WO2003033973A1 - Dispositif de circulation de fluide chauffant et equipement de traitement thermique faisant appel audit dispositif - Google Patents

Dispositif de circulation de fluide chauffant et equipement de traitement thermique faisant appel audit dispositif Download PDF

Info

Publication number
WO2003033973A1
WO2003033973A1 PCT/JP2002/010383 JP0210383W WO03033973A1 WO 2003033973 A1 WO2003033973 A1 WO 2003033973A1 JP 0210383 W JP0210383 W JP 0210383W WO 03033973 A1 WO03033973 A1 WO 03033973A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
heat exchanger
temperature
medium circulating
Prior art date
Application number
PCT/JP2002/010383
Other languages
English (en)
French (fr)
Inventor
Koichi Yamazaki
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Priority to US10/491,748 priority Critical patent/US7216496B2/en
Priority to KR1020047000442A priority patent/KR100602481B1/ko
Publication of WO2003033973A1 publication Critical patent/WO2003033973A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect

Definitions

  • the present invention relates to a single-wafer heat treatment apparatus for performing various heat treatments such as a film formation treatment on a heat medium circulating apparatus and a semiconductor wafer.
  • a semiconductor wafer is repeatedly subjected to various heat treatments such as a film forming process, a pattern etching process, an oxidative diffusion process, and a reforming process to produce a desired device.
  • various heat treatments such as a film forming process, a pattern etching process, an oxidative diffusion process, and a reforming process to produce a desired device.
  • so-called single-wafer heat treatment apparatuses tend to be frequently used, in which in-plane uniformity of treatment can be more easily obtained as compared with batch heat treatment apparatuses.
  • This single-wafer heat treatment apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 5-51294, Japanese Patent Application Laid-Open No. 9-219369, and the like.
  • This type of heat treatment apparatus includes, for example, a mounting table on which a semiconductor wafer is mounted in a processing container that can be evacuated, and has a heating lamp, a resistance heating heater, and the like as heating means for the wafer.
  • a predetermined required gas is supplied into the processing container from a shield head provided at a ceiling portion or the like of the processing container, and the inside of the container is maintained at a predetermined process pressure. Heating is maintained at a predetermined process temperature to perform a film forming process or the like.
  • the shower head or the wall surface of the processing container becomes excessively hot, for example, an unnecessary film or a reaction by-product may adhere to the wall surface during the film forming process.
  • the parts and the walls of the processing vessels are cooled.
  • a heating lamp is used as the heating means, the temperature of the partition wall of the lamp chamber accommodating the heating lamp also rises excessively. Therefore, a cooling mechanism is provided to cool the partition wall.
  • a chiller device for generating and circulating a fluid having a constant temperature is generally used.
  • This chiller is a very large heat exchange system.
  • a stem is provided to cool the heating medium to a certain temperature and circulate it around the structure to be cooled.
  • a heat medium circulating apparatus is a heat medium circulating apparatus that controls a temperature by flowing a heat medium through a heat medium circulating system.
  • a main heat exchanger that is interposed in the heat medium circulation system and performs main heat exchange with the heat medium; a circulation pump that is interposed in the heat medium circulation system; and the main heat exchanger.
  • a sub heat exchanger using a thermoelectric cooling element that is provided in the heat medium circulation system on the downstream side of the heat medium and controls the temperature of the heat medium.
  • the main heat exchange is performed by cooling the heat medium in the main heat exchanger, and then the heat exchange for subtle temperature adjustment is performed by thermoelectric Since it is performed in a sub-heat exchanger using a cooling element, not only can the temperature of the delivered heat medium be properly controlled, but the device itself can be downsized, and the installation space is large. It is possible to reduce the number.
  • a storage tank for temporarily storing the heat medium is provided. As described above, since the heat medium whose temperature is controlled is temporarily stored in the storage tank, stable temperature control of the temperature-controlled body can be performed.
  • a temperature detection sensor provided in the heat medium circulation system downstream of the sub heat exchanger; and a temperature controller configured to control an output of the thermoelectric cooling element based on an output of the temperature detection sensor. And characterized in that:
  • the sub heat exchanger is provided on a lid of the storage tank, and has a heat medium inlet at one end.
  • a heat exchange channel having a heat medium outlet at the other end, the thermoelectric cooling element having one surface joined to the lid, and a heat waste unit joined to the other surface of the thermoelectric cooling element. And characterized by the following.
  • a plurality of heat exchange fins are provided in the heat exchange flow path, the heat exchange fins being in contact with the heat medium flowing therethrough. According to this, it is possible to further improve the heat exchange efficiency in the sub heat exchanger by the action of the heat exchange fins.
  • a plurality of heat pipes provided on a lid of the storage tank, the lower ends of which are immersed in a heat medium stored in the storage tank; And the heat dissipating unit joined to the other surface of the thermoelectric cooling element.
  • a heat medium for waste heat for discharging heat to be discarded flows first in the main heat exchanger and then in the order of the sub heat exchanger. It is characterized by being performed.
  • a bypass is formed to bypass the heat medium with respect to the main heat exchanger.
  • the heat medium flows through the bypass and bypasses the main heat exchanger.
  • the element operates to heat the heat medium.
  • the heat medium can be bypassed through the main heat exchanger and directly introduced into the sub heat exchanger, where it is heated and heated, and can be heated and heated by flowing to the temperature controlled body Becomes
  • thermoelectric cooling element is a Peltier element.
  • the temperature controlled object is a processing container used in a heat treatment apparatus for performing a predetermined process on the processed object, a shower head for supplying a required gas, and a partition wall of a lamp chamber for housing a heating lamp. Characterized in that it is at least one of the following.
  • a heat treatment apparatus includes: a processing container capable of being evacuated; a mounting table for mounting an object to be processed; gas supply means for supplying a necessary gas into the processing container; A heating means for heating the object to be processed and any one of the heat medium circulating devices described above are provided.
  • FIG. 1 is a cross-sectional view showing one embodiment of a heat treatment apparatus using a heat medium circulation device according to the present invention.
  • FIG. 2 is a configuration diagram showing a heat medium circulating apparatus according to the present invention.
  • FIG. 3 is a cross-sectional view showing the lid of the storage tank.
  • FIG. 4 is a diagram showing the flow of the heat medium.
  • FIG. 5 is a cross-sectional view showing a sub heat exchanger according to a modification of the present invention.
  • FIG. 6 is a cross-sectional view taken along line AA in FIG.
  • FIG. 7 is a configuration diagram showing a second embodiment of the heat circulation device of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a cross-sectional view showing one embodiment of a heat treatment apparatus using a heat medium circulating device according to the present invention
  • FIG. 2 is a configuration diagram showing a heat medium circulating device according to the present invention
  • FIG. 3 is a lid of a storage tank.
  • FIG. 4 is a cross-sectional view showing a part
  • FIG. 4 is a view showing a flow of a heat medium.
  • the heat treatment apparatus 2 has a processing container 4 whose inside is formed into a cylindrical shape or a box shape by, for example, aluminum or the like.
  • the processing container 4 has a cylindrical shape standing upright from a bottom 6 of the processing container 4.
  • a mounting table support base 8 is provided. Note that the support base 8 may be supported by the container side wall.
  • the mounting table support base 8 is formed of a corrosion-resistant material such as aluminum.
  • a flat ring-shaped gas flow stabilizing flange portion 10 is provided on the upper portion of the cylindrical mounting base support base 8, and furthermore, it is slightly protruded inward from the flange portion 10 to form a ring-shaped support shelf. 1 and 2 are formed.
  • the peripheral edge of the disk-shaped mounting table 14 is placed on the supporting shelf 12 so as to abut.
  • the mounting table 14 has a thickness of, for example, about 3 to 4111111. It is formed.
  • the diameter of the mounting table 14 depends on the size of the semiconductor wafer W to be mounted and processed on the mounting table 14. For example, when processing an 8-inch size wafer, the mounting table 14 The diameter of 14 is made about 24 cm.
  • a cylindrical reflecting plate 16 made of, for example, aluminum is formed so as to extend downward, and this inner surface serves as a reflecting surface. Has become.
  • the lower end of the reflection plate 16 is slightly separated from the bottom 6 of the processing container 4 and is in a floating state.
  • a circular ring-shaped shield ring 18 is provided from the inner peripheral portion of the gas flow stabilizing flange portion 10 of the mounting table support base 8 to the upper side of the peripheral portion of the mounting table 14.
  • a plurality of, for example, three L-shaped lifter pins 20 are provided standing upright.
  • the ring-shaped connecting member 22 connecting the bases of the pins 20 up and down by the push-up rods 24 provided through the bottom 6 of the processing container 4 the above-mentioned lift pins 20 are placed on the mounting table.
  • the wafer W can be lifted by being provided so as to penetrate 14 or inserted into the cover pin hole 26.
  • This lifter bin 20 is formed of a heat ray transmitting material such as quartz.
  • a long hole (not shown) is formed in a part of the reflection plate 16 so as to penetrate the lift pin 20 and allow this vertical movement.
  • the lower end of the push-up rod 24 is connected to the actuator 30 via a bellows 28 which can be extended and contracted in order to keep the inside of the processing container 4 airtight.
  • a transparent window 32 made of a heat-transmissive material such as quartz is provided airtightly at the container bottom 6 directly below the mounting table 14, and a box is provided below this so as to surround the transparent window 32.
  • a partition wall 34 is formed in this manner, and a lamp chamber 36 is formed inside the partition wall 34.
  • a plurality of heating lamps 38 as heating means are mounted on a turntable 40 also serving as a reflecting mirror.
  • the turntable 40 is connected to the lamp chamber 3 via a rotary shaft 42. It is rotated by a rotating motor 4 4 provided at the bottom of 6. Therefore, the heat rays emitted from the heating lamp 38 pass through the transmission window 32 and irradiate the lower surface of the mounting table 14 to heat it.
  • a ring-shaped rectifying plate 48 made of aluminum, for example, having a large number of rectifying holes 46, is formed between the side wall 4A of the processing vessel 4 and the rectifying plate 48. It is provided so as to be supported so as to be connected with each other.
  • An exhaust port 50 is provided at the bottom 6 below the current plate 48, and the exhaust port 50 is connected to a vacuum pump (not shown).
  • a continuous exhaust path 52 is connected so that the inside of the processing container 4 can be evacuated to a predetermined degree of vacuum.
  • a gate valve 54 that is opened and closed when a wafer is loaded and unloaded is provided on the side wall 4A of the processing container 4.
  • a shower head 58 as a gas supply means for introducing a processing gas or the like into the processing container 4 is provided on a ceiling 56 of the processing container 4 facing the mounting table 14. ing.
  • the shower head 58 has a head body 60 shaped into a circular box from, for example, aluminum or the like, and a required processing gas whose flow rate is controlled is introduced into the ceiling.
  • a gas inlet 62 is provided.
  • a number of gas injection holes 64 for discharging the gas supplied into the head body 60 are arranged on substantially the entire surface of the gas injection surface, which is the lower surface of the head body 60 described above. Gas is released over the surface of the wafer.
  • a diffusion plate 68 having a large number of gas dispersion holes 66 is provided in the head main body 60 so as to supply gas more evenly to the wafer surface.
  • the partition wall 34 for partitioning the processing vessel 4, the shower head 58 and the lamp chamber 36 has a temperature control so as to prevent the temperature from rising excessively. , That is, a temperature controlled object. Therefore, the side wall 4 A of the processing vessel 4, the side wall of the head body 60 of the shower head section 48, and the partition wall 34 that partitions the lamp chamber 36 have heat for flowing the heat medium.
  • Medium jacket
  • the heat medium whose temperature is controlled by the heat medium circulation device 72 is supplied to each of the heat medium jackets 70 A, 70 B, and 70 C.
  • the heat medium for example, water (including cooling water or warm water for heating) is used.
  • the heat medium circulating device 72 has a heat medium circulating system 78 in which a storage tank 76 for temporarily storing the heat medium 74 is interposed.
  • a storage tank 76 for temporarily storing the heat medium 74 is interposed.
  • branch paths 80A, 8OBs80C which are branched into three and flow in parallel, and each branch path 80A, 8OBs80C is formed.
  • Each of the heat medium jackets 70 A, 70 B, and 70 C is provided in C.
  • the on-off valves 81 A, 81 B and 81 (and the flow meters 838, 83 B, 8 3 Cs are provided separately.
  • a circulation pump 84 for circulating the heat medium 74 is provided in the heat medium circulation system 78 on the downstream side connected to the medium outlet 82 of the storage tank 76, and further, on both sides thereof.
  • On-off valves 86 A and 86 B are provided respectively.
  • a main heat exchanger 88 for performing main heat exchange with the heat medium flowing in the system is provided.
  • a bypass 90 is branched and formed in parallel with the main heat exchanger 88 so that the heat medium flows by bypassing the exchanger 88 when necessary.
  • An inner pipe 89 through which a heat medium flows is provided in the main heat exchanger 88, and a heat medium circulation system 78 connected to the inlet side 88A and the bypass 90 are provided with an inner pipe 89.
  • the switching valves 92A and 92B are interposed therebetween so that the heat medium can be selectively supplied to the main heat exchanger 88 and the bypass 90.
  • the lid 94 of the storage tank 76 is made of a material having good heat conductivity, such as aluminum or copper, and the lid 94 is provided with a sub heat exchanger 96.
  • a heat exchange flow passage 98 formed in, for example, a meandering shape is formed in the lid portion 94, and the heat exchange flow passage 98 at one end on the upstream side is formed.
  • the medium inlet 98 A is connected to the outlet side 88 B of the inner pipe 89 of the main heat exchanger 88 via the heat medium circulation system 78, and the other end on the downstream side is in the storage tank 76. It is formed as a heat medium outlet 98B open to the air, and the heat medium after the sub heat exchange is caused to flow down into the storage tank 76 to be temporarily stored.
  • a plate-like thermoelectric cooling element 100 made of, for example, a Peltier element is provided on the upper surface of the lid 94 with one surface thereof joined to the upper surface of the lid. Thereby, the temperature of the heat medium flowing in the heat exchange channel 98 of the lid portion 94 can be adjusted while cooling, for example.
  • two plate-like thermoelectric cooling elements 100 are shown in the illustrated example, depending on the size of the storage tank 76 or the like, for example, about 20 sheets are arranged in a plane. Will be done.
  • thermoelectric cooling element 100 At the other end (upper surface) of the thermoelectric cooling element 100, a heat disposal unit for carrying out and discarding, for example, heat generated at the other surface (upper surface) of the thermoelectric cooling element 100 is disposed. 102 is installed.
  • This heat disposal unit 102 A heat exchange passage 106 for flowing a heat disposal heat medium is formed in a block 104 made of a material having good heat conductivity, such as luminium and copper. Then, in the vessel of the main heat exchanger 88 and the heat exchange passage 106 of the heat waste unit 102 in this order, the heat waste passages 108 are arranged so that the heat disposal heat medium flows.
  • An on-off valve 1 19 and a flow meter 1 12 are also interposed in the flow path 108.
  • thermocouple 114 is provided as a temperature detection sensor so that the temperature of the heat medium flowing here can be detected. I'm sorry. Then, the output of the thermocouple 114 is input to a temperature control unit 116 composed of, for example, a microphone computer, and the temperature control unit 116 is based on the output of the thermocouple 114. Thus, by controlling the output of the thermoelectric cooling element 100, the temperature of the heat medium can be controlled.
  • a level switch 118 for detecting the level of the heat medium stored in the storage tank 76 is provided in the storage tank 76.
  • the heat medium supply system 120 Insufficient heat carrier can be supplied.
  • the gate valve 54 provided on the side wall 4A of the processing container 4 is opened, and the process is performed by a transfer arm (not shown).
  • the wafer W is loaded into the container 4, and the wafer W is transferred to the lift pin 20 by pushing up the lift pin 20.
  • the lifter bin 20 is lowered by lowering the push-up bar 24, and the wafer W is mounted on the mounting table 14.
  • various necessary gases such as a film forming gas are supplied from a processing gas source (not shown) to the shower head unit 58 by a predetermined amount, and are supplied to the gas injection holes 6 on the lower surface of the head body 60. 4 to supply into processing container 4 almost uniformly.
  • the inside of the processing vessel 4 is maintained at a predetermined vacuum level by sucking and exhausting the internal atmosphere from the exhaust port 50, and the heating lamp 38 in the lamp chamber 36 is driven while rotating. Emits thermal energy.
  • the radiated heat rays pass through the transmission window 32 and then irradiate the back surface of the mounting table 14 to heat it.
  • the mounting table 14 must be very thin, about several mm as described above. Thus, the wafer W mounted thereon can be quickly heated to a predetermined temperature.
  • the supplied gas causes a predetermined chemical reaction, for example, a tungsten film is deposited and formed on the wafer surface.
  • the partition wall 34 of the lamp chamber 36, the side wall 4 A of the processing vessel 4, the shower head portion 58, and the like are excessively heated by the heat rays from the heating lamp 38.
  • the heat medium jackets 70 A, 70 B, and 70 C provided in these are provided with cooling heat maintained at a substantially constant temperature. Since the medium is cooled by flowing, it is possible to prevent the temperature from becoming excessively high.
  • the heat medium stored in the storage tank 76 is maintained at, for example, about 20 to 25 ° C. and functions as a cooling medium.
  • the heat medium flowing out of each heat medium jacket 70 A to 70 C is in a high temperature state of, for example, about 40 to 50 ° C. by the above heat exchange, and the heat medium merges to form a main heat exchanger.
  • the heat medium flowing in the main heat exchanger 88 and the sub heat exchanger 96 is shown in FIG. 4 (A), and the outline arrows 122 show the flow of the heat medium. That is, hot water at a temperature of about 20 ° C. passes through the heat waste flow passage 108, through the main heat exchanger 88 and the heat exchange passage 106 inside the heat waste unit 102. Flowing in order.
  • the switching valve 92 B provided in the bypass 90 is closed, and the switching valve 92 A provided in the heat medium circulation system 78 is opened.
  • the cooling water which is the medium, flows sequentially through the inner pipe 89 in the main heat exchanger 88 and the heat exchange channel 98 of the lid 94.
  • thermoelectric cooling element 100 is operated so that cold heat is generated on the lower surface and warm heat is generated on the upper surface. Therefore, the heat medium circulated from the heat treatment device 2 side undergoes main heat exchange in the main heat exchanger 88 provided at the preceding stage, and its temperature is considerably increased. It is lowered and cooled to, for example, about 27 to 29 ° C. Then, in the sub heat exchanger 96, a slight temperature, for example, a number. About C, and further cooled to about 20-25 ° C.
  • a thermocouple 114 is provided in the heat medium circulating system 78 on the downstream side of the circulation pump 84 to constantly detect the temperature of the heat medium flowing there, and input this to the temperature control unit 116. ing.
  • the temperature control unit 116 controls the power supplied to the thermoelectric cooling element 100 so that the temperature detected by the thermocouple 114 maintains a preset value. As a result, the temperature of the heat medium transmitted through the heat medium circulation system 78 is substantially maintained at a predetermined value.
  • the water flowing in the heat disposal flow path 108 first flows into the main heat exchanger 88 so that the temperature difference between the heat mediums increases, and then the temperature difference between the heat mediums increases. Since it is made to flow into the heat disposal unit 102 of the sub heat exchanger 96 so as to be small, it is possible to appropriately control the temperature of the heat medium 74 in the storage tank 76 accordingly. .
  • the structure is relatively simple as a whole, so that not only can the equipment cost be reduced but also the installation space can be significantly reduced compared to the large chiller used in conventional equipment. It becomes possible.
  • Fig. 4 (B) The flow of the heat medium at this time is shown in Fig. 4 (B).
  • the water flowing through the heat waste flow passage 108 flows in the same way as shown in Fig. 4 (A), but the heat medium is not allowed to flow into the main heat exchanger 88.
  • the switching valve 92A of the inlet pipe 188A of the internal pipe 89 is closed, and the switching valve 92B of the bypass 90 is opened instead, and the heat medium flows along the bypass 90. Shed.
  • heating the heating medium For this purpose, the sub-heat exchanger 96 operates so that the direction of power supply to the thermoelectric cooling element 100 is opposite to that described above, thereby generating heat on the lower surface and generating cool heat on the upper surface.
  • the heat medium is heated to a predetermined temperature, for example, about 50 ° C., and is circulated.
  • the occupied space was reduced by about 25.5 to 35% compared to the conventional chiller. I was able to.
  • the power consumption of the conventional chiller is 20 KVA, while that of the device of the present invention (using 20 Peltier elements) is 2 KW (watt). could be greatly reduced.
  • the storage tank 76 for temporarily storing the heat medium has been described as an example, but the storage tank 76 is not provided, and the heat medium is not temporarily stored without temporarily storing the heat medium. It may be made to flow continuously in the medium circulation system 78.
  • FIG. 5 is a cross-sectional view showing a sub heat exchanger according to a modification of the present invention
  • FIG. 6 is a cross-sectional view taken along line AA in FIG.
  • a plurality of heat exchange fins 124 are provided in the heat exchange flow path 98 of the sub heat exchanger 96, and the heat medium is brought into direct contact with the heat exchange fins.
  • the heat exchange fins 124 are made of a material having good thermal conductivity, for example, aluminum, copper, or the like, and have a substantially elliptical cross-section. Provided. A large number of the heat exchange fins 124 are provided at predetermined intervals along the flow direction of the heat medium.
  • the heat exchange efficiency with the heat medium can be improved by the provision of the heat exchange fins 124.
  • the heat exchange fins are formed to be thinner and provided at a predetermined angle, for example, about 45 degrees with respect to the flow direction of the heat medium, so that the fluid resistance to the heat medium is suppressed and the heat exchange fins are formed at a high heat. The exchange efficiency may be maintained.
  • FIG. 7 is a configuration diagram showing a second embodiment of the heat circulation device of the present invention.
  • the lid 94 is not provided with the heat exchange channel 98 (see FIG. 2), and instead, the upper end is supported by the lid 94, and A plurality of heat pipes 126 whose lower ends are immersed in a heating medium 74 in a storage tank 76 are provided.
  • the heat of the heat medium 74 is pumped up by the heat pipes 126 and is discarded by the heat disposal unit 102.
  • the heat medium inlet 98 A for the storage tank 76 is not provided on the lid 94, but on the upper side wall of the storage tank 76, circulated and returned from the main heat exchanger 88.
  • the heat medium that has flowed out is introduced directly into the storage tank 76 from the heat medium inlet 98A.
  • the processing container 4, the shower head 58, and the partition wall 34 of the lamp chamber 36 are described as examples of the temperature controlled body. However, these are merely examples, and cooling is performed. It is needless to say that the present invention can be applied to all members that require.
  • the heat treatment is not limited to the film formation process, and the present invention can be applied to all heat treatments such as an etching process, an oxidation diffusion process, and a reforming process.
  • the object to be processed is not limited to a semiconductor wafer, and can be applied to a glass substrate, an LCD substrate, and the like.
  • the main heat exchange is performed by cooling the heat medium in the main heat exchanger, and then the heat for subtle temperature adjustment is obtained. Since the exchange is performed in a sub heat exchanger using a thermoelectric cooling element, not only can the temperature of the delivered heat medium be properly controlled, but the device itself can be downsized, and its installation Space can also be significantly reduced.
  • the heat exchange fins can further improve the heat exchange efficiency in the sub heat exchanger.
  • the heat medium bypasses the main heat exchanger and is directly introduced into the sub heat exchanger, where it is heated and heated, and then flows to the temperature controlled body in a heated state to heat it Two things can be done.

Description

明 細 書 熱媒体循環装置及びこれを用いた熱処理装置 技術分野
本発明は、 熱媒体循環装置及び半導体ウェハ等に対して成膜処理等の各種の熱 処理を行う枚葉式の熱処理装置に関する。 背景技術
一般に、 半導体デバイスを製造するには、 半導体ウェハに成膜処理、 パターン エッチング処理、 酸化拡散処理、 改質処理等の各種の熱処理を繰り返し行なって 所望のデバイスを製造するが、 ウェハサイズの大型化に伴って、 バッチ式の熱処 理装置と比較して処理の面内均一性がより得られ易い、 いわゆる枚葉式の熱処理 装置が多用される傾向にある。 この枚葉式の熱処理装置は、 例えば特開平 5— 5 1 2 9 4号公報ゃ特開平 9— 2 1 9 3 6 9号公報等に開示されている。
この種の熱処理装置は、 例えば真空引き可能になされた処理容器内に、 半導体 ウェハ載置する載置台を設け、 ウェハの加熱手段として加熱ランプや、 抵抗加熱 ヒー夕等を有している。 そして、 熱処理時には、 処理容器の天井部等に設けたシ ャヮ—へッド部から所定の必要なガスを処理容器内へ供給しつつ容器内部を所定 のプロセス圧力に維持し、 それと共にウェハを所定のプロセス温度に加熱維持し て、 成膜処理等を施すことになる。
この場合、 シャワーヘッド部や処理容器の壁面が過度に熱くなると、 例えば成 膜処理時にはこの壁面に不要な膜や反応副生成物が付着したりするので、 冷却機 構を用いて、 このシャワーヘッド部や処理容器の壁面等を、 過度に昇温しないよ うに冷却することが行われている。 また、 加熱手段として加熱ランプを用いてい る場合には、 この加熱ランプを収容するランプ室の区画壁も過度に昇温するので、 これを冷却するために冷却機構が設けられる。
ところで、 上記冷却機構としては、 一般的には一定の温度の流体を生成し循環 させるチラ一装置が用いられている。 このチラ一装置は、 非常に大型の熱交換シ ステムを備えて熱媒体を一定の温度まで冷却し、 これを冷却すべき構造物に対し て循環させるようになつている。
しかしながら、 このチラ一装置は、 熱媒体の温度コントロールが容易であると いう利点を有するが、 上述のように非常に大型であるために、 設備コストの高騰 を招来するのみならず、 設置スペース (フットプリント) も過大になってしまう といった問題があった。 発明の開示
本発明は、 以上のような問題点に着目し、 これを有効に解決すべく創案された ものである。 本発明の目的は、 装置自体が小型で、 且つ設置スペースもそれ程要 しない熱媒体循環装置及びこれを用いた熱処理装置を提供することにある。 本願の第 1の発明の熱媒体循環装置は、 熱媒体循環系に熱媒体を流し温度制御 を行う熱媒体循環装置において、 前記熱媒体循環系には温度制御の対象となる温 度被制御体が介設されており、 前記熱媒体循環系に介設され、 熱媒体と主たる熱 交換を行う主熱交換器と、 前記熱媒体循環系に介設された循環ポンプと、 前記主 熱交換器の下流側の前記熱媒体循環系に介設され、 前記熱媒体の温度制御を行う 熱電冷却素子を用いた副熱交換器と、 を備えることを特徴とする。
このように、 主熱交換器と副熱交換器とを用いて、 主たる熱交換は主熱交換器 にて熱媒体を冷却することにより行い、 その後、 微妙な温度調整用の熱交換は熱 電冷却素子を用いた副熱交換器にて行うようにしたので、 送出される熱媒体の温 度を適正にコントロールできるのみならず、 装置自体を小型化することができ、 しかもその設置スペースも大幅に削減することが可能となる。
また、 前記熱媒体を一時的に貯留する貯留槽を備えることを特徴とする。 この ように、 温度制御された熱媒体を貯留槽に一時的に貯留するようにしたので、 温 度被制御体の安定した温度制御を行うことができる。
また、 前記副熱交換器の下流側の前記熱媒体循環系に設けられた温度検出セン サ部と、 該温度検出センサ部の出力に基づいて前記熱電冷却素子の出力を制御す る温度制御部とを備えたことを特徴とする。
また、 前記副熱交換器は、 前記貯留槽の蓋部に設けられて、 一端に熱媒体入口 を有し、 他端に熱媒体出口を有す熱交換流路と、 前記蓋部にその一面が接合され た前記熱電冷却素子と、 前記熱電冷却素子の他面に接合された熱廃棄ュニッ 卜と よりなることを特徴とする。
また、 前記熱交換流路内には、 これに流れる前記熱媒体と接触する複数の熱交 換フィンが設けられることを特徴とする。 これによれば、 熱交換フィンの作用に より、 副熱交換器における熱交換効率をより向上させることが可能となる。 また、 前記副熱交換器は、 前記貯留槽の蓋部に設けられて下端が前記貯留槽内 に貯留されている熱媒体に浸潰された複数のヒートパイプと、 前記蓋部にその一 面が接合された前記熱電冷却素子と、 前記熱電冷却素子の他面に接合された熱廃 棄ュニットとよりなることを特徴とする。
また、 前記主熱交換器及び前記副熱交換器には、 廃棄すべき熱を排出するため の廃棄熱用熱媒体が、 まず前記主熱交換器に次に前記副熱交換器という順序で流 されることを特徴とする。
また、 前記主熱交換器に対して前記熱媒体を迂回させるバイパス路が形成され ており、 必要時には前記熱媒体は前記主熱交換器を迂回して前記バイパス路に流 れると共に、 前記熱電冷却素子は、 前記熱媒体を加熱するように動作することを 特徴とする。 これにより、 必要時には熱媒体は、 主熱交換器をパイパスされて副 熱交換器に直接導入されてここで加熱昇温され、 加熱状態で温度被制御体に流し てこれを加熱することが可能となる。
また、 前記熱電冷却素子は、 ペルチェ素子であることを特徴とする。
また、 前記温度被制御体は、 被処理体に対して所定の処理を行う熱処理装置に 用いられる処理容器と、 必要なガスを供給するシャワーヘッド部と、 加熱ランプ を収容するランプ室の区画壁の内の少なくともいずれか 1つであることを特徴と する。
本願の第 2の発明の熱処理装置は、 真空引き可能になされた処理容器と、 被処 理体を載置する載置台と、 必要なガスを前記処理容器内へ供給するガス供給手段 と、 前記被処理体を加熱する加熱手段と、 上述のいずれかの熱媒体循環装置とを 備えたことを特徴とする。 図面の簡単な説明
図 1は、 本発明に係る熱媒体循環装置を用いたの熱処理装置の一実施例を示す 断面図である。
図 2は、 本発明に係る熱媒体循環装置を示す構成図である。
図 3は、 貯留槽の蓋部を示す横断面図である。
図 4は、 熱媒体の流れを示す図である。
図 5は、 本発明の変形例の副熱交換器を示す横断面図である。
図 6は、 図 5中の A— A線矢視断面図である。
図 7は、 本発明の熱循環装置の第 2の実施例を示す構成図である。 発明を実施するための最良の形態
以下に、 本発明に係る熱媒体循環装置及びこれを用いた熱処理装置の一実施例 を添付図面に基づいて詳述する。
図 1は本発明に係る熱媒体循環装置を用いたの熱処理装置の一実施例を示す断 面図、 図 2は本発明に係る熱媒体循環装置を示す構成図、 図 3は貯留槽の蓋部を 示す横断面図、 図 4は熱媒体の流れを示す図である。
本実施例では、 枚葉式の熱処理装置として成膜処理を行う場合を例にとって説 明する。 この熱処理装置 2は、 例えばアルミニウム等により内部が円筒状或いは 箱状に成形された処理容器 4を有しており、 この処理容器 4内には、 処理容器 4 の底部 6より起立させた円筒状の載置台支持基台 8が設けられている。 尚、 この 支持基台 8を容器側壁で支持させてもよい。 この載置台支持基台 8は例えばアル ミニゥム等の耐腐食性材料により形成される。 この円筒状の載置台支持基台 8の 上部に、 平面リング状のガス流安定フランジ部 1 0を設け、 更に、 このフランジ 部 1 0より内側方向へ僅かに突出させてリング状に支持棚部 1 2が形成されてい る。 そして、 この支持棚部 1 2上に、 円板状の載置台 1 4の周縁部を当接させて 載置している。 この載置台 1 4は、 例ぇば厚さが3〜4 111111程度の3 1。にょり 形成されている。 そして、 この載置台 1 4の直径は、 この載置台 1 4上に載置さ れて処理されるべき半導体ウェハ Wのサイズにより異なり、 例えば 8インチサイ ズのウェハを処理する場合には、 載置台 1 4の直径は 2 4 c m程度になされる。 そして、 上記ガス流安定フランジ部 1 0の内周部からは、 例えばアルミニウム 製の円筒体状の反射板 1 6が下方向に向かって延びるように形成されており、 こ の内面が反射面となっている。 この反射板 1 6の下端は、 上記処理容器 4の底部 6からは、 僅かに離間されており、 浮いた状態となっている。
そして、 上記載置台支持基台 8のガス流安定フランジ部 1 0の内周部から上記 載置台 1 4の周縁部の上方側に円形リング状のシールドリング 1 8が設けられて いる。
また、 この載置台 1 4の下方には、 複数本、 例えば 3本の L字状のリフタピン 2 0 (図 1では 2本のみ示す) が上方へ起立させて設けられており、 この各リフ 夕ピン 2 0の基部を連結するリング状の連結部材 2 2を処理容器 4の底部 6に貫 通して設けられた押し上げ棒 2 4により上下動させることにより、 上記リフ夕ピ ン 2 0を載置台 1 4に貫通させて設けたりフタピン穴 2 6に挿通させてウェハ W を持ち上げ得るようになつている。 このリフタビン 2 0は石英等の熱線透過材料 により形成される。 また、 反射板 1 6の一部には、 リフ夕ピン 2 0を貫通してこ の上下動を許容する長孔 (図示せず) が形成されている。
上記押し上げ棒 2 4の下端は、 処理容器 4において内部の気密状態を保持する ために伸縮可能なベローズ 2 8を介してァクチユエ一夕 3 0に接続されている。 また、 載置台 1 4の直下の容器底部 6には、 石英等の熱線透過材料よりなる透 過窓 3 2が気密に設けられており、 この下方には、 透過窓 3 2を囲むように箱状 に区画壁 3 4を形成してこの内部にランプ室 3 6を構成している。 このランプ室 3 6内には加熱手段として複数個の加熱ランプ 3 8が反射鏡も兼ねる回転台 4 0 に取り付けられており、 この回転台 4 0は、 回転軸 4 2を介してランプ室 3 6の 底部に設けた回転モー夕 4 4により回転される。 従って、 この加熱ランプ 3 8よ り放出された熱線は、 透過窓 3 2を透過して載置台 1 4の下面を照射してこれを 加熱し得るようになつている。
また、 上記ガス流安定フランジ部 1 0の外周側には、 多数の整流孔 4 6を有す る、 例えばアルミニゥム製のリング状の整流板 4 8が、 処理容器 4の側壁 4 Aと の間で連結されるように支持させて設けられている。 この整流板 4 8の下方の底 部 6には排気口 5 0が設けられ、 この排気口 5 0には図示しない真空ポンプに接 続された排気路 5 2が接続されており、 処理容器 4内を所定の真空度に真空引き し得るようになつている。 また、 処理容器 4の側壁 4 Aには、 ウェハを搬出入す る際に開閉されるゲートバルブ 5 4が設けられる。
一方、 上記載置台 1 4と対向する処理容器 4の天井部 5 6には、 処理ガス等を 処理容器 4内へ導入するためにガス供給手段としてのシャワーへッド部 5 8が設 けられている。 具体的には、 このシャワーヘッド部 5 8は、 例えばアルミニウム 等により円形箱状に成形されたへッド本体 6 0を有し、 この天井部には流量制御 された必要な処理ガスを導入するガス導入口 6 2が設けられている。
上記へッド本体 6 0の下面であるガス噴射面には、 へッド本体 6 0内へ供給さ れたガスを放出するための多数のガス噴射孔 6 4が面内の略全体に配置されてお り、 ウェハ表面に亘つてガスを放出するようになっている。
また、 ヘッド本体 6 0内には、 多数のガス分散孔 6 6を有する拡散板 6 8が配 設されており、 ウェハ面に、 より均等にガスを供給するようになっている。
そして、 ここでは通常の熱処理時には、 処理容器 4、 シャワーヘッド部 5 8及 びランプ室 3 6を区画する区画壁 3 4は、 これらが過度に昇温することを防止す るために、 温度制御の対象、 すなわち温度被制御体となる。 そのため、 上記処理 容器 4の側壁 4 A、 シャワーヘッド部 4 8のへッド本体 6 0の側壁及ぴランプ室 3 6を区画する区画壁 3 4には、 それそれ熱媒体を流すための熱媒体ジャケット
7 O A, 7 0 B、 7 0 Cが形成されている。
図 2に示すように、 各熱媒体ジャケット 7 0 A、 7 O B , 7 0 Cには、 熱媒体 循環装置 7 2により温度制御された熱媒体が供給されるようになつている。 ここ で熱媒体としては、 例えば水 (冷却水、 或いは加熱用の温水を含む) が用いられ o
具体的には、 この熱媒体循環装置 7 2は、 熱媒体 7 4を一時的に貯留するため の貯留槽 7 6を途中に介設した熱媒体循環系 7 8を有している。 この熱媒体循環 系 7 8の途中は、 3本に分岐されて並列に流れる分岐路 8 0 A、 8 O B s 8 0 C が形成されており、 各分岐路 8 0 A、 8 O B s 8 0 Cに、 上記各熱媒体ジャケッ ト 7 0 A、 7 0 B、 7 0 Cがそれそれ介設されている。 そして、 各分岐路 8 0 A、
8 0 B、 8 0 Cには、 開閉弁 8 1 A、 8 1 B、 8 1 (及び流量計8 3八、 8 3 B、 8 3 Cがそれそれ介設されている。
上記貯留槽 7 6の媒体出口 8 2に接続される下流側の熱媒体循環系 7 8には、 熱媒体 7 4を循環させる循環ポンプ 8 4が介設されており、 更に、 その両側には 開閉弁 8 6 A、 8 6 Bがそれそれ介設されている。
また、 この貯留槽 7 6の上流側の熱媒体循環系 7 8には、 系内を流れる熱媒体 と主たる熱交換を行うための主熱交換器 8 8が介設されると共に、 この主熱交換 器 8 8を必要時に迂回させて熱媒体を流すように主熱交換器 8 8に対して並行と なるようにバイパス路 9 0が分岐して形成されている。 そして、 この主熱交換器 8 8内には熱媒体が流れる内側パイブ 8 9が設けられており、 この入口側 8 8 A に接続される熱媒体循環系 7 8及び上記バイパス路 9 0には、 それそれ切換開閉 弁 9 2 A、 9 2 Bが介設されて、 主熱交換器 8 8とバイパス路 9 0に対して選択 的に熱媒体を流し得るようになつている。
そして、 上記貯留槽 7 6の蓋部 9 4は、 例えばアルミニウム、 銅等の熱伝導性 の良好な材料よりなり、 この蓋部 9 4に副熱交換器 9 6を設けている。 具体的に は、 図 3にも示すように、 この蓋部 9 4内には、 例えば蛇行状に形成された熱交 換流路 9 8が形成されており、 この上流側の一端である熱媒体入口 9 8 Aは、 上 記主熱交換器 8 8の内側パイプ 8 9の出口側 8 8 Bに熱媒体循環系 7 8を介して 接続され、 下流側の他端は貯留槽 7 6内に向けて開放された熱媒体出口 9 8 Bと して形成され、 副熱交換後の熱媒体を貯留槽 7 6内に流下させて一時的に貯留す るようになっている。
この蓋部 9 4の上面には、 例えばペルチェ素子よりなる板状の熱電冷却素子 1 0 0が、 その一面を上記蓋部上面に接合させて設けられている。 これにより、 上 記蓋部 9 4の熱交換流路 9 8内を流れる熱媒体を、 例えば冷却しつつ温度調整し 得るようになつている。 この板状の熱電冷却素子 1 0 0は、 図示例では 2枚示し ているが、 実際には貯留槽 7 6などの大きさにもよるが、 例えば 2 0枚程度平面 的に配列して設けられることになる。
そして、 この熱電冷却素子 1 0 0の他端 (上面) には、 この熱電冷却素子 1 0 0の他面 (上面) にて発生した、 例えば温熱を搬出して廃棄させるための熱廃棄 ュニッ ト 1 0 2が取り付けられている。 この熱廃棄ュニット 1 0 2は、 例えばァ ルミ二ゥム、 銅等の熱伝導性の良好な材料よりなるブロック体 1 0 4に熱廃棄用 熱媒体を流す熱交換路 1 0 6を形成して構成されている。 そして、 上記主熱交換 器 8 8の容器内及び上記熱廃棄ュニット 1 0 2の熱交換路 1 0 6内をこの順序で 順次、 熱廃棄用熱媒体を流すように熱廃棄流路 1 0 8が形成されており、 この流 路 1 0 8にも、 開閉弁 1 1 9及び流量計 1 1 2がその途中に介設されている。 こ こで、 上記熱廃棄用熱媒体としては、 例えば常温の巿水 (水道水) が用いられる。 一方、 上記循環ポンプ 8 4の下流側の熱媒体循環系 7 8には、 温度検出センサ 部として例えば熱電対 1 1 4が設けられており、 ここに流れる熱媒体の温度を検 出し得るようになつている。 そして、 この熱電対 1 1 4の出力は、 例えばマイク 口コンピュータ等よりなる温度制御部 1 1 6へ入力されており、 この温度制御部 1 1 6は、 上記熱電対 1 1 4の出力に基づいて上記熱電冷却素子 1 0 0の出力を 制御することにより、 熱媒体の温度を制御し得るようになつている。
また、 上記貯留槽 7 6内には、 これに貯留される熱媒体の液面を検知するレぺ ルスィツチ 1 1 8が設けられており、 熱媒体の不足時には、 熱媒体供給系 1 2 0 より、 不足した熱媒体を供給し得るようになつている。
次に、 以上のように構成された本実施例の動作について説明する。
まず、 ウェハ表面に例えばタングステン膜やタングステンシリサイ ド等の成膜 処理を施す場合には、 処理容器 4の側壁 4 Aに設けたゲートバルブ 5 4を開いて 搬送アーム (図示せず) により処理容器 4内にウェハ Wを搬入し、 リフ夕ピン 2 0を押し上げることによりウェハ Wをリフ夕ピン 2 0側に受け渡す。 そして、 リ フタビン 2 0を、 押し上げ棒 2 4を下げることによって降下させ、 ウェハ Wを載 置台 1 4上に載置する。
次に、 図示しない処理ガス源から成膜ガス等の種々の必要なガスをシャワーへ ッド部 5 8へ所定量ずつ供給して、 これをへッド本体 6 0の下面のガス噴射孔 6 4から処理容器 4内へ略均等に供給する。 これと同時に、 排気口 5 0から内部雰 囲気を吸引排気することにより処理容器 4内を所定の真空度に維持し、 且つラン プ室 3 6内の加熱ランプ 3 8を回転させながら駆動し、 熱エネルギを放射する。 放射された熱線は、 透過窓 3 2を透過した後、 載置台 1 4の裏面を照射してこ れを加熱する。 この載置台 1 4は、 前述のように数 mm程度と非常に薄いことか ら迅速に加熱され、 従って、 この上に載置してあるウェハ Wを迅速に所定の温度 まで加熱することができる。 供給されたガスは所定の化学反応を生じ、 例えば夕 ングステン膜がウェハ表面に堆積し、 形成されることになる。
ここで、 成膜処理中には、 上記加熱ランプ 3 8からの熱線によって、 ランプ室 3 6の区画壁 3 4、 処理容器 4の側壁 4 A及びシャワーへッド部 5 8等は、 過度 に高温状態に晒される恐れが生ずるが、 本実施例では、 これらに設けた各熱媒体 ジャケット 7 0 A、 7 0 B、 7 0 Cに、 ここでは略一定の温度に維持された冷却 用の熱媒体を流して冷却しているので、 過度に高温になることを防止することが できる。
すなわち、 図 2にも示すように、 貯留槽 7 6に貯留されている熱媒体は、 ここ では例えば 2 0〜2 5 °C程度に維持されて冷却媒体として機能し、 これより熱媒 体循環系 7 8を介して送出され、 各分岐路 8 0 A〜8 0 Cを通った後に各熱媒体 ジャケット 7 0 A〜 7 0 Cにそれそれ流入して、 処理容器 4の側壁 4 A、 シャヮ —へッド部 5 8及びランプ室 3 6の区画壁 3 4を冷却することになる。 各熱媒体 ジャケット 7 0 A〜7 0 Cを流出した熱媒体は、 上記熱交換によって例えば 4 0 〜5 0 °C程度の高温状態になっており、 この熱媒体は合流して主熱交換器 8 8及 び貯留槽 Ί 6の蓋部 9 4に設けた副熱交換器 9 6内を順次流れ、 この時、 熱廃棄 用熱媒体である常温の巿水と順次熱交換されて、 例えば 2 0〜2 5 °C程度まで冷 却され、 その後、 再度循環使用される。
この時、 主熱交換器 8 8と副熱交換器 9 6内を流れる熱媒体は、 図 4 ( A ) に おいて示されており、 白抜き矢印 1 2 2が熱媒体の流れを示す。 すなわち、 温度 が 2 0 °C程度の巿水が、 熱廃棄流路 1 0 8を介して主熱交換器 8 8内及び熱廃棄 ユニット 1 0 2内の熱交換路 1 0 6内を、 この順序で流れている。 他方、 ここで はバイパス路 9 0に介設した切換開閉弁 9 2 Bは閉になされ、 熱媒体循環系 7 8 に介設した切換開閉弁 9 2 Aは開になされており、 従って、 熱媒体である冷却水 は、 主熱交換器 8 8内の内側パイプ 8 9及び蓋部 9 4の熱交換流路 9 8内を順次 流れる。 この時、 熱電冷却素子 1 0 0は、 下面側に冷熱が発生し、 上側面に温熱 が発生するように動作される。 従って、 熱処理装置 2側より循環されてくる熱媒 体は前段に設けた主熱交換器 8 8にて主たる熱交換が行われてその温度がかなり 低下されて、 例えば 2 7〜2 9 °C程度まで冷却される。 そして、 次に副熱交換器 9 6にて僅かな温度、 例えば数。 C程度、 更に冷却されて 2 0〜2 5 °C程度になる。 ここで、 循環ポンプ 8 4の下流側の熱媒体循環系 7 8には熱電対 1 1 4を設け てここに流れる熱媒体の温度を常時検出し、 これを温度制御部 1 1 6へ入力して いる。 この温度制御部 1 1 6は、 上記熱電対 1 1 4での温度検出値が予め設定さ れた値を維持するように、 上記熱電冷却素子 1 0 0に投入する電力を制御してい る。 これにより、 熱媒体循環系 7 8を送出される熱媒体の温度は予め設定された 所定の値に略維持されることになる。
また、 熱廃棄流路 1 0 8内を流れる巿水は、 最初に熱媒体同士の温度差が大き くなるように主熱交換器 8 8内に流し、 次に、 熱媒体同士の温度差が小さくなる ように副熱交換器 9 6の熱廃棄ュニット 1 0 2内に流すようにしたので、 その分、 貯留槽 7 6内の熱媒体 7 4の温度制御を適正に行うことが可能となる。
また、 図示するように、 全体として比較的構造が簡単なので、 従来装置で用い ている大型のチラ一装置と比較して、 設備コストを削減できるのみならず、 設置 スベースも大幅に減少させることが可能となる。
これに対して、 熱処理装置 2のメンテナンス時等のように、 処理容器 4内を閧 放する場合には、 開放に伴って清浄空気が処理容器 4内に流入してこれが冷えて いる処理容器 4の側壁 4 Aや冷えているシャワーへッド部 5 8と接触して清浄空 気中の水分が結露すると問題を生ずるので、 この場合には、 前述とは逆に、 処理 容器 4の側壁 4 Aやシャワーへッド部 5 8等を加熱してメンテナンス時に結露が 生じないようにする。 或いは、 また、 処理容器 4を開放する場合には、 処理容器 4の内壁に付着した反応副生成物が容易に空気中の水分を吸着して反応すること もあるが、 上述のように処理容器 4の側壁やシャワーヘッド部 5 8を加熱し、 こ れを防ぐようにする。
この時の熱媒体の流れは図 4 ( B ) に示される。 すなわち、 熱廃棄流路 1 0 8 内を流れる巿水は図 4 ( A) に示す場合と同様に流すが、 熱媒体に関しては、 主 熱交換器 8 8内にこれを流さないようにするために、 内部パイプ 8 9の入口側 1 8 8 Aの切換開閉弁 9 2 Aを閉じ、 代わりにバイパス路 9 0の切換開閉弁 9 2 B 開き、 このバイパス路 9 0内に沿って熱媒体を流す。 更に、 熱媒体を加熱するた めに副熱交換器 9 6における熱電冷却素子 1 0 0に対する通電方向を前述した場 合とは逆方向になるように動作してこの下面に温熱を発生させ、 上面に冷熱を発 生させる。
これにより、 所定の温度、 例えば 5 0 °C程度に熱媒体が加熱されて循環されて 行くことになる。
実際に、 本発明装置を作成してその評価を行ったところ、 同じ冷却能力のもと で、 従来のチラ一装置と比較して占有スペースは 2 5 . 5〜3 5 %程度も削減す ることができた。 また、 消費電力については、 従来のチラ一装置が 2 0 K V Aで あるのに対して、 本発明装置 (2 0枚のペルチヱ素子を使用) の場合には 2 KW (ワット) であり、 消費電力を大幅に減少させることができた。
尚、 ここでは熱媒体を一時的に貯留する貯留槽 7 6を設けた場合を例にとって 説明したが、 この貯留槽 7 6を設けないようにして、 熱媒体を一時的に貯留する ことなく熱媒体循環系 7 8内に連続的に流すようにしてもよい。
次に、 本発明の変形例について説明する。
図 5は本発明の変形例の副熱交換器を示す横断面図、 図 6は図 5中の A— A線 矢視断面図である。 ここでは、 副熱交換器 9 6の熱交換流路 9 8内に、 複数の熱 交換フィン 1 2 4を設け、 これに熱媒体を直接的に接触させるようになっている。 この熱交換フィン 1 2 4は、 熱伝導性の良好な材料、 例えばアルミニウム、 銅等 よりなり、 断面が略楕円状の熱交換フィン 1 2 4を上記熱交換流路 9 8内に起立 させて設けている。 この熱交換フィン 1 2 4は熱媒体の流れ方向に沿って所定の 間隔で多数設けられている。
これによれば、 熱交換フィン 1 2 4を設けた分だけ、 熱媒体との熱交換効率を 向上させることができる。 この場合、 熱交換フィンを更に薄く形成して、 熱媒体 の流れ方向に対して、 所定の角度、 例えば 4 5度程度だけ傾けて設けるようにし、 熱媒体に対する流体抵抗を抑制しつつ、 高い熱交換効率を維持するようにしても よい。
次に、 本発明の第 2の実施例について説明する。
図 7は本発明の熱循環装置の第 2の実施例を示す構成図である。 尚、 図 2に示 す構成部分と同一構成部分については同一参照符号を付して説明を省略する。 この第 2の実施例では、 蓋部 9 4には熱交換流路 9 8 (図 2参照) を設けてお らず、 これに代えて、 上端を上記蓋部 9 4にて支持させ、 且つ下端を貯留槽 7 6 内の熱媒体 7 4に浸潰させた複数のヒートパイプ 1 2 6を設けている。 これによ り、 熱媒体 7 4の温熱をヒートパイプ 1 2 6により上方まで汲み上げて、 これを 熱廃棄ュニット 1 0 2で廃棄するようになっている。
この場合、 貯留槽 7 6に対する熱媒体入口 9 8 Aは、 蓋部 9 4に設けるのでは なく、 貯留槽 7 6の上部側壁に設けて、 循環して戻ってきて主熱交換器 8 8から 流出した熱媒体を、 上記熱媒体入口 9 8 Aから直接的に貯留槽 7 6内に導入する ようになつている。
この第 2の実施例の場合にも、 先の実施例の場合と同様な作用効果を発揮する ことができる。
尚、 上記実施例では温度被制御体として、 処理容器 4、 シャワーヘッド部 5 8、 ランプ室 3 6の区画壁 3 4を例にとって説明したが、 これらは単に一例を示した に過ぎず、 冷却を必要とする部材には全て本発明を適用できるのは勿論である。 また、 熱処理としては、 成膜処理に限定されず、 エッチング処理、 酸化拡散処 理、 改質処理等の全ての熱処理に対して本発明を適用することができる。 また、 被処理体としては、 半導体ウェハに限定されず、 ガラス基板、 L C D基板等につ いても適用することができる。
以上説明したように、 本発明の熱媒体循環装置及びこれを用いた熱処理装置に よれば、 次のように優れた作用効果を発揮することができる。
本発明の構成によれば、 主熱交換器と副熱交換器とを用いて、 主たる熱交換は 主熱交換器にて熱媒体を冷却することにより行い、 その後、 微妙な温度調整用の 熱交換は熱電冷却素子を用いた副熱交換器にて行うようにしたので、 送出される 熱媒体の温度を適正にコントロールできるのみならず、 装置自体を小型化するこ とができ、 しかもその設置スペースも大幅に削減することができる。
また、 熱交換フィンの作用により、 副熱交換器における熱交換効率をより向上 させることができる。
また、 必要時には熱媒体は、 主熱交換器をバイパスされて副熱交換器に直接導 入されてここで加熱昇温され、 加熱状態で温度被制御体に流してこれを加熱する 二とができる。

Claims

請求の範囲
1 . 熱媒体循環系に熱媒体を流し温度制御を行う熱媒体循環装置において、 前記熱媒体循環系には温度制御の対象となる温度被制御体が介設されており、 前記熱媒体循環系に介設され、 熱媒体と主たる熱交換を行う主熱交換器と、 前記熱媒体循環系に介設された循環ポンプと、
前記主熱交換器の下流側の前記熱媒体循環系に介設され、 前記熱媒体の温度制 御を行う熱電冷却素子を用いた副熱交換器と、
を備えることを特徴とする熱媒体循環装置。
2 . 前記熱媒体を一時的に貯留する貯留槽を備える
ことを特徴とする請求項 1に記載の熱媒体循環装置。
3 . 前記副熱交換器の下流側の前記熱媒体循環系に設けられた温度検出セン サ部と、
該温度検出センサ部の出力に基づいて前記熱電冷却素子の出力を制御する温度 制御部と
を備えたことを特徴とする請求項 1に記載の熱媒体循環装置。
4 . 前記副熱交換器は、
前記貯留槽の蓋部に設けられて、 一端に熱媒体入口を有し、 他端に熱媒体出口 を有す熱交換流路と、
前記蓋部にその一面が接合された前記熱電冷却素子と、
前記熱電冷却素子の他面に接合された熱廃棄ュニットとよりなることを特徴と する請求項 2に記載の熱媒体循環装置。
5 . 前記熱交換流路内には、 これに流れる前記熱媒体と接触する複数の熱交 換フィンが設けられることを特徴とする請求項 4記載の熱媒体循環装置。
6 . 前記副熱交換器は、
前記貯留槽の蓋部に設けられて下端が前記貯留槽内に貯留されている熱媒体に 浸潰された複数のヒートパイプと、
前記蓋部にその一面が接合された前記熱電冷却素子と、
前記熱電冷却素子の他面に接合された熱廃棄ュニットとよりなることを特徴と する請求項 2に記載の熱媒体循環装置。
7 . 前記主熱交換器及び前記副熱交換器には、 廃棄すべき熱を排出するため の廃棄熱用熱媒体が、 まず前記主熱交換器に次に前記副熱交換器という順序で流 されることを特徴とする請求項 1に記載の熱媒体循環装置。
8 . 前記主熱交換器に対して前記熱媒体を迂回させるバイパス路が形成され ており、 必要時には前記熱媒体は前記主熱交換器を迂回して前記バイパス路に流 れると共に、 前記熱電冷却素子は、 前記熱媒体を加熱するように動作することを 特徴とする請求項 1に記載の熱媒体循環装置。
9 . 前記熱電冷却素子は、 ペルチェ素子であることを特徴とする請求項 1に 記載の熱媒体循環装置。
1 0 . 前記温度被制御体は、
被処理体に対して所定の処理を行う熱処理装置に用いられる処理容器と、 必要 なガスを供給するシャワーへッド部と、 加熱ランプを収容するランプ室の区画壁 の内の少なくともいずれか 1つであることを特徴とする請求項 1に記載の熱媒体
1 1 . 真空引き可能になされた処理容器と、
被処理体を載置する載置台と、
必要なガスを前記処理容器内へ供給するガス供給手段と、
前記被処理体を加熱する加熱手段と、
請求項 1に記載の熱媒体循環装置とを備えたことを特徴とする熱処理装置 c
PCT/JP2002/010383 2001-10-10 2002-10-04 Dispositif de circulation de fluide chauffant et equipement de traitement thermique faisant appel audit dispositif WO2003033973A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/491,748 US7216496B2 (en) 2001-10-10 2002-10-04 Heating medium circulating device and thermal, treatment equipment using the device
KR1020047000442A KR100602481B1 (ko) 2001-10-10 2002-10-04 열 매체 순환 장치 및 이것을 이용한 열처리 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001/313219 2001-10-10
JP2001313219A JP2003121023A (ja) 2001-10-10 2001-10-10 熱媒体循環装置及びこれを用いた熱処理装置

Publications (1)

Publication Number Publication Date
WO2003033973A1 true WO2003033973A1 (fr) 2003-04-24

Family

ID=19131738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010383 WO2003033973A1 (fr) 2001-10-10 2002-10-04 Dispositif de circulation de fluide chauffant et equipement de traitement thermique faisant appel audit dispositif

Country Status (5)

Country Link
US (1) US7216496B2 (ja)
JP (1) JP2003121023A (ja)
KR (1) KR100602481B1 (ja)
CN (1) CN100494821C (ja)
WO (1) WO2003033973A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3910925B2 (ja) * 2003-02-25 2007-04-25 株式会社日立ハイテクノロジーズ プラズマ処理装置
US20040182315A1 (en) * 2003-03-17 2004-09-23 Tokyo Electron Limited Reduced maintenance chemical oxide removal (COR) processing system
US7870751B2 (en) * 2005-03-11 2011-01-18 Tokyo Electron Limited Temperature control system and substrate processing apparatus
KR100718824B1 (ko) 2005-10-20 2007-05-16 유니셈 주식회사 반도체 공정설비를 위한 칠러 장치
JP5068471B2 (ja) * 2006-03-31 2012-11-07 東京エレクトロン株式会社 基板処理装置
US20070295012A1 (en) * 2006-06-26 2007-12-27 Applied Materials, Inc. Nitrogen enriched cooling air module for uv curing system
US20070298167A1 (en) * 2006-06-26 2007-12-27 Applied Materials, Inc. Ozone abatement in a re-circulating cooling system
US20090229274A1 (en) * 2008-03-13 2009-09-17 Andre Boulay Thermoelectric retrofit unit for a liquid recipient
JPWO2009119285A1 (ja) * 2008-03-24 2011-07-21 東京エレクトロン株式会社 シャワープレートとこれを用いたプラズマ処理装置
WO2010021964A1 (en) * 2008-08-21 2010-02-25 Fluor Technologies Corporation Devices and methods of heat removal from exothermic high temperature reaction processes
CN102422393A (zh) * 2009-03-16 2012-04-18 奥塔装置公司 用于气相沉积的淋喷头
US8776542B2 (en) * 2009-12-25 2014-07-15 Canon Anelva Corporation Cooling system
US8410393B2 (en) 2010-05-24 2013-04-02 Lam Research Corporation Apparatus and method for temperature control of a semiconductor substrate support
JP5091296B2 (ja) * 2010-10-18 2012-12-05 東京エレクトロン株式会社 接合装置
JP5129848B2 (ja) * 2010-10-18 2013-01-30 東京エレクトロン株式会社 接合装置及び接合方法
CN102127757A (zh) * 2011-01-14 2011-07-20 映瑞光电科技(上海)有限公司 Mocvd反应系统
JP6034231B2 (ja) * 2012-07-25 2016-11-30 株式会社Kelk 半導体製造装置用温度調整装置、半導体製造におけるpid定数演算方法、及び半導体製造装置用温度調整装置の運転方法
US9679792B2 (en) * 2012-10-25 2017-06-13 Noah Precision, Llc Temperature control system for electrostatic chucks and electrostatic chuck for same
KR101526389B1 (ko) * 2013-06-11 2015-06-05 현대자동차 주식회사 전기차용 배터리의 열관리 장치
JP6239339B2 (ja) * 2013-10-17 2017-11-29 東京エレクトロン株式会社 エッチング装置、エッチング方法、および基板載置機構
KR101708490B1 (ko) * 2014-04-11 2017-02-21 에너진(주) 가열과 냉각이 가능한 등방압 프레스장치 및 이를 이용한 칩 부품의 제조방법
US10553421B2 (en) * 2015-05-15 2020-02-04 Tokyo Electron Limited Substrate processing apparatus, substrate processing method and storage medium
GB2543549B (en) * 2015-10-21 2020-04-15 Andor Tech Limited Thermoelectric Heat pump system
US10558182B2 (en) * 2016-01-19 2020-02-11 Honeywell International Inc. Heating, ventilation and air conditioning capacity alert system
CN111074237A (zh) * 2018-10-18 2020-04-28 君泰创新(北京)科技有限公司 源瓶
CN111533461B (zh) * 2020-05-25 2022-12-13 福建和达玻璃技术有限公司 用于玻璃机壳金属质感表面处理的高精度控温装置及方法
KR20220167536A (ko) 2021-06-14 2022-12-21 정지우 광고용커버를 구성한 병뚜껑

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240930Y2 (ja) * 1985-05-27 1990-10-31
JPH05132987A (ja) * 1991-11-14 1993-05-28 Nippondenso Co Ltd トイレの冷房装置
JPH0814692A (ja) * 1994-06-29 1996-01-19 Tokai Chem Ind Ltd 電子冷却装置付水槽及び水槽用電子冷却装置ユニット
US5525160A (en) * 1993-05-10 1996-06-11 Tokyo Electron Kabushiki Kaisha Film deposition processing device having transparent support and transfer pins
JPH10132436A (ja) * 1996-10-31 1998-05-22 Aisin Seiki Co Ltd 電子ポット
JPH10151631A (ja) * 1996-11-21 1998-06-09 Matsui Mfg Co 樹脂成形型の温度調節機
JPH10339517A (ja) * 1997-06-04 1998-12-22 Matsukueito:Kk 熱移動媒体の温度制御装置
US5956965A (en) * 1996-10-16 1999-09-28 Thermovonics Co., Ltd. Watercooler
JP2000299280A (ja) * 1999-02-09 2000-10-24 Tokyo Electron Ltd 基板処理装置及びエア供給方法
JP2001034344A (ja) * 1999-07-21 2001-02-09 Komatsu Ltd 温度制御システム
JP2001041495A (ja) * 1999-08-03 2001-02-13 Komatsu Electronics Inc 恒温・恒湿空気供給装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240930A (ja) 1988-07-29 1990-02-09 Mitsubishi Electric Corp ボンディングツール
US5128517A (en) * 1990-02-08 1992-07-07 Hollister, Incorporated Temperature controlled fluid ciruclating system
JPH0551294A (ja) 1991-08-20 1993-03-02 Nikko Kyodo Co Ltd 気相成長装置
JP3099101B2 (ja) 1993-05-10 2000-10-16 東京エレクトロン株式会社 熱処理装置
JPH09170863A (ja) 1995-10-19 1997-06-30 Saamobonitsuku:Kk 冷水器
US5711155A (en) * 1995-12-19 1998-01-27 Thermotek, Inc. Temperature control system with thermal capacitor
JP3297288B2 (ja) 1996-02-13 2002-07-02 株式会社東芝 半導体装置の製造装置および製造方法
US5966940A (en) * 1997-11-18 1999-10-19 Micro Component Technology, Inc. Semiconductor thermal conditioning apparatus and method
JPH11173701A (ja) * 1997-12-08 1999-07-02 Seiko Seiki Co Ltd 温度調節装置
US6091060A (en) * 1997-12-31 2000-07-18 Temptronic Corporation Power and control system for a workpiece chuck
JP3150117B2 (ja) * 1998-11-27 2001-03-26 エスエムシー株式会社 恒温冷媒液循環装置
US6338474B1 (en) 1999-02-09 2002-01-15 Tokyo Electron Limited Air feeder provided with by-pass bypassing cooling section, substrate processing apparatus including the same, and air supply method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240930Y2 (ja) * 1985-05-27 1990-10-31
JPH05132987A (ja) * 1991-11-14 1993-05-28 Nippondenso Co Ltd トイレの冷房装置
US5525160A (en) * 1993-05-10 1996-06-11 Tokyo Electron Kabushiki Kaisha Film deposition processing device having transparent support and transfer pins
JPH0814692A (ja) * 1994-06-29 1996-01-19 Tokai Chem Ind Ltd 電子冷却装置付水槽及び水槽用電子冷却装置ユニット
US5956965A (en) * 1996-10-16 1999-09-28 Thermovonics Co., Ltd. Watercooler
JPH10132436A (ja) * 1996-10-31 1998-05-22 Aisin Seiki Co Ltd 電子ポット
JPH10151631A (ja) * 1996-11-21 1998-06-09 Matsui Mfg Co 樹脂成形型の温度調節機
JPH10339517A (ja) * 1997-06-04 1998-12-22 Matsukueito:Kk 熱移動媒体の温度制御装置
JP2000299280A (ja) * 1999-02-09 2000-10-24 Tokyo Electron Ltd 基板処理装置及びエア供給方法
JP2001034344A (ja) * 1999-07-21 2001-02-09 Komatsu Ltd 温度制御システム
JP2001041495A (ja) * 1999-08-03 2001-02-13 Komatsu Electronics Inc 恒温・恒湿空気供給装置

Also Published As

Publication number Publication date
US20040244384A1 (en) 2004-12-09
CN100494821C (zh) 2009-06-03
CN1511244A (zh) 2004-07-07
US7216496B2 (en) 2007-05-15
KR100602481B1 (ko) 2006-07-19
KR20040041150A (ko) 2004-05-14
JP2003121023A (ja) 2003-04-23

Similar Documents

Publication Publication Date Title
WO2003033973A1 (fr) Dispositif de circulation de fluide chauffant et equipement de traitement thermique faisant appel audit dispositif
US5892886A (en) Apparatus for uniform gas and radiant heat dispersion for solid state fabrication processes
US5965047A (en) Rapid thermal processing (RTP) system with rotating substrate
JP3230836B2 (ja) 熱処理装置
US6300600B1 (en) Hot wall rapid thermal processor
JPH10218632A (ja) 大面積ガラス基板の冷却および加熱方法とそのための装置
TW200405415A (en) Wafer batch processing system and method
KR20040010620A (ko) 처리 장치 및 처리 방법
TW201220426A (en) Substrate processing apparatus and method of manufacturing a semiconductor device
JP2000003918A (ja) 半導体熱処理装置及びその方法
WO2005064659A1 (ja) 基板処理システムのための温度調節方法および基板処理システム
JP2005019479A (ja) 加熱手段、載置台及び熱処理装置
JP4618288B2 (ja) 熱媒体循環装置及びこれを用いた熱処理装置
US8398771B2 (en) Substrate processing apparatus
KR100353499B1 (ko) 급속 열처리(rtp) 시스템용 팽창성 엘라스토머 요소
JP2010034491A (ja) アニール装置
JP4742431B2 (ja) 熱処理装置
JP2003037107A (ja) 処理装置及び処理方法
JP3996663B2 (ja) ランプ加熱型熱処理装置
JPH07135182A (ja) 熱処理装置
JP4003206B2 (ja) 熱処理装置および熱処理方法
JPH07273101A (ja) 枚葉式熱処理装置
JP4246416B2 (ja) 急速熱処理装置
JP2003037147A (ja) 基板搬送装置及び熱処理方法
JP2005197471A (ja) 基板処理装置及び温度調節方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR

WWE Wipo information: entry into national phase

Ref document number: 028107128

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047000442

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10491748

Country of ref document: US