WO2003034945A1 - Artificial vessel and process for producing the same - Google Patents

Artificial vessel and process for producing the same Download PDF

Info

Publication number
WO2003034945A1
WO2003034945A1 PCT/JP2002/010986 JP0210986W WO03034945A1 WO 2003034945 A1 WO2003034945 A1 WO 2003034945A1 JP 0210986 W JP0210986 W JP 0210986W WO 03034945 A1 WO03034945 A1 WO 03034945A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
artificial blood
solution
cell
porous
Prior art date
Application number
PCT/JP2002/010986
Other languages
French (fr)
Japanese (ja)
Inventor
Katsuko Sakai
Takashi Ushida
Tetsuya Tateishi
Original Assignee
Katsuko Sakai
Takashi Ushida
Tetsuya Tateishi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Katsuko Sakai, Takashi Ushida, Tetsuya Tateishi filed Critical Katsuko Sakai
Publication of WO2003034945A1 publication Critical patent/WO2003034945A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/507Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/64Animal cells

Definitions

  • the present invention relates to a vascular prosthesis for use in the treatment of various vascular diseases of the human body, including heart and brain diseases, and peripheral blood vessels of the extremities, and more particularly, to a porous vascular prosthesis substrate and gel.
  • the present invention relates to an artificial blood vessel in which a living body and a bioactive substance are combined.
  • Artificial blood vessels with large diameters are used in the treatment of vascular diseases such as congenital diseases and arteriosclerosis.
  • vascular diseases such as congenital diseases and arteriosclerosis.
  • human blood vessels made of materials such as polyester fibers and extensible fluorine tetrachloride compounds are used clinically.
  • Large-diameter artificial blood vessels have achieved sufficient clinical results because they have a sufficient blood flow velocity even if made of such materials.
  • Artificial blood vessels of small diameter are used for the treatment of vascular diseases such as arteriosclerosis, vasospasm, damage to peripheral blood vessels, aneurysm formation, and tumor invasion. Demand is very high.
  • vascular diseases such as arteriosclerosis, vasospasm, damage to peripheral blood vessels, aneurysm formation, and tumor invasion.
  • Demand is very high.
  • the above-mentioned materials are non-biodegradable materials, have poor biocompatibility, and have a problem that foreign matter remains in the body even after forceful implantation.
  • a culture solution containing smooth muscle cells is directly inoculated into a biodegradable or non-biodegradable tubular structure, whereby the endothelial cells are cultured until the lumen surface is smoothed.
  • a model for seeding has also been proposed (Niklason et al. Science, 1999, 284, p489-493, JP-A-2001-78750). According to these models, they have excellent mechanical strength and can withstand arterial vascular prostheses.
  • a biodegradable or non-biodegradable tubular structure has a strong hydrophobicity and remarkably poor cell adhesion and proliferation.
  • an artificial blood vessel which is excellent in biocompatibility, mechanical strength, antithrombotic property, etc., does not leak blood, and is easy to manufacture is desired.
  • a cylindrical porous artificial blood vessel base material formed of a fiber-like or sponge-like material having an appropriate mechanical strength is converted into a cell-mixed solution. After impregnating under normal pressure or negative pressure conditions, allowing the cell-containing solution to be taken into the pores, and then gelling the solution, the cells can be densified in a short period of time to the fine details of the porous artificial blood vessel substrate.
  • a cell-mixed solution After impregnating under normal pressure or negative pressure conditions, allowing the cell-containing solution to be taken into the pores, and then gelling the solution, the cells can be densified in a short period of time to the fine details of the porous artificial blood vessel substrate.
  • the present inventors have found that not only cells but also bioactive substances synthesized in vivo, genes encoding those bioactive substances, and pharmaceuticals synthesized or obtained in vitro can be obtained by the same method as described above.
  • Pharmaceutical active ingredients such as E.C. compounds can be incorporated into porous artificial blood vessel substrates, and can be used as artificial blood vessels for various uses, including drug delivery systems and artificial organs other than artificial blood vessels. And found that the present invention was completed.
  • an artificial blood vessel having a tubular porous artificial blood vessel base material, wherein the pores of the porous artificial blood vessel base material are impregnated with a gel solution containing a biologically active substance.
  • the method corresponds to any one of a temperature change, a pH change, a salt concentration change, and an enzyme reaction change.
  • Preparing a biologically active substance-containing solution by impregnating the biologically active substance with the solution to be gelled; and preparing the biologically active substance-containing solution in the pores of the porous artificial vascular base under normal pressure or negative pressure conditions. And a step of gelling the bioactive substance-containing solution taken into the pores of the porous artificial blood vessel base material.
  • the porous artificial blood vessel substrate is composed of a biodegradable material or a non-biodegradable material.
  • the biodegradable material include polylactic acid, polyglycolic acid, copolymers of lactic acid and glycolic acid, polymalic acid, poly one ⁇ - force caprolactone, epsilon - copolymers of force caprolactone and lactic acid, ⁇ -Co-prolatatatone and glycolic acid, ⁇ - Co-polymer of lactic prolactatone, lactic acid and dalicholic acid, poly-3-hydroxybutyrate, poly_4-hydroxybutyrate, and ⁇ 3-hydroxybutyrate It is preferably at least one material selected from the group consisting of a copolymer of methacrylate and 4-hydroxybutylate.
  • the non-biodegradable material includes polyethylene resin, polypropylene resin, polybutadiene resin, polystyrene resin, polychlorinated vinyl resin, polyacrylic resin, polymethacrylic resin, and polysulfone resin. And at least one material selected from the group consisting of polytetrafluoroethylene resins.
  • the biologically active substance is preferably a cell and Z or a pharmaceutically active ingredient.
  • the cells are preferably one or more cells selected from the group consisting of smooth muscle cells, fibroblasts, undifferentiated cells, hepatocytes, knee cells, and hematopoietic stem cells.
  • the bioactive substance-containing gel solution is at least one selected from the group consisting of a collagen gel solution, a fibrin gel solution, an acrylamide gel solution, an agarose gel solution, and an alginate gel solution. It is preferable that the gel solution contains a bioactive substance.
  • the solution to be gelled may be at least one solution selected from the group consisting of a collagen solution, a fibrin solution, an acrylamide solution, an agarose solution, and an alginic acid solution. preferable.
  • an endothelial cell layer may be formed on a lumen surface of the porous artificial blood vessel base material.
  • the porous artificial blood vessel base material may be formed by gelling the biologically active substance-containing solution taken into the pores of the porous artificial blood vessel base material.
  • the method may further include the step of forming an endothelial cell layer.
  • the porous artificial blood vessel base material may be strengthened by a reinforcing member made of a biodegradable material or a non-biodegradable material.
  • FIG. 1 is a scanning electron microscope observation image of the inner cavity surface of the artificial blood vessel prepared in Example 1.
  • FIG. 2 is a scanning electron microscope observation image of the inner cavity surface of the artificial blood vessel prepared in Comparative Example 1.
  • FIG. 3 is a scanning electron microscope observation image of the lumen surface of the PLLA substrate prepared in Reference Example.
  • FIG. 4 is a cross-sectional image of the artificial blood vessel prepared in Example 1 by a fluorescence microscope.
  • FIG. 5 is a cross-sectional image of the artificial blood vessel prepared in Comparative Example 1 by a fluorescence microscope.
  • FIG. 6 is a cross-sectional image of the artificial blood vessel prepared in Example 2 observed by a transmission microscope.
  • FIG. 7 is a fluorescent microscope cross-sectional image of the artificial blood vessel prepared in Example 2.
  • the artificial blood vessel according to the present invention has a cylindrical porous artificial blood vessel base material, and contains a bioactive substance-containing gel solution in its pores.
  • the porous artificial blood vessel base material used in the present invention is porous and preferably has an open pore structure in which the pores are connected from the viewpoint of facilitating the incorporation of a bioactive substance into the pores.
  • the percentage of pores is preferably from 70% to 99% of the base material, and more preferably from 80% to 95%.
  • the porous artificial blood vessel substrate used in the present invention has a cylindrical shape.
  • the inner diameter is preferably 1 mm to 7 mm, and 1 mm to 5 mm. More preferably, it is still more preferably 1 mm to 4 mm.
  • the inner diameter is preferably from 5 mm to 70 mm, more preferably from 5 mm to 50 mm.
  • Examples of the material of the porous artificial blood vessel base material used in the present invention include a biodegradable material and a non-biodegradable material.
  • a biodegradable material is preferable from the viewpoint of providing an artificial blood vessel in which components that are not derived from the living body are not dissolved after transplantation in consideration of foreign body reaction, immune reaction, and carcinogenicity in the living body.
  • non-biodegradable materials are preferred from the viewpoint of maintaining mechanical strength because they do not dissolve after transplantation, and providing stable products at the current stage and at the current technological development level. . 02 10986
  • the biodegradable material is not particularly limited, but includes polydalicholic acid, polylactic acid, a copolymer of lactate and glycolic acid, polymalic acid, poly-coprolataton, and ⁇ coprolataton and lactic acid.
  • Polymers, copolymers of e-proprotatanone and glyco- / reic acid, copolymers of ⁇ -proprotatanone, lactic acid and glycolic acid, poly-3-hydroxybutyrate, poly-1-hydroxybutyrate, Copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate can be mentioned. From the viewpoint of the approval of the Ministry of Health, Labor and Welfare and the FDA (United States Drug Administration), polylactic acid, polyglycolic acid, and lactic acid And a copolymer of glycolic acid and glycolic acid.
  • the non-biodegradable material is not particularly limited, but is a polyethylene resin, a polypropylene resin, a polybutadiene resin, a polystyrene resin, a polyvinyl chloride resin, a polyacryl resin, a polymethacryl resin, a polysulfone resin. And polytetrafluoroethylene-based resin. From the viewpoint of approval by the Ministry of Health, Labor and Welfare and the FDA, polyethylene resin and polytetrafluoroethylene-based resin are preferable.
  • a foaming agent such as sodium chloride, ammonium hydrogencarbonate, or the like is mixed with a solution of the above-described material and molded into a tubular shape.
  • a method of foaming to make it porous can be mentioned.
  • Such a method includes, for example, the method described in Nam et al. J. Biomed. Master Res. 2000, 53, pi-7.
  • bioactive substance-containing gel solution contained in the pores of the porous artificial blood vessel substrate will be described.
  • the gel solution containing a biologically active substance used in the present invention is a gel solution containing a biologically active substance, and it is preferable that the biologically active substance is uniformly mixed.
  • Examples of the biologically active substance contained in the gel solution include cells, pharmaceutically active ingredients, and the like, and one or more of these may be used. Such a biologically active substance can be appropriately determined according to the use of the artificial blood vessel.
  • a pharmaceutically active ingredient refers to a component that exhibits one or more pharmacological activities in a living body, such as a physiologically active substance synthesized in a living body, and a physiologically active substance thereof.
  • Cells used as biologically active substances include, for example, undivided cells such as stem cells and ES cells, smooth muscle cells, fibroblasts, hepatocytes, victory cells, and hematopoietic stem cells. it can.
  • physiologically active substance used as a biologically active substance examples include proteins synthesized in vivo, such as insulin, anti-prion antibody, and anti-AIDS virus antibody.
  • an artificial blood vessel containing such a physiologically active substance as a biologically active substance there is an application such as an artificial blood vessel that also treats diseases such as diabetes and infectious disease.
  • Examples of the gene used as a biologically active substance include a gene encoding the above-mentioned physiologically active substance, such as a gene encoding adenosine deaminase, a gene encoding an eighth blood coagulation factor, 9 Genes encoding blood coagulation factors, and the like.
  • a gene encoding the above-mentioned physiologically active substance such as a gene encoding adenosine deaminase, a gene encoding an eighth blood coagulation factor, 9 Genes encoding blood coagulation factors, and the like.
  • an artificial blood vessel containing a gene as a bioactive substance there is an application as an artificial blood vessel that also serves to treat diseases such as adenosine deaminase deficiency and hemophilia.
  • a pharmaceutical compound synthesized or obtained in vitro can be used as a biologically active substance.
  • examples of such pharmaceutical compounds include organic compounds, antibiotics produced by microorganisms existing in nature, and the like. Specific examples include penicillin, cyclophosphamide, actinomycin D, and 5-f / leuroushi / And pleomycin.
  • An artificial blood vessel containing such a pharmaceutical compound as a biologically active substance has a use as an artificial blood vessel which also serves as an infectious disease, an anticancer treatment and the like.
  • the gel solution contains at least smooth muscle cells and blast cells from the viewpoint of securing the mechanical strength after the artificial blood vessel transplantation.
  • undifferentiated cells are included.
  • the density of the bioactive substance to be mixed with the gel solution is preferably 1 ⁇ 10 4 eell Zml to l ⁇ 10 9 cel 1 Zm1, and 1 ⁇ 10 0 and still more preferably 6 a ce 1 1 / m 1 ⁇ 1 X 1 0 7 ce 1 1 Zm 1.
  • the gel solution is a solution obtained by gelling a solution that gels due to changes in temperature, H, salt concentration, enzymatic reaction, etc., and is not particularly limited as long as it has no toxicity or carcinogenicity. it can.
  • the gelling agent corresponding to the temperature change include collagen, acrylamide resin, and agarose.
  • collagen that can be gelled in response to a pH change can be exemplified.
  • Alginic acid or the like can be used as a gel that responds to changes in salt concentration.
  • fibrin and the like can be mentioned as those that gel in response to the enzymatic reaction, and fibrinogen and the like can be mentioned as the enzyme to be gelled.
  • a gel solution containing a biologically active substance is taken into the pores of the porous artificial blood vessel base material.
  • the bioactive substance-containing gel solution preferably occupies 50% or more of all pores of the porous artificial vascular base material, and 90%, from the viewpoint of preventing blood leakage and securing a scaffold for vascular endothelial cells. It is more preferable to account for the above.
  • an endothelial cell layer may be formed on the lumen surface of the porous artificial blood vessel base material from the viewpoint of improving antithrombotic properties.
  • the porous artificial blood vessel base material is strengthened by a strengthening member made of a biodegradable material or a non-biodegradable material. You may.
  • the reinforcing member may be formed on the outer peripheral surface and / or the inner peripheral surface of the porous artificial blood vessel base material, or may be incorporated inside the porous artificial blood vessel base material.
  • the reinforcing member formed on the outer peripheral surface of the porous artificial blood vessel base material has a substantially same inner diameter as the outer diameter of the porous artificial blood vessel base material, and has a cross section concentric with the base material.
  • a coated tubular member can be mentioned.
  • the capturing member formed on the inner peripheral surface of the porous artificial blood vessel base material has an outer diameter substantially equal to the inner diameter of the porous artificial blood vessel base material, and has a cross section concentric with the base material. And a cylindrical member covered with a base material.
  • a material formed by weaving a fibrous biodegradable material or a non-biodegradable material into a mesh shape can be used.
  • the capturing member can also be incorporated into the porous artificial blood vessel base material.
  • the biodegradation Examples of the porous material and the non-biodegradable material include those described above as the material for the porous artificial blood vessel base material.
  • a biologically active substance is mixed with a solution that gels in response to any of a temperature change, a pH change, a salt concentration change, and an enzyme reaction change to prepare a biologically active substance-containing solution.
  • the biologically active substance to be mixed can be appropriately determined according to the use of the artificial blood vessel, and includes the substances described above.
  • the density of the biological agent to be mixed in the solution to gel, if the biological agent is a cell is a 1 X 1 0 4 ce 1 l Zm l ⁇ 1 X 1 0 9 ce 1 1 Zm 1 It is more preferably 1 ⁇ 10 6 ce 1 l / ml to 1 ⁇ 10 7 ce 11 Zm 1.
  • the porous artificial vascular base material prepared in advance is impregnated with the solution containing the biologically active substance prepared as described above, and the biologically active substance is introduced into the pores of the substrate under normal pressure conditions, preferably under negative pressure conditions. Allow the containing solution to be incorporated.
  • porous artificial blood vessel base material The material and manufacturing method of the porous artificial blood vessel base material are as described above. Further, the porous artificial blood vessel base material may be captured by a capturing member. The reinforcing member and the reinforcing method are as described above.
  • the method for impregnating the porous artificial vascular base material into the biologically active substance-containing solution is as follows. There are several methods. In order to incorporate the biologically active substance into the substrate, the biologically active substance is impregnated until the biologically active substance is sufficiently incorporated into the pores of the porous artificial blood vessel substrate. For example, it is preferable that the bioactive substance-containing solution is impregnated with the porous artificial blood vessel substrate, and is left standing for 10 to 60 minutes, more preferably 30 to 60 minutes.
  • the pressure at the time of addition may be normal pressure, but from the viewpoint of efficiently incorporating the bioactive substance into the pores of the substrate, a pressure lower than the atmospheric pressure is preferable. This pressure is appropriately determined in consideration of the materials to be used, the pressure resistance of the equipment, the possibility of retaining the activity of the biologically active substance to be used, and the like.
  • the biologically active substance-containing solution taken into the pores of the porous artificial blood vessel substrate is gelled.
  • the gelling conditions are set appropriately according to the solution to be used. Gelled In this case, from the viewpoint of forming a smooth lumen surface, it is preferable to further allow the mixture to stand for 10 minutes to 120 minutes under gelation conditions, and more preferably to allow the mixture to stand still for 30 minutes to 60 minutes. .
  • an endothelial cell layer can be formed on the luminal surface of the porous artificial blood vessel base material.
  • the endothelial cell layer is easily formed by pouring a culture solution containing endothelial cells into the lumen of a porous artificial blood vessel substrate holding a solution containing a bioactive substance that has undergone genoleration in the pores and rotating the culture. be able to.
  • the number of rotations during the culture of endothelial cells is preferably from 0.5 rpm to 100 rpm, more preferably from 5 rpm to 10 rpm.
  • the culture time is preferably from 10 minutes to 24 hours, and more preferably from 20 minutes to 60 minutes.
  • the bioactive substance is contained at high density in the hole of a cylindrical porous artificial blood vessel base material, blood leakage does not occur, the lumen surface is almost smooth, and the porous artificial blood vessel Since it has a base material, an artificial blood vessel having excellent mechanical properties can be provided. Further, according to the present invention, a biologically active substance can be efficiently and rapidly incorporated into an artificial blood vessel in a short time.
  • a porous artificial blood vessel substrate (hereinafter, referred to as “PLLA substrate”) composed of polylactic acid with a length of about 2 mm and a length of about 2 Omm was prepared.
  • a solution was prepared by mixing human normal aortic vascular smooth muscle cells at a concentration of 5 ⁇ 10 6 cells / ml with a 0.39% collagen solution.
  • the PLLA substrate prepared in the reference example was placed in a glass tube and immersed in 1.4 ml of the above-mentioned collagen solution containing human normal aortic vascular smooth muscle cells, and this was pumped with a hydraulic pump (ULVAC, G The pressure was reduced according to -5), and the mixture was allowed to stand under negative pressure for 30 minutes.
  • the tube is moved to an incubator at 37 ° C and left standing for 60 minutes to gel the collagen solution in the PLLA substrate. Then, an artificial blood vessel was prepared.
  • Human normal aortic vascular smooth muscle cells were mixed with a culture solution (Dulbecco's minimum essential medium (DMEM)) to prepare a cell-containing solution having a concentration of 5 ⁇ 10 6 cells / ml.
  • DMEM Dulbecco's minimum essential medium
  • the PLLA substrate prepared in Reference Example was placed in a glass tube, immersed in 1.4 ml of the above-described culture medium containing human normal aortic vascular smooth muscle cells, and this was immersed in a hydraulic pump ( , G-5) and allowed to stand under negative pressure for 30 minutes.
  • a hydraulic pump , G-5
  • the tube was moved to an incubator at 37 ° C and left standing for 60 minutes to produce an artificial blood vessel.
  • Example 1 The numbers of human normal aortic vascular smooth muscle cells taken into the artificial blood vessels prepared in Example 1 and Comparative Example 1 were compared. For comparison, calculate the ratio (%) of the number of cells in the solution after immersing the PLLA substrate to the number of cells in the human normal aortic vascular smooth muscle cell solution before immersing the PLLA substrate. It was done by doing. The number of cells was determined by calculating the number of nuclei developed with 4,, 6-diamidino 2-phenylindole dihydrochloride (DAP I) using a fluorescence spectrophotometer. Since the immersion time is 30 minutes, smooth muscle cells do not proliferate during this time. Table 1 below shows the percentage of cells taken up. Example 1 Comparative Example 1 Percentage of cells taken up (%) 100% 18%
  • Example 1 takes up cells extremely efficiently as compared to the artificial blood vessel prepared in Comparative Example 1.
  • FIG. Fig. 2 shows an EM photograph
  • Fig. 3 shows an SEM photograph of the state of the lumen surface of the PLLA substrate prepared in Reference Example for reference. From FIGS. 1 and 2, the luminal surface of the artificial blood vessel of Comparative Example 1 is smooth without any holes, while the luminal surface of the artificial blood vessel of Comparative Example 1 is still large. I understand.
  • each artificial blood vessel was further cultured for one day, and then a cross-sectional section (8 ⁇ thick) of each artificial blood vessel was prepared.
  • the nucleus of human normal aortic vascular smooth muscle cells was Hoechst ( Hextone earth) (100 ⁇ g / m1).
  • FIG. 4 shows a fluorescence photograph of a cross section of the artificial blood vessel produced in Example 1
  • FIG. 5 shows a fluorescence photograph of a cross section of the artificial blood vessel produced in Comparative Example 1.
  • the dotted line in the figure indicates the lumen surface. 4 and 5 that the artificial blood vessel prepared in Example 1 'incorporates cells at a higher density than the artificial blood vessel prepared in Comparative Example 1. '
  • a culture solution containing normal human umbilical vein vascular endothelial cells at a concentration of 5.0 ⁇ 10 6 cells / ml was prepared in a volume of 1 ml, and poured into the lumen of the artificial blood vessel prepared in Example 1.
  • a rotary culture device Titech, RT-50
  • 5111 to 10 ⁇ An endothelial cell layer was formed by culturing for 60 minutes while rotating at a rotating speed.
  • Fig. 6 shows a transmission micrograph of the cross section of the artificial blood vessel
  • Fig. 7 shows a fluorescence photograph of the same cross section.
  • the arrow in FIG. 7 indicates the endothelial cell layer. 6 and 7 that the endothelial cell layer is continuously formed on the luminal surface of the artificial blood vessel prepared in Example 2.
  • the present invention it is possible to smooth the minimum cavity surface in direct contact with blood, which is indispensable for an artificial blood vessel, in a short period of time, and to efficiently and efficiently produce a bioactive substance in a short time. Incorporation into blood vessels is possible.
  • an artificial blood vessel which does not cause blood leakage, has excellent antithrombotic properties, has a substantially smooth lumen surface, and has excellent mechanical properties.

Abstract

It is intended to provide an artificial vessel, which is excellent in biocompatibility, mechanical strength, antithrombotic properties, etc. and free from blood leakage and can be easily produced. An artificial vessel being free from blood leakage and excellent in antithrombotic properties, having almost smooth inner surface and showing favorable mechanical properties can be obtained within a short period of time by immersing a biologically active substance in a solution capable of setting to gel to give a solution containing the biologically active substance, incorporating this solution containing the biologically active substance into pores of a tube-shaped porous base material for artificial vessel, and then allowing the solution containing the biologically active substance, which has been incorporated into the pores of the porous base material for artificial vessel, to set to gel.

Description

人工血管及ぴその製造方法 技術分野  Artificial blood vessel and its manufacturing method
本発明は, 心 ·脳疾患系, さらに四肢の末梢血管などを含む人体のあらゆる血 管の疾患の治療に際して使用される人工血管に関するものであり、 より詳しくは、 多孔質人工血管基材とゲルと生体作用物質とを複合化した人工血管に関する。 背景技術  The present invention relates to a vascular prosthesis for use in the treatment of various vascular diseases of the human body, including heart and brain diseases, and peripheral blood vessels of the extremities, and more particularly, to a porous vascular prosthesis substrate and gel. The present invention relates to an artificial blood vessel in which a living body and a bioactive substance are combined. Background art
大口径 (内径が約 5 mm〜約 3 0 mm) の人工血管は、 先天性疾患、 動脈硬化 症といった血管疾患の治療に際して使用される。 このような人工血管としては, ポリエステル性の線維や伸展性の 4塩化フッ素化合物などの材料で作製された人 ェ血管が臨床で用いられている。 大口径の人工血管は、 このような材料によって 作製されていても十分な血流速度が確保されるため、 臨床的に十分な成果が得ら れている。  Artificial blood vessels with large diameters (inner diameters of about 5 mm to about 30 mm) are used in the treatment of vascular diseases such as congenital diseases and arteriosclerosis. As such artificial blood vessels, human blood vessels made of materials such as polyester fibers and extensible fluorine tetrachloride compounds are used clinically. Large-diameter artificial blood vessels have achieved sufficient clinical results because they have a sufficient blood flow velocity even if made of such materials.
—方、 小口径 (内径が約 0 . 5 mm〜約 5 mm) の人工血管は、 動脈硬化症、 血管れん縮、 末梢血管の損傷、 瘤形成、 腫瘍の浸潤といった血管疾患の治療に際 して需要が非常に高いものである。 しかしながら、 小口径の人工血管においては、 小口径であるがゆえに上述の材料では十分な血流速度を確保し得る抗血栓性に優 れた人工血管を得ることはできなかった。 また、 上述のような材料は非生分解性 材料であり、 生体適合性も悪く、 力つ移植後にも異物が体内に残存することにな るという問題がある。  Artificial blood vessels of small diameter (with an inner diameter of about 0.5 mm to about 5 mm) are used for the treatment of vascular diseases such as arteriosclerosis, vasospasm, damage to peripheral blood vessels, aneurysm formation, and tumor invasion. Demand is very high. However, in the case of a small-diameter artificial blood vessel, because of the small diameter, it was not possible to obtain an artificial blood vessel having excellent antithrombotic properties capable of securing a sufficient blood flow velocity with the above-described materials. Further, the above-mentioned materials are non-biodegradable materials, have poor biocompatibility, and have a problem that foreign matter remains in the body even after forceful implantation.
—方、 生体適合性、 抗血栓性を考慮して、 平滑筋を含有し、 内皮細胞の層を内 腔面上に形成できるような平滑な内腔面を有する、 人工的な筒状物質を形成した ハイブリッド型人工血管モデルが提唱されている。  Considering biocompatibility and antithrombotic properties, artificial cylindrical substances containing smooth muscle and having a smooth luminal surface capable of forming an endothelial cell layer on the luminal surface The formed hybrid artificial blood vessel model has been proposed.
このようなモデルとして、 具体的には、 平滑筋を混合させたゲル状のコラーゲ ンを筒状構造体に成型するモデルが提唱されている (Weinberg et al. Science, 1986, 231, p397— 400、 Hirai et al. ASAIO journal, 1994, p383— 388) 。 この モデルによれば、 短時間で平滑な内腔面を有する人工血管を形成することができ る。 しかしながら、 このような筒状構造体は脆弱であるため、 作製直後はピンセ ットで持ち上げることができない等、 極めて扱いにくく、 また、 血圧などの生体 内に存在する力学的な環境に耐えることができないという問題があった。 As such a model, specifically, a model in which gel-like collagen mixed with smooth muscle is molded into a tubular structure has been proposed (Weinberg et al. Science, 1986, 231, p397-400). Hirai et al. ASAIO journal, 1994, p383-388). this According to the model, an artificial blood vessel having a smooth lumen surface can be formed in a short time. However, since such a tubular structure is fragile, it cannot be lifted with tweezers immediately after fabrication, and is extremely difficult to handle.In addition, it cannot withstand the mechanical environment such as blood pressure that exists in a living body. There was a problem that it was not possible.
また、 生分解性又は非生分解性の筒状の構造体に平滑筋細胞を含有させた培養 溶液を直接播種させ、 これによつて内腔面が平滑になるまで培養させた後に内皮 細胞を播種させるモデルも提唱されている (Niklason et al. Science, 1999, 284, p489-493、 特開 2001- 78750号公報) 。 これらモデルによれば、 機械的強度 に優れ、 動脈レベルの人工血管としても耐えられるものである。 しかしながら、 生分解性又は非生分解性の筒状構造体は、 疎水性が強く、 細胞の接着、 およぴ增 殖が著しく悪いことが知られている。 このため、 平滑な内腔面を形成するまで筒 状構造体内の平滑筋細胞を培養させるのに数ケ月という長い培養時間を要すると いう問題があった。 これは、 人工血管を必要とする患者の状況を考慮すると実用 的なものであるとはいえなかった。 また、 筒状構造体による平滑筋細胞の補足率 も低く、 筒状構造体の隙間から血液が漏れる恐れがあるという問題があった。 ま た、 当該モデルによれば、 その機械的強度が高いゆえに、 移植後に自己の血管と の間で摩擦が生じて、 結合部に切れ目が生じ、 血液が漏れる恐れがあるという問 題もあった。 明の開示  In addition, a culture solution containing smooth muscle cells is directly inoculated into a biodegradable or non-biodegradable tubular structure, whereby the endothelial cells are cultured until the lumen surface is smoothed. A model for seeding has also been proposed (Niklason et al. Science, 1999, 284, p489-493, JP-A-2001-78750). According to these models, they have excellent mechanical strength and can withstand arterial vascular prostheses. However, it is known that a biodegradable or non-biodegradable tubular structure has a strong hydrophobicity and remarkably poor cell adhesion and proliferation. For this reason, there has been a problem that a long culture time of several months is required for culturing smooth muscle cells in a tubular structure until a smooth lumen surface is formed. This was not practical given the situation of patients who need artificial blood vessels. In addition, there is also a problem that the tubular structure has a low rate of capturing smooth muscle cells, and blood may leak from gaps in the tubular structure. In addition, according to the model, since the mechanical strength is high, there is a problem that friction occurs between the blood vessel and the own blood vessel after transplantation, a cut occurs at a joint, and blood may leak. . Ming disclosure
従って、 生体適合性、 機械的強度、 抗血栓性等において優れ、 血液の漏洩が生 じず、 かつ製造が容易である人工血管が望まれている。  Therefore, an artificial blood vessel which is excellent in biocompatibility, mechanical strength, antithrombotic property, etc., does not leak blood, and is easy to manufacture is desired.
本発明者らは鋭意検討した結果、 適度な機械的強度を有するファイバー (繊 維) 状またはスポンジ状の材料から形成された筒状の多孔質人工血管基材を、 細 胞を混合した溶液に常圧又は陰圧条件下で含浸させ、 孔内に細胞含有溶液を取り 込ませた後に、 当該溶液をゲル化させることによって、 短時間で多孔質人工血管 基材の細部にまで高密度で細胞を浸透させ、 かつ保持させることができることを 見出し、 本発明を完成させた。 また、 本発明者らは、 上記と同様の方法で、 細胞のみならず、 生体内で合成さ れる生理活性物質やそれらの生理活性物質をコードする遺伝子、 生体外で合成も しくは得られる医薬ィヒ合物等といった薬学的活性成分を多孔質人工血管基材に取 り込むことができ、 ドラッグデリバリーシステム、 人工血管以外の人工臓器を含 む、 様々な用途の人工血管として対応できる人工血管を提供できることを見出し、 本発明を完成させた。 As a result of intensive studies, the present inventors have found that a cylindrical porous artificial blood vessel base material formed of a fiber-like or sponge-like material having an appropriate mechanical strength is converted into a cell-mixed solution. After impregnating under normal pressure or negative pressure conditions, allowing the cell-containing solution to be taken into the pores, and then gelling the solution, the cells can be densified in a short period of time to the fine details of the porous artificial blood vessel substrate. Have been found to be able to permeate and retain the present invention, and have completed the present invention. In addition, the present inventors have found that not only cells but also bioactive substances synthesized in vivo, genes encoding those bioactive substances, and pharmaceuticals synthesized or obtained in vitro can be obtained by the same method as described above. Pharmaceutical active ingredients such as E.C. compounds can be incorporated into porous artificial blood vessel substrates, and can be used as artificial blood vessels for various uses, including drug delivery systems and artificial organs other than artificial blood vessels. And found that the present invention was completed.
即ち、 本発明では、 筒状の多孔質人工血管基材を有する人工血管において、 前 記多孔質人工血管基材の孔内に生体作用物質含有ゲル溶液を含浸させてなる人工 血管が提供される。  That is, in the present invention, there is provided an artificial blood vessel having a tubular porous artificial blood vessel base material, wherein the pores of the porous artificial blood vessel base material are impregnated with a gel solution containing a biologically active substance. .
また、 本発明では、 筒状の多孔質人工血管基材を有する人工血管の製造方法に おいて、 温度変化、 p H変化、 塩濃度変化、 及び酵素反応変ィ匕のいずれかに対応 してゲルィ匕する溶液に、 生体作用物質を含浸させて生体作用物質含有溶液を調製 する工程と、 常圧又は陰圧条件下で前記多孔質人工血管基材の孔内に前記生体作 用物質含有溶液を取り込ませる工程と、 前記多孔質人工血管基材の孔内に取り込 まれた前記生体作用物質含有溶液をゲル化する工程とを含む人工血管の製造方法 が提供される。  Further, according to the present invention, in the method for producing an artificial blood vessel having a cylindrical porous artificial blood vessel base material, the method corresponds to any one of a temperature change, a pH change, a salt concentration change, and an enzyme reaction change. Preparing a biologically active substance-containing solution by impregnating the biologically active substance with the solution to be gelled; and preparing the biologically active substance-containing solution in the pores of the porous artificial vascular base under normal pressure or negative pressure conditions. And a step of gelling the bioactive substance-containing solution taken into the pores of the porous artificial blood vessel base material.
本発明において、 前記多孔質人工血管基材が、 生分解性材料又は非生分解性材 料から構成されることが好ましい。 また、 前記生分解性材料は、 ポリ乳酸、 ポリ グリコール酸、 乳酸とグリコール酸との共重合体、 ポリリンゴ酸、 ポリ一 ε—力 プロラクトン、 ε—力プロラクトンと乳酸との共重合体、 ε—力プロラタトンと グリコール酸との共重合体、 ε—力プロラタトンと乳酸とダリコール酸との共重 合体、 ポリー3—ヒドロキシブチレート、 ポリ _ 4ーヒドロキシプチレート、 及 ぴ 3.—ヒドロキシブチレートと 4ーヒドロキシプチレートとの共重合体からなる 群から選ばれる 1種以上の材料であることが好ましい。 また、 前記非生分解性材 料は、 ポリエチレン系樹脂、 ポリプロピレン系樹脂、 ポリブタジエン系樹脂、 ポ リスチレン系樹 J}旨、 ポリ塩化ビュル系樹脂、 ポリアクリル系樹脂、 ポリメタタリ ル系樹脂、 ポリスルホン系樹脂、 及びポリテトラフルォロエチレン系樹脂からな る群から選ばれる 1種以上の材料であることが好ましい。 また、 本発明において、 前記生体作用物質が、 細胞及び Z又は薬学的活性成分 であることが好ましい。 また、 前記細胞は、 平滑筋細胞、 繊維芽細胞、 未分化細 胞、 肝細胞、 膝臓細胞、 及び造血幹細胞からなる群から選ばれる 1種以上の細胞 であることが好ましい。 In the present invention, it is preferable that the porous artificial blood vessel substrate is composed of a biodegradable material or a non-biodegradable material. Moreover, the biodegradable material include polylactic acid, polyglycolic acid, copolymers of lactic acid and glycolic acid, polymalic acid, poly one ε- force caprolactone, epsilon - copolymers of force caprolactone and lactic acid, ε-Co-prolatatatone and glycolic acid, ε- Co-polymer of lactic prolactatone, lactic acid and dalicholic acid, poly-3-hydroxybutyrate, poly_4-hydroxybutyrate, and ぴ 3-hydroxybutyrate It is preferably at least one material selected from the group consisting of a copolymer of methacrylate and 4-hydroxybutylate. In addition, the non-biodegradable material includes polyethylene resin, polypropylene resin, polybutadiene resin, polystyrene resin, polychlorinated vinyl resin, polyacrylic resin, polymethacrylic resin, and polysulfone resin. And at least one material selected from the group consisting of polytetrafluoroethylene resins. In the present invention, the biologically active substance is preferably a cell and Z or a pharmaceutically active ingredient. The cells are preferably one or more cells selected from the group consisting of smooth muscle cells, fibroblasts, undifferentiated cells, hepatocytes, knee cells, and hematopoietic stem cells.
また、 本発明にかかる人工血管において、 前記生体作用物質含有ゲル溶液が、 コラーゲンゲル溶液、 フイブリンゲル溶液、 アクリルアミドゲル溶液、 ァガロー スゲル溶液、 及ぴアルギン酸ゲル溶液からなる群から選ばれる 1種以上のゲル溶 液であって、 生体作用物質を含有するものであることが好ましい。  Further, in the artificial blood vessel according to the present invention, the bioactive substance-containing gel solution is at least one selected from the group consisting of a collagen gel solution, a fibrin gel solution, an acrylamide gel solution, an agarose gel solution, and an alginate gel solution. It is preferable that the gel solution contains a bioactive substance.
また、 本発明にかかる人工血管の製造方法において、 ゲルィ匕する前記溶液が、 コラーゲン溶液、 フイブリン溶液、 アクリルアミド溶液、 ァガロース溶液、 及び アルギン酸溶液からなる群から選ばれる 1種以上の溶液であることが好ましい。 また、 本発明にかかる人工血管において、 前記多孔質人工血管基材の内腔面上 に、 内皮細胞層が形成されていてもよい。  In the method for producing an artificial blood vessel according to the present invention, the solution to be gelled may be at least one solution selected from the group consisting of a collagen solution, a fibrin solution, an acrylamide solution, an agarose solution, and an alginic acid solution. preferable. Further, in the artificial blood vessel according to the present invention, an endothelial cell layer may be formed on a lumen surface of the porous artificial blood vessel base material.
また、 本発明にかかる人工血管の製造方法において、 前記多孔質人工血管基材 の孔内に取り込まれた前記生体作用物質含有溶液をゲル化した前記多孔質人工血 管基材の内腔面上に、 内皮細胞層を形成する工程を更に含んでいてもよい。 また、 本発明において、 前記多孔質人工血管基材が、 生分解性材料又は非生分 解性材料からなる補強部材によつて捕強されていてもよい。 図面の簡単な説明  Further, in the method for producing an artificial blood vessel according to the present invention, the porous artificial blood vessel base material may be formed by gelling the biologically active substance-containing solution taken into the pores of the porous artificial blood vessel base material. The method may further include the step of forming an endothelial cell layer. Further, in the present invention, the porous artificial blood vessel base material may be strengthened by a reinforcing member made of a biodegradable material or a non-biodegradable material. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1で作製された人工血管の内腔面の走査型電子顕微鏡による観 察像である。  FIG. 1 is a scanning electron microscope observation image of the inner cavity surface of the artificial blood vessel prepared in Example 1.
図 2は、 比較例 1で作製された人工血管の内腔面の走査型電子顕微鏡による観 察像である。  FIG. 2 is a scanning electron microscope observation image of the inner cavity surface of the artificial blood vessel prepared in Comparative Example 1.
図 3は、 参考例で作製された P L L A基材の内腔面の走査型電子顕微鏡による 観察像である。  FIG. 3 is a scanning electron microscope observation image of the lumen surface of the PLLA substrate prepared in Reference Example.
図 4は、 実施例 1で作製された人工血管の蛍光顕微鏡による断面像である。 図 5は、 比較例 1で作製された人工血管の蛍光顕微鏡による断面像である。 図 6は、 実施例 2で作製された人工血管の透過型顕微鏡による断面像である。 図 7は、 実施例 2で作製された人工血管の蛍光顕微鏡断面像である。 発明を実施するための最良の形態 FIG. 4 is a cross-sectional image of the artificial blood vessel prepared in Example 1 by a fluorescence microscope. FIG. 5 is a cross-sectional image of the artificial blood vessel prepared in Comparative Example 1 by a fluorescence microscope. FIG. 6 is a cross-sectional image of the artificial blood vessel prepared in Example 2 observed by a transmission microscope. FIG. 7 is a fluorescent microscope cross-sectional image of the artificial blood vessel prepared in Example 2. BEST MODE FOR CARRYING OUT THE INVENTION
本発明にかかる人工血管は、 筒状の多孔質人工血管基材を有するものであり、 その孔内に生体作用物質含有ゲル溶液を含むものである。  The artificial blood vessel according to the present invention has a cylindrical porous artificial blood vessel base material, and contains a bioactive substance-containing gel solution in its pores.
まず、 本発明で用いられる多孔質人工血管基材について説明する。 本発明で使 用される多孔質人工血管基材は、 多孔質であり、 生体作用物質を孔内に取り込み やすくする観点から、 孔同士がつながったオープンポア構造のものが好ましい。 孔の割合は、 基材の 7 0 %〜 9 9 %であることが好ましく、 8 0 %〜 9 5 %であ ることが更に好ましい。  First, the porous artificial blood vessel base material used in the present invention will be described. The porous artificial blood vessel base material used in the present invention is porous and preferably has an open pore structure in which the pores are connected from the viewpoint of facilitating the incorporation of a bioactive substance into the pores. The percentage of pores is preferably from 70% to 99% of the base material, and more preferably from 80% to 95%.
また、 本発明で用いられる多孔質人工血管基材は、 筒状であり、 例えば、 小口 径人工血管として用いる場合は、 内径が l mm〜 7 mmであることが好ましく、 1 mm〜 5 mmであることが更に好ましく、 1 mm〜 4 mmであることが更にま た好ましい。  Further, the porous artificial blood vessel substrate used in the present invention has a cylindrical shape.For example, when used as a small-diameter artificial blood vessel, the inner diameter is preferably 1 mm to 7 mm, and 1 mm to 5 mm. More preferably, it is still more preferably 1 mm to 4 mm.
従来、 動脈硬化症、 血管れん縮、 末梢血管の損傷、 瘤形成、 腫瘍の浸潤といつ た小口径血管の疾患の治療にあっては、 他の部位の自己血管の再移植、 あるいは、 疾患が全身性の症状であり自己血管の移植が適切でない場合は四肢の切断といつ た処置が取られていた。 本発明にかかる人工血管を小口径人工血管として用いる 場合は、 上記の血管疾患の治療にあっても、 従来取られていた処置を施すことな く、 その治療を可能にし、 手術の緊急性、 患者の負担等を考えると好ましい。 また、 大口径人工血管として用いる場合は、 内径が 5 mm〜 7 O mmであるこ とが好ましく、 5 mm〜 5 0 mmであることが更に好ましい。  Conventionally, in the treatment of arteriosclerosis, vasospasm, peripheral blood vessel damage, aneurysm formation, tumor invasion and other small-diameter vascular diseases, re-transplantation of autologous blood vessels at other sites or disease If the condition was systemic and autologous blood vessel transplantation was not appropriate, the limb was amputated and treated. When the artificial blood vessel according to the present invention is used as a small-diameter artificial blood vessel, even in the treatment of the above-mentioned vascular disease, it is possible to perform the treatment without performing the conventional treatment, thereby improving the urgency of surgery, It is preferable in consideration of the burden on the patient. When used as a large-diameter artificial blood vessel, the inner diameter is preferably from 5 mm to 70 mm, more preferably from 5 mm to 50 mm.
また、 本発明で用いられる多孔質人工血管基材の材料としては、 生分解性材料、 非生分解性材料等を挙げることができる。 生体内での異物反応、 免疫反応、 発ガ ン性など考慮して、 移植後に生体由来でない成分は溶けてなくなる人工血管を提 供するという観点からは生分解性材料であることが好ましい。 また、 移植後に溶 けてなくならないため、 機械的強度を保持でき、 現段階、 現技術開発レベルで安 定した商品を供給するという観点からは非生分解性材料であることが好ましレ、。 02 10986 Examples of the material of the porous artificial blood vessel base material used in the present invention include a biodegradable material and a non-biodegradable material. A biodegradable material is preferable from the viewpoint of providing an artificial blood vessel in which components that are not derived from the living body are not dissolved after transplantation in consideration of foreign body reaction, immune reaction, and carcinogenicity in the living body. In addition, non-biodegradable materials are preferred from the viewpoint of maintaining mechanical strength because they do not dissolve after transplantation, and providing stable products at the current stage and at the current technological development level. . 02 10986
6 生分解性材料としては、 特に制限はないが、 ポリダリコール酸、 ポリ乳酸、 乳 酸とグリコール酸との共重合体、 ポリリンゴ酸、 ポリ一 £一力プロラタトン、 ε 一力プロラタトンと乳酸との共重合体、 e—力プロラタトンとグリコ一/レ酸との 共重合体、 ε—力プロラタトンと乳酸とグリコール酸との共重合体、 ポリ一 3— ヒドロキシブチレート、 ポリ一 4ーヒドロキシブチレート、 3—ヒドロキシプチ レートと 4ーヒドロキシプチレートとの共重合体等を挙げることができ、 厚生労 働省、 F D A (米国彙品医薬品局) の認可という観点からは、 ポリ乳酸、 ポリグ リコール酸、 乳酸とグリコール酸との共重合体であることが好ましい。  6 The biodegradable material is not particularly limited, but includes polydalicholic acid, polylactic acid, a copolymer of lactate and glycolic acid, polymalic acid, poly-coprolataton, and ε coprolataton and lactic acid. Polymers, copolymers of e-proprotatanone and glyco- / reic acid, copolymers of ε-proprotatanone, lactic acid and glycolic acid, poly-3-hydroxybutyrate, poly-1-hydroxybutyrate, Copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate can be mentioned. From the viewpoint of the approval of the Ministry of Health, Labor and Welfare and the FDA (United States Drug Administration), polylactic acid, polyglycolic acid, and lactic acid And a copolymer of glycolic acid and glycolic acid.
非生分解性材料としては、 特に制限はないが、 ポリエチレン系樹脂、 ポリプロ ピレン系樹脂、 ポリブタジエン系樹脂、 ポリスチレン系樹脂、 ポリ塩化ビニル系 樹脂、 ポリアクリル系樹脂、 ポリメタクリル系樹脂、 ポリスルホン系樹脂、 ポリ テトラフルォロエチレン系樹脂等を挙げることができ、 厚生労働省、 F D Aの認 可という観点からは、 ポリエチレン系樹脂、 ポリテトラフルォロエチレン系樹月旨 であることが好ましい。  The non-biodegradable material is not particularly limited, but is a polyethylene resin, a polypropylene resin, a polybutadiene resin, a polystyrene resin, a polyvinyl chloride resin, a polyacryl resin, a polymethacryl resin, a polysulfone resin. And polytetrafluoroethylene-based resin. From the viewpoint of approval by the Ministry of Health, Labor and Welfare and the FDA, polyethylene resin and polytetrafluoroethylene-based resin are preferable.
本発明で使用される筒状の多孔質人工血管基材の製造方法としては、 例えば、 上述した材料の溶液に、 塩化ナトリウム、 炭酸水素アンモニゥム等の発泡剤を混 合して筒状に成型し、 その後発泡させて多孔質状にするという方法を挙げること ができる。 このような方法としては、 例えば、 Nam et al. J. Biomed. Master Res. 2000, 53, pi - 7に記載された方法を挙げることができる。  As a method for producing a tubular porous artificial blood vessel base material used in the present invention, for example, a foaming agent such as sodium chloride, ammonium hydrogencarbonate, or the like is mixed with a solution of the above-described material and molded into a tubular shape. After that, a method of foaming to make it porous can be mentioned. Such a method includes, for example, the method described in Nam et al. J. Biomed. Master Res. 2000, 53, pi-7.
次に、 上記多孔質人工血管基材の孔内に含まれる、 生体作用物質含有ゲル溶液 について説明する。  Next, the bioactive substance-containing gel solution contained in the pores of the porous artificial blood vessel substrate will be described.
本発明で使用される生体作用物質含有ゲル溶液は、 生体作用物質を含むゲル溶 液であり、 生体作用物質を均一に混合させたものであることが好ましい。  The gel solution containing a biologically active substance used in the present invention is a gel solution containing a biologically active substance, and it is preferable that the biologically active substance is uniformly mixed.
ゲル溶液に含まれる生体作用物質としては、 細胞、 薬学的活性成分等を挙げる ことができ、 これらの 1種類以上であってもよい。 このような生体作用物質は、 人工血管の用途に応じて適宜定めることができる。  Examples of the biologically active substance contained in the gel solution include cells, pharmaceutically active ingredients, and the like, and one or more of these may be used. Such a biologically active substance can be appropriately determined according to the use of the artificial blood vessel.
本明細書において、 薬学的活性成分とは、 生体内において一種以上の薬理活性 を示す成分をいい、 例えば、 生体内で合成される生理活性物質、 それらの生理活 性物質をコードする遺伝子、 生体外で合成もしくは得られる医薬化合物等を挙げ ることができる。 As used herein, a pharmaceutically active ingredient refers to a component that exhibits one or more pharmacological activities in a living body, such as a physiologically active substance synthesized in a living body, and a physiologically active substance thereof. A gene encoding a sex substance, a pharmaceutical compound synthesized or obtained in vitro, and the like.
生体作用物質として使用される細胞としては、 例えば、 幹細胞や E S系細胞等 の未分ィヒ細胞、 平滑筋細胞、 繊維芽細胞、 肝細胞、 勝臓細胞、 造血幹細胞等を挙 げることができる。  Cells used as biologically active substances include, for example, undivided cells such as stem cells and ES cells, smooth muscle cells, fibroblasts, hepatocytes, victory cells, and hematopoietic stem cells. it can.
生体作用物質として使用される生理活性物質としては、 生体内で合成されるタ ンパク質を挙げることができ、 例えば、 インシュリン、 抗プリオン抗体、 抗エイ ズウィルス抗体等を挙げることができる。 このような生理活性物質を生体作用物 質として含む人工血管としては、 糖尿病、 感染症等の疾患の治療を兼ねた人工血 管といった用途がある。  Examples of the physiologically active substance used as a biologically active substance include proteins synthesized in vivo, such as insulin, anti-prion antibody, and anti-AIDS virus antibody. As an artificial blood vessel containing such a physiologically active substance as a biologically active substance, there is an application such as an artificial blood vessel that also treats diseases such as diabetes and infectious disease.
生体作用物質として使用される遺伝子としては、 上述した生理活性物質をコー ドする遺伝子を挙げることができ、 例えば、 アデノシンデァミナーゼをコードす る遺伝子、 第 8血液凝固因子をコードする遺伝子、 第 9血液凝固因子をコードす る遺伝子等を挙げることができる。 遺伝子を生体作用物質として含む人工血管と しては、 アデノシンデァミナーゼ欠損症、 血友病等の疾患の治療を兼ねた人工血 管といった用途がある。  Examples of the gene used as a biologically active substance include a gene encoding the above-mentioned physiologically active substance, such as a gene encoding adenosine deaminase, a gene encoding an eighth blood coagulation factor, 9 Genes encoding blood coagulation factors, and the like. As an artificial blood vessel containing a gene as a bioactive substance, there is an application as an artificial blood vessel that also serves to treat diseases such as adenosine deaminase deficiency and hemophilia.
また、 生体作用物質として生体外で合成もしくは得られる医薬化合物を使用す ることもできる。 このような医薬化合物としては、 有機化合物、 自然界に存在す る微生物などによって産生させる抗生物質等を挙げることができ、 具体的には、 ペニシリン、 シクロホスフアミド、 ァクチノマイシン D、 5—フ /レオロウシシ /レ、 プレオマイシン等を挙げることができる。 このような医薬化合物を生体作用物質 として含む人工血管としては、 感染症、 抗ガン治療などを兼ねた人工血管といつ た用途がある。  In addition, a pharmaceutical compound synthesized or obtained in vitro can be used as a biologically active substance. Examples of such pharmaceutical compounds include organic compounds, antibiotics produced by microorganisms existing in nature, and the like. Specific examples include penicillin, cyclophosphamide, actinomycin D, and 5-f / leuroushi / And pleomycin. An artificial blood vessel containing such a pharmaceutical compound as a biologically active substance has a use as an artificial blood vessel which also serves as an infectious disease, an anticancer treatment and the like.
多孔質人工血管基材が生分解性材料から構成されてレ、る場合は、 人工血管移植 後の機械的強度を担保するという観点から、 ゲル溶液には、 少なくとも、 平滑筋 細胞、 锥芽細胞、 未分化細胞が含まれていることが好ましい。  When the porous artificial blood vessel base material is made of a biodegradable material, the gel solution contains at least smooth muscle cells and blast cells from the viewpoint of securing the mechanical strength after the artificial blood vessel transplantation. Preferably, undifferentiated cells are included.
ゲル溶液に混合させる生体作用物質の密度は、 生体作用物質が細胞の場合には、 1 X 1 04 e e l l Zm l〜l X l 09 c e l 1 Zm 1であることが好ましく、 1 X 1 06 c e 1 1 /m 1〜1 X 1 07 c e 1 1 Zm 1であることが更に好ましい。 また、 ゲル溶液としては、 温度、 H, 塩濃度、 酵素反応などの変化によって ゲルィヒする溶液をゲルィヒさせたものであり、 毒性や発ガン性のないものであれば 特に制限はなく使用することができる。 温度変化に対応してゲルィ匕するものとし ては、 例えば、 コラーゲン、 アクリルアミド系の樹脂、 ァガロースを挙げること ができる。 また、 p H変化に対応してゲル化するものとしては、 コラーゲン等を 挙げることができる。 また、 塩濃度の変化に対応してゲル化するものとしては、 アルギン酸等を挙げることができる。 また、 酵素反応に対応してゲル化するもの としては、 フイブリン等を挙げることができ、 ゲル化させる酵素としては、 例え ば、 フイブリノーゲン等を挙げることができる。 When the bioactive substance is cells, the density of the bioactive substance to be mixed with the gel solution is preferably 1 × 10 4 eell Zml to l × 10 9 cel 1 Zm1, and 1 × 10 0 and still more preferably 6 a ce 1 1 / m 1~1 X 1 0 7 ce 1 1 Zm 1. The gel solution is a solution obtained by gelling a solution that gels due to changes in temperature, H, salt concentration, enzymatic reaction, etc., and is not particularly limited as long as it has no toxicity or carcinogenicity. it can. Examples of the gelling agent corresponding to the temperature change include collagen, acrylamide resin, and agarose. In addition, collagen that can be gelled in response to a pH change can be exemplified. Alginic acid or the like can be used as a gel that responds to changes in salt concentration. In addition, fibrin and the like can be mentioned as those that gel in response to the enzymatic reaction, and fibrinogen and the like can be mentioned as the enzyme to be gelled.
本発明の人工血管は、 多孔質人工血管基材の孔内に生体作用物質含有ゲル溶液 が取り込まれている。 生体作用物質含有ゲル溶液は、 血液の漏れを防ぎ、 更に血 管内皮細胞の足場を確保する観点から、 多孔質人工血管基材の全孔の 5 0 %以上 を占めることが好ましく、 9 0 %以上を占めることが更に好ましい。  In the artificial blood vessel of the present invention, a gel solution containing a biologically active substance is taken into the pores of the porous artificial blood vessel base material. The bioactive substance-containing gel solution preferably occupies 50% or more of all pores of the porous artificial vascular base material, and 90%, from the viewpoint of preventing blood leakage and securing a scaffold for vascular endothelial cells. It is more preferable to account for the above.
本発明にかかる人工血管は、 抗血栓性を良好にする観点から、 多孔質人工血管 基材の内腔面上に内皮細胞層が形成されていてもよい。  In the artificial blood vessel according to the present invention, an endothelial cell layer may be formed on the lumen surface of the porous artificial blood vessel base material from the viewpoint of improving antithrombotic properties.
また、 本発明にかかる人工血管において、 機械的強度を更に良好にするため、 多孔質人工血管基材を生分解性材料又は非生分解性材料からなる捕強部材によつ て捕強されていてもよい。 補強部材は、 多孔質人工血管基材の外周面上及びズ又 は内周面上に形成されていてもよく、 また、 多孔質人工血管基材内部に組み込ま れていてもよい。 多孔質人工血管基材の外周面上に形成された補強部材としては、 多孔質人工血管基材の外径と略同一の内径を有し、 断面が基材と同心円となるよ うに基材に被覆された筒状の部材を挙げることができる。 また、 多孔質人工血管 基材の内周面上に形成された捕強部材としては、 多孔質人工血管基材の内径と略 同一の外径を有し、 断面が基材と同心円となるように基材に被覆された筒状の部 材を挙げることができる。 いずれも、 繊維状の生分解性材料又は非生分解性材料 を網目状に織ることで形成したもの等を挙げることができる。 また、 このような 網目状の補強部材を、 多孔質人工血管基材を成型する際に予め組み込むことによ つて、 捕強部材を多孔質人工血管基材内に組み込むこともできる。 なお、 生分解 性材料及び非生分解性材料としては、 多孔質人工血管基材の材料として上述した ものを挙げることができる。 In the artificial blood vessel according to the present invention, in order to further improve the mechanical strength, the porous artificial blood vessel base material is strengthened by a strengthening member made of a biodegradable material or a non-biodegradable material. You may. The reinforcing member may be formed on the outer peripheral surface and / or the inner peripheral surface of the porous artificial blood vessel base material, or may be incorporated inside the porous artificial blood vessel base material. The reinforcing member formed on the outer peripheral surface of the porous artificial blood vessel base material has a substantially same inner diameter as the outer diameter of the porous artificial blood vessel base material, and has a cross section concentric with the base material. A coated tubular member can be mentioned. In addition, the capturing member formed on the inner peripheral surface of the porous artificial blood vessel base material has an outer diameter substantially equal to the inner diameter of the porous artificial blood vessel base material, and has a cross section concentric with the base material. And a cylindrical member covered with a base material. In any case, a material formed by weaving a fibrous biodegradable material or a non-biodegradable material into a mesh shape can be used. In addition, by incorporating such a mesh-shaped reinforcing member in advance at the time of molding the porous artificial blood vessel base material, the capturing member can also be incorporated into the porous artificial blood vessel base material. The biodegradation Examples of the porous material and the non-biodegradable material include those described above as the material for the porous artificial blood vessel base material.
次に、 本発明にかかる人工血管の製造方法について説明する。  Next, a method for producing an artificial blood vessel according to the present invention will be described.
まず、 温度変化、 p H変化、 塩濃度変化及び酵素反応変化のいずれかに対応し てゲル化する溶液に生体作用物質を混合し、 生体作用物質含有溶液を調製する。 混合させる生体作用物質としては、 人工血管の用途に応じて適宜定めることがで き、 上記で説明した物質を挙げることができる。 また、 ゲル化する溶液中に混合 させる生体作用物質の密度は、 生体作用物質が細胞の場合には、 1 X 1 0 4 c e 1 l Zm l〜1 X 1 09 c e 1 1 Zm 1であることが好ましく、 1 X 1 06 c e 1 l /m l〜l X l 07 c e 1 1 Zm 1であることが更に好ましい。 First, a biologically active substance is mixed with a solution that gels in response to any of a temperature change, a pH change, a salt concentration change, and an enzyme reaction change to prepare a biologically active substance-containing solution. The biologically active substance to be mixed can be appropriately determined according to the use of the artificial blood vessel, and includes the substances described above. The density of the biological agent to be mixed in the solution to gel, if the biological agent is a cell is a 1 X 1 0 4 ce 1 l Zm l~1 X 1 0 9 ce 1 1 Zm 1 It is more preferably 1 × 10 6 ce 1 l / ml to 1 × 10 7 ce 11 Zm 1.
続いて、 予め用意した多孔質人工血管基材を、 上述のように調製した生体作用 物質含有溶液に含浸し、 常圧条件下、 好ましくは陰圧条件下で基材の孔内に生体 作用物質含有溶液を取り込ませる。  Subsequently, the porous artificial vascular base material prepared in advance is impregnated with the solution containing the biologically active substance prepared as described above, and the biologically active substance is introduced into the pores of the substrate under normal pressure conditions, preferably under negative pressure conditions. Allow the containing solution to be incorporated.
多孔質人工血管基材の材料及び製造方法については、 上述した通りである。 ま た、 多孔質人工血管基材は、 捕強部材によって捕強されていてもよい。 補強部材 および補強方法については、 上述した通りである。  The material and manufacturing method of the porous artificial blood vessel base material are as described above. Further, the porous artificial blood vessel base material may be captured by a capturing member. The reinforcing member and the reinforcing method are as described above.
多孔質人工血管基材の生体作用物質含有溶液への含浸方法としては、 常圧条件 下、 好ましくは陰圧条件下で生体作用物質含有溶液に多孔質人工血管基材を浸漬 して静置するといつた方法を挙げることができる。 基材内に生体作用物質を取り 込ませるためには、 生体作用物質が多孔質人工血管基材の孔内に十分取り込まれ るまで含浸させる。 例えば、 生体作用物質含有溶液に多孔質人工血管基材を含浸 させて、 1 0分〜 6 0分静置させることが好ましく、 3 0分〜 6 0分静置させる ことが更に好ましい。  The method for impregnating the porous artificial vascular base material into the biologically active substance-containing solution is as follows. There are several methods. In order to incorporate the biologically active substance into the substrate, the biologically active substance is impregnated until the biologically active substance is sufficiently incorporated into the pores of the porous artificial blood vessel substrate. For example, it is preferable that the bioactive substance-containing solution is impregnated with the porous artificial blood vessel substrate, and is left standing for 10 to 60 minutes, more preferably 30 to 60 minutes.
添加時の圧力は、 常圧でもよいが、 効率的に生体作用物質を基材の孔内に取り 込ませる観点から、 大気圧よりも低い圧力が好ましい。 この圧力は、 使用する材 料、機材の耐圧性、 使用する生体作用物質の活性保持可能性などを考慮して、 適 宜決定される。  The pressure at the time of addition may be normal pressure, but from the viewpoint of efficiently incorporating the bioactive substance into the pores of the substrate, a pressure lower than the atmospheric pressure is preferable. This pressure is appropriately determined in consideration of the materials to be used, the pressure resistance of the equipment, the possibility of retaining the activity of the biologically active substance to be used, and the like.
続いて、 多孔質人工血管基材の孔内に取り込まれた生体作用物質含有溶液をゲ ルイ匕させる。 ゲルィ匕条件は、 使用する溶液に合わせて適宜設定する。 ゲル化させ る際には、 平滑な内腔面を形成する観点から、 ゲル化条件下で更に、 10分〜1 20分静置させることが好ましく、 30分〜 60分静置させることが更に好まし い。 Subsequently, the biologically active substance-containing solution taken into the pores of the porous artificial blood vessel substrate is gelled. The gelling conditions are set appropriately according to the solution to be used. Gelled In this case, from the viewpoint of forming a smooth lumen surface, it is preferable to further allow the mixture to stand for 10 minutes to 120 minutes under gelation conditions, and more preferably to allow the mixture to stand still for 30 minutes to 60 minutes. .
本発明にかかる人工血管の製造方法において、 多孔質人工血管基材の内腔面上 に、 内皮細胞層を形成させることができる。 内皮細胞層は、 ゲノレ化した生体作用 物質含有溶液を孔内に保持した多孔質人工血管基材の内腔内に、 内皮細胞を含有 する培養液を流し込み、 回転培養させることによって容易に形成することができ る。  In the method for producing an artificial blood vessel according to the present invention, an endothelial cell layer can be formed on the luminal surface of the porous artificial blood vessel base material. The endothelial cell layer is easily formed by pouring a culture solution containing endothelial cells into the lumen of a porous artificial blood vessel substrate holding a solution containing a bioactive substance that has undergone genoleration in the pores and rotating the culture. be able to.
内皮細胞培養の際の回転数は、 0. 5 r pm〜100 r p mであることが好ま しく、 5 r pm〜10 r p mであることが更に好ましい。 また、 培養時間は、 1 0分〜 24時間であることが好ましく、 20分〜 60分であることが更に好まし い。  The number of rotations during the culture of endothelial cells is preferably from 0.5 rpm to 100 rpm, more preferably from 5 rpm to 10 rpm. The culture time is preferably from 10 minutes to 24 hours, and more preferably from 20 minutes to 60 minutes.
本発明によれば、 筒状の多孔質人工血管基材の孔内に、 生体作用物質を高密度 で含み、 血液漏れが起きず、 内腔面がほぼ平滑であり、 また、 多孔質人工血管基 材を有するため、 力学的な性質にも優れた人工血管を提供することができる。 また、 本発明によれば、 生体作用物質を短時間で効率よく高密度に人工血管へ 組み込みことができる。 実施例  ADVANTAGE OF THE INVENTION According to this invention, the bioactive substance is contained at high density in the hole of a cylindrical porous artificial blood vessel base material, blood leakage does not occur, the lumen surface is almost smooth, and the porous artificial blood vessel Since it has a base material, an artificial blood vessel having excellent mechanical properties can be provided. Further, according to the present invention, a biologically active substance can be efficiently and rapidly incorporated into an artificial blood vessel in a short time. Example
以下に実施例をもって本発明を具体的に説明する。  Hereinafter, the present invention will be described specifically with reference to Examples.
参考例 (多孔質人工血管基材の調製)  Reference Example (Preparation of porous artificial blood vessel base material)
重量平均分子量約 300, 000のポリ乳酸 320mgをクロ口ホルム 4 m 1 で完全に溶かして液状にした後に、 炭酸水素アンモニゥムの結晶 5 gを混合させ た。 内径が 5mm、 外径が 7 mmの鐯型に上述のポリマーを流し込み、 形を整え た後、 铸型からポリマーをとり出し、 クロ口ホルムを完全に蒸発させるために、 50°Cで 24時間加熱した。 次に、 3次元的なスポンジ構造を作製するために、 筒状のポリマーを 80°Cで 10分加熱し、 炭酸アンモニゥムを溶出した。 超純水 で筒状ポリマーを十分に洗浄した後に、 凍結乾燥して、 内径約 5mm、 外径約 7 mm, 長さ約 2 Ommのポリ乳酸から構成される多孔質人工血管基材 (以下、 「PLLA基材」 という) を作製した。 After 320 mg of polylactic acid having a weight-average molecular weight of about 300,000 was completely dissolved in 4 ml of black form and made liquid, 5 g of ammonium hydrogencarbonate crystals were mixed. After pouring the above-mentioned polymer into a mold with an inner diameter of 5 mm and an outer diameter of 7 mm and shaping it, remove the polymer from the mold and remove the polymer from the mold at 24 hours at 50 ° C to completely evaporate the form. Heated. Next, in order to produce a three-dimensional sponge structure, the cylindrical polymer was heated at 80 ° C for 10 minutes to elute ammonium carbonate. After thoroughly washing the cylindrical polymer with ultrapure water, freeze-dry it to obtain an inner diameter of about 5 mm and an outer diameter of about 7 A porous artificial blood vessel substrate (hereinafter, referred to as “PLLA substrate”) composed of polylactic acid with a length of about 2 mm and a length of about 2 Omm was prepared.
実施例 1  Example 1
0.39%のコラーゲン溶液に、 5X 106cells/ml の濃度でヒト正常大動脈 血管平滑筋細胞を混合させた溶液を作製した。 次に、 参考例で作製した PLLA 基材を、 ガラス製のチューブに入れ、 上述のヒト正常大動脈血管平滑筋細胞含有 コラーゲン溶液 1. 4mlに浸漬し、 これを油圧式ポンプ (ULVAC社製、 G -5) によって減圧して、 陰圧条件下で 30分間静置した。 続いて、 外径が 5m mのチューブを P L LA基材の中心に揷入した後に、 37°Cのインキュベータに 移動させ、 60分間静置することによって、 PLLA基材内のコラーゲン溶液を ゲルィ匕させ、 人工血管を作製した。 A solution was prepared by mixing human normal aortic vascular smooth muscle cells at a concentration of 5 × 10 6 cells / ml with a 0.39% collagen solution. Next, the PLLA substrate prepared in the reference example was placed in a glass tube and immersed in 1.4 ml of the above-mentioned collagen solution containing human normal aortic vascular smooth muscle cells, and this was pumped with a hydraulic pump (ULVAC, G The pressure was reduced according to -5), and the mixture was allowed to stand under negative pressure for 30 minutes. Subsequently, after inserting a tube with an outer diameter of 5 mm into the center of the PLLA substrate, the tube is moved to an incubator at 37 ° C and left standing for 60 minutes to gel the collagen solution in the PLLA substrate. Then, an artificial blood vessel was prepared.
比較例 1  Comparative Example 1
培養溶液 (ダルベッコ最小必須培地 (DMEM) ) に、 ヒ ト正常大動脈血管平 滑筋細胞を混合させ、 5X 106cells/ml の濃度の細胞含有溶液を作製した。 次 に、 参考例で作製した PLLA基材をガラス製のチューブに入れ、 上述のヒ ト正 常大動脈血管平滑筋細胞含有培養溶液 1. 4mlに浸漬し、 これを油圧式ポンプ ' (ULVAC社製、 G-5) によって減圧して、 陰圧条件下で 30分間静置した。 続いて、 外径が 5 mmのチューブを PLLA基材の中心に挿入した後に、 37°C のインキュベータに移動させ、 60分間静置し、 人工血管を作製した。 Human normal aortic vascular smooth muscle cells were mixed with a culture solution (Dulbecco's minimum essential medium (DMEM)) to prepare a cell-containing solution having a concentration of 5 × 10 6 cells / ml. Next, the PLLA substrate prepared in Reference Example was placed in a glass tube, immersed in 1.4 ml of the above-described culture medium containing human normal aortic vascular smooth muscle cells, and this was immersed in a hydraulic pump ( , G-5) and allowed to stand under negative pressure for 30 minutes. Subsequently, after inserting a tube having an outer diameter of 5 mm into the center of the PLLA substrate, the tube was moved to an incubator at 37 ° C and left standing for 60 minutes to produce an artificial blood vessel.
(1) 取り込まれた細胞数の比較  (1) Comparison of the number of cells taken up
実施例 1および比較例 1で作製した人工血管に取り込まれたヒト正常大動脈血 管平滑筋細胞の数を比較した。 比較は、 PLLA基材を浸漬する前のヒ ト正常大 動脈血管平滑筋細胞溶液中の細胞数に対する、 P L L A基材を浸漬後取り出した 後の溶液中の細胞数の割合 (%) を計算することにより行った。 細胞の数は、 4, , 6—ジアミジノー 2—フエニルインドール二塩酸 (DAP I) によって発 色させた核の数を、 蛍光分光光度計を用いて算出することにより行った。 なお、 浸漬時間は 30分であるため、 この時間内に平滑筋細胞が増殖することはない。 下記の表 1に取り込まれた細胞の割合を示す。 実施例 1 比較例 1 取り込まれた細胞の割合 (%) 1 0 0 % 1 8 % The numbers of human normal aortic vascular smooth muscle cells taken into the artificial blood vessels prepared in Example 1 and Comparative Example 1 were compared. For comparison, calculate the ratio (%) of the number of cells in the solution after immersing the PLLA substrate to the number of cells in the human normal aortic vascular smooth muscle cell solution before immersing the PLLA substrate. It was done by doing. The number of cells was determined by calculating the number of nuclei developed with 4,, 6-diamidino 2-phenylindole dihydrochloride (DAP I) using a fluorescence spectrophotometer. Since the immersion time is 30 minutes, smooth muscle cells do not proliferate during this time. Table 1 below shows the percentage of cells taken up. Example 1 Comparative Example 1 Percentage of cells taken up (%) 100% 18%
表 1から、 比較例 1で作製した人工血管に比べ、 実施例 1で作製した人工血管は、 極めて効率的に細胞を取り込んでいることがわかる。 From Table 1, it can be seen that the artificial blood vessel prepared in Example 1 takes up cells extremely efficiently as compared to the artificial blood vessel prepared in Comparative Example 1.
( 2 ) 人工血管の内腔面の状態の比較  (2) Comparison of the condition of the lumen surface of the artificial blood vessel
実施例 1および比較例 1で作製した人工血管の内腔面の状態を調べた。 細胞を 安定化するため、 それぞれの人工血管を更に 1日培養したものを観察に用いた。 実施例 1で作製した人工血管の内腔面の走査型電子顕微鏡 ( S EM) 写真 (スケ ール 1 0 0 m) を図 1に、 比較例 1で作製した人工血管の内腔面の S EM写真 を図 2に、 参考のために参考例で作製した P L L A基材の内腔面の状態の S EM 写真を図 3に示した。 図 1及ぴ図 2から、 比較例 1の人工血管の内腔面は孔が未 だに多いのに比べ、 実施例 1の人工血管の内腔面は孔がなく、 平滑になっている ことがわかる。  The state of the luminal surface of the artificial blood vessel prepared in Example 1 and Comparative Example 1 was examined. In order to stabilize the cells, each artificial blood vessel was further cultured for one day and used for observation. A scanning electron microscope (SEM) photograph (scale 100 m) of the luminal surface of the artificial blood vessel prepared in Example 1 is shown in FIG. Fig. 2 shows an EM photograph, and Fig. 3 shows an SEM photograph of the state of the lumen surface of the PLLA substrate prepared in Reference Example for reference. From FIGS. 1 and 2, the luminal surface of the artificial blood vessel of Comparative Example 1 is smooth without any holes, while the luminal surface of the artificial blood vessel of Comparative Example 1 is still large. I understand.
( 3 ) 人工血管の内腔面側の細胞密度の比較  (3) Comparison of cell density on the luminal side of artificial blood vessel
実施例 1および比較例 1で作製した人工血管の内腔面側の細胞密度を調べた。 細胞を安定化するため、 それぞれの人工血管を更に 1日培養した後、 それぞれの 人工血管の断面切片 (厚さ 8 μ πι) を作製し、 ヒト正常大動脈血管平滑筋細胞の 核をへキスト (へキストネ土製) 1 0 0 η g /m 1で染色した。 図 4に実施例 1で 作製した人工血管の断面の蛍光写真、 図 5に比較例 1で作製した人工血管の断面 の蛍光写真を示した。 なお、 図中点線は、 内腔面を示すものである。 図 4及ぴ図 5力 ら、 比較例 1で作製した人工血管に比ぺ、 実施例 1'で作製した人工血管のほ うが高密度で細胞が取り込まれていることがわかる。'  The cell density on the luminal surface side of the artificial blood vessel prepared in Example 1 and Comparative Example 1 was examined. In order to stabilize the cells, each artificial blood vessel was further cultured for one day, and then a cross-sectional section (8 μππι thick) of each artificial blood vessel was prepared. The nucleus of human normal aortic vascular smooth muscle cells was Hoechst ( Hextone earth) (100 ηg / m1). FIG. 4 shows a fluorescence photograph of a cross section of the artificial blood vessel produced in Example 1, and FIG. 5 shows a fluorescence photograph of a cross section of the artificial blood vessel produced in Comparative Example 1. The dotted line in the figure indicates the lumen surface. 4 and 5 that the artificial blood vessel prepared in Example 1 'incorporates cells at a higher density than the artificial blood vessel prepared in Comparative Example 1. '
実施例 2  Example 2
5 . 0 X 1 06 cells/ml の濃度で正常ヒト臍帯静脈血管内皮細胞を含有した培 養溶液を 1 m 1調製し、 実施例 1で作製した人工血管の内腔内に流し込んだ。 回 転培養装置 (タイテック社、 R T— 5 0 ) を用いて、 5 111〜1 0 ^) 111の回 転速度で回転させながら 6 0分間培養することによって、 内皮細胞層を形成させ た。 A culture solution containing normal human umbilical vein vascular endothelial cells at a concentration of 5.0 × 10 6 cells / ml was prepared in a volume of 1 ml, and poured into the lumen of the artificial blood vessel prepared in Example 1. Using a rotary culture device (Titech, RT-50), 5111 to 10 ^) An endothelial cell layer was formed by culturing for 60 minutes while rotating at a rotating speed.
(4 ) 人工血管内腔面上の内皮細胞層  (4) endothelial cell layer on lumen surface of artificial blood vessel
実施例 2で作製した人工血管内腔面上に形成させた内皮細胞の様子を調べた。 細胞を安定化するため、 人工血管を更に 1日培養した後、 人工血管の断面切片 (厚さ 8 W m) を作製し、 内皮細胞をァセチル化低密度リポプロテイン (L D L) で染色した。 図 6に上記の人工血管の断面の透過型顕微鏡写真を、 図 7に同 じ断面の蛍光写真を示した。 なお、 図 7中の矢印は、 内皮細胞層を示すものであ る。 図 6及び図 7から、 実施例 2で作製した人工血管の内腔面上には、 連続的に 内皮細胞層が形成されていることがわかる。 The state of the endothelial cells formed on the luminal surface of the artificial blood vessel prepared in Example 2 was examined. To stabilize the cell, after further 1 day culture artificial blood vessel, to produce the artificial blood vessel cross sections (thickness 8 W m), and stained endothelial cells in Asechiru of low density lipoprotein (LDL). Fig. 6 shows a transmission micrograph of the cross section of the artificial blood vessel, and Fig. 7 shows a fluorescence photograph of the same cross section. The arrow in FIG. 7 indicates the endothelial cell layer. 6 and 7 that the endothelial cell layer is continuously formed on the luminal surface of the artificial blood vessel prepared in Example 2.
以上に述べたように、 本発明によれば、 人工血管に必要不可欠な、 血液と直接 接する最內腔面の短期間における平滑化が可能であり、 短時間で効率のよい生体 作用物質の人工血管への組み込みが可能である。  As described above, according to the present invention, it is possible to smooth the minimum cavity surface in direct contact with blood, which is indispensable for an artificial blood vessel, in a short period of time, and to efficiently and efficiently produce a bioactive substance in a short time. Incorporation into blood vessels is possible.
また、 本発明によれば、 血液漏れが起きず、 抗血栓性に優れ、 内腔面がほぼ平 滑であり、 力学的な性質にも優れた人工血管を提供することができる。  Further, according to the present invention, it is possible to provide an artificial blood vessel which does not cause blood leakage, has excellent antithrombotic properties, has a substantially smooth lumen surface, and has excellent mechanical properties.

Claims

請 求 の 範 囲 The scope of the claims
1 . 筒状の多孔質人工血管基材を有する人工血管において、 1. In an artificial blood vessel having a cylindrical porous artificial blood vessel base material,
前記多孔質人工血管基材の孔内に生体作用物質含有ゲル溶液を含浸させてなる 人工血管。  An artificial blood vessel obtained by impregnating the pores of the porous artificial blood vessel substrate with a gel solution containing a biologically active substance.
2 . 前記多孔質人工血管基材が、 生分解性材料又は非生分解性材料から構成さ れることを特徴とする請求項 1に記載の人工血管。  2. The artificial blood vessel according to claim 1, wherein the porous artificial blood vessel base material is made of a biodegradable material or a non-biodegradable material.
3 , 前記生分解性材料が、 ポリ乳酸、 ポリグリコール酸、 乳酸とグリコール酸 との共重合体、 ポリリンゴ酸、 ポリ一 ε—力プロラクトン、 ε—力プロラタトン と乳酸との共重合体、 ε—力プロラタトンとグリコール酸との共重合体、 ε—力 プロラクトンと乳酸とグリコール酸との共重合体、 ポリ一 3—ヒドロキシブチレ ート、 ポリ一 4ーヒ ドロキシプチレート、 及ぴ 3—ヒ ドロキシプチレートと 4— ヒドロキシブチレ一トとの共重合体からなる群から選ばれる 1種以上の材料であ ることを特徴とする請求項 2に記載の人工血管。  3. The biodegradable material is polylactic acid, polyglycolic acid, a copolymer of lactic acid and glycolic acid, polymalic acid, poly- ε-force prolactone, a copolymer of ε-force prolatataton and lactic acid, ε -Copolymer of prolactatone and glycolic acid, ε-Copolymer of prolactone and lactic acid and glycolic acid, poly-3-hydroxybutyrate, poly-4-hydroxybutyrate, and 3. The artificial blood vessel according to claim 2, wherein the artificial blood vessel is at least one material selected from the group consisting of a copolymer of 3-hydroxybutyrate and 4-hydroxybutyrate.
4 . 前記非生分解性材料が、 ポリエチレン系樹脂、 ポリプロピレン系樹脂、 ポ リブタジエン系樹脂、 ポリスチレン系樹脂、 ポリ塩化ビュル系樹脂、 ポリアタリ ル系樹脂、 ポリメタクリル系樹脂、 ポリスルホン系樹脂、 及ぴポリテトラフルォ 口エチレン系樹脂からなる群から選ばれる 1種以上の材料であることを特徴とす る請求項 2に記載の人工血管。 4. The non-biodegradable material is a polyethylene-based resin, a polypropylene-based resin, a polybutadiene-based resin, a polystyrene-based resin, a polychlorinated vinyl-based resin, a polyataryl-based resin, a polymethacryl-based resin, a polysulfone-based resin, and 3. The artificial blood vessel according to claim 2, wherein the artificial blood vessel is at least one material selected from the group consisting of polytetrafluoroethylene resins.
5 . 前記生体作用物質が、 細胞及び/又は薬学的活性成分であることを特徴と する請求項 1〜 4のいずれかに記載の人工血管。 5. The artificial blood vessel according to any one of claims 1 to 4, wherein the biologically active substance is a cell and / or a pharmaceutically active ingredient.
6 . 前記細胞が、 平滑筋細胞、 繊維芽細胞、 未分化細胞、 肝細胞、 膝臓細胞、 及び造血幹細胞からなる群から選ばれる 1種以上の細胞であることを特徴とする 請求項 5に記載の人工血管。  6. The cell according to claim 5, wherein the cell is at least one cell selected from the group consisting of a smooth muscle cell, a fibroblast, an undifferentiated cell, a hepatocyte, a knee cell, and a hematopoietic stem cell. An artificial blood vessel as described.
7 . 前記生体作用物質含有ゲル溶液が、 コラーゲンゲル溶液、 フイブリンゲル 溶液、 アクリルアミドゲル溶液、 ァガロースゲル溶液、 及びアルギン酸ゲル溶液 からなる群から選ばれる 1種以上のゲル溶液であって、 生体作用物質を含有する ものであることを特徴とする請求項 1〜 6のいずれかに記載の人工血管。 7. The bioactive substance-containing gel solution is one or more gel solutions selected from the group consisting of a collagen gel solution, a fibrin gel solution, an acrylamide gel solution, an agarose gel solution, and an alginate gel solution, The artificial blood vessel according to any one of claims 1 to 6, wherein the artificial blood vessel is contained.
8 . 前記多孔質人工血管基材の内腔面上に、 内皮細胞層が形成されていること を特徴とする請求項 1〜 7のいずれかに記載の人工血管。 8. The artificial blood vessel according to any one of claims 1 to 7, wherein an endothelial cell layer is formed on a luminal surface of the porous artificial blood vessel base material.
9 . 前記多孔質人工血管基材が、 生分解性材料又は非生分解性材料からなる補 強部材によつて捕強されていることを特徴とする請求項 1〜 8のレ、ずれかに記載 の人工血管。  9. The porous artificial blood vessel base material is strengthened by a reinforcing member made of a biodegradable material or a non-biodegradable material. The artificial blood vessel according to the above.
1 0 . 筒状の多孔質人工血管基材を有する人工血管の製造方法において、 温度変化、 p H変化、 塩濃度変化、 及ぴ酵素反応変化のいずれかに対応してゲ ル化する溶液に生体作用物質を含浸させて生体作用物質含有溶液を調製する工程 と、  10. In the method for producing an artificial blood vessel having a cylindrical porous artificial blood vessel substrate, a solution that gels in response to any of temperature change, pH change, salt concentration change, and enzyme reaction change is used. Preparing a biologically active substance-containing solution by impregnating the biologically active substance;
常圧又は陰圧条件下で前記多孔質人工血管基材の孔内に前記生体作用物質含有 溶液を取り込ませる工程と、  Incorporating the biologically active substance-containing solution into the pores of the porous artificial blood vessel substrate under normal pressure or negative pressure conditions,
前記多孔質人工血管基材の孔内に取り込まれた前記生体作用物質含有溶液をゲ ル化する工程と  Gelling the biologically active substance-containing solution taken into the pores of the porous artificial blood vessel substrate;
を含む人工血管の製造方法。 A method for producing an artificial blood vessel, comprising:
1 1 . 前記多孔質人工血管基材を、 生分解性材料又は非生分解性材料から形成 することを特徴とする請求項 1 0に記載の人工血管の製造方法。  11. The method for producing an artificial blood vessel according to claim 10, wherein the porous artificial blood vessel base material is formed from a biodegradable material or a non-biodegradable material.
1 2 . 前記生分解性材料が、 ポリ乳酸、 ポリグリコール酸、 乳酸とグリコール 酸との共重合体、 ポリリンゴ酸、 ポリ一 ε—力プロラクトン、 ε—力プロラクト ンと乳酸との共重合体、 ε—力プロラクトンとグリコール酸との共重合体、 ε - 力プロラクトンと乳酸とグリ コーノレ酸との共重合体、 ポリ一 3—ヒ ドロキシプチ レート、 ポリ一 4—ヒ ドロキシブチレート、 及ぴ 3—ヒ ドロキシブチレートと 4 一ヒドロキシプチレートとの共重合体からなる群から選ばれる 1種以上の材料で あることを特徴とする請求項 1 1に記載の人工血管の製造方法。  12. The biodegradable material is polylactic acid, polyglycolic acid, a copolymer of lactic acid and glycolic acid, polymalic acid, poly-ε-force prolactone, or a copolymer of ε-force prolactone and lactic acid. A copolymer of ε-force prolactone and glycolic acid, a copolymer of ε-force prolactone, lactic acid and glycolenoic acid, poly-3-hydroxybutyrate, poly-4-hydroxybutyrate, The method according to claim 11, wherein the method is at least one material selected from the group consisting of a copolymer of 3-hydroxybutyrate and 4-hydroxybutyrate. .
1 3 . 前記非生分解性材料が、 ポリエチレン系樹脂、 ポリプロピレン系樹脂、 ポリブタジエン系樹脂、 ポリスチレン系樹脂、 ポリ塩化ビュル系樹脂、 ポリアク リル系樹脂、 ポリメタクリル系樹脂、 ポリスルホン系樹脂、 及びポリテトラブル ォロエチレン系樹脂からなる群から選ばれる 1種以上の材料であることを特徴と する請求項 1 1に記載の人工血管の製造方法。 13. The non-biodegradable material is a polyethylene resin, a polypropylene resin, a polybutadiene resin, a polystyrene resin, a polychlorinated vinyl resin, a polyacrylic resin, a polymethacrylic resin, a polysulfone resin, and a polyethylene resin. 12. The method for producing an artificial blood vessel according to claim 11, wherein the method is at least one material selected from the group consisting of trifluoroethylene-based resins.
1 4 . 前記生体作用物質が、 細胞及び/又は薬学的活性成分であることを特徴 とする請求項 1 0〜1 3のいずれかに記載の人工血管の製造方法。 14. The method for producing an artificial blood vessel according to any one of claims 10 to 13, wherein the biologically active substance is a cell and / or a pharmaceutically active ingredient.
1 5 . 前記細胞が、 平滑筋細胞、 繊維芽細胞、 未分化細胞、 肝細胞、 膝臓細胞、 及ぴ造血幹細胞からなる群から選ばれる 1種以上の細胞であることを特徴とする 請求項 1 4に記載の人工血管の製造方法。  15. The cell, wherein the cell is at least one cell selected from the group consisting of a smooth muscle cell, a fibroblast, an undifferentiated cell, a hepatocyte, a knee cell, and a hematopoietic stem cell. 14. The method for producing an artificial blood vessel according to item 14.
1 6 . ゲルィ匕する前記溶液が、 コラーゲン溶液、 フイブリン溶液、 アクリルァ ミド溶液、 ァガロース溶液、 及びアルギン酸溶液からなる群から選ばれる 1種以 上の溶液であることを特徴とする請求項 1 0〜1 5のいずれかに記載の人工血管 の製造方法。  16. The solution according to claim 10, wherein the solution to be gelled is at least one solution selected from the group consisting of a collagen solution, a fibrin solution, an acrylamide solution, an agarose solution, and an alginic acid solution. 15. The method for producing an artificial blood vessel according to any one of 15.
1 7 . 請求項 1 0〜 1 6のいずれかに記載の人工血管の製造方法において、 前記多孔質人工血管基材の孔内に取り込まれた前記生体作用物質含有溶液をゲ ル化した前記多孔質人工血管基材の内腔面上に、 内皮細胞層を形成する工程を 更に含むことを特徴とする人工血管の製造方法。  17. The method for producing an artificial blood vessel according to any one of claims 10 to 16, wherein the bioactive substance-containing solution gelled in the pores of the porous artificial blood vessel base material is gelated. A method for producing an artificial blood vessel, further comprising a step of forming an endothelial cell layer on a lumen surface of a porous artificial blood vessel base material.
1 8 . 請求項 1 0〜: 1 7のいずれかに記載の人工血管の製造方法において、 前記多孔質人工血管基材が、 生分解性材料又は非生分解性材料からなる捕強部 材によつて補強されていることを特徴とする人工血管の製造方法。  18. The method for producing an artificial blood vessel according to any one of claims 10 to 17, wherein the porous artificial blood vessel base material is a reinforcing member made of a biodegradable material or a non-biodegradable material. A method for producing an artificial blood vessel, wherein the artificial blood vessel is reinforced.
PCT/JP2002/010986 2001-10-24 2002-10-23 Artificial vessel and process for producing the same WO2003034945A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-326426 2001-10-24
JP2001326426A JP2003126125A (en) 2001-10-24 2001-10-24 Artificial blood vessel and method of preparing it

Publications (1)

Publication Number Publication Date
WO2003034945A1 true WO2003034945A1 (en) 2003-05-01

Family

ID=19142812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010986 WO2003034945A1 (en) 2001-10-24 2002-10-23 Artificial vessel and process for producing the same

Country Status (2)

Country Link
JP (1) JP2003126125A (en)
WO (1) WO2003034945A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501676A (en) * 2003-05-07 2007-02-01 アリーヴァ メディカル インコーポレイテッド Treatment of low back pain by restoring nutrient and waste exchange
CN116808279A (en) * 2023-08-25 2023-09-29 北京国械堂科技发展有限责任公司 Hydrophilic composite collagen sponge and preparation method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4598671B2 (en) 2003-03-31 2010-12-15 帝人株式会社 Manufacturing method of supporting substrate and composite
JP2005034239A (en) * 2003-07-16 2005-02-10 Gunze Ltd Base material for artificial blood vessel
JP5109029B2 (en) * 2004-02-09 2012-12-26 クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニー Bio-remodelable graft
US20060149363A1 (en) * 2005-01-06 2006-07-06 Scimed Life Systems, Inc. Optimally expanded, collagen sealed ePTFE graft with improved tissue ingrowth
JP2007307300A (en) * 2006-05-22 2007-11-29 Hokkaido Univ Material for vascular prosthesis
KR101234276B1 (en) 2011-07-27 2013-02-18 서울대학교산학협력단 Device for in vitro blood vessel formation and method for blood vessel formation using thereof
US11439731B2 (en) 2016-09-14 2022-09-13 Revotek Co., Ltd. Artificial tissue progenitor and method for preparing the same
CN109943519A (en) * 2016-09-14 2019-06-28 四川蓝光英诺生物科技股份有限公司 Artificial organ precursor and the method for preparing it

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272204A (en) * 1965-09-22 1966-09-13 Ethicon Inc Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US4167045A (en) * 1977-08-26 1979-09-11 Interface Biomedical Laboratories Corp. Cardiac and vascular prostheses
US4321711A (en) * 1978-10-18 1982-03-30 Sumitomo Electric Industries, Ltd. Vascular prosthesis
US4546500A (en) * 1981-05-08 1985-10-15 Massachusetts Institute Of Technology Fabrication of living blood vessels and glandular tissues
US4804381A (en) * 1986-06-02 1989-02-14 Sulzer Brothers Limited Artificial vessel
US4911713A (en) * 1986-03-26 1990-03-27 Sauvage Lester R Method of making vascular prosthesis by perfusion
US4960423A (en) * 1982-11-17 1990-10-02 Smith Donald W Method of enhancing the attachment of endothelial cells on a matrix and vascular prosthesis with enhanced anti-thrombogenic characteristics
US5037378A (en) * 1988-10-07 1991-08-06 Sulzer Brothers Limited Process for coating a flexible tubular prosthesis with living cells
US5037377A (en) * 1984-11-28 1991-08-06 Medtronic, Inc. Means for improving biocompatibility of implants, particularly of vascular grafts
US5120833A (en) * 1991-03-15 1992-06-09 Alexander Kaplan Method of producing grafts
US5131907A (en) * 1986-04-04 1992-07-21 Thomas Jefferson University Method of treating a synthetic naturally occurring surface with a collagen laminate to support microvascular endothelial cell growth, and the surface itself
US5171261A (en) * 1989-04-17 1992-12-15 Koken Co., Ltd. Vascular prosthesis, manufacturing method of the same, and substrate for vascular prothesis
US5298255A (en) * 1988-10-28 1994-03-29 Terumo Kabushiki Kaisha Antithrombic medical material, artificial internal organ, and method for production of antithrombic medical material
WO1994022505A1 (en) * 1993-03-29 1994-10-13 National Heart Research Fund Tissue equivalents
US5376118A (en) * 1989-05-10 1994-12-27 United States Surgical Corporation Support material for cell impregnation
US5415619A (en) * 1989-12-13 1995-05-16 Korea Research Institute Of Chemical Tech. Method of manufacturing a vascular graft impregnated with polysaccharide derivatives
US5470731A (en) * 1992-05-29 1995-11-28 The Regents Of The University Of California Coated transplant and method for making same
WO1996040175A1 (en) * 1995-06-07 1996-12-19 Advanced Tissue Sciences, Inc. Stromal cell-based three-dimensional culture system for forming tubes, tendons, ligaments and corrective structures
WO1997000275A2 (en) * 1995-06-16 1997-01-03 Gel Sciences, Inc. Responsive polymer networks and methods of their use
US5628786A (en) * 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
US5716660A (en) * 1994-08-12 1998-02-10 Meadox Medicals, Inc. Tubular polytetrafluoroethylene implantable prostheses
US5718723A (en) * 1994-03-15 1998-02-17 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Artificial blood vessel and process for producing the same
WO1998010804A1 (en) * 1996-09-13 1998-03-19 Meadox Medicals, Inc. Improved bioresorbable sealants for porous vascular grafts
WO1998040111A1 (en) * 1997-03-07 1998-09-17 University College London Tissue implant
WO1998043686A1 (en) * 1997-04-03 1998-10-08 California Institute Of Technology Enzyme-mediated modification of fibrin for tissue engineering
WO1999047188A1 (en) * 1998-03-17 1999-09-23 Tissue Engineering, Inc. Biopolymer matt for use in tissue repair and reconstruction
US5986168A (en) * 1995-04-25 1999-11-16 Nicem, Ltd. Prosthesis containing bioabsorbable materials insolubilized without chemical reagents and method of making the same
US6057137A (en) * 1994-10-06 2000-05-02 Regents Of The University Of Minnesota Tissue-equivalent rods containing aligned collagen fibrils and schwann cells
WO2001010421A1 (en) * 1999-08-06 2001-02-15 Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
WO2001032382A1 (en) * 1999-11-03 2001-05-10 Scimed Life Systems, Inc. Process for impregnating a porous material with a cross-linkable composition
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272204A (en) * 1965-09-22 1966-09-13 Ethicon Inc Absorbable collagen prosthetic implant with non-absorbable reinforcing strands
US4167045A (en) * 1977-08-26 1979-09-11 Interface Biomedical Laboratories Corp. Cardiac and vascular prostheses
US4321711A (en) * 1978-10-18 1982-03-30 Sumitomo Electric Industries, Ltd. Vascular prosthesis
US4546500A (en) * 1981-05-08 1985-10-15 Massachusetts Institute Of Technology Fabrication of living blood vessels and glandular tissues
US4960423A (en) * 1982-11-17 1990-10-02 Smith Donald W Method of enhancing the attachment of endothelial cells on a matrix and vascular prosthesis with enhanced anti-thrombogenic characteristics
US5037377A (en) * 1984-11-28 1991-08-06 Medtronic, Inc. Means for improving biocompatibility of implants, particularly of vascular grafts
US4911713A (en) * 1986-03-26 1990-03-27 Sauvage Lester R Method of making vascular prosthesis by perfusion
US5131907A (en) * 1986-04-04 1992-07-21 Thomas Jefferson University Method of treating a synthetic naturally occurring surface with a collagen laminate to support microvascular endothelial cell growth, and the surface itself
US4804381A (en) * 1986-06-02 1989-02-14 Sulzer Brothers Limited Artificial vessel
US5037378A (en) * 1988-10-07 1991-08-06 Sulzer Brothers Limited Process for coating a flexible tubular prosthesis with living cells
US5298255A (en) * 1988-10-28 1994-03-29 Terumo Kabushiki Kaisha Antithrombic medical material, artificial internal organ, and method for production of antithrombic medical material
US5171261A (en) * 1989-04-17 1992-12-15 Koken Co., Ltd. Vascular prosthesis, manufacturing method of the same, and substrate for vascular prothesis
US5376118A (en) * 1989-05-10 1994-12-27 United States Surgical Corporation Support material for cell impregnation
US5415619A (en) * 1989-12-13 1995-05-16 Korea Research Institute Of Chemical Tech. Method of manufacturing a vascular graft impregnated with polysaccharide derivatives
US5120833A (en) * 1991-03-15 1992-06-09 Alexander Kaplan Method of producing grafts
US5470731A (en) * 1992-05-29 1995-11-28 The Regents Of The University Of California Coated transplant and method for making same
WO1994022505A1 (en) * 1993-03-29 1994-10-13 National Heart Research Fund Tissue equivalents
US5718723A (en) * 1994-03-15 1998-02-17 Seikagaku Kogyo Kabushiki Kaisha (Seikagaku Corporation) Artificial blood vessel and process for producing the same
US5716660A (en) * 1994-08-12 1998-02-10 Meadox Medicals, Inc. Tubular polytetrafluoroethylene implantable prostheses
US6057137A (en) * 1994-10-06 2000-05-02 Regents Of The University Of Minnesota Tissue-equivalent rods containing aligned collagen fibrils and schwann cells
US5986168A (en) * 1995-04-25 1999-11-16 Nicem, Ltd. Prosthesis containing bioabsorbable materials insolubilized without chemical reagents and method of making the same
US5628786A (en) * 1995-05-12 1997-05-13 Impra, Inc. Radially expandable vascular graft with resistance to longitudinal compression and method of making same
WO1996040175A1 (en) * 1995-06-07 1996-12-19 Advanced Tissue Sciences, Inc. Stromal cell-based three-dimensional culture system for forming tubes, tendons, ligaments and corrective structures
WO1997000275A2 (en) * 1995-06-16 1997-01-03 Gel Sciences, Inc. Responsive polymer networks and methods of their use
WO1998010804A1 (en) * 1996-09-13 1998-03-19 Meadox Medicals, Inc. Improved bioresorbable sealants for porous vascular grafts
WO1998040111A1 (en) * 1997-03-07 1998-09-17 University College London Tissue implant
WO1998043686A1 (en) * 1997-04-03 1998-10-08 California Institute Of Technology Enzyme-mediated modification of fibrin for tissue engineering
WO1999047188A1 (en) * 1998-03-17 1999-09-23 Tissue Engineering, Inc. Biopolymer matt for use in tissue repair and reconstruction
US6306424B1 (en) * 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
WO2001010421A1 (en) * 1999-08-06 2001-02-15 Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
WO2001032382A1 (en) * 1999-11-03 2001-05-10 Scimed Life Systems, Inc. Process for impregnating a porous material with a cross-linkable composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007501676A (en) * 2003-05-07 2007-02-01 アリーヴァ メディカル インコーポレイテッド Treatment of low back pain by restoring nutrient and waste exchange
CN116808279A (en) * 2023-08-25 2023-09-29 北京国械堂科技发展有限责任公司 Hydrophilic composite collagen sponge and preparation method thereof
CN116808279B (en) * 2023-08-25 2023-11-21 北京国械堂科技发展有限责任公司 Hydrophilic composite collagen sponge and preparation method thereof

Also Published As

Publication number Publication date
JP2003126125A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
Khandan et al. Hydrogels: Types, structure, properties, and applications
Wu et al. Tissue-engineered vascular grafts: balance of the four major requirements
Angelova et al. Rationalizing the design of polymeric biomaterials
Oh et al. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility
Khor et al. Implantable applications of chitin and chitosan
Thein-Han et al. Chitosan as scaffold matrix for tissue engineering
Tian et al. Biomaterials to prevascularize engineered tissues
Choi et al. Biodegradable porous beads and their potential applications in regenerative medicine
CN105641753B (en) A kind of 3D printing biodegradable stent of the achievable blood vessel transfer of compound rhBMP-2
Kundu et al. Biomaterials for biofabrication of 3D tissue scaffolds
EP2793962B1 (en) Process for modifying the surface morphology of a medical device
Lutzweiler et al. Modulation of cellular colonization of porous polyurethane scaffolds via the control of pore interconnection size and nanoscale surface modifications
JPH04501080A (en) Method for transplanting large volumes of cells onto polymeric matrices
CN1694955A (en) Programmable scaffold and methods for making and using the same
JP5507566B2 (en) Biodegradable blend for temporary skeleton of blood vessel wall (auxiliary material)
Burg et al. Minimally invasive tissue engineering composites and cell printing
JP6118905B2 (en) New scaffold for cardiac repair patches
US20040062809A1 (en) Biocompatible polymer with a three-dimensional structure with communicating cells, a process for its preparation, and application in medicine and in surgery
US20050165475A1 (en) Hybrid grafts including biodegradable polymer supporting layer and manufacturing process thereof
CN105536055A (en) Shape memory type high-elasticity activity nano-fiber stent and application thereof
Yang et al. The application of natural polymer–based hydrogels in tissue engineering
KR100737167B1 (en) Method for preparing of a porous osteochondral composite scaffold
JP4002299B2 (en) Improved hydrogel for tissue treatment
WO2003034945A1 (en) Artificial vessel and process for producing the same
US8431623B2 (en) Process for forming a porous PVA scaffold using a pore-forming agent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase