WO2003036039A1 - In situ production of a blending agent from a hydrocarbon containing formation - Google Patents

In situ production of a blending agent from a hydrocarbon containing formation Download PDF

Info

Publication number
WO2003036039A1
WO2003036039A1 PCT/US2002/034536 US0234536W WO03036039A1 WO 2003036039 A1 WO2003036039 A1 WO 2003036039A1 US 0234536 W US0234536 W US 0234536W WO 03036039 A1 WO03036039 A1 WO 03036039A1
Authority
WO
WIPO (PCT)
Prior art keywords
formation
mixture
hydrocarbons
blending agent
section
Prior art date
Application number
PCT/US2002/034536
Other languages
French (fr)
Inventor
Harold J. Vinegar
Scott Lee Wellington
John Michael Karanikas
Meliha Deniz Sumnu-Dindoruk
Original Assignee
Shell Internationale Research Maatschappij B.V.
Shell Canada Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V., Shell Canada Limited filed Critical Shell Internationale Research Maatschappij B.V.
Priority to MXPA04003713A priority Critical patent/MXPA04003713A/en
Priority to CA 2463104 priority patent/CA2463104C/en
Publication of WO2003036039A1 publication Critical patent/WO2003036039A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/02Extraction using liquids, e.g. washing, leaching, flotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/06Reclamation of contaminated soil thermally
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/24Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by heating with electrical means
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimizing the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimizing the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/02Determining slope or direction
    • E21B47/022Determining slope or direction of the borehole, e.g. using geomagnetism
    • E21B47/0224Determining slope or direction of the borehole, e.g. using geomagnetism using seismic or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/02Couplings; joints
    • E21B17/028Electrical or electro-magnetic connections
    • E21B17/0285Electrical or electro-magnetic connections characterised by electrically insulating elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/901Specified land fill feature, e.g. prevention of ground water fouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy

Definitions

  • the present invention relates generally to methods and systems for production of hydrocarbons, hydrogen, and/or other products from various hydrocarbon containing formations. Certain embodiments relate to producing a first hydrocarbon mixture from a formation, and blending the first hydrocarbon mixture with a second hydrocarbon mixture to produce a mixture that has one or more desired characteristics.
  • Hydrocarbons obtained from subterranean formations are often used as energy resources, as feedstocks, and as consumer products.
  • Concerns over depletion of available hydrocarbon resources have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources.
  • In situ processes may be used to remove hydrocarbon materials from subterranean formations.
  • Chemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be removed from the subterranean formation.
  • the chemical and physical changes may result from in situ reactions that produce removable fluids, composition changes, solubility changes, phase changes, and/or viscosity changes of the hydrocarbon material within the formation.
  • a fluid may be, but is not limited to, a gas, a fluid, an emulsion, a slurry, and/or a stream of solid particles with flow characteristics similar to fluid flow.
  • Tar sand deposits may be mined. Surface processes may separate bitumen from sand and/or other material removed along with the hydrocarbons. The separated bitumen may be converted to light hydrocarbons using conventional refinery methods. Mining and upgrading tar sand is usually substantially more expensive than producing lighter hydrocarbons from conventional oil reservoirs.
  • heat is provided from a first set of heaters to a first section of a hydrocarbon containing formation to pyrolyze a portion of the hydrocarbons in the first section.
  • Heat may also be provided from a second set of heaters to a second section of the formation. The heat may reduce the viscosity of hydrocarbons in the second section so that a portion of the hydrocarbons in the second section are able to move.
  • a portion of the hydrocarbons from the second section may be induced to flow into the first section.
  • a mixture of hydrocarbons may be produced from the formation. The produced mixture may include at least some pyrolyzed hydrocarbons.
  • heat is provided from heaters to a portion of a hydrocarbon containing formation.
  • the heat may transfer from the heaters to a part of the formation of the formation to decrease a viscosity of hydrocarbons within the part of the formation.
  • a gas may be provided to the part of the formation. The gas may displace hydrocarbons from the part of the formation towards one or more production wells. A mixture of hydrocarbons may be produced from the part of the formation through one or more production wells.
  • a quality of a produced mixture may be controlled by varying a location for producing the mixture.
  • the location of production may be varied by varying the depth in the formation from which fluid is produced relative an overburden or underburden.
  • the location of production may also be varied by varying which production wells are used to produce fluid.
  • the production wells used to remove fluid may be chosen based on a distance of the production wells from activated heaters.
  • a blending agent may be produced from a part of a hydrocarbon containing formation.
  • a portion of the blending agent may be mixed with heavy hydrocarbons to produce a mixture having one or more selected characteristics (e.g., density, viscosity, and/or stability).
  • heat may be provided to a part of the formation to pyrolyze some hydrocarbons in a lower portion of the formation.
  • a mixture of hydrocarbons may be produced from an upper portion of the formation.
  • the mixture of hydrocarbons may include at least some pyrolyzed hydrocarbons from the lower portion of the formation.
  • a production rate of fluid from the formation may be controlled to adjust an average time that hydrocarbons in, or flowing into, a pyrolysis zone or exposed to pyrolysis temperatures. Controlling the production rate may allow for production of a large quantity of hydrocarbons of a desired quality from the formation.
  • FIG. 1 depicts a cross-sectional view of an embodiment for treating hydrocarbon containing formation containing heavy hydrocarbons with multiple heating sections.
  • FIG. 2 depicts a large pattern of heater and producer wells used in a simulation of an in situ process for a hydrocarbon containing formation.
  • FIG. 3 depicts a plan view of an embodiment of a hydrocarbon containing formation used to produce a first mixture that is blended with a second mixture.
  • FIG. 4 depicts SARA results (saturate/aromatic ratio versus asphaltene/resin ratio) for five blends.
  • FIG. 5 depicts viscosity versus temperature for three blended mixtures.
  • FIG. 6 illustrates oil production rates versus time for heavy hydrocarbons and light hydrocarbons in a simulation.
  • FIG. 7 illustrates oil production rates versus time for heavy hydrocarbons and light hydrocarbons with production inhibited for the first 500 days of heating in a simulation.
  • FIG. 8 illustrates percentage cumulative oil recovery versus time for three different horizontal producer well locations in a simulation.
  • FIG. 9 illustrates production rates versus time for heavy hydrocarbons and light hydrocarbons for middle and bottom producer locations in a simulation.
  • the following description generally relates to systems and methods for treating a hydrocarbon containing formation. Such formations may be treated to yield relatively high quality hydrocarbon products, hydrogen, and other products.
  • Hydrocarbons are generally defined as molecules formed primarily by carbon and hydrogen atoms. Hydrocarbons may also include other elements, such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons may be, but are not limited to, bitumen, pyrobitumen, and oils. Hydrocarbons may be located within or adjacent to mineral matrices within the earth. Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media.
  • Hydrocarbon fluids are fluids that include hydrocarbons. Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids (e.g., hydrogen ("H 2 "), nitrogen (“N 2 "), carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia).
  • formation fluids and “produced fluids” refer to fluids removed from a hydrocarbon containing formation and may include pyrolyzation fluid, synthesis gas, mobilized hydrocarbon, and water (steam).
  • mobilized fluid refers to fluids within the formation that are able to flow because of thermal treatment of the formation. Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids.
  • Carbon number refers to a number of carbon atoms within a hydrocarbon molecule.
  • a hydrocarbon fluid may include various hydrocarbons having varying numbers of carbon atoms.
  • the hydrocarbon fluid may be described by a carbon number distribution.
  • Carbon numbers and/or carbon number distributions may be determined by true boiling point distribution and/or gas-liquid chromatography.
  • a “heat source” is any system for providing heat to at least a portion of a formation substantially by conductive and/or radiative heat transfer.
  • a heat source may include electric heaters such as an insulated conductor, an elongated member, and/or a conductor disposed within a conduit.
  • a heat source may also include heat sources that generate heat by burning a fuel external to or within a formation, such as surface burners, downhole gas burners, flameless distributed combustors, and natural distributed combustors.
  • heat provided to or generated in one or more heat sources may be supplied by other sources of energy. The other sources of energy may directly heat a formation, or the energy may be applied to a transfer media that directly or indirectly heats the formation.
  • one or more heat sources that are applying heat to a formation may use different sources of energy.
  • some heat sources may supply heat from electric resistance heaters, some heat sources may provide heat from combustion, and some heat sources may provide heat from one or more other energy sources (e.g., chemical reactions, solar energy, wind energy, biomass, or other sources of renewable energy).
  • a chemical reaction may include an exothermic reaction (e.g., an oxidation reaction).
  • a heat source may include a heater that provides heat to a zone proximate and/or surrounding a heating location such as a heater well.
  • a “heater” is any system for generating heat in a well or a near wellbore region.
  • Heaters may be, but are not limited to, electric heaters, burners, combustors that react with material in or produced from a formation (e.g., natural distributed combustors), and/or combinations thereof.
  • a “unit of heat sources” refers to a number of heat sources that form a template that is repeated to create a pattern of heat sources within a formation.
  • Condensable hydrocarbons are hydrocarbons that condense at 25 °C at one atmosphere absolute pressure. Condensable hydrocarbons may include a mixture of hydrocarbons having carbon numbers greater than 4. "Non-condensable hydrocarbons” are hydrocarbons that do not condense at 25 °C and one atmosphere absolute pressure. Non-condensable hydrocarbons may include hydrocarbons having carbon numbers less than 5.
  • Heavy hydrocarbons are viscous hydrocarbon fluids. Heavy hydrocarbons may include highly viscous hydrocarbon fluids such as heavy oil, tar, and/or asphalt. Heavy hydrocarbons may include carbon and hydrogen, as well as smaller concentrations of sulfur, oxygen, and nitrogen. Additional elements may also be present in heavy hydrocarbons in trace amounts. Heavy hydrocarbons may be classified by API gravity. Heavy hydrocarbons generally have an API gravity below about 20°. Heavy oil, for example, generally has an API gravity of about 10- 20°, whereas tar generally has an API gravity below about 10°. The viscosity of heavy hydrocarbons is generally greater than about 100 centipoise at 15 °C. Heavy hydrocarbons may also include aromatics or other complex ring hydrocarbons. "Tar” is a viscous hydrocarbon that generally has a viscosity greater than about 10,000 centipoise at 15 °C.
  • the specific gravity of tar generally is greater than 1.000.
  • Tar may have an API gravity less than 10°.
  • a "tar sands formation” is a formation that includes heavy hydrocarbons and/or tar entrained in sand, sandstones, carbonates, fractured carbonates, volcanics, basement, or other host lithologies. In some cases, a portion or all of a hydrocarbon portion of a tar sands formation may be predominantly hydrocarbons with no supporting framework and only floating (or no) mineral matter.
  • An in situ process may be used to provide heat to mobilize and/or pyrolyze hydrocarbons within a hydrocarbon containing formation to produce hydrocarbons from the formation that are not producible using current production techniques such as surface mining, solution extraction, etc.
  • Such hydrocarbons may exist in relatively deep hydrocarbon containing formations.
  • such hydrocarbons may exist in a hydrocarbon containing formation that is greater than about 500 m below a ground surface but less than about 700 m below the surface.
  • Hydrocarbons within these relatively deep hydrocarbon containing formations may be at a relatively cool temperature such that the hydrocarbons are substantially immobile. Hydrocarbons found in deeper formations (e.g., a depth greater than about 700 m below the surface) may be somewhat more mobile due to increased natural heating of the formations as formation depth increases below the surface. Hydrocarbons may be more readily produced from these deeper formations because of their mobility. However, these hydrocarbons will generally be heavy hydrocarbons with an API gravity below about 20°. In some embodiments, the API gravity may be below about 15° or below about 10°.
  • FIG. 1 depicts a cross-sectional representation of an embodiment for treating heavy hydrocarbons in a formation with multiple heating sections.
  • Heat sources 10 may be placed within hydrocarbon containing layer 12. Heat sources 10 may be placed at different angles in hydrocarbon layer 12. In some embodiments, heat sources 10 may be placed substantially vertical with hydrocarbon layer 12. In other embodiments, heater source 10 may be placed substantially horizontally within hydrocarbon layer 12. Heat sources 10 may be placed in a desired pattern (e.g., hexagonal, triangular, square, etc.). In an embodiment, heat sources 10 are placed in triangular patterns as shown in FIG. 1. A spacing between heat sources 10 may be less than about 25 m within first section 14 or, in some embodiments, less about 20 m or less than about 15 m.
  • a volume of first section 14 (as well as second sections 16 and third sections 18) may be determined by a pattern and spacing of heat sources 10 within the section and/or a heat output of the heat sources.
  • Sections 14, 16 and 18 of hydrocarbon layer may be between overburden 18 and/or underburden 20. Over/burden and /or underburden may form a perimeter barrier.
  • Barriers may include, but are not limited to naturally occurring portions (e.g., overburden and/or underburden), freeze wells, frozen barrier zones, low temperature barrier zones, grout walls, sulfur wells, dewatering wells, injection wells, a barrier formed by a gel produced in the formation, a barrier formed by precipitation of salts in the formation, a barrier formed by a polymerization reaction in the formation, sheets driven into the formation, or combinations thereof.
  • naturally occurring portions e.g., overburden and/or underburden
  • freeze wells e.g., frozen barrier zones, low temperature barrier zones, grout walls, sulfur wells, dewatering wells, injection wells, a barrier formed by a gel produced in the formation, a barrier formed by precipitation of salts in the formation, a barrier formed by a polymerization reaction in the formation, sheets driven into the formation, or combinations thereof.
  • Production wells 22 may be placed within first section 14. A number, orientation, and/or location of production wells 22 may be determined by considerations including, but not limited to, a desired production rate, a selected product quality, and/or a ratio of heavy hydrocarbons to light hydrocarbons. For example, one production well 22 may be placed in an upper portion of first section 14 as shown in FIG. 1.
  • an injection well 24 is placed in first section 14.
  • Injection well 24 (and/or a heat source or production well) may be used to provide a pressurizing fluid into first section 14.
  • the pressurizing fluid may include, but is not limited to, carbon dioxide, N 2 , CH 4 , steam, combustion products, non-condensable fluid produced from the formation or combinations thereof.
  • a location of injection well 24 is chosen such that the recovery of fluids from first section 14 is increased with the provided pressurizing fluid.
  • heat sources 10 are used to provide heat to first section 14.
  • First section 14 may be heated such that at least some heavy hydrocarbons within the first section are mobilized.
  • a temperature at which at least some hydrocarbons are mobilized i.e., a mobilization temperature
  • a mobilization temperature may be between about 50 °C and about 210 °C. In other embodiments, a mobilization temperature is between about 50 °C and about 150 °C or between about 50 °C and about 100 °C.
  • a first mixture is produced from first section 14.
  • the first mixture may be produced through production well 22 or production wells and/or heat sources 10.
  • the first mixture may include mobilized fluids from the first section.
  • the mobilized fluids may include at least some hydrocarbons from first section 14.
  • the mobilized fluids produced include heavy hydrocarbons.
  • An API gravity of the first mixture may be less than about 20°, less than about 15°, or less than about 10°.
  • the first mixture includes at least some pyrolyzed hydrocarbons. Some hydrocarbons may be pyrolyzed in portions of first section 14 that are at higher temperatures than a remainder of the first section.
  • portions adjacent heat sources 10 may be at somewhat higher temperatures (e.g., approximately 50 °C to approximately 100 °C higher) than the remainder of first section 14.
  • second sections 16 may be adjacent to first section 14.
  • Second section 16 may include heat sources 10.
  • Heat sources 10 in second section 16 may be arranged in a pattern similar to a pattern of heat sources 10 in first section 14.
  • heat sources 10 in second section 16 are arranged in a different pattern than heat sources 10 in first section 14 to provide desired heating of the second section.
  • a spacing between heat sources 10 in second section 16 is greater than a spacing between heat sources 10 in first section 14.
  • Heat sources 10 may provide heat to second section 16 to mobilize at least some hydrocarbons within the second section.
  • temperature within first section 14 may be increased to a pyrolyzation temperature after production of the first mixture.
  • a pyrolyzation temperature in the first section may be between about 225 °C and about 375 °C. In some instances, a pyrolyzation temperature in the first section may be at least about 250 °C, or at least about 275 °C.
  • Mobilized fluids (e.g., mobilized heavy hydrocarbons) from second section 16 may be allowed to flow into first section 14. Some of the mobilized fluids from second section 16 that flow into first section 14 may be pyrolyzed within the first section. Pyrolyzing the mobilized fluids in first section 14 may upgrade a quality of fluids (e.g., increase an API gravity of the fluid).
  • a second mixture is produced from first section 14.
  • the second mixture may be produced through production well 22 or production wells and/or heat sources 10.
  • the second mixture may include at least some hydrocarbons pyrolyzed within first section 14.
  • Mobilized fluids from second section 16 and/or hydrocarbons originally within first section 14 may be pyrolyzed within the first section. Conversion of heavy hydrocarbons to light hydrocarbons by pyrolysis may be controlled by controlling heat provided to first section 14 and second section 16. In some embodiments, the heat provided to first section 14 and second section 16 is controlled by adjusting the heat output of a heat source or heat sources 10 within the first section.
  • the heat provided to first section 14 and second section 16 is controlled by adjusting the heat output of a heat source or heat sources 10 within the second section.
  • the heat output of heat sources 10 within first section 14 and second section 16 may be adjusted to control the heat distribution within hydrocarbon containing layer 12 to account for the flow of fluids along a vertical and/or horizontal plane within the formation.
  • the heat output may be adjusted to balance heat and mass fluxes within the formation so that mass within the formation (e.g., fluids and mineral matrix within the formation) is substantially uniformly heated.
  • Producing fluid from production wells in the first section may create a pressure gradient with low pressures located at the production wells.
  • the pressure gradient may draw mobilized fluid from adjacent sections into the first section.
  • a pressurizing fluid is provided in second section 16 (e.g., through injection well 24) to increase displacement of hydrocarbons within the second section towards the first section.
  • the pressurizing fluid may enhance the pressure gradient in the formation to flow mobilized hydrocarbons into first section 14.
  • the production of fluids from first section 14 allows the pressure in second section 16 to remain below a lithostatic pressure (e.g., below a pressure that allows fracturing of the overburden).
  • third section 18 may be adjacent to second section 16. Heat may be provided to third section 18 from heat sources 10. Heat sources 10 in third section 18 may be arranged in a pattern similar to a pattern of heat sources 10 in first section 14 and/or heat sources in the second section 16. In some embodiments, heat sources 10 in third section 18 are arranged in a different pattern than heat sources 10 in first section 14 and/or heat sources in the second section 16. In certain embodiments, a spacing between heat sources 10 in third section 18 is greater than a spacing between heat sources 10 in first section 14. Heat sources 10 may provide heat to third section 18 to mobilize at least some hydrocarbons within the third section. In an embodiment, a temperature within second section 16 may be increased to a pyrolyzation temperature after production of the first mixture.
  • Mobilized fluids from third section 18 may be allowed to flow into second section 16. Some of the mobilized fluids from third section 18 that flow into second section 16 may be pyrolyzed within the second section. A mixture may be produced from second section 16. The mixture produced from second section 16 may include at least some pyrolyzed hydrocarbons. An API gravity of the mixture produced from second section 16 may be at least about 20°, 30°, or 40°. The mixture may be produced through production wells
  • Heat provided to third section 18 and second section 16 may be controlled to control conversion of heavy hydrocarbons to light hydrocarbons and/or a desired characteristic of the mixture produced in the second section.
  • mobilized fluids from third section 18 are allowed to flow through second section 16 and into first section 14. At least some of the mobilized fluids from third section 18 may be pyrolyzed in first section 14. In addition, some of the mobilized fluids from third section 18 may be produced as a portion of the second mixture in first section 14. The heavy hydrocarbon fraction in produced fluids may decrease as successive sections of the formation are produced through first section 14.
  • a pressurizing fluid is provided in third section 18 (e.g., through injection well 24) to increase displacement of hydrocarbons within the third section.
  • the pressurizing fluid may increase a flow of mobilized hydrocarbons into second section 16 and/or first section 14.
  • a pressure gradient may be produced between third section 18 and first section 14 such that the flow of fluids from the third section towards the first section is increased.
  • heat provided to first section 14, second section 16 and/or other sections is turned on at the same time or within a short time of each other.
  • heat provided to second section 16, third section 18, and any subsequent sections may be turned on simultaneously after first section 14 has been substantially depleted of hydrocarbons and other fluids (e.g., brine).
  • sections may be turned on in a staggered pattern.
  • the delay between turning on first section 14 and subsequent sections may be, for example, about 1 year, about 1.5 years, or about 2 years.
  • Hydrocarbons may be produced from first section 14 and/or second section 16 such that at least about 50 % by weight of the initial mass of hydrocarbons in the formation is produced. In other embodiments, at least about
  • FIG. 2 depicts a pattern of heat sources 10 and production wells 22(A-E) placed in hydrocarbon containing layer 12 and used in the large pattern simulation.
  • Heat sources 10 and production wells 22(A-E) were placed horizontally within hydrocarbon containing layer 12 with a length of 1000 m.
  • Hydrocarbon containing layer 12 had a horizontal width of 145 m and a vertical height of 28 m.
  • Five production wells 22(A-E) were placed within the pattern of heat sources 10 and with the spacings as shown in FIG. 2.
  • a first stage of heating included turning on heat sources 10 in first section 26. Production during the first stage of heating was through production well 22 A in first section 26. A minimum pressure for production in production well 22A was set at 6.8 bars absolute. Fluids were produced through production well 22A as the fluids were mobilized and/or pyrolyzed within hydrocarbon containing layer 12. The first stage of heating occurred for the first 360 days of the simulation.
  • a second stage of heating included turning on heat sources 10 in second section 28, third section 30, fourth section 32 and fifth section 34.
  • Heat sources 10 in second section 28, third section 30, fourth section 32 and fifth section 34 were turned on at 360 days.
  • Minimum pressure for production in production wells 22(B-E) was set at
  • Heat sources 10 in first section 26 were turned off at 1860 days. At 1860 days, production through production well 22 A was also shut off. Heat sources 10 in other sections 28, 30, 32, 34 were similarly turned off after 2200 days. The simulation ended at 2580 days with production through production wells 22(B-E) remaining on. Heat sources 10 were maintained at a relatively constant heat output of 1 150 watts per meter. Production after the first stage of heating was through any one of production wells 22(A-E). Because fluids were produced through production well 22A at earlier times, fluids in the formation tended to flow towards production well 22 A as the fluids were mobilized and/or pyrolyzed in other sections of hydrocarbon containing layer 12. Fluids flow was largely due to vapor phase transport of fluids within hydrocarbon containing layer 12. A maximum average pressure in fifth section 34 remained below about 100 bars absolute around 800 days into the simulation. Pressure then decreased as fluids were mobilized within fifth section 34 (i.e., the average temperature increased above about 100 °C).
  • the high production rate at about 1785 days may be due to a high rate of vapor phase transport in the formation following pyrolysis of hydrocarbons in the formation.
  • Gas production slowly increased for approximately the first 1500 days and then increased rapidly after about 1500 days to a maximum of about 23500 m 3 /day at about 1800 days.
  • the maximum gas production rate occurred at a substantially similar time to the maximum oil production rate.
  • the maximum oil production rate may be primarily due to a high gas production rate.
  • a quality of produced hydrocarbon fluids from a hydrocarbon containing formation may be described by a carbon number distribution.
  • lower carbon number products such as products having carbon numbers less than about 25 may be considered to be more valuable than products having carbon numbers greater than about 25.
  • treating a hydrocarbon containing formation may include providing heat to at least a portion of a formation to produce hydrocarbon fluids from the formation of which a majority of the produced fluid may have carbon numbers of less than approximately 25, or, for example, less than approximately 20.
  • less than about 20 weight % of the produced condensable fluid may have carbon numbers greater than about 20.
  • Heavy hydrocarbons produced from a hydrocarbon containing formation may be mixed with light hydrocarbons so that the heavy hydrocarbons can be transported to a surface facility or refinery (e.g., pumping the hydrocarbons through a pipeline).
  • the light hydrocarbons (such as naphtha) are brought in through a second pipeline (or are trucked) from other areas (such as a surface facility or another production site) to be mixed with the heavy hydrocarbons.
  • the cost of purchasing and/or transporting the light hydrocarbons to a formation site can add significant cost to a process for producing hydrocarbons from a formation.
  • producing the light hydrocarbons at or near a formation site may allow for use of the second pipeline for other purposes.
  • the second pipeline may be used, in addition to a first pipeline already used for pumping produced fluids, to pump produced fluids from the formation site to a surface facility.
  • Use of the second pipeline for this purpose may further increase the economic viability of producing light hydrocarbons (i.e., blending agents) at or near the formation site.
  • Another option is to build a surface facility or refinery at a formation site. However, this can be expensive and, in some cases, not possible.
  • light hydrocarbons may be produced at or near a formation site that produces heavy hydrocarbons (i.e., near the production site of heavy hydrocarbons).
  • the light hydrocarbons may be mixed with heavy hydrocarbons to produce a transportable mixture.
  • the transportable mixture may be introduced into a first pipeline used to transport fluid to a remote refinery or transportation facility, which may be located more than about 100 km from the production site.
  • the transportable mixture may also be introduced into a second pipeline that was previously used to transport a blending agent (e.g., naphtha) to or near the production site.
  • Producing the blending agent at or near the production site may allow the ability to significantly increase throughput to the remote refinery or transportation facility without installation of additional pipelines.
  • the blending agent used may be recovered and sold from the refinery instead of being transported back to the heavy hydrocarbon production site.
  • the transportable mixture may also be used as a raw material feed for a production process at the remote refinery.
  • Throughput of heavy hydrocarbons to an existing remote surface facility may be a limiting factor in embodiments that use a two pipeline system with one of the pipelines dedicated to transporting a blending agent to the heavy hydrocarbon production site.
  • Using a blending agent produced at or near the heavy hydrocarbon production site may allow for a significant increase in the throughput of heavy hydrocarbons to the remote surface facility.
  • the blending agent may be used to clean tanks, pipes, wellbores, etc. The blending agent may be used for such purposes without precipitating out components cleaned from the tanks, pipes, or wellbores.
  • heavy hydrocarbons are produced as a first mixture from a first section of a hydrocarbon containing formation.
  • Heavy hydrocarbons may include hydrocarbons with an API gravity below about 20°, 15°, or 10°. Heat provided to the first section may mobilize at least some hydrocarbons within the first section.
  • the first mixture may include at least some mobilized hydrocarbons from the first section.
  • Heavy hydrocarbons in the first mixture may include a relatively high asphaltene content compared to saturated hydrocarbon content.
  • heavy hydrocarbons in the first mixture may include an asphaltene content to saturated hydrocarbon content ratio greater than about 1, greater than about 1.5, or greater than about 2.
  • Heat provided to a second section of the formation may pyrolyze at least some hydrocarbons within the second section.
  • a second mixture may be produced from the second section.
  • the second mixture may include at least some pyrolyzed hydrocarbons from the second section.
  • Pyrolyzed hydrocarbons from the second section may include light hydrocarbons produced in the second section.
  • the second mixture may include relatively higher amounts (as compared to heavy hydrocarbons or hydrocarbons found in the formation) of hydrocarbons such as naphtha, methane, ethane, or propane (i.e., saturated hydrocarbons) and/or aromatic hydrocarbons.
  • light hydrocarbons may include an asphaltene content to saturated hydrocarbon content ratio less than about 0.5, less than about 0.05, or less than about 0.005.
  • a condensable fraction of the light hydrocarbons of the second mixture may be used as a blending agent.
  • the presence of compounds in the blending agent in addition to naphtha may allow the blending agent to dissolve a large amount of asphaltenes and/or solid hydrocarbons.
  • the blending agent may be used to clean tanks, pipelines or other vessels that have solid (or semi-solid) hydrocarbon deposits.
  • the light hydrocarbons of the second mixture may include less nitrogen, oxygen, and/or sulfur than heavy hydrocarbons.
  • light hydrocarbons may have a nitrogen, oxygen, and sulfur combined weight percentage of less than about 5 %, less than about 2 %, or less than about 1 %.
  • Heavy hydrocarbons may have a nitrogen, oxygen, and sulfur combined weight percentage greater than about 10 %, greater than about 15 %, or greater than about 18 %.
  • Light hydrocarbons may have an API gravity greater than about 20°, greater than about 30° or greater than about 40°.
  • the first mixture and the second mixture may be blended to produce a third mixture.
  • the third mixture may be formed in a surface facility located at or near production facilities for the heavy hydrocarbons.
  • the third mixture may have a selected API gravity.
  • the selected API gravity may be at least about 10° or, in some embodiments, at least about 20° or 30°.
  • the API gravity may be selected to allow the third mixture to be efficiently transported (e.g., through a pipeline).
  • a ratio of the first mixture to the second mixture in the third mixture may be determined by the API gravities of the first mixture and the second mixture. For example, the lower the API gravity of the first mixture, the more of the second mixture that may be needed to produce a selected API gravity in the third mixture.
  • the ratio of the first mixture to the second mixture may be increased.
  • a ratio of the first mixture to the second mixture in the third mixture is at least about 3: 1.
  • Other ratios may be used to produce a third mixture with a desired API gravity.
  • a ratio of the first mixture to the second mixture is chosen such that a total mass recovery from the formation will be as high as possible.
  • the ratio of the first mixture to the second mixture may be chosen such that at least about 50 % by weight of the initial mass of hydrocarbons in the formation is produced. In other embodiments, at least about 60 % by weight or at least about 70 % by weight of the initial mass of hydrocarbons may be produced.
  • the first mixture and the second mixture are blended in a specific ratio that may increase the total mass recovery from the formation compared to production of only the second mixture from the formation (i.e., in situ processing of the formation to produce light hydrocarbons).
  • the ratio of the first mixture to the second mixture in the third mixture may be selected based on a desired viscosity, desired boiling point, desired composition, desired ratio of components (e.g., a desired asphaltene to saturated hydrocarbon ratio or a desired aromatic hydrocarbon to saturated hydrocarbon ratio), and/or desired density of the third mixture.
  • the viscosity and/or density may be selected such that the third mixture is ⁇ transportable through a pipeline or usable in a surface facility.
  • the viscosity (at about 4 °C) may be selected to be less than about 7500 centistokes (cs) less than about 2000 cs, less than about 100 cs, or less than about 10 cs.
  • Centistokes is a unit of kinematic viscosity. Kinematic viscosity multiplied by the density yields absolute viscosity.
  • the density (at about 4 °C) may be selected to be less than about 1.0 g/cm 3 , less than about 0.95 g/cm 3 , or less than about 0.9 g/cm 3 .
  • the asphaltene to saturated hydrocarbon ratio may be selected to be less than about 1, less than about 0.9, or less than about 0.7.
  • the aromatic hydrocarbon to saturated hydrocarbon ratio may be selected to be less than about 4, less than about 3.5, or less than about 2.5.
  • the ratio of the first mixture to the second mixture in the third mixture is selected based on the relative stability of the third mixture.
  • a component or components of the third mixture may precipitate out of the third mixture.
  • asphaltene precipitation may be a problem for some mixtures of heavy hydrocarbons and light hydrocarbons. Asphaltenes may precipitate when fluid is de-pressurized (e.g., removed from a pressurized formation or vessel) and/or there is a change in mixture composition.
  • the third mixture may need a minimum relative stability.
  • the minimum relative stability may include a ratio of the first mixture to the second mixture such that asphaltenes do not precipitate out of the third mixture at ambient and/or elevated temperatures.
  • Tests may be used to determine desired ratios of the first mixture to the second mixture that will produce a relatively stable third mixture. For example, induced precipitation, chromatography, titration, and/or laser techniques may be used to determine the stability of asphaltenes in the third mixture.
  • asphaltenes precipitate out of a mixture but are held suspended in the mixture and, hence, the mixture may be transportable.
  • a blending agent produced by an in situ process may have excellent blending characteristics with heavy hydrocarbons (i.e., low probability for precipitation of heavy hydrocarbons from a mixture with the blending agent).
  • resin content in the second mixture i.e., light hydrocarbon mixture
  • resins such as maltenes or resins containing heteroatoms such as N, S or O may be present in the second mixture. These resins may enhance the stability of a third mixture produced by mixing a first mixture with the second mixture. In some cases, the resins may suspend asphaltenes in the mixture and inhibit asphaltene precipitation.
  • market conditions may determine characteristics of a third mixture.
  • Examples of market conditions may include, but are not limited to, demand for a selected octane of gasoline, demand for heating oil in cold weather, demand for a selected cetane rating in a diesel oil, demand for a selected smoke point for jet fuel, demand for a mixture of gaseous products for chemical synthesis, demand for transportation fuels with a certain sulfur or oxygenate content, or demand for material in a selected chemical process.
  • a blending agent may be produced from a section of a hydrocarbon containing formation.
  • "Blending agent” is a material that is mixed with another material to produce a mixture having a desired property (e.g., viscosity, density, API gravity, etc.).
  • the blending agent may include at least some pyrolyzed hydrocarbons.
  • the blending agent may include properties of the second mixture of light hydrocarbons described above.
  • the blending agent may have an API gravity greater than about 20°, greater than about 30°, or greater than about 40°.
  • the blending agent may be blended with heavy hydrocarbons to produce a mixture with a selected API gravity.
  • the blending agent may be blended with heavy hydrocarbons with an API gravity below about 15° to produce a mixture with an API gravity of at least about 20°.
  • the blending agent may be blended with heavy hydrocarbons to produce a transportable mixture (e.g., movable through a pipeline).
  • the heavy hydrocarbons are produced from another section of the hydrocarbon containing formation.
  • the heavy hydrocarbons may be produced from another hydrocarbon containing formation or any other formation containing heavy hydrocarbons.
  • the first section and the second section of the formation may be at different depths within the same formation.
  • the heavy hydrocarbons may be produced from a section having a depth between about 500 m and about 1500 m, a section having a depth between about 500 m and about 1200 m, or a section having a depth between about 500 m and about 800 m. At these depths, the heavy hydrocarbons may be somewhat mobile (and producible) due to a relatively higher natural temperature in the reservoir.
  • the light hydrocarbons may be produced from a section having a depth between about 10 m and about 500 m, a section having a depth between about 10 m and about 400 m, or a section having a depth between about 10 m and about 250 m.
  • heavy hydrocarbons may not be readily producible because of the lower natural temperatures at the shallower depths.
  • the API gravity of heavy hydrocarbons may be lower at shallower depths due to increased water washing and/or bacterial degradation.
  • heavy hydrocarbons and light hydrocarbons are produced from first and second sections that are at a similar depth below the surface.
  • the light hydrocarbons and the heavy hydrocarbons are produced from different formations. The different formations, however, may be located near each other.
  • heavy hydrocarbons are cold produced from a formation (e.g., a formation in the Faja (Venezuela)) at depths between about 760 m and about 1070 m.
  • the produced hydrocarbons may have an API gravity of less than about 9°.
  • Cold production of heavy hydrocarbons is generally defined as the production of warm (i.e., mobilized) heavy hydrocarbons) without providing heat (or providing relatively little heat) to the formation or the production well.
  • the heavy hydrocarbons may be produced by steam injection or a mixture of steam injection and cold production.
  • the heavy hydrocarbons may be mixed with a blending agent to transport the produced heavy hydrocarbons through a pipeline.
  • the blending agent is naphtha.
  • Naphtha may be produced in surface facilities that are located remotely from the formation.
  • the pressure in the formation may increase with increasing temperature in the formation because of thermal expansion and/or phase change of heavy hydrocarbons and other fluids (e.g., water) in the formation.
  • Pressure within the formation may be maintained below a selected pressure to inhibit unwanted production, fracturing of the overburden or underburden, and/or coking of hydrocarbons in the formation.
  • the selected pressure may approach the lithostatic pressure or natural hydrostatic pressure of the formation. In an embodiment, the selected pressure may be about 35 bars absolute. Controlling production rate from production wells in the formation may control the pressure in the formation.
  • pressure in the formation may be controlled by releasing vapor within the formation through one or more pressure release wells in the formation.
  • Pressure relief wells may be heat sources or separate wells inserted into the formation.
  • Formation fluid removed from the formation through the relief wells may be sent to a surface facility.
  • Producing at least some hydrocarbons from the formation may inhibit the pressure in the formation from rising above the selected pressure.
  • some formation fluids may be back produced through a heat source wellbore.
  • some formation fluids may be back produced through a heat source wellbore during early times of heating of a hydrocarbon containing formation.
  • some formation fluids may be produced through a portion of a heat source wellbore. Injection of heat may be adjusted along the length of the wellbore so that fluids produced through the wellbore are not overheated. Fluids may be produced through portions of the heat source wellbore that are at lower temperatures than other portions of the wellbore.
  • Producing at least some formation fluids through a heat source wellbore may reduce or eliminate the need for additional production wells in a formation.
  • pressures within the formation may be reduced by producing fluids through a heat source wellbore (especially within the region surrounding the heat source wellbore). Reducing pressures in the formation may increase the production of liquids and decrease the production of vapors from the formation.
  • producing fluids through heat source wellbores may lead to earlier production of fluids from the formation. Portions of the formation closest to heat source wellbores will increase to mobilization and/or pyrolysis temperatures earlier than portions of the formation near production wells. Thus, fluids may be produced at earlier times from portions near the heat source wellbores.
  • the heavy hydrocarbons may be mixed with a blending agent produced from a shallower section of the formation using an in situ conversion process.
  • the shallower section may be at a depth less than about 400 m (e.g., less than about 150 m).
  • the shallower section of the formation may contain heavy hydrocarbons with an API gravity of less than about 7°.
  • the blending agent may include light hydrocarbons produced by pyrolyzing at least some of the heavy hydrocarbons from the shallower section of the formation.
  • the blending agent may have an API gravity above about 35° (e.g., above about 40°).
  • a blending agent may be produced in a first portion of a hydrocarbon containing formation and injected (e.g., into a production well) into a second portion of the hydrocarbon containing formation (or, in some embodiments, a second portion in another hydrocarbon containing formation). Heavy hydrocarbons may be produced from the second portion (e.g., by cold production). Mixing between the blending agent may occur within the production well and/or within the second portion of the formation. The blending agent may be produced through a production well in the first portion and pumped to a production well in the second portion.
  • non-hydrocarbon fluids e.g., water or carbon dioxide
  • vapor-phase hydrocarbons vapor-phase hydrocarbons, and/or other undesired fluids may be separated from the blending agent prior to mixing with heavy hydrocarbons.
  • Injecting the blending agent into a portion of a hydrocarbon containing formation may provide mixing of the blending agent and heavy hydrocarbons in the portion.
  • the blending agent may be used to assist in the production of heavy hydrocarbons from the formation.
  • the blending agent may reduce a viscosity of heavy hydrocarbons in the formation. Reducing the viscosity of heavy hydrocarbons in the formation may reduce the possibility of clogging or other problems associated with cold producing heavy hydrocarbons.
  • the blending agent may be at an elevated temperature and be used to provide at least some heat to the formation to increase the mobilization (i.e., reduce the viscosity) of heavy hydrocarbons within the formation.
  • the elevated temperature of the blending agent may be a temperature proximate the temperature at which the blending agent is produced minus some heat losses during production and transport of the blending agent.
  • the blending agent may be pumped through an insulated pipeline to reduce heat losses during transport.
  • the blending agent may be mixed with the cold produced heavy hydrocarbons in a selected ratio to produce a third mixture with a selected API gravity.
  • the blending agent may be mixed with cold produced heavy hydrocarbons in a 1 to 2 ratio or a 1 to 4 ratio to produce a third mixture with an API gravity greater than about 20°.
  • the third mixture may have an overall API gravity greater than about 25° or an API gravity sufficiently high such that the third mixture is transportable through a conduit or pipeline.
  • the third mixture of hydrocarbons may have an API gravity between about 20° and about 45°.
  • the blending agent may be mixed with cold produced heavy hydrocarbons to produce a third mixture with a selected viscosity, a selected stability, and/or a selected density.
  • the third mixture may be transported through a conduit, such as a pipeline, between the formation and a surface facility or refinery.
  • the third mixture may be transported through a pipeline to another location for further transportation (e.g., the mixture can be transported to a facility at a river or a coast through the pipeline where the mixture can be further transported by tanker to a processing plant or refinery).
  • Producing the blending agent at the formation site i.e., producing the blending agent from the formation
  • producing the third hydrocarbon mixture at a formation site may eliminate a need for a separate supply of light hydrocarbons and/or construction of a surface facility at the site.
  • a third mixture of hydrocarbons produced from a hydrocarbon containing formation may include about 20 weight % light hydrocarbons or greater (e.g., about 50 weight % or about 80 weight % light hydrocarbons) and about 80 weight % heavy hydrocarbons or less (e.g., about 50 weight % or about 20 weight % heavy hydrocarbons).
  • the weight percentage of light hydrocarbons and heavy hydrocarbons may vary depending on, for example, a weight distribution (or API gravity) of light and heavy hydrocarbons, a relatively stability of the third mixture or a desired API gravity of the mixture.
  • the weight percentage of light hydrocarbons may be selected to blend the least amount of light hydrocarbons with heavy hydrocarbons that produces a mixture with a desired density or viscosity.
  • FIG. 3 depicts a plan view of an embodiment of a hydrocarbon containing formation used to produce a first mixture that is blended with a second mixture.
  • Hydrocarbon containing formation 12 may include first section 36 and second section 38.
  • First section 36 may be at depths greater than, for example, about 800 m below a surface of the formation. Heavy hydrocarbons in first section 36 may be produced through production well 22 placed in the first section. Heavy hydrocarbons in first section 36 may be produced without heating because of the depth of the first section.
  • First section 36 may be below a depth at which natural heating mobilizes heavy hydrocarbons within the first section. In some embodiments, at least some heat may be provided to first section 36 to mobilize fluids within the first section.
  • Second section 38 may be heated using heat sources 10 placed in the second section.
  • Heat sources 10 are depicted as substantially horizontal heat sources in FIG. 3. Heat provided by heat sources 10 may pyrolyze at least some hydrocarbons within second section 38. Pyrolyzed fluids may be produced from second section 38 through production well 22'. Production well 22' is depicted as a substantially vertical production well in FIG. 3.
  • heavy hydrocarbons from first section 36 are produced in a first mixture through production well 22.
  • Light hydrocarbons i.e., pyrolyzed hydrocarbons
  • the first mixture and the second mixture may be mixed to produce a third mixture in surface facility 40.
  • the first and the second mixture may be mixed in a selected ratio to produce a desired third mixture.
  • the third mixture may be transported through pipeline 42 to a production facility or a transportation facility.
  • the production facility or transportation facility may be located remotely from surface facility 40.
  • the third mixture may be trucked or shipped to a production facility or transportation facility.
  • surface facility 40 may be a simple mixing station to combine the mixtures produced from production well 22 and production well 22'.
  • the blending agent produced from second section 38 may be injected through production well 22 into first section 36.
  • a mixture of light hydrocarbons and heavy hydrocarbons may be produced through production well 22 after mixing of the blending agent and heavy hydrocarbons in first section 36.
  • the blending agent may be produced by separating non-desirable components (e.g., water) from a mixture produced from second section 38.
  • the blending agent may be produced in surface facility.
  • the blending agent may be pumped from surface facility through production well 22 and into first section 36.
  • FIGS. 4 and 5 depict results from an experiment.
  • blending agent 50 produced by pyrolysis was mixed with Athabasca tar (heavy hydrocarbons 52) in three blending mixtures of different ratios.
  • First mixture 54 included 80 % blending agent 50 and 20 % heavy hydrocarbons 52.
  • Second mixture 56 included
  • blending agent 50 % blending agent 50 and 50 % heavy hydrocarbons 52.
  • Third mixture 58 included 20 % blending agent 50 and 80 % heavy hydrocarbons 52. Composition, physical properties, and asphaltene stability were measured for the blending agent, heavy hydrocarbons, and each of the mixtures.
  • Table 1 presents results of composition measurements of the mixtures.
  • SARA analysis determined composition on a topped oil basis. SARA analysis includes a combination of induced precipitation (for asphaltenes) and column chromatography. Whole oil basis compositions were also determined.
  • NSO Resins (containing heteroatoms such as N, S and O)
  • FIG. 4 depicts SARA results (saturate/aromatic ratio versus asphaltene/resin ratio) for each of the blends (50, 52, 54, 56 and58).
  • the line in FIG. 4 represents the differentiation between stable mixtures and unstable mixtures based on SARA results.
  • the topping procedure used for SARA removed a greater proportion of the contribution of blending agent 50 (as compared to whole oil analysis) and resulted in the non-linear distribution in FIG. 4.
  • First mixture 54, second mixture 56 and third mixture 58 plotted closer to heavy hydrocarbons 52 than blending agent 50.
  • second mixture 56 and third mixture 58 plotted relatively closely. All blends (50, 52, 54, 56 and 58 ) plotted in a region of marginal stability.
  • Blending agent 50 included very little asphaltene (0.01 % by weight, whole oil basis).
  • Heavy hydrocarbons 52 included about 13.2 % by weight (whole oil basis) with the amount of asphaltenes in the mixtures (54, 56, and 58) varying between 2.2 % by weight and 10.3 % by weight on a whole oil basis.
  • Other indicators of the gross oil properties is the ratio between saturates and aromatics and the ratio between asphaltenes and resins.
  • the asphaltene/resin ratio was lowest for first mixture 54, which has the largest percentage of blending agent 40.
  • Second mixture 56 and third mixture 58 had relatively similar asphaltene/resin ratios indicating that the majority of resins in the mixtures are due to contribution from heavy hydrocarbons 52.
  • the saturate/aromatic ratio was relatively similar for each of the mixtures.
  • Second mixture 56 exhibited different behavior. Second mixture 56 had a FPA value of 2.2 indicating instability with respect to asphaltene precipitation. FPA analysis showed that the asphaltenes were precipitated, re- dissolved, and then re-precipitated with continuous addition of n-heptane.
  • third mixture 58 FPA analysis of third mixture 58 showed that the asphaltenes were precipitated, re-dissolved, and then re- precipitated with continuous addition of n-heptane, as found for second mixture 56.
  • the first precipitation in third mixture 58 was less pronounced than for second mixture 56.
  • the FPA value of 2.8 found for third mixture 58 indicates marginal stability for the third mixture. Slow homogenization, associated with a high viscosity of the sample mixtures, is most likely responsible for the precipitation, re-dissolving, and re-precipitation with continued n-heptane addition.
  • First mixture 54 was the least affected by temperature with viscosity values at 21 °C and 32 °C determined to be about 70 % and about 57 % of that at 4.4 °C, respectively.
  • Second mixture 56 had viscosity values that decreased to values (of that at 4.4 °C) of about 48 % at 21 °C and about 30 % at 32 °C.
  • Third mixture 58 was the most affected by temperature with viscosity values of about 21 % and about 9 % at 21 °C and 32 °C, respectively. Viscosity changes are approximately linear on a logarithmic plot of viscosity versus temperature as shown in FIG. 5.
  • Run #79 was operated with no backpressure (about 1 bar absolute) and a heating rate of 5 °C/day.
  • Run #81 was operated with no backpressure (about 1 bar absolute) and a heating rate of 10 °C/day.
  • Run #86 was operated at a pressure of 7.9 bars absolute and a heating rate of 10 °C/day.
  • Run #96 was operated at a pressure of 28.6 bars absolute and a heating rate of 10 °C/day. In general, 0.5 to 1.5 kg initial weight of the sample was required to fill the available retort cells.
  • Table 3 illustrates the elemental analysis of initial tar and of the produced fluids for runs #81, #86, and #96. These data are all for a heating rate of 10 °C/day. Only pressure was varied between the runs.
  • Table 4 illustrates NOISE (Nitric Oxide Ionization Spectrometry Evaluation) analysis data for runs #81 , #86, and #96 and the initial tar. The remaining weight percentage (47.2%) in the initial tar may be found in the high molecular weight residue.
  • Tri-aromatics (wt%) 1.7 1.72 0.53 0
  • Tetra-aromatics 0.02 0.01 0 0
  • pyrolyzation of tar sand produces a product fluid with a significantly higher weight percentage of paraffins, cycloalkanes, and mono-aromatics than found in the initial tar sand.
  • Increasing the pressure up to 7.9 bars absolute appears to substantially eliminate the production of tetra-aromatics.
  • Further increasing the pressure up to 28.6 bars absolute appears to substantially eliminate the production of tri-aromatics.
  • An increase in the pressure also appears to decrease production of di-aromatics.
  • Increasing the pressure up to 28.6 bars absolute also appears to significantly increase production of mono-aromatics. This may be due to an increased hydrogen partial pressure at the higher pressure.
  • the increased hydrogen partial pressure may reduce the number of poly-aromatic compounds and increase the number of mono-aromatics, paraffins, and/or cycloalkanes.
  • FIG. 6 illustrates oil production rates (m 3 /day) versus time (in days) for heavy hydrocarbons 52 and light hydrocarbons 60 as determined by computer simulation techniques.
  • Heavy hydrocarbon production 52 reached a maximum of about 3 m 3 /day at about 150 days.
  • Light hydrocarbon production 60 reached a maximum of about 9.6 m 3 /day at about 950 days.
  • almost all heavy hydrocarbon production 52 was complete before the onset of light hydrocarbon production 60.
  • the early heavy hydrocarbon production was attributed to production of cold (relatively unheated and unpyrolyzed) heavy hydrocarbons.
  • FIG. 7 illustrates oil production rates (m 3 /day) versus time (days) for heavy hydrocarbons 52 and light hydrocarbons 60 with production inhibited for the first 500 days of heating as determined by simulation of treatment of the formation.
  • Heavy hydrocarbon production 52 in FIG. 7 was significantly lower than heavy hydrocarbon production 52 in FIG. 6.
  • Light hydrocarbon production 60 in FIG. 7 was higher than light hydrocarbon production 60 in FIG. 6, reaching a maximum of about 11.5 m 3 /day at about 950 days.
  • the percentage of light hydrocarbons to heavy hydrocarbons was increased by inhibiting production the first 500 days of heating.
  • top 62 illustrates percentage cumulative oil recovery versus time (days) for three different horizontal producer well locations: top 62, middle 64, and bottom 66 as determined by simulation of treatment of the formation.
  • the highest cumulative oil recovery was obtained using bottom producer 66.
  • middle producer 64 and top producer 66 There was relatively little difference in cumulative oil recovery between middle producer 64 and top producer 66.
  • FIG. 9 illustrates production rates (m 3 /day) versus time (days) for heavy hydrocarbons and light hydrocarbons for a middle producer location and a bottom producer location as determined by simulation of treatment of the formation.
  • heavy hydrocarbon production 68 from the bottom producer was more than heavy hydrocarbon production 70 from the middle producer.
  • light hydrocarbon production 72 from the bottom producer was relatively little difference between light hydrocarbon production 72 from the bottom producer and light hydrocarbon production 74 from the middle producer.
  • Higher cumulative oil recovery obtained with the bottom producer may be due to increased heavy hydrocarbon production.

Abstract

An in situ process for treating a hydrocarbon containing formation is provided. The process may include providing heat from one or more heaters to at least a portion of the formation. The heat may be allowed to transfer from the reaction zone to a part of the formation such that heat from one or more heaters pyrolyzes at least some hydrocarbons within the part of the formation. A blending agent may be produced from the part of the formation, wherein a mixture produced with the blending agent has at least one selected property.

Description

IN SITU PRODUCTION OF A BLENDING AGENT FROM A HYDROCARBON CONTAINING
FORMATION
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to methods and systems for production of hydrocarbons, hydrogen, and/or other products from various hydrocarbon containing formations. Certain embodiments relate to producing a first hydrocarbon mixture from a formation, and blending the first hydrocarbon mixture with a second hydrocarbon mixture to produce a mixture that has one or more desired characteristics.
2. Description of Related Art
Hydrocarbons obtained from subterranean formations are often used as energy resources, as feedstocks, and as consumer products. Concerns over depletion of available hydrocarbon resources have led to development of processes for more efficient recovery, processing and/or use of available hydrocarbon resources. In situ processes may be used to remove hydrocarbon materials from subterranean formations. Chemical and/or physical properties of hydrocarbon material within a subterranean formation may need to be changed to allow hydrocarbon material to be removed from the subterranean formation. The chemical and physical changes may result from in situ reactions that produce removable fluids, composition changes, solubility changes, phase changes, and/or viscosity changes of the hydrocarbon material within the formation. A fluid may be, but is not limited to, a gas, a fluid, an emulsion, a slurry, and/or a stream of solid particles with flow characteristics similar to fluid flow.
Large deposits of heavy hydrocarbons (e.g., heavy oil and/or tar) contained within formations (e.g., in tar sands) are found in North America, South America, and Asia. Tar sand deposits may be mined. Surface processes may separate bitumen from sand and/or other material removed along with the hydrocarbons. The separated bitumen may be converted to light hydrocarbons using conventional refinery methods. Mining and upgrading tar sand is usually substantially more expensive than producing lighter hydrocarbons from conventional oil reservoirs.
There has been a significant amount of effort to develop methods and systems to economically produce hydrocarbons, hydrogen, and/or other products from hydrocarbon containing formations. Heavy hydrocarbons produced from a hydrocarbon containing formation may be difficult to transport to a surface facility or refinery.
The cost of purchasing and/or transporting the light hydrocarbons to a formation site can add significant cost to a process for producing hydrocarbons from a formation. Thus, there is a need for methods and systems to economically produce and transport heavy hydrocarbons from a production site.
SUMMARY OF THE INVENTION
In an embodiment, heat is provided from a first set of heaters to a first section of a hydrocarbon containing formation to pyrolyze a portion of the hydrocarbons in the first section. Heat may also be provided from a second set of heaters to a second section of the formation. The heat may reduce the viscosity of hydrocarbons in the second section so that a portion of the hydrocarbons in the second section are able to move. A portion of the hydrocarbons from the second section may be induced to flow into the first section. A mixture of hydrocarbons may be produced from the formation. The produced mixture may include at least some pyrolyzed hydrocarbons. In an embodiment, heat is provided from heaters to a portion of a hydrocarbon containing formation. The heat may transfer from the heaters to a part of the formation of the formation to decrease a viscosity of hydrocarbons within the part of the formation. A gas may be provided to the part of the formation. The gas may displace hydrocarbons from the part of the formation towards one or more production wells. A mixture of hydrocarbons may be produced from the part of the formation through one or more production wells.
In certain embodiments, a quality of a produced mixture may be controlled by varying a location for producing the mixture. The location of production may be varied by varying the depth in the formation from which fluid is produced relative an overburden or underburden. The location of production may also be varied by varying which production wells are used to produce fluid. In some embodiments, the production wells used to remove fluid may be chosen based on a distance of the production wells from activated heaters.
In an embodiment, a blending agent may be produced from a part of a hydrocarbon containing formation. A portion of the blending agent may be mixed with heavy hydrocarbons to produce a mixture having one or more selected characteristics (e.g., density, viscosity, and/or stability).
In some embodiments, heat may be provided to a part of the formation to pyrolyze some hydrocarbons in a lower portion of the formation. A mixture of hydrocarbons may be produced from an upper portion of the formation. The mixture of hydrocarbons may include at least some pyrolyzed hydrocarbons from the lower portion of the formation.
In certain embodiments, a production rate of fluid from the formation may be controlled to adjust an average time that hydrocarbons in, or flowing into, a pyrolysis zone or exposed to pyrolysis temperatures. Controlling the production rate may allow for production of a large quantity of hydrocarbons of a desired quality from the formation.
BRIEF DESCRIPTION OF THE DRAWINGS
Advantages of the present invention may become apparent to those skilled in the art with the benefit of the following detailed description of the preferred embodiments and upon reference to the accompanying drawings in which:
FIG. 1 depicts a cross-sectional view of an embodiment for treating hydrocarbon containing formation containing heavy hydrocarbons with multiple heating sections.
FIG. 2 depicts a large pattern of heater and producer wells used in a simulation of an in situ process for a hydrocarbon containing formation.
FIG. 3 depicts a plan view of an embodiment of a hydrocarbon containing formation used to produce a first mixture that is blended with a second mixture.
FIG. 4 depicts SARA results (saturate/aromatic ratio versus asphaltene/resin ratio) for five blends. FIG. 5 depicts viscosity versus temperature for three blended mixtures. FIG. 6 illustrates oil production rates versus time for heavy hydrocarbons and light hydrocarbons in a simulation.
FIG. 7 illustrates oil production rates versus time for heavy hydrocarbons and light hydrocarbons with production inhibited for the first 500 days of heating in a simulation.
FIG. 8 illustrates percentage cumulative oil recovery versus time for three different horizontal producer well locations in a simulation. FIG. 9 illustrates production rates versus time for heavy hydrocarbons and light hydrocarbons for middle and bottom producer locations in a simulation.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof are shown by way of example in the drawings and may herein be described in detail. The drawings may not be to scale. It should be understood that the drawings and detailed description thereto are not intended to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the present invention as defined by the appended claims.
DETAILED DESCRIPTION OF THE INVENTION
The following description generally relates to systems and methods for treating a hydrocarbon containing formation. Such formations may be treated to yield relatively high quality hydrocarbon products, hydrogen, and other products.
As used herein, "a method of treating a tar sands formation" may be used interchangeably with "an in situ conversion process for hydrocarbons." "Hydrocarbons" are generally defined as molecules formed primarily by carbon and hydrogen atoms. Hydrocarbons may also include other elements, such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur. Hydrocarbons may be, but are not limited to, bitumen, pyrobitumen, and oils. Hydrocarbons may be located within or adjacent to mineral matrices within the earth. Matrices may include, but are not limited to, sedimentary rock, sands, silicilytes, carbonates, diatomites, and other porous media. "Hydrocarbon fluids" are fluids that include hydrocarbons. Hydrocarbon fluids may include, entrain, or be entrained in non-hydrocarbon fluids (e.g., hydrogen ("H2"), nitrogen ("N2"), carbon monoxide, carbon dioxide, hydrogen sulfide, water, and ammonia).
The terms "formation fluids" and "produced fluids" refer to fluids removed from a hydrocarbon containing formation and may include pyrolyzation fluid, synthesis gas, mobilized hydrocarbon, and water (steam). The term "mobilized fluid" refers to fluids within the formation that are able to flow because of thermal treatment of the formation. Formation fluids may include hydrocarbon fluids as well as non-hydrocarbon fluids.
"Carbon number" refers to a number of carbon atoms within a hydrocarbon molecule. A hydrocarbon fluid may include various hydrocarbons having varying numbers of carbon atoms. The hydrocarbon fluid may be described by a carbon number distribution. Carbon numbers and/or carbon number distributions may be determined by true boiling point distribution and/or gas-liquid chromatography.
A "heat source" is any system for providing heat to at least a portion of a formation substantially by conductive and/or radiative heat transfer. For example, a heat source may include electric heaters such as an insulated conductor, an elongated member, and/or a conductor disposed within a conduit. A heat source may also include heat sources that generate heat by burning a fuel external to or within a formation, such as surface burners, downhole gas burners, flameless distributed combustors, and natural distributed combustors. In addition, it is envisioned that in some embodiments heat provided to or generated in one or more heat sources may be supplied by other sources of energy. The other sources of energy may directly heat a formation, or the energy may be applied to a transfer media that directly or indirectly heats the formation. It is to be understood that one or more heat sources that are applying heat to a formation may use different sources of energy. For example, for a given formation some heat sources may supply heat from electric resistance heaters, some heat sources may provide heat from combustion, and some heat sources may provide heat from one or more other energy sources (e.g., chemical reactions, solar energy, wind energy, biomass, or other sources of renewable energy). A chemical reaction may include an exothermic reaction (e.g., an oxidation reaction). A heat source may include a heater that provides heat to a zone proximate and/or surrounding a heating location such as a heater well.
A "heater" is any system for generating heat in a well or a near wellbore region. Heaters may be, but are not limited to, electric heaters, burners, combustors that react with material in or produced from a formation (e.g., natural distributed combustors), and/or combinations thereof. A "unit of heat sources" refers to a number of heat sources that form a template that is repeated to create a pattern of heat sources within a formation.
"Condensable hydrocarbons" are hydrocarbons that condense at 25 °C at one atmosphere absolute pressure. Condensable hydrocarbons may include a mixture of hydrocarbons having carbon numbers greater than 4. "Non-condensable hydrocarbons" are hydrocarbons that do not condense at 25 °C and one atmosphere absolute pressure. Non-condensable hydrocarbons may include hydrocarbons having carbon numbers less than 5.
"Heavy hydrocarbons" are viscous hydrocarbon fluids. Heavy hydrocarbons may include highly viscous hydrocarbon fluids such as heavy oil, tar, and/or asphalt. Heavy hydrocarbons may include carbon and hydrogen, as well as smaller concentrations of sulfur, oxygen, and nitrogen. Additional elements may also be present in heavy hydrocarbons in trace amounts. Heavy hydrocarbons may be classified by API gravity. Heavy hydrocarbons generally have an API gravity below about 20°. Heavy oil, for example, generally has an API gravity of about 10- 20°, whereas tar generally has an API gravity below about 10°. The viscosity of heavy hydrocarbons is generally greater than about 100 centipoise at 15 °C. Heavy hydrocarbons may also include aromatics or other complex ring hydrocarbons. "Tar" is a viscous hydrocarbon that generally has a viscosity greater than about 10,000 centipoise at 15 °C.
The specific gravity of tar generally is greater than 1.000. Tar may have an API gravity less than 10°.
A "tar sands formation" is a formation that includes heavy hydrocarbons and/or tar entrained in sand, sandstones, carbonates, fractured carbonates, volcanics, basement, or other host lithologies. In some cases, a portion or all of a hydrocarbon portion of a tar sands formation may be predominantly hydrocarbons with no supporting framework and only floating (or no) mineral matter.
An in situ process may be used to provide heat to mobilize and/or pyrolyze hydrocarbons within a hydrocarbon containing formation to produce hydrocarbons from the formation that are not producible using current production techniques such as surface mining, solution extraction, etc. Such hydrocarbons may exist in relatively deep hydrocarbon containing formations. For example, such hydrocarbons may exist in a hydrocarbon containing formation that is greater than about 500 m below a ground surface but less than about 700 m below the surface.
Hydrocarbons within these relatively deep hydrocarbon containing formations may be at a relatively cool temperature such that the hydrocarbons are substantially immobile. Hydrocarbons found in deeper formations (e.g., a depth greater than about 700 m below the surface) may be somewhat more mobile due to increased natural heating of the formations as formation depth increases below the surface. Hydrocarbons may be more readily produced from these deeper formations because of their mobility. However, these hydrocarbons will generally be heavy hydrocarbons with an API gravity below about 20°. In some embodiments, the API gravity may be below about 15° or below about 10°.
FIG. 1 depicts a cross-sectional representation of an embodiment for treating heavy hydrocarbons in a formation with multiple heating sections. Heat sources 10 may be placed within hydrocarbon containing layer 12. Heat sources 10 may be placed at different angles in hydrocarbon layer 12. In some embodiments, heat sources 10 may be placed substantially vertical with hydrocarbon layer 12. In other embodiments, heater source 10 may be placed substantially horizontally within hydrocarbon layer 12. Heat sources 10 may be placed in a desired pattern (e.g., hexagonal, triangular, square, etc.). In an embodiment, heat sources 10 are placed in triangular patterns as shown in FIG. 1. A spacing between heat sources 10 may be less than about 25 m within first section 14 or, in some embodiments, less about 20 m or less than about 15 m. A volume of first section 14 (as well as second sections 16 and third sections 18) may be determined by a pattern and spacing of heat sources 10 within the section and/or a heat output of the heat sources. Sections 14, 16 and 18 of hydrocarbon layer may be between overburden 18 and/or underburden 20. Over/burden and /or underburden may form a perimeter barrier. Barriers may include, but are not limited to naturally occurring portions (e.g., overburden and/or underburden), freeze wells, frozen barrier zones, low temperature barrier zones, grout walls, sulfur wells, dewatering wells, injection wells, a barrier formed by a gel produced in the formation, a barrier formed by precipitation of salts in the formation, a barrier formed by a polymerization reaction in the formation, sheets driven into the formation, or combinations thereof.
Production wells 22 may be placed within first section 14. A number, orientation, and/or location of production wells 22 may be determined by considerations including, but not limited to, a desired production rate, a selected product quality, and/or a ratio of heavy hydrocarbons to light hydrocarbons. For example, one production well 22 may be placed in an upper portion of first section 14 as shown in FIG. 1.
In some embodiments, an injection well 24 is placed in first section 14. Injection well 24 (and/or a heat source or production well) may be used to provide a pressurizing fluid into first section 14. The pressurizing fluid may include, but is not limited to, carbon dioxide, N2, CH4, steam, combustion products, non-condensable fluid produced from the formation or combinations thereof. In certain embodiments, a location of injection well 24 is chosen such that the recovery of fluids from first section 14 is increased with the provided pressurizing fluid.
In an embodiment, heat sources 10 are used to provide heat to first section 14. First section 14 may be heated such that at least some heavy hydrocarbons within the first section are mobilized. A temperature at which at least some hydrocarbons are mobilized (i.e., a mobilization temperature) may be between about 50 °C and about 210 °C. In other embodiments, a mobilization temperature is between about 50 °C and about 150 °C or between about 50 °C and about 100 °C.
In an embodiment, a first mixture is produced from first section 14. The first mixture may be produced through production well 22 or production wells and/or heat sources 10. The first mixture may include mobilized fluids from the first section. The mobilized fluids may include at least some hydrocarbons from first section 14. In certain embodiments, the mobilized fluids produced include heavy hydrocarbons. An API gravity of the first mixture may be less than about 20°, less than about 15°, or less than about 10°. In some embodiments, the first mixture includes at least some pyrolyzed hydrocarbons. Some hydrocarbons may be pyrolyzed in portions of first section 14 that are at higher temperatures than a remainder of the first section. For example, portions adjacent heat sources 10 may be at somewhat higher temperatures (e.g., approximately 50 °C to approximately 100 °C higher) than the remainder of first section 14. As shown in FIG. 1, second sections 16 may be adjacent to first section 14. Second section 16 may include heat sources 10. Heat sources 10 in second section 16 may be arranged in a pattern similar to a pattern of heat sources 10 in first section 14. In some embodiments, heat sources 10 in second section 16 are arranged in a different pattern than heat sources 10 in first section 14 to provide desired heating of the second section. In certain embodiments, a spacing between heat sources 10 in second section 16 is greater than a spacing between heat sources 10 in first section 14. Heat sources 10 may provide heat to second section 16 to mobilize at least some hydrocarbons within the second section. In an embodiment, temperature within first section 14 may be increased to a pyrolyzation temperature after production of the first mixture. A pyrolyzation temperature in the first section may be between about 225 °C and about 375 °C. In some instances, a pyrolyzation temperature in the first section may be at least about 250 °C, or at least about 275 °C. Mobilized fluids (e.g., mobilized heavy hydrocarbons) from second section 16 may be allowed to flow into first section 14. Some of the mobilized fluids from second section 16 that flow into first section 14 may be pyrolyzed within the first section. Pyrolyzing the mobilized fluids in first section 14 may upgrade a quality of fluids (e.g., increase an API gravity of the fluid).
In certain embodiments, a second mixture is produced from first section 14. The second mixture may be produced through production well 22 or production wells and/or heat sources 10. The second mixture may include at least some hydrocarbons pyrolyzed within first section 14. Mobilized fluids from second section 16 and/or hydrocarbons originally within first section 14 may be pyrolyzed within the first section. Conversion of heavy hydrocarbons to light hydrocarbons by pyrolysis may be controlled by controlling heat provided to first section 14 and second section 16. In some embodiments, the heat provided to first section 14 and second section 16 is controlled by adjusting the heat output of a heat source or heat sources 10 within the first section. In other embodiments, the heat provided to first section 14 and second section 16 is controlled by adjusting the heat output of a heat source or heat sources 10 within the second section. The heat output of heat sources 10 within first section 14 and second section 16 may be adjusted to control the heat distribution within hydrocarbon containing layer 12 to account for the flow of fluids along a vertical and/or horizontal plane within the formation. For example, the heat output may be adjusted to balance heat and mass fluxes within the formation so that mass within the formation (e.g., fluids and mineral matrix within the formation) is substantially uniformly heated.
Producing fluid from production wells in the first section may create a pressure gradient with low pressures located at the production wells. The pressure gradient may draw mobilized fluid from adjacent sections into the first section. In some embodiments, a pressurizing fluid is provided in second section 16 (e.g., through injection well 24) to increase displacement of hydrocarbons within the second section towards the first section. The pressurizing fluid may enhance the pressure gradient in the formation to flow mobilized hydrocarbons into first section 14. In certain embodiments, the production of fluids from first section 14 allows the pressure in second section 16 to remain below a lithostatic pressure (e.g., below a pressure that allows fracturing of the overburden).
As shown in FIG. 1, third section 18 may be adjacent to second section 16. Heat may be provided to third section 18 from heat sources 10. Heat sources 10 in third section 18 may be arranged in a pattern similar to a pattern of heat sources 10 in first section 14 and/or heat sources in the second section 16. In some embodiments, heat sources 10 in third section 18 are arranged in a different pattern than heat sources 10 in first section 14 and/or heat sources in the second section 16. In certain embodiments, a spacing between heat sources 10 in third section 18 is greater than a spacing between heat sources 10 in first section 14. Heat sources 10 may provide heat to third section 18 to mobilize at least some hydrocarbons within the third section. In an embodiment, a temperature within second section 16 may be increased to a pyrolyzation temperature after production of the first mixture. Mobilized fluids from third section 18 may be allowed to flow into second section 16. Some of the mobilized fluids from third section 18 that flow into second section 16 may be pyrolyzed within the second section. A mixture may be produced from second section 16. The mixture produced from second section 16 may include at least some pyrolyzed hydrocarbons. An API gravity of the mixture produced from second section 16 may be at least about 20°, 30°, or 40°. The mixture may be produced through production wells
22 and/or heat sources 10 placed in second section 16. Heat provided to third section 18 and second section 16 may be controlled to control conversion of heavy hydrocarbons to light hydrocarbons and/or a desired characteristic of the mixture produced in the second section.
In another embodiment, mobilized fluids from third section 18 are allowed to flow through second section 16 and into first section 14. At least some of the mobilized fluids from third section 18 may be pyrolyzed in first section 14. In addition, some of the mobilized fluids from third section 18 may be produced as a portion of the second mixture in first section 14. The heavy hydrocarbon fraction in produced fluids may decrease as successive sections of the formation are produced through first section 14.
In some embodiments, a pressurizing fluid is provided in third section 18 (e.g., through injection well 24) to increase displacement of hydrocarbons within the third section. The pressurizing fluid may increase a flow of mobilized hydrocarbons into second section 16 and/or first section 14. For example, a pressure gradient may be produced between third section 18 and first section 14 such that the flow of fluids from the third section towards the first section is increased.
In an embodiment, heat provided to first section 14, second section 16 and/or other sections is turned on at the same time or within a short time of each other. In an embodiment, heat provided to second section 16, third section 18, and any subsequent sections may be turned on simultaneously after first section 14 has been substantially depleted of hydrocarbons and other fluids (e.g., brine). In other embodiments, sections may be turned on in a staggered pattern. The delay between turning on first section 14 and subsequent sections (e.g., second section 16, third section 18, etc.) may be, for example, about 1 year, about 1.5 years, or about 2 years.
Hydrocarbons may be produced from first section 14 and/or second section 16 such that at least about 50 % by weight of the initial mass of hydrocarbons in the formation is produced. In other embodiments, at least about
60 % by weight or at least about 70 % by weight of the initial mass of hydrocarbons in the formation is produced.
A large pattern simulation of an in situ process in a hydrocarbon containing formation was performed using a 3-D simulation. FIG. 2 depicts a pattern of heat sources 10 and production wells 22(A-E) placed in hydrocarbon containing layer 12 and used in the large pattern simulation. Heat sources 10 and production wells 22(A-E) were placed horizontally within hydrocarbon containing layer 12 with a length of 1000 m. Hydrocarbon containing layer 12 had a horizontal width of 145 m and a vertical height of 28 m. Five production wells 22(A-E) were placed within the pattern of heat sources 10 and with the spacings as shown in FIG. 2.
A first stage of heating included turning on heat sources 10 in first section 26. Production during the first stage of heating was through production well 22 A in first section 26. A minimum pressure for production in production well 22A was set at 6.8 bars absolute. Fluids were produced through production well 22A as the fluids were mobilized and/or pyrolyzed within hydrocarbon containing layer 12. The first stage of heating occurred for the first 360 days of the simulation.
A second stage of heating included turning on heat sources 10 in second section 28, third section 30, fourth section 32 and fifth section 34. Heat sources 10 in second section 28, third section 30, fourth section 32 and fifth section 34 were turned on at 360 days. Minimum pressure for production in production wells 22(B-E) was set at
6.8 bars absolute.
Heat sources 10 in first section 26 were turned off at 1860 days. At 1860 days, production through production well 22 A was also shut off. Heat sources 10 in other sections 28, 30, 32, 34 were similarly turned off after 2200 days. The simulation ended at 2580 days with production through production wells 22(B-E) remaining on. Heat sources 10 were maintained at a relatively constant heat output of 1 150 watts per meter. Production after the first stage of heating was through any one of production wells 22(A-E). Because fluids were produced through production well 22A at earlier times, fluids in the formation tended to flow towards production well 22 A as the fluids were mobilized and/or pyrolyzed in other sections of hydrocarbon containing layer 12. Fluids flow was largely due to vapor phase transport of fluids within hydrocarbon containing layer 12. A maximum average pressure in fifth section 34 remained below about 100 bars absolute around 800 days into the simulation. Pressure then decreased as fluids were mobilized within fifth section 34 (i.e., the average temperature increased above about 100 °C).
Oil production slowly increased for approximately the first 1500 days and then increased rapidly after about 1500 days to a maximum of about 880 nrVday at about 1785 days. After about 1785 days, production rate decreased as a majority of fluids are produced from hydrocarbon containing layer 12. The high production rate at about 1785 days may be due to a high rate of vapor phase transport in the formation following pyrolysis of hydrocarbons in the formation.
Gas production slowly increased for approximately the first 1500 days and then increased rapidly after about 1500 days to a maximum of about 23500 m3/day at about 1800 days. The maximum gas production rate occurred at a substantially similar time to the maximum oil production rate. Thus, the maximum oil production rate may be primarily due to a high gas production rate.
A quality of produced hydrocarbon fluids from a hydrocarbon containing formation may be described by a carbon number distribution. In general, lower carbon number products such as products having carbon numbers less than about 25 may be considered to be more valuable than products having carbon numbers greater than about 25. In an embodiment, treating a hydrocarbon containing formation may include providing heat to at least a portion of a formation to produce hydrocarbon fluids from the formation of which a majority of the produced fluid may have carbon numbers of less than approximately 25, or, for example, less than approximately 20. For example, less than about 20 weight % of the produced condensable fluid may have carbon numbers greater than about 20. Heavy hydrocarbons produced from a hydrocarbon containing formation may be mixed with light hydrocarbons so that the heavy hydrocarbons can be transported to a surface facility or refinery (e.g., pumping the hydrocarbons through a pipeline). In some embodiments, the light hydrocarbons (such as naphtha) are brought in through a second pipeline (or are trucked) from other areas (such as a surface facility or another production site) to be mixed with the heavy hydrocarbons. The cost of purchasing and/or transporting the light hydrocarbons to a formation site can add significant cost to a process for producing hydrocarbons from a formation. In an embodiment, producing the light hydrocarbons at or near a formation site (e.g., less than about 100 km from the formation site) that produces heavy hydrocarbons instead of using a second pipeline for supply of the light hydrocarbons may allow for use of the second pipeline for other purposes. The second pipeline may be used, in addition to a first pipeline already used for pumping produced fluids, to pump produced fluids from the formation site to a surface facility. Use of the second pipeline for this purpose may further increase the economic viability of producing light hydrocarbons (i.e., blending agents) at or near the formation site. Another option is to build a surface facility or refinery at a formation site. However, this can be expensive and, in some cases, not possible.
In an embodiment, light hydrocarbons (e.g., a blending agent) may be produced at or near a formation site that produces heavy hydrocarbons (i.e., near the production site of heavy hydrocarbons). The light hydrocarbons may be mixed with heavy hydrocarbons to produce a transportable mixture. The transportable mixture may be introduced into a first pipeline used to transport fluid to a remote refinery or transportation facility, which may be located more than about 100 km from the production site. The transportable mixture may also be introduced into a second pipeline that was previously used to transport a blending agent (e.g., naphtha) to or near the production site. Producing the blending agent at or near the production site may allow the ability to significantly increase throughput to the remote refinery or transportation facility without installation of additional pipelines. Additionally, the blending agent used may be recovered and sold from the refinery instead of being transported back to the heavy hydrocarbon production site. The transportable mixture may also be used as a raw material feed for a production process at the remote refinery.
Throughput of heavy hydrocarbons to an existing remote surface facility may be a limiting factor in embodiments that use a two pipeline system with one of the pipelines dedicated to transporting a blending agent to the heavy hydrocarbon production site. Using a blending agent produced at or near the heavy hydrocarbon production site may allow for a significant increase in the throughput of heavy hydrocarbons to the remote surface facility. In some embodiments, the blending agent may be used to clean tanks, pipes, wellbores, etc. The blending agent may be used for such purposes without precipitating out components cleaned from the tanks, pipes, or wellbores.
In an embodiment, heavy hydrocarbons are produced as a first mixture from a first section of a hydrocarbon containing formation. Heavy hydrocarbons may include hydrocarbons with an API gravity below about 20°, 15°, or 10°. Heat provided to the first section may mobilize at least some hydrocarbons within the first section. The first mixture may include at least some mobilized hydrocarbons from the first section. Heavy hydrocarbons in the first mixture may include a relatively high asphaltene content compared to saturated hydrocarbon content. For example, heavy hydrocarbons in the first mixture may include an asphaltene content to saturated hydrocarbon content ratio greater than about 1, greater than about 1.5, or greater than about 2.
Heat provided to a second section of the formation may pyrolyze at least some hydrocarbons within the second section. A second mixture may be produced from the second section. The second mixture may include at least some pyrolyzed hydrocarbons from the second section. Pyrolyzed hydrocarbons from the second section may include light hydrocarbons produced in the second section. The second mixture may include relatively higher amounts (as compared to heavy hydrocarbons or hydrocarbons found in the formation) of hydrocarbons such as naphtha, methane, ethane, or propane (i.e., saturated hydrocarbons) and/or aromatic hydrocarbons. In some embodiments, light hydrocarbons may include an asphaltene content to saturated hydrocarbon content ratio less than about 0.5, less than about 0.05, or less than about 0.005.
A condensable fraction of the light hydrocarbons of the second mixture may be used as a blending agent. The presence of compounds in the blending agent in addition to naphtha may allow the blending agent to dissolve a large amount of asphaltenes and/or solid hydrocarbons. The blending agent may be used to clean tanks, pipelines or other vessels that have solid (or semi-solid) hydrocarbon deposits.
The light hydrocarbons of the second mixture may include less nitrogen, oxygen, and/or sulfur than heavy hydrocarbons. For example, light hydrocarbons may have a nitrogen, oxygen, and sulfur combined weight percentage of less than about 5 %, less than about 2 %, or less than about 1 %. Heavy hydrocarbons may have a nitrogen, oxygen, and sulfur combined weight percentage greater than about 10 %, greater than about 15 %, or greater than about 18 %. Light hydrocarbons may have an API gravity greater than about 20°, greater than about 30° or greater than about 40°.
The first mixture and the second mixture may be blended to produce a third mixture. The third mixture may be formed in a surface facility located at or near production facilities for the heavy hydrocarbons. The third mixture may have a selected API gravity. The selected API gravity may be at least about 10° or, in some embodiments, at least about 20° or 30°. The API gravity may be selected to allow the third mixture to be efficiently transported (e.g., through a pipeline).
A ratio of the first mixture to the second mixture in the third mixture may be determined by the API gravities of the first mixture and the second mixture. For example, the lower the API gravity of the first mixture, the more of the second mixture that may be needed to produce a selected API gravity in the third mixture.
Likewise, if the API gravity of the second mixture is increased, the ratio of the first mixture to the second mixture may be increased. In some embodiments, a ratio of the first mixture to the second mixture in the third mixture is at least about 3: 1. Other ratios may be used to produce a third mixture with a desired API gravity. In certain embodiments, a ratio of the first mixture to the second mixture is chosen such that a total mass recovery from the formation will be as high as possible. In one embodiment, the ratio of the first mixture to the second mixture may be chosen such that at least about 50 % by weight of the initial mass of hydrocarbons in the formation is produced. In other embodiments, at least about 60 % by weight or at least about 70 % by weight of the initial mass of hydrocarbons may be produced. In some embodiments, the first mixture and the second mixture are blended in a specific ratio that may increase the total mass recovery from the formation compared to production of only the second mixture from the formation (i.e., in situ processing of the formation to produce light hydrocarbons).
The ratio of the first mixture to the second mixture in the third mixture may be selected based on a desired viscosity, desired boiling point, desired composition, desired ratio of components (e.g., a desired asphaltene to saturated hydrocarbon ratio or a desired aromatic hydrocarbon to saturated hydrocarbon ratio), and/or desired density of the third mixture. The viscosity and/or density may be selected such that the third mixture is transportable through a pipeline or usable in a surface facility. In some embodiments, the viscosity (at about 4 °C) may be selected to be less than about 7500 centistokes (cs) less than about 2000 cs, less than about 100 cs, or less than about 10 cs. Centistokes is a unit of kinematic viscosity. Kinematic viscosity multiplied by the density yields absolute viscosity. The density (at about 4 °C) may be selected to be less than about 1.0 g/cm3, less than about 0.95 g/cm3, or less than about 0.9 g/cm3. The asphaltene to saturated hydrocarbon ratio may be selected to be less than about 1, less than about 0.9, or less than about 0.7. The aromatic hydrocarbon to saturated hydrocarbon ratio may be selected to be less than about 4, less than about 3.5, or less than about 2.5.
In an embodiment, the ratio of the first mixture to the second mixture in the third mixture is selected based on the relative stability of the third mixture. A component or components of the third mixture may precipitate out of the third mixture. For example, asphaltene precipitation may be a problem for some mixtures of heavy hydrocarbons and light hydrocarbons. Asphaltenes may precipitate when fluid is de-pressurized (e.g., removed from a pressurized formation or vessel) and/or there is a change in mixture composition. For the third mixture to be transportable through a pipeline or usable in a surface facility, the third mixture may need a minimum relative stability. The minimum relative stability may include a ratio of the first mixture to the second mixture such that asphaltenes do not precipitate out of the third mixture at ambient and/or elevated temperatures. Tests may be used to determine desired ratios of the first mixture to the second mixture that will produce a relatively stable third mixture. For example, induced precipitation, chromatography, titration, and/or laser techniques may be used to determine the stability of asphaltenes in the third mixture. In some embodiments, asphaltenes precipitate out of a mixture but are held suspended in the mixture and, hence, the mixture may be transportable. A blending agent produced by an in situ process may have excellent blending characteristics with heavy hydrocarbons (i.e., low probability for precipitation of heavy hydrocarbons from a mixture with the blending agent). In certain embodiments, resin content in the second mixture (i.e., light hydrocarbon mixture) may determine the stability of the third mixture. For example, resins such as maltenes or resins containing heteroatoms such as N, S or O may be present in the second mixture. These resins may enhance the stability of a third mixture produced by mixing a first mixture with the second mixture. In some cases, the resins may suspend asphaltenes in the mixture and inhibit asphaltene precipitation.
In certain embodiments, market conditions may determine characteristics of a third mixture. Examples of market conditions may include, but are not limited to, demand for a selected octane of gasoline, demand for heating oil in cold weather, demand for a selected cetane rating in a diesel oil, demand for a selected smoke point for jet fuel, demand for a mixture of gaseous products for chemical synthesis, demand for transportation fuels with a certain sulfur or oxygenate content, or demand for material in a selected chemical process.
In an embodiment, a blending agent may be produced from a section of a hydrocarbon containing formation. "Blending agent" is a material that is mixed with another material to produce a mixture having a desired property (e.g., viscosity, density, API gravity, etc.). The blending agent may include at least some pyrolyzed hydrocarbons. The blending agent may include properties of the second mixture of light hydrocarbons described above. For example, the blending agent may have an API gravity greater than about 20°, greater than about 30°, or greater than about 40°. The blending agent may be blended with heavy hydrocarbons to produce a mixture with a selected API gravity. For example, the blending agent may be blended with heavy hydrocarbons with an API gravity below about 15° to produce a mixture with an API gravity of at least about 20°. In certain embodiments, the blending agent may be blended with heavy hydrocarbons to produce a transportable mixture (e.g., movable through a pipeline). In some embodiments, the heavy hydrocarbons are produced from another section of the hydrocarbon containing formation. In other embodiments, the heavy hydrocarbons may be produced from another hydrocarbon containing formation or any other formation containing heavy hydrocarbons.
In some embodiments, the first section and the second section of the formation may be at different depths within the same formation. For example, the heavy hydrocarbons may be produced from a section having a depth between about 500 m and about 1500 m, a section having a depth between about 500 m and about 1200 m, or a section having a depth between about 500 m and about 800 m. At these depths, the heavy hydrocarbons may be somewhat mobile (and producible) due to a relatively higher natural temperature in the reservoir. The light hydrocarbons may be produced from a section having a depth between about 10 m and about 500 m, a section having a depth between about 10 m and about 400 m, or a section having a depth between about 10 m and about 250 m. At these shallower depths, heavy hydrocarbons may not be readily producible because of the lower natural temperatures at the shallower depths. In addition, the API gravity of heavy hydrocarbons may be lower at shallower depths due to increased water washing and/or bacterial degradation. In other embodiments, heavy hydrocarbons and light hydrocarbons are produced from first and second sections that are at a similar depth below the surface. In another embodiment, the light hydrocarbons and the heavy hydrocarbons are produced from different formations. The different formations, however, may be located near each other.
In an embodiment, heavy hydrocarbons are cold produced from a formation (e.g., a formation in the Faja (Venezuela)) at depths between about 760 m and about 1070 m. The produced hydrocarbons may have an API gravity of less than about 9°. Cold production of heavy hydrocarbons is generally defined as the production of warm (i.e., mobilized) heavy hydrocarbons) without providing heat (or providing relatively little heat) to the formation or the production well. In other embodiments, the heavy hydrocarbons may be produced by steam injection or a mixture of steam injection and cold production. The heavy hydrocarbons may be mixed with a blending agent to transport the produced heavy hydrocarbons through a pipeline. In one embodiment, the blending agent is naphtha. Naphtha may be produced in surface facilities that are located remotely from the formation. When production of hydrocarbons from the formation is inhibited, the pressure in the formation may increase with increasing temperature in the formation because of thermal expansion and/or phase change of heavy hydrocarbons and other fluids (e.g., water) in the formation. Pressure within the formation may be maintained below a selected pressure to inhibit unwanted production, fracturing of the overburden or underburden, and/or coking of hydrocarbons in the formation. In some embodiments, the selected pressure may approach the lithostatic pressure or natural hydrostatic pressure of the formation. In an embodiment, the selected pressure may be about 35 bars absolute. Controlling production rate from production wells in the formation may control the pressure in the formation. In some embodiments, pressure in the formation may be controlled by releasing vapor within the formation through one or more pressure release wells in the formation. Pressure relief wells may be heat sources or separate wells inserted into the formation. Formation fluid removed from the formation through the relief wells may be sent to a surface facility. Producing at least some hydrocarbons from the formation may inhibit the pressure in the formation from rising above the selected pressure. In certain embodiments, some formation fluids may be back produced through a heat source wellbore. For example, some formation fluids may be back produced through a heat source wellbore during early times of heating of a hydrocarbon containing formation. In an embodiment, some formation fluids may be produced through a portion of a heat source wellbore. Injection of heat may be adjusted along the length of the wellbore so that fluids produced through the wellbore are not overheated. Fluids may be produced through portions of the heat source wellbore that are at lower temperatures than other portions of the wellbore.
Producing at least some formation fluids through a heat source wellbore may reduce or eliminate the need for additional production wells in a formation. In addition, pressures within the formation may be reduced by producing fluids through a heat source wellbore (especially within the region surrounding the heat source wellbore). Reducing pressures in the formation may increase the production of liquids and decrease the production of vapors from the formation. In certain embodiments, producing fluids through heat source wellbores may lead to earlier production of fluids from the formation. Portions of the formation closest to heat source wellbores will increase to mobilization and/or pyrolysis temperatures earlier than portions of the formation near production wells. Thus, fluids may be produced at earlier times from portions near the heat source wellbores.
In other embodiments, the heavy hydrocarbons may be mixed with a blending agent produced from a shallower section of the formation using an in situ conversion process. The shallower section may be at a depth less than about 400 m (e.g., less than about 150 m). The shallower section of the formation may contain heavy hydrocarbons with an API gravity of less than about 7°. The blending agent may include light hydrocarbons produced by pyrolyzing at least some of the heavy hydrocarbons from the shallower section of the formation. The blending agent may have an API gravity above about 35° (e.g., above about 40°). In certain embodiments, a blending agent may be produced in a first portion of a hydrocarbon containing formation and injected (e.g., into a production well) into a second portion of the hydrocarbon containing formation (or, in some embodiments, a second portion in another hydrocarbon containing formation). Heavy hydrocarbons may be produced from the second portion (e.g., by cold production). Mixing between the blending agent may occur within the production well and/or within the second portion of the formation. The blending agent may be produced through a production well in the first portion and pumped to a production well in the second portion. In some embodiments, non-hydrocarbon fluids (e.g., water or carbon dioxide), vapor-phase hydrocarbons, and/or other undesired fluids may be separated from the blending agent prior to mixing with heavy hydrocarbons.
Injecting the blending agent into a portion of a hydrocarbon containing formation may provide mixing of the blending agent and heavy hydrocarbons in the portion. The blending agent may be used to assist in the production of heavy hydrocarbons from the formation. The blending agent may reduce a viscosity of heavy hydrocarbons in the formation. Reducing the viscosity of heavy hydrocarbons in the formation may reduce the possibility of clogging or other problems associated with cold producing heavy hydrocarbons. In some embodiments, the blending agent may be at an elevated temperature and be used to provide at least some heat to the formation to increase the mobilization (i.e., reduce the viscosity) of heavy hydrocarbons within the formation. The elevated temperature of the blending agent may be a temperature proximate the temperature at which the blending agent is produced minus some heat losses during production and transport of the blending agent. In certain embodiments, the blending agent may be pumped through an insulated pipeline to reduce heat losses during transport.
The blending agent may be mixed with the cold produced heavy hydrocarbons in a selected ratio to produce a third mixture with a selected API gravity. For example, the blending agent may be mixed with cold produced heavy hydrocarbons in a 1 to 2 ratio or a 1 to 4 ratio to produce a third mixture with an API gravity greater than about 20°. In certain embodiments, the third mixture may have an overall API gravity greater than about 25° or an API gravity sufficiently high such that the third mixture is transportable through a conduit or pipeline. In some embodiments, the third mixture of hydrocarbons may have an API gravity between about 20° and about 45°. In other embodiments, the blending agent may be mixed with cold produced heavy hydrocarbons to produce a third mixture with a selected viscosity, a selected stability, and/or a selected density.
The third mixture may be transported through a conduit, such as a pipeline, between the formation and a surface facility or refinery. The third mixture may be transported through a pipeline to another location for further transportation (e.g., the mixture can be transported to a facility at a river or a coast through the pipeline where the mixture can be further transported by tanker to a processing plant or refinery). Producing the blending agent at the formation site (i.e., producing the blending agent from the formation) may reduce a total cost for producing hydrocarbons from the formation. In addition, producing the third hydrocarbon mixture at a formation site may eliminate a need for a separate supply of light hydrocarbons and/or construction of a surface facility at the site. In an embodiment, a third mixture of hydrocarbons produced from a hydrocarbon containing formation may include about 20 weight % light hydrocarbons or greater (e.g., about 50 weight % or about 80 weight % light hydrocarbons) and about 80 weight % heavy hydrocarbons or less (e.g., about 50 weight % or about 20 weight % heavy hydrocarbons). The weight percentage of light hydrocarbons and heavy hydrocarbons may vary depending on, for example, a weight distribution (or API gravity) of light and heavy hydrocarbons, a relatively stability of the third mixture or a desired API gravity of the mixture. In certain embodiments, the weight percentage of light hydrocarbons may be selected to blend the least amount of light hydrocarbons with heavy hydrocarbons that produces a mixture with a desired density or viscosity.
FIG. 3 depicts a plan view of an embodiment of a hydrocarbon containing formation used to produce a first mixture that is blended with a second mixture. Hydrocarbon containing formation 12 may include first section 36 and second section 38. First section 36 may be at depths greater than, for example, about 800 m below a surface of the formation. Heavy hydrocarbons in first section 36 may be produced through production well 22 placed in the first section. Heavy hydrocarbons in first section 36 may be produced without heating because of the depth of the first section. First section 36 may be below a depth at which natural heating mobilizes heavy hydrocarbons within the first section. In some embodiments, at least some heat may be provided to first section 36 to mobilize fluids within the first section.
Second section 38 may be heated using heat sources 10 placed in the second section. Heat sources 10 are depicted as substantially horizontal heat sources in FIG. 3. Heat provided by heat sources 10 may pyrolyze at least some hydrocarbons within second section 38. Pyrolyzed fluids may be produced from second section 38 through production well 22'. Production well 22' is depicted as a substantially vertical production well in FIG. 3.
In an embodiment, heavy hydrocarbons from first section 36 are produced in a first mixture through production well 22. Light hydrocarbons (i.e., pyrolyzed hydrocarbons) may be produced in a second mixture through production well 22'. The first mixture and the second mixture may be mixed to produce a third mixture in surface facility 40. The first and the second mixture may be mixed in a selected ratio to produce a desired third mixture. The third mixture may be transported through pipeline 42 to a production facility or a transportation facility. The production facility or transportation facility may be located remotely from surface facility 40. In some embodiments, the third mixture may be trucked or shipped to a production facility or transportation facility. In certain embodiments, surface facility 40 may be a simple mixing station to combine the mixtures produced from production well 22 and production well 22'.
In certain embodiments, the blending agent produced from second section 38 may be injected through production well 22 into first section 36. A mixture of light hydrocarbons and heavy hydrocarbons may be produced through production well 22 after mixing of the blending agent and heavy hydrocarbons in first section 36. In some embodiments, the blending agent may be produced by separating non-desirable components (e.g., water) from a mixture produced from second section 38. The blending agent may be produced in surface facility. The blending agent may be pumped from surface facility through production well 22 and into first section 36.
FIGS. 4 and 5 depict results from an experiment. In the experiment, blending agent 50 produced by pyrolysis was mixed with Athabasca tar (heavy hydrocarbons 52) in three blending mixtures of different ratios. First mixture 54 included 80 % blending agent 50 and 20 % heavy hydrocarbons 52. Second mixture 56 included
50 % blending agent 50 and 50 % heavy hydrocarbons 52. Third mixture 58 included 20 % blending agent 50 and 80 % heavy hydrocarbons 52. Composition, physical properties, and asphaltene stability were measured for the blending agent, heavy hydrocarbons, and each of the mixtures.
Table 1 presents results of composition measurements of the mixtures. SARA analysis determined composition on a topped oil basis. SARA analysis includes a combination of induced precipitation (for asphaltenes) and column chromatography. Whole oil basis compositions were also determined.
Table 1
Figure imgf000017_0001
Key:
Sat Saturates
Aro Aromatics
NSO Resins (containing heteroatoms such as N, S and O)
Asph Asphaltenes
Asphaltene content on a whole oil basis varies linearly with the percentage of blending agent 50 in the mixture. FIG. 4 depicts SARA results (saturate/aromatic ratio versus asphaltene/resin ratio) for each of the blends (50, 52, 54, 56 and58). The line in FIG. 4 represents the differentiation between stable mixtures and unstable mixtures based on SARA results. The topping procedure used for SARA removed a greater proportion of the contribution of blending agent 50 (as compared to whole oil analysis) and resulted in the non-linear distribution in FIG. 4. First mixture 54, second mixture 56 and third mixture 58 plotted closer to heavy hydrocarbons 52 than blending agent 50. In addition, second mixture 56 and third mixture 58 plotted relatively closely. All blends (50, 52, 54, 56 and 58 ) plotted in a region of marginal stability.
Blending agent 50 included very little asphaltene (0.01 % by weight, whole oil basis). Heavy hydrocarbons 52 included about 13.2 % by weight (whole oil basis) with the amount of asphaltenes in the mixtures (54, 56, and 58) varying between 2.2 % by weight and 10.3 % by weight on a whole oil basis. Other indicators of the gross oil properties is the ratio between saturates and aromatics and the ratio between asphaltenes and resins. The asphaltene/resin ratio was lowest for first mixture 54, which has the largest percentage of blending agent 40. Second mixture 56 and third mixture 58 had relatively similar asphaltene/resin ratios indicating that the majority of resins in the mixtures are due to contribution from heavy hydrocarbons 52. The saturate/aromatic ratio was relatively similar for each of the mixtures.
Density and viscosity of the mixtures were measured at three temperatures 4.4 °C (40 °F), 21 °C (70 °F), and 32 °C (90 °F). The density and API gravity of the mixtures were also determined at 15 °C (60 °F) and used to calculate API gravities at other temperatures. In addition, a Floe Point Analyzer (FPA) value was determined for each of the three blended mixtures (54, 56 and 58). FPA is determined by n-heptane titration. The floe point is detected with a near infrared laser. The light source is blocked by asphaltenes precipitating out of solution. The FPA test was calibrated with a set of known problem and non-problem mixtures. Generally, FPA values less than 2.5 are considered unstable, greater than 3.0 are considered stable, and 2.5-3.0 are considered marginal. Table 2 presents values for FPA, density, viscosity, and API gravity for the three blended mixtures at four temperatures. Table 2
Figure imgf000018_0001
Key:
FPA Flocculation Point Analyzer value
Spec. Grav. Specific Gravity relative to water
Density (g/cc) Density in grams per cubic centimeter
API API gravity relative to water
Vise, (cs) Viscosity in centistokes
FPA tests showed that the mixtures containing lower amounts of heavy hydrocarbons were less stable. The lower stability was likely due to the proportion of aliphatic components already in these mixtures, which reduces asphaltene solubility. First mixture 54 was the least stable with a FPA value of 1.5, indicating instability with respect to asphaltene precipitation.
Second mixture 56 exhibited different behavior. Second mixture 56 had a FPA value of 2.2 indicating instability with respect to asphaltene precipitation. FPA analysis showed that the asphaltenes were precipitated, re- dissolved, and then re-precipitated with continuous addition of n-heptane.
FPA analysis of third mixture 58 showed that the asphaltenes were precipitated, re-dissolved, and then re- precipitated with continuous addition of n-heptane, as found for second mixture 56. The first precipitation in third mixture 58, however, was less pronounced than for second mixture 56. The FPA value of 2.8 found for third mixture 58 indicates marginal stability for the third mixture. Slow homogenization, associated with a high viscosity of the sample mixtures, is most likely responsible for the precipitation, re-dissolving, and re-precipitation with continued n-heptane addition.
Each of the mixtures (54, 56, and 58) showed relatively similar changes in density with increasing temperature. API values increased correspondingly with decreasing density. Viscosity changes, however, varied between each of the mixtures.
First mixture 54 was the least affected by temperature with viscosity values at 21 °C and 32 °C determined to be about 70 % and about 57 % of that at 4.4 °C, respectively. Second mixture 56 had viscosity values that decreased to values (of that at 4.4 °C) of about 48 % at 21 °C and about 30 % at 32 °C. Third mixture 58 was the most affected by temperature with viscosity values of about 21 % and about 9 % at 21 °C and 32 °C, respectively. Viscosity changes are approximately linear on a logarithmic plot of viscosity versus temperature as shown in FIG. 5.
Laboratory experiments were conducted on three tar samples contained in their natural sand matrix. The three tar samples were collected from the Athabasca tar sand region in western Canada. In each case, core material received from a well was mixed and then was split. One aliquot of the split core material was used in the retort, and the replicate aliquot was saved for comparative analyses. Materials sampled included a tar sample within a sandstone matrix. The heating rate for the runs was varied at 1 °C/day, 5 °C/day, and 10 °C/day. The pressure condition was varied for the runs at pressures of 1 bar, 7.9 bars, and 28.6 bars. Run #78 was operated with no backpressure (about 1 bar absolute) and a heating rate of 1 °C/day. Run #79 was operated with no backpressure (about 1 bar absolute) and a heating rate of 5 °C/day. Run #81 was operated with no backpressure (about 1 bar absolute) and a heating rate of 10 °C/day. Run #86 was operated at a pressure of 7.9 bars absolute and a heating rate of 10 °C/day. Run #96 was operated at a pressure of 28.6 bars absolute and a heating rate of 10 °C/day. In general, 0.5 to 1.5 kg initial weight of the sample was required to fill the available retort cells.
Table 3 illustrates the elemental analysis of initial tar and of the produced fluids for runs #81, #86, and #96. These data are all for a heating rate of 10 °C/day. Only pressure was varied between the runs.
TABLE 3
Figure imgf000019_0001
As illustrated in Table 3, pyrolysis of the tar sand decreases nitrogen, sulfur and oxygen weight percentages in a produced fluid. Increasing the pressure in the pyrolysis experiment appears to decrease the nitrogen, sulfur and oxygen weight percentage in the produced fluids. In addition, the weight percentage of hydrogen and the hydrogen to carbon ratio increase with increasing pressure.
Table 4 illustrates NOISE (Nitric Oxide Ionization Spectrometry Evaluation) analysis data for runs #81 , #86, and #96 and the initial tar. The remaining weight percentage (47.2%) in the initial tar may be found in the high molecular weight residue. TABLE 4
Product Fluid Analysis Run #
Initial tar 81 86 96
P(bar) 1 7.9 28.6
Paraffins (wt%) 7.08 15.36 27.16 26.45
Cycloalkanes (wt%) 29.15 46.7 45.8 36.56
Phenols (wt%) 0 0.34 0.54 0.47
Mono-aromatics (wt%) 6.73 21.04 16.88 28.0
Di-aromatics (wt%) 8.12 14.83 9.09 28.6
Tri-aromatics (wt%) 1.7 1.72 0.53 0
Tetra-aromatics (wt%) 0.02 0.01 0 0
As illustrated in Table 4, pyrolyzation of tar sand produces a product fluid with a significantly higher weight percentage of paraffins, cycloalkanes, and mono-aromatics than found in the initial tar sand. Increasing the pressure up to 7.9 bars absolute appears to substantially eliminate the production of tetra-aromatics. Further increasing the pressure up to 28.6 bars absolute appears to substantially eliminate the production of tri-aromatics. An increase in the pressure also appears to decrease production of di-aromatics. Increasing the pressure up to 28.6 bars absolute also appears to significantly increase production of mono-aromatics. This may be due to an increased hydrogen partial pressure at the higher pressure. The increased hydrogen partial pressure may reduce the number of poly-aromatic compounds and increase the number of mono-aromatics, paraffins, and/or cycloalkanes.
FIG. 6 illustrates oil production rates (m3/day) versus time (in days) for heavy hydrocarbons 52 and light hydrocarbons 60 as determined by computer simulation techniques. Heavy hydrocarbon production 52 reached a maximum of about 3 m3/day at about 150 days. Light hydrocarbon production 60 reached a maximum of about 9.6 m3/day at about 950 days. In addition, almost all heavy hydrocarbon production 52 was complete before the onset of light hydrocarbon production 60. The early heavy hydrocarbon production was attributed to production of cold (relatively unheated and unpyrolyzed) heavy hydrocarbons.
In some embodiments, early production of heavy hydrocarbons may be undesirable. FIG. 7 illustrates oil production rates (m3/day) versus time (days) for heavy hydrocarbons 52 and light hydrocarbons 60 with production inhibited for the first 500 days of heating as determined by simulation of treatment of the formation. Heavy hydrocarbon production 52 in FIG. 7 was significantly lower than heavy hydrocarbon production 52 in FIG. 6. Light hydrocarbon production 60 in FIG. 7 was higher than light hydrocarbon production 60 in FIG. 6, reaching a maximum of about 11.5 m3/day at about 950 days. The percentage of light hydrocarbons to heavy hydrocarbons was increased by inhibiting production the first 500 days of heating. FIG. 8 illustrates percentage cumulative oil recovery versus time (days) for three different horizontal producer well locations: top 62, middle 64, and bottom 66 as determined by simulation of treatment of the formation. The highest cumulative oil recovery was obtained using bottom producer 66. There was relatively little difference in cumulative oil recovery between middle producer 64 and top producer 66.
FIG. 9 illustrates production rates (m3/day) versus time (days) for heavy hydrocarbons and light hydrocarbons for a middle producer location and a bottom producer location as determined by simulation of treatment of the formation. As seen in FIG. 9, heavy hydrocarbon production 68 from the bottom producer was more than heavy hydrocarbon production 70 from the middle producer. There was relatively little difference between light hydrocarbon production 72 from the bottom producer and light hydrocarbon production 74 from the middle producer. Higher cumulative oil recovery obtained with the bottom producer (shown in FIG. 8) may be due to increased heavy hydrocarbon production.
Further modifications and alternative embodiments of various aspects of the invention may be apparent to those skilled in the art in view of this description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the general manner of carrying out the invention. It is to be understood that the forms of the invention shown and described herein are to be taken as the presently preferred embodiments. Elements and materials may be substituted for those illustrated and described herein, parts and processes may be reversed, and certain features of the invention may be utilized independently, all as would be apparent to one skilled in the art after having the benefit of this description of the invention. Changes may be made in the elements described herein without departing from the spirit and scope of the invention as described in the following claims. In addition, it is to be understood that features described herein independently may, in certain embodiments, be combined.

Claims

WHAT IS CLAIMED:
1. A method for treating a hydrocarbon containing formation in situ, comprising: providing heat from one or more heaters to a part of the formation such that the heat provided to the part of the formation pyrolyzes at least some hydrocarbons; and producing a blending agent from the part of the formation, wherein at least a portion of the blending agent is adapted to blend with a fluid to produce a mixture with a selected property.
2. The method of claim 1, wherein the fluid is a viscous fluid comprising at least some heavy hydrocarbons and the blending agent is adapted to blend with the viscous fluid to produce the mixture with a lower viscosity than the fluid.
3. The method of one or more of claims 1-2, wherein the fluid comprises a viscous crude oil having an API gravity below about 15°.
4. The method of one or more of claims 1-3, further comprising producing the fluid from a second part of a hydrocarbon containing formation and blending the fluid with the blending agent to produce the mixture.
5. The method of claim 1-3, further comprising producing the fluid from a second part of a hydrocarbon containing formation and blending the fluid with the blending agent to produce the mixture, wherein the part of the formation and the second part of the formation are located in different hydrocarbon containing formations.
6. The method of one or more of claims 1-3, further comprising producing the fluid from a second part of a hydrocarbon containing formation and blending the fluid with the blending agent to produce the mixture, wherein the part of the formation and the second part of the formation are located in different hydrocarbon containing formations, and wherein the different hydrocarbon containing formations are vertically displaced.
7. The method of one or more of claims 1-3, further comprising producing the fluid from a second part of a hydrocarbon containing formation and blending the fluid with the blending agent to produce the mixture, wherein the part of the formation and the second part of the formation are vertically displaced within a single hydrocarbon containing formation.
8. The method of one or more of claims 1-7, further comprising cold producing the fluid from a second part of a hydrocarbon containing formation.
9. The method of one or more of claims 1-8, further comprising injecting the blending agent into a second part hydrocarbon containing formation to produce the mixture in the hydrocarbon containing formation and/or to produce the mixture in a production well.
10. The method of one or more of claims 1-9, further comprising inhibiting production of at least a portion of the blending agent until at least some hydrocarbons in the part of the formation have been pyrolyzed.
11. The method of one or more of claims 1-10, further comprising determining a time that at least some hydrocarbons in the blending agent are subjected to pyrolysis temperatures in the formation using a laboratory treatment of formation samples and/or a simulation of treatment of the formation.
12. The method of one or more of claims 1-11, further comprising varying a location for producing the blending agent to produce a selected quality in the blending agent.
13. The method of one or more of claims 1-12, further comprising controlling a selected quality of the blending agent by controlling the heat provided from at least one of the heaters and or the pressure at a production well within the part of the formation.
14. The method of one or more of claims 1-13, further comprising maintaining a pressure in the part of the formation below 35 bars absolute.
15. The method of one or more of claims 1-14, wherein an average temperature within the part of the formation is below 375 °C.
16. The method of one or more of claims 1-15, further comprising producing the blending agent when a partial pressure of hydrogen in the part of the formation is at least about 0.5 bars absolute and/or from an upper portion of the formation.
17. The method of one or more of claims 1-16, wherein the heat provided from at least one heater is transferred to at least a portion of the formation substantially by conduction.
18. The method of one or more of claims 1-17, wherein the fluid has a high viscosity that inhibits economical transport over more than 100 km via a pipeline but the mixture has a reduced viscosity that permits economical transport over more than 100 km via a pipeline.
19. The method of one or more of claims 1-18, wherein the selected property of the mixture is created by blending the blending agent and fluid such that the mixture has a selected API gravity, a selected viscosity, a selected density, a selected asphaltene to saturated hydrocarbon ratio, a selected aromatic hydrocarbon to saturated hydrocarbon ratio, and/or a selected impurity level.
20. The method of one or more of claims 1-19, wherein the selected property of the mixture comprises an API gravity of greater than about 10°, a viscosity of less than about 7500 cs at about 4 °C, a density of less than about 1 g/cm3 at about 4 °C, an asphaltene to saturated hydrocarbon ratio of less than 1 or an aromatic hydrocarbon to saturated hydrocarbon ratio of less than 4.
21. The method of one or more of claims 1-20, wherein the blending agent comprises at least some pyrolyzed hydrocarbons.
22. The method of one or more of claims 1-21, further comprising selectively limiting a temperature proximate a selected portion of a heater well to inhibit coke formation proximate at or near the selected portion and producing a mixture of at least some hydrocarbons through the selected portion of the heater well.
23. A blending agent produced by the method of any one of claims 1 -22.
24. A mixture of the blending agent of claim 23 and a fluid, wherein asphaltenes are substantially stable in the mixture at ambient temperature.
25. A mixture of the blending agent of claim 23 and a fluid, wherein the mixture comprises equal to or less than about 20 % by weight of the blending agent.
26. The blending agent according to any one of claims 23-25, wherein the blending agent comprises an API gravity of at least about 15°.
27. A pumpable mixture produced by mixing the blending agent of any one of claims 23-25 with a viscous crude oil, wherein the blending agent is produced according to the method of any one of claims 1-22, and wherein the pumpable mixture has a selected property such as selected API gravity, a selected viscosity, a selected density, and/or a selected impurity.
PCT/US2002/034536 2001-10-24 2002-10-24 In situ production of a blending agent from a hydrocarbon containing formation WO2003036039A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
MXPA04003713A MXPA04003713A (en) 2001-10-24 2002-10-24 In situ production of a blending agent from a hydrocarbon containing formation.
CA 2463104 CA2463104C (en) 2001-10-24 2002-10-24 In situ production of a blending agent from a hydrocarbon containing formation

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US33713601P 2001-10-24 2001-10-24
US33456801P 2001-10-24 2001-10-24
US60/334,568 2001-10-24
US60/337,136 2001-10-24
US37499502P 2002-04-24 2002-04-24
US37497002P 2002-04-24 2002-04-24
US60/374,995 2002-04-24
US60/374,970 2002-04-24

Publications (1)

Publication Number Publication Date
WO2003036039A1 true WO2003036039A1 (en) 2003-05-01

Family

ID=27502497

Family Applications (17)

Application Number Title Priority Date Filing Date
PCT/US2002/034536 WO2003036039A1 (en) 2001-10-24 2002-10-24 In situ production of a blending agent from a hydrocarbon containing formation
PCT/US2002/034384 WO2003036037A2 (en) 2001-10-24 2002-10-24 Installation and use of removable heaters in a hydrocarbon containing formation
PCT/US2002/034272 WO2003036043A2 (en) 2001-10-24 2002-10-24 Forming openings in a hydrocarbon containing formation using magnetic tracking
PCT/US2002/034263 WO2003036035A2 (en) 2001-10-24 2002-10-24 In situ upgrading of coal
PCT/US2002/034210 WO2003035811A1 (en) 2001-10-24 2002-10-24 Remediation of a hydrocarbon containing formation
PCT/US2002/034266 WO2003036040A2 (en) 2001-10-24 2002-10-24 In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
PCT/US2002/034264 WO2003035801A2 (en) 2001-10-24 2002-10-24 Producing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation
PCT/US2002/034209 WO2003036034A1 (en) 2001-10-24 2002-10-24 Coductor-in-conduit heat sources with an electrically conductive material in the overburden
PCT/US2002/034023 WO2003040513A2 (en) 2001-10-24 2002-10-24 In situ thermal processing of a hydrocarbon containing formation
PCT/US2002/034274 WO2003036041A2 (en) 2001-10-24 2002-10-24 In situ recovery from a hydrocarbon containing formation using barriers
PCT/US2002/034203 WO2003036032A2 (en) 2001-10-24 2002-10-24 In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
PCT/US2002/034265 WO2003036036A1 (en) 2001-10-24 2002-10-24 In situ recovery from lean and rich zones in a hydrocarbon containing formation
PCT/US2002/034533 WO2003036038A2 (en) 2001-10-24 2002-10-24 In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
PCT/US2002/034201 WO2003036031A2 (en) 2001-10-24 2002-10-24 Seismic monitoring of in situ conversion in a hydrocarbon containing formation
PCT/US2002/034198 WO2003036030A2 (en) 2001-10-24 2002-10-24 In situ thermal processing and upgrading of produced hydrocarbons
PCT/US2002/034207 WO2003036033A1 (en) 2001-10-24 2002-10-24 Simulation of in situ recovery from a hydrocarbon containing formation
PCT/US2002/034212 WO2003036024A2 (en) 2001-10-24 2002-10-24 Method and system for in situ heating a hydrocarbon containing formation by a u-shaped opening

Family Applications After (16)

Application Number Title Priority Date Filing Date
PCT/US2002/034384 WO2003036037A2 (en) 2001-10-24 2002-10-24 Installation and use of removable heaters in a hydrocarbon containing formation
PCT/US2002/034272 WO2003036043A2 (en) 2001-10-24 2002-10-24 Forming openings in a hydrocarbon containing formation using magnetic tracking
PCT/US2002/034263 WO2003036035A2 (en) 2001-10-24 2002-10-24 In situ upgrading of coal
PCT/US2002/034210 WO2003035811A1 (en) 2001-10-24 2002-10-24 Remediation of a hydrocarbon containing formation
PCT/US2002/034266 WO2003036040A2 (en) 2001-10-24 2002-10-24 In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
PCT/US2002/034264 WO2003035801A2 (en) 2001-10-24 2002-10-24 Producing hydrocarbons and non-hydrocarbon containing materials from a hydrocarbon containing formation
PCT/US2002/034209 WO2003036034A1 (en) 2001-10-24 2002-10-24 Coductor-in-conduit heat sources with an electrically conductive material in the overburden
PCT/US2002/034023 WO2003040513A2 (en) 2001-10-24 2002-10-24 In situ thermal processing of a hydrocarbon containing formation
PCT/US2002/034274 WO2003036041A2 (en) 2001-10-24 2002-10-24 In situ recovery from a hydrocarbon containing formation using barriers
PCT/US2002/034203 WO2003036032A2 (en) 2001-10-24 2002-10-24 In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
PCT/US2002/034265 WO2003036036A1 (en) 2001-10-24 2002-10-24 In situ recovery from lean and rich zones in a hydrocarbon containing formation
PCT/US2002/034533 WO2003036038A2 (en) 2001-10-24 2002-10-24 In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well
PCT/US2002/034201 WO2003036031A2 (en) 2001-10-24 2002-10-24 Seismic monitoring of in situ conversion in a hydrocarbon containing formation
PCT/US2002/034198 WO2003036030A2 (en) 2001-10-24 2002-10-24 In situ thermal processing and upgrading of produced hydrocarbons
PCT/US2002/034207 WO2003036033A1 (en) 2001-10-24 2002-10-24 Simulation of in situ recovery from a hydrocarbon containing formation
PCT/US2002/034212 WO2003036024A2 (en) 2001-10-24 2002-10-24 Method and system for in situ heating a hydrocarbon containing formation by a u-shaped opening

Country Status (7)

Country Link
US (16) US7156176B2 (en)
CN (9) CN100594287C (en)
AU (11) AU2002360301B2 (en)
CA (10) CA2463110C (en)
IL (4) IL161173A0 (en)
NZ (6) NZ532090A (en)
WO (17) WO2003036039A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US10487636B2 (en) 2017-07-27 2019-11-26 Exxonmobil Upstream Research Company Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
US11002123B2 (en) 2017-08-31 2021-05-11 Exxonmobil Upstream Research Company Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
US11142681B2 (en) 2017-06-29 2021-10-12 Exxonmobil Upstream Research Company Chasing solvent for enhanced recovery processes
US11261725B2 (en) 2017-10-24 2022-03-01 Exxonmobil Upstream Research Company Systems and methods for estimating and controlling liquid level using periodic shut-ins

Families Citing this family (620)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7914898A (en) * 1997-05-20 1998-12-11 Shell Internationale Research Maatschappij B.V. Remediation method
NZ522139A (en) 2000-04-24 2004-12-24 Shell Int Research In situ recovery from a hydrocarbon containing formation
US6978210B1 (en) * 2000-10-26 2005-12-20 Conocophillips Company Method for automated management of hydrocarbon gathering systems
US20030079877A1 (en) 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US7243721B2 (en) * 2001-06-12 2007-07-17 Hydrotreat, Inc. Methods and apparatus for heating oil production reservoirs
CA2463108C (en) * 2001-10-24 2011-11-22 Shell Canada Limited Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil
DK1467826T3 (en) * 2001-10-24 2005-11-14 Shell Int Research Method for Thermally Improved Soil Purification
KR100925130B1 (en) * 2001-10-24 2009-11-05 쉘 인터내셔날 리써취 마트샤피지 비.브이. Remediation of mercury contaminated soil
CA2463110C (en) * 2001-10-24 2010-11-30 Shell Canada Limited In situ recovery from a hydrocarbon containing formation using barriers
JP4155749B2 (en) * 2002-03-20 2008-09-24 日本碍子株式会社 Method for measuring thermal conductivity of honeycomb structure
CA2482457A1 (en) * 2002-04-10 2004-03-18 Schlumberger Technology Corporation Method, apparatus and system for pore pressure prediction in presence of dipping formations
NL1020603C2 (en) * 2002-05-15 2003-11-18 Tno Process for drying a product using a regenerative adsorbent.
US20030229476A1 (en) * 2002-06-07 2003-12-11 Lohitsa, Inc. Enhancing dynamic characteristics in an analytical model
GB0216647D0 (en) * 2002-07-17 2002-08-28 Schlumberger Holdings System and method for obtaining and analyzing well data
CA2404575C (en) * 2002-09-23 2008-10-21 Karel Bostik Method of joining coiled sucker rod in the field
AU2003285008B2 (en) * 2002-10-24 2007-12-13 Shell Internationale Research Maatschappij B.V. Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US7012852B2 (en) * 2002-12-17 2006-03-14 Battelle Energy Alliance, Llc Method, apparatus and system for detecting seismic waves in a borehole
US20050191956A1 (en) * 2003-02-05 2005-09-01 Doyle Michael J. Radon mitigation heater pipe
FR2851670B1 (en) * 2003-02-21 2005-07-01 Inst Francais Du Petrole METHOD FOR RAPIDLY DEVELOPING A STOCHASTIC MODEL REPRESENTATIVE OF A UNDERGROUND HETEROGENEOUS RESERVOIR CONSTRAINTED BY UNCERTAIN STATIC AND DYNAMIC DATA
US20060217947A1 (en) * 2003-03-14 2006-09-28 Cesar Castanon Fernandez Method for determining the physicochemical properties of a three-dimensional body
JP2004308971A (en) * 2003-04-03 2004-11-04 Fujitsu General Ltd Simulation program forming method for calculating heat exchange amount and storage medium in which simulation program is stored
AU2004235350B8 (en) * 2003-04-24 2013-03-07 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
US7835893B2 (en) * 2003-04-30 2010-11-16 Landmark Graphics Corporation Method and system for scenario and case decision management
US6881009B2 (en) * 2003-05-15 2005-04-19 Board Of Regents , The University Of Texas System Remediation of soil piles using central equipment
US7004678B2 (en) * 2003-05-15 2006-02-28 Board Of Regents, The University Of Texas System Soil remediation with heated soil
US7534926B2 (en) * 2003-05-15 2009-05-19 Board Of Regents, The University Of Texas System Soil remediation using heated vapors
US8296968B2 (en) * 2003-06-13 2012-10-30 Charles Hensley Surface drying apparatus and method
US7331385B2 (en) 2003-06-24 2008-02-19 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US7325967B2 (en) * 2003-07-31 2008-02-05 Lextron, Inc. Method and apparatus for administering micro-ingredient feed additives to animal feed rations
US7552762B2 (en) * 2003-08-05 2009-06-30 Stream-Flo Industries Ltd. Method and apparatus to provide electrical connection in a wellhead for a downhole electrical device
US7677306B2 (en) * 2003-09-16 2010-03-16 Commonwealth Scientific & Industrial Research Organisation Hydraulic fracturing
DE10345342A1 (en) * 2003-09-19 2005-04-28 Engelhard Arzneimittel Gmbh Producing an ivy leaf extract containing hederacoside C and alpha-hederin, useful for treating respiratory diseases comprises steaming comminuted ivy leaves before extraction
US7171316B2 (en) * 2003-10-17 2007-01-30 Invensys Systems, Inc. Flow assurance monitoring
AU2004288130B2 (en) 2003-11-03 2009-12-17 Exxonmobil Upstream Research Company Hydrocarbon recovery from impermeable oil shales
US7152675B2 (en) * 2003-11-26 2006-12-26 The Curators Of The University Of Missouri Subterranean hydrogen storage process
GB2410551B (en) * 2004-01-30 2006-06-14 Westerngeco Ltd Marine seismic acquisition system
US7669349B1 (en) * 2004-03-04 2010-03-02 TD*X Associates LP Method separating volatile components from feed material
FR2869116B1 (en) * 2004-04-14 2006-06-09 Inst Francais Du Petrole METHOD FOR CONSTRUCTING A GEOMECHANICAL MODEL OF A SUBTERRANEAN ZONE FOR TORQUE TO A RESERVOIR MODEL
CN1957158B (en) * 2004-04-23 2010-12-29 国际壳牌研究有限公司 Temperature limited heaters used to heat subsurface formations
US8028438B2 (en) * 2004-07-02 2011-10-04 Aqualizer, Llc Moisture condensation control system
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7694523B2 (en) 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7024796B2 (en) * 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US7987613B2 (en) * 2004-10-12 2011-08-02 Great River Energy Control system for particulate material drying apparatus and process
US7464012B2 (en) * 2004-12-10 2008-12-09 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Simplified process simulator
GB2421077B (en) * 2004-12-07 2007-04-18 Westerngeco Ltd Seismic monitoring of heavy oil
US8026722B2 (en) * 2004-12-20 2011-09-27 Smith International, Inc. Method of magnetizing casing string tubulars for enhanced passive ranging
CA2727964C (en) * 2004-12-20 2014-02-11 Smith International, Inc. Magnetization of target well casing string tubulars for enhanced passive ranging
DE102005000782A1 (en) * 2005-01-05 2006-07-20 Voith Paper Patent Gmbh Drying cylinder for use in the production or finishing of fibrous webs, e.g. paper, comprises heating fluid channels between a supporting structure and a thin outer casing
DE102005004869A1 (en) * 2005-02-02 2006-08-10 Geoforschungszentrum Potsdam Exploration device and method for registering seismic vibrations
US7298287B2 (en) * 2005-02-04 2007-11-20 Intelliserv, Inc. Transmitting data through a downhole environment
US7561998B2 (en) * 2005-02-07 2009-07-14 Schlumberger Technology Corporation Modeling, simulation and comparison of models for wormhole formation during matrix stimulation of carbonates
WO2006086513A2 (en) * 2005-02-08 2006-08-17 Carewave, Inc. Apparatus and method for using a portable thermal device to reduce accommodation of nerve receptors
US7933410B2 (en) * 2005-02-16 2011-04-26 Comcast Cable Holdings, Llc System and method for a variable key ladder
US7584581B2 (en) * 2005-02-25 2009-09-08 Brian Iske Device for post-installation in-situ barrier creation and method of use thereof
US7565779B2 (en) 2005-02-25 2009-07-28 W. R. Grace & Co.-Conn. Device for in-situ barrier
GB0503908D0 (en) * 2005-02-25 2005-04-06 Accentus Plc Catalytic reactor
CN101163918A (en) * 2005-03-10 2008-04-16 国际壳牌研究有限公司 Heat transfer system for the combustion of a fuel and heating of a process fluid and a process that uses same
RU2384791C2 (en) * 2005-03-10 2010-03-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Multi-tube heat transfer system for fuel combustion and heating of process fluid medium and its use
KR101278487B1 (en) * 2005-03-10 2013-07-02 쉘 인터내셔날 리써취 마트샤피지 비.브이. Method of starting up a direct heating system for the flameless combustion of fuel and direct heating of a process fluid
US8496647B2 (en) 2007-12-18 2013-07-30 Intuitive Surgical Operations, Inc. Ribbed force sensor
EP1871981A1 (en) * 2005-04-22 2008-01-02 Shell Internationale Research Maatschappij B.V. Grouped exposed metal heaters
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
US8209202B2 (en) * 2005-04-29 2012-06-26 Landmark Graphics Corporation Analysis of multiple assets in view of uncertainties
US8029914B2 (en) * 2005-05-10 2011-10-04 Exxonmobile Research And Engineering Company High performance coated material with improved metal dusting corrosion resistance
GB2428089B (en) * 2005-07-05 2008-11-05 Schlumberger Holdings Borehole seismic acquisition system using pressure gradient sensors
US20060175061A1 (en) * 2005-08-30 2006-08-10 Crichlow Henry B Method for Recovering Hydrocarbons from Subterranean Formations
US20070056726A1 (en) * 2005-09-14 2007-03-15 Shurtleff James K Apparatus, system, and method for in-situ extraction of oil from oil shale
US7373909B2 (en) 2005-09-23 2008-05-20 Jp Scope Llc Valve apparatus for an internal combustion engine
US8528511B2 (en) * 2005-09-23 2013-09-10 Jp Scope, Inc. Variable travel valve apparatus for an internal combustion engine
US20070072949A1 (en) * 2005-09-28 2007-03-29 General Electric Company Methods and apparatus for hydrogen gas production
NZ567415A (en) * 2005-10-24 2010-12-24 Shell Int Research Solution mining systems and methods for treating hyrdocarbon containing formations
CA2625429C (en) * 2005-11-03 2014-07-22 Saudi Arabian Oil Company Continuous reservoir monitoring for fluid pathways using 3d microseismic data
CA2626923A1 (en) * 2005-11-16 2007-05-24 Shell Canada Limited Wellbore system
US20100082142A1 (en) * 2005-11-22 2010-04-01 Usadi Adam K Simulation System and Method
US7461693B2 (en) * 2005-12-20 2008-12-09 Schlumberger Technology Corporation Method for extraction of hydrocarbon fuels or contaminants using electrical energy and critical fluids
US7644587B2 (en) * 2005-12-21 2010-01-12 Rentech, Inc. Method for providing auxiliary power to an electric power plant using fischer-tropsch technology
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
US8210256B2 (en) * 2006-01-19 2012-07-03 Pyrophase, Inc. Radio frequency technology heater for unconventional resources
US7892597B2 (en) * 2006-02-09 2011-02-22 Composite Technology Development, Inc. In situ processing of high-temperature electrical insulation
US8091625B2 (en) 2006-02-21 2012-01-10 World Energy Systems Incorporated Method for producing viscous hydrocarbon using steam and carbon dioxide
US7484561B2 (en) * 2006-02-21 2009-02-03 Pyrophase, Inc. Electro thermal in situ energy storage for intermittent energy sources to recover fuel from hydro carbonaceous earth formations
GB2449828A (en) * 2006-03-08 2008-12-03 Exxonmobil Upstream Res Co Efficient computation method for electromagnetic modeling
CN101454536B (en) * 2006-04-21 2013-05-29 国际壳牌研究有限公司 heater, method for heating underground layer and produced hydrocarbon composition and fuel for transport
US7644993B2 (en) 2006-04-21 2010-01-12 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US7438501B2 (en) * 2006-05-16 2008-10-21 Layne Christensen Company Ground freezing installation accommodating thermal contraction of metal feed pipes
EP1860277B1 (en) * 2006-05-22 2015-02-11 Weatherford Technology Holdings, LLC Apparatus and methods to protect connections
US7568532B2 (en) * 2006-06-05 2009-08-04 Halliburton Energy Services, Inc. Electromagnetically determining the relative location of a drill bit using a solenoid source installed on a steel casing
US20070284356A1 (en) * 2006-06-09 2007-12-13 Carol Findlay Warming blanket with independent energy source
US7537061B2 (en) * 2006-06-13 2009-05-26 Precision Energy Services, Inc. System and method for releasing and retrieving memory tool with wireline in well pipe
US7538650B2 (en) * 2006-07-17 2009-05-26 Smith International, Inc. Apparatus and method for magnetizing casing string tubulars
US20080016768A1 (en) 2006-07-18 2008-01-24 Togna Keith A Chemically-modified mixed fuels, methods of production and used thereof
CA2657782A1 (en) * 2006-07-18 2008-01-24 Exxonmobil Research And Engineering Company High performance coated material with improved metal dusting corrosion resistance
US8205674B2 (en) 2006-07-25 2012-06-26 Mountain West Energy Inc. Apparatus, system, and method for in-situ extraction of hydrocarbons
US7657407B2 (en) * 2006-08-15 2010-02-02 Landmark Graphics Corporation Method and system of planning hydrocarbon extraction from a hydrocarbon formation
US7703548B2 (en) * 2006-08-16 2010-04-27 Schlumberger Technology Corporation Magnetic ranging while drilling parallel wells
GB0616330D0 (en) * 2006-08-17 2006-09-27 Schlumberger Holdings A method of deriving reservoir layer pressures and measuring gravel pack effectiveness in a flowing well using permanently installed distributed temperature
US7712519B2 (en) 2006-08-25 2010-05-11 Smith International, Inc. Transverse magnetization of casing string tubulars
US20080066535A1 (en) * 2006-09-18 2008-03-20 Schlumberger Technology Corporation Adjustable Testing Tool and Method of Use
US7614294B2 (en) * 2006-09-18 2009-11-10 Schlumberger Technology Corporation Systems and methods for downhole fluid compatibility
US7677673B2 (en) * 2006-09-26 2010-03-16 Hw Advanced Technologies, Inc. Stimulation and recovery of heavy hydrocarbon fluids
US7770646B2 (en) 2006-10-09 2010-08-10 World Energy Systems, Inc. System, method and apparatus for hydrogen-oxygen burner in downhole steam generator
US7712528B2 (en) 2006-10-09 2010-05-11 World Energy Systems, Inc. Process for dispersing nanocatalysts into petroleum-bearing formations
CN101553628B (en) * 2006-10-13 2013-06-05 埃克森美孚上游研究公司 Improved method of developing subsurface freeze zone
JO2982B1 (en) 2006-10-13 2016-03-15 Exxonmobil Upstream Res Co Optimized well spacing for in situ shale oil development
AU2007313394B2 (en) * 2006-10-13 2015-01-29 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
WO2008048455A2 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
CA2666296A1 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
US8246814B2 (en) 2006-10-20 2012-08-21 Saudi Arabian Oil Company Process for upgrading hydrocarbon feedstocks using solid adsorbent and membrane separation of treated product stream
US7763163B2 (en) * 2006-10-20 2010-07-27 Saudi Arabian Oil Company Process for removal of nitrogen and poly-nuclear aromatics from hydrocracker feedstocks
WO2008051822A2 (en) 2006-10-20 2008-05-02 Shell Oil Company Heating tar sands formations to visbreaking temperatures
US20100212893A1 (en) * 2006-11-14 2010-08-26 Behdad Moini Araghi Catalytic down-hole upgrading of heavy oil and oil sand bitumens
WO2008073765A2 (en) * 2006-12-07 2008-06-19 Bruno Michael S Method for reducing the emission of green house gases into the atmosphere
US7949238B2 (en) * 2007-01-19 2011-05-24 Emerson Electric Co. Heating element for appliance
US7617049B2 (en) * 2007-01-23 2009-11-10 Smith International, Inc. Distance determination from a magnetically patterned target well
JP5060791B2 (en) * 2007-01-26 2012-10-31 独立行政法人森林総合研究所 Method for drying wood, method for penetrating chemicals into wood and drying apparatus
RU2450042C2 (en) * 2007-02-09 2012-05-10 Ред Лиф Рисорсис, Инк. Methods of producing hydrocarbons from hydrocarbon-containing material using built infrastructure and related systems
US7862706B2 (en) * 2007-02-09 2011-01-04 Red Leaf Resources, Inc. Methods of recovering hydrocarbons from water-containing hydrocarbonaceous material using a constructed infrastructure and associated systems
JO2601B1 (en) * 2007-02-09 2011-11-01 ريد لييف ريسورسيز ، انك. Methods Of Recovering Hydrocarbons From Hydrocarbonaceous Material Using A Constructed Infrastructure And Associated Systems
CA2679636C (en) * 2007-02-28 2012-08-07 Aera Energy Llc Condensation-induced gamma radiation as a method for the identification of condensable vapor
US7931400B2 (en) * 2007-03-01 2011-04-26 Metglas, Inc. Temperature sensor and related remote temperature sensing method
US7985022B2 (en) * 2007-03-01 2011-07-26 Metglas, Inc. Remote temperature sensing device and related remote temperature sensing method
US8898018B2 (en) * 2007-03-06 2014-11-25 Schlumberger Technology Corporation Methods and systems for hydrocarbon production
CN101636555A (en) 2007-03-22 2010-01-27 埃克森美孚上游研究公司 Resistive heater for in situ formation heating
BRPI0808367A2 (en) 2007-03-22 2014-07-08 Exxonmobil Upstream Res Co METHODS FOR HEATING SUB-SURFACE TRAINING USING ELECTRICAL RESISTANCE HEATING AND TO PRODUCE HYDROCARBON FLUIDS.
US20080257552A1 (en) * 2007-04-17 2008-10-23 Shurtleff J Kevin Apparatus, system, and method for in-situ extraction of hydrocarbons
AU2008242797B2 (en) 2007-04-20 2011-07-14 Shell Internationale Research Maatschappij B.V. In situ recovery from residually heated sections in a hydrocarbon containing formation
US8380437B2 (en) * 2007-04-20 2013-02-19 The Board Of Regents Of The University Of Oklahoma Method of predicting mechanical properties of rocks using mineral compositions provided by in-situ logging tools
US8010290B2 (en) * 2007-05-03 2011-08-30 Smith International, Inc. Method of optimizing a well path during drilling
BRPI0810752A2 (en) 2007-05-15 2014-10-21 Exxonmobil Upstream Res Co METHODS FOR IN SITU HEATING OF A RICH ROCK FORMATION IN ORGANIC COMPOUND, IN SITU HEATING OF A TARGETED XISTO TRAINING AND TO PRODUCE A FLUID OF HYDROCARBON, SQUARE FOR A RACHOSETUS ORGANIC BUILDING , AND FIELD TO PRODUCE A HYDROCARBON FLUID FROM A TRAINING RICH IN A TARGET ORGANIC COMPOUND.
WO2008143749A1 (en) 2007-05-15 2008-11-27 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US20080283245A1 (en) * 2007-05-16 2008-11-20 Chevron U.S.A. Inc. Method and system for heat management of an oil field
US8146664B2 (en) 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US20080290719A1 (en) * 2007-05-25 2008-11-27 Kaminsky Robert D Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant
WO2008157336A1 (en) * 2007-06-13 2008-12-24 United States Department Of Energy Carbonaceous chemistry for continuum modeling
US7753618B2 (en) * 2007-06-28 2010-07-13 Calera Corporation Rocks and aggregate, and methods of making and using the same
US7744761B2 (en) 2007-06-28 2010-06-29 Calera Corporation Desalination methods and systems that include carbonate compound precipitation
WO2010074686A1 (en) 2008-12-23 2010-07-01 Calera Corporation Low-energy electrochemical hydroxide system and method
US7909094B2 (en) * 2007-07-06 2011-03-22 Halliburton Energy Services, Inc. Oscillating fluid flow in a wellbore
US7748137B2 (en) * 2007-07-15 2010-07-06 Yin Wang Wood-drying solar greenhouse
US7631706B2 (en) * 2007-07-17 2009-12-15 Schlumberger Technology Corporation Methods, systems and apparatus for production of hydrocarbons from a subterranean formation
RU2010106143A (en) * 2007-07-20 2011-08-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) FLAMELESS GASOLINE HEATER
ATE511062T1 (en) * 2007-07-20 2011-06-15 Shell Int Research HEATING DEVICE FOR FLAMELESS COMBUSTION
CA2594626C (en) * 2007-07-24 2011-01-11 Imperial Oil Resources Limited Use of a heavy petroleum fraction as a drive fluid in the recovery of hydrocarbons from a subterranean formation
CN101796431B (en) * 2007-08-01 2014-09-10 哈里伯顿能源服务公司 Remote processing of well tool sensor data and correction of sensor data on data acquisition systems
US7900700B2 (en) * 2007-08-02 2011-03-08 Schlumberger Technology Corporation Method and system for cleat characterization in coal bed methane wells for completion optimization
DE102007036832B4 (en) * 2007-08-03 2009-08-20 Siemens Ag Apparatus for the in situ recovery of a hydrocarbonaceous substance
US8768672B2 (en) 2007-08-24 2014-07-01 ExxonMobil. Upstream Research Company Method for predicting time-lapse seismic timeshifts by computer simulation
US8548782B2 (en) 2007-08-24 2013-10-01 Exxonmobil Upstream Research Company Method for modeling deformation in subsurface strata
DE102007040607B3 (en) * 2007-08-27 2008-10-30 Siemens Ag Method for in-situ conveyance of bitumen or heavy oil from upper surface areas of oil sands
US20090078414A1 (en) * 2007-09-25 2009-03-26 Schlumberger Technology Corp. Chemically enhanced thermal recovery of heavy oil
WO2009043055A2 (en) * 2007-09-28 2009-04-02 Bhom Llc System and method for extraction of hydrocarbons by in-situ radio frequency heating of carbon bearing geological formations
RU2496067C2 (en) 2007-10-19 2013-10-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Cryogenic treatment of gas
US7913755B2 (en) 2007-10-19 2011-03-29 Baker Hughes Incorporated Device and system for well completion and control and method for completing and controlling a well
MX2010003215A (en) * 2007-11-01 2010-04-30 Logined Bv Reservoir fracture simulation.
US8651126B2 (en) * 2007-11-21 2014-02-18 Teva Pharmaceutical Industries, Ltd. Controllable and cleanable steam trap apparatus
US8078403B2 (en) * 2007-11-21 2011-12-13 Schlumberger Technology Corporation Determining permeability using formation testing data
WO2009070751A1 (en) * 2007-11-26 2009-06-04 James Frederick Huber Mud pulser actuation
US8579953B1 (en) 2007-12-07 2013-11-12 Peter J. Dunbar Devices and methods for therapeutic heat treatment
US8082995B2 (en) * 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8006407B2 (en) * 2007-12-12 2011-08-30 Richard Anderson Drying system and method of using same
US8561473B2 (en) 2007-12-18 2013-10-22 Intuitive Surgical Operations, Inc. Force sensor temperature compensation
US7819188B2 (en) * 2007-12-21 2010-10-26 Schlumberger Technology Corporation Monitoring, controlling and enhancing processes while stimulating a fluid-filled borehole
US20100239467A1 (en) * 2008-06-17 2010-09-23 Brent Constantz Methods and systems for utilizing waste sources of metal oxides
GB2460910B8 (en) * 2007-12-28 2010-07-14 Calera Corp Methods of sequestering CO2.
US7749476B2 (en) * 2007-12-28 2010-07-06 Calera Corporation Production of carbonate-containing compositions from material comprising metal silicates
US7754169B2 (en) * 2007-12-28 2010-07-13 Calera Corporation Methods and systems for utilizing waste sources of metal oxides
US8003844B2 (en) * 2008-02-08 2011-08-23 Red Leaf Resources, Inc. Methods of transporting heavy hydrocarbons
US8256992B2 (en) * 2008-02-29 2012-09-04 Seqenergy, Llc Underground sequestration system and method
US20090218876A1 (en) * 2008-02-29 2009-09-03 Petrotek Engineering Corporation Method of achieving hydraulic control for in-situ mining through temperature-controlled mobility ratio alterations
US8257147B2 (en) * 2008-03-10 2012-09-04 Regency Technologies, Llc Method and apparatus for jet-assisted drilling or cutting
EP2252903A4 (en) * 2008-03-10 2018-01-03 Exxonmobil Upstream Research Company Method for determing distinct alternative paths between two object sets in 2-d and 3-d heterogeneous data
WO2009120779A2 (en) * 2008-03-28 2009-10-01 Exxonmobil Upstream Research Company Low emission power generation and hydrocarbon recovery systems and methods
US7819932B2 (en) * 2008-04-10 2010-10-26 Carbon Blue-Energy, LLC Method and system for generating hydrogen-enriched fuel gas for emissions reduction and carbon dioxide for sequestration
RU2494239C2 (en) * 2008-04-16 2013-09-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Oil and/or gas extraction system and method
US20090260812A1 (en) * 2008-04-18 2009-10-22 Michael Anthony Reynolds Methods of treating a hydrocarbon containing formation
US8177305B2 (en) 2008-04-18 2012-05-15 Shell Oil Company Heater connections in mines and tunnels for use in treating subsurface hydrocarbon containing formations
US20090260809A1 (en) * 2008-04-18 2009-10-22 Scott Lee Wellington Method for treating a hydrocarbon containing formation
US7841407B2 (en) * 2008-04-18 2010-11-30 Shell Oil Company Method for treating a hydrocarbon containing formation
US20090260825A1 (en) * 2008-04-18 2009-10-22 Stanley Nemec Milam Method for recovery of hydrocarbons from a subsurface hydrocarbon containing formation
US20090260810A1 (en) * 2008-04-18 2009-10-22 Michael Anthony Reynolds Method for treating a hydrocarbon containing formation
US20090260811A1 (en) * 2008-04-18 2009-10-22 Jingyu Cui Methods for generation of subsurface heat for treatment of a hydrocarbon containing formation
US8091636B2 (en) * 2008-04-30 2012-01-10 World Energy Systems Incorporated Method for increasing the recovery of hydrocarbons
US8113292B2 (en) 2008-05-13 2012-02-14 Baker Hughes Incorporated Strokable liner hanger and method
US8171999B2 (en) 2008-05-13 2012-05-08 Baker Huges Incorporated Downhole flow control device and method
US8555958B2 (en) 2008-05-13 2013-10-15 Baker Hughes Incorporated Pipeless steam assisted gravity drainage system and method
MX2010012463A (en) 2008-05-20 2010-12-07 Oxane Materials Inc Method of manufacture and the use of a functional proppant for determination of subterranean fracture geometries.
CN102037211B (en) 2008-05-23 2014-12-17 埃克森美孚上游研究公司 Field management for substantially constant composition gas generation
US20100144521A1 (en) * 2008-05-29 2010-06-10 Brent Constantz Rocks and Aggregate, and Methods of Making and Using the Same
JP2011521879A (en) * 2008-05-29 2011-07-28 カレラ コーポレーション Rocks and aggregates and methods for making and using them
US7547799B1 (en) 2008-06-20 2009-06-16 Sabic Innovative Plastics Ip B.V. Method for producing phenolic compound
US8071037B2 (en) * 2008-06-25 2011-12-06 Cummins Filtration Ip, Inc. Catalytic devices for converting urea to ammonia
US7875163B2 (en) 2008-07-16 2011-01-25 Calera Corporation Low energy 4-cell electrochemical system with carbon dioxide gas
US7993500B2 (en) 2008-07-16 2011-08-09 Calera Corporation Gas diffusion anode and CO2 cathode electrolyte system
CN101910469A (en) 2008-07-16 2010-12-08 卡勒拉公司 Co2 utilization in electrochemical systems
CN101868806A (en) * 2008-09-11 2010-10-20 卡勒拉公司 CO2 commodity trading system and method
JP2010073002A (en) * 2008-09-19 2010-04-02 Hoya Corp Image processor and camera
US8869477B2 (en) 2008-09-30 2014-10-28 Calera Corporation Formed building materials
US7939336B2 (en) * 2008-09-30 2011-05-10 Calera Corporation Compositions and methods using substances containing carbon
US7815880B2 (en) 2008-09-30 2010-10-19 Calera Corporation Reduced-carbon footprint concrete compositions
CN101990523B (en) 2008-09-30 2015-04-29 卡勒拉公司 Co2-sequestering formed building materials
AU2009303610A1 (en) 2008-10-13 2010-04-22 Shell Internationale Research Maatschappij B.V. Systems and methods for treating a subsurface formation with electrical conductors
US8256991B2 (en) 2008-10-20 2012-09-04 Seqenergy, Llc Engineered, scalable underground storage system and method
US10359774B2 (en) 2008-10-28 2019-07-23 Gates Corporation Diagnostic and response systems and methods for fluid power systems
US8138931B2 (en) * 2008-10-28 2012-03-20 The Gates Corporation Diagnostic and response systems and methods for fluid power systems
US9133581B2 (en) 2008-10-31 2015-09-15 Calera Corporation Non-cementitious compositions comprising vaterite and methods thereof
CA2694980C (en) * 2008-10-31 2011-09-20 Calera Corporation Non-cementitious compositions comprising co2 sequestering additives
CA2747045C (en) * 2008-11-03 2013-02-12 Laricina Energy Ltd. Passive heating assisted recovery methods
US9127541B2 (en) * 2008-11-06 2015-09-08 American Shale Oil, Llc Heater and method for recovering hydrocarbons from underground deposits
US8301426B2 (en) * 2008-11-17 2012-10-30 Landmark Graphics Corporation Systems and methods for dynamically developing wellbore plans with a reservoir simulator
CA2739590C (en) * 2008-11-20 2017-01-03 Exxonmobil Upstream Research Company Sand and fluid production and injection modeling methods
US8151482B2 (en) * 2008-11-25 2012-04-10 William H Moss Two-stage static dryer for converting organic waste to solid fuel
CA2694971C (en) * 2008-12-11 2012-03-20 Calera Corporation Processing co2 utilizing a recirculating solution
CA2696088A1 (en) * 2008-12-23 2010-06-23 Calera Corporation Low-energy electrochemical proton transfer system and method
US20110091366A1 (en) * 2008-12-24 2011-04-21 Treavor Kendall Neutralization of acid and production of carbonate-containing compositions
US20100258035A1 (en) * 2008-12-24 2010-10-14 Brent Constantz Compositions and methods using substances containing carbon
RU2402046C2 (en) * 2008-12-29 2010-10-20 Шлюмберже Текнолоджи Б.В. Procedure for evaluation of shape and dimensions of water-flooded area in well vicinity
RU2388906C1 (en) * 2008-12-30 2010-05-10 Шлюмберже Текнолоджи Б.В. Method for determining radius of water flooding area of oil formation in well
CN101878328A (en) * 2009-01-28 2010-11-03 卡勒拉公司 Low-energy electrochemical bicarbonate ion solution
US8834688B2 (en) 2009-02-10 2014-09-16 Calera Corporation Low-voltage alkaline production using hydrogen and electrocatalytic electrodes
US8490703B2 (en) * 2009-02-12 2013-07-23 Red Leaf Resources, Inc Corrugated heating conduit and method of using in thermal expansion and subsidence mitigation
EP2396503A2 (en) * 2009-02-12 2011-12-21 Red Leaf Resources, Inc. Articulated conduit linkage system
US8365478B2 (en) 2009-02-12 2013-02-05 Red Leaf Resources, Inc. Intermediate vapor collection within encapsulated control infrastructures
CA2752161A1 (en) * 2009-02-12 2010-08-19 Red Leaf Resources, Inc. Convective heat systems for recovery of hydrocarbons from encapsulated permeability control infrastructures
PE20120701A1 (en) * 2009-02-12 2012-07-04 Red Leaf Resources Inc BARRIER AND VAPOR COLLECTION SYSTEM FOR ENCAPSULATED CONTROL INFRASTRUCTURES
US8323481B2 (en) * 2009-02-12 2012-12-04 Red Leaf Resources, Inc. Carbon management and sequestration from encapsulated control infrastructures
US8349171B2 (en) 2009-02-12 2013-01-08 Red Leaf Resources, Inc. Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems maintained under positive pressure
US8366917B2 (en) * 2009-02-12 2013-02-05 Red Leaf Resources, Inc Methods of recovering minerals from hydrocarbonaceous material using a constructed infrastructure and associated systems
CA2692988C (en) * 2009-02-19 2016-01-19 Conocophillips Company Draining a reservoir with an interbedded layer
WO2010096210A1 (en) 2009-02-23 2010-08-26 Exxonmobil Upstream Research Company Water treatment following shale oil production by in situ heating
US8275589B2 (en) * 2009-02-25 2012-09-25 Schlumberger Technology Corporation Modeling a reservoir using a compartment model and a geomechanical model
US8887810B2 (en) 2009-03-02 2014-11-18 Harris Corporation In situ loop antenna arrays for subsurface hydrocarbon heating
US8101068B2 (en) 2009-03-02 2012-01-24 Harris Corporation Constant specific gravity heat minimization
US8674274B2 (en) 2009-03-02 2014-03-18 Harris Corporation Apparatus and method for heating material by adjustable mode RF heating antenna array
US8128786B2 (en) 2009-03-02 2012-03-06 Harris Corporation RF heating to reduce the use of supplemental water added in the recovery of unconventional oil
US8133384B2 (en) 2009-03-02 2012-03-13 Harris Corporation Carbon strand radio frequency heating susceptor
US8120369B2 (en) 2009-03-02 2012-02-21 Harris Corporation Dielectric characterization of bituminous froth
JP2012519076A (en) 2009-03-02 2012-08-23 カレラ コーポレイション Gas flow complex contaminant control system and method
US8494775B2 (en) * 2009-03-02 2013-07-23 Harris Corporation Reflectometry real time remote sensing for in situ hydrocarbon processing
US9034176B2 (en) 2009-03-02 2015-05-19 Harris Corporation Radio frequency heating of petroleum ore by particle susceptors
US8729440B2 (en) 2009-03-02 2014-05-20 Harris Corporation Applicator and method for RF heating of material
US20100224503A1 (en) * 2009-03-05 2010-09-09 Kirk Donald W Low-energy electrochemical hydroxide system and method
TW201105406A (en) * 2009-03-10 2011-02-16 Calera Corp Systems and methods for processing CO2
WO2010107856A2 (en) * 2009-03-17 2010-09-23 Smith International, Inc. Relative and absolute error models for subterranean wells
GB0904710D0 (en) * 2009-03-19 2009-05-06 Univ Gent Esstimating transmission signal quality
US20100236987A1 (en) * 2009-03-19 2010-09-23 Leslie Wayne Kreis Method for the integrated production and utilization of synthesis gas for production of mixed alcohols, for hydrocarbon recovery, and for gasoline/diesel refinery
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation
WO2010129247A2 (en) * 2009-04-27 2010-11-11 Services Petroliers Schlumberger Method for uncertainty quantification in the performance and risk assessment of a carbon dioxide storage site
BRPI1015966A2 (en) 2009-05-05 2016-05-31 Exxonmobil Upstream Company "method for treating an underground formation, and, computer readable storage medium."
FR2945376B1 (en) * 2009-05-06 2012-06-29 Commissariat Energie Atomique HYBRID SOLAR RECEIVER FOR THE PRODUCTION OF ELECTRICITY AND HEAT AND CONCENTRATED SOLAR SYSTEM COMPRISING SUCH A RECEIVER
ES2554687T3 (en) * 2009-05-19 2015-12-22 Teva Pharmaceutical Industries Ltd. Programmable steam trap
US8025445B2 (en) * 2009-05-29 2011-09-27 Baker Hughes Incorporated Method of deployment for real time casing imaging
US8132624B2 (en) 2009-06-02 2012-03-13 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US8056627B2 (en) 2009-06-02 2011-11-15 Baker Hughes Incorporated Permeability flow balancing within integral screen joints and method
US8151881B2 (en) 2009-06-02 2012-04-10 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US20100300674A1 (en) * 2009-06-02 2010-12-02 Baker Hughes Incorporated Permeability flow balancing within integral screen joints
US8967260B2 (en) 2009-07-02 2015-03-03 Exxonmobil Upstream Research Company System and method for enhancing the production of hydrocarbons
US20110147227A1 (en) * 2009-07-15 2011-06-23 Gilliam Ryan J Acid separation by acid retardation on an ion exchange resin in an electrochemical system
US7993511B2 (en) * 2009-07-15 2011-08-09 Calera Corporation Electrochemical production of an alkaline solution using CO2
US20110079515A1 (en) * 2009-07-15 2011-04-07 Gilliam Ryan J Alkaline production using a gas diffusion anode with a hydrostatic pressure
CA2709241C (en) * 2009-07-17 2015-11-10 Conocophillips Company In situ combustion with multiple staged producers
US8387692B2 (en) * 2009-07-17 2013-03-05 World Energy Systems Incorporated Method and apparatus for a downhole gas generator
US8262167B2 (en) 2009-08-20 2012-09-11 George Anthony Aulisio Apparatus and method for mining coal
CA2715700A1 (en) * 2009-09-03 2011-03-03 Schlumberger Canada Limited Methods for servicing subterranean wells
CA2678347C (en) * 2009-09-11 2010-09-21 Excelsior Energy Limited System and method for enhanced oil recovery from combustion overhead gravity drainage processes
US8257112B2 (en) 2009-10-09 2012-09-04 Shell Oil Company Press-fit coupling joint for joining insulated conductors
US9466896B2 (en) 2009-10-09 2016-10-11 Shell Oil Company Parallelogram coupling joint for coupling insulated conductors
US8356935B2 (en) 2009-10-09 2013-01-22 Shell Oil Company Methods for assessing a temperature in a subsurface formation
JP5501730B2 (en) 2009-10-22 2014-05-28 三菱重工業株式会社 Ammonia recovery device and recovery method
US8691731B2 (en) * 2009-11-18 2014-04-08 Baker Hughes Incorporated Heat generation process for treating oilfield deposits
US8656998B2 (en) 2009-11-23 2014-02-25 Conocophillips Company In situ heating for reservoir chamber development
AP3601A (en) 2009-12-03 2016-02-24 Red Leaf Resources Inc Methods and systems for removing fines from hydrocarbon-containing fluids
RU2491412C2 (en) * 2009-12-11 2013-08-27 Открытое акционерное общество "Научно-исследовательский институт горной геомеханики и маркшейдерского дела - Межотраслевой научный центр ВНИМИ" Well heater for deflected and flattening out holes
US8961652B2 (en) 2009-12-16 2015-02-24 Red Leaf Resources, Inc. Method for the removal and condensation of vapors
US8863839B2 (en) * 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
RU2414595C1 (en) * 2009-12-30 2011-03-20 Шлюмберже Текнолоджи Б.В. Method to determine relative permeability ratios of formation
WO2011100719A2 (en) 2010-02-13 2011-08-18 Mcalister Roy E Engineered fuel storage, respeciation and transport
EP2534226A4 (en) 2010-02-13 2014-03-26 Mcalister Technologies Llc Multi-purpose renewable fuel for isolating contaminants and storing energy
US8784661B2 (en) 2010-02-13 2014-07-22 Mcallister Technologies, Llc Liquid fuel for isolating waste material and storing energy
DE112011100809B4 (en) * 2010-03-05 2019-08-22 Exxonmobil Upstream Research Company CO2 storage in organic material rich rock formation with hydrocarbon production
MX2012010413A (en) 2010-03-08 2013-04-11 World Energy Systems Inc A downhole steam generator and method of use.
EP2545249B1 (en) * 2010-03-09 2019-05-15 ConocoPhillips Company Subterranean formation deformation monitoring systems
US8502120B2 (en) 2010-04-09 2013-08-06 Shell Oil Company Insulating blocks and methods for installation in insulated conductor heaters
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
US8939207B2 (en) 2010-04-09 2015-01-27 Shell Oil Company Insulated conductor heaters with semiconductor layers
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
EP2534592B1 (en) * 2010-04-22 2019-05-22 Aspen Technology Inc. Configuration engine for a process simulator
US8464792B2 (en) * 2010-04-27 2013-06-18 American Shale Oil, Llc Conduction convection reflux retorting process
AT511789B1 (en) 2010-05-13 2015-08-15 Baker Hughes Inc Prevention or mitigation of combustion gas induced steel corrosion
US20110298270A1 (en) * 2010-06-07 2011-12-08 Emc Metals Corporation In situ ore leaching using freeze barriers
US9062240B2 (en) 2010-06-14 2015-06-23 Halliburton Energy Services, Inc. Water-based grouting composition with an insulating material
US8322423B2 (en) 2010-06-14 2012-12-04 Halliburton Energy Services, Inc. Oil-based grouting composition with an insulating material
TW201604465A (en) 2010-06-15 2016-02-01 拜歐菲樂Ip有限責任公司 Methods, devices and systems for extraction of thermal energy from a heat conducting metal conduit
CA2707059C (en) 2010-06-22 2015-02-03 Gerald V. Chalifoux Method and apparatus for installing and removing an electric submersiblepump
US8648760B2 (en) 2010-06-22 2014-02-11 Harris Corporation Continuous dipole antenna
US8695702B2 (en) 2010-06-22 2014-04-15 Harris Corporation Diaxial power transmission line for continuous dipole antenna
US8463586B2 (en) 2010-06-22 2013-06-11 Saudi Arabian Oil Company Machine, program product, and computer-implemented method to simulate reservoirs as 2.5D unstructured grids
US10087728B2 (en) 2010-06-22 2018-10-02 Petrospec Engineering Inc. Method and apparatus for installing and removing an electric submersible pump
US20110315233A1 (en) * 2010-06-25 2011-12-29 George Carter Universal Subsea Oil Containment System and Method
KR20170096222A (en) * 2010-06-29 2017-08-23 에이치2세이프 엘엘씨 Fluid container
WO2012006350A1 (en) 2010-07-07 2012-01-12 Composite Technology Development, Inc. Coiled umbilical tubing
US8506677B2 (en) * 2010-07-13 2013-08-13 University Of South Carolina Membranes and reactors for CO2 separation
US8450664B2 (en) 2010-07-13 2013-05-28 Harris Corporation Radio frequency heating fork
US8700371B2 (en) * 2010-07-16 2014-04-15 Schlumberger Technology Corporation System and method for controlling an advancing fluid front of a reservoir
US8763691B2 (en) 2010-07-20 2014-07-01 Harris Corporation Apparatus and method for heating of hydrocarbon deposits by axial RF coupler
WO2012021293A1 (en) * 2010-08-11 2012-02-16 Conocophillips Company Unique seismic source encoding
WO2012024541A1 (en) * 2010-08-18 2012-02-23 Future Energy Llc Methods and systems for enhanced delivery of thermal energy for horizontal wellbores
BR112013000931A2 (en) 2010-08-30 2016-05-17 Exxonmobil Upstream Res Co well mechanical integrity for in situ pyrolysis
BR112013001022A2 (en) 2010-08-30 2016-05-24 Exxonmobil Upstream Res Compony olefin reduction for in situ pyrolysis oil generation
US20120059640A1 (en) * 2010-09-02 2012-03-08 Schlumberger Technology Corporation Thermodynamic modeling for optimized recovery in sagd
US8433551B2 (en) 2010-11-29 2013-04-30 Saudi Arabian Oil Company Machine, computer program product and method to carry out parallel reservoir simulation
US8386227B2 (en) 2010-09-07 2013-02-26 Saudi Arabian Oil Company Machine, computer program product and method to generate unstructured grids and carry out parallel reservoir simulation
US8772683B2 (en) 2010-09-09 2014-07-08 Harris Corporation Apparatus and method for heating of hydrocarbon deposits by RF driven coaxial sleeve
US8692170B2 (en) 2010-09-15 2014-04-08 Harris Corporation Litz heating antenna
US8646527B2 (en) 2010-09-20 2014-02-11 Harris Corporation Radio frequency enhanced steam assisted gravity drainage method for recovery of hydrocarbons
US8789599B2 (en) 2010-09-20 2014-07-29 Harris Corporation Radio frequency heat applicator for increased heavy oil recovery
US8511378B2 (en) 2010-09-29 2013-08-20 Harris Corporation Control system for extraction of hydrocarbons from underground deposits
US8943686B2 (en) 2010-10-08 2015-02-03 Shell Oil Company Compaction of electrical insulation for joining insulated conductors
US8586867B2 (en) 2010-10-08 2013-11-19 Shell Oil Company End termination for three-phase insulated conductors
US8857051B2 (en) 2010-10-08 2014-10-14 Shell Oil Company System and method for coupling lead-in conductor to insulated conductor
US8373516B2 (en) 2010-10-13 2013-02-12 Harris Corporation Waveguide matching unit having gyrator
US9114386B2 (en) 2010-10-27 2015-08-25 Shell Oil Company Self-activating hydroprocessing catalyst and process for treating heavy hydrocarbon feedstocks
US20120103604A1 (en) * 2010-10-29 2012-05-03 General Electric Company Subsurface heating device
CN102465692B (en) * 2010-10-29 2013-11-06 新奥科技发展有限公司 Method for obtaining fuel air region shape in real time in coal underground gasification process
US8616273B2 (en) 2010-11-17 2013-12-31 Harris Corporation Effective solvent extraction system incorporating electromagnetic heating
US8763692B2 (en) 2010-11-19 2014-07-01 Harris Corporation Parallel fed well antenna array for increased heavy oil recovery
US8656996B2 (en) 2010-11-19 2014-02-25 Exxonmobil Upstream Research Company Systems and methods for enhanced waterfloods
US8657000B2 (en) 2010-11-19 2014-02-25 Exxonmobil Upstream Research Company Systems and methods for enhanced waterfloods
US8443887B2 (en) 2010-11-19 2013-05-21 Harris Corporation Twinaxial linear induction antenna array for increased heavy oil recovery
US8453739B2 (en) 2010-11-19 2013-06-04 Harris Corporation Triaxial linear induction antenna array for increased heavy oil recovery
US8739869B2 (en) 2010-11-19 2014-06-03 Exxonmobil Upstream Research Company Systems and methods for enhanced waterfloods
DE102010062191B4 (en) * 2010-11-30 2012-06-28 Siemens Aktiengesellschaft Pipeline system and method for operating a pipeline system
AU2011336400B2 (en) 2010-12-02 2016-03-31 Wsp Global Inc. Mining systems and methods
AU2015202092B2 (en) * 2010-12-07 2017-06-15 Schlumberger Technology B.V. Electromagnetic array for subterranean magnetic ranging operations
US9238959B2 (en) 2010-12-07 2016-01-19 Schlumberger Technology Corporation Methods for improved active ranging and target well magnetization
US20120139530A1 (en) * 2010-12-07 2012-06-07 Smith International, Inc. Electromagnetic array for subterranean magnetic ranging operations
CA2820649C (en) * 2010-12-08 2015-11-24 Mcalister Technologies, Llc System and method for preparing liquid fuels
US8776518B1 (en) 2010-12-11 2014-07-15 Underground Recovery, LLC Method for the elimination of the atmospheric release of carbon dioxide and capture of nitrogen from the production of electricity by in situ combustion of fossil fuels
US9008884B2 (en) 2010-12-15 2015-04-14 Symbotic Llc Bot position sensing
EP2652250A4 (en) * 2010-12-17 2018-04-25 Exxonmobil Upstream Research Company Systems and methods for injecting a particulate mixture
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
US8849582B2 (en) * 2010-12-21 2014-09-30 Invensys Systems, Inc. Offline analyzer system and method for multivariate characterization of properties in crude and heavy hydrocarbon oils
US8936089B2 (en) 2010-12-22 2015-01-20 Chevron U.S.A. Inc. In-situ kerogen conversion and recovery
CA2860977C (en) 2011-01-21 2022-01-11 Charles Chabal Modular stimulus applicator system and method
US8881587B2 (en) 2011-01-27 2014-11-11 Schlumberger Technology Corporation Gas sorption analysis of unconventional rock samples
US20120193092A1 (en) * 2011-01-31 2012-08-02 Baker Hughes Incorporated Apparatus and methods for tracking the location of fracturing fluid in a subterranean formation
CA2761321C (en) * 2011-02-11 2014-08-12 Cenovus Energy, Inc. Selective displacement of water in pressure communication with a hydrocarbon reservoir
CA2739953A1 (en) * 2011-02-11 2012-08-11 Cenovus Energy Inc. Method for displacement of water from a porous and permeable formation
EP2675995A1 (en) * 2011-02-18 2013-12-25 Linc Energy Ltd Igniting an underground coal seam in an underground coal gasification process, ucg
US8700372B2 (en) * 2011-03-10 2014-04-15 Schlumberger Technology Corporation Method for 3-D gravity forward modeling and inversion in the wavenumber domain
US20120232705A1 (en) * 2011-03-10 2012-09-13 Mesquite Energy Partners, LLC Methods and apparatus for enhanced recovery of underground resources
US8646520B2 (en) * 2011-03-15 2014-02-11 Baker Hughes Incorporated Precision marking of subsurface locations
US8877041B2 (en) 2011-04-04 2014-11-04 Harris Corporation Hydrocarbon cracking antenna
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
RU2587459C2 (en) 2011-04-08 2016-06-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Systems for joining insulated conductors
US8522881B2 (en) 2011-05-19 2013-09-03 Composite Technology Development, Inc. Thermal hydrate preventer
US9116016B2 (en) * 2011-06-30 2015-08-25 Schlumberger Technology Corporation Indicating system for a downhole apparatus and a method for locating a downhole apparatus
US20130025861A1 (en) * 2011-07-26 2013-01-31 Marathon Oil Canada Corporation Methods and Systems for In-Situ Extraction of Bitumen
US9725999B2 (en) 2011-07-27 2017-08-08 World Energy Systems Incorporated System and methods for steam generation and recovery of hydrocarbons
RU2578232C2 (en) * 2011-07-27 2016-03-27 Уорлд Энерджи Системз Инкорпорейтед Hydrocarbon production devices and methods
CA2786106A1 (en) * 2011-08-12 2013-02-12 Marathon Oil Canada Corporation Methods and systems for in-situ extraction of bitumen
WO2013025658A2 (en) 2011-08-12 2013-02-21 Mcalister Technologies, Llc Energy and/or material transport including phase change
US9827529B2 (en) * 2011-08-15 2017-11-28 E I Du Pont De Nemours And Company Breathable product for protective mass transportation and cold chain applications
US8967248B2 (en) 2011-08-23 2015-03-03 Harris Corporation Method for hydrocarbon resource recovery including actuator operated positioning of an RF sensor and related apparatus
US8997864B2 (en) 2011-08-23 2015-04-07 Harris Corporation Method for hydrocarbon resource recovery including actuator operated positioning of an RF applicator and related apparatus
EP2568111A1 (en) * 2011-09-06 2013-03-13 Siemens Aktiengesellschaft Method and system for using heat obtained from a fossil fuel reservoir
US9624759B2 (en) * 2011-09-08 2017-04-18 Statoil Petroleum As Method and an arrangement for controlling fluid flow into a production pipe
TWI622540B (en) 2011-09-09 2018-05-01 辛波提克有限責任公司 Automated storage and retrieval system
US9115575B2 (en) * 2011-09-13 2015-08-25 Conocophillips Company Indirect downhole steam generator with carbon dioxide capture
EP2758486A1 (en) * 2011-09-21 2014-07-30 Nalco Company Hydrocarbon mobility and recovery through in-situ combustion with the addition of ammonia
US9068450B2 (en) 2011-09-23 2015-06-30 Cameron International Corporation Adjustable fracturing system
US8978763B2 (en) 2011-09-23 2015-03-17 Cameron International Corporation Adjustable fracturing system
US10132146B2 (en) * 2011-09-23 2018-11-20 Cameron International Corporation Adjustable fracturing head and manifold system
CA2850756C (en) * 2011-10-07 2019-09-03 Scott Vinh Nguyen Using dielectric properties of an insulated conductor in a subsurface formation to assess properties of the insulated conductor
CA2850741A1 (en) * 2011-10-07 2013-04-11 Manuel Alberto GONZALEZ Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
JO3141B1 (en) 2011-10-07 2017-09-20 Shell Int Research Integral splice for insulated conductors
JO3139B1 (en) 2011-10-07 2017-09-20 Shell Int Research Forming insulated conductors using a final reduction step after heat treating
GB2509639A (en) * 2011-10-20 2014-07-09 Schlumberger Holdings Optimization of multi-period model for valuation applied to flow control valves
US8935106B2 (en) * 2011-10-28 2015-01-13 Adalet/Scott Fetzer Company Pipeline hydrostatic testing device
CA2845012A1 (en) 2011-11-04 2013-05-10 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
KR101887843B1 (en) 2011-11-16 2018-08-10 사우디 아라비안 오일 컴퍼니 System and Method for Generating Power and Enhanced Oil Recovery
US8937279B2 (en) 2011-12-08 2015-01-20 Saudi Arabian Oil Company Super-resolution formation fluid imaging with contrast fluids
CN107102365B (en) * 2011-12-08 2019-03-22 沙特阿拉伯石油公司 The imaging of super-resolution formation fluid
TWI525184B (en) 2011-12-16 2016-03-11 拜歐菲樂Ip有限責任公司 Cryogenic injection compositions, systems and methods for cryogenically modulating flow in a conduit
US9857500B2 (en) * 2011-12-20 2018-01-02 Shell Oil Company Method to constrain a basin model with curie depth
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
US9678241B2 (en) * 2011-12-29 2017-06-13 Schlumberger Technology Corporation Magnetic ranging tool and method
CN104137477B (en) 2011-12-29 2019-03-15 瑞典爱立信有限公司 For disposing the technology that situation changes in interconnecting nodes
US8839867B2 (en) 2012-01-11 2014-09-23 Cameron International Corporation Integral fracturing manifold
CA2764539C (en) * 2012-01-16 2015-02-10 Husky Oil Operations Limited Method for creating a 3d model of a hydrocarbon reservoir, and method for comparative testing of hydrocarbon recovery techniques
AU2012367826A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
CA2862463A1 (en) 2012-01-23 2013-08-01 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US9441471B2 (en) 2012-02-28 2016-09-13 Baker Hughes Incorporated In situ heat generation
US9863228B2 (en) * 2012-03-08 2018-01-09 Schlumberger Technology Corporation System and method for delivering treatment fluid
US9803457B2 (en) 2012-03-08 2017-10-31 Schlumberger Technology Corporation System and method for delivering treatment fluid
CA2811666C (en) 2012-04-05 2021-06-29 Shell Internationale Research Maatschappij B.V. Compaction of electrical insulation for joining insulated conductors
CN102606129B (en) * 2012-04-10 2014-12-10 中国海洋石油总公司 Method and system for thin interbed oilfield development
US8857243B2 (en) 2012-04-13 2014-10-14 Schlumberger Technology Corporation Methods of measuring porosity on unconventional rock samples
WO2013158089A1 (en) * 2012-04-18 2013-10-24 Landmark Graphics Corporation Methods and systems of modeling hydrocarbon flow from layered shale formations
AU2013256823B2 (en) 2012-05-04 2015-09-03 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US9726157B2 (en) * 2012-05-09 2017-08-08 Halliburton Energy Services, Inc. Enhanced geothermal systems and methods
US10430872B2 (en) * 2012-05-10 2019-10-01 Schlumberger Technology Corporation Method of valuation of geological asset or information relating thereto in the presence of uncertainties
CN104285140B (en) * 2012-05-21 2016-08-24 株式会社岛津制作所 Population determinator
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
CA2810022C (en) * 2012-05-31 2014-12-09 In Situ Upgrading Technologies Inc. In situ upgrading via hot fluid injection
US20130327525A1 (en) * 2012-06-08 2013-12-12 Nexen Inc. Thermal pulsing procedure for remediation of cold spots in steam assisted gravity drainage
US9784082B2 (en) 2012-06-14 2017-10-10 Conocophillips Company Lateral wellbore configurations with interbedded layer
US8916042B2 (en) 2012-06-19 2014-12-23 Baker Hughes Incorporated Upgrading heavy oil and bitumen with an initiator
CA2780670C (en) 2012-06-22 2017-10-31 Imperial Oil Resources Limited Improving recovery from a subsurface hydrocarbon reservoir
US8967274B2 (en) * 2012-06-28 2015-03-03 Jasim Saleh Al-Azzawi Self-priming pump
US9665604B2 (en) * 2012-07-31 2017-05-30 Schlumberger Technology Corporation Modeling and manipulation of seismic reference datum (SRD) in a collaborative petro-technical application environment
CN104619948A (en) * 2012-08-13 2015-05-13 雪佛龙美国公司 Initiating production of clathrates by use of thermosyphons
US20140052378A1 (en) * 2012-08-14 2014-02-20 Chevron U.S.A. Inc. Methods and corresponding software module for quantifying risks or likelihoods of hydrocarbons being present in a geological basin or region
US8882204B2 (en) 2012-08-21 2014-11-11 George Anthony Aulisio Apparatus and method for mining coal
US9028171B1 (en) * 2012-09-19 2015-05-12 Josh Seldner Geothermal pyrolysis process and system
US9835017B2 (en) * 2012-09-24 2017-12-05 Schlumberger Technology Corporation Seismic monitoring system and method
AU2012392171B2 (en) * 2012-10-11 2016-09-08 Halliburton Energy Services, Inc. Fracture sensing system and method
US11796225B2 (en) 2012-10-18 2023-10-24 American Piledriving Equipment, Inc. Geoexchange systems including ground source heat exchangers and related methods
US9440895B2 (en) * 2012-11-08 2016-09-13 Energy Recovery, Inc. Isobaric pressure exchanger controls in amine gas processing
FR2997721B1 (en) * 2012-11-08 2015-05-15 Storengy RADONIP: A NEW METHODOLOGY FOR DETERMINING PRODUCTIVITY CURVES OF STORAGE WELLS AND DEPOSITS OF COMPRESSIBLE FLUIDS
US9604889B2 (en) 2012-11-08 2017-03-28 Energy Recovery, Inc. Isobaric pressure exchanger in amine gas processing
RU2511116C1 (en) * 2012-11-27 2014-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Казанский национальный исследовательский технический университет им. А.Н. Туполева-КАИ" (КНИТУ-КАИ) Method of light-duty power aggregate operation, eg with associated petroleum gas, and power aggregate for method implementation
WO2014089490A1 (en) * 2012-12-07 2014-06-12 Halliburton Energy Services Inc. Drilling parallel wells for sagd and relief
ES2477665B1 (en) * 2013-01-16 2015-04-07 Tecnatom, S. A. Synchronous modular system for non-destructive testing
US20140251596A1 (en) * 2013-03-05 2014-09-11 Cenovus Energy Inc. Single vertical or inclined well thermal recovery process
US20140251608A1 (en) * 2013-03-05 2014-09-11 Cenovus Energy Inc. Single vertical or inclined well thermal recovery process
US9121965B2 (en) * 2013-03-11 2015-09-01 Saudi Arabian Oil Company Low frequency passive seismic data acquisition and processing
CN103147733B (en) * 2013-03-12 2015-08-05 中国石油天然气股份有限公司 The electric ignition of combustion in situ rolling-up type and monitoring system
US9189576B2 (en) 2013-03-13 2015-11-17 Halliburton Energy Services, Inc. Analyzing sand stabilization treatments
US9133011B2 (en) 2013-03-15 2015-09-15 Mcalister Technologies, Llc System and method for providing customized renewable fuels
WO2014145169A2 (en) * 2013-03-15 2014-09-18 Gi-Gasification International (Luxembourg), S.A. Systems, methods and apparatuses for a compact reactor with finned panels
US10316644B2 (en) 2013-04-04 2019-06-11 Shell Oil Company Temperature assessment using dielectric properties of an insulated conductor heater with selected electrical insulation
SG11201508586YA (en) 2013-04-24 2015-11-27 Shell Int Research Activation of a hydroprocessing catalyst with steam
CA2910486C (en) * 2013-04-30 2020-04-28 Statoil Canada Limited Method of recovering thermal energy
WO2014184146A1 (en) * 2013-05-13 2014-11-20 Nci Swissnanocoat Sa Anti-icing system
WO2015009758A1 (en) * 2013-07-17 2015-01-22 Peerless Worldwide, Llc Process for the synthesis of graphene and graphene derivatives from so-called greenhouse gasses and other carbonaceous waste products
US10385259B2 (en) 2013-08-07 2019-08-20 Schlumberger Technology Corporation Method for removing bitumen to enhance formation permeability
US9771701B2 (en) * 2013-08-15 2017-09-26 Sllp 134 Limited Hydrocarbon production and storage facility
US10808528B2 (en) * 2013-08-22 2020-10-20 Halliburton Energy Services, Inc. On-site mass spectrometry for liquid and extracted gas analysis of drilling fluids
US20150062300A1 (en) * 2013-08-30 2015-03-05 Halliburton Energy Services, Inc. Wormhole Structure Digital Characterization and Stimulation
CA2924079A1 (en) 2013-09-13 2015-03-19 Biofilm Ip, Llc Magneto-cryogenic valves, systems and methods for modulating flow in a conduit
US20150082891A1 (en) * 2013-09-24 2015-03-26 Baker Hughes Incorporated System and method for measuring the vibration of a structure
US9417357B2 (en) 2013-09-26 2016-08-16 Harris Corporation Method for hydrocarbon recovery with change detection and related apparatus
US10006271B2 (en) 2013-09-26 2018-06-26 Harris Corporation Method for hydrocarbon recovery with a fractal pattern and related apparatus
US9599750B2 (en) * 2013-10-14 2017-03-21 Hunt Energy Enterprises L.L.C. Electroseismic surveying in exploration and production environments
CA2923681A1 (en) 2013-10-22 2015-04-30 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
CA2929750C (en) 2013-11-06 2018-02-27 Nexen Energy Ulc Processes for producing hydrocarbons from a reservoir
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
CA2929301C (en) * 2013-12-23 2019-06-25 Halliburton Energy Services Inc. Method and system for magnetic ranging and geosteering
WO2015102578A1 (en) * 2013-12-30 2015-07-09 Halliburton Energy Services, Inc. Ranging using current profiling
MX2016009971A (en) 2014-01-31 2017-06-29 Bailey Curlett Harry Method and system for subsurface resource production.
CA2882182C (en) 2014-02-18 2023-01-03 Athabasca Oil Corporation Cable-based well heater
US9601237B2 (en) * 2014-03-03 2017-03-21 Baker Hughes Incorporated Transmission line for wired pipe, and method
MX2016012330A (en) 2014-03-24 2017-01-13 Production Plus Energy Services Inc Systems and apparatuses for separating wellbore fluids and solids during production.
US9845669B2 (en) 2014-04-04 2017-12-19 Cenovus Energy Inc. Hydrocarbon recovery with multi-function agent
CN106133271A (en) 2014-04-04 2016-11-16 国际壳牌研究有限公司 Use the final insulated electric conductor reducing step formation after the heat treatment
CN103953320B (en) * 2014-05-12 2017-03-15 新奥科技发展有限公司 Underground gasification furnace water control method
RU2567296C1 (en) * 2014-05-27 2015-11-10 Андрей Владиславович Курочкин Method of gas and gas condensate preparation
NO345517B1 (en) 2014-06-04 2021-03-22 Schlumberger Technology Bv Pipe defect assessment system and method
US10995995B2 (en) 2014-06-10 2021-05-04 Vmac Global Technology Inc. Methods and apparatus for simultaneously cooling and separating a mixture of hot gas and liquid
US20150363524A1 (en) * 2014-06-16 2015-12-17 Ford Global Technologies, Llc Stress relief in a finite element simulation for springback compensation
US10094850B2 (en) 2014-06-27 2018-10-09 Schlumberger Technology Corporation Magnetic ranging while rotating
US10031153B2 (en) 2014-06-27 2018-07-24 Schlumberger Technology Corporation Magnetic ranging to an AC source while rotating
WO2016025870A1 (en) 2014-08-15 2016-02-18 Global Oil EOR Systems, Ltd. Hydrogen peroxide steam generator for oilfield applications
US9451792B1 (en) * 2014-09-05 2016-09-27 Atmos Nation, LLC Systems and methods for vaporizing assembly
US9939421B2 (en) * 2014-09-10 2018-04-10 Saudi Arabian Oil Company Evaluating effectiveness of ceramic materials for hydrocarbons recovery
CN104314568B (en) * 2014-09-25 2017-04-05 新奥科技发展有限公司 The reinforcement means of rock stratum above coal seam
AU2015323907B2 (en) * 2014-10-01 2020-03-19 Applied Technologies Associates, Inc Well completion with single wire guidance system
US10443364B2 (en) * 2014-10-08 2019-10-15 Gtherm Energy, Inc. Comprehensive enhanced oil recovery system
EP3209438A1 (en) * 2014-10-21 2017-08-30 Soil Research Lab Sprl System and method for treating porous materials
RU2569382C1 (en) * 2014-10-21 2015-11-27 Николай Борисович Болотин Downhole gas generator
US9903190B2 (en) 2014-10-27 2018-02-27 Cameron International Corporation Modular fracturing system
WO2016081104A1 (en) 2014-11-21 2016-05-26 Exxonmobil Upstream Research Company Method of recovering hydrocarbons within a subsurface formation
RU2728107C2 (en) 2014-11-25 2020-07-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Pyrolysis to create pressure in oil formations
US10338267B2 (en) * 2014-12-19 2019-07-02 Schlumberger Technology Corporation Formation properties from time-dependent nuclear magnetic resonance (NMR) measurements
US10036233B2 (en) 2015-01-21 2018-07-31 Baker Hughes, A Ge Company, Llc Method and system for automatically adjusting one or more operational parameters in a borehole
US10655441B2 (en) 2015-02-07 2020-05-19 World Energy Systems, Inc. Stimulation of light tight shale oil formations
WO2016149353A1 (en) * 2015-03-17 2016-09-22 Tetra Tech, Inc. A site remediation system and a method of remediating a site
CN106150448A (en) * 2015-04-15 2016-11-23 中国石油化工股份有限公司 Multifunctional thermal production three-dimensional physical simulation reservoir pressure system
US10288548B2 (en) * 2015-04-17 2019-05-14 Hamilton Sundstrand Corporation Wavelet-based analysis for fouling diagnosis of an aircraft heat exchanger
US9975701B2 (en) 2015-04-25 2018-05-22 James N. McCoy Method for detecting leakage in an underground hydrocarbon storage cavern
US9669997B2 (en) * 2015-04-25 2017-06-06 James N. McCoy Method for determining the profile of an underground hydrocarbon storage cavern
RU2599760C1 (en) * 2015-04-29 2016-10-10 Открытое акционерное общество "Журавский охровый завод" Adhesion promoter based on natural schungite mineral for attaching rubber to reinforcing metal materials
US10302543B2 (en) * 2015-05-07 2019-05-28 The Uab Research Foundation Full immersion pressure-pulse decay
WO2017024113A1 (en) * 2015-08-06 2017-02-09 Schlumberger Technology Corporation Method for evaluation of fluid transport properties in heterogenous geological formation
WO2017027447A1 (en) 2015-08-11 2017-02-16 Intrasen, LLC Groundwater monitoring system and method
CN106469551A (en) * 2015-08-19 2017-03-01 中兴通讯股份有限公司 A kind of pipeline noise reduction system and method
US9556719B1 (en) 2015-09-10 2017-01-31 Don P. Griffin Methods for recovering hydrocarbons from shale using thermally-induced microfractures
EP3356736B1 (en) * 2015-09-28 2022-08-10 Services Pétroliers Schlumberger Burner monitoring and control systems
US10656068B2 (en) * 2015-10-02 2020-05-19 Repsol, S.A. Method for providing a numerical model of a sample of rock
CN108350728B (en) * 2015-11-05 2021-02-19 沙特阿拉伯石油公司 Method and equipment for performing space-oriented chemically-induced pulse fracturing in reservoir
US10323475B2 (en) 2015-11-13 2019-06-18 Cameron International Corporation Fracturing fluid delivery system
US10858929B2 (en) * 2015-11-16 2020-12-08 Baker Hughes, A Ge Company, Llc Methods for drilling multiple parallel wells with passive magnetic ranging
US10304591B1 (en) * 2015-11-18 2019-05-28 Real Power Licensing Corp. Reel cooling method
US10877000B2 (en) 2015-12-09 2020-12-29 Schlumberger Technology Corporation Fatigue life assessment
CN106923685B (en) * 2015-12-31 2021-03-19 佛山市顺德区美的电热电器制造有限公司 Be suitable for electromagnetic heating's interior pot and have its cooking utensil
US11022421B2 (en) 2016-01-20 2021-06-01 Lucent Medical Systems, Inc. Low-frequency electromagnetic tracking
US11209567B2 (en) 2016-01-24 2021-12-28 Exciting Technology, Llc System, method, and for improving oilfield operations
US20170241308A1 (en) * 2016-02-24 2017-08-24 Ford Global Technologies, Llc Oil maintenance strategy for electrified vehicles
CN105738970B (en) * 2016-02-29 2017-04-05 山东科技大学 A kind of symbiotic co-existence quaternity mineral products coordinated survey method
CN114458431B (en) 2016-03-02 2024-01-12 沃特洛电气制造公司 Virtual sensing system
US11237132B2 (en) 2016-03-18 2022-02-01 Schlumberger Technology Corporation Tracking and estimating tubing fatigue in cycles to failure considering non-destructive evaluation of tubing defects
US10934822B2 (en) 2016-03-23 2021-03-02 Petrospec Engineering Inc. Low-pressure method and apparatus of producing hydrocarbons from an underground formation using electric resistive heating and solvent injection
WO2017177319A1 (en) 2016-04-13 2017-10-19 Acceleware Ltd. Apparatus and methods for electromagnetic heating of hydrocarbon formations
KR101795244B1 (en) * 2016-04-19 2017-11-07 현대자동차주식회사 Hydrogen consumption measuring method of fuel cell system
US11066913B2 (en) 2016-05-01 2021-07-20 Cameron International Corporation Flexible fracturing line with removable liner
EP3452694A4 (en) 2016-05-01 2019-12-25 Cameron Technologies Limited Fracturing system with flexible conduit
WO2017197346A1 (en) * 2016-05-13 2017-11-16 Gas Sensing Technology Corp. Gross mineralogy and petrology using raman spectroscopy
CN106077065A (en) * 2016-06-03 2016-11-09 北京建工环境修复股份有限公司 A kind of In Situ Heating device and In Situ Heating soil repair system thereof
US10125588B2 (en) 2016-06-30 2018-11-13 Must Holding Llc Systems and methods for recovering bitumen from subterranean formations
CN106150487B (en) * 2016-06-30 2019-03-26 重庆大学 Coal seam group mash gas extraction source and gas flowfield are distributed double tracer test methods
RU2695409C2 (en) * 2016-07-28 2019-07-23 Общество с ограниченной ответственностью "СОНОТЕХ ПЛЮС" Method of increasing oil recovery and device for its implementation
BE1024491B1 (en) * 2016-08-11 2018-03-12 Safran Aero Boosters S.A. TURBOMACHINE OIL TANK WITH LEVEL MEASUREMENT
CN106324431B (en) * 2016-08-24 2023-04-14 贵州元龙综合能源产业服务有限公司 High tension cable non-contact electric leakage detection device
CN106311733A (en) * 2016-09-19 2017-01-11 上海松沅环境修复技术有限公司 Method for remediating soil by using thermal desorption and microbial technology
CA3035730C (en) * 2016-11-08 2021-04-27 Landmark Graphics Corporation Selective diffusion inclusion for a reservoir simulation for hydrocarbon recovery
RU2641555C9 (en) * 2016-12-01 2018-03-22 Федеральное государственное бюджетное учреждение науки Институт горного дела им. Н.А. Чинакала Сибирского отделения Российской академии наук (ИГД СО РАН) Method for sealing degassing wells
CN110520596B (en) * 2016-12-09 2022-04-29 昆士兰大学 Method for dewatering and operating a coal bed gas well
AU2019204228B2 (en) * 2016-12-09 2020-07-23 The University Of Queensland Method for dewatering and operating coal seam gas wells
US20180172266A1 (en) * 2016-12-21 2018-06-21 Electric Horsepower Inc. Electric resistance heater system and light tower
CN106734133A (en) * 2017-01-05 2017-05-31 中国矿业大学 A kind of method that engineering with artificial freezing method closes displacement pollutant in soil
US10416335B2 (en) 2017-03-14 2019-09-17 Saudi Arabian Oil Company EMU impulse antenna with controlled directionality and improved impedance matching
US10317558B2 (en) 2017-03-14 2019-06-11 Saudi Arabian Oil Company EMU impulse antenna
WO2018170035A1 (en) 2017-03-14 2018-09-20 Saudi Arabian Oil Company Collaborative sensing and prediction of source rock properties
US10330815B2 (en) 2017-03-14 2019-06-25 Saudi Arabian Oil Company EMU impulse antenna for low frequency radio waves using giant dielectric and ferrite materials
CN106862258A (en) * 2017-03-15 2017-06-20 上海申朗新能源科技发展股份有限公司 One kind repairs near surface contaminated soil device
US11326436B2 (en) 2017-03-24 2022-05-10 Donald J. FRY Enhanced wellbore design and methods
US10118129B2 (en) * 2017-03-31 2018-11-06 Mitsubishi Heavy Industries, Ltd. Natural-gas purification apparatus
US10550679B2 (en) * 2017-04-27 2020-02-04 Conocophillips Company Depressurizing oil reservoirs for SAGD
CN107100663B (en) * 2017-05-02 2019-08-06 中国矿业大学 A kind of accurate pumping method of coal mine gas
US11073017B2 (en) 2017-05-10 2021-07-27 Gcp Applied Technologies Inc. In-situ barrier device with internal injection conduit
US11051737B2 (en) * 2017-05-19 2021-07-06 Ricoh Company, Ltd. Biomagnetic measurement method, biomagnetic measuring device, and biomagnetic measuring system
CN110944689B (en) 2017-06-07 2022-12-09 施菲姆德控股有限责任公司 Intravascular fluid movement devices, systems, and methods of use
CN107060691B (en) * 2017-06-27 2019-04-23 成都聚深科技有限责任公司 The vapor-recovery system of steam paraffin vehicle
CN107246251B (en) * 2017-06-27 2019-04-23 成都聚深科技有限责任公司 The steam self-loopa equipment of wax removal vehicle
US11022717B2 (en) * 2017-08-29 2021-06-01 Luna Innovations Incorporated Distributed measurement of minimum and maximum in-situ stress in substrates
CN107558950A (en) * 2017-09-13 2018-01-09 吉林大学 Orientation blocking method for the closing of oil shale underground in situ production zone
CN107387054B (en) * 2017-09-14 2019-08-27 辽宁工程技术大学 A kind of physical simulating method of shale seam net fracturing fracture extension
CN109550932B (en) * 2017-09-27 2022-10-18 北京君研碳极科技有限公司 Preparation method of composite wave-absorbing material based on coal-to-liquid residue
US10365393B2 (en) 2017-11-07 2019-07-30 Saudi Arabian Oil Company Giant dielectric nanoparticles as high contrast agents for electromagnetic (EM) fluids imaging in an oil reservoir
CN111556763B (en) 2017-11-13 2023-09-01 施菲姆德控股有限责任公司 Intravascular fluid movement device and system
CN107957593B (en) * 2017-12-19 2019-07-02 中国民航大学 A kind of Thick Underground Ice degeneration monitoring system and control evaluation method
US10201042B1 (en) * 2018-01-19 2019-02-05 Trs Group, Inc. Flexible helical heater
CN108266170B (en) * 2018-01-22 2019-05-31 苏州大学 Pusher shale gas burning quarrying apparatus and method
CN108345573B (en) * 2018-01-30 2021-05-28 长安益阳发电有限公司 Differential expansion determining function calculation method for differential expansion measuring probe of high-pressure cylinder of steam turbine
JP7410034B2 (en) 2018-02-01 2024-01-09 シファメド・ホールディングス・エルエルシー Intravascular blood pump and methods of use and manufacture
CN110125158B (en) * 2018-02-08 2021-06-04 天津大学 Method for treating heavy metal pollution in soil by low-level leaching and high-level extraction technology
CN112088242A (en) * 2018-03-06 2020-12-15 质子科技加拿大有限公司 In situ process for producing synthesis gas from underground hydrocarbon reservoirs
CN108894769A (en) * 2018-04-18 2018-11-27 中国石油天然气股份有限公司 Integrated differential-pressure-type gas-liquid two-phase flow well head monitoring device
US10883339B2 (en) * 2018-07-02 2021-01-05 Saudi Arabian Oil Company Equalizing hydrocarbon reservoir pressure
US11143786B2 (en) * 2018-07-05 2021-10-12 Halliburton Energy Services, Inc. Intrinsic geological formation carbon to oxygen ratio measurements
CN109162686B (en) * 2018-07-23 2020-01-10 中国石油大学(北京) Method and device for predicting fire flooding front edge position
WO2020047109A1 (en) * 2018-08-28 2020-03-05 Vivakor, Inc. System and method for using a flash evaporator to separate bitumen and hydrocarbon condensate
US11015413B2 (en) 2018-10-31 2021-05-25 Cameron International Corporation Fracturing system with fluid conduit having communication line
CN109675918B (en) * 2018-11-01 2021-04-13 核工业北京化工冶金研究院 Method for removing heavy metal pollution of farmland in situ by using green eluting agent
US11053775B2 (en) * 2018-11-16 2021-07-06 Leonid Kovalev Downhole induction heater
CN109538295B (en) * 2018-11-27 2020-07-31 中国神华能源股份有限公司 Underground reservoir system for sealed mining area
US11773706B2 (en) * 2018-11-29 2023-10-03 Acceleware Ltd. Non-equidistant open transmission lines for electromagnetic heating and method of use
CN111380903B (en) * 2018-12-29 2022-08-30 中国石油天然气股份有限公司 Method and device for determining specific heat capacity of shale
US10788547B2 (en) 2019-01-17 2020-09-29 Sandisk Technologies Llc Voltage-controlled interlayer exchange coupling magnetoresistive memory device and method of operating thereof
US11049538B2 (en) 2019-01-17 2021-06-29 Western Digital Technologies, Inc. Voltage-controlled interlayer exchange coupling magnetoresistive memory device and method of operating thereof
WO2020176982A1 (en) 2019-03-06 2020-09-10 Acceleware Ltd. Multilateral open transmission lines for electromagnetic heating and method of use
US11099292B1 (en) * 2019-04-10 2021-08-24 Vinegar Technologies LLC Method for determining the composition of natural gas liquids, mean pore-size and tortuosity in a subsurface formation using NMR
CN109991677A (en) * 2019-04-15 2019-07-09 中国石油化工股份有限公司 Tomography -- crack Reservoir Body classification method
CN110261502B (en) * 2019-06-14 2021-12-28 扬州大学 Experimental device and method for simulating greenhouse gas distribution of water-bottom mud system in ditch under sulfur pollution
EP3994233A1 (en) * 2019-07-02 2022-05-11 TotalEnergies SE Hydrocarbon extraction using solar energy
WO2021016372A1 (en) 2019-07-22 2021-01-28 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
CN110295901B (en) * 2019-07-30 2021-06-04 核工业北京化工冶金研究院 Method and system for dip mining
CN110424958B (en) * 2019-08-06 2022-12-13 中国石油天然气股份有限公司大港油田分公司 Exploration potential plane partitioning method and device for lake facies shale oil
US11161109B2 (en) * 2019-09-19 2021-11-02 Invidx Corp. Point-of-care testing cartridge with sliding cap
US10774611B1 (en) 2019-09-23 2020-09-15 Saudi Arabian Oil Company Method and system for microannulus sealing by galvanic deposition
WO2021062265A1 (en) 2019-09-25 2021-04-01 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
CN110782100B (en) * 2019-11-21 2022-04-29 西南石油大学 Low-permeability gas reservoir productivity rapid prediction method
CN110965971B (en) * 2019-12-12 2020-09-22 东北石油大学 Annular simulation device for water injection well
US11319757B2 (en) 2019-12-26 2022-05-03 Cameron International Corporation Flexible fracturing fluid delivery conduit quick connectors
KR102305666B1 (en) * 2020-01-22 2021-09-28 한국핵융합에너지연구원 Plasma surface treatment device of conductive powder
US11773704B2 (en) 2020-01-24 2023-10-03 Xuebing Fu Methods for tight oil production through secondary recovery using spaced producer and injector wellbores
CN111307209A (en) * 2020-02-25 2020-06-19 河海大学 Detection device for monitoring water leakage flow direction in underground water observation well
US11220904B2 (en) 2020-03-20 2022-01-11 Halliburton Energy Services, Inc. Fluid flow condition sensing probe
US11066921B1 (en) * 2020-03-20 2021-07-20 Halliburton Energy Services, Inc. Fluid flow condition sensing probe
US11078649B1 (en) * 2020-04-01 2021-08-03 William Riley Systems for selectively replenishing aquifers and generating electrical power based on electrical demand
US11194304B2 (en) * 2020-04-01 2021-12-07 William Riley Systems for selectively replenishing aquifers and generating electrical power based on electrical demand
CN111502621B (en) * 2020-05-25 2022-04-01 山东立鑫石油机械制造有限公司 Thick oil double-injection thin-extraction device
CN111537549B (en) * 2020-06-08 2021-04-13 北京大学 Carbon dioxide flooding, storing and fracturing device with continuously-changed phase state and experimental method
EA202091470A1 (en) * 2020-07-13 2022-01-31 Леонид Михайлович Сургучев PROCESS OF SEPARATION AND PRODUCTION OF HYDROGEN GENERATED IN OIL AND GAS FIELDS BY HETEROGENEOUS CATALYTIC CONVERSION, AQUATHERMOLYSIS OR OXIDATION REACTIONS
US11320414B2 (en) 2020-07-28 2022-05-03 Saudi Arabian Oil Company Method for differentiating between natural formation hydrocarbon and cracked hydrocarbon using mud gas measurements
CN114054489B (en) * 2020-07-30 2023-06-30 中国石油天然气股份有限公司 Method for removing organic pollutants in stratum by in-situ generation of multi-element hot fluid
US10912154B1 (en) 2020-08-06 2021-02-02 Michael E. Brown Concrete heating system
CN112014906B (en) * 2020-08-06 2022-03-22 中国石油化工股份有限公司 Compact reservoir evaluation method
CN112483062B (en) * 2020-12-17 2022-11-18 西安科技大学 Underground interlayer type coal in-situ gasification mining method and system
CN112943220B (en) * 2021-03-03 2023-06-20 安徽理工大学 Monitoring device for stratum well wall freezing profile
US11642709B1 (en) 2021-03-04 2023-05-09 Trs Group, Inc. Optimized flux ERH electrode
CN113049467B (en) * 2021-03-12 2021-10-22 东北石油大学 Device and method for simulating unconformity convergence ridge reservoir control mechanism
US11578638B2 (en) 2021-03-16 2023-02-14 Marathon Petroleum Company Lp Scalable greenhouse gas capture systems and methods
CN113062723A (en) * 2021-04-06 2021-07-02 中国石油天然气集团有限公司 Method and device for detecting oxygen content of geothermal well
CN113075027B (en) * 2021-04-27 2022-05-31 长沙理工大学 Test device and method for measuring dynamic elastic modulus of soil body model
US11459864B1 (en) 2021-05-13 2022-10-04 Saudi Arabian Oil Company High power laser in-situ heating and steam generation tool and methods
US11572773B2 (en) 2021-05-13 2023-02-07 Saudi Arabian Oil Company Electromagnetic wave hybrid tool and methods
US11674373B2 (en) 2021-05-13 2023-06-13 Saudi Arabian Oil Company Laser gravity heating
US11619097B2 (en) 2021-05-24 2023-04-04 Saudi Arabian Oil Company System and method for laser downhole extended sensing
US11725504B2 (en) 2021-05-24 2023-08-15 Saudi Arabian Oil Company Contactless real-time 3D mapping of surface equipment
CN113534284B (en) * 2021-06-16 2024-03-19 核工业北京地质研究院 Method for estimating development characteristics of sand oxidation zone by using water quality parameters
CN113252421B (en) * 2021-06-17 2021-09-21 西南石油大学 Device and method for measuring trace carbon isotopes and heavy components in natural gas
CN113514886B (en) * 2021-07-22 2021-12-10 核工业北京地质研究院 Geological-seismic three-dimensional prediction method for beneficial part of sandstone-type uranium deposit mineralization
RU2765941C1 (en) * 2021-08-20 2022-02-07 федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет» (ФГАОУ ВО КФУ) Method for thermochemical treatment of oil carbonate formation for production of high-viscosity oil and device for its implementation
CN114047016B (en) * 2022-01-13 2022-04-08 中国地质大学(武汉) High ground temperature surrounding rock tunnel structure simulation test device
US11828138B2 (en) 2022-04-05 2023-11-28 Saudi Arabian Oil Company Enhanced carbon capture and storage
CN115015404B (en) * 2022-04-27 2023-06-13 中国石油大学(华东) Isotope-tracing-based thermal simulation experiment method for interaction of hydrocarbon, water and rock
TWI793001B (en) * 2022-05-04 2023-02-11 美商傑明工程顧問股份有限公司 Method of parameter inversion for an aquifer with skin effects
WO2023215473A1 (en) * 2022-05-05 2023-11-09 Schlumberger Technology Corporation Distributed, scalable, trace-based imaging earth model representation
US11719468B1 (en) 2022-05-12 2023-08-08 William Riley Heat exchange using aquifer water
WO2023239797A1 (en) * 2022-06-07 2023-12-14 Koloma, Inc. Surface integration of hydrogen generation, storage, and integration and utilization of waste heat from enhanced geologic hydrogen production and decarbonation reactions
US11804605B1 (en) 2023-02-20 2023-10-31 King Faisal University Metal oxide nanocomposites for electrochemical oxidation of urea

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4384614A (en) * 1981-05-11 1983-05-24 Justheim Pertroleum Company Method of retorting oil shale by velocity flow of super-heated air
US4401163A (en) * 1980-12-29 1983-08-30 The Standard Oil Company Modified in situ retorting of oil shale
US4437519A (en) * 1981-06-03 1984-03-20 Occidental Oil Shale, Inc. Reduction of shale oil pour point
US4552214A (en) * 1984-03-22 1985-11-12 Standard Oil Company (Indiana) Pulsed in situ retorting in an array of oil shale retorts
US4706751A (en) * 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US5097903A (en) * 1989-09-22 1992-03-24 Jack C. Sloan Method for recovering intractable petroleum from subterranean formations
US5143156A (en) * 1990-09-27 1992-09-01 Union Oil Company Of California Enhanced oil recovery using organic vapors
US6016868A (en) * 1998-06-24 2000-01-25 World Energy Systems, Incorporated Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking

Family Cites Families (922)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US48994A (en) 1865-07-25 Improvement in devices for oil-wells
SE123136C1 (en) 1948-01-01
US94813A (en) 1869-09-14 Improvement in torpedoes for oil-wells
US123136A (en) * 1872-01-30 Improvement in wadding, batting
US514503A (en) * 1894-02-13 John sghnepp
SE123138C1 (en) 1948-01-01
US326439A (en) 1885-09-15 Protecting wells
US345586A (en) 1886-07-13 Oil from wells
US123138A (en) * 1872-01-30 Improvement in links for steam-engines
US2734579A (en) * 1956-02-14 Production from bituminous sands
US2732195A (en) 1956-01-24 Ljungstrom
US576784A (en) * 1897-02-09 Support for well-walls
US123137A (en) * 1872-01-30 Improvement in dovetailing-machines
SE126674C1 (en) 1949-01-01
US760304A (en) 1903-10-24 1904-05-17 Frank S Gilbert Heater for oil-wells.
US1168283A (en) * 1915-07-13 1916-01-18 Michael Bulik Spring-wheel.
US1253555A (en) * 1917-04-14 1918-01-15 Melanie Wolf Surgical basin.
US1342741A (en) 1918-01-17 1920-06-08 David T Day Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks
US1269747A (en) * 1918-04-06 1918-06-18 Lebbeus H Rogers Method of and apparatus for treating oil-shale.
GB156396A (en) 1919-12-10 1921-01-13 Wilson Woods Hoover An improved method of treating shale and recovering oil therefrom
US1457479A (en) 1920-01-12 1923-06-05 Edson R Wolcott Method of increasing the yield of oil wells
US1510655A (en) 1922-11-21 1924-10-07 Clark Cornelius Process of subterranean distillation of volatile mineral substances
US1634236A (en) * 1925-03-10 1927-06-28 Standard Dev Co Method of and apparatus for recovering oil
US1646599A (en) 1925-04-30 1927-10-25 George A Schaefer Apparatus for removing fluid from wells
US1666488A (en) 1927-02-05 1928-04-17 Crawshaw Richard Apparatus for extracting oil from shale
US1681523A (en) 1927-03-26 1928-08-21 Patrick V Downey Apparatus for heating oil wells
US1913395A (en) * 1929-11-14 1933-06-13 Lewis C Karrick Underground gasification of carbonaceous material-bearing substances
US2288857A (en) 1937-10-18 1942-07-07 Union Oil Co Process for the removal of bitumen from bituminous deposits
US2244255A (en) * 1939-01-18 1941-06-03 Electrical Treating Company Well clearing system
US2244256A (en) 1939-12-16 1941-06-03 Electrical Treating Company Apparatus for clearing wells
US2319702A (en) 1941-04-04 1943-05-18 Socony Vacuum Oil Co Inc Method and apparatus for producing oil wells
US2365591A (en) 1942-08-15 1944-12-19 Ranney Leo Method for producing oil from viscous deposits
US2423674A (en) 1942-08-24 1947-07-08 Johnson & Co A Process of catalytic cracking of petroleum hydrocarbons
US2381256A (en) 1942-10-06 1945-08-07 Texas Co Process for treating hydrocarbon fractions
US2390770A (en) 1942-10-10 1945-12-11 Sun Oil Co Method of producing petroleum
US2375689A (en) 1943-12-27 1945-05-08 David H Reeder Apparatus for mining coal
US2484063A (en) 1944-08-19 1949-10-11 Thermactor Corp Electric heater for subsurface materials
US2472445A (en) * 1945-02-02 1949-06-07 Thermactor Company Apparatus for treating oil and gas bearing strata
US2481051A (en) 1945-12-15 1949-09-06 Texaco Development Corp Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations
US2444755A (en) 1946-01-04 1948-07-06 Ralph M Steffen Apparatus for oil sand heating
US2634961A (en) * 1946-01-07 1953-04-14 Svensk Skifferolje Aktiebolage Method of electrothermal production of shale oil
US2466945A (en) 1946-02-21 1949-04-12 In Situ Gases Inc Generation of synthesis gas
US2497868A (en) * 1946-10-10 1950-02-21 Dalin David Underground exploitation of fuel deposits
US2939689A (en) 1947-06-24 1960-06-07 Svenska Skifferolje Ab Electrical heater for treating oilshale and the like
US2786660A (en) 1948-01-05 1957-03-26 Phillips Petroleum Co Apparatus for gasifying coal
US2548360A (en) 1948-03-29 1951-04-10 Stanley A Germain Electric oil well heater
US2584605A (en) 1948-04-14 1952-02-05 Edmund S Merriam Thermal drive method for recovery of oil
US2685930A (en) 1948-08-12 1954-08-10 Union Oil Co Oil well production process
US2630307A (en) 1948-12-09 1953-03-03 Carbonic Products Inc Method of recovering oil from oil shale
US2595979A (en) * 1949-01-25 1952-05-06 Texas Co Underground liquefaction of coal
US2642943A (en) * 1949-05-20 1953-06-23 Sinclair Oil & Gas Co Oil recovery process
US2593477A (en) * 1949-06-10 1952-04-22 Us Interior Process of underground gasification of coal
GB674082A (en) 1949-06-15 1952-06-18 Nat Res Dev Improvements in or relating to the underground gasification of coal
US2670802A (en) * 1949-12-16 1954-03-02 Thermactor Company Reviving or increasing the production of clogged or congested oil wells
US2623596A (en) 1950-05-16 1952-12-30 Atlantic Refining Co Method for producing oil by means of carbon dioxide
US2714930A (en) 1950-12-08 1955-08-09 Union Oil Co Apparatus for preventing paraffin deposition
US2695163A (en) * 1950-12-09 1954-11-23 Stanolind Oil & Gas Co Method for gasification of subterranean carbonaceous deposits
US2630306A (en) 1952-01-03 1953-03-03 Socony Vacuum Oil Co Inc Subterranean retorting of shales
US2757739A (en) 1952-01-07 1956-08-07 Parelex Corp Heating apparatus
US2780450A (en) 1952-03-07 1957-02-05 Svenska Skifferolje Ab Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ
US2777679A (en) 1952-03-07 1957-01-15 Svenska Skifferolje Ab Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ
US2789805A (en) * 1952-05-27 1957-04-23 Svenska Skifferolje Ab Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member
US2761663A (en) 1952-09-05 1956-09-04 Louis F Gerdetz Process of underground gasification of coal
US2780449A (en) 1952-12-26 1957-02-05 Sinclair Oil & Gas Co Thermal process for in-situ decomposition of oil shale
US2825408A (en) * 1953-03-09 1958-03-04 Sinclair Oil & Gas Company Oil recovery by subsurface thermal processing
US2771954A (en) * 1953-04-29 1956-11-27 Exxon Research Engineering Co Treatment of petroleum production wells
US2703621A (en) 1953-05-04 1955-03-08 George W Ford Oil well bottom hole flow increasing unit
US2743906A (en) 1953-05-08 1956-05-01 William E Coyle Hydraulic underreamer
US2803305A (en) 1953-05-14 1957-08-20 Pan American Petroleum Corp Oil recovery by underground combustion
US2914309A (en) * 1953-05-25 1959-11-24 Svenska Skifferolje Ab Oil and gas recovery from tar sands
US2902270A (en) 1953-07-17 1959-09-01 Svenska Skifferolje Ab Method of and means in heating of subsurface fuel-containing deposits "in situ"
US2890754A (en) 1953-10-30 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2890755A (en) * 1953-12-19 1959-06-16 Svenska Skifferolje Ab Apparatus for recovering combustible substances from subterraneous deposits in situ
US2841375A (en) * 1954-03-03 1958-07-01 Svenska Skifferolje Ab Method for in-situ utilization of fuels by combustion
US2794504A (en) 1954-05-10 1957-06-04 Union Oil Co Well heater
US2793696A (en) 1954-07-22 1957-05-28 Pan American Petroleum Corp Oil recovery by underground combustion
US2923535A (en) 1955-02-11 1960-02-02 Svenska Skifferolje Ab Situ recovery from carbonaceous deposits
US2799341A (en) 1955-03-04 1957-07-16 Union Oil Co Selective plugging in oil wells
US2801089A (en) 1955-03-14 1957-07-30 California Research Corp Underground shale retorting process
US2862558A (en) 1955-12-28 1958-12-02 Phillips Petroleum Co Recovering oils from formations
US2819761A (en) 1956-01-19 1958-01-14 Continental Oil Co Process of removing viscous oil from a well bore
US2857002A (en) 1956-03-19 1958-10-21 Texas Co Recovery of viscous crude oil
US2906340A (en) 1956-04-05 1959-09-29 Texaco Inc Method of treating a petroleum producing formation
US2991046A (en) 1956-04-16 1961-07-04 Parsons Lional Ashley Combined winch and bollard device
US2889882A (en) 1956-06-06 1959-06-09 Phillips Petroleum Co Oil recovery by in situ combustion
US3120264A (en) 1956-07-09 1964-02-04 Texaco Development Corp Recovery of oil by in situ combustion
US3016053A (en) 1956-08-02 1962-01-09 George J Medovick Underwater breathing apparatus
US2997105A (en) 1956-10-08 1961-08-22 Pan American Petroleum Corp Burner apparatus
US2932352A (en) 1956-10-25 1960-04-12 Union Oil Co Liquid filled well heater
US2804149A (en) 1956-12-12 1957-08-27 John R Donaldson Oil well heater and reviver
US2952449A (en) 1957-02-01 1960-09-13 Fmc Corp Method of forming underground communication between boreholes
US3127936A (en) 1957-07-26 1964-04-07 Svenska Skifferolje Ab Method of in situ heating of subsurface preferably fuel containing deposits
US2942223A (en) * 1957-08-09 1960-06-21 Gen Electric Electrical resistance heater
US2906337A (en) * 1957-08-16 1959-09-29 Pure Oil Co Method of recovering bitumen
US3007521A (en) 1957-10-28 1961-11-07 Phillips Petroleum Co Recovery of oil by in situ combustion
US3010516A (en) 1957-11-18 1961-11-28 Phillips Petroleum Co Burner and process for in situ combustion
US2954826A (en) 1957-12-02 1960-10-04 William E Sievers Heated well production string
US2994376A (en) 1957-12-27 1961-08-01 Phillips Petroleum Co In situ combustion process
US3061009A (en) 1958-01-17 1962-10-30 Svenska Skifferolje Ab Method of recovery from fossil fuel bearing strata
US3062282A (en) 1958-01-24 1962-11-06 Phillips Petroleum Co Initiation of in situ combustion in a carbonaceous stratum
US3051235A (en) 1958-02-24 1962-08-28 Jersey Prod Res Co Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation
US3004603A (en) * 1958-03-07 1961-10-17 Phillips Petroleum Co Heater
US3032102A (en) 1958-03-17 1962-05-01 Phillips Petroleum Co In situ combustion method
US3004596A (en) 1958-03-28 1961-10-17 Phillips Petroleum Co Process for recovery of hydrocarbons by in situ combustion
US3004601A (en) 1958-05-09 1961-10-17 Albert G Bodine Method and apparatus for augmenting oil recovery from wells by refrigeration
US3048221A (en) 1958-05-12 1962-08-07 Phillips Petroleum Co Hydrocarbon recovery by thermal drive
US3026940A (en) 1958-05-19 1962-03-27 Electronic Oil Well Heater Inc Oil well temperature indicator and control
US3010513A (en) 1958-06-12 1961-11-28 Phillips Petroleum Co Initiation of in situ combustion in carbonaceous stratum
US2958519A (en) 1958-06-23 1960-11-01 Phillips Petroleum Co In situ combustion process
US3044545A (en) * 1958-10-02 1962-07-17 Phillips Petroleum Co In situ combustion process
US3050123A (en) * 1958-10-07 1962-08-21 Cities Service Res & Dev Co Gas fired oil-well burner
US2950240A (en) 1958-10-10 1960-08-23 Socony Mobil Oil Co Inc Selective cracking of aliphatic hydrocarbons
US2974937A (en) * 1958-11-03 1961-03-14 Jersey Prod Res Co Petroleum recovery from carbonaceous formations
US2998457A (en) * 1958-11-19 1961-08-29 Ashland Oil Inc Production of phenols
US2970826A (en) * 1958-11-21 1961-02-07 Texaco Inc Recovery of oil from oil shale
US3036632A (en) 1958-12-24 1962-05-29 Socony Mobil Oil Co Inc Recovery of hydrocarbon materials from earth formations by application of heat
US3097690A (en) 1958-12-24 1963-07-16 Gulf Research Development Co Process for heating a subsurface formation
US2969226A (en) 1959-01-19 1961-01-24 Pyrochem Corp Pendant parting petro pyrolysis process
US3017168A (en) 1959-01-26 1962-01-16 Phillips Petroleum Co In situ retorting of oil shale
US3110345A (en) 1959-02-26 1963-11-12 Gulf Research Development Co Low temperature reverse combustion process
US3113619A (en) * 1959-03-30 1963-12-10 Phillips Petroleum Co Line drive counterflow in situ combustion process
US3113620A (en) * 1959-07-06 1963-12-10 Exxon Research Engineering Co Process for producing viscous oil
US3113623A (en) * 1959-07-20 1963-12-10 Union Oil Co Apparatus for underground retorting
US3181613A (en) 1959-07-20 1965-05-04 Union Oil Co Method and apparatus for subterranean heating
US3132692A (en) 1959-07-27 1964-05-12 Phillips Petroleum Co Use of formation heat from in situ combustion
US3116792A (en) 1959-07-27 1964-01-07 Phillips Petroleum Co In situ combustion process
US3150715A (en) 1959-09-30 1964-09-29 Shell Oil Co Oil recovery by in situ combustion with water injection
US3079085A (en) 1959-10-21 1963-02-26 Clark Apparatus for analyzing the production and drainage of petroleum reservoirs, and the like
US3095031A (en) 1959-12-09 1963-06-25 Eurenius Malte Oscar Burners for use in bore holes in the ground
US3131763A (en) 1959-12-30 1964-05-05 Texaco Inc Electrical borehole heater
US3163745A (en) 1960-02-29 1964-12-29 Socony Mobil Oil Co Inc Heating of an earth formation penetrated by a well borehole
US3127935A (en) 1960-04-08 1964-04-07 Marathon Oil Co In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs
US3137347A (en) 1960-05-09 1964-06-16 Phillips Petroleum Co In situ electrolinking of oil shale
US3139928A (en) 1960-05-24 1964-07-07 Shell Oil Co Thermal process for in situ decomposition of oil shale
US3058730A (en) 1960-06-03 1962-10-16 Fmc Corp Method of forming underground communication between boreholes
US3106244A (en) * 1960-06-20 1963-10-08 Phillips Petroleum Co Process for producing oil shale in situ by electrocarbonization
US3142336A (en) 1960-07-18 1964-07-28 Shell Oil Co Method and apparatus for injecting steam into subsurface formations
US3084919A (en) 1960-08-03 1963-04-09 Texaco Inc Recovery of oil from oil shale by underground hydrogenation
US3105545A (en) 1960-11-21 1963-10-01 Shell Oil Co Method of heating underground formations
US3164207A (en) * 1961-01-17 1965-01-05 Wayne H Thessen Method for recovering oil
US3138203A (en) 1961-03-06 1964-06-23 Jersey Prod Res Co Method of underground burning
US3191679A (en) 1961-04-13 1965-06-29 Wendell S Miller Melting process for recovering bitumens from the earth
US3207220A (en) 1961-06-26 1965-09-21 Chester I Williams Electric well heater
US3114417A (en) * 1961-08-14 1963-12-17 Ernest T Saftig Electric oil well heater apparatus
US3246695A (en) 1961-08-21 1966-04-19 Charles L Robinson Method for heating minerals in situ with radioactive materials
US3057404A (en) 1961-09-29 1962-10-09 Socony Mobil Oil Co Inc Method and system for producing oil tenaciously held in porous formations
US3183675A (en) 1961-11-02 1965-05-18 Conch Int Methane Ltd Method of freezing an earth formation
US3170842A (en) 1961-11-06 1965-02-23 Phillips Petroleum Co Subcritical borehole nuclear reactor and process
US3209825A (en) 1962-02-14 1965-10-05 Continental Oil Co Low temperature in-situ combustion
US3205946A (en) 1962-03-12 1965-09-14 Shell Oil Co Consolidation by silica coalescence
US3165154A (en) * 1962-03-23 1965-01-12 Phillips Petroleum Co Oil recovery by in situ combustion
US3149670A (en) * 1962-03-27 1964-09-22 Smclair Res Inc In-situ heating process
US3149672A (en) 1962-05-04 1964-09-22 Jersey Prod Res Co Method and apparatus for electrical heating of oil-bearing formations
US3208531A (en) 1962-08-21 1965-09-28 Otis Eng Co Inserting tool for locating and anchoring a device in tubing
US3182721A (en) 1962-11-02 1965-05-11 Sun Oil Co Method of petroleum production by forward in situ combustion
US3288648A (en) 1963-02-04 1966-11-29 Pan American Petroleum Corp Process for producing electrical energy from geological liquid hydrocarbon formation
US3205942A (en) * 1963-02-07 1965-09-14 Socony Mobil Oil Co Inc Method for recovery of hydrocarbons by in situ heating of oil shale
US3258069A (en) 1963-02-07 1966-06-28 Shell Oil Co Method for producing a source of energy from an overpressured formation
US3221505A (en) 1963-02-20 1965-12-07 Gulf Research Development Co Grouting method
US3221811A (en) * 1963-03-11 1965-12-07 Shell Oil Co Mobile in-situ heating of formations
US3250327A (en) 1963-04-02 1966-05-10 Socony Mobil Oil Co Inc Recovering nonflowing hydrocarbons
US3244231A (en) * 1963-04-09 1966-04-05 Pan American Petroleum Corp Method for catalytically heating oil bearing formations
US3241611A (en) * 1963-04-10 1966-03-22 Equity Oil Company Recovery of petroleum products from oil shale
GB959945A (en) 1963-04-18 1964-06-03 Conch Int Methane Ltd Constructing a frozen wall within the ground
US3237689A (en) * 1963-04-29 1966-03-01 Clarence I Justheim Distillation of underground deposits of solid carbonaceous materials in situ
US3205944A (en) 1963-06-14 1965-09-14 Socony Mobil Oil Co Inc Recovery of hydrocarbons from a subterranean reservoir by heating
US3233668A (en) * 1963-11-15 1966-02-08 Exxon Production Research Co Recovery of shale oil
US3285335A (en) * 1963-12-11 1966-11-15 Exxon Research Engineering Co In situ pyrolysis of oil shale formations
US3273640A (en) * 1963-12-13 1966-09-20 Pyrochem Corp Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ
US3303883A (en) 1964-01-06 1967-02-14 Mobil Oil Corp Thermal notching technique
US3275076A (en) 1964-01-13 1966-09-27 Mobil Oil Corp Recovery of asphaltic-type petroleum from a subterranean reservoir
US3342258A (en) 1964-03-06 1967-09-19 Shell Oil Co Underground oil recovery from solid oil-bearing deposits
US3294167A (en) 1964-04-13 1966-12-27 Shell Oil Co Thermal oil recovery
US3284281A (en) 1964-08-31 1966-11-08 Phillips Petroleum Co Production of oil from oil shale through fractures
US3302707A (en) * 1964-09-30 1967-02-07 Mobil Oil Corp Method for improving fluid recoveries from earthen formations
US3310109A (en) * 1964-11-06 1967-03-21 Phillips Petroleum Co Process and apparatus for combination upgrading of oil in situ and refining thereof
US3380913A (en) * 1964-12-28 1968-04-30 Phillips Petroleum Co Refining of effluent from in situ combustion operation
US3332480A (en) * 1965-03-04 1967-07-25 Pan American Petroleum Corp Recovery of hydrocarbons by thermal methods
US3338306A (en) 1965-03-09 1967-08-29 Mobil Oil Corp Recovery of heavy oil from oil sands
US3358756A (en) 1965-03-12 1967-12-19 Shell Oil Co Method for in situ recovery of solid or semi-solid petroleum deposits
US3262741A (en) 1965-04-01 1966-07-26 Pittsburgh Plate Glass Co Solution mining of potassium chloride
DE1242535B (en) 1965-04-13 1967-06-22 Deutsche Erdoel Ag Process for the removal of residual oil from oil deposits
US3316344A (en) 1965-04-26 1967-04-25 Central Electr Generat Board Prevention of icing of electrical conductors
US3342267A (en) 1965-04-29 1967-09-19 Gerald S Cotter Turbo-generator heater for oil and gas wells and pipe lines
US3278234A (en) 1965-05-17 1966-10-11 Pittsburgh Plate Glass Co Solution mining of potassium chloride
US3352355A (en) 1965-06-23 1967-11-14 Dow Chemical Co Method of recovery of hydrocarbons from solid hydrocarbonaceous formations
US3346044A (en) 1965-09-08 1967-10-10 Mobil Oil Corp Method and structure for retorting oil shale in situ by cycling fluid flows
US3349845A (en) 1965-10-22 1967-10-31 Sinclair Oil & Gas Company Method of establishing communication between wells
US3379248A (en) 1965-12-10 1968-04-23 Mobil Oil Corp In situ combustion process utilizing waste heat
US3454365A (en) * 1966-02-18 1969-07-08 Phillips Petroleum Co Analysis and control of in situ combustion of underground carbonaceous deposit
US3386508A (en) * 1966-02-21 1968-06-04 Exxon Production Research Co Process and system for the recovery of viscous oil
US3362751A (en) 1966-02-28 1968-01-09 Tinlin William Method and system for recovering shale oil and gas
US3595082A (en) 1966-03-04 1971-07-27 Gulf Oil Corp Temperature measuring apparatus
US3410977A (en) 1966-03-28 1968-11-12 Ando Masao Method of and apparatus for heating the surface part of various construction materials
DE1615192B1 (en) * 1966-04-01 1970-08-20 Chisso Corp Inductively heated heating pipe
US3513913A (en) * 1966-04-19 1970-05-26 Shell Oil Co Oil recovery from oil shales by transverse combustion
US3372754A (en) 1966-05-31 1968-03-12 Mobil Oil Corp Well assembly for heating a subterranean formation
US3399623A (en) 1966-07-14 1968-09-03 James R. Creed Apparatus for and method of producing viscid oil
US3412011A (en) 1966-09-02 1968-11-19 Phillips Petroleum Co Catalytic cracking and in situ combustion process for producing hydrocarbons
NL153755C (en) 1966-10-20 1977-11-15 Stichting Reactor Centrum METHOD FOR MANUFACTURING AN ELECTRIC HEATING ELEMENT, AS WELL AS HEATING ELEMENT MANUFACTURED USING THIS METHOD.
US3465819A (en) 1967-02-13 1969-09-09 American Oil Shale Corp Use of nuclear detonations in producing hydrocarbons from an underground formation
US3389975A (en) 1967-03-10 1968-06-25 Sinclair Research Inc Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide
US3438439A (en) 1967-05-29 1969-04-15 Pan American Petroleum Corp Method for plugging formations by production of sulfur therein
US3474863A (en) 1967-07-28 1969-10-28 Shell Oil Co Shale oil extraction process
US3528501A (en) 1967-08-04 1970-09-15 Phillips Petroleum Co Recovery of oil from oil shale
US3480082A (en) 1967-09-25 1969-11-25 Continental Oil Co In situ retorting of oil shale using co2 as heat carrier
US3434541A (en) 1967-10-11 1969-03-25 Mobil Oil Corp In situ combustion process
US3485300A (en) 1967-12-20 1969-12-23 Phillips Petroleum Co Method and apparatus for defoaming crude oil down hole
US3477058A (en) 1968-02-01 1969-11-04 Gen Electric Magnesia insulated heating elements and methods of production
US3580987A (en) * 1968-03-26 1971-05-25 Pirelli Electric cable
US3455383A (en) 1968-04-24 1969-07-15 Shell Oil Co Method of producing fluidized material from a subterranean formation
US3578080A (en) 1968-06-10 1971-05-11 Shell Oil Co Method of producing shale oil from an oil shale formation
US3497000A (en) * 1968-08-19 1970-02-24 Pan American Petroleum Corp Bottom hole catalytic heater
US3529682A (en) * 1968-10-03 1970-09-22 Bell Telephone Labor Inc Location detection and guidance systems for burrowing device
US3537528A (en) 1968-10-14 1970-11-03 Shell Oil Co Method for producing shale oil from an exfoliated oil shale formation
US3593789A (en) 1968-10-18 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3502372A (en) * 1968-10-23 1970-03-24 Shell Oil Co Process of recovering oil and dawsonite from oil shale
US3565171A (en) 1968-10-23 1971-02-23 Shell Oil Co Method for producing shale oil from a subterranean oil shale formation
US3554285A (en) 1968-10-24 1971-01-12 Phillips Petroleum Co Production and upgrading of heavy viscous oils
US3629551A (en) * 1968-10-29 1971-12-21 Chisso Corp Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current
US3501201A (en) 1968-10-30 1970-03-17 Shell Oil Co Method of producing shale oil from a subterranean oil shale formation
US3617471A (en) 1968-12-26 1971-11-02 Texaco Inc Hydrotorting of shale to produce shale oil
US3593790A (en) * 1969-01-02 1971-07-20 Shell Oil Co Method for producing shale oil from an oil shale formation
US3614986A (en) 1969-03-03 1971-10-26 Electrothermic Co Method for injecting heated fluids into mineral bearing formations
US3562401A (en) * 1969-03-03 1971-02-09 Union Carbide Corp Low temperature electric transmission systems
US3542131A (en) 1969-04-01 1970-11-24 Mobil Oil Corp Method of recovering hydrocarbons from oil shale
US3547192A (en) 1969-04-04 1970-12-15 Shell Oil Co Method of metal coating and electrically heating a subterranean earth formation
US3618663A (en) 1969-05-01 1971-11-09 Phillips Petroleum Co Shale oil production
US3605890A (en) 1969-06-04 1971-09-20 Chevron Res Hydrogen production from a kerogen-depleted shale formation
US3526095A (en) 1969-07-24 1970-09-01 Ralph E Peck Liquid gas storage system
US3599714A (en) 1969-09-08 1971-08-17 Roger L Messman Method of recovering hydrocarbons by in situ combustion
US3547193A (en) 1969-10-08 1970-12-15 Electrothermic Co Method and apparatus for recovery of minerals from sub-surface formations using electricity
US3702886A (en) 1969-10-10 1972-11-14 Mobil Oil Corp Crystalline zeolite zsm-5 and method of preparing the same
US3679264A (en) 1969-10-22 1972-07-25 Allen T Van Huisen Geothermal in situ mining and retorting system
US3661423A (en) 1970-02-12 1972-05-09 Occidental Petroleum Corp In situ process for recovery of carbonaceous materials from subterranean deposits
US3943160A (en) 1970-03-09 1976-03-09 Shell Oil Company Heat-stable calcium-compatible waterflood surfactant
US3676078A (en) 1970-03-19 1972-07-11 Int Salt Co Salt solution mining and geothermal heat utilization system
US3858397A (en) 1970-03-19 1975-01-07 Int Salt Co Carrying out heat-promotable chemical reactions in sodium chloride formation cavern
US3709979A (en) 1970-04-23 1973-01-09 Mobil Oil Corp Crystalline zeolite zsm-11
USRE27309E (en) * 1970-05-07 1972-03-14 Gas in
US3759574A (en) 1970-09-24 1973-09-18 Shell Oil Co Method of producing hydrocarbons from an oil shale formation
US3661424A (en) 1970-10-20 1972-05-09 Int Salt Co Geothermal energy recovery from deep caverns in salt deposits by means of air flow
US4305463A (en) * 1979-10-31 1981-12-15 Oil Trieval Corporation Oil recovery method and apparatus
US3679812A (en) * 1970-11-13 1972-07-25 Schlumberger Technology Corp Electrical suspension cable for well tools
US3765477A (en) 1970-12-21 1973-10-16 Huisen A Van Geothermal-nuclear energy release and recovery system
US3680633A (en) * 1970-12-28 1972-08-01 Sun Oil Co Delaware Situ combustion initiation process
US3675715A (en) 1970-12-30 1972-07-11 Forrester A Clark Processes for secondarily recovering oil
US3770614A (en) 1971-01-15 1973-11-06 Mobil Oil Corp Split feed reforming and n-paraffin elimination from low boiling reformate
US3832449A (en) 1971-03-18 1974-08-27 Mobil Oil Corp Crystalline zeolite zsm{14 12
US3700280A (en) * 1971-04-28 1972-10-24 Shell Oil Co Method of producing oil from an oil shale formation containing nahcolite and dawsonite
US3870063A (en) * 1971-06-11 1975-03-11 John T Hayward Means of transporting crude oil through a pipeline
US3770398A (en) 1971-09-17 1973-11-06 Cities Service Oil Co In situ coal gasification process
US3812913A (en) 1971-10-18 1974-05-28 Sun Oil Co Method of formation consolidation
US3893918A (en) 1971-11-22 1975-07-08 Engineering Specialties Inc Method for separating material leaving a well
US3766982A (en) * 1971-12-27 1973-10-23 Justheim Petrol Co Method for the in-situ treatment of hydrocarbonaceous materials
US3759328A (en) * 1972-05-11 1973-09-18 Shell Oil Co Laterally expanding oil shale permeabilization
US3794116A (en) * 1972-05-30 1974-02-26 Atomic Energy Commission Situ coal bed gasification
US3779602A (en) * 1972-08-07 1973-12-18 Shell Oil Co Process for solution mining nahcolite
US3757860A (en) 1972-08-07 1973-09-11 Atlantic Richfield Co Well heating
CA983704A (en) * 1972-08-31 1976-02-17 Joseph D. Robinson Method for determining distance and direction to a cased well bore
US3809159A (en) 1972-10-02 1974-05-07 Continental Oil Co Process for simultaneously increasing recovery and upgrading oil in a reservoir
US3804172A (en) * 1972-10-11 1974-04-16 Shell Oil Co Method for the recovery of oil from oil shale
US3794113A (en) 1972-11-13 1974-02-26 Mobil Oil Corp Combination in situ combustion displacement and steam stimulation of producing wells
US3804169A (en) * 1973-02-07 1974-04-16 Shell Oil Co Spreading-fluid recovery of subterranean oil
US3947683A (en) * 1973-06-05 1976-03-30 Texaco Inc. Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones
US4076761A (en) * 1973-08-09 1978-02-28 Mobil Oil Corporation Process for the manufacture of gasoline
US3874733A (en) * 1973-08-29 1975-04-01 Continental Oil Co Hydraulic method of mining and conveying coal in substantially vertical seams
US4016245A (en) 1973-09-04 1977-04-05 Mobil Oil Corporation Crystalline zeolite and method of preparing same
US3881551A (en) * 1973-10-12 1975-05-06 Ruel C Terry Method of extracting immobile hydrocarbons
US3853185A (en) * 1973-11-30 1974-12-10 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3907045A (en) * 1973-11-30 1975-09-23 Continental Oil Co Guidance system for a horizontal drilling apparatus
US3882941A (en) 1973-12-17 1975-05-13 Cities Service Res & Dev Co In situ production of bitumen from oil shale
US3946812A (en) 1974-01-02 1976-03-30 Exxon Production Research Company Use of materials as waterflood additives
US4199025A (en) 1974-04-19 1980-04-22 Electroflood Company Method and apparatus for tertiary recovery of oil
US4037655A (en) 1974-04-19 1977-07-26 Electroflood Company Method for secondary recovery of oil
US3922148A (en) 1974-05-16 1975-11-25 Texaco Development Corp Production of methane-rich gas
ZA753184B (en) 1974-05-31 1976-04-28 Standard Oil Co Process for recovering upgraded hydrocarbon products
US3948755A (en) 1974-05-31 1976-04-06 Standard Oil Company Process for recovering and upgrading hydrocarbons from oil shale and tar sands
US3892270A (en) 1974-06-06 1975-07-01 Chevron Res Production of hydrocarbons from underground formations
US3894769A (en) 1974-06-06 1975-07-15 Shell Oil Co Recovering oil from a subterranean carbonaceous formation
US3948758A (en) 1974-06-17 1976-04-06 Mobil Oil Corporation Production of alkyl aromatic hydrocarbons
US4006778A (en) * 1974-06-21 1977-02-08 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbon from tar sands
US4026357A (en) 1974-06-26 1977-05-31 Texaco Exploration Canada Ltd. In situ gasification of solid hydrocarbon materials in a subterranean formation
US4014575A (en) * 1974-07-26 1977-03-29 Occidental Petroleum Corporation System for fuel and products of oil shale retort
US4005752A (en) * 1974-07-26 1977-02-01 Occidental Petroleum Corporation Method of igniting in situ oil shale retort with fuel rich flue gas
US4029360A (en) 1974-07-26 1977-06-14 Occidental Oil Shale, Inc. Method of recovering oil and water from in situ oil shale retort flue gas
US3941421A (en) * 1974-08-13 1976-03-02 Occidental Petroleum Corporation Apparatus for obtaining uniform gas flow through an in situ oil shale retort
GB1454324A (en) 1974-08-14 1976-11-03 Iniex Recovering combustible gases from underground deposits of coal or bituminous shale
US3947656A (en) * 1974-08-26 1976-03-30 Fast Heat Element Manufacturing Co., Inc. Temperature controlled cartridge heater
US3948319A (en) 1974-10-16 1976-04-06 Atlantic Richfield Company Method and apparatus for producing fluid by varying current flow through subterranean source formation
AR205595A1 (en) 1974-11-06 1976-05-14 Haldor Topsoe As PROCEDURE FOR PREPARING GASES RICH IN METHANE
US4138442A (en) * 1974-12-05 1979-02-06 Mobil Oil Corporation Process for the manufacture of gasoline
US3952802A (en) * 1974-12-11 1976-04-27 In Situ Technology, Inc. Method and apparatus for in situ gasification of coal and the commercial products derived therefrom
US3986556A (en) * 1975-01-06 1976-10-19 Haynes Charles A Hydrocarbon recovery from earth strata
US3958636A (en) 1975-01-23 1976-05-25 Atlantic Richfield Company Production of bitumen from a tar sand formation
US4042026A (en) * 1975-02-08 1977-08-16 Deutsche Texaco Aktiengesellschaft Method for initiating an in-situ recovery process by the introduction of oxygen
US3972372A (en) 1975-03-10 1976-08-03 Fisher Sidney T Exraction of hydrocarbons in situ from underground hydrocarbon deposits
US4096163A (en) 1975-04-08 1978-06-20 Mobil Oil Corporation Conversion of synthesis gas to hydrocarbon mixtures
US3924680A (en) 1975-04-23 1975-12-09 In Situ Technology Inc Method of pyrolysis of coal in situ
US3973628A (en) 1975-04-30 1976-08-10 New Mexico Tech Research Foundation In situ solution mining of coal
US4016239A (en) 1975-05-22 1977-04-05 Union Oil Company Of California Recarbonation of spent oil shale
US3987851A (en) * 1975-06-02 1976-10-26 Shell Oil Company Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale
US3986557A (en) * 1975-06-06 1976-10-19 Atlantic Richfield Company Production of bitumen from tar sands
CA1064890A (en) 1975-06-10 1979-10-23 Mae K. Rubin Crystalline zeolite, synthesis and use thereof
US3950029A (en) * 1975-06-12 1976-04-13 Mobil Oil Corporation In situ retorting of oil shale
US3993132A (en) 1975-06-18 1976-11-23 Texaco Exploration Canada Ltd. Thermal recovery of hydrocarbons from tar sands
US4069868A (en) * 1975-07-14 1978-01-24 In Situ Technology, Inc. Methods of fluidized production of coal in situ
US4199024A (en) 1975-08-07 1980-04-22 World Energy Systems Multistage gas generator
US3954140A (en) 1975-08-13 1976-05-04 Hendrick Robert P Recovery of hydrocarbons by in situ thermal extraction
US3986349A (en) 1975-09-15 1976-10-19 Chevron Research Company Method of power generation via coal gasification and liquid hydrocarbon synthesis
US3994341A (en) 1975-10-30 1976-11-30 Chevron Research Company Recovering viscous petroleum from thick tar sand
US3994340A (en) 1975-10-30 1976-11-30 Chevron Research Company Method of recovering viscous petroleum from tar sand
US4087130A (en) * 1975-11-03 1978-05-02 Occidental Petroleum Corporation Process for the gasification of coal in situ
US4078608A (en) 1975-11-26 1978-03-14 Texaco Inc. Thermal oil recovery method
US4018280A (en) 1975-12-10 1977-04-19 Mobil Oil Corporation Process for in situ retorting of oil shale
US3992474A (en) 1975-12-15 1976-11-16 Uop Inc. Motor fuel production with fluid catalytic cracking of high-boiling alkylate
US4019575A (en) 1975-12-22 1977-04-26 Chevron Research Company System for recovering viscous petroleum from thick tar sand
US3999607A (en) 1976-01-22 1976-12-28 Exxon Research And Engineering Company Recovery of hydrocarbons from coal
US4031956A (en) * 1976-02-12 1977-06-28 In Situ Technology, Inc. Method of recovering energy from subsurface petroleum reservoirs
US4008762A (en) * 1976-02-26 1977-02-22 Fisher Sidney T Extraction of hydrocarbons in situ from underground hydrocarbon deposits
US4010800A (en) * 1976-03-08 1977-03-08 In Situ Technology, Inc. Producing thin seams of coal in situ
US4048637A (en) 1976-03-23 1977-09-13 Westinghouse Electric Corporation Radar system for detecting slowly moving targets
DE2615874B2 (en) * 1976-04-10 1978-10-19 Deutsche Texaco Ag, 2000 Hamburg Application of a method for extracting crude oil and bitumen from underground deposits by means of a combustion front in deposits of any content of intermediate hydrocarbons in the crude oil or bitumen
US4110180A (en) * 1976-04-28 1978-08-29 Diamond Shamrock Technologies S.A. Process for electrolysis of bromide containing electrolytes
GB1544245A (en) * 1976-05-21 1979-04-19 British Gas Corp Production of substitute natural gas
US4049053A (en) 1976-06-10 1977-09-20 Fisher Sidney T Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating
US4193451A (en) * 1976-06-17 1980-03-18 The Badger Company, Inc. Method for production of organic products from kerogen
US4067390A (en) * 1976-07-06 1978-01-10 Technology Application Services Corporation Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc
US4057293A (en) * 1976-07-12 1977-11-08 Garrett Donald E Process for in situ conversion of coal or the like into oil and gas
US4043393A (en) * 1976-07-29 1977-08-23 Fisher Sidney T Extraction from underground coal deposits
US4192854A (en) * 1976-09-03 1980-03-11 Eic Corporation Process for removing hydrogen sulfide and ammonia from gaseous streams
US4091869A (en) 1976-09-07 1978-05-30 Exxon Production Research Company In situ process for recovery of carbonaceous materials from subterranean deposits
US4140184A (en) 1976-11-15 1979-02-20 Bechtold Ira C Method for producing hydrocarbons from igneous sources
US4059308A (en) 1976-11-15 1977-11-22 Trw Inc. Pressure swing recovery system for oil shale deposits
US4083604A (en) * 1976-11-15 1978-04-11 Trw Inc. Thermomechanical fracture for recovery system in oil shale deposits
US4065183A (en) * 1976-11-15 1977-12-27 Trw Inc. Recovery system for oil shale deposits
US4077471A (en) 1976-12-01 1978-03-07 Texaco Inc. Surfactant oil recovery process usable in high temperature, high salinity formations
US4064943A (en) 1976-12-06 1977-12-27 Shell Oil Co Plugging permeable earth formation with wax
US4089374A (en) 1976-12-16 1978-05-16 In Situ Technology, Inc. Producing methane from coal in situ
US4084637A (en) * 1976-12-16 1978-04-18 Petro Canada Exploration Inc. Method of producing viscous materials from subterranean formations
US4140179A (en) * 1977-01-03 1979-02-20 Raytheon Company In situ radio frequency selective heating process
US4093026A (en) 1977-01-17 1978-06-06 Occidental Oil Shale, Inc. Removal of sulfur dioxide from process gas using treated oil shale and water
DE2705129C3 (en) * 1977-02-08 1979-11-15 Deutsche Texaco Ag, 2000 Hamburg Seismic procedure to control underground processes
US4277416A (en) 1977-02-17 1981-07-07 Aminoil, Usa, Inc. Process for producing methanol
US4137720A (en) 1977-03-17 1979-02-06 Rex Robert W Use of calcium halide-water as a heat extraction medium for energy recovery from hot rock systems
US4151877A (en) * 1977-05-13 1979-05-01 Occidental Oil Shale, Inc. Determining the locus of a processing zone in a retort through channels
US4099567A (en) 1977-05-27 1978-07-11 In Situ Technology, Inc. Generating medium BTU gas from coal in situ
US4144935A (en) 1977-08-29 1979-03-20 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4140180A (en) * 1977-08-29 1979-02-20 Iit Research Institute Method for in situ heat processing of hydrocarbonaceous formations
NL181941C (en) * 1977-09-16 1987-12-01 Ir Arnold Willem Josephus Grup METHOD FOR UNDERGROUND GASULATION OF COAL OR BROWN.
US4125159A (en) * 1977-10-17 1978-11-14 Vann Roy Randell Method and apparatus for isolating and treating subsurface stratas
SU915451A1 (en) * 1977-10-21 1988-08-23 Vnii Ispolzovania Method of underground gasification of fuel
US4119349A (en) 1977-10-25 1978-10-10 Gulf Oil Corporation Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale
US4114688A (en) 1977-12-05 1978-09-19 In Situ Technology Inc. Minimizing environmental effects in production and use of coal
US4158467A (en) * 1977-12-30 1979-06-19 Gulf Oil Corporation Process for recovering shale oil
US4148359A (en) * 1978-01-30 1979-04-10 Shell Oil Company Pressure-balanced oil recovery process for water productive oil shale
DE2812490A1 (en) * 1978-03-22 1979-09-27 Texaco Ag PROCEDURE FOR DETERMINING THE SPATIAL EXTENSION OF SUBSEQUENT REACTIONS
US4162707A (en) * 1978-04-20 1979-07-31 Mobil Oil Corporation Method of treating formation to remove ammonium ions
US4197911A (en) 1978-05-09 1980-04-15 Ramcor, Inc. Process for in situ coal gasification
US4228853A (en) * 1978-06-21 1980-10-21 Harvey A Herbert Petroleum production method
US4186801A (en) * 1978-12-18 1980-02-05 Gulf Research And Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4185692A (en) * 1978-07-14 1980-01-29 In Situ Technology, Inc. Underground linkage of wells for production of coal in situ
US4184548A (en) * 1978-07-17 1980-01-22 Standard Oil Company (Indiana) Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort
US4167213A (en) * 1978-07-17 1979-09-11 Standard Oil Company (Indiana) Method for determining the position and inclination of a flame front during in situ combustion of a rubbled oil shale retort
US4183405A (en) * 1978-10-02 1980-01-15 Magnie Robert L Enhanced recoveries of petroleum and hydrogen from underground reservoirs
US4446917A (en) 1978-10-04 1984-05-08 Todd John C Method and apparatus for producing viscous or waxy crude oils
US4311340A (en) 1978-11-27 1982-01-19 Lyons William C Uranium leeching process and insitu mining
NL7811732A (en) 1978-11-30 1980-06-03 Stamicarbon METHOD FOR CONVERSION OF DIMETHYL ETHER
US4457365A (en) 1978-12-07 1984-07-03 Raytheon Company In situ radio frequency selective heating system
US4299086A (en) 1978-12-07 1981-11-10 Gulf Research & Development Company Utilization of energy obtained by substoichiometric combustion of low heating value gases
US4265307A (en) 1978-12-20 1981-05-05 Standard Oil Company Shale oil recovery
US4258955A (en) 1978-12-26 1981-03-31 Mobil Oil Corporation Process for in-situ leaching of uranium
US4274487A (en) 1979-01-11 1981-06-23 Standard Oil Company (Indiana) Indirect thermal stimulation of production wells
US4232902A (en) 1979-02-09 1980-11-11 Ppg Industries, Inc. Solution mining water soluble salts at high temperatures
US4324292A (en) 1979-02-21 1982-04-13 University Of Utah Process for recovering products from oil shale
US4260192A (en) * 1979-02-21 1981-04-07 Occidental Research Corporation Recovery of magnesia from oil shale
US4289354A (en) 1979-02-23 1981-09-15 Edwin G. Higgins, Jr. Borehole mining of solid mineral resources
US4243511A (en) * 1979-03-26 1981-01-06 Marathon Oil Company Process for suppressing carbonate decomposition in vapor phase water retorting
US4248306A (en) 1979-04-02 1981-02-03 Huisen Allan T Van Geothermal petroleum refining
US4241953A (en) 1979-04-23 1980-12-30 Freeport Minerals Company Sulfur mine bleedwater reuse system
US4282587A (en) * 1979-05-21 1981-08-04 Daniel Silverman Method for monitoring the recovery of minerals from shallow geological formations
US4216079A (en) 1979-07-09 1980-08-05 Cities Service Company Emulsion breaking with surfactant recovery
US4234230A (en) * 1979-07-11 1980-11-18 The Superior Oil Company In situ processing of mined oil shale
US4290650A (en) 1979-08-03 1981-09-22 Ppg Industries Canada Ltd. Subterranean cavity chimney development for connecting solution mined cavities
US4228854A (en) 1979-08-13 1980-10-21 Alberta Research Council Enhanced oil recovery using electrical means
US4256945A (en) 1979-08-31 1981-03-17 Iris Associates Alternating current electrically resistive heating element having intrinsic temperature control
US4701587A (en) 1979-08-31 1987-10-20 Metcal, Inc. Shielded heating element having intrinsic temperature control
US4327805A (en) 1979-09-18 1982-05-04 Carmel Energy, Inc. Method for producing viscous hydrocarbons
US4549396A (en) 1979-10-01 1985-10-29 Mobil Oil Corporation Conversion of coal to electricity
US4368114A (en) 1979-12-05 1983-01-11 Mobil Oil Corporation Octane and total yield improvement in catalytic cracking
US4250230A (en) * 1979-12-10 1981-02-10 In Situ Technology, Inc. Generating electricity from coal in situ
US4250962A (en) * 1979-12-14 1981-02-17 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4260018A (en) * 1979-12-19 1981-04-07 Texaco Inc. Method for steam injection in steeply dipping formations
AU527314B2 (en) 1980-01-24 1983-02-24 Tosco Corp. Producing gas from coal
US4398151A (en) 1980-01-25 1983-08-09 Shell Oil Company Method for correcting an electrical log for the presence of shale in a formation
US4359687A (en) 1980-01-25 1982-11-16 Shell Oil Company Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain
US4285547A (en) * 1980-02-01 1981-08-25 Multi Mineral Corporation Integrated in situ shale oil and mineral recovery process
USRE30738E (en) 1980-02-06 1981-09-08 Iit Research Institute Apparatus and method for in situ heat processing of hydrocarbonaceous formations
US4303126A (en) * 1980-02-27 1981-12-01 Chevron Research Company Arrangement of wells for producing subsurface viscous petroleum
US4319635A (en) * 1980-02-29 1982-03-16 P. H. Jones Hydrogeology, Inc. Method for enhanced oil recovery by geopressured waterflood
US4375302A (en) * 1980-03-03 1983-03-01 Nicholas Kalmar Process for the in situ recovery of both petroleum and inorganic mineral content of an oil shale deposit
US4502010A (en) * 1980-03-17 1985-02-26 Gearhart Industries, Inc. Apparatus including a magnetometer having a pair of U-shaped cores for extended lateral range electrical conductivity logging
US4445574A (en) * 1980-03-24 1984-05-01 Geo Vann, Inc. Continuous borehole formed horizontally through a hydrocarbon producing formation
US4417782A (en) 1980-03-31 1983-11-29 Raychem Corporation Fiber optic temperature sensing
CA1168283A (en) 1980-04-14 1984-05-29 Hiroshi Teratani Electrode device for electrically heating underground deposits of hydrocarbons
US4273188A (en) 1980-04-30 1981-06-16 Gulf Research & Development Company In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations
US4306621A (en) 1980-05-23 1981-12-22 Boyd R Michael Method for in situ coal gasification operations
US4409090A (en) 1980-06-02 1983-10-11 University Of Utah Process for recovering products from tar sand
CA1165361A (en) 1980-06-03 1984-04-10 Toshiyuki Kobayashi Electrode unit for electrically heating underground hydrocarbon deposits
US4381641A (en) 1980-06-23 1983-05-03 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4310440A (en) 1980-07-07 1982-01-12 Union Carbide Corporation Crystalline metallophosphate compositions
US4401099A (en) 1980-07-11 1983-08-30 W.B. Combustion, Inc. Single-ended recuperative radiant tube assembly and method
US4299285A (en) 1980-07-21 1981-11-10 Gulf Research & Development Company Underground gasification of bituminous coal
DE3030110C2 (en) 1980-08-08 1983-04-21 Vsesojuznyj neftegazovyj naučno-issledovatel'skij institut, Moskva Process for the extraction of petroleum by mining and by supplying heat
US4396062A (en) * 1980-10-06 1983-08-02 University Of Utah Research Foundation Apparatus and method for time-domain tracking of high-speed chemical reactions
US4353418A (en) * 1980-10-20 1982-10-12 Standard Oil Company (Indiana) In situ retorting of oil shale
US4384613A (en) * 1980-10-24 1983-05-24 Terra Tek, Inc. Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases
US4372398A (en) * 1980-11-04 1983-02-08 Cornell Research Foundation, Inc. Method of determining the location of a deep-well casing by magnetic field sensing
US4366864A (en) 1980-11-24 1983-01-04 Exxon Research And Engineering Co. Method for recovery of hydrocarbons from oil-bearing limestone or dolomite
US4385661A (en) 1981-01-07 1983-05-31 The United States Of America As Represented By The United States Department Of Energy Downhole steam generator with improved preheating, combustion and protection features
US4448251A (en) 1981-01-08 1984-05-15 Uop Inc. In situ conversion of hydrocarbonaceous oil
US4423311A (en) 1981-01-19 1983-12-27 Varney Sr Paul Electric heating apparatus for de-icing pipes
US4366668A (en) * 1981-02-25 1983-01-04 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4363361A (en) 1981-03-19 1982-12-14 Gulf Research & Development Company Substoichiometric combustion of low heating value gases
US4390067A (en) 1981-04-06 1983-06-28 Exxon Production Research Co. Method of treating reservoirs containing very viscous crude oil or bitumen
US4399866A (en) * 1981-04-10 1983-08-23 Atlantic Richfield Company Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit
US4444255A (en) 1981-04-20 1984-04-24 Lloyd Geoffrey Apparatus and process for the recovery of oil
US4380930A (en) * 1981-05-01 1983-04-26 Mobil Oil Corporation System for transmitting ultrasonic energy through core samples
US4429745A (en) * 1981-05-08 1984-02-07 Mobil Oil Corporation Oil recovery method
US4378048A (en) 1981-05-08 1983-03-29 Gulf Research & Development Company Substoichiometric combustion of low heating value gases using different platinum catalysts
US4384948A (en) * 1981-05-13 1983-05-24 Ashland Oil, Inc. Single unit RCC
US4428700A (en) * 1981-08-03 1984-01-31 E. R. Johnson Associates, Inc. Method for disposing of waste materials
US4456065A (en) 1981-08-20 1984-06-26 Elektra Energie A.G. Heavy oil recovering
US4344483A (en) 1981-09-08 1982-08-17 Fisher Charles B Multiple-site underground magnetic heating of hydrocarbons
US4452491A (en) * 1981-09-25 1984-06-05 Intercontinental Econergy Associates, Inc. Recovery of hydrocarbons from deep underground deposits of tar sands
US4458945A (en) * 1981-10-01 1984-07-10 Ayler Maynard F Oil recovery mining method and apparatus
US4425967A (en) * 1981-10-07 1984-01-17 Standard Oil Company (Indiana) Ignition procedure and process for in situ retorting of oil shale
US4401162A (en) 1981-10-13 1983-08-30 Synfuel (An Indiana Limited Partnership) In situ oil shale process
US4605680A (en) 1981-10-13 1986-08-12 Chevron Research Company Conversion of synthesis gas to diesel fuel and gasoline
US4410042A (en) 1981-11-02 1983-10-18 Mobil Oil Corporation In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant
US4444258A (en) * 1981-11-10 1984-04-24 Nicholas Kalmar In situ recovery of oil from oil shale
US4407366A (en) 1981-12-07 1983-10-04 Union Oil Company Of California Method for gas capping of idle geothermal steam wells
US4418752A (en) * 1982-01-07 1983-12-06 Conoco Inc. Thermal oil recovery with solvent recirculation
FR2519688A1 (en) 1982-01-08 1983-07-18 Elf Aquitaine SEALING SYSTEM FOR DRILLING WELLS IN WHICH CIRCULATES A HOT FLUID
DE3202492C2 (en) 1982-01-27 1983-12-01 Veba Oel Entwicklungsgesellschaft mbH, 4660 Gelsenkirchen-Buer Process for increasing the yield of hydrocarbons from a subterranean formation
US4397732A (en) 1982-02-11 1983-08-09 International Coal Refining Company Process for coal liquefaction employing selective coal feed
US4551226A (en) 1982-02-26 1985-11-05 Chevron Research Company Heat exchanger antifoulant
GB2117030B (en) 1982-03-17 1985-09-11 Cameron Iron Works Inc Method and apparatus for remote installations of dual tubing strings in a subsea well
US4530401A (en) 1982-04-05 1985-07-23 Mobil Oil Corporation Method for maximum in-situ visbreaking of heavy oil
CA1196594A (en) 1982-04-08 1985-11-12 Guy Savard Recovery of oil from tar sands
US4537252A (en) * 1982-04-23 1985-08-27 Standard Oil Company (Indiana) Method of underground conversion of coal
US4491179A (en) * 1982-04-26 1985-01-01 Pirson Sylvain J Method for oil recovery by in situ exfoliation drive
US4455215A (en) * 1982-04-29 1984-06-19 Jarrott David M Process for the geoconversion of coal into oil
US4412585A (en) * 1982-05-03 1983-11-01 Cities Service Company Electrothermal process for recovering hydrocarbons
US4415034A (en) 1982-05-03 1983-11-15 Cities Service Company Electrode well completion
US4524826A (en) 1982-06-14 1985-06-25 Texaco Inc. Method of heating an oil shale formation
US4457374A (en) 1982-06-29 1984-07-03 Standard Oil Company Transient response process for detecting in situ retorting conditions
US4442896A (en) * 1982-07-21 1984-04-17 Reale Lucio V Treatment of underground beds
US4440871A (en) 1982-07-26 1984-04-03 Union Carbide Corporation Crystalline silicoaluminophosphates
US4407973A (en) 1982-07-28 1983-10-04 The M. W. Kellogg Company Methanol from coal and natural gas
US4931171A (en) * 1982-08-03 1990-06-05 Phillips Petroleum Company Pyrolysis of carbonaceous materials
US4479541A (en) 1982-08-23 1984-10-30 Wang Fun Den Method and apparatus for recovery of oil, gas and mineral deposits by panel opening
US4460044A (en) 1982-08-31 1984-07-17 Chevron Research Company Advancing heated annulus steam drive
US4544478A (en) * 1982-09-03 1985-10-01 Chevron Research Company Process for pyrolyzing hydrocarbonaceous solids to recover volatile hydrocarbons
US4458767A (en) * 1982-09-28 1984-07-10 Mobil Oil Corporation Method for directionally drilling a first well to intersect a second well
US4485868A (en) 1982-09-29 1984-12-04 Iit Research Institute Method for recovery of viscous hydrocarbons by electromagnetic heating in situ
US4695713A (en) 1982-09-30 1987-09-22 Metcal, Inc. Autoregulating, electrically shielded heater
US4927857A (en) 1982-09-30 1990-05-22 Engelhard Corporation Method of methanol production
US4498531A (en) 1982-10-01 1985-02-12 Rockwell International Corporation Emission controller for indirect fired downhole steam generators
US4485869A (en) * 1982-10-22 1984-12-04 Iit Research Institute Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ
DE3365337D1 (en) * 1982-11-22 1986-09-18 Shell Int Research Process for the preparation of a fischer-tropsch catalyst, a catalyst so prepared and use of this catalyst in the preparation of hydrocarbons
US4498535A (en) * 1982-11-30 1985-02-12 Iit Research Institute Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line
US4474238A (en) * 1982-11-30 1984-10-02 Phillips Petroleum Company Method and apparatus for treatment of subsurface formations
US4752673A (en) 1982-12-01 1988-06-21 Metcal, Inc. Autoregulating heater
US4483398A (en) * 1983-01-14 1984-11-20 Exxon Production Research Co. In-situ retorting of oil shale
US4501326A (en) * 1983-01-17 1985-02-26 Gulf Canada Limited In-situ recovery of viscous hydrocarbonaceous crude oil
US4609041A (en) 1983-02-10 1986-09-02 Magda Richard M Well hot oil system
US4640352A (en) * 1983-03-21 1987-02-03 Shell Oil Company In-situ steam drive oil recovery process
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4500651A (en) 1983-03-31 1985-02-19 Union Carbide Corporation Titanium-containing molecular sieves
US4458757A (en) * 1983-04-25 1984-07-10 Exxon Research And Engineering Co. In situ shale-oil recovery process
US4545435A (en) * 1983-04-29 1985-10-08 Iit Research Institute Conduction heating of hydrocarbonaceous formations
US4524827A (en) * 1983-04-29 1985-06-25 Iit Research Institute Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations
US4518548A (en) 1983-05-02 1985-05-21 Sulcon, Inc. Method of overlaying sulphur concrete on horizontal and vertical surfaces
US4794226A (en) 1983-05-26 1988-12-27 Metcal, Inc. Self-regulating porous heater device
US5073625A (en) 1983-05-26 1991-12-17 Metcal, Inc. Self-regulating porous heating device
DE3319732A1 (en) 1983-05-31 1984-12-06 Kraftwerk Union AG, 4330 Mülheim MEDIUM-POWER PLANT WITH INTEGRATED COAL GASIFICATION SYSTEM FOR GENERATING ELECTRICITY AND METHANOL
US4658215A (en) 1983-06-20 1987-04-14 Shell Oil Company Method for induced polarization logging
US4583046A (en) 1983-06-20 1986-04-15 Shell Oil Company Apparatus for focused electrode induced polarization logging
US4717814A (en) 1983-06-27 1988-01-05 Metcal, Inc. Slotted autoregulating heater
US4439307A (en) * 1983-07-01 1984-03-27 Dravo Corporation Heating process gas for indirect shale oil retorting through the combustion of residual carbon in oil depleted shale
US4985313A (en) 1985-01-14 1991-01-15 Raychem Limited Wire and cable
US5209987A (en) 1983-07-08 1993-05-11 Raychem Limited Wire and cable
US4598392A (en) * 1983-07-26 1986-07-01 Mobil Oil Corporation Vibratory signal sweep seismic prospecting method and apparatus
US4501445A (en) * 1983-08-01 1985-02-26 Cities Service Company Method of in-situ hydrogenation of carbonaceous material
US4538682A (en) 1983-09-08 1985-09-03 Mcmanus James W Method and apparatus for removing oil well paraffin
US4698149A (en) 1983-11-07 1987-10-06 Mobil Oil Corporation Enhanced recovery of hydrocarbonaceous fluids oil shale
US4573530A (en) 1983-11-07 1986-03-04 Mobil Oil Corporation In-situ gasification of tar sands utilizing a combustible gas
US4489782A (en) 1983-12-12 1984-12-25 Atlantic Richfield Company Viscous oil production using electrical current heating and lateral drain holes
US4598772A (en) 1983-12-28 1986-07-08 Mobil Oil Corporation Method for operating a production well in an oxygen driven in-situ combustion oil recovery process
US4635197A (en) * 1983-12-29 1987-01-06 Shell Oil Company High resolution tomographic imaging method
US4583242A (en) 1983-12-29 1986-04-15 Shell Oil Company Apparatus for positioning a sample in a computerized axial tomographic scanner
US4571491A (en) * 1983-12-29 1986-02-18 Shell Oil Company Method of imaging the atomic number of a sample
US4613754A (en) 1983-12-29 1986-09-23 Shell Oil Company Tomographic calibration apparatus
US4542648A (en) 1983-12-29 1985-09-24 Shell Oil Company Method of correlating a core sample with its original position in a borehole
US4540882A (en) 1983-12-29 1985-09-10 Shell Oil Company Method of determining drilling fluid invasion
US4662439A (en) * 1984-01-20 1987-05-05 Amoco Corporation Method of underground conversion of coal
US4572229A (en) * 1984-02-02 1986-02-25 Thomas D. Mueller Variable proportioner
US4623401A (en) 1984-03-06 1986-11-18 Metcal, Inc. Heat treatment with an autoregulating heater
US4644283A (en) 1984-03-19 1987-02-17 Shell Oil Company In-situ method for determining pore size distribution, capillary pressure and permeability
US4637464A (en) * 1984-03-22 1987-01-20 Amoco Corporation In situ retorting of oil shale with pulsed water purge
US4570715A (en) * 1984-04-06 1986-02-18 Shell Oil Company Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature
US4577690A (en) * 1984-04-18 1986-03-25 Mobil Oil Corporation Method of using seismic data to monitor firefloods
US5055180A (en) * 1984-04-20 1991-10-08 Electromagnetic Energy Corporation Method and apparatus for recovering fractions from hydrocarbon materials, facilitating the removal and cleansing of hydrocarbon fluids, insulating storage vessels, and cleansing storage vessels and pipelines
US4592423A (en) 1984-05-14 1986-06-03 Texaco Inc. Hydrocarbon stratum retorting means and method
US4597441A (en) * 1984-05-25 1986-07-01 World Energy Systems, Inc. Recovery of oil by in situ hydrogenation
US4663711A (en) 1984-06-22 1987-05-05 Shell Oil Company Method of analyzing fluid saturation using computerized axial tomography
US4577503A (en) * 1984-09-04 1986-03-25 International Business Machines Corporation Method and device for detecting a specific acoustic spectral feature
US4577691A (en) 1984-09-10 1986-03-25 Texaco Inc. Method and apparatus for producing viscous hydrocarbons from a subterranean formation
US4576231A (en) * 1984-09-13 1986-03-18 Texaco Inc. Method and apparatus for combating encroachment by in situ treated formations
US4597444A (en) * 1984-09-21 1986-07-01 Atlantic Richfield Company Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation
US4691771A (en) 1984-09-25 1987-09-08 Worldenergy Systems, Inc. Recovery of oil by in-situ combustion followed by in-situ hydrogenation
US4616705A (en) 1984-10-05 1986-10-14 Shell Oil Company Mini-well temperature profiling process
US4598770A (en) 1984-10-25 1986-07-08 Mobil Oil Corporation Thermal recovery method for viscous oil
US4572299A (en) * 1984-10-30 1986-02-25 Shell Oil Company Heater cable installation
US4669542A (en) 1984-11-21 1987-06-02 Mobil Oil Corporation Simultaneous recovery of crude from multiple zones in a reservoir
US4634187A (en) * 1984-11-21 1987-01-06 Isl Ventures, Inc. Method of in-situ leaching of ores
US4585066A (en) * 1984-11-30 1986-04-29 Shell Oil Company Well treating process for installing a cable bundle containing strands of changing diameter
US4704514A (en) * 1985-01-11 1987-11-03 Egmond Cor F Van Heating rate variant elongated electrical resistance heater
US4645906A (en) 1985-03-04 1987-02-24 Thermon Manufacturing Company Reduced resistance skin effect heat generating system
US4643256A (en) 1985-03-18 1987-02-17 Shell Oil Company Steam-foaming surfactant mixtures which are tolerant of divalent ions
US4698583A (en) 1985-03-26 1987-10-06 Raychem Corporation Method of monitoring a heater for faults
US4785163A (en) 1985-03-26 1988-11-15 Raychem Corporation Method for monitoring a heater
DK180486A (en) 1985-04-19 1986-10-20 Raychem Gmbh HEATER
US4671102A (en) 1985-06-18 1987-06-09 Shell Oil Company Method and apparatus for determining distribution of fluids
US4626665A (en) 1985-06-24 1986-12-02 Shell Oil Company Metal oversheathed electrical resistance heater
US4605489A (en) 1985-06-27 1986-08-12 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4623444A (en) 1985-06-27 1986-11-18 Occidental Oil Shale, Inc. Upgrading shale oil by a combination process
US4662438A (en) 1985-07-19 1987-05-05 Uentech Corporation Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole
US4801445A (en) * 1985-07-29 1989-01-31 Shiseido Company Ltd. Cosmetic compositions containing modified powder or particulate material
US4728892A (en) 1985-08-13 1988-03-01 Shell Oil Company NMR imaging of materials
US4719423A (en) * 1985-08-13 1988-01-12 Shell Oil Company NMR imaging of materials for transport properties
US4715469A (en) * 1985-08-29 1987-12-29 Petrophysical Services, Inc. Borehole seismic receiver
US4778586A (en) 1985-08-30 1988-10-18 Resource Technology Associates Viscosity reduction processing at elevated pressure
US4683947A (en) * 1985-09-05 1987-08-04 Air Products And Chemicals Inc. Process and apparatus for monitoring and controlling the flammability of gas from an in-situ combustion oil recovery project
US4662437A (en) 1985-11-14 1987-05-05 Atlantic Richfield Company Electrically stimulated well production system with flexible tubing conductor
CA1253555A (en) 1985-11-21 1989-05-02 Cornelis F.H. Van Egmond Heating rate variant elongated electrical resistance heater
US4662443A (en) * 1985-12-05 1987-05-05 Amoco Corporation Combination air-blown and oxygen-blown underground coal gasification process
US4686029A (en) 1985-12-06 1987-08-11 Union Carbide Corporation Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves
US4849611A (en) 1985-12-16 1989-07-18 Raychem Corporation Self-regulating heater employing reactive components
US4646824A (en) * 1985-12-23 1987-03-03 Texaco Inc. Patterns of horizontal and vertical wells for improving oil recovery efficiency
US4730162A (en) 1985-12-31 1988-03-08 Shell Oil Company Time-domain induced polarization logging method and apparatus with gated amplification level
US4694907A (en) 1986-02-21 1987-09-22 Carbotek, Inc. Thermally-enhanced oil recovery method and apparatus
US4640353A (en) * 1986-03-21 1987-02-03 Atlantic Richfield Company Electrode well and method of completion
US4734115A (en) * 1986-03-24 1988-03-29 Air Products And Chemicals, Inc. Low pressure process for C3+ liquids recovery from process product gas
US4651825A (en) 1986-05-09 1987-03-24 Atlantic Richfield Company Enhanced well production
US4814587A (en) 1986-06-10 1989-03-21 Metcal, Inc. High power self-regulating heater
US4682652A (en) 1986-06-30 1987-07-28 Texaco Inc. Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells
US4893504A (en) * 1986-07-02 1990-01-16 Shell Oil Company Method for determining capillary pressure and relative permeability by imaging
US4769602A (en) 1986-07-02 1988-09-06 Shell Oil Company Determining multiphase saturations by NMR imaging of multiple nuclides
US4716960A (en) * 1986-07-14 1988-01-05 Production Technologies International, Inc. Method and system for introducing electric current into a well
US4818370A (en) 1986-07-23 1989-04-04 Cities Service Oil And Gas Corporation Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions
US4849360A (en) * 1986-07-30 1989-07-18 International Technology Corporation Apparatus and method for confining and decontaminating soil
US4772634A (en) 1986-07-31 1988-09-20 Energy Research Corporation Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer
US4744245A (en) * 1986-08-12 1988-05-17 Atlantic Richfield Company Acoustic measurements in rock formations for determining fracture orientation
US4696345A (en) 1986-08-21 1987-09-29 Chevron Research Company Hasdrive with multiple offset producers
US4728412A (en) * 1986-09-19 1988-03-01 Amoco Corporation Pour-point depression of crude oils by addition of tar sand bitumen
US4769606A (en) 1986-09-30 1988-09-06 Shell Oil Company Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations
US4737267A (en) * 1986-11-12 1988-04-12 Duo-Ex Coproration Oil shale processing apparatus and method
US5340467A (en) 1986-11-24 1994-08-23 Canadian Occidental Petroleum Ltd. Process for recovery of hydrocarbons and rejection of sand
US5316664A (en) 1986-11-24 1994-05-31 Canadian Occidental Petroleum, Ltd. Process for recovery of hydrocarbons and rejection of sand
US4983319A (en) * 1986-11-24 1991-01-08 Canadian Occidental Petroleum Ltd. Preparation of low-viscosity improved stable crude oil transport emulsions
CA1288043C (en) 1986-12-15 1991-08-27 Peter Van Meurs Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil
US4831600A (en) * 1986-12-31 1989-05-16 Schlumberger Technology Corporation Borehole logging method for fracture detection and evaluation
US4766958A (en) * 1987-01-12 1988-08-30 Mobil Oil Corporation Method of recovering viscous oil from reservoirs with multiple horizontal zones
US4793656A (en) * 1987-02-12 1988-12-27 Shell Mining Company In-situ coal drying
US4756367A (en) 1987-04-28 1988-07-12 Amoco Corporation Method for producing natural gas from a coal seam
US4817711A (en) 1987-05-27 1989-04-04 Jeambey Calhoun G System for recovery of petroleum from petroleum impregnated media
US4818371A (en) 1987-06-05 1989-04-04 Resource Technology Associates Viscosity reduction by direct oxidative heating
US4787452A (en) 1987-06-08 1988-11-29 Mobil Oil Corporation Disposal of produced formation fines during oil recovery
US4821798A (en) 1987-06-09 1989-04-18 Ors Development Corporation Heating system for rathole oil well
US4793409A (en) 1987-06-18 1988-12-27 Ors Development Corporation Method and apparatus for forming an insulated oil well casing
US4856341A (en) 1987-06-25 1989-08-15 Shell Oil Company Apparatus for analysis of failure of material
US4884455A (en) 1987-06-25 1989-12-05 Shell Oil Company Method for analysis of failure of material employing imaging
US4827761A (en) 1987-06-25 1989-05-09 Shell Oil Company Sample holder
US4776638A (en) * 1987-07-13 1988-10-11 University Of Kentucky Research Foundation Method and apparatus for conversion of coal in situ
US4848924A (en) 1987-08-19 1989-07-18 The Babcock & Wilcox Company Acoustic pyrometer
CA1254505A (en) * 1987-10-02 1989-05-23 Ion I. Adamache Exploitation method for reservoirs containing hydrogen sulphide
US4828031A (en) * 1987-10-13 1989-05-09 Chevron Research Company In situ chemical stimulation of diatomite formations
US4762425A (en) 1987-10-15 1988-08-09 Parthasarathy Shakkottai System for temperature profile measurement in large furnances and kilns and method therefor
US4815791A (en) * 1987-10-22 1989-03-28 The United States Of America As Represented By The Secretary Of The Interior Bedded mineral extraction process
US5306640A (en) 1987-10-28 1994-04-26 Shell Oil Company Method for determining preselected properties of a crude oil
US4987368A (en) * 1987-11-05 1991-01-22 Shell Oil Company Nuclear magnetism logging tool using high-temperature superconducting squid detectors
US4842448A (en) 1987-11-12 1989-06-27 Drexel University Method of removing contaminants from contaminated soil in situ
US4808925A (en) * 1987-11-19 1989-02-28 Halliburton Company Three magnet casing collar locator
US4852648A (en) 1987-12-04 1989-08-01 Ava International Corporation Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead
US4823890A (en) 1988-02-23 1989-04-25 Longyear Company Reverse circulation bit apparatus
US4883582A (en) * 1988-03-07 1989-11-28 Mccants Malcolm T Vis-breaking heavy crude oils for pumpability
US4866983A (en) 1988-04-14 1989-09-19 Shell Oil Company Analytical methods and apparatus for measuring the oil content of sponge core
US4815790A (en) * 1988-05-13 1989-03-28 Natec, Ltd. Nahcolite solution mining process
US4885080A (en) 1988-05-25 1989-12-05 Phillips Petroleum Company Process for demetallizing and desulfurizing heavy crude oil
US5046560A (en) 1988-06-10 1991-09-10 Exxon Production Research Company Oil recovery process using arkyl aryl polyalkoxyol sulfonate surfactants as mobility control agents
US4884635A (en) 1988-08-24 1989-12-05 Texaco Canada Resources Enhanced oil recovery with a mixture of water and aromatic hydrocarbons
DE68909355T2 (en) * 1988-09-02 1994-03-31 British Gas Plc Device for controlling the position of a self-propelled drilling tool.
US4840720A (en) 1988-09-02 1989-06-20 Betz Laboratories, Inc. Process for minimizing fouling of processing equipment
US4928765A (en) 1988-09-27 1990-05-29 Ramex Syn-Fuels International Method and apparatus for shale gas recovery
US4856587A (en) * 1988-10-27 1989-08-15 Nielson Jay P Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix
US5064006A (en) * 1988-10-28 1991-11-12 Magrange, Inc Downhole combination tool
US4848460A (en) * 1988-11-04 1989-07-18 Western Research Institute Contained recovery of oily waste
US5065501A (en) 1988-11-29 1991-11-19 Amp Incorporated Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus
US4860544A (en) 1988-12-08 1989-08-29 Concept R.K.K. Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4974425A (en) 1988-12-08 1990-12-04 Concept Rkk, Limited Closed cryogenic barrier for containment of hazardous material migration in the earth
US4940095A (en) 1989-01-27 1990-07-10 Dowell Schlumberger Incorporated Deployment/retrieval method and apparatus for well tools used with coiled tubing
US5103920A (en) * 1989-03-01 1992-04-14 Patton Consulting Inc. Surveying system and method for locating target subterranean bodies
CA2015318C (en) * 1990-04-24 1994-02-08 Jack E. Bridges Power sources for downhole electrical heating
US4895206A (en) * 1989-03-16 1990-01-23 Price Ernest H Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes
US4913065A (en) 1989-03-27 1990-04-03 Indugas, Inc. In situ thermal waste disposal system
US5150118A (en) 1989-05-08 1992-09-22 Hewlett-Packard Company Interchangeable coded key pad assemblies alternately attachable to a user definable keyboard to enable programmable keyboard functions
DE3918265A1 (en) 1989-06-05 1991-01-03 Henkel Kgaa PROCESS FOR THE PREPARATION OF ETHANE SULPHONATE BASE TENSID MIXTURES AND THEIR USE
US5059303A (en) 1989-06-16 1991-10-22 Amoco Corporation Oil stabilization
US5041210A (en) * 1989-06-30 1991-08-20 Marathon Oil Company Oil shale retorting with steam and produced gas
DE3922612C2 (en) * 1989-07-10 1998-07-02 Krupp Koppers Gmbh Process for the production of methanol synthesis gas
US4982786A (en) * 1989-07-14 1991-01-08 Mobil Oil Corporation Use of CO2 /steam to enhance floods in horizontal wellbores
US5050386A (en) 1989-08-16 1991-09-24 Rkk, Limited Method and apparatus for containment of hazardous material migration in the earth
US5305239A (en) * 1989-10-04 1994-04-19 The Texas A&M University System Ultrasonic non-destructive evaluation of thin specimens
US4926941A (en) * 1989-10-10 1990-05-22 Shell Oil Company Method of producing tar sand deposits containing conductive layers
US5656239A (en) 1989-10-27 1997-08-12 Shell Oil Company Method for recovering contaminants from soil utilizing electrical heating
US4984594A (en) * 1989-10-27 1991-01-15 Shell Oil Company Vacuum method for removing soil contamination utilizing surface electrical heating
US5020596A (en) 1990-01-24 1991-06-04 Indugas, Inc. Enhanced oil recovery system with a radiant tube heater
US5082055A (en) * 1990-01-24 1992-01-21 Indugas, Inc. Gas fired radiant tube heater
US5011329A (en) * 1990-02-05 1991-04-30 Hrubetz Exploration Company In situ soil decontamination method and apparatus
CA2009782A1 (en) * 1990-02-12 1991-08-12 Anoosh I. Kiamanesh In-situ tuned microwave oil extraction process
US5152341A (en) 1990-03-09 1992-10-06 Raymond S. Kasevich Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes
US5027896A (en) * 1990-03-21 1991-07-02 Anderson Leonard M Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry
GB9007147D0 (en) * 1990-03-30 1990-05-30 Framo Dev Ltd Thermal mineral extraction system
CA2015460C (en) 1990-04-26 1993-12-14 Kenneth Edwin Kisman Process for confining steam injected into a heavy oil reservoir
US5126037A (en) * 1990-05-04 1992-06-30 Union Oil Company Of California Geopreater heating method and apparatus
US5032042A (en) 1990-06-26 1991-07-16 New Jersey Institute Of Technology Method and apparatus for eliminating non-naturally occurring subsurface, liquid toxic contaminants from soil
US5201219A (en) 1990-06-29 1993-04-13 Amoco Corporation Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core
US5054551A (en) 1990-08-03 1991-10-08 Chevron Research And Technology Company In-situ heated annulus refining process
US5109928A (en) * 1990-08-17 1992-05-05 Mccants Malcolm T Method for production of hydrocarbon diluent from heavy crude oil
US5060726A (en) 1990-08-23 1991-10-29 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication
US5042579A (en) 1990-08-23 1991-08-27 Shell Oil Company Method and apparatus for producing tar sand deposits containing conductive layers
US5046559A (en) 1990-08-23 1991-09-10 Shell Oil Company Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers
BR9004240A (en) * 1990-08-28 1992-03-24 Petroleo Brasileiro Sa ELECTRIC PIPE HEATING PROCESS
US5085276A (en) * 1990-08-29 1992-02-04 Chevron Research And Technology Company Production of oil from low permeability formations by sequential steam fracturing
US5066852A (en) * 1990-09-17 1991-11-19 Teledyne Ind. Inc. Thermoplastic end seal for electric heating elements
US5207273A (en) 1990-09-17 1993-05-04 Production Technologies International Inc. Method and apparatus for pumping wells
JPH04272680A (en) 1990-09-20 1992-09-29 Thermon Mfg Co Switch-controlled-zone type heating cable and assembling method thereof
US5182427A (en) 1990-09-20 1993-01-26 Metcal, Inc. Self-regulating heater utilizing ferrite-type body
US5400430A (en) * 1990-10-01 1995-03-21 Nenniger; John E. Method for injection well stimulation
US5517593A (en) * 1990-10-01 1996-05-14 John Nenniger Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint
US5070533A (en) 1990-11-07 1991-12-03 Uentech Corporation Robust electrical heating systems for mineral wells
FR2669077B2 (en) 1990-11-09 1995-02-03 Institut Francais Petrole METHOD AND DEVICE FOR PERFORMING INTERVENTIONS IN WELLS OR HIGH TEMPERATURES.
US5065818A (en) 1991-01-07 1991-11-19 Shell Oil Company Subterranean heaters
US5060287A (en) 1990-12-04 1991-10-22 Shell Oil Company Heater utilizing copper-nickel alloy core
US5217076A (en) 1990-12-04 1993-06-08 Masek John A Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess)
US5190405A (en) 1990-12-14 1993-03-02 Shell Oil Company Vacuum method for removing soil contaminants utilizing thermal conduction heating
SU1836876A3 (en) 1990-12-29 1994-12-30 Смешанное научно-техническое товарищество по разработке техники и технологии для подземной электроэнергетики Process of development of coal seams and complex of equipment for its implementation
US5289882A (en) 1991-02-06 1994-03-01 Boyd B. Moore Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas
US5626190A (en) 1991-02-06 1997-05-06 Moore; Boyd B. Apparatus for protecting electrical connection from moisture in a hazardous area adjacent a wellhead barrier for an underground well
US5103909A (en) 1991-02-19 1992-04-14 Shell Oil Company Profile control in enhanced oil recovery
US5261490A (en) 1991-03-18 1993-11-16 Nkk Corporation Method for dumping and disposing of carbon dioxide gas and apparatus therefor
US5093002A (en) 1991-04-29 1992-03-03 Texaco Inc. Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent
US5102551A (en) 1991-04-29 1992-04-07 Texaco Inc. Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent
US5246273A (en) 1991-05-13 1993-09-21 Rosar Edward C Method and apparatus for solution mining
EP0589960B1 (en) * 1991-06-17 1997-01-02 Electric Power Research Institute, Inc Power plant utilizing compressed air energy storage
ES2071419T3 (en) * 1991-06-21 1995-06-16 Shell Int Research CATALYST AND HYDROGENATION PROCEDURE.
IT1248535B (en) 1991-06-24 1995-01-19 Cise Spa SYSTEM TO MEASURE THE TRANSFER TIME OF A SOUND WAVE
US5215954A (en) 1991-07-30 1993-06-01 Cri International, Inc. Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst
US5189283A (en) * 1991-08-28 1993-02-23 Shell Oil Company Current to power crossover heater control
US5168927A (en) 1991-09-10 1992-12-08 Shell Oil Company Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation
US5193618A (en) 1991-09-12 1993-03-16 Chevron Research And Technology Company Multivalent ion tolerant steam-foaming surfactant composition for use in enhanced oil recovery operations
US5173213A (en) 1991-11-08 1992-12-22 Baker Hughes Incorporated Corrosion and anti-foulant composition and method of use
US5347070A (en) * 1991-11-13 1994-09-13 Battelle Pacific Northwest Labs Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material
US5349859A (en) 1991-11-15 1994-09-27 Scientific Engineering Instruments, Inc. Method and apparatus for measuring acoustic wave velocity using impulse response
US5199490A (en) 1991-11-18 1993-04-06 Texaco Inc. Formation treating
NO307666B1 (en) * 1991-12-16 2000-05-08 Inst Francais Du Petrole Stationary system for active or passive monitoring of a subsurface deposit
CA2058255C (en) 1991-12-20 1997-02-11 Roland P. Leaute Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells
US5246071A (en) 1992-01-31 1993-09-21 Texaco Inc. Steamflooding with alternating injection and production cycles
DE69303631T2 (en) * 1992-02-04 1996-12-12 Air Prod & Chem Production process of methanol in the liquid phase with recycling of a CO-rich gastrom
US5420402A (en) 1992-02-05 1995-05-30 Iit Research Institute Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles
US5211230A (en) 1992-02-21 1993-05-18 Mobil Oil Corporation Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion
GB9207174D0 (en) 1992-04-01 1992-05-13 Raychem Sa Nv Method of forming an electrical connection
US5255740A (en) 1992-04-13 1993-10-26 Rrkt Company Secondary recovery process
US5332036A (en) 1992-05-15 1994-07-26 The Boc Group, Inc. Method of recovery of natural gases from underground coal formations
US5366012A (en) 1992-06-09 1994-11-22 Shell Oil Company Method of completing an uncased section of a borehole
US5255742A (en) 1992-06-12 1993-10-26 Shell Oil Company Heat injection process
US5226961A (en) 1992-06-12 1993-07-13 Shell Oil Company High temperature wellbore cement slurry
US5392854A (en) * 1992-06-12 1995-02-28 Shell Oil Company Oil recovery process
US5297626A (en) 1992-06-12 1994-03-29 Shell Oil Company Oil recovery process
US5236039A (en) 1992-06-17 1993-08-17 General Electric Company Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale
US5295763A (en) * 1992-06-30 1994-03-22 Chambers Development Co., Inc. Method for controlling gas migration from a landfill
US5275726A (en) 1992-07-29 1994-01-04 Exxon Research & Engineering Co. Spiral wound element for separation
US5282957A (en) 1992-08-19 1994-02-01 Betz Laboratories, Inc. Methods for inhibiting polymerization of hydrocarbons utilizing a hydroxyalkylhydroxylamine
US5305829A (en) * 1992-09-25 1994-04-26 Chevron Research And Technology Company Oil production from diatomite formations by fracture steamdrive
US5229583A (en) 1992-09-28 1993-07-20 Shell Oil Company Surface heating blanket for soil remediation
US5485089A (en) * 1992-11-06 1996-01-16 Vector Magnetics, Inc. Method and apparatus for measuring distance and direction by movable magnetic field source
US5339904A (en) 1992-12-10 1994-08-23 Mobil Oil Corporation Oil recovery optimization using a well having both horizontal and vertical sections
US5358045A (en) 1993-02-12 1994-10-25 Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. Enhanced oil recovery method employing a high temperature brine tolerant foam-forming composition
CA2096034C (en) 1993-05-07 1996-07-02 Kenneth Edwin Kisman Horizontal well gravity drainage combustion process for oil recovery
US5360067A (en) * 1993-05-17 1994-11-01 Meo Iii Dominic Vapor-extraction system for removing hydrocarbons from soil
US5325918A (en) * 1993-08-02 1994-07-05 The United States Of America As Represented By The United States Department Of Energy Optimal joule heating of the subsurface
US5377756A (en) * 1993-10-28 1995-01-03 Mobil Oil Corporation Method for producing low permeability reservoirs using a single well
US5388643A (en) * 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using pressure swing adsorption separation
US5388640A (en) * 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388641A (en) * 1993-11-03 1995-02-14 Amoco Corporation Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations
US5566755A (en) 1993-11-03 1996-10-22 Amoco Corporation Method for recovering methane from a solid carbonaceous subterranean formation
US5388645A (en) * 1993-11-03 1995-02-14 Amoco Corporation Method for producing methane-containing gaseous mixtures
US5388642A (en) * 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using membrane separation of oxygen from air
US5589775A (en) * 1993-11-22 1996-12-31 Vector Magnetics, Inc. Rotating magnet for distance and direction measurements from a first borehole to a second borehole
US5411086A (en) * 1993-12-09 1995-05-02 Mobil Oil Corporation Oil recovery by enhanced imbitition in low permeability reservoirs
US5435666A (en) 1993-12-14 1995-07-25 Environmental Resources Management, Inc. Methods for isolating a water table and for soil remediation
US5404952A (en) * 1993-12-20 1995-04-11 Shell Oil Company Heat injection process and apparatus
US5411089A (en) 1993-12-20 1995-05-02 Shell Oil Company Heat injection process
US5433271A (en) 1993-12-20 1995-07-18 Shell Oil Company Heat injection process
US5634984A (en) 1993-12-22 1997-06-03 Union Oil Company Of California Method for cleaning an oil-coated substrate
MY112792A (en) 1994-01-13 2001-09-29 Shell Int Research Method of creating a borehole in an earth formation
US5411104A (en) 1994-02-16 1995-05-02 Conoco Inc. Coalbed methane drilling
CA2144597C (en) 1994-03-18 1999-08-10 Paul J. Latimer Improved emat probe and technique for weld inspection
US5415231A (en) 1994-03-21 1995-05-16 Mobil Oil Corporation Method for producing low permeability reservoirs using steam
US5439054A (en) 1994-04-01 1995-08-08 Amoco Corporation Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation
US5431224A (en) 1994-04-19 1995-07-11 Mobil Oil Corporation Method of thermal stimulation for recovery of hydrocarbons
US5409071A (en) 1994-05-23 1995-04-25 Shell Oil Company Method to cement a wellbore
ZA954204B (en) 1994-06-01 1996-01-22 Ashland Chemical Inc A process for improving the effectiveness of a process catalyst
US5503226A (en) 1994-06-22 1996-04-02 Wadleigh; Eugene E. Process for recovering hydrocarbons by thermally assisted gravity segregation
AU2241695A (en) 1994-07-18 1996-02-16 Babcock & Wilcox Co., The Sensor transport system for flash butt welder
US5458774A (en) 1994-07-25 1995-10-17 Mannapperuma; Jatal D. Corrugated spiral membrane module
US5632336A (en) 1994-07-28 1997-05-27 Texaco Inc. Method for improving injectivity of fluids in oil reservoirs
US5747750A (en) * 1994-08-31 1998-05-05 Exxon Production Research Company Single well system for mapping sources of acoustic energy
US5525322A (en) 1994-10-12 1996-06-11 The Regents Of The University Of California Method for simultaneous recovery of hydrogen from water and from hydrocarbons
US5553189A (en) 1994-10-18 1996-09-03 Shell Oil Company Radiant plate heater for treatment of contaminated surfaces
US5624188A (en) 1994-10-20 1997-04-29 West; David A. Acoustic thermometer
US5497087A (en) 1994-10-20 1996-03-05 Shell Oil Company NMR logging of natural gas reservoirs
US5498960A (en) 1994-10-20 1996-03-12 Shell Oil Company NMR logging of natural gas in reservoirs
US5559263A (en) 1994-11-16 1996-09-24 Tiorco, Inc. Aluminum citrate preparations and methods
US5554453A (en) 1995-01-04 1996-09-10 Energy Research Corporation Carbonate fuel cell system with thermally integrated gasification
US6088294A (en) 1995-01-12 2000-07-11 Baker Hughes Incorporated Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction
AU4700496A (en) 1995-01-12 1996-07-31 Baker Hughes Incorporated A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers
US6065538A (en) * 1995-02-09 2000-05-23 Baker Hughes Corporation Method of obtaining improved geophysical information about earth formations
DE19505517A1 (en) * 1995-02-10 1996-08-14 Siegfried Schwert Procedure for extracting a pipe laid in the ground
US5621844A (en) 1995-03-01 1997-04-15 Uentech Corporation Electrical heating of mineral well deposits using downhole impedance transformation networks
CA2152521C (en) * 1995-03-01 2000-06-20 Jack E. Bridges Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits
US5935421A (en) 1995-05-02 1999-08-10 Exxon Research And Engineering Company Continuous in-situ combination process for upgrading heavy oil
US5911898A (en) 1995-05-25 1999-06-15 Electric Power Research Institute Method and apparatus for providing multiple autoregulated temperatures
US5571403A (en) 1995-06-06 1996-11-05 Texaco Inc. Process for extracting hydrocarbons from diatomite
AU3721295A (en) * 1995-06-20 1997-01-22 Elan Energy Insulated and/or concentric coiled tubing
US5626191A (en) * 1995-06-23 1997-05-06 Petroleum Recovery Institute Oilfield in-situ combustion process
US5899958A (en) 1995-09-11 1999-05-04 Halliburton Energy Services, Inc. Logging while drilling borehole imaging and dipmeter device
US5759022A (en) 1995-10-16 1998-06-02 Gas Research Institute Method and system for reducing NOx and fuel emissions in a furnace
US5890840A (en) 1995-12-08 1999-04-06 Carter, Jr.; Ernest E. In situ construction of containment vault under a radioactive or hazardous waste site
ES2145513T3 (en) * 1995-12-27 2000-07-01 Shell Int Research COMBUSTION APPARATUS WITHOUT FLAME AND PROCEDURE.
US5725059A (en) * 1995-12-29 1998-03-10 Vector Magnetics, Inc. Method and apparatus for producing parallel boreholes
IE960011A1 (en) 1996-01-10 1997-07-16 Padraig Mcalister Structural ice composites, processes for their construction¹and their use as artificial islands and other fixed and¹floating structures
US5685362A (en) 1996-01-22 1997-11-11 The Regents Of The University Of California Storage capacity in hot dry rock reservoirs
US5751895A (en) * 1996-02-13 1998-05-12 Eor International, Inc. Selective excitation of heating electrodes for oil wells
US5826655A (en) 1996-04-25 1998-10-27 Texaco Inc Method for enhanced recovery of viscous oil deposits
US5652389A (en) 1996-05-22 1997-07-29 The United States Of America As Represented By The Secretary Of Commerce Non-contact method and apparatus for inspection of inertia welds
US6022834A (en) 1996-05-24 2000-02-08 Oil Chem Technologies, Inc. Alkaline surfactant polymer flooding composition and process
US5769569A (en) * 1996-06-18 1998-06-23 Southern California Gas Company In-situ thermal desorption of heavy hydrocarbons in vadose zone
US5828797A (en) 1996-06-19 1998-10-27 Meggitt Avionics, Inc. Fiber optic linked flame sensor
BR9709857A (en) 1996-06-21 2002-05-21 Syntroleum Corp Synthesis gas production process and system
MY118075A (en) * 1996-07-09 2004-08-30 Syntroleum Corp Process for converting gas to liquids
US5826653A (en) 1996-08-02 1998-10-27 Scientific Applications & Research Associates, Inc. Phased array approach to retrieve gases, liquids, or solids from subaqueous geologic or man-made formations
US5782301A (en) 1996-10-09 1998-07-21 Baker Hughes Incorporated Oil well heater cable
US6056057A (en) * 1996-10-15 2000-05-02 Shell Oil Company Heater well method and apparatus
US6079499A (en) * 1996-10-15 2000-06-27 Shell Oil Company Heater well method and apparatus
US5861137A (en) * 1996-10-30 1999-01-19 Edlund; David J. Steam reformer with internal hydrogen purification
US5862858A (en) * 1996-12-26 1999-01-26 Shell Oil Company Flameless combustor
US6427124B1 (en) 1997-01-24 2002-07-30 Baker Hughes Incorporated Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries
US6039121A (en) 1997-02-20 2000-03-21 Rangewest Technologies Ltd. Enhanced lift method and apparatus for the production of hydrocarbons
GB9704181D0 (en) * 1997-02-28 1997-04-16 Thompson James Apparatus and method for installation of ducts
US5744025A (en) 1997-02-28 1998-04-28 Shell Oil Company Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock
US5923170A (en) * 1997-04-04 1999-07-13 Vector Magnetics, Inc. Method for near field electromagnetic proximity determination for guidance of a borehole drill
US5926437A (en) 1997-04-08 1999-07-20 Halliburton Energy Services, Inc. Method and apparatus for seismic exploration
US5984578A (en) 1997-04-11 1999-11-16 New Jersey Institute Of Technology Apparatus and method for in situ removal of contaminants using sonic energy
US5802870A (en) * 1997-05-02 1998-09-08 Uop Llc Sorption cooling process and system
EP1357401A3 (en) 1997-05-02 2004-01-02 Sensor Highway Limited A system for controlling a downhole device in a wellbore
AU8103998A (en) 1997-05-07 1998-11-27 Shell Internationale Research Maatschappij B.V. Remediation method
US6023554A (en) * 1997-05-20 2000-02-08 Shell Oil Company Electrical heater
EP1011882B1 (en) 1997-06-05 2002-08-14 Shell Internationale Researchmaatschappij B.V. Remediation method
US6102122A (en) 1997-06-11 2000-08-15 Shell Oil Company Control of heat injection based on temperature and in-situ stress measurement
US6112808A (en) * 1997-09-19 2000-09-05 Isted; Robert Edward Method and apparatus for subterranean thermal conditioning
US5984010A (en) 1997-06-23 1999-11-16 Elias; Ramon Hydrocarbon recovery systems and methods
CA2208767A1 (en) 1997-06-26 1998-12-26 Reginald D. Humphreys Tar sands extraction process
US5891829A (en) * 1997-08-12 1999-04-06 Intevep, S.A. Process for the downhole upgrading of extra heavy crude oil
US5992522A (en) 1997-08-12 1999-11-30 Steelhead Reclamation Ltd. Process and seal for minimizing interzonal migration in boreholes
US5868202A (en) * 1997-09-22 1999-02-09 Tarim Associates For Scientific Mineral And Oil Exploration Ag Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations
US6149344A (en) 1997-10-04 2000-11-21 Master Corporation Acid gas disposal
US6187465B1 (en) * 1997-11-07 2001-02-13 Terry R. Galloway Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US6354373B1 (en) 1997-11-26 2002-03-12 Schlumberger Technology Corporation Expandable tubing for a well bore hole and method of expanding
FR2772137B1 (en) * 1997-12-08 1999-12-31 Inst Francais Du Petrole SEISMIC MONITORING METHOD OF AN UNDERGROUND ZONE DURING OPERATION ALLOWING BETTER IDENTIFICATION OF SIGNIFICANT EVENTS
CA2255071C (en) 1997-12-11 2003-07-08 Conrad Ayasse Oilfield in-situ upgrading process
US6152987A (en) 1997-12-15 2000-11-28 Worcester Polytechnic Institute Hydrogen gas-extraction module and method of fabrication
US6094048A (en) 1997-12-18 2000-07-25 Shell Oil Company NMR logging of natural gas reservoirs
NO305720B1 (en) * 1997-12-22 1999-07-12 Eureka Oil Asa Procedure for increasing oil production from an oil reservoir
US6026914A (en) * 1998-01-28 2000-02-22 Alberta Oil Sands Technology And Research Authority Wellbore profiling system
US6540018B1 (en) 1998-03-06 2003-04-01 Shell Oil Company Method and apparatus for heating a wellbore
MA24902A1 (en) * 1998-03-06 2000-04-01 Shell Int Research ELECTRIC HEATER
GB2352260B (en) 1998-04-06 2002-10-23 Da Qing Petroleum Administrati A foam drive method
US6035701A (en) * 1998-04-15 2000-03-14 Lowry; William E. Method and system to locate leaks in subsurface containment structures using tracer gases
ID27811A (en) * 1998-05-12 2001-04-26 Lockheed Martin Corp Cs SYSTEM AND PROCESS FOR SECONDARY HYDROCARBON RECOVERY
US6016867A (en) * 1998-06-24 2000-01-25 World Energy Systems, Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
US5958365A (en) 1998-06-25 1999-09-28 Atlantic Richfield Company Method of producing hydrogen from heavy crude oil using solvent deasphalting and partial oxidation methods
NO984235L (en) 1998-09-14 2000-03-15 Cit Alcatel Heating system for metal pipes for crude oil transport
US6388947B1 (en) 1998-09-14 2002-05-14 Tomoseis, Inc. Multi-crosswell profile 3D imaging and method
US6192748B1 (en) * 1998-10-30 2001-02-27 Computalog Limited Dynamic orienting reference system for directional drilling
US5968349A (en) 1998-11-16 1999-10-19 Bhp Minerals International Inc. Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands
US20040035582A1 (en) * 2002-08-22 2004-02-26 Zupanick Joseph A. System and method for subterranean access
US6269881B1 (en) 1998-12-22 2001-08-07 Chevron U.S.A. Inc Oil recovery method for waxy crude oil using alkylaryl sulfonate surfactants derived from alpha-olefins and the alpha-olefin compositions
US6609761B1 (en) 1999-01-08 2003-08-26 American Soda, Llp Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale
US6078868A (en) 1999-01-21 2000-06-20 Baker Hughes Incorporated Reference signal encoding for seismic while drilling measurement
US6109358A (en) * 1999-02-05 2000-08-29 Conor Pacific Environmental Technologies Inc. Venting apparatus and method for remediation of a porous medium
US6218333B1 (en) 1999-02-15 2001-04-17 Shell Oil Company Preparation of a hydrotreating catalyst
US6429784B1 (en) * 1999-02-19 2002-08-06 Dresser Industries, Inc. Casing mounted sensors, actuators and generators
US6283230B1 (en) 1999-03-01 2001-09-04 Jasper N. Peters Method and apparatus for lateral well drilling utilizing a rotating nozzle
US6155117A (en) 1999-03-18 2000-12-05 Mcdermott Technology, Inc. Edge detection and seam tracking with EMATs
US6561269B1 (en) 1999-04-30 2003-05-13 The Regents Of The University Of California Canister, sealing method and composition for sealing a borehole
US6110358A (en) 1999-05-21 2000-08-29 Exxon Research And Engineering Company Process for manufacturing improved process oils using extraction of hydrotreated distillates
JP2000340350A (en) 1999-05-28 2000-12-08 Kyocera Corp Silicon nitride ceramic heater and its manufacture
US6257334B1 (en) 1999-07-22 2001-07-10 Alberta Oil Sands Technology And Research Authority Steam-assisted gravity drainage heavy oil recovery process
US6269310B1 (en) 1999-08-25 2001-07-31 Tomoseis Corporation System for eliminating headwaves in a tomographic process
US6196350B1 (en) 1999-10-06 2001-03-06 Tomoseis Corporation Apparatus and method for attenuating tube waves in a borehole
US6193010B1 (en) 1999-10-06 2001-02-27 Tomoseis Corporation System for generating a seismic signal in a borehole
US6288372B1 (en) 1999-11-03 2001-09-11 Tyco Electronics Corporation Electric cable having braidless polymeric ground plane providing fault detection
US6353706B1 (en) * 1999-11-18 2002-03-05 Uentech International Corporation Optimum oil-well casing heating
US6417268B1 (en) 1999-12-06 2002-07-09 Hercules Incorporated Method for making hydrophobically associative polymers, methods of use and compositions
US6422318B1 (en) * 1999-12-17 2002-07-23 Scioto County Regional Water District #1 Horizontal well system
US7259688B2 (en) 2000-01-24 2007-08-21 Shell Oil Company Wireless reservoir production control
US20020036085A1 (en) 2000-01-24 2002-03-28 Bass Ronald Marshall Toroidal choke inductor for wireless communication and control
US6679332B2 (en) * 2000-01-24 2004-01-20 Shell Oil Company Petroleum well having downhole sensors, communication and power
US6715550B2 (en) 2000-01-24 2004-04-06 Shell Oil Company Controllable gas-lift well and valve
WO2001065055A1 (en) * 2000-03-02 2001-09-07 Shell Internationale Research Maatschappij B.V. Controlled downhole chemical injection
US6633236B2 (en) * 2000-01-24 2003-10-14 Shell Oil Company Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters
JP2003521576A (en) * 2000-02-01 2003-07-15 テキサコ ディベラップメント コーポレイション Integration of shift reactor and hydroprocessing unit
US7170424B2 (en) 2000-03-02 2007-01-30 Shell Oil Company Oil well casting electrical power pick-off points
MY128294A (en) 2000-03-02 2007-01-31 Shell Int Research Use of downhole high pressure gas in a gas-lift well
US6357526B1 (en) * 2000-03-16 2002-03-19 Kellogg Brown & Root, Inc. Field upgrading of heavy oil and bitumen
US6632047B2 (en) * 2000-04-14 2003-10-14 Board Of Regents, The University Of Texas System Heater element for use in an in situ thermal desorption soil remediation system
US6485232B1 (en) 2000-04-14 2002-11-26 Board Of Regents, The University Of Texas System Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system
US6918444B2 (en) 2000-04-19 2005-07-19 Exxonmobil Upstream Research Company Method for production of hydrocarbons from organic-rich rock
GB0009662D0 (en) * 2000-04-20 2000-06-07 Scotoil Group Plc Gas and oil production
US6588504B2 (en) * 2000-04-24 2003-07-08 Shell Oil Company In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids
US7096953B2 (en) 2000-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a coal formation using a movable heating element
NZ522139A (en) * 2000-04-24 2004-12-24 Shell Int Research In situ recovery from a hydrocarbon containing formation
US6698515B2 (en) 2000-04-24 2004-03-02 Shell Oil Company In situ thermal processing of a coal formation using a relatively slow heating rate
EA006419B1 (en) * 2000-04-24 2005-12-29 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Electrical well heating system and method
US6715548B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids
US6715546B2 (en) 2000-04-24 2004-04-06 Shell Oil Company In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore
US20030066642A1 (en) 2000-04-24 2003-04-10 Wellington Scott Lee In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons
US20030085034A1 (en) * 2000-04-24 2003-05-08 Wellington Scott Lee In situ thermal processing of a coal formation to produce pyrolsis products
US7011154B2 (en) * 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
US6584406B1 (en) * 2000-06-15 2003-06-24 Geo-X Systems, Ltd. Downhole process control method utilizing seismic communication
GB2383633A (en) 2000-06-29 2003-07-02 Paulo S Tubel Method and system for monitoring smart structures utilizing distributed optical sensors
FR2813209B1 (en) 2000-08-23 2002-11-29 Inst Francais Du Petrole SUPPORTED TWO-METAL CATALYST HAVING STRONG INTERACTION BETWEEN GROUP VIII METAL AND TIN AND USE THEREOF IN A CATALYTIC REFORMING PROCESS
US6585046B2 (en) * 2000-08-28 2003-07-01 Baker Hughes Incorporated Live well heater cable
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
US20020110476A1 (en) 2000-12-14 2002-08-15 Maziasz Philip J. Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
US20020112987A1 (en) 2000-12-15 2002-08-22 Zhiguo Hou Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts
US20020112890A1 (en) * 2001-01-22 2002-08-22 Wentworth Steven W. Conduit pulling apparatus and method for use in horizontal drilling
US6516891B1 (en) 2001-02-08 2003-02-11 L. Murray Dallas Dual string coil tubing injector assembly
US6821501B2 (en) 2001-03-05 2004-11-23 Shell Oil Company Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system
US20020153141A1 (en) 2001-04-19 2002-10-24 Hartman Michael G. Method for pumping fluids
US6966374B2 (en) * 2001-04-24 2005-11-22 Shell Oil Company In situ thermal recovery from a relatively permeable formation using gas to increase mobility
CA2668385C (en) * 2001-04-24 2012-05-22 Shell Canada Limited In situ recovery from a tar sands formation
US6929067B2 (en) 2001-04-24 2005-08-16 Shell Oil Company Heat sources with conductive material for in situ thermal processing of an oil shale formation
US20030079877A1 (en) 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US20030029617A1 (en) * 2001-08-09 2003-02-13 Anadarko Petroleum Company Apparatus, method and system for single well solution-mining
US6591908B2 (en) 2001-08-22 2003-07-15 Alberta Science And Research Authority Hydrocarbon production process with decreasing steam and/or water/solvent ratio
MY129091A (en) 2001-09-07 2007-03-30 Exxonmobil Upstream Res Co Acid gas disposal method
US6755251B2 (en) 2001-09-07 2004-06-29 Exxonmobil Upstream Research Company Downhole gas separation method and system
CA2463110C (en) 2001-10-24 2010-11-30 Shell Canada Limited In situ recovery from a hydrocarbon containing formation using barriers
US7090013B2 (en) 2001-10-24 2006-08-15 Shell Oil Company In situ thermal processing of a hydrocarbon containing formation to produce heated fluids
US7077199B2 (en) 2001-10-24 2006-07-18 Shell Oil Company In situ thermal processing of an oil reservoir formation
US6969123B2 (en) * 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7165615B2 (en) * 2001-10-24 2007-01-23 Shell Oil Company In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden
CA2463108C (en) 2001-10-24 2011-11-22 Shell Canada Limited Isolation of soil with a frozen barrier prior to conductive thermal treatment of the soil
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US6759364B2 (en) 2001-12-17 2004-07-06 Shell Oil Company Arsenic removal catalyst and method for making same
US6607149B2 (en) * 2001-12-28 2003-08-19 Robert Bosch Fuel Systems Corporation Follower assembly with retainer clip for unit injector
US6679326B2 (en) * 2002-01-15 2004-01-20 Bohdan Zakiewicz Pro-ecological mining system
US6684948B1 (en) 2002-01-15 2004-02-03 Marshall T. Savage Apparatus and method for heating subterranean formations using fuel cells
US7032809B1 (en) 2002-01-18 2006-04-25 Steel Ventures, L.L.C. Seam-welded metal pipe and method of making the same without seam anneal
WO2003062590A1 (en) * 2002-01-22 2003-07-31 Presssol Ltd. Two string drilling system using coil tubing
US6958195B2 (en) 2002-02-19 2005-10-25 Utc Fuel Cells, Llc Steam generator for a PEM fuel cell power plant
US6715553B2 (en) 2002-05-31 2004-04-06 Halliburton Energy Services, Inc. Methods of generating gas in well fluids
US6942037B1 (en) 2002-08-15 2005-09-13 Clariant Finance (Bvi) Limited Process for mitigation of wellbore contaminants
US7066283B2 (en) 2002-08-21 2006-06-27 Presssol Ltd. Reverse circulation directional and horizontal drilling using concentric coil tubing
AU2003285008B2 (en) 2002-10-24 2007-12-13 Shell Internationale Research Maatschappij B.V. Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
US6942032B2 (en) 2002-11-06 2005-09-13 Thomas A. La Rovere Resistive down hole heating tool
US7055602B2 (en) 2003-03-11 2006-06-06 Shell Oil Company Method and composition for enhanced hydrocarbons recovery
US7258752B2 (en) 2003-03-26 2007-08-21 Ut-Battelle Llc Wrought stainless steel compositions having engineered microstructures for improved heat resistance
AU2004235350B8 (en) 2003-04-24 2013-03-07 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
US6951250B2 (en) 2003-05-13 2005-10-04 Halliburton Energy Services, Inc. Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well
US7114880B2 (en) 2003-09-26 2006-10-03 Carter Jr Ernest E Process for the excavation of buried waste
US7147057B2 (en) 2003-10-06 2006-12-12 Halliburton Energy Services, Inc. Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore
AU2004288130B2 (en) 2003-11-03 2009-12-17 Exxonmobil Upstream Research Company Hydrocarbon recovery from impermeable oil shales
US20060289340A1 (en) 2003-12-19 2006-12-28 Brownscombe Thomas F Methods for producing a total product in the presence of sulfur
US7959796B2 (en) 2003-12-19 2011-06-14 Shell Oil Company Systems, methods, and catalysts for producing a crude product
US20070000810A1 (en) 2003-12-19 2007-01-04 Bhan Opinder K Method for producing a crude product with reduced tan
US7413646B2 (en) 2003-12-19 2008-08-19 Shell Oil Company Systems and methods of producing a crude product
CN1957158B (en) 2004-04-23 2010-12-29 国际壳牌研究有限公司 Temperature limited heaters used to heat subsurface formations
US7582203B2 (en) 2004-08-10 2009-09-01 Shell Oil Company Hydrocarbon cracking process for converting gas oil preferentially to middle distillate and lower olefins
US20060231461A1 (en) 2004-08-10 2006-10-19 Weijian Mo Method and apparatus for making a middle distillate product and lower olefins from a hydrocarbon feedstock
CN101166808B (en) 2005-04-11 2013-03-27 国际壳牌研究有限公司 Method and catalyst for producing a crude product having a reduced MCR content
US7435037B2 (en) 2005-04-22 2008-10-14 Shell Oil Company Low temperature barriers with heat interceptor wells for in situ processes
EP1871981A1 (en) 2005-04-22 2008-01-02 Shell Internationale Research Maatschappij B.V. Grouped exposed metal heaters
US20070044957A1 (en) 2005-05-27 2007-03-01 Oil Sands Underground Mining, Inc. Method for underground recovery of hydrocarbons
WO2007002111A1 (en) 2005-06-20 2007-01-04 Ksn Energies, Llc Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (ragd)
NZ567415A (en) 2005-10-24 2010-12-24 Shell Int Research Solution mining systems and methods for treating hyrdocarbon containing formations
US7124584B1 (en) 2005-10-31 2006-10-24 General Electric Company System and method for heat recovery from geothermal source of heat
US7793722B2 (en) 2006-04-21 2010-09-14 Shell Oil Company Non-ferromagnetic overburden casing
US8127865B2 (en) 2006-04-21 2012-03-06 Osum Oil Sands Corp. Method of drilling from a shaft for underground recovery of hydrocarbons
WO2008033536A2 (en) 2006-09-14 2008-03-20 Carter Ernest E Method of forming subterranean barriers with molten wax
US20080078552A1 (en) 2006-09-29 2008-04-03 Osum Oil Sands Corp. Method of heating hydrocarbons
JO2982B1 (en) 2006-10-13 2016-03-15 Exxonmobil Upstream Res Co Optimized well spacing for in situ shale oil development
WO2008051822A2 (en) 2006-10-20 2008-05-02 Shell Oil Company Heating tar sands formations to visbreaking temperatures
AU2008242797B2 (en) 2007-04-20 2011-07-14 Shell Internationale Research Maatschappij B.V. In situ recovery from residually heated sections in a hydrocarbon containing formation
CA2687387C (en) 2007-05-31 2012-08-28 Ernest. E. Carter, Jr. Method for construction of subterranean barriers
RU2496067C2 (en) 2007-10-19 2013-10-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Cryogenic treatment of gas
AU2009303610A1 (en) 2008-10-13 2010-04-22 Shell Internationale Research Maatschappij B.V. Systems and methods for treating a subsurface formation with electrical conductors
US8327932B2 (en) 2009-04-10 2012-12-11 Shell Oil Company Recovering energy from a subsurface formation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401163A (en) * 1980-12-29 1983-08-30 The Standard Oil Company Modified in situ retorting of oil shale
US4384614A (en) * 1981-05-11 1983-05-24 Justheim Pertroleum Company Method of retorting oil shale by velocity flow of super-heated air
US4437519A (en) * 1981-06-03 1984-03-20 Occidental Oil Shale, Inc. Reduction of shale oil pour point
US4552214A (en) * 1984-03-22 1985-11-12 Standard Oil Company (Indiana) Pulsed in situ retorting in an array of oil shale retorts
US4706751A (en) * 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process
US5097903A (en) * 1989-09-22 1992-03-24 Jack C. Sloan Method for recovering intractable petroleum from subterranean formations
US5143156A (en) * 1990-09-27 1992-09-01 Union Oil Company Of California Enhanced oil recovery using organic vapors
US6016868A (en) * 1998-06-24 2000-01-25 World Energy Systems, Incorporated Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
US11142681B2 (en) 2017-06-29 2021-10-12 Exxonmobil Upstream Research Company Chasing solvent for enhanced recovery processes
US10487636B2 (en) 2017-07-27 2019-11-26 Exxonmobil Upstream Research Company Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
US11002123B2 (en) 2017-08-31 2021-05-11 Exxonmobil Upstream Research Company Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
US11261725B2 (en) 2017-10-24 2022-03-01 Exxonmobil Upstream Research Company Systems and methods for estimating and controlling liquid level using periodic shut-ins

Also Published As

Publication number Publication date
WO2003036035A2 (en) 2003-05-01
US7063145B2 (en) 2006-06-20
US7077198B2 (en) 2006-07-18
US20070209799A1 (en) 2007-09-13
AU2002353888B1 (en) 2008-03-13
IL161173A0 (en) 2004-08-31
WO2003036031A2 (en) 2003-05-01
US20030196801A1 (en) 2003-10-23
WO2003036037A3 (en) 2004-05-21
CN1575377B (en) 2010-06-16
CN100540843C (en) 2009-09-16
CA2462957A1 (en) 2003-05-01
US20040211569A1 (en) 2004-10-28
CA2463104A1 (en) 2003-05-01
NZ532089A (en) 2005-09-30
IL161173A (en) 2008-08-07
WO2003035801A3 (en) 2005-02-17
WO2003036032A2 (en) 2003-05-01
US7066257B2 (en) 2006-06-27
US20030196810A1 (en) 2003-10-23
WO2003036033A1 (en) 2003-05-01
CN1636108A (en) 2005-07-06
WO2003036043A2 (en) 2003-05-01
AU2002359306B2 (en) 2009-01-22
WO2003036024A2 (en) 2003-05-01
CA2462805C (en) 2011-03-15
IL161172A (en) 2009-07-20
NZ532092A (en) 2006-09-29
US20050092483A1 (en) 2005-05-05
CN1608167A (en) 2005-04-20
WO2003036037A2 (en) 2003-05-01
WO2003036030A2 (en) 2003-05-01
WO2003036031A3 (en) 2003-07-03
WO2003036036A1 (en) 2003-05-01
IL161172A0 (en) 2004-08-31
AU2002342139A1 (en) 2003-05-06
US7114566B2 (en) 2006-10-03
WO2003035801A2 (en) 2003-05-01
WO2003036030A3 (en) 2003-11-13
US20140190691A1 (en) 2014-07-10
US7100994B2 (en) 2006-09-05
US7128153B2 (en) 2006-10-31
CA2462794A1 (en) 2003-05-01
CN1575375A (en) 2005-02-02
CN1575373B (en) 2010-06-09
AU2002356854A1 (en) 2003-05-06
CA2463423A1 (en) 2003-05-01
AU2002359315B2 (en) 2007-11-29
WO2003036032A3 (en) 2003-07-10
US20030196789A1 (en) 2003-10-23
CA2463109A1 (en) 2003-05-01
WO2003040513A2 (en) 2003-05-15
WO2003040513A3 (en) 2009-06-11
AU2002360301B2 (en) 2007-11-29
US7156176B2 (en) 2007-01-02
AU2002363073A1 (en) 2003-05-06
US20030201098A1 (en) 2003-10-30
CN1671944A (en) 2005-09-21
WO2003036038A3 (en) 2003-10-09
CA2462971A1 (en) 2003-05-01
US7051808B1 (en) 2006-05-30
CA2462971C (en) 2015-06-09
CA2462794C (en) 2010-11-30
NZ532091A (en) 2005-12-23
CN1575376A (en) 2005-02-02
AU2002342137A1 (en) 2003-05-06
WO2003036034A1 (en) 2003-05-01
AU2002349904A1 (en) 2003-05-19
CN100594287C (en) 2010-03-17
CN1575373A (en) 2005-02-02
CA2463104C (en) 2010-12-14
US8627887B2 (en) 2014-01-14
NZ532090A (en) 2006-10-27
US20030192691A1 (en) 2003-10-16
WO2003036041A3 (en) 2003-10-16
CA2462805A1 (en) 2003-05-01
WO2003036035A3 (en) 2003-07-03
CN1575374B (en) 2010-10-06
CA2463110A1 (en) 2003-05-01
CN1575377A (en) 2005-02-02
AU2002342140B2 (en) 2007-09-20
CA2463103A1 (en) 2003-05-01
WO2003036043A3 (en) 2003-08-21
CA2462957C (en) 2011-03-01
US20030196788A1 (en) 2003-10-23
CN1666006A (en) 2005-09-07
WO2003036024A3 (en) 2004-02-19
CA2463103C (en) 2011-02-22
CN1575374A (en) 2005-02-02
US20100126727A1 (en) 2010-05-27
US20040040715A1 (en) 2004-03-04
CN1671944B (en) 2011-06-08
US20030173072A1 (en) 2003-09-18
US6991045B2 (en) 2006-01-31
US6932155B2 (en) 2005-08-23
CN100400793C (en) 2008-07-09
WO2003035811A9 (en) 2003-07-03
NZ532094A (en) 2006-02-24
WO2003035811A8 (en) 2003-08-28
US7086465B2 (en) 2006-08-08
CA2463112C (en) 2011-03-15
WO2003036041A2 (en) 2003-05-01
WO2003035811A1 (en) 2003-05-01
WO2003036038A2 (en) 2003-05-01
CN100513740C (en) 2009-07-15
AU2002349904A8 (en) 2009-07-30
US20030205378A1 (en) 2003-11-06
WO2003036040A3 (en) 2003-07-17
CA2463112A1 (en) 2003-05-01
CA2463110C (en) 2010-11-30
NZ532093A (en) 2005-12-23
WO2003036040A2 (en) 2003-05-01
AU2002353887B2 (en) 2007-08-30
US7461691B2 (en) 2008-12-09
US20030183390A1 (en) 2003-10-02

Similar Documents

Publication Publication Date Title
CA2463104C (en) In situ production of a blending agent from a hydrocarbon containing formation
EP1381749B1 (en) Method for in situ recovery from a tar sands formation and a blending agent produced by such a method
AU2002304692A1 (en) Method for in situ recovery from a tar sands formation and a blending agent produced by such a method
AU2008242810B2 (en) Controlling and assessing pressure conditions during treatment of tar sands formations
AU2006306471B2 (en) Cogeneration systems and processes for treating hydrocarbon containing formations
US9127538B2 (en) Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
RU2454534C2 (en) Treatment method of bituminous sands formation and transport fuel made using this method
CA2736672A1 (en) Methods for treating hydrocarbon formations

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2463104

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/003713

Country of ref document: MX

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP