in the following figures.
  • the US-ICD consists of a curved housing 1211 with a first and second end
  • the first end 1413 is thicker than the second end 1215.
  • This thicker area houses a battery supply, capacitor and operational circuitry for the US-ICD
  • the circuitry will be able to monitor cardiac rhythms for tachycardia and fibrillation, and if detected, will initiate charging the capacitor and then delivering cardioversion/defibnllation energy through the two cardioversion/defib ⁇ llating electrodes 1417 and 1219 located on the outer surface of the two ends of the housing
  • the circuitry can provide cardioversion/defibnllation energy in different types of waveforms
  • a 100 uF biphasic waveform is used of approximately 10-20 ms total duration and with the initial phase containing approximately 2/3 of the energy, however, any type of waveform can be utilized such as monophasic, biphasic, multiphasic or alternative waveforms as
  • the housing of the present invention can be made out of titanium alloy or other presently preferred ICD designs It is contemplated that the housing is also made out of biocompatible plastic materials that electronically insulate the electrodes from each other. However, it is contemplated that a malleable canister that can conform to the curvature of the patient's chest will be prefened. In this way the patient can have a comfortable canister that conforms to the unique shape of the patient's rib cage. Examples of conforming ICD housings are provided in U.S. Patent No 5,645,586, the entire disclosure of which is herein inco ⁇ orated by reference. In the preferred embodiment, the housing is curved in the shape of a 5 th rib of a person.
  • the housing will come in different incremental sizes to allow a good match between the size of the nb cage and the size of the US-ICD.
  • the length of the US-ICD will range from about 15 to about 50 cm. Because of the primary preventative role of the therapy and the need to reach energies over 40 Joules, a feature of the preferred embodiment is that the charge time for the therapy, intentionally be relatively long to allow capacitor charging within the limitations of device size.
  • the thick end of the housing is currently needed to allow for the placement of the battery supply, operational circuitry, and capacitors. It is contemplated that the thick end will be about 0 5 cm to about 2 cm wide with about 1 cm being presently preferred As microtechnology advances, the thickness of the housing will become smaller.
  • the two cardioversion/defibnllation electrodes on the housing are used for delivering the high voltage cardioversion/defibnllation energy across the heart.
  • the cardioversion/defibnllation electrodes are coil electrodes, however, other cardioversion/defibnllation electrodes could be used such as having electncally isolated active surfaces or platinum alloy electrodes.
  • the coil cardioversion/defibnllation electrodes are about 5-10 cm in length.
  • Located on the housing between the two cardioversion/defibnllation electrodes are two sense electrodes 1425 and 1427 The sense electrodes are spaced far enough apart to be able to have good QRS detection. This spacing can range from 1 to 10 cm with 4 cm being presently preferred.
  • the electrodes may or may not be circumferential with the preferred embodiment. Having the electrodes non-circumferential and positioned outward, toward the skin surface, is a means to minimize muscle artifact and enhance QRS signal quality.
  • the sensing electrodes are electrically isolated from the cardioversion/defibnllation electrode via insulating areas 1423. Analogous types of cardioversion/defibnllation electrodes are currently commercially available m a transvenous configuration. For example, U.S. Patent No.
  • Fig. 15 the optimal subcutaneous placement of the US-ICD of the present invention is illustrated.
  • the actual location of the US-ICD is in a subcutaneous space that is developed during the implantation process.
  • the heart is not exposed during this process and the heart is schematically illustrated in the figures only for help m understanding where the device and its various electrodes are three dimensionally located in the thorax of the patient.
  • the US-ICD is located between the left mid-clavicular line approximately at the level of the inframammary crease at approximately the 5 th nb and the posterior axillary line, ideally just lateral to the left scapula. This way the US-ICD provides a reasonably good pathway for current delivery to the majo ⁇ ty of the ventricular myocardium.
  • Fig. 16 schematically illustrates the method for implanting the US-ICD of the present invention.
  • An incision 1631 is made in the left anterior axillary line approximately at the level of the cardiac apex.
  • a subcutaneous pathway is then created that extends posteriorly to allow placement of the US-ICD.
  • the incision can be anywhere on the thorax deemed reasonable by the implanting physician although in the preferred embodiment, the US-ICD of the present invention will be applied in this region.
  • the subcutaneous pathway is created medially to the inframammary crease and extends posteriorly to the left posterior axillary line.
  • the pathway is developed with a specially designed curved introducer 1742 (see Fig. 17).
  • the trocar has a proximal handle 1641 and a curved shaft 1643.
  • the distal end 1745 of the trocar is tapered to allow for dissection of a subcutaneous path in the patient
  • the trocar is cannulated having a central lumen 1746 and terminating in an opening 1748 at the distal end.
  • Local anesthetic such as hdocaine can be delivered, if necessary, through the lumen or through a curved and elongated needle designed to anesthetize the path to be used for trocar insertion should general anesthesia not be employed.
  • the US-ICD is implanted in the subcutaneous space, the skin incision is closed using standard techniques.
  • the US-ICDs of the present invention vary in length and curvature.
  • the US-ICDs are provided m incremental sizes for subcutaneous implantation in different sized patients.
  • Fig. 18 a different embodiment is schematically illustrated in exploded view which provides different sized US-ICDs that are easier to manufacture.
  • the different sized US-ICDs will all have the same sized and shaped thick end 1413.
  • the thick end is hollow inside allowing for the insertion of a core operational member 1853.
  • the core member comprises a housing 1857 which contains the battery supply, capacitor and operational circuitry for the US-ICD.
  • the proximal end of the core member has a plurality of electronic plug connectors.
  • Plug connectors 1861 and 1863 are electronically connected to the sense electrodes via pressure fit connectors (not illustrated) inside the thick end which are standard in the art.
  • Plug connectors 1865 and 1867 are also electronically connected to the cardioverter/defib ⁇ llator electrodes via pressure fit connectors inside the thick end.
  • the distal end of the core member comprises an end cap 1855, and a ribbed fitting 1859 which creates a water-tight seal when the core member is inserted into opening 1851 of the thick end of the US-ICD.
  • the S-ICD and US-ICD in alternative embodiments, have the ability to detect and treat atnal rhythm disorders, including atnal fibrillation.
  • the S-ICD and US-ICD have two or more electrodes that provide a far-field view of cardiac electrical activity that includes the ability to record the P-wave of the electrocardiogram as well as the QRS.
  • the ventricular detection rate could be monitored for stability of the R-R coupling interval
  • at ⁇ al fibrillation can be recognized by providing a near constant irregularly irregular coupling interval on a beat-by-beat basis.
  • a R-R interval plot during AF appears "cloudlike" in appearance when several hundred or thousands of R-R intervals are plotted over time when compared to sinus rhythm or other supravent ⁇ cular arrhythmias Moreover, a distinguishing feature compared to other rhythms that are irregularly irregular, is that the QRS mo ⁇ hology is similar on a beat-by-beat basis despite the irregularity in the R-R coupling interval This is a distinguishing feature of atnal fibrillation compared to ventricular fibrillation where the QRS mo ⁇ hology varies on a beat-by-beat basis
  • atnal fibrillation may be detected by seeking to compare the timing and amplitude relationship of the detected P-wave of the electrocardiogram to the detected QRS (R- wave) of the electrocardiogram Normal smus rhythm has a fixed relationship that can be placed into a template matching algorithm that can be used as a reference point should the relationship change
  • the arrhythmia can be treated by delivery of a synchronized shock using energy levels up to the maximum output of the device therapy for terminating atnal fibrillation or for other supraventncular arrhythmias
  • the S-ICD or US-ICD electrode system can be used to treat both atnal and ventricular arrhythmias not only with shock therapy but also with pacing therapy
  • Another embodiment would be to allow for different types of therapies (amplitude, waveform, capacitance, etc ) for atnal arrhythmias compared to ventncular arrhythmias
  • the core member of the different sized and shaped US-ICD will all be the same size and shape That way, during an implantation procedures, multiple sized US-ICDs can be available for implantation, each one without a core member Once the implantation procedure is being performed, then the correct sized US-ICD can be selected and the core member can be inserted into the US-ICD and then programmed as described above. Another advantage of this configuration is when the battery within the core member needs replacing it can be done without removing the entire US-ICD.
  • the subcutaneous electrode system especially the anterior thoracic electrode system, that will be dehvenng the ATP stimuli should result in as high as a current density as possible m order to activate the cardiac tissues. This can be facilitated by using a small electrode as close to the sternum as possible in the tissues overlying the nght ventricle, the cardiac chamber closest to the anterior subcutaneous space where the S-ICD of the present invention will lie.
  • Fig 19 is a graph that shows an embodiment of the example of a biphasic waveform for use in anti-tachycardia pacing applications in subcutaneous implantable cardioverter-defib ⁇ llators ("S-ICD") in an embodiment of the present invention. As shown in Fig. 19, the biphasic waveform is plotted as a function of current versus time.
  • S-ICD subcutaneous implantable cardioverter-defib ⁇ llators
  • the biphasic waveform 1902 comprises a positive portion 1904, a negative portion 1906 and a transition portion 1908. In an embodiment, both the positive portion 1904 and the negative portion 1906 are substantially rectangular m shape.
  • the positive portion 1904 of the biphasic waveform 1902 comprises an initial positive current 1910, a positive fixed current 1912 and a final positive current 1914.
  • the negative portion 1906 of the biphasic waveform 1902 comprises an initial negative current 1916, a negative fixed current 1918 and a final negative current 1920.
  • the polarities of the biphasic waveform 1902 can be reversed such that the negative portion 1906 precedes the positive portion 1904 in time.
  • the biphasic waveform 1902 is initially at zero current. Upon commencement of the anti-tachycardia pacing, a current of positive polarity is provided and the biphasic waveform 1902 rises to the initial positive current 1910. Next, the current of the biphasic waveform 1902 remains at a constant level along the positive fixed current 1912. The positive portion 1904 of the biphasic waveform 1902 is then truncated and a negative current is provided. The biphasic waveform 1902 then undergoes a relatively short transition portion 1908 where the current is approximately zero Next, the biphasic waveform 1902 is increased (in absolute value) in the opposite
  • the biphasic waveform 1902 After reaching its maximum negative current (in absolute value), the current of the biphasic waveform 1902 remains at a constant level along the negative fixed current 1918. After the negative portion 1906 of the biphasic waveform 1902 is truncated at the final negative current 1914, the biphasic waveform 1902 returns to zero.
  • the total amount of time that the biphasic waveform 1902 comprises is known as the "pulse width.”
  • the pulse width of the biphasic waveform can range from approximately 1 millisecond to approximately 40 milliseconds. The total amount of energy delivered is a function of the pulse width and the absolute value of the current.
  • the amplitude of the initial positive current 1910 can range from approximately one to approximately 250 milliamps.
  • the amplitude of the initial negative current 1916 can range from approximately one to approximately 250 milliamps.
  • the pulse width of the biphasic waveform 1902 can range from approximately 1 millisecond to approximately 40 milliseconds.
  • the implantable cardioverter-defibrillator employs biphasic anti-tachycardia pacing at rates of approximately 20 to approximately 120 stimuli/minute for severe bradycardia episodes although programming of higher pacing rates up to 120 stimuli/minute is also possible.
  • Fig. 20 is a graph that shows an embodiment of the example of a monophasic waveform for use in anti-tachycardia pacing applications in subcutaneous implantable cardioverter-defibrillators ("S-ICD") in an embodiment of the present invention. As shown in Fig. 20, the monophasic waveform is plotted as a function of current versus time.
  • S-ICD subcutaneous implantable cardioverter-defibrillators
  • the monophasic waveform 2002 comprises an initial positive current 2004, a positive fixed current 2006 and a final positive current 2008.
  • the monophasic waveform 2002 is substantially rectangular in shape.
  • the polarities of the monophasic waveform 2002 can be reversed such that the waveform 2002 is negative in polarity.
  • the monophasic waveform 2002 is initially at zero current. Upon commencement of the anti-tachycardia pacing, a current of positive polarity is provided and the monophasic waveform 2002 rises to the initial positive current 2004. Next, the current of the monophasic waveform 2002 remains at a constant level along the positive fixed current 1906 The monophasic waveform 2002 is then truncated.
  • the amplitude of the initial positive current 2004 can range from approximately one to approximately 250 milliamps.
  • the pulse width of the biphasic waveform 2002 can range from approximately 1 millisecond to approximately 40 milliseconds.
  • the implantable cardioverter-defibrillator employs anti-tachycardia pacing at rates of approximately 100 to approximately 350 stimuh/mmute for ventncular tachycardia episodes
  • up to 30 ATP stimuli for any single attempt could be allowed and as many as 15 ATP attempts could be allowed for any effort to terminate a single episode of VT
  • the device may be allowed to auto-select the method of ATP to be used based upon the device's and/or the physician's expenence with previous episodes of VT or with the patient's underlying cardiac condition.
  • the power supply continues to operate to maintain a sufficient voltage to deliver a constant current
  • the present invention can provide standard ATP at predetermined or preprogrammed rates for monomo ⁇ hic VT, the use of an S-ICD may also be employed for the treatment of other arrhythmias such as atria tachyarrhythmias.
  • the invention can provide ATP in response to a certain activity, respiration, pressure or oxygenation sensor as coupled to arrhythmia characteristics.
  • S-ICD and US-ICD devices and methods of the present invention may be embodied in other specific forms without departing from the teachings or essential charactenstics of the invention.
  • the descnbed embodiments are therefore to be considered m all respects as illustrative and not rest ⁇ ctive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore to be embraced therein.

Abstract

A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third rib and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the intrathorasic blood vessels and for providing anti-tachycardia pacing energy to the heart, comprising a capacitor subsystem for storing the anti-tachycardia pacing energy for delivery to the patient's heart; and a battery subsystem electrically coupled to the capacitor subsystem for providing the anti- tachycardia pacing energy to the capacitor subsystem.

Description

Current Waveforms for Anti-Tachycardia Pacing For A Subcutaneous Implantable
Cardioverter-Defibrillator
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is a contmuation-m-part of U.S. patent application entitled "SUBCUTANEOUS ONLY IMPLANTABLE CARDIOVERTER- DEFIBRILLATOR AND OPTIONAL PACER," having Serial No. 09/663,607, filed September 18, 2000, pending, and U.S. patent application entitled "UNITARY SUBCUTANEOUS ONLY IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR
AND OPTIONAL PACER," having Seπal No. 09/663,606, filed September 18, 2000, pending, of which both applications are assigned to the assignee of the present application, and the disclosures of both applications are hereby incorporated by reference In addition, the present application is filed concurrently herewith U S patent application entitled "MONOPHASIC WAVEFORM FOR ANTI-BRADYCARDIA PACING FOR A SUBCUTANEOUS IMPLANTABLE CARDIOVERTER- DEFIBRILLATOR," U S. patent application entitled "MONOPHASIC WAVEFORM FOR ANTI-TACHYCARDIA PACING FOR A SUBCUTANEOUS IMPLANTABLE CARDIOVERTER-DEFIBRILLATOR" and U.S. patent application entitled
"CURRENT WAVEFORMS FOR ANTI-BRADYCARDIA PACING FOR A SUBCUTANEOUS CARDIOVERTER DEFIBRILLATOR," the disclosures of which applications are hereby mcoφorated by reference.
FIELD OF THE INVENTION
The present invention relates to an apparatus and method for performing electrical cardioversion/defibπllation and optional pacing of the heart via a totally subcutaneous non-transvenous system.
BACKGROUND OF THE INVENTION
Defibπllation cardioversion is a technique employed to counter arrhythmic heart conditions including some tachycardias in the atria and/or ventricles. Typically, electrodes are employed to stimulate the heart with electrical impulses or shocks, of a magnitude substantially greater than pulses used in cardiac pacing. Shocks used for defibrillation therapy can comprise a bφhasic truncated exponential waveform. As for pacing, a constant current density is desired to reduce or eliminate variability due to the electrode/tissue interface
Defibrillation/cardioversion systems include body implantable electrodes that are connected to a hermetically sealed container housing the electronics, battery supply and capacitors. The entire system is referred to as implantable cardioverter/defibπllators (ICDs). The electrodes used in ICDs can be in the form of patches applied directly to epicardial tissue, or, more commonly, are on the distal regions of small cylindrical insulated catheters that typically enter the subclavian venous system, pass through the superior vena cava and, into one or more endocardial areas of the heart. Such electrode systems are called intravascular or transvenous electrodes. U.S. Pat. Nos. 4,603,705, 4,693,253, 4,944,300, 5,105,810, the disclosures of which are all mcoφorated herein by reference, disclose intravascular or transvenous electrodes, employed either alone, in combination with other intravascular or transvenous electrodes, or in combination with an epicardial patch or subcutaneous electrodes Compliant epicardial defibπllator electrodes are disclosed in U.S Pat. Nos 4,567,900 and 5,618,287, the disclosures of which are mcoφorated herein by reference. A sensing epicardial electrode configuration is disclosed in U.S. Pat No. 5,476,503, the disclosure of which is mcoφorated herein by reference. In addition to epicardial and transvenous electrodes, subcutaneous electrode systems have also been developed. For example, U.S. Patent Nos. 5,342,407 and 5,603,732, the disclosures of which are mcoφorated herein by reference, teach the use of a pulse monitor/generator surgically implanted into the abdomen and subcutaneous electrodes implanted in the thorax. This system is far more complicated to use than current ICD systems using transvenous lead systems together with an active can electrode and therefore it has no practical use. It has in fact never been used because of the surgical difficulty of applying such a device (3 incisions), the impractical abdominal location of the generator and the electπcally poor sensing and defibrillation aspects of such a system. Recent efforts to improve the efficiency of ICDs have led manufacturers to produce ICDs which are small enough to be implanted in the pectoral region. In addition, advances in circuit design have enabled the housing of the ICD to form a subcutaneous electrode. Some examples of ICDs in which the housing of the ICD serves as an optional additional electrode are descπbed in U.S. Pat. Nos. 5,133,353, 5,261,400, 5,620,477, and 5,658,321 the disclosures of which are incoφorated herein by reference
ICDs are now an established therapy for the management of life threatening cardiac rhythm disorders, primarily ventricular fibrillation (V-Fib). ICDs are very effective at treating V-Fib, but are therapies that still require significant surgery.
As ICD therapy becomes more prophylactic in nature and used in progressively less ill individuals, especially children at πsk of cardiac arrest, the requirement of ICD therapy to use intravenous catheters and transvenous leads is an impediment to very long term management as most individuals will begin to develop complications related to lead system malfunction sometime in the 5-10 year time frame, often earlier In addition, chronic transvenous lead systems, their reimplantation and removals, can damage major cardiovascular venous systems and the tπcuspid valve, as well as result in life threatening perforations of the great vessels and heart. Consequently, use of transvenous lead systems, despite their many advantages, are not without their chronic patient management limitations m those with life expectancies of >5 years. The problem of lead complications is even greater in children where body growth can substantially alter transvenous lead function and lead to additional cardiovascular problems and revisions. Moreover, transvenous ICD systems also increase cost and require specialized mterventional rooms and equipment as well as special skill for insertion. These systems are typically implanted by cardiac electrophysiologists who have had a great deal of extra training.
In addition to the background related to ICD therapy, the present invention requires a brief understanding of a related therapy, the automatic external defibπllator (AED). AEDs employ the use of cutaneous patch electrodes, rather than implantable lead systems, to effect defibrillation under the direction of a bystander user who treats the patient suffeπng from V-Fib with a portable device containing the necessary electronics and power supply that allows defibrillation. AEDs can be nearly as effective as an ICD for defibπllation if applied to the victim of ventricular fibrillation promptly, i.e., within 2 to 3 minutes of the onset of the ventricular fibrillation AED therapy has great appeal as a tool for diminishing the πsk of death m public venues such as in air flight. However, an AED must be used by another individual, not the person suffenng from the potential fatal rhythm. It is more of a public health tool than a patient-specific tool like an ICD. Because >75% of cardiac arrests occur in the home, and over half occur in the bedroom, patients at πsk of cardiac arrest are often alone or asleep and can not be helped in time with an AED Moreover, its success depends to a reasonable degree on an acceptable level of skill and calm by the bystander user
What is needed therefore, especially for children and for prophylactic long term use for those at risk of cardiac arrest, is a combination of the two forms of therapy which would provide prompt and near-certain defibπllation, like an ICD, but without the long-term adverse sequelae of a transvenous lead system while simultaneously using most of the simpler and lower cost technology of an AED What is also needed is a cardioverter/defibπllator that is of simple design and can be comfortably implanted in a patient for many years.
SUMMARY OF THE INVENTION A power supply for an implantable cardioverter-defibπllator for subcutaneous positioning between the third πb and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the mtrathorasic blood vessels and for providing anti-tachycardia pacing energy to the heart, comprising a capacitor subsystem for stoπng the anti-tachycardia pacing energy for delivery to the patient's heart, and a battery subsystem electπcally coupled to the capacitor subsystem for providing the anti- tachycardia pacing energy to the capacitor subsystem.
BRIEF DESCRIPTION OF THE DRAWINGS For a better understanding of the invention, reference is now made to the drawings where like numerals represent similar objects throughout the figures where:
FIG 1 is a schematic view of a Subcutaneous ICD (S-ICD) of the present invention,
FIG. 2 is a schematic view of an alternate embodiment of a subcutaneous electrode of the present invention;
FIG. 3 is a schematic view of an alternate embodiment of a subcutaneous electrode of the present invention; FIG. 4 is a schematic view of the S-ICD and lead of FIG. 1 subcutaneously implanted in the thorax of a patient;
FIG. 5 is a schematic view of the S-ICD and lead of FIG. 2 subcutaneously implanted in an alternate location within the thorax of a patient; FIG 6 is a schematic view of the S-ICD and lead of FIG. 3 subcutaneously implanted in the thorax of a patient,
FIG. 7 is a schematic view of the method of making a subcutaneous path from the preferred incision and housing implantation point to a termination point for locating a subcutaneous electrode of the present invention;
FIG 8 is a schematic view of an introducer set for performing the method of lead insertion of any of the described embodiments,
FIG. 9 is a schematic view of an alternative S-ICD of the present invention illustrating a lead subcutaneously and seφiginously implanted in the thorax of a patient for use particularly in children;
FIG. 10 is a schematic view of an alternate embodiment of an S-ICD of the present invention;
FIG. 11 is a schematic view of the S-ICD of FIG. 10 subcutaneously implanted in the thorax of a patient; FIG. 12 is a schematic view of yet a further embodiment where the canister of the S-ICD of the present invention is shaped to be particularly useful in placing subcutaneously adjacent and parallel to a nb of a patient;
FIG. 13 is a schematic of a different embodiment where the canister of the S- ICD of the present invention is shaped to be particularly useful in placing subcutaneously adjacent and parallel to a πb of a patient;
FIG. 14 is a schematic view of a Unitary Subcutaneous ICD (US-ICD) of the present invention;
FIG. 15 is a schematic view of the US-ICD subcutaneously implanted in the thorax of a patient; FIG 16 is a schematic view of the method of making a subcutaneous path from the preferred incision for implanting the US-ICD;
FIG. 17 is a schematic view of an introducer for performing the method of US- ICD implantation;
FIG. 18 is an exploded schematic view of an alternate embodiment of the present invention with a plug-m portion that contains operational circuitry and means for generating cardioversion/defibπllation shock waves,
Fig. 19 is a graph that shows an example of a biphasic waveform for use in anti-tachycardia pacing in an embodiment of the present invention; and Fig. 20 is a graph that shows an example of a monophonic waveform for use in anti-tachycardia pacing in an embodiment of the present invention.
DETAILED DESCRIPTION Turning now to FIG. 1, the S-ICD of the present invention is illustrated. The S- ICD consists of an electπcally active canister 11 and a subcutaneous electrode 13 attached to the canister. The canister has an electrically active surface 15 that is electrically insulated from the electrode connector block 17 and the canister housing 16 via insulating area 14. The canister can be similar to numerous electrically active canisters commercially available in that the canister will contain a battery supply, capacitor and operational circuitry. Alternatively, the canister can be thm and elongated to conform to the intercostal space. The circuitry will be able to monitor cardiac rhythms for tachycardia and fibnllation, and if detected, will initiate charging the capacitor and then delivering cardioversion /defibrillation energy through the active surface of the housing and to the subcutaneous electrode. Examples of such circuitry are described in U.S. Patent Nos. 4,693,253 and 5,105,810, the entire disclosures of which are herein incoφorated by reference. The canister circuitry can provide cardioversion/ defibrillation energy m different types of waveforms. In one embodiment, a 100 uF biphasic waveform is used of approximately 10-20 ms total duration and with the initial phase containing approximately 2/3 of the energy, however, any type of waveform can be utilized such as monophasic, biphasic, multiphasic or alternative waveforms as is known in the art. In addition to providing cardioversion/ defibrillation energy, the circuitry can also provide transthoracic cardiac pacing energy. The optional circuitry will be able to monitor the heart for bradycardia and/or tachycardia rhythms. Once a bradycardia or tachycardia rhythm is detected, the circuitry can then deliver appropriate pacing energy at appropriate intervals through the active surface and the subcutaneous electrode Pacing stimuli can be biphasic in one embodiment and similar in pulse amplitude to that used for conventional transthoracic pacing.
This same circuitry can also be used to deliver low amplitude shocks on the T- wave for induction of ventricular fibnllation for testing S-ICD performance in treating V-Fib as is described in U.S. Patent No. 5,129,392, the entire disclosure of which is hereby incoφorated by reference. Also the circuitry can be provided with rapid induction of ventricular fibrillation or ventricular tachycardia using rapid ventricular pacing. Another optional way for inducing ventπcular fibnllation would be to provide a continuous low voltage, I e., about 3 volts, across the heart duπng the entire cardiac cycle. Another optional aspect of the present invention is that the operational circuitry can detect the presence of atnal fibrillation as described in Olson, W. et al "Onset And Stability For Ventricular Tachyarrhythmia Detection in an Implantable Cardioverter and Defibnllator," Computers in Cardiology (1986) pp. 167-170. Detection can be provided via R-R Cycle length instability detection algorithms. Once atπal fibnllation has been detected, the operational circuitry will then provide QRS synchronized atnal defibπllation/cardioversion using the same shock energy and waveshape characteristics used for ventricular defibπllation/ cardioversion.
The sensing circuitry will utilize the electronic signals generated from the heart and will primarily detect QRS waves. In one embodiment, the circuitry will be programmed to detect only ventncular tachycardias or fibrillations. The detection circuitry will utilize in its most direct form, a rate detection algorithm that triggers charging of the capacitor once the ventncular rate exceeds some predetermined level for a fixed period of time- for example, if the ventricular rate exceeds 240 bpm on average for more than 4 seconds. Once the capacitor is charged, a confirmatory rhythm check would ensure that the rate persists for at least another 1 second before discharge. Similarly, termination algorithms could be instituted that ensure that a rhythm less than 240 bpm persisting for at least 4 seconds before the capacitor charge is drained to an internal resistor. Detection, confirmation and termination algorithms as are described above and in the art can be modulated to increase sensitivity and specificity by examining QRS beat-to-beat uniformity, QRS signal frequency content, R-R interval stability data, and signal amplitude charactenstics all or part of which can be used to increase or decrease both sensitivity and specificity of S-ICD arrhythmia detection function. In addition to use of the sense circuitry for detection of V-Fib or V-Tach by examining the QRS waves, the sense circuitry can check for the presence or the absence of respiration. The respiration rate can be detected by monitoring the impedance across the thorax using subthreshold currents delivered across the active can and the high voltage subcutaneous lead electrode and monitoring the frequency in undulation in the waveform that results from the undulations of transthoracic impedance during the respiratory cycle If there is no undulation, then the patent is not respiring and this lack of respiration can be used to confirm the QRS findings of cardiac arrest The same technique can be used to provide information about the respiratory rate or estimate cardiac output as described in U S. Patent Nos. 6,095,987, 5,423,326, 4,450,527, the entire disclosures of which are incoφorated herein by reference.
The canister of the present invention can be made out of titanium alloy or other presently preferred electrically active canister designs. However, it is contemplated that a malleable canister that can conform to the curvature of the patient's chest will be preferred. In this way the patient can have a comfortable canister that conforms to the shape of the patient's nb cage. Examples of conforming canisters are provided m U S. Patent No. 5,645,586, the entire disclosure of which is herein incoφorated by reference. Therefore, the canister can be made out of numerous materials such as medical grade plastics, metals, and alloys. In the preferred embodiment, the canister is smaller than 60 cc volume having a weight of less than 100 gms for long term wearabihty, especially in children The canister and the lead of the S-ICD can also use fractal or wnnkled surfaces to increase surface area to improve defibrillation capability. Because of the primary prevention role of the therapy and the likely need to reach energies over 40 Joules, a feature of one embodiment is that the charge time for the therapy, is intentionally left relatively long to allow capacitor charging within the limitations of device size. Examples of small ICD housings are disclosed in U S Patents Nos. 5,597,956 and 5,405,363, the entire disclosures of which are herein incoφorated by reference Different subcutaneous electrodes 13 of the present invention are illustrated in
FIGS. 1-3. Turning to FIG. 1, the lead 21 for the subcutaneous electrode is preferably composed of silicone or polyurethane insulation. The electrode is connected to the canister at its proximal end via connection port 19 which is located on an electrically insulated area 17 of the canister. The electrode illustrated is a composite electrode with three different electrodes attached to the lead. In the embodiment illustrated, an optional anchor segment 52 is attached at the most distal end of the subcutaneous electrode for anchoring the electrode into soft tissue such that the electrode does not dislodge after implantation.
The most distal electrode on the composite subcutaneous electrode is a coil electrode 27 that is used for delivering the high voltage cardioversion/ defibnllation energy across the heart. The coil cardioversion/defϊbπllation electrode is about 5-10 cm in length Proximal to the coil electrode are two sense electrodes, a first sense electrode
25 is located proximally to the coil electrode and a second sense electrode 23 is located proximally to the first sense electrode. The sense electrodes are spaced far enough apart to be able to have good QRS detection. This spacing can range from 1 to 10 cm with 4 cm being presently preferred. The electrodes may or may not be circumferential with the preferred embodiment. Having the electrodes non-circumferential and positioned outward, toward the skin surface, is a means to minimize muscle artifact and enhance QRS signal quality. The sensing electrodes are electrically isolated from the cardioversion defibnllation electrode via insulating areas 29. Similar types of cardioversion defibnllation electrodes are currently commercially available in a transvenous configuration For example, U.S. Patent No 5,534,022, the entire disclosure of which is herein incoφorated by reference, disclosures a composite electrode with a coil cardioversion/defibnllation electrode and sense electrodes.
Modifications to this arrangement is contemplated within the scope of the invention. One such modification is illustrated in FIG. 2 where the two sensing electrodes 25 and 23 are non-circumferential sensing electrodes and one is located at the distal end, the other is located proximal thereto with the coil electrode located in between the two sensing electrodes. In this embodiment the sense electrodes are spaced about 6 to about
12 cm apart depending on the length of the coil electrode used. FIG. 3 illustrates yet a further embodiment where the two sensing electrodes are located at the distal end to the composite electrode with the coil electrode located proximally thereto Other possibilities exist and are contemplated within the present invention. For example, having only one sensing electrode, either proximal or distal to the coil cardioversion/ defibnllation electrode with the coil serving as both a sensing electrode and a cardioversion/defibnllation electrode.
It is also contemplated within the scope of the invention that the sensing of QRS waves (and transthoracic impedance) can be earned out via sense electrodes on the canister housing or m combination with the cardioversion defibnllation coil electrode and/or the subcutaneous lead sensing electrode(s). In this way, sensing could be performed via the one coil electrode located on the subcutaneous electrode and the active surface on the canister housing. Another possibility would be to have only one sense electrode located on the subcutaneous electrode and the sensing would be performed by that one electrode and either the coil electrode on the subcutaneous electrode or by the active surface of the canister. The use of sensing electrodes on the canister would eliminate the need for sensing electrodes on the subcutaneous electrode.
It is also contemplated that the subcutaneous electrode would be provided with at least one sense electrode, the canister with at least one sense electrode, and if multiple sense electrodes are used on either the subcutaneous electrode and/or the canister, that the best QRS wave detection combination will be identified when the S-ICD is implanted and this combination can be selected, activating the best sensing arrangement from all the existing sensing possibilities. Turning again to FIG. 2, two sensing electrodes 26 and 28 are located on the electrically active surface 15 with electrical insulator nngs 30 placed between the sense electrodes and the active surface These canister sense electrodes could be switched off and electrically insulated during and shortly after defibnllation/ cardioversion shock delivery. The canister sense electrodes may also be placed on the electncally inactive surface of the canister. In the embodiment of FIG. 2, there are actually four sensing electrodes, two on the subcutaneous lead and two on the canister In the preferred embodiment, the ability to change which electrodes are used for sensing would be a programmable feature of the S-ICD to adapt to changes in the patient physiology and size (in the case of children) over time. The programming could be done via the use of physical switches on the canister, or as presently preferred, via the use of a programming wand or via a wireless connection to program the circuitry within the canister.
The canister could be employed as either a cathode or an anode of the S-ICD cardioversion/defibnllation system. If the canister is the cathode, then the subcutaneous coil electrode would be the anode Likewise, if the canister is the anode, then the subcutaneous electrode would be the cathode
The active canister housing will provide energy and voltage intermediate to that available with ICDs and most AEDs The typical maximum voltage necessary for ICDs using most biphasic waveforms is approximately 750 Volts with an associated maximum energy of approximately 40 Joules The typical maximum voltage necessary for AEDs is approximately 2000-5000 Volts with an associated maximum energy of approximately 200-360 Joules depending upon the model and waveform used The S- ICD and the US-ICD of the present invention uses maximum voltages in the range of about 50 to about 3500 Volts and is associated with energies of about 5 to about 350 Joules. The capacitance of the devices can range from about 25 to about 200 micro farads
In another embodiment, the S-ICD and US-ICD devices provide energy with a pulse width of approximately one millisecond to approximately 40 milliseconds The devices can provide pacing current of approximately one milhamp to approximately
250 milliamps. The sense circuitry contained within the canister is highly sensitive and specific for the presence or absence of life threatening ventncular arrhythmias. Features of the detection algorithm are programmable and the algorithm is focused on the detection of V-FIB and high rate V-TACH (>240 bpm). Although the S-ICD of the present invention may rarely be used for an actual life-threatening event, the simplicity of design and implementation allows it to be employed in large populations of patients at modest risk with modest cost by non-cardiac electrophysiologists. Consequently, the S- ICD of the present invention focuses mostly on the detection and therapy of the most malignant rhythm disorders. As part of the detection algorithm's applicability to children, the upper rate range is programmable upward for use in children, known to have rapid supraventncular tachycardias and more rapid ventricular fibrillation. Energy levels also are programmable downward in order to allow treatment of neonates and infants.
Turning now to FIG. 4, the optimal subcutaneous placement of the S-ICD of the present invention is illustrated As would be evidence to a person skilled in the art, the actual location of the S-ICD is in a subcutaneous space that is developed during the implantation process. The heart is not exposed dunng this process and the heart is schematically illustrated in the figures only for help in understanding where the canister and coil electrode are three dimensionally located in the left mid-clavicular line approximately at the level of the inframammary crease at approximately the 5th nb.
The lead 21 of the subcutaneous electrode traverses in a subcutaneous path around the thorax terminating with its distal electrode end at the posterior axillary line ideally just lateral to the left scapula This way the canister and subcutaneous cardioversion/defibnllation electrode provide a reasonably good pathway for current delivery to the majority of the ventncular myocardium.
FIG. 5 illustrates a different placement of the present invention. The S-ICD canister with the active housing is located in the left postenor axillary line approximately lateral to the tip of the infenor portion of the scapula. This location is especially useful in children. The lead 21 of the subcutaneous electrode traverses in a subcutaneous path around the thorax terminating with its distal electrode end at the anterior precordial region, ideally in the inframammary crease. FIG. 6 illustrates the embodiment of FIG. 1 subcutaneously implanted in the thorax with the proximal sense electrodes 23 and 25 located at approximately the left axillary line with the cardioversion/defibnllation electrode just lateral to the tip of the inferior portion of the scapula
FIG. 7 schematically illustrates the method for implanting the S-ICD of the present invention. An incision 31 is made in the left anterior axillary line approximately at the level of the cardiac apex This incision location is distinct from that chosen for S-ICD placement and is selected specifically to allow both canister location more medially in the left inframammary crease and lead positioning more posteriorly via the introducer set (described below) around to the left postenor axillary line lateral to the left scapula. That said, the incision can be anywhere on the thorax deemed reasonably by the implanting physician although in the preferred embodiment, the S-ICD of the present invention will be applied in this region A subcutaneous pathway 33 is then created medially to the lnframmary crease for the canister and posteriorly to the left posterior axillary line lateral to the left scapula for the lead.
The S-ICD canister 11 is then placed subcutaneously at the location of the incision or medially at the subcutaneous region at the left lnframmary crease The subcutaneous electrode 13 is placed with a specially designed curved introducer set 40 (see FIG. 8) The introducer set comprises a curved trocar 42 and a stiff curved peel away sheath 44 The peel away sheath is curved to allow for placement around the rib cage of the patient in the subcutaneous space created by the trocar. The sheath has to be stiff enough to allow for the placement of the electrodes without the sheath collapsing or bending Preferably the sheath is made out of a biocompatible plastic material and is perforated along its axial length to allow for it to split apart into two sections The trocar has a proximal handle 41 and a curved shaft 43 The distal end 45 of the trocar is tapered to allow for dissection of a subcutaneous path 33 in the patient. Preferably, the trocar is cannulated having a central Lumen 46 and terminating in an opening 48 at the distal end. Local anesthetic such as hdocaine can be delivered, if necessary, through the lumen or through a curved and elongated needle designed to anesthetize the path to be used for trocar insertion should general anesthesia not be employed The curved peel away sheath 44 has a proximal pull tab 49 for breaking the sheath into two halves along its axial shaft 47. The sheath is placed over a guidewire inserted through the trocar after the subcutaneous path has been created The subcutaneous pathway is then developed until it terminates subcutaneously at a location that, if a straight line were drawn from the canister location to the path termination point the line would intersect a substantial portion of the left ventncular mass of the patient. The guidewire is then removed leaving the peel away sheath. The subcutaneous lead system is then inserted through the sheath until it is in the proper location. Once the subcutaneous lead system is in the proper location, the sheath is split in half using the pull tab 49 and removed. If more than one subcutaneous electrode is being used, a new curved peel away sheath can be used for each subcutaneous electrode.
The S-ICD will have prophylactic use in adults where chronic transvenous/epicardial ICD lead systems pose excessive risk or have already resulted in difficulty, such as sepsis or lead fractures. It is also contemplated that a major use of the S-ICD system of the present invention will be for prophylactic use in children who are at risk for having fatal arrhythmias, where chronic transvenous lead systems pose significant management problems Additionally, with the use of standard transvenous ICDs in children, problems develop during patient growth in that the lead system does not accommodate the growth. FIG. 9 illustrates the placement of the S-ICD subcutaneous lead system such that he problem that growth presents to the lead system is overcome The distal end of the subcutaneous electrode is placed in the same location as described above providing a good location for the coil cardioversion/defibnllation electrode 27 and the sensing electrodes 23 and 25. The insulated lead 21 , however is no longer placed in a taught configuration. Instead, the lead is seφigmously placed with a specially designed introducer trocar and sheath such that it has numerous waves or bends. As the child grows, the waves or bends will straighten out lengthening the lead system while maintaining proper electrode placement Although it is expected that fibrous scarring especially around the defibnllation coil will help anchor it into position to maintain its posterior position during growth, a lead system with a distal tine or screw electrode anchoring system 52 can also be incoφorated into the distal tip of the lead to facilitate lead stability (see
FIG. 1) Other anchoring systems can also be used such as hooks, sutures, or the like.
FIGS 10 and 11 illustrate another embodiment of the present S-ICD invention. In this embodiment there are two subcutaneous electrodes 13 and 13' of opposite polarity to the canister. The additional subcutaneous electrode 13' is essentially identical to the previously described electrode. In this embodiment the cardioversion/defibnllation energy is delivered between the active surface of the canister and the two coil electrodes 27 and 27'. Additionally, provided in the canister is means for selecting the optimum sensing arrangement between the four sense electrodes
23, 23', 25, and 25'. The two electrodes are subcutaneously placed on the same side of the heart. As illustrated in FIG. 6, one subcutaneous electrode 13 is placed infenorly and the other electrode 13' is placed superiorly. It is also contemplated with this dual subcutaneous electrode system that the canister and one subcutaneous electrode are the same polarity and the other subcutaneous electrode is the opposite polarity Turning now to FIGS. 12 and 13, further embodiments are illustrated where the canister 11 of the S-ICD of the present invention is shaped to be particularly useful in placing subcutaneously adjacent and parallel to a rib of a patient The canister is long, thin, and curved to conform to the shape of the patient's rib. In the embodiment illustrated in FIG 12, the canister has a diameter ranging from about 0.5 cm to about 2 cm without 1 cm being presently preferred. Alternatively, instead of having a circular cross sectional area, the canister could have a rectangular or square cross sectional area as illustrated in FIG. 13 without falling outside of the scope of the present invention The length of the canister can vary depending on the size of the patient's thorax. In an embodiment, the canister is about 5 cm to about 40 cm long. The canister is curved to conform to the curvature of the ribs of the thorax. The radius of the curvature will vary depending on the size of the patient, with smaller radiuses for smaller patients and larger radiuses for larger patients. The radius of the curvature can range from about 5 cm to about 35 cm depending on the size of the patient. Additionally, the radius of the curvature need not be uniform throughout the canister such that it can be shaped closer to the shape of the ribs. The canister has an active surface, 15 that is located on the interior (concave) portion of the curvature and an inactive surface 16 that is located on the exterior (convex) portion of the curvature. The leads of these embodiments, which are not illustrated except for the attachment port 19 and the proximal end of the lead 21, can be any of the leads previously descnbed above, with the lead illustrated in FIG. 1 being presently preferred.
The circuitry of this canister is similar to the circuitry descnbed above. Additionally, the canister can optionally have at least one sense electrode located on either the active surface of the inactive surface and the circuitry within the canister can be programmable as described above to allow for the selection of the best sense electrodes. It is presently preferred that the canister have two sense electrodes 26 and
28 located on the inactive surface of the canisters as illustrated, where the electrodes are spaced from about 1 to about 10 cm apart with a spacing of about 3 cm being presently preferred. However, the sense electrodes can be located on the active surface as described above. It is envisioned that the embodiment of FIG. 12 will be subcutaneously implanted adjacent and parallel to the left anterior 5th rib, either between the 4th and 5th nbs or between the 5th and 6th ribs. However other locations can be used
Another component of the S-ICD of the present invention is a cutaneous test electrode system designed to simulate the subcutaneous high voltage shock electrode system as well as the QRS cardiac rhythm detection system This test electrode system is comprised of a cutaneous patch electrode of similar surface area and impedance to that of the S-ICD canister itself together with a cutaneous strip electrode comprising a defibnllation stπp as well as two button electrodes for sensing of the QRS. Several cutaneous strip electrodes are available to allow for testing various bipole spacmgs to optimize signal detection comparable to the implantable system.
Figures 14 to 18 depict particular US-ICD embodiments of the present invention The various sensing, shocking and pacing circuitry, descnbed in detail above with respect to the S-ICD embodiments, may additionally be incoφorated into the following US-ICD embodiments. Furthermore, particular aspects of any individual
S-ICD embodiment discussed above, may be incoφorated, in whole or in part, into the US-ICD embodiments depicted in the following figures.
Turning now to Fig. 14, the US-ICD of the present invention is illustrated. The US-ICD consists of a curved housing 1211 with a first and second end The first end 1413 is thicker than the second end 1215. This thicker area houses a battery supply, capacitor and operational circuitry for the US-ICD The circuitry will be able to monitor cardiac rhythms for tachycardia and fibrillation, and if detected, will initiate charging the capacitor and then delivering cardioversion/defibnllation energy through the two cardioversion/defibπllating electrodes 1417 and 1219 located on the outer surface of the two ends of the housing The circuitry can provide cardioversion/defibnllation energy in different types of waveforms In one embodiment, a 100 uF biphasic waveform is used of approximately 10-20 ms total duration and with the initial phase containing approximately 2/3 of the energy, however, any type of waveform can be utilized such as monophasic, biphasic, multiphasic or alternative waveforms as is known in the art.
The housing of the present invention can be made out of titanium alloy or other presently preferred ICD designs It is contemplated that the housing is also made out of biocompatible plastic materials that electronically insulate the electrodes from each other. However, it is contemplated that a malleable canister that can conform to the curvature of the patient's chest will be prefened. In this way the patient can have a comfortable canister that conforms to the unique shape of the patient's rib cage. Examples of conforming ICD housings are provided in U.S. Patent No 5,645,586, the entire disclosure of which is herein incoφorated by reference. In the preferred embodiment, the housing is curved in the shape of a 5 th rib of a person. Because there are many different sizes of people, the housing will come in different incremental sizes to allow a good match between the size of the nb cage and the size of the US-ICD. The length of the US-ICD will range from about 15 to about 50 cm. Because of the primary preventative role of the therapy and the need to reach energies over 40 Joules, a feature of the preferred embodiment is that the charge time for the therapy, intentionally be relatively long to allow capacitor charging within the limitations of device size.
The thick end of the housing is currently needed to allow for the placement of the battery supply, operational circuitry, and capacitors. It is contemplated that the thick end will be about 0 5 cm to about 2 cm wide with about 1 cm being presently preferred As microtechnology advances, the thickness of the housing will become smaller.
The two cardioversion/defibnllation electrodes on the housing are used for delivering the high voltage cardioversion/defibnllation energy across the heart. In the preferred embodiment, the cardioversion/defibnllation electrodes are coil electrodes, however, other cardioversion/defibnllation electrodes could be used such as having electncally isolated active surfaces or platinum alloy electrodes. The coil cardioversion/defibnllation electrodes are about 5-10 cm in length. Located on the housing between the two cardioversion/defibnllation electrodes are two sense electrodes 1425 and 1427 The sense electrodes are spaced far enough apart to be able to have good QRS detection. This spacing can range from 1 to 10 cm with 4 cm being presently preferred. The electrodes may or may not be circumferential with the preferred embodiment. Having the electrodes non-circumferential and positioned outward, toward the skin surface, is a means to minimize muscle artifact and enhance QRS signal quality. The sensing electrodes are electrically isolated from the cardioversion/defibnllation electrode via insulating areas 1423. Analogous types of cardioversion/defibnllation electrodes are currently commercially available m a transvenous configuration. For example, U.S. Patent No. 5,534,022, the entire disclosure of which is herein incoφorated by reference, discloses a composite electrode with a coil cardioversion/defibnllation electrode and sense electrodes Modifications to this arrangement is contemplated withm the scope of the invention One such modification is to have the sense electrodes at the two ends of the housing and have the cardioversion/defibnllation electrodes located in between the sense electrodes. Another modification is to have three or more sense electrodes spaced throughout the housing and allow for the selection of the two best sensing electrodes. If three or more sensing electrodes are used, then the ability to change which electrodes are used for sensing would be a programmable feature of the US-ICD to adapt to changes in the patient physiology and size over time. The programming could be done via the use of physical switches on the canister, or as presently preferred, via the use of a programming wand or via a wireless connection to program the circuitry within the canister.
Turning now to Fig. 15, the optimal subcutaneous placement of the US-ICD of the present invention is illustrated. As would be evident to a person skilled in the art, the actual location of the US-ICD is in a subcutaneous space that is developed during the implantation process. The heart is not exposed during this process and the heart is schematically illustrated in the figures only for help m understanding where the device and its various electrodes are three dimensionally located in the thorax of the patient. The US-ICD is located between the left mid-clavicular line approximately at the level of the inframammary crease at approximately the 5th nb and the posterior axillary line, ideally just lateral to the left scapula. This way the US-ICD provides a reasonably good pathway for current delivery to the majoπty of the ventricular myocardium.
Fig. 16 schematically illustrates the method for implanting the US-ICD of the present invention. An incision 1631 is made in the left anterior axillary line approximately at the level of the cardiac apex. A subcutaneous pathway is then created that extends posteriorly to allow placement of the US-ICD. The incision can be anywhere on the thorax deemed reasonable by the implanting physician although in the preferred embodiment, the US-ICD of the present invention will be applied in this region. The subcutaneous pathway is created medially to the inframammary crease and extends posteriorly to the left posterior axillary line. The pathway is developed with a specially designed curved introducer 1742 (see Fig. 17). The trocar has a proximal handle 1641 and a curved shaft 1643. The distal end 1745 of the trocar is tapered to allow for dissection of a subcutaneous path in the patient Preferably, the trocar is cannulated having a central lumen 1746 and terminating in an opening 1748 at the distal end. Local anesthetic such as hdocaine can be delivered, if necessary, through the lumen or through a curved and elongated needle designed to anesthetize the path to be used for trocar insertion should general anesthesia not be employed. Once the subcutaneous pathway is developed, the US-ICD is implanted in the subcutaneous space, the skin incision is closed using standard techniques.
As described previously, the US-ICDs of the present invention vary in length and curvature. The US-ICDs are provided m incremental sizes for subcutaneous implantation in different sized patients. Turning now to Fig. 18, a different embodiment is schematically illustrated in exploded view which provides different sized US-ICDs that are easier to manufacture. The different sized US-ICDs will all have the same sized and shaped thick end 1413. The thick end is hollow inside allowing for the insertion of a core operational member 1853. The core member comprises a housing 1857 which contains the battery supply, capacitor and operational circuitry for the US-ICD. The proximal end of the core member has a plurality of electronic plug connectors. Plug connectors 1861 and 1863 are electronically connected to the sense electrodes via pressure fit connectors (not illustrated) inside the thick end which are standard in the art. Plug connectors 1865 and 1867 are also electronically connected to the cardioverter/defibπllator electrodes via pressure fit connectors inside the thick end. The distal end of the core member comprises an end cap 1855, and a ribbed fitting 1859 which creates a water-tight seal when the core member is inserted into opening 1851 of the thick end of the US-ICD. The S-ICD and US-ICD, in alternative embodiments, have the ability to detect and treat atnal rhythm disorders, including atnal fibrillation. The S-ICD and US-ICD have two or more electrodes that provide a far-field view of cardiac electrical activity that includes the ability to record the P-wave of the electrocardiogram as well as the QRS. One can detect the onset and offset of atnal fibrillation by referencing to the P- wave recorded during normal sinus rhythm and monitoring for its change in rate, moφhology, amplitude and frequency content. For example, a well-defined P-wave that abruptly disappeared and was replaced by a low-amplitude, variable moφhology signal would be a strong indication of the absence of sinus rhythm and the onset of atnal fibrillation. In an alternative embodiment of a detection algorithm, the ventricular detection rate could be monitored for stability of the R-R coupling interval In the examination of the R-R interval sequence, atπal fibrillation can be recognized by providing a near constant irregularly irregular coupling interval on a beat-by-beat basis.
A R-R interval plot during AF appears "cloudlike" in appearance when several hundred or thousands of R-R intervals are plotted over time when compared to sinus rhythm or other supraventπcular arrhythmias Moreover, a distinguishing feature compared to other rhythms that are irregularly irregular, is that the QRS moφhology is similar on a beat-by-beat basis despite the irregularity in the R-R coupling interval This is a distinguishing feature of atnal fibrillation compared to ventricular fibrillation where the QRS moφhology varies on a beat-by-beat basis In yet another embodiment, atnal fibrillation may be detected by seeking to compare the timing and amplitude relationship of the detected P-wave of the electrocardiogram to the detected QRS (R- wave) of the electrocardiogram Normal smus rhythm has a fixed relationship that can be placed into a template matching algorithm that can be used as a reference point should the relationship change
In other aspects of the atπal fibnllation detection process, one may include alternative electrodes that may be brought to bear in the S-ICD or US-ICD systems either by placing them in the detection algorithm circuitry through a programming maneuver or by manually adding such additional electrode systems to the S-ICD or US- ICD at the time of implant or at the time of follow-up evaluation One may also use electrodes for the detection of atnal fibrillation that may or may not also be used for the detection of ventricular arrhythmias given the different anatomic locations of the atria and ventπcles with respect to the S-ICD or US-ICD housing and surgical implant sites
Once atπal fibrillation is detected, the arrhythmia can be treated by delivery of a synchronized shock using energy levels up to the maximum output of the device therapy for terminating atnal fibrillation or for other supraventncular arrhythmias The S-ICD or US-ICD electrode system can be used to treat both atnal and ventricular arrhythmias not only with shock therapy but also with pacing therapy In a further embodiment of the treatment of atnal fibrillation or other atnal arrhythmias, one may be able to use different electrode systems than what is used to treat ventricular arrhythmias Another embodiment, would be to allow for different types of therapies (amplitude, waveform, capacitance, etc ) for atnal arrhythmias compared to ventncular arrhythmias
The core member of the different sized and shaped US-ICD will all be the same size and shape That way, during an implantation procedures, multiple sized US-ICDs can be available for implantation, each one without a core member Once the implantation procedure is being performed, then the correct sized US-ICD can be selected and the core member can be inserted into the US-ICD and then programmed as described above. Another advantage of this configuration is when the battery within the core member needs replacing it can be done without removing the entire US-ICD.
To ensure adequate pacing capture of the heart through an S-ICD having a subcutaneous only lead system, pacing therapy needs to be considerably enhanced by using a biphasic rather than the conventional monophasic waveform for pacing. In addition, to further compensate for the lack of direct contact with the heart, the subcutaneous electrode system, especially the anterior thoracic electrode system, that will be dehvenng the ATP stimuli should result in as high as a current density as possible m order to activate the cardiac tissues. This can be facilitated by using a small electrode as close to the sternum as possible in the tissues overlying the nght ventricle, the cardiac chamber closest to the anterior subcutaneous space where the S-ICD of the present invention will lie.
Fig 19 is a graph that shows an embodiment of the example of a biphasic waveform for use in anti-tachycardia pacing applications in subcutaneous implantable cardioverter-defibπllators ("S-ICD") in an embodiment of the present invention. As shown in Fig. 19, the biphasic waveform is plotted as a function of current versus time.
In an embodiment, the biphasic waveform 1902 comprises a positive portion 1904, a negative portion 1906 and a transition portion 1908. In an embodiment, both the positive portion 1904 and the negative portion 1906 are substantially rectangular m shape. The positive portion 1904 of the biphasic waveform 1902 comprises an initial positive current 1910, a positive fixed current 1912 and a final positive current 1914. The negative portion 1906 of the biphasic waveform 1902 comprises an initial negative current 1916, a negative fixed current 1918 and a final negative current 1920. In an embodiment, the polarities of the biphasic waveform 1902 can be reversed such that the negative portion 1906 precedes the positive portion 1904 in time.
As shown in Fig. 19, the biphasic waveform 1902 is initially at zero current. Upon commencement of the anti-tachycardia pacing, a current of positive polarity is provided and the biphasic waveform 1902 rises to the initial positive current 1910. Next, the current of the biphasic waveform 1902 remains at a constant level along the positive fixed current 1912. The positive portion 1904 of the biphasic waveform 1902 is then truncated and a negative current is provided. The biphasic waveform 1902 then undergoes a relatively short transition portion 1908 where the current is approximately zero Next, the biphasic waveform 1902 is increased (in absolute value) in the opposite
(negative) polanty to the initial negative current 1916. After reaching its maximum negative current (in absolute value), the current of the biphasic waveform 1902 remains at a constant level along the negative fixed current 1918. After the negative portion 1906 of the biphasic waveform 1902 is truncated at the final negative current 1914, the biphasic waveform 1902 returns to zero. The total amount of time that the biphasic waveform 1902 comprises is known as the "pulse width." In an embodiment, the pulse width of the biphasic waveform can range from approximately 1 millisecond to approximately 40 milliseconds. The total amount of energy delivered is a function of the pulse width and the absolute value of the current. An example of one embodiment of the biphasic waveform 1902 will now be described. In this embodiment, the amplitude of the initial positive current 1910 can range from approximately one to approximately 250 milliamps. Similarly, the amplitude of the initial negative current 1916 can range from approximately one to approximately 250 milliamps. In the example, the pulse width of the biphasic waveform 1902 can range from approximately 1 millisecond to approximately 40 milliseconds. In addition, the implantable cardioverter-defibrillator employs biphasic anti-tachycardia pacing at rates of approximately 20 to approximately 120 stimuli/minute for severe bradycardia episodes although programming of higher pacing rates up to 120 stimuli/minute is also possible.
Fig. 20 is a graph that shows an embodiment of the example of a monophasic waveform for use in anti-tachycardia pacing applications in subcutaneous implantable cardioverter-defibrillators ("S-ICD") in an embodiment of the present invention. As shown in Fig. 20, the monophasic waveform is plotted as a function of current versus time.
In an embodiment, the monophasic waveform 2002 comprises an initial positive current 2004, a positive fixed current 2006 and a final positive current 2008. In an embodiment, the monophasic waveform 2002 is substantially rectangular in shape. In an embodiment, the polarities of the monophasic waveform 2002 can be reversed such that the waveform 2002 is negative in polarity.
As shown in Fig. 20, the monophasic waveform 2002 is initially at zero current. Upon commencement of the anti-tachycardia pacing, a current of positive polarity is provided and the monophasic waveform 2002 rises to the initial positive current 2004. Next, the current of the monophasic waveform 2002 remains at a constant level along the positive fixed current 1906 The monophasic waveform 2002 is then truncated.
An example of one embodiment of the monophasic waveform 2002 will now be described. In this embodiment, the amplitude of the initial positive current 2004 can range from approximately one to approximately 250 milliamps.
In an embodiment, the pulse width of the biphasic waveform 2002 can range from approximately 1 millisecond to approximately 40 milliseconds. In addition, the implantable cardioverter-defibrillator employs anti-tachycardia pacing at rates of approximately 100 to approximately 350 stimuh/mmute for ventncular tachycardia episodes In addition, up to 30 ATP stimuli for any single attempt could be allowed and as many as 15 ATP attempts could be allowed for any effort to terminate a single episode of VT One might also allow for different ATP methods to be employed for VTs of different rates or ECG charactenstics. Moreover, the device may be allowed to auto-select the method of ATP to be used based upon the device's and/or the physician's expenence with previous episodes of VT or with the patient's underlying cardiac condition. In order to maintain these rates, in one embodiment of the invention, the power supply continues to operate to maintain a sufficient voltage to deliver a constant current
Although it possible for the present invention to provide standard ATP at predetermined or preprogrammed rates for monomoφhic VT, the use of an S-ICD may also be employed for the treatment of other arrhythmias such as atria tachyarrhythmias. In another embodiment, the invention can provide ATP in response to a certain activity, respiration, pressure or oxygenation sensor as coupled to arrhythmia characteristics.
The S-ICD and US-ICD devices and methods of the present invention may be embodied in other specific forms without departing from the teachings or essential charactenstics of the invention. The descnbed embodiments are therefore to be considered m all respects as illustrative and not restπctive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore to be embraced therein.

Claims

What is claimed is:
1 . A power supply for an implantable cardioverter-defibrillator for subcutaneous positioning between the third nb and the twelfth rib and using a lead system that does not directly contact a patient's heart or reside in the mtrathorasic blood vessels and for providing anti-tachycardia pacing energy to the heart, the power supply comprising: a capacitor subsystem for storing the anti-tachycardia pacing energy for delivery to the patient's heart; and a battery subsystem electrically coupled to the capacitor subsystem for providing the anti -tachycardia pacing energy to the capacitor subsystem
2 . The power supply of claim 1 , wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately one milhamp to approximately 250 milliamps.
3 . The power supply of claim 2, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately one milhamp to approximately 50 milliamps.
4 . The power supply of claim 2, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 50 milliamps to approximately 100 milliamps.
5 . The power supply of claim 2, wherem the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 100 milliamps to approximately 150 milliamps.
6 . The power supply of claim 2, wherein the anti -tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 150 milliamps to approximately 200 milliamps.
7 . The power supply of claim 2, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 200 milliamps to approximately 250 milliamps
8 . The power supply of claim 1 , wherem the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 1 millisecond to approximately 40 milliseconds.
9 . The power supply of claim 8, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 1 millisecond to approximately 10 milliseconds.
10 . The power supply of claim 8, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 10 milliseconds to approximately 20 milliseconds
11 . The power supply of claim 8, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 20 milliseconds to approximately 30 milliseconds
12 . The power supply of claim 8, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 30 milliseconds to approximately 40 milliseconds
13 . The power supply of claim 1, wherem the anti-tachycardia pacing energy comprises a biphasic waveform further comprising a portion that is positive in polarity and a portion that is negative in polanty
14 . The power supply of claim 1, wherem the anti -tachycardia pacing energy comprises a biphasic waveform that is provided at a rate of approximately 100 to approximately 350 stimuli/minute.
15 . The power supply of claim 14, wherem the biphasic waveform is provided after a patient's heart rate is equal to or greater than approximately 100 beats/mmute.
16 . The power supply of claim 15, wherem the biphasic waveform is provided after a patient's heart rate is associated with a monomoφhic ECG pattern.
17 . The power supply of claim 1 , wherem the lead system comprises an electrode located proximate the sternum and anteπor portion of the patient's heart
18 . The power supply of claim 1, wherem the anti -tachycardia pacing energy comprises burst pacing.
19 . The power supply of claim 1 , wherem the anti-tachycardia pacing energy comprises ramp pacing.
20 . The power supply of claim 1 , wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately one milhamp to approximately 250 milliamps.
21 . The power supply of claim 20, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately one milhamp to approximately 50 milliamps.
22 . The power supply of claim 20, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 50 milliamps to approximately 100 milliamps
23 . The power supply of claim 20, wherem the anti-tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 100 milliamps to approximately 150 milliamps.
24 . The power supply of claim 20, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately
150 milliamps to approximately 200 milliamps.
25 . The power supply of claim 20, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 200 milliamps to approximately 250 milliamps.
26 . The power supply of claim 1 , wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 1 millisecond to approximately 40 milliseconds.
27 . The power supply of claim 26, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 1 millisecond to approximately 10 milliseconds.
28 . The power supply of claim 26, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 10 milliseconds to approximately 20 milliseconds.
29 . The power supply of claim 26, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 20 milliseconds to approximately 30 milliseconds.
30 . The power supply of claim 26, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 30 milliseconds to approximately 40 milliseconds.
31 . The power supply of claim 1 , wherem the anti-tachycardia pacing energy comprises a monophasic waveform that is either positive or negative in polarity.
32 . The power supply of claim 1 , wherein the anti-tachycardia pacing energy comprises a monophasic waveform that is provided at a rate of approximately 100 to approximately 350 stimuh/mmute.
33 . The power supply of claim 32, wherein the monophasic waveform is provided after a patient's heart rate is equal to or greater than approximately 100 beats/minute.
34 . The power supply of claim 33, wherein the monophasic waveform is provided after a patient's heart rate is associated with a monomoφhic ECG pattern.
35 . The power supply of claim 1 , wherein the lead system comprises an electrode located proximate the sternum and antenor portion of the patient's heart.
36 . The power supply of claim 1, wherein the anti -tachycardia pacing energy comprises burst pacing.
37 . The power supply of claim 1, wherem the anti -tachycardia pacing energy comprises ramp pacing.
38 . Current output system for an implantable cardioverter-defibnllator using a lead system that does not directly contact a patient's heart or reside in the mtrathorasic blood vessels and for providing anti-tachycardia pacing energy to the heart, the power supply comprising: an energy storage system for storing the anti-tachycardia pacing energy for delivery to the patient's heart; and an energy source system electncally coupled to the capacitor subsystem for providing the anti-tachycardia pacing energy to the capacitor subsystem.
39 . Current output system of claim 38, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately one milhamp to approximately 250 milliamps.
40 . Current output system of claim 39, wherein the anti -tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately one milhamp to approximately 50 milliamps.
41 . Current output system of claim 39, wherem the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 50 milliamps to approximately 100 milliamps.
42 . Current output system of claim 39, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 100 milliamps to approximately 150 milliamps.
43 . Current output system of claim 39, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 150 milliamps to approximately 200 milliamps.
44 . Current output system of claim 39, wherem the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 200 milliamps to approximately 250 milliamps.
45 . Current output system of claim 38, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 1 millisecond to approximately 40 milliseconds.
46 . Current output system of claim 45, wherem the anti -tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 1 millisecond to approximately 10 milliseconds.
47 . Current output system of claim 45, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 10 milliseconds to approximately 20 milliseconds.
48 . Current output system of claim 45, wherein the anti -tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 20 milliseconds to approximately 30 milliseconds.
49 . Current output system of claim 45, wherein the anti -tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 30 milliseconds to approximately 40 milliseconds.
50 . Current output system of claim 38, wherein the anti-tachycardia pacing energy comprises a biphasic waveform further comprising a portion that is positive polarity and a portion that is negative m polanty.
51 . Current output system of claim 38, wherein the anti -tachycardia pacing energy comprises a biphasic waveform that is provided at a rate of approximately 100 to approximately 350 stimuli/minute.
52 . Current output system of claim 51, wherein the biphasic waveform is provided after a patient's heart rate is equal to or greater than approximately 100 beats/minute.
53 . The current output system of claim 52, wherein the biphasic waveform is provided after a patient's heart rate is associated with a monomoφhic ECG pattern.
54 . The current output system of claim 38, wherein the lead system comprises an electrode located proximate the sternum and anteπor portion of the patient's heart.
55 . The current output system of claim 38, wherem the anti-tachycardia pacing energy comprises burst pacing.
56 . The current output system of claim 38, wherem the anti-tachycardia pacing energy comprises ramp pacing.
57 . Current output system of claim 38, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately one milhamp to approximately 250 milliamps.
58 . Current output system of claim 57, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately one milhamp to approximately 50 milliamps.
59 . Current output system of claim 57, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 50 milliamps to approximately 100 milliamps.
60 . Current output system of claim 57, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately
100 milliamps to approximately 150 milliamps.
61 . Current output system of claim 57, wherem the anti-tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 150 milliamps to approximately 200 milliamps.
62 . Cunent output system of claim 57, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 200 milliamps to approximately 250 milliamps.
63 . Current output system of claim 38, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 1 millisecond to approximately 40 milliseconds.
64 . Current output system of claim 63, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 1 millisecond to approximately 10 milliseconds.
65 . Current output system of claim 63, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 10 milliseconds to approximately 20 milliseconds.
66 . Current output system of claim 63, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 20 milliseconds to approximately 30 milliseconds.
67 . Current output system of claim 63, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately
30 milliseconds to approximately 40 milliseconds.
68 . Current output system of claim 38, wherein the anti-tachycardia pacing energy comprises a monophasic waveform further comprising a positive voltage portion.
69 . Current output system of claim 38, wherein the anti-tachycardia pacing energy comprises a monophasic waveform that is provided at a rate of approximately 100 to approximately 350 stimuli/minute.
70 . Current output system of claim 69, wherein the monophasic waveform is provided after a patient's heart rate is equal to or greater than approximately 100 beats/minute.
71 . The current output system of claim 70, wherein the monophasic waveform is provided after a patient's heart rate is associated with a monomoφhic ECG pattern.
72 . The current output system of claim 38, wherem the lead system comprises an electrode located proximate the sternum and antenor portion of the patient's heart.
73 . The current output system of claim 38, wherein the anti-tachycardia pacing energy comprises burst pacing.
74 . The current output system of claim 38, wherein the anti-tachycardia pacing energy comprises ramp pacing
75 . An implantable cardioverter-defibnllator for subcutaneous positioning between the third nb and the twelfth nb within a patient, the implantable cardioverter- defibnllator comprising: a housing having an electrically conductive surface on an outer surface of the housing; a lead assembly electncally coupled to the housing and having an electrode, wherem the lead assembly does not directly contact the patient's heart or reside in the mtrathorasic blood vessels; a capacitor subsystem located within the housing and electncally coupled to the electncally conductive surface and the electrode for storing anti-tachycardia pacing energy and for dehveπng the anti-tachycardia pacing energy to the patient's heart through the electncally conductive surface and the electrode; and a battery subsystem electrically coupled to the capacitor subsystem for providing the anti-tachycardia pacing energy to the capacitor subsystem.
76 . The implantable cardioverter-defibnllator of claim 75, wherem the anti- tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately one milhamp to approximately 250 milliamps.
77 . The implantable cardioverter-defibnllator of claim 76, wherem the anti- tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately one milhamp to approximately 50 milliamps.
78 . The implantable cardioverter-defibnllator of claim 76, wherein the anti- tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 50 milliamps to approximately 100 milliamps.
79 . The implantable cardioverter-defibnllator of claim 76, wherem the anti- tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 100 milliamps to approximately 150 milliamps.
80 . The implantable cardioverter-defibnllator of claim 76, wherem the anti- tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 150 milliamps to approximately 200 milliamps.
81 . The implantable cardioverter-defibnllator of claim 76, wherein the anti- tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 200 milliamps to approximately 250 milliamps.
82 . The implantable cardioverter-defibnllator of claim 76, wherein the anti- tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 1 millisecond to approximately 40 milliseconds.
83 . The implantable cardioverter-defibnllator of claim 82, wherem the anti- tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 1 millisecond to approximately 10 milliseconds.
84 . The implantable cardioverter-defibnllator of claim 82, wherein the anti- tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 10 milliseconds to approximately 20 milliseconds.
85 . The implantable cardioverter-defibnllator of claim 82, wherein the anti- tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 20 milliseconds to approximately 30 milliseconds.
86 . The implantable cardioverter-defibnllator of claim 82, wherem the anti- tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 30 milliseconds to approximately 40 milliseconds.
87 . The implantable cardioverter-defibnllator of claim 75, wherein the anti- tachycardia pacing energy comprises a biphasic waveform further comprising a portion that is positive in polarity and a portion that is negative in polarity
88 . The implantable cardioverter-defibnllator of claim 75, wherem the anti- tachycardia pacing energy comprises a biphasic waveform that is provided at a rate of approximately 100 to approximately 350 stimuli/minute.
89 . The implantable cardioverter-defibnllator of claim 88, wherem the biphasic waveform is provided after a patient's heart rate is equal to or greater than approximately 100 beats/minute.
90 . The implantable cardioverter-defibnllator of claim 89, wherein the monophasic waveform is provided after a patient's heart rate is associated with a monomoφhic ECG pattern.
91 . The implantable cardioverter-defibnllator of claim 75, wherem the lead system comprises an electrode located proximate the sternum and anterior portion of the patient's heart.
92 . The implantable cardioverter-defibnllator of claim 75, wherem the anti- tachycardia pacing energy comprises burst pacing.
93 . The implantable cardioverter-defibnllator of claim 75, wherein the anti- tachycardia pacing energy comprises ramp pacing
94 . The implantable cardioverter-defibnllator of claim 75, wherein the anti- tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately one milhamp to approximately 250 milliamps.
95 . The implantable cardioverter-defibnllator of claim 94, wherein the anti- tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately one milhamp to approximately 50 milliamps.
96 . The implantable cardioverter-defibnllator of claim 94, wherem the anti- tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 50 milliamps to approximately 100 milliamps.
97 . The implantable cardioverter-defibnllator of claim 94, wherein the anti- tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 100 milliamps to approximately 150 milliamps.
98 . The implantable cardioverter-defibnllator of claim 94, wherein the anti- tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 150 milliamps to approximately 200 milliamps.
99 . The implantable cardioverter-defibnllator of claim 94, wherein the anti- tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 200 milliamps to approximately 250 milliamps
100 . The implantable cardioverter-defibnllator of claim 75, wherein the anti- tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 1 millisecond to approximately 40 milliseconds.
101 . The implantable cardioverter-defibrillator of claim 100, wherem the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 1 millisecond to approximately 10 milliseconds.
102 . The implantable cardioverter-defibnllator of claim 100, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 10 milliseconds to approximately 20 milliseconds.
103 . The implantable cardioverter-defibnllator of claim 100, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 20 milliseconds to approximately 30 milliseconds.
104 . The implantable cardioverter-defibnllator of claim 100, wherem the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 30 milliseconds to approximately 40 milliseconds.
105 . The implantable cardioverter-defibnllator of claim 75, wherein the anti- tachycardia pacing energy comprises a monophasic waveform that is either positive or negative in polanty.
106 . The implantable cardioverter-defibnllator of claim 105, wherem the anti-tachycardia pacing energy comprises a monophasic waveform that is provided at a rate of approximately 100 to approximately 350 stimuli/minute.
107 . The implantable cardioverter-defibnllator of claim 106, wherein the monophasic waveform is provided after a patient's heart rate is equal to or greater than approximately 100 beats/minute.
108 . The implantable cardioverter-defibnllator of claim 107, wherem the monophasic waveform is provided after a patient's heart rate is associated with a monomoφhic ECG pattern.
109 . The implantable cardioverter-defibnllator of claim 75, wherein the lead system comprises an electrode located proximate the sternum and anterior portion of the patient's heart.
110 . The implantable cardioverter-defibnllator of claim 75, wherein the anti- tachycardia pacing energy comprises burst pacing.
111 . The implantable cardioverter-defibnllator of claim 75, wherein the anti- tachycardia pacing energy comprises ramp pacing.
112 . A method for supplying power for an implantable cardioverter- defibnllator for subcutaneous positioning between the third nb and the twelfth nb and using a lead system that does not directly contact a patient's heart or reside in the mtrathorasic blood vessels and for providing anti-tachycardia pacing energy to the heart, the method comprising: generating anti-tachycardia pacing energy; stonng the anti-tachycardia pacing energy; and delivering the anti-tachycardia pacing energy to the patient's heart.
113 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately one milhamp to approximately 250 milliamps.
114 . The method of claim 113, wherein the anti -tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately one milhamp to approximately 50 milliamps
115 . The method of claim 113, wherem the anti -tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 50 milliamps to approximately 100 milliamps.
116 . The method of claim 113, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 100 milliamps to approximately 150 milliamps.
117 . The method of claim 113, wherem the anti -tachycardia pacing energy composes a biphasic waveform having a peak current that is approximately 150 milliamps to approximately 200 milliamps.
118 . The method of claim 113, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a peak current that is approximately 200 milliamps to approximately 250 milliamps.
119 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 1 millisecond to approximately 40 milliseconds.
120 . The method of claim 119, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 1 millisecond to approximately 10 milliseconds.
121 . The method of claim 119, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 10 milliseconds to approximately 20 milliseconds.
122 . The method of claim 119, wherein the anti -tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 20 milliseconds to approximately 30 milliseconds.
123 . The method of claim 119, wherein the anti-tachycardia pacing energy comprises a biphasic waveform having a pulse width that is approximately 30 milliseconds to approximately 40 milliseconds.
124 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises a biphasic waveform further comprising a portion that is positive in polarity and a portion that is negative m polarity.
125 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises a biphasic waveform that is provided at a rate of approximately 100 to approximately 350 stimuli/minute.
126 . The method of claim 125, wherein the biphasic waveform is provided after a patient's heart rate is equal to or greater than approximately 100 beats/mmute.
127 . The method of claim 126, wherein the biphasic waveform is provided after a patient's heart rate is associated with a monomoφhic ECG pattern.
128 . The method of claim 112, wherein the lead system comprises an electrode located proximate the sternum and antenor portion of the patient's heart.
129 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises burst pacing
130 . The method of claim 112, wherem the anti-tachycardia pacing energy comprises ramp pacing.
131 . The method of claim 112, wherem the anti -tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately one milhamp to approximately 250 milliamps.
132 . The method of claim 131, wherem the anti-tachycardia pacing energy comprises a monophasic waveform having a peak cunent that is approximately one milhamp to approximately 50 milliamps.
133 . The method of claim 131, wherem the anti -tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 50 milliamps to approximately 100 milliamps.
134 . The method of claim 131, wherem the anti-tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 100 milliamps to approximately 150 milliamps.
135 . The method of claim 131, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a peak cunent that is approximately 150 milliamps to approximately 200 milliamps.
136 . The method of claim 131, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a peak current that is approximately 200 milliamps to approximately 250 milliamps.
137 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 1 millisecond to approximately 40 milliseconds.
138 . The method of claim 137, wherem the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 1 millisecond to approximately 10 milliseconds.
139 . The method of claim 137, wherein the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 10 milliseconds to approximately 20 milliseconds.
140 . The method of claim 137, wherem the anti-tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 20 milliseconds to approximately 30 milliseconds.
141 . The method of claim 137, wherein the anti -tachycardia pacing energy comprises a monophasic waveform having a pulse width that is approximately 30 milliseconds to approximately 40 milliseconds
142 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises a monophasic waveform that is either positive or negative in polarity.
143 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises a monophasic waveform that is provided at a rate of approximately 100 to approximately 350 stimuli/minute.
144 . The method of claim 143, wherein the monophasic waveform is provided after a patient's heart rate is equal or less than approximately 100 beats/minute.
145 . The method of claim 144, wherein the monophasic waveform is provided after a patient's heart rate is associated with a monomoφhic ECG pattern.
146 . The method of claim 112, wherein the lead system comprises an electrode located proximate the sternum and anterior portion of the patient's heart.
147 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises burst pacing.
148 . The method of claim 112, wherein the anti-tachycardia pacing energy comprises ramp pacing.
149 . The power supply of claim 1 , wherein the battery subsystem and the capacitor system provide a sufficient voltage to provide an anti-tachycardia pacing energy comprising an approximately constant current.
PCT/IB2002/004507 2001-11-05 2002-10-28 Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator WO2003039667A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/015,202 US6952610B2 (en) 2000-09-18 2001-11-05 Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter- defibrillator
US10/015,202 2001-11-05

Publications (1)

Publication Number Publication Date
WO2003039667A1 true WO2003039667A1 (en) 2003-05-15

Family

ID=21770073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/004507 WO2003039667A1 (en) 2001-11-05 2002-10-28 Current waveforms for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator

Country Status (2)

Country Link
US (3) US6952610B2 (en)
WO (1) WO2003039667A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260433B1 (en) 2004-09-08 2007-08-21 Pacesetter, Inc. Subcutaneous cardiac stimulation device providing anti-tachycardia pacing therapy and method
US7277755B1 (en) 2004-09-08 2007-10-02 Pacesetter, Inc. Subcutaneous cardiac stimulation device providing anti-tachycardia pacing therapy and method
US7386342B1 (en) 2004-09-08 2008-06-10 Pacesetter, Inc. Subcutaneous cardiac stimulation device providing anti-tachycardia pacing therapy and method
US9144683B2 (en) 2000-09-18 2015-09-29 Cameron Health, Inc. Post-shock treatment in a subcutaneous device

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020107544A1 (en) * 2000-09-18 2002-08-08 Cameron Health, Inc. Current waveform for anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US20020095184A1 (en) * 2000-09-18 2002-07-18 Bardy Gust H. Monophasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US6865417B2 (en) * 2001-11-05 2005-03-08 Cameron Health, Inc. H-bridge with sensing circuit
US6988003B2 (en) * 2000-09-18 2006-01-17 Cameron Health, Inc. Implantable cardioverter-defibrillator having two spaced apart shocking electrodes on housing
US6647292B1 (en) * 2000-09-18 2003-11-11 Cameron Health Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
US7149575B2 (en) * 2000-09-18 2006-12-12 Cameron Health, Inc. Subcutaneous cardiac stimulator device having an anteriorly positioned electrode
US7076296B2 (en) * 2000-09-18 2006-07-11 Cameron Health, Inc. Method of supplying energy to subcutaneous cardioverter-defibrillator and pacer
US20020035381A1 (en) 2000-09-18 2002-03-21 Cameron Health, Inc. Subcutaneous electrode with improved contact shape for transthoracic conduction
US7751885B2 (en) 2000-09-18 2010-07-06 Cameron Health, Inc. Bradycardia pacing in a subcutaneous device
US7069080B2 (en) 2000-09-18 2006-06-27 Cameron Health, Inc. Active housing and subcutaneous electrode cardioversion/defibrillating system
US7194302B2 (en) 2000-09-18 2007-03-20 Cameron Health, Inc. Subcutaneous cardiac stimulator with small contact surface electrodes
US6721597B1 (en) * 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US6754528B2 (en) * 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
JP2004513752A (en) 2000-11-22 2004-05-13 メドトロニック,インコーポレイテッド Apparatus for detecting and treating ventricular arrhythmias
US7321794B2 (en) * 2002-11-15 2008-01-22 Advanced Bionics Corporation Method and system for treating atrial fibrillation
US7069075B2 (en) * 2002-11-22 2006-06-27 Medtronic, Inc. Subcutaneous implantable cardioverter/defibrillator
US7189204B2 (en) 2002-12-04 2007-03-13 Cardiac Pacemakers, Inc. Sleep detection using an adjustable threshold
US7392081B2 (en) 2003-02-28 2008-06-24 Cardiac Pacemakers, Inc. Subcutaneous cardiac stimulator employing post-shock transthoracic asystole prevention pacing
US7047071B2 (en) 2003-04-11 2006-05-16 Cardiac Pacemakers, Inc. Patient stratification for implantable subcutaneous cardiac monitoring and therapy
US7529592B2 (en) * 2003-04-11 2009-05-05 Cardiac Pacemakers, Inc. Subcutaneous electrode and lead with temporary pharmacological agents
US7218966B2 (en) 2003-04-11 2007-05-15 Cardiac Pacemakers, Inc. Multi-parameter arrhythmia discrimination
US7979122B2 (en) 2003-04-11 2011-07-12 Cardiac Pacemakers, Inc. Implantable sudden cardiac death prevention device with reduced programmable feature set
US7302294B2 (en) 2003-04-11 2007-11-27 Cardiac Pacemakers, Inc. Subcutaneous cardiac sensing and stimulation system employing blood sensor
US7555335B2 (en) 2003-04-11 2009-06-30 Cardiac Pacemakers, Inc. Biopotential signal source separation using source impedances
US7865233B2 (en) 2003-04-11 2011-01-04 Cardiac Pacemakers, Inc. Subcutaneous cardiac signal discrimination employing non-electrophysiologic signal
US7349742B2 (en) * 2003-04-11 2008-03-25 Cardiac Pacemakers, Inc. Expandable fixation elements for subcutaneous electrodes
US7702399B2 (en) * 2003-04-11 2010-04-20 Cardiac Pacemakers, Inc. Subcutaneous electrode and lead with phoresis based pharmacological agent delivery
US20040204734A1 (en) * 2003-04-11 2004-10-14 Wagner Darrell Orvin Tunneling tool with subcutaneous transdermal illumination
US7499758B2 (en) * 2003-04-11 2009-03-03 Cardiac Pacemakers, Inc. Helical fixation elements for subcutaneous electrodes
US8116868B2 (en) 2003-04-11 2012-02-14 Cardiac Pacemakers, Inc. Implantable device with cardiac event audio playback
US20040220626A1 (en) * 2003-04-11 2004-11-04 Wagner Darrell Orvin Distributed subcutaneous defibrillation system
US7389138B2 (en) * 2003-04-11 2008-06-17 Cardiac Pacemakers, Inc. Electrode placement determination for subcutaneous cardiac monitoring and therapy
US7082336B2 (en) 2003-06-04 2006-07-25 Synecor, Llc Implantable intravascular device for defibrillation and/or pacing
US8239045B2 (en) 2003-06-04 2012-08-07 Synecor Llc Device and method for retaining a medical device within a vessel
WO2005000398A2 (en) 2003-06-04 2005-01-06 Synecor Intravascular electrophysiological system and methods
US7617007B2 (en) 2003-06-04 2009-11-10 Synecor Llc Method and apparatus for retaining medical implants within body vessels
US7887493B2 (en) 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US20050107838A1 (en) * 2003-09-18 2005-05-19 Lovett Eric G. Subcutaneous cardiac rhythm management with disordered breathing detection and treatment
US8606356B2 (en) 2003-09-18 2013-12-10 Cardiac Pacemakers, Inc. Autonomic arousal detection system and method
US8002553B2 (en) 2003-08-18 2011-08-23 Cardiac Pacemakers, Inc. Sleep quality data collection and evaluation
US7396333B2 (en) 2003-08-18 2008-07-08 Cardiac Pacemakers, Inc. Prediction of disordered breathing
US7787946B2 (en) 2003-08-18 2010-08-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
US20060247693A1 (en) 2005-04-28 2006-11-02 Yanting Dong Non-captured intrinsic discrimination in cardiac pacing response classification
US8521284B2 (en) 2003-12-12 2013-08-27 Cardiac Pacemakers, Inc. Cardiac response classification using multisite sensing and pacing
WO2005058415A2 (en) 2003-12-12 2005-06-30 Synecor, Llc Implantable medical device having pre-implant exoskeleton
US7774064B2 (en) 2003-12-12 2010-08-10 Cardiac Pacemakers, Inc. Cardiac response classification using retriggerable classification windows
US7706866B2 (en) 2004-06-24 2010-04-27 Cardiac Pacemakers, Inc. Automatic orientation determination for ECG measurements using multiple electrodes
US7805185B2 (en) 2005-05-09 2010-09-28 Cardiac Pacemakers, In. Posture monitoring using cardiac activation sequences
US7457664B2 (en) 2005-05-09 2008-11-25 Cardiac Pacemakers, Inc. Closed loop cardiac resynchronization therapy using cardiac activation sequence information
US7509170B2 (en) 2005-05-09 2009-03-24 Cardiac Pacemakers, Inc. Automatic capture verification using electrocardiograms sensed from multiple implanted electrodes
US7797036B2 (en) 2004-11-30 2010-09-14 Cardiac Pacemakers, Inc. Cardiac activation sequence monitoring for ischemia detection
US7890159B2 (en) 2004-09-30 2011-02-15 Cardiac Pacemakers, Inc. Cardiac activation sequence monitoring and tracking
US7917196B2 (en) 2005-05-09 2011-03-29 Cardiac Pacemakers, Inc. Arrhythmia discrimination using electrocardiograms sensed from multiple implanted electrodes
US7996072B2 (en) 2004-12-21 2011-08-09 Cardiac Pacemakers, Inc. Positionally adaptable implantable cardiac device
US7680534B2 (en) 2005-02-28 2010-03-16 Cardiac Pacemakers, Inc. Implantable cardiac device with dyspnea measurement
US7392086B2 (en) 2005-04-26 2008-06-24 Cardiac Pacemakers, Inc. Implantable cardiac device and method for reduced phrenic nerve stimulation
US8391990B2 (en) 2005-05-18 2013-03-05 Cardiac Pacemakers, Inc. Modular antitachyarrhythmia therapy system
US8116867B2 (en) 2005-08-04 2012-02-14 Cameron Health, Inc. Methods and devices for tachyarrhythmia sensing and high-pass filter bypass
US20070049975A1 (en) * 2005-09-01 2007-03-01 Cates Adam W Active can with dedicated defibrillation and sensing electrodes
US20070118180A1 (en) 2005-11-18 2007-05-24 Quan Ni Cardiac resynchronization therapy for improved hemodynamics based on disordered breathing detection
US7761158B2 (en) * 2005-12-20 2010-07-20 Cardiac Pacemakers, Inc. Detection of heart failure decompensation based on cumulative changes in sensor signals
US8255049B2 (en) 2006-05-08 2012-08-28 Cardiac Pacemakers, Inc. Method and device for providing anti-tachyarrhythmia therapy
US8200341B2 (en) 2007-02-07 2012-06-12 Cameron Health, Inc. Sensing vector selection in a cardiac stimulus device with postural assessment
US7783340B2 (en) 2007-01-16 2010-08-24 Cameron Health, Inc. Systems and methods for sensing vector selection in an implantable medical device using a polynomial approach
US20070282376A1 (en) 2006-06-06 2007-12-06 Shuros Allan C Method and apparatus for neural stimulation via the lymphatic system
US8527048B2 (en) 2006-06-29 2013-09-03 Cardiac Pacemakers, Inc. Local and non-local sensing for cardiac pacing
US8718793B2 (en) 2006-08-01 2014-05-06 Cameron Health, Inc. Electrode insertion tools, lead assemblies, kits and methods for placement of cardiac device electrodes
US7580741B2 (en) 2006-08-18 2009-08-25 Cardiac Pacemakers, Inc. Method and device for determination of arrhythmia rate zone thresholds using a probability function
US8712507B2 (en) 2006-09-14 2014-04-29 Cardiac Pacemakers, Inc. Systems and methods for arranging and labeling cardiac episodes
US8209013B2 (en) 2006-09-14 2012-06-26 Cardiac Pacemakers, Inc. Therapeutic electrical stimulation that avoids undesirable activation
US7877139B2 (en) 2006-09-22 2011-01-25 Cameron Health, Inc. Method and device for implantable cardiac stimulus device lead impedance measurement
US8014851B2 (en) 2006-09-26 2011-09-06 Cameron Health, Inc. Signal analysis in implantable cardiac treatment devices
US8983598B2 (en) * 2006-10-04 2015-03-17 Cardiac Pacemakers, Inc. System for neurally-mediated anti-arrhythmic therapy
US7941208B2 (en) 2006-11-29 2011-05-10 Cardiac Pacemakers, Inc. Therapy delivery for identified tachyarrhythmia episode types
US8265736B2 (en) 2007-08-07 2012-09-11 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
US9037239B2 (en) 2007-08-07 2015-05-19 Cardiac Pacemakers, Inc. Method and apparatus to perform electrode combination selection
EP2254661B1 (en) 2008-02-14 2015-10-07 Cardiac Pacemakers, Inc. Apparatus for phrenic stimulation detection
US8412325B2 (en) * 2008-04-08 2013-04-02 Cardiac Pacemakers, Inc. High-energy anti-tachycardia therapy
WO2010042364A2 (en) 2008-10-06 2010-04-15 Cardiac Pacemakers, Inc. Dynamic cardiac resynchronization therapy by tracking intrinsic conduction
US9849291B2 (en) 2011-06-09 2017-12-26 Cameron Health, Inc. Antitachycardia pacing pulse from a subcutaneous defibrillator
US9579065B2 (en) 2013-03-12 2017-02-28 Cameron Health Inc. Cardiac signal vector selection with monophasic and biphasic shape consideration
US10556117B2 (en) 2013-05-06 2020-02-11 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal pacing lead
US9717923B2 (en) 2013-05-06 2017-08-01 Medtronic, Inc. Implantable medical device system having implantable cardioverter-defibrillator (ICD) system and substernal leadless pacing device
US10532203B2 (en) * 2013-05-06 2020-01-14 Medtronic, Inc. Substernal electrical stimulation system
US10471267B2 (en) 2013-05-06 2019-11-12 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system including substernal lead
US9789319B2 (en) 2013-11-21 2017-10-17 Medtronic, Inc. Systems and methods for leadless cardiac resynchronization therapy
WO2015106015A1 (en) 2014-01-10 2015-07-16 Cardiac Pacemakers, Inc. Systems and methods for detecting cardiac arrhythmias
EP3308833B1 (en) 2014-01-10 2019-06-26 Cardiac Pacemakers, Inc. Methods and systems for improved communication between medical devices
US10154794B2 (en) 2014-04-25 2018-12-18 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) tachyarrhythmia detection modifications responsive to detected pacing
US10448855B2 (en) 2014-04-25 2019-10-22 Medtronic, Inc. Implantable medical device (IMD) sensing modifications responsive to detected pacing pulses
US10226197B2 (en) 2014-04-25 2019-03-12 Medtronic, Inc. Pace pulse detector for an implantable medical device
US20150306375A1 (en) * 2014-04-25 2015-10-29 Medtronic, Inc. Implantable extravascular electrical stimulation lead having improved sensing and pacing capability
US9669224B2 (en) 2014-05-06 2017-06-06 Medtronic, Inc. Triggered pacing system
US9492671B2 (en) 2014-05-06 2016-11-15 Medtronic, Inc. Acoustically triggered therapy delivery
EP3185952B1 (en) 2014-08-28 2018-07-25 Cardiac Pacemakers, Inc. Implantable cardiac rhythm system and an associated method for triggering a blanking period through a second device
US10743960B2 (en) 2014-09-04 2020-08-18 AtaCor Medical, Inc. Cardiac arrhythmia treatment devices and delivery
US10328268B2 (en) 2014-09-04 2019-06-25 AtaCor Medical, Inc. Cardiac pacing
US9636512B2 (en) 2014-11-05 2017-05-02 Medtronic, Inc. Implantable cardioverter-defibrillator (ICD) system having multiple common polarity extravascular defibrillation electrodes
US11097109B2 (en) 2014-11-24 2021-08-24 AtaCor Medical, Inc. Cardiac pacing sensing and control
CN106999085A (en) 2014-12-09 2017-08-01 美敦力公司 Implanted electrical lead outside blood vessel with wavy configuration
WO2016126613A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for treating cardiac arrhythmias
WO2016126968A1 (en) 2015-02-06 2016-08-11 Cardiac Pacemakers, Inc. Systems and methods for safe delivery of electrical stimulation therapy
US10046167B2 (en) 2015-02-09 2018-08-14 Cardiac Pacemakers, Inc. Implantable medical device with radiopaque ID tag
CN107530002B (en) 2015-03-04 2021-04-30 心脏起搏器股份公司 System and method for treating cardiac arrhythmias
US10050700B2 (en) 2015-03-18 2018-08-14 Cardiac Pacemakers, Inc. Communications in a medical device system with temporal optimization
CN107427222B (en) 2015-03-18 2021-02-09 心脏起搏器股份公司 Communication in a medical device system using link quality assessment
EP3337559B1 (en) 2015-08-20 2019-10-16 Cardiac Pacemakers, Inc. Systems and methods for communication between medical devices
CN108136186B (en) 2015-08-20 2021-09-17 心脏起搏器股份公司 System and method for communication between medical devices
US9968787B2 (en) 2015-08-27 2018-05-15 Cardiac Pacemakers, Inc. Spatial configuration of a motion sensor in an implantable medical device
US9956414B2 (en) 2015-08-27 2018-05-01 Cardiac Pacemakers, Inc. Temporal configuration of a motion sensor in an implantable medical device
WO2017040115A1 (en) 2015-08-28 2017-03-09 Cardiac Pacemakers, Inc. System for detecting tamponade
EP3341076B1 (en) 2015-08-28 2022-05-11 Cardiac Pacemakers, Inc. Systems and methods for behaviorally responsive signal detection and therapy delivery
US10226631B2 (en) 2015-08-28 2019-03-12 Cardiac Pacemakers, Inc. Systems and methods for infarct detection
WO2017044389A1 (en) 2015-09-11 2017-03-16 Cardiac Pacemakers, Inc. Arrhythmia detection and confirmation
EP3359251B1 (en) 2015-10-08 2019-08-07 Cardiac Pacemakers, Inc. Adjusting pacing rates in an implantable medical device
US10080891B2 (en) 2015-12-03 2018-09-25 Medtronic, Inc. Extra-cardiovascular cardiac pacing system
EP3383490B1 (en) 2015-12-03 2019-09-18 Medtronic Inc. Extra-cardiovascular pacing using high-voltage therapy circuitry of an implantable cardioverter defibrillator
EP3383488B1 (en) 2015-12-03 2023-10-25 Medtronic, Inc. Tachyarrhythmia induction by an extra-cardiovascular implantable cardioverter defibrillator
CN114288554A (en) 2015-12-03 2022-04-08 美敦力公司 Extravascular cardiac pacing system for delivery of composite pacing pulses
US10183170B2 (en) 2015-12-17 2019-01-22 Cardiac Pacemakers, Inc. Conducted communication in a medical device system
US10905886B2 (en) 2015-12-28 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device for deployment across the atrioventricular septum
WO2017127548A1 (en) 2016-01-19 2017-07-27 Cardiac Pacemakers, Inc. Devices for wirelessly recharging a rechargeable battery of an implantable medical device
EP3411113B1 (en) 2016-02-04 2019-11-27 Cardiac Pacemakers, Inc. Delivery system with force sensor for leadless cardiac device
US9731138B1 (en) 2016-02-17 2017-08-15 Medtronic, Inc. System and method for cardiac pacing
US11027132B2 (en) 2016-03-16 2021-06-08 Medtronic, Inc. Synchronization of anti-tachycardia pacing in an extra-cardiovascular implantable system
CN108883286B (en) 2016-03-31 2021-12-07 心脏起搏器股份公司 Implantable medical device with rechargeable battery
US9802055B2 (en) 2016-04-04 2017-10-31 Medtronic, Inc. Ultrasound powered pulse delivery device
US10328272B2 (en) 2016-05-10 2019-06-25 Cardiac Pacemakers, Inc. Retrievability for implantable medical devices
US10668294B2 (en) 2016-05-10 2020-06-02 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker configured for over the wire delivery
US10512784B2 (en) 2016-06-27 2019-12-24 Cardiac Pacemakers, Inc. Cardiac therapy system using subcutaneously sensed P-waves for resynchronization pacing management
US11207527B2 (en) 2016-07-06 2021-12-28 Cardiac Pacemakers, Inc. Method and system for determining an atrial contraction timing fiducial in a leadless cardiac pacemaker system
US10426962B2 (en) 2016-07-07 2019-10-01 Cardiac Pacemakers, Inc. Leadless pacemaker using pressure measurements for pacing capture verification
WO2018017226A1 (en) 2016-07-20 2018-01-25 Cardiac Pacemakers, Inc. System for utilizing an atrial contraction timing fiducial in a leadless cardiac pacemaker system
EP3500342B1 (en) 2016-08-19 2020-05-13 Cardiac Pacemakers, Inc. Trans-septal implantable medical device
CN109640809B (en) 2016-08-24 2021-08-17 心脏起搏器股份公司 Integrated multi-device cardiac resynchronization therapy using P-wave to pacing timing
WO2018039322A1 (en) 2016-08-24 2018-03-01 Cardiac Pacemakers, Inc. Cardiac resynchronization using fusion promotion for timing management
WO2018057626A1 (en) 2016-09-21 2018-03-29 Cardiac Pacemakers, Inc. Implantable cardiac monitor
US10758737B2 (en) 2016-09-21 2020-09-01 Cardiac Pacemakers, Inc. Using sensor data from an intracardially implanted medical device to influence operation of an extracardially implantable cardioverter
CN109803720B (en) 2016-09-21 2023-08-15 心脏起搏器股份公司 Leadless stimulation device having a housing containing its internal components and functioning as a terminal for a battery case and an internal battery
US10561330B2 (en) 2016-10-27 2020-02-18 Cardiac Pacemakers, Inc. Implantable medical device having a sense channel with performance adjustment
JP7038115B2 (en) 2016-10-27 2022-03-17 カーディアック ペースメイカーズ, インコーポレイテッド Implantable medical device with pressure sensor
US10463305B2 (en) 2016-10-27 2019-11-05 Cardiac Pacemakers, Inc. Multi-device cardiac resynchronization therapy with timing enhancements
US10434314B2 (en) 2016-10-27 2019-10-08 Cardiac Pacemakers, Inc. Use of a separate device in managing the pace pulse energy of a cardiac pacemaker
WO2018081225A1 (en) 2016-10-27 2018-05-03 Cardiac Pacemakers, Inc. Implantable medical device delivery system with integrated sensor
US10413733B2 (en) 2016-10-27 2019-09-17 Cardiac Pacemakers, Inc. Implantable medical device with gyroscope
US10434317B2 (en) 2016-10-31 2019-10-08 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
US10617874B2 (en) 2016-10-31 2020-04-14 Cardiac Pacemakers, Inc. Systems and methods for activity level pacing
WO2018089311A1 (en) 2016-11-08 2018-05-17 Cardiac Pacemakers, Inc Implantable medical device for atrial deployment
EP3538213B1 (en) 2016-11-09 2023-04-12 Cardiac Pacemakers, Inc. Systems and devices for setting cardiac pacing pulse parameters for a cardiac pacing device
US10881869B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Wireless re-charge of an implantable medical device
US10894163B2 (en) 2016-11-21 2021-01-19 Cardiac Pacemakers, Inc. LCP based predictive timing for cardiac resynchronization
US10881863B2 (en) 2016-11-21 2021-01-05 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with multimode communication
US11147979B2 (en) 2016-11-21 2021-10-19 Cardiac Pacemakers, Inc. Implantable medical device with a magnetically permeable housing and an inductive coil disposed about the housing
US10639486B2 (en) 2016-11-21 2020-05-05 Cardiac Pacemakers, Inc. Implantable medical device with recharge coil
US11207532B2 (en) 2017-01-04 2021-12-28 Cardiac Pacemakers, Inc. Dynamic sensing updates using postural input in a multiple device cardiac rhythm management system
US10737102B2 (en) 2017-01-26 2020-08-11 Cardiac Pacemakers, Inc. Leadless implantable device with detachable fixation
WO2018140623A1 (en) 2017-01-26 2018-08-02 Cardiac Pacemakers, Inc. Leadless device with overmolded components
EP3573706A1 (en) 2017-01-26 2019-12-04 Cardiac Pacemakers, Inc. Intra-body device communication with redundant message transmission
US11524169B2 (en) 2017-02-06 2022-12-13 Medtronic, Inc. Charge balanced cardiac pacing from high voltage circuitry of an extra-cardiovascular implantable cardioverter defibrillator system
US10821288B2 (en) 2017-04-03 2020-11-03 Cardiac Pacemakers, Inc. Cardiac pacemaker with pacing pulse energy adjustment based on sensed heart rate
US10905872B2 (en) 2017-04-03 2021-02-02 Cardiac Pacemakers, Inc. Implantable medical device with a movable electrode biased toward an extended position
US10918875B2 (en) 2017-08-18 2021-02-16 Cardiac Pacemakers, Inc. Implantable medical device with a flux concentrator and a receiving coil disposed about the flux concentrator
WO2019036600A1 (en) 2017-08-18 2019-02-21 Cardiac Pacemakers, Inc. Implantable medical device with pressure sensor
CN111107899B (en) 2017-09-20 2024-04-02 心脏起搏器股份公司 Implantable medical device with multiple modes of operation
US11185703B2 (en) 2017-11-07 2021-11-30 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker for bundle of his pacing
US11260216B2 (en) 2017-12-01 2022-03-01 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials during ventricular filling from a ventricularly implanted leadless cardiac pacemaker
WO2019108830A1 (en) 2017-12-01 2019-06-06 Cardiac Pacemakers, Inc. Leadless cardiac pacemaker with reversionary behavior
EP3717059A1 (en) 2017-12-01 2020-10-07 Cardiac Pacemakers, Inc. Methods and systems for detecting atrial contraction timing fiducials within a search window from a ventricularly implanted leadless cardiac pacemaker
EP3717063B1 (en) 2017-12-01 2023-12-27 Cardiac Pacemakers, Inc. Systems for detecting atrial contraction timing fiducials and determining a cardiac interval from a ventricularly implanted leadless cardiac pacemaker
CN111787876A (en) 2017-12-21 2020-10-16 加尔瓦尼生物电子有限公司 Systems and methods configured to insert an implant in an abdominal wall cavity
US10874861B2 (en) 2018-01-04 2020-12-29 Cardiac Pacemakers, Inc. Dual chamber pacing without beat-to-beat communication
US11529523B2 (en) 2018-01-04 2022-12-20 Cardiac Pacemakers, Inc. Handheld bridge device for providing a communication bridge between an implanted medical device and a smartphone
EP3768369A1 (en) 2018-03-23 2021-01-27 Medtronic, Inc. Av synchronous vfa cardiac therapy
WO2019183514A1 (en) 2018-03-23 2019-09-26 Medtronic, Inc. Vfa cardiac therapy for tachycardia
CN111902187A (en) 2018-03-23 2020-11-06 美敦力公司 VFA cardiac resynchronization therapy
US10596383B2 (en) 2018-04-03 2020-03-24 Medtronic, Inc. Feature based sensing for leadless pacing therapy
EP3856331A1 (en) 2018-09-26 2021-08-04 Medtronic, Inc. Capture in ventricle-from-atrium cardiac therapy
US11679265B2 (en) 2019-02-14 2023-06-20 Medtronic, Inc. Lead-in-lead systems and methods for cardiac therapy
US11697025B2 (en) 2019-03-29 2023-07-11 Medtronic, Inc. Cardiac conduction system capture
US11213676B2 (en) 2019-04-01 2022-01-04 Medtronic, Inc. Delivery systems for VfA cardiac therapy
US11712188B2 (en) 2019-05-07 2023-08-01 Medtronic, Inc. Posterior left bundle branch engagement
US11305127B2 (en) 2019-08-26 2022-04-19 Medtronic Inc. VfA delivery and implant region detection
US11813466B2 (en) 2020-01-27 2023-11-14 Medtronic, Inc. Atrioventricular nodal stimulation
US11911168B2 (en) 2020-04-03 2024-02-27 Medtronic, Inc. Cardiac conduction system therapy benefit determination
US11813464B2 (en) 2020-07-31 2023-11-14 Medtronic, Inc. Cardiac conduction system evaluation

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567900A (en) 1984-06-04 1986-02-04 Moore J Paul Internal deployable defibrillator electrode
US4603705A (en) 1984-05-04 1986-08-05 Mieczyslaw Mirowski Intravascular multiple electrode unitary catheter
US4693253A (en) 1981-03-23 1987-09-15 Medtronic, Inc. Automatic implantable defibrillator and pacer
US4944300A (en) 1987-04-28 1990-07-31 Sanjeev Saksena Method for high energy defibrillation of ventricular fibrillation in humans without a thoracotomy
US5105810A (en) 1990-07-24 1992-04-21 Telectronics Pacing Systems, Inc. Implantable automatic and haemodynamically responsive cardioverting/defibrillating pacemaker with means for minimizing bradycardia support pacing voltages
US5184616A (en) * 1991-10-21 1993-02-09 Telectronics Pacing Systems, Inc. Apparatus and method for generation of varying waveforms in arrhythmia control system
WO1993019809A1 (en) * 1992-04-06 1993-10-14 Angemed, Inc. System for treatment of ventricular tachycardia using a far-field pulse series
US5342407A (en) 1990-06-06 1994-08-30 Cardiac Pacemakers, Inc. Body implantable defibrillation system
US5413591A (en) * 1992-02-26 1995-05-09 Angeion Corporation Current truncated waveform defibrillator
US5476503A (en) 1994-03-28 1995-12-19 Pacesetter, Inc. Sense array intelligent patch lead for an implantable defibrillator and method
US5618287A (en) 1994-01-28 1997-04-08 Thomas J. Fogarty Methods of surgically implanting a defibrillator electrode within a patient
US5713926A (en) * 1990-04-25 1998-02-03 Cardiac Pacemakers, Inc. Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
WO1999003534A1 (en) * 1997-07-17 1999-01-28 Cpr Medical, Inc. Defibrillator/pacemaker
WO2000041766A1 (en) * 1999-01-14 2000-07-20 The Mower Family Chf Treatment Irrevocable Trust Antitachycardial pacing

Family Cites Families (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3593718A (en) * 1967-07-13 1971-07-20 Biocybernetics Inc Physiologically controlled cardiac pacer
US3710374A (en) 1970-03-16 1973-01-09 Wester Instr Inc Dual-slope and analog-to-digital converter wherein two analog input signals are selectively integrated with respect to time
US3653387A (en) 1970-05-08 1972-04-04 Cardiac Electronics Inc Protector circuit for cardiac apparatus
US3713449A (en) * 1970-08-31 1973-01-30 P Mulier Cardiac pacer with externally controllable variable width output pulse
US3707974A (en) * 1970-12-11 1973-01-02 W Raddi Body organ stimulator with voltage converter
US3911925A (en) 1974-05-23 1975-10-14 Jr Joe B Tillery Ear trimming forceps
US4157720A (en) 1977-09-16 1979-06-12 Greatbatch W Cardiac pacemaker
US4248237A (en) 1978-03-07 1981-02-03 Needle Industries Limited Cardiac pacemakers
US4223678A (en) 1978-05-03 1980-09-23 Mieczyslaw Mirowski Arrhythmia recorder for use with an implantable defibrillator
US4191942A (en) 1978-06-08 1980-03-04 National Semiconductor Corporation Single slope A/D converter with sample and hold
US4291707A (en) 1979-04-30 1981-09-29 Mieczyslaw Mirowski Implantable cardiac defibrillating electrode
US4314095A (en) 1979-04-30 1982-02-02 Mieczyslaw Mirowski Device and method for making electrical contact
US4290430A (en) * 1980-06-05 1981-09-22 Intermedics, Inc. Pacer analyzer
US4407288B1 (en) 1981-02-18 2000-09-19 Mieczyslaw Mirowski Implantable heart stimulator and stimulation method
US4402322A (en) 1981-03-25 1983-09-06 Medtronic, Inc. Pacer output circuit
US4406286A (en) * 1981-04-09 1983-09-27 Medtronic, Inc. Fast recharge output circuit
US4765341A (en) 1981-06-22 1988-08-23 Mieczyslaw Mirowski Cardiac electrode with attachment fin
US4424818A (en) 1982-02-18 1984-01-10 Medtronic, Inc. Electrical lead and insertion tool
EP0095727A1 (en) 1982-06-01 1983-12-07 Purdue Research Foundation Method and apparatus for inserting a defibrillator electrode and defibrillator electrode
US4450527A (en) 1982-06-29 1984-05-22 Bomed Medical Mfg. Ltd. Noninvasive continuous cardiac output monitor
DE3300672A1 (en) 1983-01-11 1984-07-12 Siemens AG, 1000 Berlin und 8000 München HEART PACEMAKER SYSTEM
US4543956A (en) * 1984-05-24 1985-10-01 Cordis Corporation Biphasic cardiac pacer
US4800883A (en) 1986-04-02 1989-01-31 Intermedics, Inc. Apparatus for generating multiphasic defibrillation pulse waveform
US4830005A (en) 1987-07-23 1989-05-16 Siemens-Pacesetter, Inc. Disposable in-package load test element for pacemakers
EP0316616B1 (en) 1987-11-19 1995-03-29 Siemens Aktiengesellschaft Analog-digital converter
US4878497A (en) * 1988-03-25 1989-11-07 Telectronics N.V. Pacemaker with improved automatic output regulation
FR2632865A1 (en) 1988-06-15 1989-12-22 Atesys Sa HIGH PERFORMANCE DEFIBRILLATOR WITH SEVERAL ELECTRODES OUTSIDE THE HEART
US5509923A (en) 1989-08-16 1996-04-23 Raychem Corporation Device for dissecting, grasping, or cutting an object
DE4013048B4 (en) * 1990-04-24 2004-07-08 St. Jude Medical Ab Arrangement for tissue stimulation
US5133353A (en) 1990-04-25 1992-07-28 Cardiac Pacemakers, Inc. Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5230337A (en) 1990-06-06 1993-07-27 Cardiac Pacemakers, Inc. Process for implanting subcutaneous defibrillation electrodes
US5109842A (en) 1990-09-24 1992-05-05 Siemens Pacesetter, Inc. Implantable tachyarrhythmia control system having a patch electrode with an integrated cardiac activity system
US5170784A (en) 1990-11-27 1992-12-15 Ceon Ramon Leadless magnetic cardiac pacemaker
US5531765A (en) 1990-12-18 1996-07-02 Ventritex, Inc. Method and apparatus for producing configurable biphasic defibrillation waveforms
US5129392A (en) 1990-12-20 1992-07-14 Medtronic, Inc. Apparatus for automatically inducing fibrillation
US5192392A (en) * 1991-02-28 1993-03-09 The Bottling Room, Inc. Container labeler
US5405363A (en) 1991-03-15 1995-04-11 Angelon Corporation Implantable cardioverter defibrillator having a smaller displacement volume
DE4110402A1 (en) * 1991-03-28 1992-10-01 Siemens Ag DEFIBRILLATOR / CONVERTER
AU654552B2 (en) 1991-04-05 1994-11-10 Medtronic, Inc. Subcutaneous multi-electrode sensing system
US5300106A (en) 1991-06-07 1994-04-05 Cardiac Pacemakers, Inc. Insertion and tunneling tool for a subcutaneous wire patch electrode
US5292339A (en) 1991-06-14 1994-03-08 Telectronics Pacing Systems, Inc. Implantable pacemaker/cardioverter/defibrillator device and method incorporating multiple bradycardia support pacing rates
US5243977A (en) 1991-06-26 1993-09-14 Trabucco Hector O Pacemaker
US5144946A (en) 1991-08-05 1992-09-08 Siemens Pacesetter, Inc. Combined pacemaker substrate and electrical interconnect and method of assembly
US5191901A (en) 1991-08-29 1993-03-09 Mieczyslaw Mirowski Controlled discharge defibrillation electrode
US5423326A (en) 1991-09-12 1995-06-13 Drexel University Apparatus and method for measuring cardiac output
US5215083A (en) 1991-10-07 1993-06-01 Telectronics Pacing Systems, Inc. Apparatus and method for arrhythmia induction in arrhythmia control system
US5314448A (en) 1991-10-28 1994-05-24 Angeion Corporation Process for defibrillation pretreatment of a heart
JPH0621492Y2 (en) 1992-02-07 1994-06-08 日本光電工業株式会社 Defibrillator with ECG monitor
US5261400A (en) 1992-02-12 1993-11-16 Medtronic, Inc. Defibrillator employing transvenous and subcutaneous electrodes and method of use
US5376103A (en) 1992-03-19 1994-12-27 Angeion Corporation Electrode system for implantable defibrillator
US5601607A (en) 1992-03-19 1997-02-11 Angeion Corporation Implantable cardioverter defibrillator housing plated electrode
US5265623A (en) * 1992-07-16 1993-11-30 Angeion Corporation Optimized field defibrillation catheter
US5255692A (en) 1992-09-04 1993-10-26 Siemens Aktiengesellschaft Subcostal patch electrode
EP0590431B1 (en) 1992-09-30 1999-02-03 Cardiac Pacemakers, Inc. A foldable defibrillation patch electrode with a conductor-free zone which acts as a hinge
US5441518A (en) * 1993-07-22 1995-08-15 Angeion Corporation Implantable cardioverter defibrillator system having independently controllable electrode discharge pathway
US5522853A (en) * 1992-10-27 1996-06-04 Angeion Corporation Method and apparatus for progressive recruitment of cardiac fibrillation
US5318591A (en) * 1992-11-23 1994-06-07 Siemens Pacesetter, Inc. Implantable cardioverter-defibrillator having early charging capability
US5697953A (en) 1993-03-13 1997-12-16 Angeion Corporation Implantable cardioverter defibrillator having a smaller displacement volume
US5366496A (en) 1993-04-01 1994-11-22 Cardiac Pacemakers, Inc. Subcutaneous shunted coil electrode
US5411547A (en) 1993-08-09 1995-05-02 Pacesetter, Inc. Implantable cardioversion-defibrillation patch electrodes having means for passive multiplexing of discharge pulses
US5411539A (en) 1993-08-31 1995-05-02 Medtronic, Inc. Active can emulator and method of use
US5447518A (en) 1993-08-31 1995-09-05 Ventritex, Inc. Method and apparatus for phase related cardiac defibrillation
US5620477A (en) 1994-03-31 1997-04-15 Ventritex, Inc. Pulse generator with case that can be active or inactive
SE9401267D0 (en) 1994-04-14 1994-04-14 Siemens Elema Ab The electrode device
US5645586A (en) 1994-07-08 1997-07-08 Ventritex, Inc. Conforming implantable defibrillator
JP3139305B2 (en) 1994-08-24 2001-02-26 株式会社村田製作所 Capacitive acceleration sensor
US5534022A (en) 1994-11-22 1996-07-09 Ventritex, Inc. Lead having an integrated defibrillation/sensing electrode
US5534019A (en) 1994-12-09 1996-07-09 Ventritex, Inc. Cardiac defibrillator with case that can be electrically active or inactive
US5531766A (en) 1995-01-23 1996-07-02 Angeion Corporation Implantable cardioverter defibrillator pulse generator kite-tail electrode system
US5509928A (en) 1995-03-02 1996-04-23 Pacesetter, Inc. Internally supported self-sealing septum
US5814090A (en) 1995-06-07 1998-09-29 Angeion Corporation Implantable medical device having heat-shrink conforming shield
US5658321A (en) 1995-06-09 1997-08-19 Ventritex, Inc. Conductive housing for implantable cardiac device
US5690683A (en) 1995-06-19 1997-11-25 Cardiac Pacemakers, Inc. After potential removal in cardiac rhythm management device
US5658317A (en) 1995-08-14 1997-08-19 Cardiac Pacemakers, Inc. Threshold templating for digital AGC
US6014586A (en) 1995-11-20 2000-01-11 Pacesetter, Inc. Vertically integrated semiconductor package for an implantable medical device
US6051017A (en) 1996-02-20 2000-04-18 Advanced Bionics Corporation Implantable microstimulator and systems employing the same
US5674260A (en) 1996-02-23 1997-10-07 Pacesetter, Inc. Apparatus and method for mounting an activity sensor or other component within a pacemaker using a contoured hybrid lid
US5782774A (en) 1996-04-17 1998-07-21 Imagyn Medical Technologies California, Inc. Apparatus and method of bioelectrical impedance analysis of blood flow
US5895414A (en) 1996-04-19 1999-04-20 Sanchez-Zambrano; Sergio Pacemaker housing
US5919211A (en) 1996-06-27 1999-07-06 Adams; Theodore P. ICD power source using multiple single use batteries
US5643328A (en) 1996-07-19 1997-07-01 Sulzer Intermedics Inc. Implantable cardiac stimulation device with warning system having elongated stimulation electrode
US6058328A (en) 1996-08-06 2000-05-02 Pacesetter, Inc. Implantable stimulation device having means for operating in a preemptive pacing mode to prevent tachyarrhythmias and method thereof
US5800464A (en) * 1996-10-03 1998-09-01 Medtronic, Inc. System for providing hyperpolarization of cardiac to enhance cardiac function
WO1998025349A1 (en) 1996-12-03 1998-06-11 Microchip Technology Incorporated Slope analog-to-digital converter with ramp initiated prior to counter
US5766226A (en) 1996-12-09 1998-06-16 Angeion Corporation Switched discharge pathways for ICD having multiple output capacitors
US5749911A (en) 1997-01-24 1998-05-12 Cardiac Pacemakers, Inc. Implantable tissue stimulator incorporating deposited multilayer capacitor
DK9700059U1 (en) 1997-02-04 1998-05-04 Ralph Mathar Apparatus for use in by-pass operations and the use of such apparatus
JP4430744B2 (en) * 1997-03-14 2010-03-10 ユニヴァーシティ・オヴ・アラバマ・アト・バーミンガム・リサーチ・ファンデイション Implantable system for patients in need of such treatment with cardiac cardioversion
USH1905H (en) 1997-03-21 2000-10-03 Medtronic, Inc. Mechanism for adjusting the exposed surface area and position of an electrode along a lead body
US5776169A (en) 1997-04-28 1998-07-07 Sulzer Intermedics Inc. Implantable cardiac stimulator for minimally invasive implantation
US5836976A (en) 1997-04-30 1998-11-17 Medtronic, Inc. Cardioversion energy reduction system
US6144866A (en) 1998-10-30 2000-11-07 Medtronic, Inc. Multiple sensor assembly for medical electric lead
US5941904A (en) 1997-09-12 1999-08-24 Sulzer Intermedics Inc. Electromagnetic acceleration transducer for implantable medical device
US5925069A (en) 1997-11-07 1999-07-20 Sulzer Intermedics Inc. Method for preparing a high definition window in a conformally coated medical device
SE9704311D0 (en) 1997-11-24 1997-11-24 Pacesetter Ab A cardiac event detecting system for a heart stimulator
FR2772516B1 (en) 1997-12-12 2003-07-04 Ela Medical Sa ELECTRONIC CIRCUIT, IN PARTICULAR FOR AN ACTIVE IMPLANTABLE MEDICAL DEVICE SUCH AS A CARDIAC STIMULATOR OR DEFIBRILLATOR, AND ITS MANUFACTURING METHOD
US5919222A (en) 1998-01-06 1999-07-06 Medtronic Inc. Adjustable medical electrode lead
US6185450B1 (en) 1998-01-26 2001-02-06 Physio-Control Manufacturing Corporation Digital sliding pole fast-restore for an electrocardiograph display
CA2318907C (en) 1998-01-27 2004-05-04 Vitatron Medical, B.V. System for inducing tachycardia utilizing near field t-wave sensing
US6148230A (en) * 1998-01-30 2000-11-14 Uab Research Foundation Method for the monitoring and treatment of spontaneous cardiac arrhythmias
US5968079A (en) * 1998-03-18 1999-10-19 Medtronic, Inc. Method and apparatus for diagnosis and treatment of arrhythmias
US6128531A (en) 1998-04-01 2000-10-03 Pacesetter, Inc. Delivery of ICD shock capacitor energy via a controlled current source
US5964787A (en) * 1998-04-17 1999-10-12 Vitatron Medical B.V. Stimulus system with controllable switched capacitor output stage
MY128127A (en) 1998-04-23 2007-01-31 Alza Corp Trocar for inserting implants
US6026325A (en) 1998-06-18 2000-02-15 Pacesetter, Inc. Implantable medical device having an improved packaging system and method for making electrical connections
US6093173A (en) 1998-09-09 2000-07-25 Embol-X, Inc. Introducer/dilator with balloon protection and methods of use
US6208895B1 (en) 1998-10-13 2001-03-27 Physio-Control Manufacturing Corporation Circuit for performing external pacing and biphasic defibrillation
EP1000634A1 (en) 1998-11-10 2000-05-17 Sulzer Osypka GmbH Stimulation electrode for both defibrillation and pacing
SE9900682D0 (en) 1999-02-25 1999-02-25 Pacesetter Ab Implantable tissue stimulating device
US6272379B1 (en) * 1999-03-17 2001-08-07 Cathco, Inc. Implantable electronic system with acute myocardial infarction detection and patient warning capabilities
US6263241B1 (en) 1999-04-30 2001-07-17 Intermedics, Inc. Method and apparatus for treatment of cardiac electromechanical dissociation
US6411844B1 (en) 1999-10-19 2002-06-25 Pacesetter, Inc. Fast recovery sensor amplifier circuit for implantable medical device
WO2001043649A1 (en) 1999-12-17 2001-06-21 Fogarty Thomas J Method and device for use in minimally invasive approximation of muscle and other tissue
US6519493B1 (en) * 1999-12-23 2003-02-11 Pacesetter, Inc. Methods and apparatus for overdrive pacing heart tissue using an implantable cardiac stimulation device
WO2001056166A2 (en) 2000-01-28 2001-08-02 Infineon Technologies Ag Method and analog-to-digital converter for converting an analog voltage into an arithmetical value
US6866044B2 (en) * 2000-09-18 2005-03-15 Cameron Health, Inc. Method of insertion and implantation of implantable cardioverter-defibrillator canisters
US6988003B2 (en) 2000-09-18 2006-01-17 Cameron Health, Inc. Implantable cardioverter-defibrillator having two spaced apart shocking electrodes on housing
US6721597B1 (en) 2000-09-18 2004-04-13 Cameron Health, Inc. Subcutaneous only implantable cardioverter defibrillator and optional pacer
US7069080B2 (en) 2000-09-18 2006-06-27 Cameron Health, Inc. Active housing and subcutaneous electrode cardioversion/defibrillating system
US7090682B2 (en) 2000-09-18 2006-08-15 Cameron Health, Inc. Method and apparatus for extraction of a subcutaneous electrode
US7043299B2 (en) 2000-09-18 2006-05-09 Cameron Health, Inc. Subcutaneous implantable cardioverter-defibrillator employing a telescoping lead
US6927721B2 (en) * 2001-11-05 2005-08-09 Cameron Health, Inc. Low power A/D converter
US6647292B1 (en) 2000-09-18 2003-11-11 Cameron Health Unitary subcutaneous only implantable cardioverter-defibrillator and optional pacer
US7194309B2 (en) 2000-09-18 2007-03-20 Cameron Health, Inc. Packaging technology for non-transvenous cardioverter/defibrillator devices
US7120495B2 (en) 2000-09-18 2006-10-10 Cameron Health, Inc. Flexible subcutaneous implantable cardioverter-defibrillator
US6834204B2 (en) 2001-11-05 2004-12-21 Cameron Health, Inc. Method and apparatus for inducing defibrillation in a patient using a T-shock waveform
US20020107544A1 (en) 2000-09-18 2002-08-08 Cameron Health, Inc. Current waveform for anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7194302B2 (en) 2000-09-18 2007-03-20 Cameron Health, Inc. Subcutaneous cardiac stimulator with small contact surface electrodes
US6788974B2 (en) * 2000-09-18 2004-09-07 Cameron Health, Inc. Radian curve shaped implantable cardioverter-defibrillator canister
US6950705B2 (en) 2000-09-18 2005-09-27 Cameron Health, Inc. Canister designs for implantable cardioverter-defibrillators
US6754528B2 (en) * 2001-11-21 2004-06-22 Cameraon Health, Inc. Apparatus and method of arrhythmia detection in a subcutaneous implantable cardioverter/defibrillator
US20020035381A1 (en) 2000-09-18 2002-03-21 Cameron Health, Inc. Subcutaneous electrode with improved contact shape for transthoracic conduction
US7751885B2 (en) 2000-09-18 2010-07-06 Cameron Health, Inc. Bradycardia pacing in a subcutaneous device
US7149575B2 (en) * 2000-09-18 2006-12-12 Cameron Health, Inc. Subcutaneous cardiac stimulator device having an anteriorly positioned electrode
US6865417B2 (en) * 2001-11-05 2005-03-08 Cameron Health, Inc. H-bridge with sensing circuit
US6778860B2 (en) * 2001-11-05 2004-08-17 Cameron Health, Inc. Switched capacitor defibrillation circuit
US6856835B2 (en) 2000-09-18 2005-02-15 Cameron Health, Inc. Biphasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US20020095184A1 (en) 2000-09-18 2002-07-18 Bardy Gust H. Monophasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7146212B2 (en) 2000-09-18 2006-12-05 Cameron Health, Inc. Anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7076296B2 (en) 2000-09-18 2006-07-11 Cameron Health, Inc. Method of supplying energy to subcutaneous cardioverter-defibrillator and pacer
US6804552B2 (en) 2000-11-03 2004-10-12 Medtronic, Inc. MEMs switching circuit and method for an implantable medical device
JP2004513752A (en) * 2000-11-22 2004-05-13 メドトロニック,インコーポレイテッド Apparatus for detecting and treating ventricular arrhythmias
US6721602B2 (en) 2001-08-21 2004-04-13 Medtronic, Inc. Implantable medical device assembly and manufacturing method
US7062329B2 (en) 2002-10-04 2006-06-13 Cameron Health, Inc. Implantable cardiac system with a selectable active housing
US7979122B2 (en) 2003-04-11 2011-07-12 Cardiac Pacemakers, Inc. Implantable sudden cardiac death prevention device with reduced programmable feature set
WO2004112645A2 (en) 2003-06-17 2004-12-29 Brown Ward M Subcutaneous lead system
US20050038476A1 (en) 2003-08-14 2005-02-17 Team Brown Enterprises, Llc Coating/covering materials for the enhancement of defibrillation thresholds of implantable defibrillators/leads
US20050107838A1 (en) 2003-09-18 2005-05-19 Lovett Eric G. Subcutaneous cardiac rhythm management with disordered breathing detection and treatment
US20060015163A1 (en) 2004-07-19 2006-01-19 Team Brown Enterprises, Llc Lead extender for implantable device
US20060174898A1 (en) 2005-02-10 2006-08-10 Team Brown Enterprises, Llc Defibrillator insertion device and method
US20070135847A1 (en) 2005-12-12 2007-06-14 Kenknight Bruce H Subcutaneous defibrillation system and method using same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693253A (en) 1981-03-23 1987-09-15 Medtronic, Inc. Automatic implantable defibrillator and pacer
US4603705A (en) 1984-05-04 1986-08-05 Mieczyslaw Mirowski Intravascular multiple electrode unitary catheter
US4567900A (en) 1984-06-04 1986-02-04 Moore J Paul Internal deployable defibrillator electrode
US4944300A (en) 1987-04-28 1990-07-31 Sanjeev Saksena Method for high energy defibrillation of ventricular fibrillation in humans without a thoracotomy
US5713926A (en) * 1990-04-25 1998-02-03 Cardiac Pacemakers, Inc. Implantable intravenous cardiac stimulation system with pulse generator housing serving as optional additional electrode
US5342407A (en) 1990-06-06 1994-08-30 Cardiac Pacemakers, Inc. Body implantable defibrillation system
US5105810A (en) 1990-07-24 1992-04-21 Telectronics Pacing Systems, Inc. Implantable automatic and haemodynamically responsive cardioverting/defibrillating pacemaker with means for minimizing bradycardia support pacing voltages
US5184616A (en) * 1991-10-21 1993-02-09 Telectronics Pacing Systems, Inc. Apparatus and method for generation of varying waveforms in arrhythmia control system
US5413591A (en) * 1992-02-26 1995-05-09 Angeion Corporation Current truncated waveform defibrillator
WO1993019809A1 (en) * 1992-04-06 1993-10-14 Angemed, Inc. System for treatment of ventricular tachycardia using a far-field pulse series
US5618287A (en) 1994-01-28 1997-04-08 Thomas J. Fogarty Methods of surgically implanting a defibrillator electrode within a patient
US5476503A (en) 1994-03-28 1995-12-19 Pacesetter, Inc. Sense array intelligent patch lead for an implantable defibrillator and method
WO1999003534A1 (en) * 1997-07-17 1999-01-28 Cpr Medical, Inc. Defibrillator/pacemaker
WO2000041766A1 (en) * 1999-01-14 2000-07-20 The Mower Family Chf Treatment Irrevocable Trust Antitachycardial pacing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9144683B2 (en) 2000-09-18 2015-09-29 Cameron Health, Inc. Post-shock treatment in a subcutaneous device
US7260433B1 (en) 2004-09-08 2007-08-21 Pacesetter, Inc. Subcutaneous cardiac stimulation device providing anti-tachycardia pacing therapy and method
US7277755B1 (en) 2004-09-08 2007-10-02 Pacesetter, Inc. Subcutaneous cardiac stimulation device providing anti-tachycardia pacing therapy and method
US7386342B1 (en) 2004-09-08 2008-06-10 Pacesetter, Inc. Subcutaneous cardiac stimulation device providing anti-tachycardia pacing therapy and method
US8121680B2 (en) 2004-09-08 2012-02-21 Pacesetter, Inc. Subcutaneous cardiac stimulation device providing anti-tachycardia pacing therapy and method

Also Published As

Publication number Publication date
US8838234B2 (en) 2014-09-16
US8412320B2 (en) 2013-04-02
US20050277990A1 (en) 2005-12-15
US20020120299A1 (en) 2002-08-29
US20130184802A1 (en) 2013-07-18
US6952610B2 (en) 2005-10-04

Similar Documents

Publication Publication Date Title
US8838234B2 (en) Methods for implanting a subcutaneous defibrillator
US7502645B2 (en) Current waveforms for anti-bradycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US7536222B2 (en) Nonvascular implantable defibrillator and method
US6856835B2 (en) Biphasic waveform for anti-tachycardia pacing for a subcutaneous implantable cardioverter-defibrillator
US8831720B2 (en) Method of implanting and using a subcutaneous defibrillator
US9144683B2 (en) Post-shock treatment in a subcutaneous device
US7090682B2 (en) Method and apparatus for extraction of a subcutaneous electrode
US7751885B2 (en) Bradycardia pacing in a subcutaneous device
WO2003018128A9 (en) Power supply for a subcutaneously implantable cardioverter-defibrillator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP