WO2003037509A1 - Photocatalyseur et procede de purification d'effluents gazeux - Google Patents

Photocatalyseur et procede de purification d'effluents gazeux Download PDF

Info

Publication number
WO2003037509A1
WO2003037509A1 PCT/FR2002/003697 FR0203697W WO03037509A1 WO 2003037509 A1 WO2003037509 A1 WO 2003037509A1 FR 0203697 W FR0203697 W FR 0203697W WO 03037509 A1 WO03037509 A1 WO 03037509A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
tio
sic
reactor
effluents
Prior art date
Application number
PCT/FR2002/003697
Other languages
English (en)
Inventor
Valérie SPITZER-KELLER
Pierre Bernhardt
Cuong Pham-Huu
Francois Garin
Marc Ledoux
Charlotte Pham-Huu
Original Assignee
Sicat
Centre National De La Recherche Scientifique
Universite Louis Pasteur De Strasbourg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sicat, Centre National De La Recherche Scientifique, Universite Louis Pasteur De Strasbourg filed Critical Sicat
Priority to US10/380,290 priority Critical patent/US7435702B2/en
Priority to DE60205032T priority patent/DE60205032T2/de
Priority to DE02795349T priority patent/DE02795349T1/de
Priority to AT02795349T priority patent/ATE299398T1/de
Priority to EP02795349A priority patent/EP1439909B1/fr
Publication of WO2003037509A1 publication Critical patent/WO2003037509A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultra-violet radiation
    • A61L9/205Ultra-violet radiation using a photocatalyst or photosensitiser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • B01J35/19
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/91Bacteria; Microorganisms

Definitions

  • the present invention relates to the purification, at ambient temperature, of effluents containing volatile organic compounds (CON) by means of a WO 3 - SiC / TiO 2 composite semiconductor subjected to irradiation.
  • the photocatalyst thus formed is illuminated by radiation, the wavelength of which is at least partly less than 400 nm. Photocatalytic oxidation of pollutants leads to total mineralization of CO 2 and H O.
  • CON Volatile organic compounds
  • CON Volatile organic compounds
  • a large part of CON is considered to be carcinogenic or mutagenic.
  • the emission of CON into the atmosphere is linked to the possible photochemical production of oxidants through the reaction involving CON and ⁇ O x in the presence of light.
  • these reactions lead to an increase in tropospheric ozone, which is toxic to humans, degrades crops and is involved in the formation of acid rain.
  • Certain VOCs are also involved in the depletion of the stratospheric ozone layer and are likely to contribute to global warming.
  • TiO 2 / Pt type photocatalysts have been used to decompose ethanol at a temperature of around 200 ° C (see JC Kennedy and AK Datye, Journal of Catalysis, vol 179, p. 375 - 389 (1998)
  • a mixed TiO 2 / CdS photocatalyst has been tried for the decomposition of phenol, 2-chlorphenol and pentachlorophenol in the liquid phase (see N.
  • German patent application DE 40 23 995 A1 describes semiconductor photocatalysts based on titanium oxide, titanate or zinc oxide, possibly coated with metals such as Pt, Pd, rr, Rh, Rn, Os, Zn or Ba. This document proposes the use of these photocatalysts for p Check the air inside cars.
  • the main advantage of photocatalysis is that the energy required for the oxidation reactions is provided by direct absorption of light rather than by thermal heating.
  • the photocatalysts used for this purpose are semiconductors having a band gap (optical gap) typically between approximately 3 and approximately 4 eV corresponding to light irradiation in the spectral region of the near UN.
  • photocatalytic reactions on TiO 2 are oxidation-reduction reactions and comprise several main stages: "Adsorption of reagents, including organic pollutant;
  • the electron acceptor that is reduced by the electron is oxygen.
  • the holes can be combined directly with CONs. But the photocatalytic oxidation of CON can also proceed via radicals, such as OH and O.
  • TiO 2- based catalysts has several advantages: i) TiO is relatively inexpensive, ii) there is no need to add other reagents (other than air and CON), iii) the process can be carried out at ambient temperature and atmospheric pressure, iv) in general the reaction products are summarized as CO 2 and H 2 O.
  • TiO 2- based photocatalysts also suffer from several drawbacks, described below.
  • the activity of the photocatalyst according to the state of the art is limited by the yield of the photocatalytic process itself, as well as by the excessive adsorption of reaction products such as CO 2 or possible intermediate oxidation products. which can block part of the active sites, which leads to the degradation of the activity of the catalyst.
  • the problem to which the present invention attempts to respond is therefore to propose a TiO 2- based photocatalyst, with improved and stable yield, for the destruction by oxidation of volatile organic compounds in gaseous effluents.
  • the Applicant has found that the use of a new photocatalyst formulation based on WO 3 - SiC / TiO type composite semiconductors makes it possible to improve the phenomena of adsorption of reagents, desorption of products and spatial separation. electron - hole pairs. Thus, the photocatalytic activity is increased and stabilized compared to known TiO 2- based photocatalyers.
  • a first object of the present invention consists of a photocatalyst based on at least two coupled semiconductor compounds, characterized in that one of said semiconductors is titanium dioxide TiO 2 , and the other is silicon carbide , SiC, and the fact that it also contains tungsten trioxide, WO 3 .
  • a second object of the present invention consists of a method for developing a WO 3 - SiC / TiO 2 photocatalyst in two stages, a first stage of simultaneous deposition of TiO 2 and SiC on a support, and a second stage impregnating said deposit with a solution comprising at least one WO precursor. Said precursor is then transformed into WO 3 by calcination.
  • a third object of the present invention consists of the use of said photocatalyst in a process for the purification by photocatalytic oxidation of gaseous effluents containing volatile organic compounds.
  • Figure 1 is a diagram of the reactor used for the tests. The following benchmarks are used:
  • Figures 2 to 10 relate to tests. They show on the ordinate the conversion rate (in percent) of the volatile organic compound chosen, and on the abscissa the duration of the test (in seconds for FIGS. 2 to 9, and in hours for FIG. 10), for different formulations of photocatalysts according to the invention or according to the state of the art. Detailed description of the invention
  • the photocatalyst according to the invention comprises at least two coupled semiconductor compounds. Their forbidden band (optical gap) is preferably between 3.0 and 3.2 eV.
  • One of the semiconductors is titanium dioxide, the other is SiC.
  • the essential characteristic of the photocatalyst according to the invention is that it additionally contains tungsten trioxide.
  • the photocatalyst according to the invention contains between 10 and 60%, and preferably between 15 and 25% of SiC (mass percentages). In another advantageous variant, it contains an amount of WO 3 corresponding to 10 to 50% of a theoretical monolayer on the TiO 2 grains.
  • Said TiO 2 advantageously has a BET specific surface of between 40 and 60 m 2 / g, and contains between 1 and 5%, and preferably between 1.5 and 4% of O (mass percentages).
  • the photocatalyst according to the invention can be prepared by a two-step process: Method for preparing a mixed WO 3 - SiC / TiO 2 photocatalyst, comprising at least a first step during which the TiO 2 and SiC on a support, and a second step during which the deposition of SiC / TiO 2 is impregnated with a solution of a precursor of WO 3 . This process constitutes the second object of the present invention.
  • the first step of said process consists in depositing TiO 2 and SiC simultaneously.
  • a first suspension is prepared from TiO 2 powder and a second suspension from an SiC powder, the two suspensions are mixed, they are poured onto a support, and the solvent is evaporated.
  • a TiO 2 powder a commercial powder with a BET specific surface of the order of 50 m 2 / g is suitable.
  • the silicon carbide can be chosen from different SiC materials, and in particular those having a specific surface area measured by BET of between 1 and 600 m 2 / g.
  • the Applicant has found that an SiC with a specific surface between 10 and 100 m 2 / g, and more particularly between 20 and 50 m / g, gives good results.
  • Such materials can be prepared, for example, according to the synthesis methods described in the following patents: EP 0 313 480, EP 0 440 569, US 5,217,930, EP 0 511 919, EP 0 543 751 and EP 0 543 752.
  • each of the two suspensions are taken and mixed.
  • the quantity of TiO deposited is chosen so as to obtain a theoretical recovery of 1 mg / cm on the support.
  • the suspension thus prepared is poured onto the support and the whole is distributed homogeneously by heating until the water has completely evaporated. It is preferable to dry in an oven at 120 ° C for 30 minutes.
  • the support is an interior wall of the reactor in which the photocatalyst is used.
  • the TiO 2 / SiC deposition is impregnated with a solution comprising at least one WO precursor. This can be done with an aqueous solution of the precursor salt (NH 4 ) 0 W] 2 O ⁇ .5H 2 O.
  • the impregnation protocol as well as the heating until the solution has evaporated is the same as for the first step, including drying in an oven at 120 ° C. for 30 minutes. Then calcined in air at a temperature between 300 and 500 ° C, for example 420 ° C, for about 1 h.
  • the material of the reactor matters little in the context of the present invention, provided that it is inert. Polypropylene, carbon fiber or fiberglass tubes, or glass or quartz can be used, for example.
  • a material transparent to ultraviolet radiation quartz for example
  • the use of a material transparent to ultraviolet radiation is advantageous when the UN radiation source is located outside the reactor, or when uses sunlight. But we can also consider another way to pass the radiation, such as a window made of transparent material to ultraviolet rays.
  • the photocatalyst according to the invention can be used in a process for the purification by photocatalytic oxidation of effluents containing volatile organic compounds.
  • This process comprises: a) the introduction of gaseous effluents into a reactor containing a photocatalyst according to the invention; b) irradiating said photocatalyst with radiation of which at least part of the light power is emitted with a wavelength less than 400 nm and preferably less than 360 nm, so that at least a part of the compounds volatile organic matter contained in said effluents is broken down by oxidation; c) the outlet of the gaseous reaction mixture from the reactor.
  • the photocatalytic oxidation of volatile organic compounds is advantageously carried out as a continuous process at room temperature, and at atmospheric pressure. This allows the photocatalyst according to the invention to be used directly with effluents, for example industrial, agricultural or domestic, without any particular pre-treatment.
  • the method according to the invention comprises the addition of oxygen and / or water vapor before their introduction into the reactor, or the simultaneous introduction of oxygen and / or steam d water in the reactor.
  • the effluents introduced into the reactor can come directly from industrial, agricultural or domestic processes, or result from a pretreatment of such effluents.
  • industrial, agricultural or domestic effluents are introduced which already contain a sufficient content of oxygen and water vapor, without any addition.
  • a device for purifying effluents containing volatile organic compounds which can be used in the context of the present invention comprises at least ': "a reactor comprising the photocatalyst according to the invention;” a source of ultraviolet radiation; "a means of supplying the gaseous effluent to be purified;” a means of evacuating the reaction products.
  • the UN radiation source is advantageously in the form of one or more tubular UN lamps emitting radiation, characterized in that at least part of its light power is emitted with a wavelength less than 400 nm and preferably less at 360 nm.
  • the photocatalyst is deposited on the lighted wall of the photocatalytic reactor, and the lamp UN is placed inside the photocatalytic reactor.
  • the gaseous effluent circulates tangentially between the external wall of the UN tubes and the internal wall of the reactor. The interval between these two walls is adjusted so as to optimize the contact between the gas flow and the surface of the catalyst while minimizing the pressure drop.
  • An annular type reactor, coaxial, with the UN lamp arranged inside, is suitable for carrying out the present invention, but this embodiment does not limit the present invention. Different geometries and configurations of reactors can be envisaged. Likewise, the photocatalyst according to the invention can be deposited on different supports.
  • the light power is at least partly provided by the radiation of the sun.
  • the reactor may then not have a technical source of UN radiation, such as an appropriate lamp, the source of the UN radiation being the sun.
  • the photocatalytic reactor must be provided with a means for passing this solar radiation; this means can be a window made of a suitable transparent material which allows sunlight to pass through, or the reactor can be constructed using such a material transparent suitable. When sunlight is used, this light can be concentrated and / or focused using optical devices known to those skilled in the art.
  • the optimal SiC content, which is less critical, however, and the type of SiC used initially can also be determined using simple routine experimentation.
  • the process can be used for the purification of industrial, agricultural or domestic effluents.
  • gaseous effluents from a tannery which represent a certain odor nuisance
  • the main CONs were methyl ethyl ketone and butyl acetate.
  • This treatment was carried out at room temperature (i.e. ⁇ a temperature typically between 15 and 30 ° C) and at ambient pressure (that is to say at atmospheric pressure), which is advantageous because the reactor can thus be of a very simple and robust design.
  • a flow rate of industrial gaseous effluents up to 10,000 m 3 / ha has thus been successfully treated in a prototype reactor.
  • the photocatalyst according to the invention allows the disinfection of the gas flow which passes through it; therefore, it can be used to inactivate microorganisms, such as bacteria or viruses, contained in the air.
  • FIG. 1 A diagram of the reactor used for the tests is shown in FIG. 1.
  • the photocatalytic reactor (9) was of the annular type.
  • the source of ultraviolet radiation (10) was a tubular lamp coaxially mounted inside the reactor; the wavelength of the radiation was centered on 350 to 360 nm.
  • the main air inlet (1) is divided into three ways thanks to a distributor (2).
  • the flow rate of each of the three channels, dry air (3), humid air (4) and CON (5), is fixed by means of a mass flow meter.
  • the air is saturated with water vapor and in CON by passing through a bubbler containing liquid water (7) and in CON by means of a saturator containing the liquid pollutant (6).
  • a mixer (8) After having fixed the flow rates on each channel and consequently the CON concentrations and the relative humidity rate, the whole passes through a mixer (8).
  • the reaction mixture can then be oriented either on the catalyst (9) irradiated by UN radiation (10), followed by a gas phase microchromatograph (11) for analysis of the reaction products, or directly on the microchromatograph for analysis of the initial gas composition.
  • the reference volatile organic compound was methyl ethyl ketone (MEK) at a rate of 1500 ppm (pp by mass). The tests were carried out under continuous reaction mixture for durations of between 40 min and 18 hours.
  • MEK methyl ethyl ketone
  • Experiments 1, 2, 3 and 4 relate to the influence of the nature of the different materials, TiO 2 , WO 3 and SiC.
  • Experiment 1 was carried out on the TiO 2 catalyst alone (FIG. 2).
  • Experiment 2 was carried out on the 3.6% WO 3 / TiO 2 catalyst (FIG. 3).
  • Experiment 3 was carried out on the 20% SiC / TiO 2 catalyst (FIG. 4).
  • Experiment 4 was carried out on the 1% WO 3 - 20% SiC / TiO 2 catalyst (FIG. 5).
  • Experiments 5, 6 and 7 study the influence of the tungsten oxide content.
  • Experiment 5 was carried out on the 2% WO 3 - 20% SiC / TiO 2 catalyst (FIG. 6).
  • Experiment 6 was carried out on the catalyst 3.5% WO 3 - 20% SiC / TiO 2 ( Figure 7).
  • Experiment 7 was carried out on the catalyst 4.7% WO 3 -20% SiC / TiO 2 ( Figure 8).
  • Experiment 8 relates to the influence of the SiC content. It was carried out on the catalyst 3.6% WO 3 -30% SiC / TiO 2 ( Figure 9).
  • Experiment 9 represents a study of the stability of the composite catalyst under reaction mixture. It was carried out on the catalyst 3.5% WO 3 - 20% SiC / TiO 2 ( Figure 10) after more than 18 hours under reaction mixture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Le photocatalyseur basé sur un semiconducteur composite WO3 - SiC/TiO2 et soumis à une irradiation dont la longueur d'onde est au moins en partie inférieure à 400 nm permet l'oxydation photocatalytique de composés organiques volatils et aboutit à leur minéralisation totale en CO2 et H2O. Le procédé de purification photocatalytique d'effluents gazeux industriels, agricoles ou domestiques peut être conduit à pression et température ambiantes. Son taux de conversion est élevé et stable.

Description

: PHOTOCATALYSEUR ET PROCEDE DE PURIFICATION D'EFFLUENTS GAZEUX
Domaine technique de l'invention
La présente invention concerne la purification, à température ambiante, d' effluents contenant des composés organiques volatils (CON) par l'intermédiaire d'un semiconducteur composite WO3 - SiC/TiO2 soumis à une irradiation. Le photocatalyseur ainsi constitué est illuminé par une radiation, dont la longueur d'onde est au moins en partie inférieure à 400 nm. L'oxydation photocatalytique des polluants aboutit à une minéralisation totale en CO2 et H O.
Etat de la technique
Les composés organiques volatils (CON) sont utilisés ou produits dans de nombreuses activités industrielles et domestiques. De ce fait, on les trouve dans les sols, les eaux ainsi que dans l'atmosphère. Cela pose plusieurs problèmes d'environnement et de santé publique. D'abord, certains CON sont considérés comme une nuisance olfactive. Puis, une grande partie des CON est considérée comme étant cancérigène ou mutagène. Et finalement, l'émission des CON dans l'atmosphère est liée à la possible production photochimique d'oxydants à travers la réaction impliquant les CON et les ΝOx en présence de lumière. Ainsi, ces réactions mènent à une augmentation de l'ozone troposphérique, qui est toxique pour les humains, dégrade les récoltes et est impliqué dans la formation de pluies acides. Certains COV sont également impliqués dans la diminution de la couche d'ozone stratosphérique et sont susceptibles de contribuer au réchauffement global de la planète. Etant donné qu'un grand nombre de ces COV peut être oxydé, la catalyse hétérogène d'oxydation peut être utilisée pour les détruire dans les effluents. Mais, en général, ces catalyseurs opèrent à températures élevées, ce qui présente des inconvénients car il faut prévoir des dispositifs de chauffage et de régulation de température. Il serait plus simple de pouvoir conduire les réactions à la température ambiante, c'est-à-dire typiquement à une température comprise entre 15 et
30 °C.
Pour pouvoir détruire les COV à la température ambiante, l'oxydation photocatalytique de composés organiques en phase gaz, utilisant des catalyseurs à base de TiO , couplé ou non avec d'autres semiconducteurs, a été envisagée. A titre d'exemple, l'oxydation photocatalytique d'acétone avec un catalyseur de TiO2 pur ou un catalyseur mixte TiO2 / ZrO2 à 77 °C, préparé sous forme de couche mince par un procédé sol-gel, a été décrite par M.E. Zorn et al. dans l'article « Photocatalytic oxidation of acétone vapor on TiO2/ZrO2 thin films », paru dans la revue Applied Catalysis B : Environmental, vol. 23, p. 1 - 8 (1999). Des photocatalyseurs de type TiO2 / Pt ont été utilisés pour décomposer l'éthanol à une température de l'ordre de 200 °C (voir J.C. Kennedy et A.K. Datye, Journal of Catalysis, vol 179, p. 375 - 389 (1998). Un photocatalyseur mixte de type TiO2 / CdS a été essayé pour la décomposition du phénol, du 2- chlorphénol et du pentachlorophénol en phase liquide (voir N. Serpone et al., « Exploiting the interparticle électron transfer process in the photocatalysed oxidation of phénol, 2-chlorophenol and pentachlorophénol : chemical évidence for électron and hole transfer between coupled semiconductors », Journal of Photchemistry and Photobiology A : Chemistry, vol 85, p. 247 - 255 (1995)). La demande de brevet allemand DE 40 23 995 Al décrit des photocatalyseurs semiconducteurs à base d'oxyde de titane, titanate ou oxyde de zinc, éventuellement recouverts de métaux tels que Pt, Pd, rr, Rh, Rn, Os, Zn ou Ba. Ce document propose l'utilisation de ces photocatalyseurs pour purifier l'air à l'intérieur de voitures.
Le principal intérêt de la photocatalyse est que l'énergie nécessaire pour les réactions d'oxydation est fournie par absorption directe de lumière plutôt que par chauffage thermique. Les photocatalyseurs utilisés à cette fin sont des semi-conducteurs ayant une bande interdite (gap optique) typiquement comprise entre environ 3 et environ 4 eV correspondant à une irradiation lumineuse dans la région spectrale du proche UN.
En général, les réactions photocatalytiques sur TiO2 sont des réactions d'oxydo- réduction et comportent plusieurs étapes principales : " Adsorption des réactifs, et notamment du polluant organique ;
" Production de paires électrons - trous par absorption de photons issus de l'irradiation UN ; " Séparation spatiale des paires électrons - trous et migration à la surface du photocatalyseur ; 1 Réactions rédox des électrons et trous avec les espèces adsorbées en surface : réduction d'un accepteur d'électrons par l'électron, oxydation d'un donneur d'électrons par le trou ; " Désorption des produits de réaction. ,
Le plus souvent, l'accepteur d'électrons qui est réduit par l'électron est l'oxygène. Les trous peuvent se combiner directement avec les CON. Mais l'oxydation photocatalytique des CON peut aussi procéder par l'intermédiaire de radicaux, tels que OH et O.
La photocatalyse hétérogène utilisant des catalyseurs à base de TiO2 possède plusieurs avantages : i) le TiO est relativement bon marché, ii) il n'est pas nécessaire d'ajouter d'autres réactifs (autres que l'air et le CON), iii) le procédé peut être conduit à température ambiante et pression atmosphérique, iv) en général les produits de réactions se résument à CO2 et H2O.
Mais les photocatalyseurs à base de TiO2 souffrent aussi de plusieurs inconvénients, exposés ci-dessous.
Problème posé
L'activité du photocatalyseur selon l'état de la technique est limitée par le rendement du processus photocatalytique lui-même, ainsi que par l'adsorption trop importante de produits de réaction tel que le CO2 pu d'éventuels produits intermédiaires d'oxydation qui peuvent bloquer une partie des sites actifs, ce qui conduit à la dégradation de l'activité du catalyseur.
Par ailleurs, l'utilisation d'un photocatalyseur selon l'état de la technique ne conduit pas toujours à une minéralisation complète des CON : Avec les photocatalyseurs connus à base de TiO2, on observe, notamment lorsque la concentration en CON est élevée, la formation de produits d'oxydation partielle, dont certains sont toxiques.
Le problème auquel essaye de répondre la présente invention est donc de proposer un photocatalyseur à base de TiO2 , à rendement amélioré et stable, pour la destruction par oxydation de composés organiques volatils dans les effluents gazeux.
Objets de l'invention
La demanderesse a trouvé que l'utilisation d'une nouvelle formulation de photocatalyseur à base de semi-conducteurs composites de type WO3 - SiC/TiO permet d'améliorer les phénomènes d'adsorption de réactifs, de désorption des produits et de séparation spatiale des paires électrons - trous. Ainsi, l'activité photocatalytique se trouve augmentée et stabilisée par rapport aux photocatalyeurs à base de TiO2 connus.
Un premier objet de la présente invention est constitué par un photocatalyseur à base d'au moins deux composés semiconducteurs couplés, caractérisé par le fait que l'un desdits semiconducteurs est le dioxyde de titane TiO2, et l'autre est le carbure de silicium, SiC, et par le fait qu'il contient en plus du trioxyde de tungstène, WO3.
Un deuxième objet de la présente invention est constitué par un procédé d'élaboration d'un photocatalyseur WO3 - SiC / TiO2 en deux étapes, une première étape de dépôt simultané du TiO2 et du SiC sur un support, et une deuxième étape d'imprégnation dudit dépôt par une solution comprenant au moins un précurseur de WO . Ledit précurseur est ensuite transformé en WO3 par calcination. Un troisième objet de la présente invention est constitué par l'utilisation dudit photocatalyseur dans un procédé de purification par oxydation photocatalytique d'effluents gazeux contenant des composés organiques volatils.
Description des figures
La figure 1 est un schéma du réacteur utilisé pour les essais. Les repères suivants sont utilisés :
Arrivée princip aie d ' air 1
Répartiteur 2
Voie air sec 3
Voie air humide 4
Voie COV 5
Saturateur contenant le polluant liquide 6
Bulleur contenant de l'eau liquide 7
Mélangeur 8
Réacteur photocatalytique 9
Lampe à rayons ultraviolets 10
Microchromatographe en phase gazeuse 11 Vannes ' 12
Les figures 2 à 10 sont relatives à des essais. Elles montrent en ordonnée le taux de conversion (en pourcent) du composé organique volatil choisi, et en abscisse la durée de l'essai (en secondes pour les figures 2 à 9, et en heures pour la figure 10), pour différentes formulations de photocatalyseurs selon l'invention ou selon l'état de la technique. Description détaillée de l'invention
Le photocatalyseur selon l'invention comprend au moins deux composés semiconducteurs couplés. Leur bande interdite (gap optique) se situe préférentiellement entre 3,0 et 3,2 eV. L'un desdit semiconducteurs est le dioxyde de titane, l'autre le SiC. La caractéristique essentielle du photocatalyseur selon l'invention est qu'il contient en plus du trioxyde de tungstène.
Dans une variante avantageuse de l'invention, le photocatalyseur selon l'invention contient entre 10 et 60 %, et préférentiellement entre 15 et 25 % de SiC (pourcentages massiques). Dans une autre variante avantageuse, il contient une quantité de WO3 correspondant à 10 à 50 % d'une monocouche théorique sur les grains de TiO2. Ledit TiO2 a avantageusement une surface spécifique BET comprise entre 40 et 60 m2 / g, et contient entre 1 et 5 %, et préférentiellement entre 1,5 et 4 % de O (pourcentages massiques).
Le photocatalyseur selon l'invention peut être préparé par un procédé en deux étapes : Procédé d'élaboration d'un photocatalyseur mixte WO3- SiC/TiO2, comprenant au moins une première étape au cours de laquelle on dépose simultanément le TiO2 et le SiC sur un support, et une deuxième étape au cours de laquelle on imprègne le dépôt de SiC / TiO2 d'une solution d'un précurseur du WO3. Ce procédé constitue le deuxième objet de la présente invention.
La première étape dudit procédé consiste à déposer simultanément le TiO2 et le SiC. On prépare au cours cette première étape une première suspension à partir de poudre de TiO2 et une deuxième suspension à partir d'une poudre de SiC, on mélange les deux suspensions, on les verse sur un support, et on fait évaporer le solvant. A titre d'exemple, comme poudre de TiO2, une poudre commerciale avec une surface spécifique BET de l'ordre de 50 m2/g convient.
Le carbure de silicium peut être choisi parmi différents matériaux de SiC, et notamment ceux présentant une surface spécifique mesurée par BET comprise entre 1 et 600 m2/g. La demanderesse a constaté qu'un SiC avec une surface spécifique entre 10 et 100 m2/g, et plus particulièrement entre 20 et 50 m /g, donne de bons résultats. De tels matériaux peuvent être préparés par exemple selon les méthodes de synthèse décrites dans les brevets suivants : EP 0 313 480, EP 0 440 569, US 5,217,930, EP 0 511 919, EP 0 543 751 et EP 0 543 752. Selon ces méthodes, on peut synthétiser des matériaux de tailles et formes variées, c'est à dire sous forme de bâtonnets, de monolithes, d'extradés, de grains ou de tubes. Ces types de SiC donnent de bons résultats, mais d'autres formes de SiC peuvent également être utilisées dans le cadre de la présente invention.
On prélève et mélange les volumes désirés de chacune des deux suspensions. Avantageusement, la quantité de TiO déposée est choisie de façon à obtenir un recouvrement théorique de 1 mg/cm sur le support. On verse la suspension ainsi préparée sur le support et répartit l'ensemble de façon homogène en chauffant jusqu'à évaporation complète de l'eau. Il est préférable de sécher à l'étuve à 120°C pendant 30 minutes. Dans un mode de réalisation préféré, le support est une paroi intérieure du réacteur dans lequel on utilise le photocatalyseur.
Au cours de la deuxième étape dudit procédé, on imprègne le dépôt de TiO2 / SiC d'une solution comprenant au moins un précurseur du WO . Cela peut être fait avec une solution aqueuse du sel précurseur (NH4) 0W]2O ι .5H2O.
Dans un mode de réalisation avantageux de l'invention, le protocole d'imprégnation ainsi que le chauffage jusqu'à évaporation de la solution est le même que pour la première étape, y compris le séchage à l'étuve à 120°C pendant 30 minutes. Ensuite, on calcine sous air à une température comprise entre 300 et 500 °C, par exemple 420°C, pendant environ 1 h.
Le matériau du réacteur importe peu dans le cadre de la présente invention, à condition qu'il soit inerte. On peut utiliser par exemple des tubes en polypropylène, en fibre de carbone ou en fibre de verre, ou encore du verre ou du quartz. L'utilisation d'un matériau transparent au rayonnement ultraviolet (le quartz par exemple) est avantageuse lorsque la source de rayonnement UN se trouve à l'extérieur du réacteur, ou lorsque l'on utilise la lumière du soleil. Mais on peut aussi envisager un autre moyen pour faire passer le rayonnement, tel qu'une fenêtre en matériau transparent aux rayons ultraviolets.
Le photocatalyseur selon l'invention peut être utilisé dans un procédé de purification par oxydation photocatalytique d' effluents contenant des composés organiques volatils . Ce procédé comprend : a) l'introduction des effluents gazeux dans un réacteur contenant un photocatalyseur selon l'invention ; b) l'irradiation dudit photocatalyseur avec un rayonnement dont au moins une partie de la puissance lumineuse est émise avec une longueur d'onde inférieure à 400 nm et préférentiellement inférieure à 360 nm, de façon à ce qu'au moins une partie des composés organiques volatiles contenus dans lesdits effluents est décomposée par oxydation ; c) la sortie du mélangé réactionnel gazeux du réacteur.
L'oxydation photocatalytique des composés organiques volatils (COV) est effectuée avantageusement comme un procédé continu à température ambiante, et à pression atmosphérique. Cela permet d'utiliser le photocatalyseur selon l'invention directement avec des effluents, par exemple industriels, agricoles ou domestiques, sans aucun prétaitement particulier.
Selon un mode de réalisation particulier, le procédé selon l'invention comprend l'ajout d'oxygène et / ou de la vapeur d'eau avant leur introduction dans le réacteur, ou l'introduction simultanée d'oxygène et / ou de vapeur d'eau dans le réacteur.
Les effluents introduits dans le réacteur peuvent être issus directement de procédés industriels, agricoles ou domestiques, ou résulter d'un prétraitement de tels effluents. Selon un mode de réalisation préféré du procédé selon l'invention, on introduit des effluents industriels, agricoles ou domestiques qui contiennent déjà une teneur suffisante d'oxygène et de vapeur d'eau, sans aucun ajout. Un dispositif pour la purification d' effluents contenant des composés' organiques volatils utilisable dans le cadre de la présente invention comprend au moins ' : " un réacteur comprenant le photocatalyseur selon l'invention ; " une source de rayonnement ultraviolet ; " un moyen d'adduction de l'effluent gazeux à purifier ; " un moyen d'évacuation des produits réactionnels.
La source de rayonnement UN se présente avantageusement sous forme d'une ou plusieurs lampes UN tubulaires émettant un rayonnement caractérisé par le fait qu'au moins une partie de sa puissance lumineuse est émise avec une longueur d'onde inférieure à 400 nm et préférentiellement inférieure à 360 nm.
Dans un mode de réalisation préféré, le photocatalyseur est déposé sur la paroi éclairée du réacteur photocatalytique, et la lampe UN est disposée à l'intérieur du réacteur photocatalytique. L'effluent gazeux circule de façon tangentielle entre la paroi externe des tubes UN et interne du réacteur. L'intervalle entre ces deux parois est ajusté de façon à optimiser le contact entre le flux gazeux et la surface du catalyseur tout en minimisant la perte de charge.
Un réacteur de type annulaire, coaxial, avec la lampe UN disposée à l'intérieur, convient à la réalisation de la présente invention, mais ce mode de réalisation ne limite pas la présente invention. Différentes géométries et configurations de réacteurs peuvent être envisagées. De même, le photocatalyseur selon l'invention peut être déposé sur différents supports.
Dans un autre mode de réalisation de l'invention, la puissance lumineuse est au moins en partie fournie par le rayonnement du soleil. Dans ce cas, le réacteur peut alors ne pas disposer d'une source technique de rayonnement UN, telle qu'une lampe appropriée, la source du rayonnement UN étant le soleil. Dans ce cas (ainsi que dans le cas ou la source technique de rayonemment UN se situe à l'extérieure du réacteur), le réacteur photocatalytique doit être pourvu d'un moyen pour faire passer ce rayonnement solaire ; ce moyen peut être une fenêtre en matériau transparent approprié qui laisse passer la lumière du soleil, ou le réacteur peut être construit en utilisant un tel matériau transparent approprié. Lorsque l'on utilise la lumière du soleil, cette lumière peut être concentrée et / ou focalisée à l'aide de dispositifs optiques connus de l'homme du métier.
Selon les constatations de la demanderesse, pour assurer une décomposition optimale d'effluents contenant des composés organiques volatils, il est avantageux d'ajuster la composition chimique du photocatalyseur en fonction de la nature, et notamment en fonction de sa polarité, de la principale molécule organique que l'on veut détruire, ainsi qu'en fonction de la surface spécifique du TiO2 utilisé. Pour la plupart des CON, tels que la méthyléthylcétone, une teneur en WO3 comprise entre 1,0 % et 5,0 % (pourcentages massiques) convient. Cette teneur optimale peut être déterminée par l'homme du métier à l'aide d'une simple expérimentation de routine ; un TiO2 avec une grande surface spécifique nécessitera une teneur en WO3 plus élevée qu'un TiO avec une faible surface spécifique. Une teneur trop élevée en O3 risque de masquer le TiO2, ce qui diminue l'efficacité du catalyseur, car une partie de la lumière est absorbée par le WO3.
A titre d'exemple, pour un TiO2 avec une surface spécifique BET de 50 m2 / g, étant donné que pour WO3, la monocouche théorique correspond en moyenne à 0,21 g / 100 m2 de support (voir Y.C. Xie, Y.Q. Tang, dans Advances in Catalysis, vol. 37, page 1 (1990)), la teneur optimale en WO3 comprise entre 0,1 % et 5,0 % correspond donc à environ 10 à 50 % de la monocouche théorique.
La teneur optimale en SiC, qui est toutefois moins critique, et le type de SiC utilisé au départ peuvent également être déterminés à l'aide d'une simple expérimentation de routine.
Le procédé peut être utilisé pour la purification d'effluents industriels, agricoles ou domestiques. A titre d'exemple, des effluents gazeux issus d'une tannerie, qui représentent une nuisance olfactive certaine, ont été traités avec succès avec le procédé selon l'invention. Dans ces effluents, les principaux CON étaient la méthyléthylcétone et l'acétate de butyle. Ce traitement était effectué à la température ambiante (c'est-à-dire π une température typiquement comprise entre 15 et 30 °C) et à pression ambiante (c'est- à-dire à la pression atmosphérique), ce qui est avantageux car le réacteur peut ainsi être d'une conception très simple et robuste. Un débit d'effluents gazeux industriels jusqu'à 10 000 m3/h a ainsi été traité avec succès dans un réacteur prototype. La demanderesse a également constaté que le photocatalyseur selon l'invention permet la désinfection du flux gazeux qui le traverse ; par conséquent, il peut être utilisé pour inactiver des microorganismes, tels que des bactéries ou des virus, contenus dans l'air.
L'invention sera mieux comprise à l'aide des exemples, qui n'ont toutefois pas de caractère limitatif.
Exemples
Dans ces exemples, tous les pourcentages qui concernent la composition chimique du photocatalyseur sont des pourcentages massiques.
Un schéma du réacteur utilisé pour les essais est montré sur la figure 1. Le réacteur photocatalytique (9) était de type annulaire. La source de rayonnement ultraviolet (10) était une lampe tubulaire montée de manière coaxiale à l'intérieur du réacteur ; la longueur d'onde du rayonnement était centrée sur 350 à 360 nm.
L'arrivée principale d'air (1) se divise en trois voies grâce à un répartiteur (2). Le débit de chacune des trois voies, air sec (3), air humide (4) et CON (5), est fixé par l'intermédiaire d'un débimètre massique. L'air est saturé en vapeur d'eau et en CON en traversant un bulleur contenant de l'eau liquide (7) et en CON grâce à un saturateur contenant le polluant liquide (6). Après avoir fixé les débits sur chaque voie et par conséquent les concentrations en CON et le taux d'humidité relatif, l'ensemble passe au travers d'un mélangeur (8). Grâce aux vannes (12), le mélange réactionnel peut ensuite être orienté soit sur le catalyseur (9) irradié par le rayonnement UN (10), suivi d'un microchromatographe en phase gaz (11) pour analyse des produits de réaction, soit directement sur le microchromatographe pour analyse de la composition gazeuse initiale.
Différentes formulations du catalyseur WO3 - SiC/TiO2 ont été testées, en faisant varier leurs compositions relatives en WO3 et en SiC. Le SiC a été extradé, lavé, étuvé, calciné à 700°C puis broyé. Le TiO2 utilisé était une poudre commerciale (fournisseur : société Prolabo) et le SiC a été obtenu selon le procédé décrit dans la demande de brevet EP 0 543 751 Al, dont l'invention permet de synthétiser des carbures métalliques et de silicium de haute surface spécifique en faisant réagir un oxyde volatil du silicium, SiO avec du carbone à haute surface spécifique à une température comprise entre 900 et 1400°C sous balayage d'un gaz inerte. Différentes expériences, référencées 1, 2, 3, 4, 5, 6, 7, 8 et 9 ont été menées, toutes pour des teneurs en humidité de 50%. Le composé organique volatil de référence a été la méthyléthylcétone (MEK) à raison de 1500 ppm (pp massiques). Les essais ont été effectués sous mélange réactionnel continu pour des durées comprises entre 40 min et 18 heures.
Les expériences 1, 2, 3 et 4 sont relatives à l'influence de la nature des différents matériaux, TiO2, WO3 et SiC.
L'expérience 1 a été effectuée sur le catalyseur TiO2 seul (figure 2). L'expérience 2 a été effectuée sur la catalyseur 3.6% WO3/TiO2 (figure 3). L'expérience 3 a été effectuée sur le catalyseur 20% SiC/TiO2 (figure 4). L'expérience 4 a été effectuée sur le catalyseur 1% WO3 - 20% SiC/TiO2 (figure 5).
Les expériences 5, 6 et 7 étudient l'influence de la teneur en oxyde de tungstène. L'expérience 5 a été effectuée sur le catalyseur 2% WO3 - 20% SiC/TiO2 (figure 6). L'expérience 6 a été réalisée sur le catalyseur 3.5% WO3 - 20% SiC/TiO2 (figure 7). L'expérience 7 a été réalisée sur le catalyseur 4.7% WO3 -20% SiC/TiO2 (figure 8).
L'expérience 8 est relative à l'influence de la teneur en SiC. Elle a été réalisée sur le catalyseur 3.6% WO3 -30% SiC/TiO2 (figure 9).
L'expérience 9 représente une étude de stabilité du catalyseur composite sous mélange réactionnel. Elle a été réalisée sur le catalyseur 3.5% WO3 - 20% SiC/TiO2 (figure 10) après plus de 18 heures sous mélange réactionnel.
Bien que la conversion initiale soit d'environ 60% sur le TiO2 seul (figure 2), ce catalyseur n'est pas très efficace pour la destruction du polluant, puisqu'il se désactive assez rapidement en fonction du temps sous mélange réactionnel, pour arriver à des taux de conversion se situant aux alentours de 10 %. L'ajout de 3.6% de WO3 au TiO2 n'améliore pas le comportement photocatalytique du système (figure 3). L'utilisation du catalyseur semi-conducteur composite, 20% SiC/TiO2, conduit à une légère amélioration par rapport au TiO2 seul (expérience 3, figure 4) puisqu'on arrive à des taux de conversion d'environ 20% après environ 1000 à 2000 secondes. Par contre, l'addition de WO3 et de SiC à TiO2 (figures 5, 6, 7, 8, et 9) résulte en une augmentation considérable des propriétés de photooxydation du CON, dépendant de la teneur en WO3 et en SiC. On constate que le pourcentage massique de SiC optimal est de 20% et celui de WO3 est de 3.5%. Ainsi, la formulation optimale du photocatalyseur pour décomposer la méthyléthylcétone est 3.5% WO - 20% SiC/TiO2. Dans ces conditions, après trois minutes de mise en régime, on transforme 80% du polluant en CO2 et H O. En augmentant les proportions relatives de SiC et de WO3, on diminue cette activité. L'expérience 9 (figure 10) représente le comportement du catalyseur 3.5% WO3 - 20% SiC/TiO2 sous flux continu de méthyléthylcétone pendant plus de 18 heures. On observe qu'il n'y a aucune désactivation du catalyseur, ce qui correspond à une importante amélioration par rapport à l'état de la technique.
Des essais complémentaires, effectués dans les mêmes conditions que les précédents, ont permis de montrer qu'un photocatalyseur avec 50 % de SiC et 3,4 % de WO3 donne un taux de conversion sur environ 2 000 secondes de l'ordre de 40 %, et un photocatalyseur avec 8 % de SiC et 3,5 % de WO3 donne un résultat sensiblement égal à celui observé lors de l'expérience 3.

Claims

Revendications
1) Photocatalyseur à base d'au moins deux composés semiconducteurs couplés, caractérisé par le fait que l'un desdits semiconducteurs est le dioxyde de titane TiO2, et l'autre est le carbure de silicium, SiC, et par le fait qu'il contient en plus du trioxyde de tungstène, WO3.
2) Photocatalyseur selon la revendication 1, caractérisé en ce qu'il contient entre 10 et 60 %, et préférentiellement entre 15 et 25 % de SiC (pourcentages massiques),
3) Photocatalyseur selon une quelconque des revendication 1 ou 2, caractérisé en ce qu'il contient une quantité de WO3 correspondant à 10 à 50 % d'une monocouche théorique par rapport à la surface spécifique BET des grains de TiO2.
4) Photocatalyseur selon une quelconque des revendications 1 à 3, caractérisé en ce qu'il contient du TiO2 avec une surface spécifique BET comprise entre 40 et 60 m2 / g, et en ce qu'il contient entre 1 et 5 %, et préférentiellement entre 1,5 et 4 % de WO3 (pourcentages massiques).
5) Photocatalyseur selon une quelconque des revendications 1 à 4, caractérisé en ce qu'il contient du SiC avec une surface spécifique BET comprise entre 1 et 600 m2 / g et préférentiellement entre 10 et 100 m2/ g.
6) Procédé d'élaboration d'un photocatalyseur mixte WO3- SiC/TiO2, comprenant au moins une première étape au cours de laquelle on dépose simultanément le TiO2 et le
SiC sur un support, et une deuxième étape au cours de laquelle on imprègne le dépôt de SiC / TiO2 d'une solution contenant au moins un précurseur du WO3.
7) Procédé selon la revendication 6, caractérisé en ce que l'on prépare au cours de la première étape une première suspension à partir de poudre de TiO et une deuxième suspension à partir d'une poudre de SiC, on mélange les deux suspensions, on les verse sur un support, et on fait évaporer le solvant. 8) Procédé selon une quelconque des revendications 6 et 7, caractérisé en ce que la solution du précurseur de WO3 est une solution aqueuse de (NH4)1oWι2O ].5H2O.
9) Procédé selon une quelconque des revendications 6 à 8, caractérisé en ce qu'il comprend en plus une troisième étape, au cours de la quelle on effectue une calcination à une température préférentiellement comprise entre 300 et 500 °C.
10) Utilisation d'un photocatalyseur selon une quelconque des revendications 1 à 5 dans un procédé de purification d'effluents contenant des composés organiques volatiles par oxydation photocatalytique, ledit procédé comprenant : a) l'introduction des effluents dans un réacteur contenant ledit photocatalyseur ; b) l'irradiation du photocatalyseur par un rayonnement dont au moins une partie de la puissance lumineuse est émise avec une longueur d'onde inférieure à 400 nm et préférentiellement inférieure à 360 nm, de façon à ce qu'au moins une partie des composés organiques volatils contenus dans lesdits effluents soit décomposée par oxydation ; c) la sortie du mélangé réactionnel gazeux du réacteur.
11) Utilisation d'un photocatalyseur selon une quelconque des revendications 1 à 5 dans un procédé d'inactivation de micro-organismes contenus dans un flux gazeux par oxydation photocatalytique, ledit procédé comprenant : a) l'introduction d'un flux gazeux dans un réacteur contenant ledit photocatalyseur ; c) l'irradiation du photocatalyseur par un rayonnement dont au moins une partie de la puissance lumineuse est émise avec une longueur d'onde inférieure à 400 nm et préférentiellement inférieure à 360 nm, de façon à ce qu'au moins une partie des micro-organismes contenus dans ledit flux gazeux soit décomposée par oxydation ; d) la sortie du flux gazeux du réacteur.
12) Utilisation selon une des revendications 10 ou 11, caractérisée en ce que ledit procédé est conduit à une température comprise entre 15 et 30 °C. 13) Utilisation selon une quelconque des revendications 10 à 12, caractérisée en ce que ledit procédé est conduit à la pression atmosphérique.
14) Utilisation selon une quelconque des revendications 10 à 13, caractérisée en ce que ladite puissance lumineuse provient au moins en partie du rayonnement solaire.
PCT/FR2002/003697 2001-10-29 2002-10-28 Photocatalyseur et procede de purification d'effluents gazeux WO2003037509A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/380,290 US7435702B2 (en) 2001-10-29 2002-10-28 Photocatalyst and process for purifying gas effluent by photocatalytic oxidation
DE60205032T DE60205032T2 (de) 2001-10-29 2002-10-28 Photokatalysator und abgasreinigungsverfahren
DE02795349T DE02795349T1 (de) 2001-10-29 2002-10-28 Photokatalysator und abgasreinigungsverfahren
AT02795349T ATE299398T1 (de) 2001-10-29 2002-10-28 Photokatalysator und abgasreinigungsverfahren
EP02795349A EP1439909B1 (fr) 2001-10-29 2002-10-28 Photocatalyseur et procede de purification d'effluents gazeux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0113984A FR2831467B1 (fr) 2001-10-29 2001-10-29 Photocatalyseur et procede de purification d'effluents gazeux par photocatalyse d'oxydation
FR01/13984 2001-10-29

Publications (1)

Publication Number Publication Date
WO2003037509A1 true WO2003037509A1 (fr) 2003-05-08

Family

ID=8868847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/003697 WO2003037509A1 (fr) 2001-10-29 2002-10-28 Photocatalyseur et procede de purification d'effluents gazeux

Country Status (6)

Country Link
US (1) US7435702B2 (fr)
EP (1) EP1439909B1 (fr)
AT (1) ATE299398T1 (fr)
DE (2) DE02795349T1 (fr)
FR (1) FR2831467B1 (fr)
WO (1) WO2003037509A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108255A1 (fr) * 2003-05-30 2004-12-16 Carrier Corporation Procede et appareil pour purifier l'air au moyen d'un photocatalyseur
EP2491956A1 (fr) * 2009-10-19 2012-08-29 The University of Tokyo Procédé d'inactivation d'un virus et article doué de propriétés antivirales
CN106861733A (zh) * 2017-02-14 2017-06-20 中国人民解放军国防科学技术大学 核壳结构氧化钛纳米片/碳化硅纳米纤维及制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7713632B2 (en) 2004-07-12 2010-05-11 Cardinal Cg Company Low-maintenance coatings
WO2006077839A1 (fr) * 2005-01-18 2006-07-27 Nippon Shokubai Co., Ltd. Composition de photocatalyseur sensible a la lumiere visible et procede pour la produire
US7862910B2 (en) 2006-04-11 2011-01-04 Cardinal Cg Company Photocatalytic coatings having improved low-maintenance properties
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
EP2066594B1 (fr) * 2007-09-14 2016-12-07 Cardinal CG Company Revêtements à faible entretien et procédés de production de revêtements à faible entretien
TWI393673B (zh) * 2008-03-04 2013-04-21 Toshiba Kk Water dispersions and their use of coatings, films and products
JP2011036770A (ja) * 2009-08-07 2011-02-24 Hokkaido Univ 貴金属担持光触媒体粒子の製造方法
FR2992310B1 (fr) 2012-06-20 2014-07-25 Centre Nat Rech Scient Vitroceramiques de chalcogenures a proprietes photoelectriques et leur procede de fabrication
CN103230616B (zh) * 2013-04-25 2014-12-10 上海电力学院 全天候光催化空气净化系统
CN104815539A (zh) * 2015-05-11 2015-08-05 王英英 一种应用新能源的化工车间空气净化装置
EP3541762B1 (fr) 2016-11-17 2022-03-02 Cardinal CG Company Technologie de revêtement à dissipation statique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192496A (ja) * 1996-01-12 1997-07-29 Matsushita Electric Works Ltd 光触媒及びそれを備えた自己清浄品
JPH1095635A (ja) * 1996-09-20 1998-04-14 Toto Ltd 光触媒性親水性部材の形成方法、及び光触媒性親水性部材
JPH10147771A (ja) * 1996-11-20 1998-06-02 Toto Ltd 光触媒性親水性部材及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2554626C3 (de) * 1975-12-04 1981-05-07 Siemens AG, 1000 Berlin und 8000 München Abschirmeinrichtung und Verfahren zu deren Aufbringung
US4427508A (en) * 1982-05-03 1984-01-24 Atlantic Richfield Company Light driven photocatalytic process
US4848348A (en) * 1983-11-14 1989-07-18 Minnesota Mining And Manufacturing Company Coated films
DE3772220D1 (de) * 1986-01-22 1991-09-26 Hitachi Ltd Verfahren und vorrichtung zur photoelektrokatalytischen reduktion von edelmetallen in salpetersaurer loesung.
JP2876225B2 (ja) * 1989-11-07 1999-03-31 日本ゼオン株式会社 園芸作物の鮮度保持方法
JPH0463115A (ja) * 1990-06-28 1992-02-28 Hitachi Ltd 炭酸ガスの光還元電極および還元装置
US5130031A (en) * 1990-11-01 1992-07-14 Sri International Method of treating aqueous liquids using light energy, ultrasonic energy, and a photocatalyst
JP3592727B2 (ja) * 1992-05-11 2004-11-24 日本電池株式会社 光触媒体
US5670247A (en) * 1994-10-03 1997-09-23 Mitsubishi Paper Mills Limited Photoreactive noxious substance purging agent and photoreactive noxious substance purging material using the agent
CA2201934C (fr) * 1994-10-05 2008-03-18 Makoto Hayakawa Materiau solide antibacterien, son procede de preparation et son procede d'utilisation
JPH09234375A (ja) * 1996-03-01 1997-09-09 Mitsubishi Paper Mills Ltd 光反応性有害物除去材
US6074724A (en) * 1996-08-26 2000-06-13 Fuji Photo Film Co., Ltd. Magnetic recording medium
US7208443B1 (en) * 1997-11-07 2007-04-24 Nippon Soda Co., Ltd Structure having photocatalyst-supporting film laminated thereto
JP2000158455A (ja) * 1998-01-05 2000-06-13 Toray Ind Inc 保温用壁板
GB2348642B (en) * 1998-07-31 2004-03-10 Chinese Petroleum Corp Process for the preparation of pyromellitic dianhydride
US6290180B1 (en) * 1999-09-09 2001-09-18 Lockheed Martin Corporation Photocatalytic coatings on optical solar reflectors to decompose organic contaminants
US6585863B2 (en) * 2000-08-08 2003-07-01 Procter & Gamble Company Photocatalytic degradation of organic compounds
JP3933639B2 (ja) * 2004-03-26 2007-06-20 カンボウプラス株式会社 防汚性膜材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09192496A (ja) * 1996-01-12 1997-07-29 Matsushita Electric Works Ltd 光触媒及びそれを備えた自己清浄品
JPH1095635A (ja) * 1996-09-20 1998-04-14 Toto Ltd 光触媒性親水性部材の形成方法、及び光触媒性親水性部材
JPH10147771A (ja) * 1996-11-20 1998-06-02 Toto Ltd 光触媒性親水性部材及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 199740, Derwent World Patents Index; Class D22, AN 1997-429732, XP002213958 *
DATABASE WPI Section Ch Week 199825, Derwent World Patents Index; Class L01, AN 1998-280305, XP002213959 *
DATABASE WPI Section Ch Week 199832, Derwent World Patents Index; Class J04, AN 1998-371218, XP002213957 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004108255A1 (fr) * 2003-05-30 2004-12-16 Carrier Corporation Procede et appareil pour purifier l'air au moyen d'un photocatalyseur
US7255831B2 (en) 2003-05-30 2007-08-14 Carrier Corporation Tungsten oxide/titanium dioxide photocatalyst for improving indoor air quality
KR100808340B1 (ko) * 2003-05-30 2008-02-27 캐리어 코포레이션 광촉매를 이용하는 공기 정화용 방법 및 장치
EP2491956A1 (fr) * 2009-10-19 2012-08-29 The University of Tokyo Procédé d'inactivation d'un virus et article doué de propriétés antivirales
EP2491956A4 (fr) * 2009-10-19 2013-11-20 Univ Tokyo Procédé d'inactivation d'un virus et article doué de propriétés antivirales
CN106861733A (zh) * 2017-02-14 2017-06-20 中国人民解放军国防科学技术大学 核壳结构氧化钛纳米片/碳化硅纳米纤维及制备方法
CN106861733B (zh) * 2017-02-14 2019-09-06 中国人民解放军国防科学技术大学 核壳结构氧化钛纳米片/碳化硅纳米纤维及制备方法

Also Published As

Publication number Publication date
US7435702B2 (en) 2008-10-14
DE60205032T2 (de) 2006-04-20
FR2831467A1 (fr) 2003-05-02
US20060011945A1 (en) 2006-01-19
EP1439909B1 (fr) 2005-07-13
ATE299398T1 (de) 2005-07-15
FR2831467B1 (fr) 2003-12-19
DE02795349T1 (de) 2005-03-31
DE60205032D1 (de) 2005-08-18
EP1439909A1 (fr) 2004-07-28

Similar Documents

Publication Publication Date Title
EP1439909B1 (fr) Photocatalyseur et procede de purification d'effluents gazeux
Li et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study
CN1187097C (zh) 净化含氧气体的方法和设备
Srinivasan et al. Bactericidal and detoxification effects of irradiated semiconductor catalyst, TiO 2
Alberici et al. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide
Bui et al. Photocatalytic materials for indoor air purification systems: An updated mini-review
EP2771282B1 (fr) Procede de traitement d'effluents dans un lit de microbilles par plasma froid et photocatalyse
KR100853737B1 (ko) 광촉매와 그 사용방법
EP2344206B1 (fr) Photoreacteur comportant un photocatalyseur a base de mousses tridimensionnelles structurees en carbone
EP2341948B1 (fr) Photoreacteur comportant un photocatalyseur a base de mousses tridimensionnelles structurees en carbure de silicium
JP4505688B2 (ja) 新規な光触媒及びその製造方法
Selishchev et al. Uranyl-modified TiO2 for complete photocatalytic oxidation of volatile organic compounds under UV and visible light
EP1214966A1 (fr) Dispositif et procédé d'épuration de gaz
Yoon et al. Synthesis of TiO2-entrapped EFAL-removed Y-zeolites: Novel photocatalyst for decomposition of 2-methylisoborneol
EP1819369A1 (fr) Inactivation d'agents biologiques disperses en milieu gazeux par un semi-conducteur photoactive
KR100326897B1 (ko) 이산화티탄이 결합된 티타노실리칼라이트 광촉매 및 그 제조방법
Mi et al. Recovery of visible-light photocatalytic efficiency of N-doped TiO2 nanoparticulate films
JPH0824666A (ja) 固定化光触媒
Surovtseva et al. The effect of nanosized titania-silica film composition on the photostability of adsorbed methylene blue dye
Rouibah et al. Photoactivity Performance of TiO2/cellulose and ZnO/polystyrene; Intensified Effect of Oxidants on Degradation Efficiency of Acetaminophen
JP2004089953A (ja) ガス中に含まれる有機物質の連続的な分解除去方法
Nhan et al. Photodegradation of acetone vapor by carbon dots decorated TiO2 catalyst: effects of experimental conditions
Chae et al. Photo-catalytic degradation of rhodamine B using microwave powered electrodeless discharge lamp
KR102522471B1 (ko) 자가 습윤 3상 광촉매 복합체, 그의 제조방법 및 그를 사용한 공기 정화 방법
Malkhaz IMPACT OF COMPLEX PROCESSING ON THE PHOTOCATALYTICPROPERTIES OF TITANIUM DIOXIDE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002795349

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002795349

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002795349

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006011945

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10380290

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10380290

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP