WO2003030777A2 - Ultrasonic probe device with rapid attachment and detachment means having a line contact collet - Google Patents

Ultrasonic probe device with rapid attachment and detachment means having a line contact collet Download PDF

Info

Publication number
WO2003030777A2
WO2003030777A2 PCT/US2002/032272 US0232272W WO03030777A2 WO 2003030777 A2 WO2003030777 A2 WO 2003030777A2 US 0232272 W US0232272 W US 0232272W WO 03030777 A2 WO03030777 A2 WO 03030777A2
Authority
WO
WIPO (PCT)
Prior art keywords
probe
compression
ultrasonic
ultrasonic device
compression clamp
Prior art date
Application number
PCT/US2002/032272
Other languages
French (fr)
Other versions
WO2003030777A3 (en
Inventor
Bradley A. Hare
Robert A. Rabiner
Kevin J. Ranucci
Rebecca I. Marciante
Mark J. Varady
Roy M. Robertson
Janniah S. Prasad
Scott A. Talbot
Original Assignee
Omnisonics Medical Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omnisonics Medical Technologies, Inc. filed Critical Omnisonics Medical Technologies, Inc.
Priority to CA002462728A priority Critical patent/CA2462728A1/en
Priority to JP2003533814A priority patent/JP2005505344A/en
Priority to EP02782140A priority patent/EP1441653A2/en
Publication of WO2003030777A2 publication Critical patent/WO2003030777A2/en
Publication of WO2003030777A3 publication Critical patent/WO2003030777A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N7/022Localised ultrasound hyperthermia intracavitary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00274Prostate operation, e.g. prostatectomy, turp, bhp treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22005Effects, e.g. on tissue
    • A61B2017/22007Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22005Effects, e.g. on tissue
    • A61B2017/22007Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
    • A61B2017/22008Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing used or promoted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22014Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire
    • A61B2017/22015Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire with details of the transmission member
    • A61B2017/22018Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire with details of the transmission member segmented along its length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320069Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic for ablating tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/32007Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320084Irrigation sleeves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320089Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic node location
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00547Prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0008Destruction of fat cells

Definitions

  • the present invention relates generally to a rapid attachment and detachment system for an ultrasonic probe used for tissue ablation capable of efficiently transferring ultrasonic energy from the ultrasonic energy source to the probe with minimal energy loss.
  • the present invention relates to an attachment and detachment system that is capable of retaining the ultrasonic probe by maintaining a minimal area of contact or "line-contact" between the probe attachment segment and the ultrasonic probe so as to provide optimal energy transfer from the ultrasonic energy source in the handle segment of the probe, thereby increasing probe efficiency during tissue ablation.
  • Vascular occlusions (clots or thrombi and occlusional deposits, such as calcium, fatty deposits, or plaque) result in the restriction or blockage of blood flow in the vessels in which they occur. Occlusions result in oxygen deprivation ("ischemia") of tissues supplied by these blood vessels. Prolonged ischemia results in permanent damage of tissue that can lead to myocardial infarction, stroke, or death.
  • Targets for occlusion include coronary arteries, peripheral arteries and other blood vessels. The disruption of an occlusion or thrombolysis can be effected by pharmacological agents and/or mechanical means.
  • Ultrasonic probes are devices which use ultrasonic energy to fragment body tissue (see, e.g., U.S. Patent No. 5,112,300; U.S. Patent No. 5,180,363; U.S. Patent No. 4,989,583; U.S. Patent No. 4,931,047; U.S. Patent No. 4,922,902; and U.S. Patent No. 3,805,787) and have been used in many surgical procedures.
  • the use of ultrasonic energy has been proposed both to mechanically disrupt clots, and to enhance the intravascular delivery of drugs to clot formations (see, e.g., U.S. Patent No. 5,725,494; U.S. Patent No. 5,728,062; and U.S. Patent No.
  • Ultrasonic devices used for vascular treatments typically comprise an extra-corporeal transducer coupled to a solid metal wire that is attached to a plurality of wires at the distal end that is then threaded through the blood vessel and placed in contact with the occlusion (see, e.g., U.S. Patent No. 5,269,297).
  • the transducer is delivered to the site of the clot, the transducer comprising a bendable plate (see, U.S. Patent No. 5,931,805).
  • the ultrasonic energy produced by an ultrasonic probe is in the form of very intense, high frequency sound vibrations that result in powerful chemical and physical reactions in the water molecules within a body tissue or surrounding fluids in proximity to the probe. These reactions ultimately result in a process called "cavitation,” which can be thought of as a form of cold (i.e., non-thermal) boiling of the water in the body tissue, such that microscopic bubbles are rapidly created and destroyed in the water creating cavities in their wake. As surrounding water molecules rush in to fill the cavity created by collapsed bubbles, they collide with each other with great force. This process is called cavitation and results in shock waves running outward from the collapsed bubbles which can fragment or ablate material such as surrounding tissue in the vicinity of the probe.
  • Some ultrasonic probes include a mechanism for irrigating an area where the ultrasonic treatment is being performed (e.g., a body cavity or lumen) to wash tissue debris from the area.
  • Mechanisms used for irrigation or aspiration described in the art are generally structured such that they increase the overall cross-sectional profile of the probe, by including inner and outer concentric lumens within the probe to provide irrigation and aspiration channels for removal of particulate matter.
  • prior art probes also maintain a strict orientation of the aspiration and the irrigation mechanism, such that the inner and outer lumens for irrigation and aspiration remain in a fixed position relative to one another, which is generally closely adjacent the area of treatment.
  • the irrigation lumen does not extend beyond the suction lumen (i.e., there is no movement of the lumens relative to one another) and any aspiration is limited to picking up fluid and/or tissue remnants within the defined distance between the two lumens.
  • U.S. Patent No. 4,961,424 to Kubota, et al. discloses an ultrasonic treatment device that produces both a primary longitudinal motion, and a supplementary lateral motion of the probe tip to increase the tissue disrupting efficiency.
  • the Kubota, et al. device still relies primarily on the tip of the probe to act as a working surface.
  • the ancillary lateral motion of the probe is intended to provide an incremental efficiency for the device operation.
  • tissue destruction is still predominantly limited to the area in the immediate vicinity at the tip of the probe.
  • U.S. Patent No. 4,504,264 to Kelman discloses an ultrasonic treatment device containing a probe that is capable of longitudinal vibrations and lateral oscillation.
  • the Kelman device is intended to improve the efficiency of ultrasonic tissue removal by providing a dual function of a fragmentation and a cutting device.
  • Tissue fragmentation is caused primarily by oscillating the tip of the probe in addition to relying on longitudinal vibrations of the probe.
  • Tissue fragmentation is caused primarily at the tip of the device, while the oscillatory motion can be employed by the surgeon to cut tissue, thereby increasing efficiency of surgical procedures.
  • the prior art devices also require complex instrument design that require incorporation of a plurality of electrodes, ultrasound frequency generating elements, switches or voltage controllers.
  • a single thick wire probe on the other hand, cannot negotiate the anatomical curves of tubular arterial and venous vessels due to its inflexibility, and could cause damage to the interior wall of such vessels.
  • ultrasonic probes used in endovascular procedures are permanently attached to the transducer energy source or a probe handle coupled to such source, such as for example, by welding, thereby precluding probe detachment.
  • probe vibration in such devices in a longitudinal mode, i.e. along the probe longitudinal axis a proximal contact with the transducer or the probe handle segment connect is essential to prevent a "hammering" effect that can result in probe damage.
  • the inner surface of the collet housing mates with the surface of the collet base in an unpredictable and inconsistent manner because of the difficulty in matching the angle of taper on the housing and the base.
  • the collets can be produced on highly accurate machines (i.e., computer controlled lathes, numerically controlled screw machines, etc.)
  • the machine tolerances still create collets that vary within a few thousandths of an inch, which is not an unusual tolerance.
  • the position of the line contact is inconsistent from collet to collet and can only be located at either the front end or the back end of the collet and cannot be located in the middle.
  • the actual closing force can vary over a wide range from collet to collet.
  • the present invention is a rapidly attachable and detachable or "quick attachment- detachment" system (referred to herein as "QAD") for an elongated catheter probe of an ultrasonic tissue ablation device, wherein the probe is capable of ultrasonically vibrating substantially in a direction transverse to the probe longitudinal axis for coupling or decoupling it from the ultrasonic energy source.
  • QID rapidly attachable and detachable or "quick attachment- detachment” system
  • the probe is capable of ultrasonically vibrating substantially in a direction transverse to the probe longitudinal axis for coupling or decoupling it from the ultrasonic energy source.
  • Manipulation and positioning of the probe within narrow body vessels, such as for example vascular arteries can be accomplished without being limited by the relatively bulky energy source.
  • the present invention relates to a coupling mechanism or "collet assembly” that enables rapid attachment and detachment of the ultrasonic probe of the device in a manner so as to maintain a minimal area of contact between the collet assembly segments.
  • This enables optimal energy transfer from the ultrasonic energy source of the device to the ultrasonic probe, thereby increasing probe efficiency during tissue ablation.
  • This objective of the present invention is accomplished by providing an attachment and detachment collet assembly that is capable of retaining the ultrasonic probe by maintaining a minimal area of contact or "line-contact" between the probe attachment segment in the collet assembly and the ultrasonic probe.
  • the present invention provides a probe attachment-detachment system or "collet assembly” that is capable of detachably restraining an ultrasonic catheter probe by maintaining a minimal area of contact, thereby transferring ultrasonic energy from a source to the probe in an optimal and efficient manner.
  • the present invention provides a guide wire probe assembly with the aforementioned collet that enables intravascular ultrasonic tissue ablation in long and narrow- diameter blood vessels.
  • the present invention provides a method of removing an occlusion in a blood vessel using an ultrasonic device having a quick attachment and detachment line-contact collet assembly.
  • Figure 1 shows the collet assembly of the present invention that is coupled to a hand piece of an ultrasonic tissue ablation device housing an energy source and an ultrasonic probe that is removably attached to the collet assembly.
  • Figure 2 A and Figure 2B illustrate the prior art problem of random variability in the line contact between the compression housing and the compression clamp.
  • Figure 2A illustrates an unevenly matched contact mating toward a back end of the compression housing while
  • Figure 2B illustrates an unevenly matched contact mating toward a front end of the compression housing.
  • Figure 3 shows a cross-sectional view of the line-contact collet assembly of the present invention.
  • Figures 4A, 4B and 4C show the line-contact collet assembly of the present invention in an attached mode (Figure 4A), in a detached mode ( Figure 4B), and in a cross-section in the detached mode ( Figure 4C).
  • Figure 5 shows the compression housing component and highlights the line-contact lip at the terminal end of the housing.
  • Figure 6A and Figure 6B show cross-sectional views of the line-contact collet assembly of the present invention prior to attachment to an ultrasonic probe ( Figure 6A) and after attachment to an ultrasonic probe ( Figure 6B).
  • Figure 7 is a general view of the elongated flexible ultrasonic probe of the present invention.
  • Figure 8 shows the threaded horn component of the QAD collet-horn assembly.
  • “Cavitation” refers to shock waves produced by ultrasonic vibration, wherein the vibration creates a plurality of microscopic bubbles which rapidly collapse, resulting in molecular collision by water molecules which collide with force thereby producing the shock waves.
  • Frenestration refers to an aperture, window, opening, hole, or space.
  • Node refers to a region of minimum energy emitted by an ultrasonic probe at or proximal to a specific location along the longitudinal axis probe.
  • Anti-node refers to a region of maximum energy emitted by an ultrasonic probe at or proximal to a specific location along the longitudinal axis probe.
  • Probe refers to a device capable of being adapted to an ultrasonic generator means, which is capable of propagating the energy emitted by the ultrasonic generator means along its length, resolving this energy into effective cavitational energy at a specific resonance (defined by a plurality of nodes and anti-nodes at a pre-determined locations (defined as an "active area” of the probe)) and is capable of acoustic impedance transformation of ultrasound energy to mechanical energy.
  • Sheath refers to a device for covering, encasing, or shielding in whole or in part, a probe or portion thereof connected to an ultrasonic generation means.
  • Transverse refers to vibration of a probe not parallel to the longitudinal axis of a probe.
  • a “transverse wave” as used herein is a wave propagated along an ultrasonic probe in which the direction of the disturbance at each point of the medium is perpendicular to the wave vector.
  • Tuning refers to a process of adjusting the frequency of the ultrasonic generator means to select a frequency that establishes a standing wave along the length of the probe.
  • the present invention provides an ultrasonic medical device operating in a transverse mode for removing a vascular occlusion by causing fragmentation of occlusion materials such as tissue. Because the device is minimally invasive, flexible and articulable, it can be inserted into narrow, tortuous blood vessels without risking damage to those vessels. Transverse vibration of the probe in such a device generates multiple anti-nodes of cavitation energy along the longitudinal axis of the probe, which are resolved into cavitational anti-nodes emanating radially from these anti-nodes at specific points along the probe. The occlusion tissue is fragmented to debris approximately of sub-micron sizes, and the transverse vibration generates a retrograde flow of debris that carries the debris away from the probe tip.
  • the transverse mode of vibration of the ultrasonic probe according to the invention differs from the axial (or longitudinal) mode of vibration that is conventional in the prior art. Rather than vibrating in the axial direction, the probe vibrates substantially in a direction transverse (perpendicular) to the axial direction. As a consequence of the transverse vibration of the probe, the tissue-destroying effects of the device are not limited to those regions of a tissue coming into contact with the tip of the probe.
  • the tissue is removed in all areas adjacent to the multiplicity of energy anti-nodes that are produced along the entire length of the probe, typically in a region having a radius of up to about 6 mm around the probe.
  • transverse vibrations By allowing transverse vibrations, fragmentation of large areas of tissue spanning the entire length of the active portion of the probe due to generation of multiple cavitational anti- nodes along the probe length perpendicular to the probe axis occurs. . Since substantially larger affected areas within an occluded blood vessel can be denuded of the occluded tissue in a short time, actual treatment time using the transverse mode ultrasonic medical device according to the invention is greatly reduced as compared to methods using prior art probes that primarily utilize longitudinal vibration (along probe axis) for tissue ablation.
  • a distinguishing feature of the present invention is the ability to utilize probes of extremely small diameter (about 0.025" and smaller) compared to prior art probes without loss of efficiency, since the tissue fragmentation process is not dependent on area of the probe tip (distal end).
  • Highly flexible probes can therefore, be designed to mimic device shapes that enable facile insertion into highly occluded or extremely narrow interstices within blood vessels.
  • Another advantage provided by the present invention is its ability to rapidly remove occlusion tissue from large areas within cylindrical or tubular surfaces such as arteries and arterial valves or selected areas within the tubular walls, which is not possible by previously disclosed devices that rely on the longitudinal vibrating probe tip for effecting tissue fragmentation.
  • An ultrasonic probe functioning in a transverse mode facilitates efficient operation of narrow-diameter probes for rapid tissue ablation.
  • Transversely vibrating ultrasonic probes for tissue ablation are described in the assignee's co-pending patent applications U.S. Serial Nos. 09/975,725; 09/618,352; and 09/917,471, the entirety of those applications are hereby incorporated by reference.
  • These co-pending patent applications describe the design parameters for such a probe its use in ultrasonic devices for tissue ablation.
  • An ultrasonic probe vibrating in a transverse mode for removal of occlusions in blood vessels has been disclosed in assignee's co- pending patent application Serial No. 09/776,015, the entirety of which is hereby incorporated as reference.
  • This co-pending patent application discloses an ultrasonic device in which a transducer is connected to a probe with a flexible tip capable of vibrating in a direction transverse to the probe longitudinal axis. With such a probe a situation may arise where it will be desirable to utilize an elongated probe resembling a catheter guide-wire probe to make possible exchange procedures often used in angioplasty..
  • the number of anti-nodes occurring along the axial length of the probe is modulated by changing the frequency of energy supplied by the ultrasonic generator.
  • the exact frequency is not critical and a ultrasonic generator run at, for example, 20 kHz is generally sufficient to create an effective number of tissue destroying anti-nodes along the axial length of the probe.
  • the present invention allows the use of ultrasonic energy to be applied to tissue selectively, because the probe transmits energy across a frequency range of from about 20 kHz through about 80 kHz.
  • the amount of ultrasonic energy to be applied to a particular treatment site is a function of the amplitude and frequency of vibration of the probe.
  • the amplitude or throw rate of the energy is in the range of 25 microns to 250 microns, and the frequency in the range of 20,000 to 80,000 Hertz (20-80 kHz).
  • the frequency of ultrasonic energy is from 20,000 Hertz to 35,000 Hertz (20 - 35 kHz). Frequencies in this range are specifically destructive of hydrated (water-laden) tissues and vascular occlusive material, while substantially ineffective toward high-collagen connective tissue, or other fibrous tissues such as, for example, vascular tissues, skin or muscle tissues.
  • the ultrasonic medical device of the present invention comprises an ultrasonic generator that is mechanically coupled to a probe having a proximal and distal end tha is capable of oscillating in a direction transverse to its longitudinal axis.
  • a magneto-strictive generator may be used for generation of ultrasound energy.
  • the preferred generator is a piezoelectric transducer that is mechanically coupled to the probe to enable transfer of ultrasonic excitation energy and cause the probe to oscillate in a transverse direction relative to its longitudinal axis.
  • the device is designed to have a small cross-sectional profile, which also allows the probe to flex along its length, thereby allowing it to be used in a minimally invasive manner.
  • Transverse oscillation of the probe generates a plurality of cavitation anti-nodes along the longitudinal axis of the member, thereby efficiently destroying the occlusion.
  • a significant feature of the invention is the retrograde movement of debris, e.g., away from the tip of the probe i.e. backwards up along the shaft of the probe that results from the transversely generated energy.
  • the amount of cavitation energy to be applied to a particular site requiring treatment is a function of the amplitude and frequency of vibration of the probe, as well as the longitudinal length of the probe tip, the proximity of the tip to a tissue, and the degree to which the probe tip is exposed to the tissues.
  • a distinguishing feature of the present invention is the ability to utilize probes of extremely small diameter (narrow diameter probes) compared to previously disclosed devices (large diameter probes) without loss of efficiency or efficacy, since the tissue fragmentation process is not dependent on area of the probe tip (distal end).
  • Highly flexible probes can therefore be obtained to mimic device shapes that enable facile insertion into highly occluded or extremely narrow interstices without resulting in breakage of the probe or puncture or damage of the tissue or body cavity while ensuring optimal results.
  • a second distinguishing feature of the small diameter probes of the invention is that the probe diameter is approximately the same over their entire length, that is, the active tip segment (distal end) and the rear segment (proximal end) of the probes are approximately similar in diameter.
  • the probe diameter at the proximal end is about 0.025 inches and the probe diameter at the distal end is about 0.015 inches, so the probe is adaptable to standard vascular introducers. Since the rear segment (proximal end) of the probes have no non- cylindrical shape or "bulk", catheters and guides can be introduced over the ends of the elongated wire probes of the invention, thereby allowing their use in standard configuration endovascular procedures.
  • the ultrasonic device of the invention comprises a longitudinal resonator such as for example, a Mason (Langevin) horn that is in intimate contact with an elongated catheter wire probe through a collet assembly.
  • the horn assembly is in turn, connected to an ultrasound energy source.
  • ultrasonic energy from the source is transmitted to the horn assembly wherein it is amplified by the horn and in turn, transmitted to the probe thorough the collet assembly.
  • Transverse vibrational modes along the longitudinal axis of the probe that are coupled to the horn resonance will be excited upon the delivery of ultrasonic energy to the probe.
  • the coupling between the elongated probe and the horn is adjusted so as to present a relatively large impedance mismatch, and be located at an anti-node of the horn.
  • Longitudinal waves impinging on the coupling interface are either reflected back into the horn or transmitted out to the probe in proportion to the degree of impedance mismatch at the coupling interface.
  • the coupling interface is configured in a manner so as to reflect most of the energy back into the horn.
  • the horn therefore, essentially acts as an energy storage device or "reservoir", thereby allowing a substantial increase in drive amplitude.
  • the energy coupled into the elongated probe is a small portion of the energy reflected back to the horn, changes in the transverse oscillation on the probe due to bending or damping have minimal effect on the longitudinal resonance of the horn.
  • the electrical source of the vibrations piezoelectric or magnetostrictive
  • the drive mechanism is, therefore, independent of a vibrational motion of the probe.
  • the transverse vibrating elongated probe of the invention does not require its terminal end be permanently affixed in intimate contact to the horn assembly, since a "hammering" action associated with longitudinal vibration is absent.
  • the elongated probe of the invention can therefore be coupled, and not welded, to the horn via a collet assembly that grips the probe along the cylindrical surface near its terminal end in a non-permanent way.
  • the collet assembly of the invention therefore, allows for quick attachment and detachment of the probe from the horn assembly and source components, thereby enabling manipulation of the elongated flexible probe into anatomically curved blood vessels without hindrance by the bulky horn and energy source components.
  • the probe of the invention can therefore be inserted into a venal cavity, positioned near the occlusion site prior to coupling it to the horn source assembly.
  • the device is then activated to effect tissue ablation and removal, after which the probe is decoupled from the horn and source component for its easy removal from the cavity.
  • a longitudinal horn is coupled to an elongated wire catheter through a collet assembly that is rapidly attachable and detachable.
  • the collet assembly comprises a quick attachment-detachment (QAD) collet assembly.
  • the attachment point of the collet assembly to the elongated probe is located at an anti-node of the horn and the dimensions are scaled (i.e., the collet head has a relatively larger diameter at the attachment point than the diameter of the probe) to produce an optimal impedance mismatch.
  • the QAD collet assembly of the present invention comprises a compression clamp that is housed within an externally mounted compression housing that is capable of exerting a compressive force circumferentially along a line-contact on the compression clamp upon engagement after insertion of the proximal end of an ultrasonic probe into the compression clamp.
  • This causes the compression clamp to exert a compressive force on the inserted ultrasonic probe end, thereby causing the probe to be non-removably, yet releasably attached to the collet assembly.
  • the compression clamp applies a restraining inwardly compressive force on the probe that minimizes torquing or twisting of the probe.
  • the probe can be subject to a multiple attachment and detachment procedures, without causing probe destruction, thereby enabling its extended reuse in surgical procedures.
  • the coupling between the elongated probe and the horn is adjusted so as to present a relatively large impedance mismatch, and be located at an anti-node of the hom.
  • Longitudinal waves impinging on the coupling interface are either reflected back into the hom or transmitted out to the probe in proportion to the degree of impedance mismatch at the coupling interface.
  • the coupling interface is configured in a manner so as to reflect most of the energy back into the hom.
  • the horn therefore, essentially acts as an energy storage device or "reservoir", thereby allowing a substantial increase in drive amplitude.
  • the collet assembly of the present invention comprises a base segment that is capable of coupling to a compression housing segment that is removably attached to the device handle by mechanical assembly, such as for example, a screw thread comprising a locking nut, bayonet mount, keyless chuck and cam fittings.
  • mechanical assembly such as for example, a screw thread comprising a locking nut, bayonet mount, keyless chuck and cam fittings.
  • the rear segment of the mechanical assembly is a hollow cylindrical segment comprising a screw thread that allows insertion and attachment of the ultrasonic device handle containing a drive assembly containing a complimentary thread arrangement to be inserted into and non-removably attached to the cylindrical segment by applying a torque.
  • the ultrasonic probe is mounted to the collet assembly such that the collet assembly grips the probe at a point greater than about 1 mm and less than about 30 mm from the terminus of the probe proximal end, or optionally, is adjustable to any point in between, so as to optimize probe vibration based on the frequency of the ultrasound transducer in the device handle.
  • the probe attachment comprising the external collet assembly with the attached probe, is connected to the operating handle of the ultrasonic device.
  • the elongated ultrasonic probe that is removably restrained by the collet assembly of the present invention is either a single diameter wire with a uniform cross section offering flexural stiffness along the entire length, or is tapered or stepped along its length to control the amplitude of the transverse wave along the entire longitudinal axis.
  • the probe can be cross- sectionally non-cylindrical that is capable of providing both flexural stiffness and support energy conversion along the entire length.
  • the length of the elongated probe of the present invention is chosen so as to be resonant in either in an exclusively transverse mode, or be resonant in combination of transverse and longitudinal modes to provide a wider operating range.
  • the elongated probe of the present invention is chosen to be from about 30 cm to about 300 cm in length. In a most preferred embodiment, the elongated probe of the invention has a length of about 70 cm to about 210 cm.
  • Suitable probe materials include metallic materials and metallic alloys suited for ultrasound energy transmission. In a preferred embodiment, the metallic material comprising the elongated probe is titanium.
  • the elongated probe of the invention is circumferentially enclosed in a sheath that provides a conduit for irrigation fluids, aspiration of fragmented tissue, or for delivery of therapeutic drugs to the occlusion site.
  • the sheath can extend either partially or over the entirety of the probe, and can additionally comprise of fenestrations for directing ultrasonic energy from the probe at specific locations within venal cavities for selective ablation of tissue.
  • An ultrasonic tissue ablation device comprising a sheath for removal of occlusions in blood vessels has been disclosed in assignee's co-pending patent application Serial No. 09/776,015, the entirety of which is hereby incorporated by reference
  • the elongated catheter probe is comprised of a proximal end and a distal end with respect to the hom assembly, and is in the form of a long small diameter wire incorporating a series of telescoping segments along its longitudinal axis, such that the largest diameter segment is proximal to the hom assembly, and either continually or segmental, sequentially decreasing diameters from the proximal end to the distal end.
  • the proximal end for each component refers to the end farthest from the probe tip, while distal end refers to the end closest to the probe tip.
  • the elongated probe is comprised of a non-segmented, uniformly narrow diameter wire, such as for example a guide wire, such as those used in insertion of catheters.
  • the QAD collet of the invention is housed within an externally mounted compression clamp or collet assembly comprising a base segment with a longitudinal slit capable of accommodating a narrow-diameter catheter wire probe, and a compression housing that is capable of exerting a compressive force on the base after insertion of the ultrasonic probe into the longitudinal slit, thereby causing a non-removable probe attachment ("attached mode") to the collet assembly.
  • the collet assembly applies a restraining inwardly compressive force on the probe that minimizes torquing or twisting of the probe.
  • the probe can be subject to a multiple attachment and detachment procedures, without causing probe destruction, thereby enabling its extended reuse in surgical procedures.
  • the terminal ends of the compression clamp and compression housing components of the collet assembly of the present invention are tapered so as to allow the collet assembly to maintain a true axial orientation, thereby enabling multiple insertions and retractions of the probe into and from the collet assembly prior to and after device use, without causing the probe to kink.
  • the shape of the proximal end of the compression clamp (rear segment with respect to the entering probe), is matched with that of the ultrasound energy source generator so as to maximize contact area between the collet assembly and the distal end of the transducer-sound conductor assembly (the "drive assembly").
  • the proximal end of the collet assembly is shaped in any suitable form providing maximal contact area, including conical, frusto-conical, triangular, square, oblong, and ovoid, upon probe attachment to the collet within the housing assembly, which in turn maintains intimate contact with the drive assembly.
  • the three segment assembly that includes the probe, the collet assembly and the drive assembly form a single assembled component in the device operational state, in terms of their combined ability to transmit sqund energy from the transducer in the drive assembly to the probe without energy loss thermally or mechanically.
  • the collet assembly of the present invention can be designed to accommodate a series of probe diameters, or for a specific probe diameter by varying the inner diameter of the cylindrical slot.
  • the outer diameters of the collet assembly remains unchanged, thereby allowing attachment of probes of differing diameters into a universal coupling and drive assembly.
  • the collet assembly of the present invention enables (1) attachment of the ultrasonic wire probe of the device in a rapidly detachable manner to the hand piece that either functions as a conduit for ultrasonic energy that is obtained from an externally located element (optionally, the device handle can house the ultrasonic energy source) and (2) transmission of ultrasonic energy from the source element to the ultrasonic wire probe, causing it to vibrate in a substantially transverse mode.
  • FIG. 1 A preferred embodiment of the collet assembly of the present invention comprising a removably attached ultrasonic wire probe and a device handle comprising an ultrasonic energy source housed within is shown in Figure 1.
  • the collet assembly 5 comprises a compression clamp 10 having a proximal end 7 and a tapered distal end 8.
  • the distal end 8 is removably attached to an ultrasonic wire probe 25 whereby the compression clamp 10 is made to remain in intimate contact with the probe 25 by a compression housing 14.
  • the compression clamp 10 of the collet assembly is, in turn, removably attached to an ultrasonic energy source 30 that is housed inside a handle 40 by a thread assembly 34 in a manner so as to remain in intimate contact with the energy source 30.
  • the collet assembly 5 therefore, maintains the ultrasonic wire probe 25 to be in contact with the ultrasonic energy source 30 indirectly, and conductively transfers ultrasonic energy from the energy source 30 to the ultrasonic wire probe 25, thereby causing the ultrasonic wire probe 25 to vibrate substantially in a transverse mode.
  • the collet assembly 5 of the present invention when coupled to both the ultrasonic wire probe 25 and the handle 40 housing the ultrasonic energy source 30, enables the ultrasonic wire probe 25 and the handle 40 to function as a single rigidly connected unit for efficient transfer of ultrasonic acoustic energy.
  • the efficiency of this energy transfer is substantially influenced by the force with which the collet assembly 5 grips the ultrasonic wire probe 25 in the "attached mode" wherein the probe 25 is non-removably restrained by the collet assembly 5 which causes the probe 25 to physically remain attached to the hand piece segment of the device.
  • a low grip force exerted by the collet assembly 5 on the ultrasonic wire probe 25 in the attached mode results in substantial loss of energy between the collet assembly 5 and the wire probe 25. Above a threshold level, any further increase in the grip force does not increase the efficiency of energy transfer.
  • the collet assembly grip force is maintained at an optimal level by tightening compression housing 14 over the compression clamp 10 with a calibrated torque wrench.
  • the grip force exerted by collet assembly 5 of the present invention on the ultrasonic wire probe 25 (in the attached mode) provides minimal surface contact between the compression clamp 10 and the compression housing 14.
  • the collet assembly 5 of the present invention overcomes the difficulty with regard to matching of the tapering angle at the distal end of the compression housing 14 with that of the corresponding tapered distal end of the compression clamp 10, as is the case in prior art collets.
  • the inner surface of the collet housing mates with the tapered surface of the collet base in an unpredictable and inconsistent manner because of the difficulty in matching the angle of taper on the housing and the base.
  • the collets can be produced on highly accurate machines (i.e., computer controlled lathes, numerically controlled screw machines, etc.)
  • the machine tolerances still create collets that vary within a few thousandths of an inch, which is not an unusual tolerance.
  • the position of the line contact is inconsistent from collet to collet and can only be located at either the front end or the back end of the collet and cannot be located in the middle.
  • the actual closing force can vary over a wide range from collet to collet.
  • a mating surface of the compression housing and a mating surface of the compression clamp mate in one of three scenarios: (1) perfect mating; (2) unevenly matched mating toward the back end of the compression housing (Figure 2A); or (3) unevenly matched mating toward the front end of the compression housing ( Figure 2B).
  • Figure 2A unevenly matched mating toward the back end of the compression housing
  • Figure 2B unevenly matched mating toward the front end of the compression housing
  • the actual closing force, and therefore the grip force exerted by the collet assembly on the ultrasonic wire probe in the attached mode can vary over a wide range for one collet with respect to another. This, in turn, leads to substantial variation in the efficiency of ultrasound energy transfer from the collet assembly to the ultrasonic probe, which can seriously impact probe operation efficiency.
  • Figure 2A and Figure 2B illustrate the practical situation of random variability in the line contact between the compression housing 14 and the compression clamp 10.
  • a line contact and not a complete mating of the entire mating surfaces occurs between distal ends of the compression housing 14 and the compression clamp 10.
  • Such a line contact varies positionally in a random manner and results in large variations in the grip force exerted by the collet assembly 5 on the ultrasonic wire probe 25 inserted in longitudinal slot 12, thereby impacting the transfer of ultrasound energy by collet assembly 5 from the energy source 30 to the ultrasonic wire probe 25.
  • Figure 2A illustrates an unevenly matched mating contact 13 toward the back end of the compression housing while Figure 2B illustrates an unevenly matched contact 13 mating toward the front end of the compression housing.
  • the collet assembly 5 of the present invention takes into consideration that will be significant variation in the machining, and the collet assembly 5 focuses the gripping force only on a line contact.
  • the collet assembly 5 of the present invention overcomes the random variability of the line contact due to the relative taper angles of the compression housing 14 and the compression clamp 10 by providing a housing assembly that is designed to make a line contact with the base at a pre-determined, optimal location.
  • the location of the line contact in the collet assembly 5 of the present invention can be controlled within a close tolerance that is consistent with the choice of machining operation for the individual components forming the collet assembly 5.
  • the collet assembly 5 of the present invention provides a consistent grip force on the ultrasonic wire probe 25 for any selected tightening torque.
  • a consistent grip force is exerted by the collet assembly 5 of the present invention on the ultrasonic wire probe 25 in the attached mode that in rum results in a highly efficient transfer of ultrasound energy from the collet assembly 5 to the probe 25 for optimal probe performance upon activation of the ultrasound tissue ablation device.
  • Figure 3 shows a cross-sectional view of a preferred embodiment of the collet assembly 5 of the present invention wherein a pre-determined line-contact is established between the compression clamp 10 and the compression housing 14.
  • the collet assembly 5 comprises a cylindrical compression clamp 10 having a proximal end 7 provided with a coupling mechanism 16, and a conical, tapered distal mating surface 9a.
  • the coupling mechanism 16 comprises a thread assembly 19 that is capable of engaging a complementary thread assembly suitably located on a hom assembly (not shown) that forms part of the ultrasonic energy source 30 of the ultrasonic tissue ablation device.
  • the compression clamp 10 further comprises a slit 20 having a centrally located longitudinal slot 12 that extends from the distal end 8 along its longitudinal axis, terminating at a circular slot 11 extending across the diameter of the compression clamp 10, and in a direction perpendicular to the slit 20.
  • the compression clamp 10 further comprises of a thread assembly 15 that is capable of engaging a complementary thread assembly 17 of the compression housing 14.
  • the compression housing 14 comprises a hollow cylinder with a proximal end 18 and a tapered distal end 22. The dimensions of the compression housing 14 are chosen so as to enable it to at least partially accommodate the compression clamp 10.
  • An inner surface of the compression housing 14 comprises a line-contact lip 21 proximal to the distal end 22, extending circumferentially along the inner surface of the compression housing 14.
  • the line-contact lip 21 is capable of providing a mechanism for exerting a circumferential line-contact along the correspondingly located surface proximal to the distal end 8 of the compression clamp 10.
  • the line-contact lip 21 extends continuously along the inner surface of the compression housing 14 proximal to the tapered distal end 22 upon engaging the compression clamp 10 with the compression housing 14.
  • the line-contact lip 21 comprises a plurality of discontinuous arctuate segments that extend circumferentially along the inner surface of the compression housing 14 proximal to the tapered distal end 22 that are capable of providing a series of discontinuous line (or point) contacts along the correspondingly located surface proximal to the tapered distal end 8 of the compression clamp 10 upon engaging the compression clamp 10 with the compression housing 14.
  • the line-contact lip 21 is a surface that extends from the inner surface of the compression housing 14.
  • the line-contact lip 21 is a round surface (i.e., a dimple). Because the line-contact lip 21 is a round surface mating with a flat surface of the compression clamp 10, the line-contact lip 21 makes consistent and repeatable contact with the compression clamp 10 at a pre-determined location.
  • the round surface of the line-contact lip 21 ensures that the line-contact lip 21 mates in a continuous line all the way around the compression clamp 10, thus creating a line contact.
  • the round surface of the line-contact lip 21 ensures that the line-contact lip 21 mates in the same location every time.
  • the line-contact lip 21 could be other shapes within the spirit and scope of the invention.
  • the line-contact collet assembly of the present invention ensures consistent and repeatable contact between the compression clamp 10 and the compression housing 14 at a pre- determined location.
  • the design of the inner surface of the compression housing 14 ensures that the line-contact lip 21 mates with the compression clamp 10 in a uniform manner.
  • the inner surface of the compression housing 14 has a groove 23 and a notch 24.
  • the groove 23 in the inner surface of the compression housing 14 eliminates surface to surface contact between the compression housing 14 and the compression clamp 10 toward the back end of the mating surfaces 9a and 9b.
  • the groove 23 is machined into the inner surface of the compression housing 14, although those skilled in the art will recognize the that groove 23 can be fabricated using other methods known in the art.
  • the length and depth of the groove 23 can be varied depending on the length of line contact that is desired.
  • the notch 24 eliminates surface to surface contact between the compression housing 14 and the compression clamp 10 toward the front end of the mating surfaces 9a and 9b.
  • the notch 24 is machined into the inner surface of the compression housing 14, although those skilled in the art will recognize the that notch 24 can be fabricated using other methods known in the art.
  • the length and depth of the notch 24 can be varied depending on the length of line contact that is desired. Together the groove 23 and the notch 24 ensure that the line-contact lip 21 of the compression housing 14 has consistent and repeatable contact with the compression clamp 10.
  • the length of the line-contact lip 21 can be varied depending on the desired length of contact between the compression housing 14 and the compression clamp 10.
  • the location of the line-contact lip 21 is controlled in the machining process which is simple to control.
  • the prior art requires controlling the taper angle of two different surfaces (the compression clamp 10 with the compression housing 14) which requires precise machining and accurate alignment and is much more difficult.
  • Figure 4 A and Figure 4B show assembled and disassembled views of the collet assembly 5 of the present invention, wherein the compression housing 14 is either removably attached to the compression clamp 10 (Figure 4A) or detached from the compression clamp 10 ( Figure 4B) by engagement and disengagement of the thread assembly 15 located along the outer surface of the compression clamp 10 with a complementary thread assembly located along the inner surface of compression housing 14 (not shown).
  • Figure 4C shows a cross sectional view of the collet assembly 5 of the present invention comprising the compression clamp 10 and the compression housing 14.
  • a proximal end 7 of compression clamp 10 comprises a thread assembly 19 that is capable of engaging with complementary threading of a hom assembly (not shown) that forms part of the ultrasonic energy source 30.
  • the compression clamp 10 further comprises a slit 20 centrally located along a longitudinal slot 12, and extends inwardly from the tapered distal end 8 along the longitudinal axis of the cylindrical compression clamp 10.
  • the longitudinal slot 12 is capable of removably receiving the ultrasonic wire probe 25.
  • the slit 20 terminates at a perpendicular circular slot 11 which acts as a fulcrum about which the slit 20 and consequently the circular slot 11 are compressed after receiving the probe 25 by the line-contact lip 21 of the compression housing 14 upon engaging thread assembly 15 of the compression clamp 10 with the complementary thread assembly 17 of the compression housing 14.
  • Figure 5 shows a cross-sectional view of the compression housing 14, including an expanded view of the line-contact lip 21 that extends cirfumferentially along the inner surface of the tapered distal end 22 of the compression housing 14.
  • Figure 6 A and Figure 6B show cross-sectional views of the line-contact collet assembly 5 of the present invention prior to and after attachment of an ultrasonic wire probe 25 of the ultrasonic tissue ablation device.
  • the line-contact lip 21 in the compression housing 14 remains in intimate surface contact with the corresponding area along the circumference of the compression clamp 10 in the engaged mode.
  • the longitudinal slot 12 is capable of removably receiving the probe 25 when the compression housing remains coupled, but not fully engaged (tightened).
  • the compression housing 14 is tightened by applying a pre-determined torque force supplied by a mechanical device, such as for example, a calibrated torquing wrench, that results in the line- contact lip 21 exerting a uniform, compressive force circumferentially on the compression clamp 10, which in turn, causes the probe 25 to be non-removably retained within the longitudinal slot 12 in a manner so as to remain in intimate surface contact with the compression clamp 10.
  • a mechanical device such as for example, a calibrated torquing wrench
  • the proximal end 7 of the compression clamp 10 is removably attached to the hom assembly of the ultrasonic energy source (not shown) by engaging the thread assembly 19 with a complementary thread assembly in the hom assembly (not shown).
  • the collet assembly 5 of the present invention enables the ultrasonic wire probe 25 to remain in rigid, indirect contact (via the collet assembly) with the ultrasonic energy source 30 of the device that simulates a single component that results in an efficient transfer of ultrasonic energy to the source to the ultrasonic wire probe 25.
  • Figure 7 shows a preferred embodiment of the elongated ulfrasonic wire probe 25 of the present invention comprising a proximal end 45 and a distal end 50 that includes a probe tip 51.
  • the probe 25 is coupled to a transducer and sound conductor assembly (not shown) that functions as generation and transmission sources of ultrasound energy for activation of the probe 25.
  • the generation source may or may not be a physical part of the device itself.
  • the probe 25 transmits ultrasonic energy received from the sound conductor along its length, and is capable of engaging the sound conductor component at the proximal end 45 via the collet assembly 5 with sufficient restraint to form an acoustical mass that can propagate the ultrasonic energy provided by the ultrasonic energy source (not shown).
  • the probe diameter decreases at defined segment intervals 46, 47, and 48.
  • the segment interval 48 which comprises the probe tip 51 at the distal end 50 is capable of flexing more than the segment intervals 46 and 47 because of the relatively smaller diameter, and thereby enables the probe 25 to generate more cavitation energy along segment interval 48 and the distal end 50.
  • Energy from the ultrasound energy source is transmitted along the length of the probe 25, causing the probe 25 to vibrate in a direction that is transverse to the longitudinal axis of the probe 25.
  • the segment interval 46 has a head segment 52 for engaging the collet assembly 5 of the present invention, which in turn, is attached removably to the sound conductor-transducer assembly.
  • the sound conductor component for providing, amplifying and transferring ultrasonic energy to the ultrasonic wire probe 25 is a Mason (Langevin) horn that is detachably comiected to the probe 25 through the collet assembly 5.
  • Figure 8 shows one embodiment of the hom assembly 54 of the present invention that is detachably coupled to the proximal end 45 of the ultrasonic wire probe 25.
  • the hom assembly 54 comprises of a distal end 56 that is capable detachably coupling to the line-contact collet assembly 5 of the present invention having removably attached thereto the ultrasonic wire probe 25 and a proximal end 58 that is coupled to a transducer (not shown) functioning as an ultrasound energy source by screw threads 60 and 62 located terminally at either end.
  • the hom assembly 54 comprising the sound conductor or "hom” functions as an energy reservoir that allows only a small fraction of the energy transmitted by the ultrasonic energy source to the probe 25 via the line-contact collet assembly 5, thereby minimizing energy loss due to probe 25 bending or damping that can occur when the probe 25 is inserted into blood vessels.
  • the collet assembly 5 of the present invention when used in an ultrasonic tissue ablation device provides several advantages for tissue ablation within narrow arteries over conventional devices.
  • the transverse energy is transmitted extremely efficiently from the energy source (not shown) to the probe 25 by the collet assembly 5 of the present invention due to its line contact with the probe 25.
  • the required force to cause cavitation is, therefore, low.
  • the transverse probe vibration provides sufficient cavitation energy at a substantially low power ( ⁇ 1 watt). Because transverse cavitation occurs over a significantly greater length (i.e., along the entire probe longitudinal axis that comes in contact with the tissue), the rates of endovascular materials that can be removed are both significantly greater and faster than conventional devices.
  • the transverse vibrational mode of the elongated probe attached to the collet assembly 5 of the present invention can be attached and detached multiple times without altering the efficiency of energy transfer from the collet assembly 5 to the probe 25 due to the line contact between the compression housing 14 and the compression clamp 10 of the collet assembly 5 occurring reproducibly in a pre-determined manner.
  • collet assembly 5 of the present invention Another advantage offered by the collet assembly 5 of the present invention is the mechanism for probe attachment and detachment by means of a lateral wall compression and decompression provided by the coupling assembly.
  • the probe 25 can be rapidly attached to and detached from the collet assembly 5 without "screwing” or “torquing” that are utilized conventional modes of attachment of ultrasonic probes to the probe handle. This feature facilitates ease of manipulation and positioning of the probe within narrow and torturous venal cavities at the occlusion site prior to and after device use.

Abstract

An ultrasonic medical device comprising an ultrasonic probe (25) and a collet assembly for probe attachment and detachment, and a method of removing occlusions in blood vessels using the ultrasonic medical device. The probe (25) detachability allows insertion, manipulation and withdrawal independently of a device body. The collet assembly (5) comprises a compression clamp (10) capable of releasably receiving the probe (25), and a compression housing (14) that initiates a minimal area 'line-contact' between the collet assembly segments upon engagement. A line-contact lip (21) ensures consistent and repeatable contact between the compression clamp (10) and the compression housing (14) at a pre-determined location to provide a consistent closing force on the probe (25) for any selected tightening torque. The line- contact between the collet assembly segments provides efficient ultrasonic energy transfer from an ultrasonic energy source (30) to the probe (25) thereby increasing probe efficiency during tissue ablation.

Description

ULTRASONIC PROBE DEVICE WITH RAPID ATTACHMENT AND DETACHMENT MEANS HAVING A LINE CONTACT COLLET
FIELD OF THE INVENTION
The present invention relates generally to a rapid attachment and detachment system for an ultrasonic probe used for tissue ablation capable of efficiently transferring ultrasonic energy from the ultrasonic energy source to the probe with minimal energy loss. Specifically, the present invention relates to an attachment and detachment system that is capable of retaining the ultrasonic probe by maintaining a minimal area of contact or "line-contact" between the probe attachment segment and the ultrasonic probe so as to provide optimal energy transfer from the ultrasonic energy source in the handle segment of the probe, thereby increasing probe efficiency during tissue ablation.
BACKGROUND OF THE INVENTION
Vascular occlusions (clots or thrombi and occlusional deposits, such as calcium, fatty deposits, or plaque) result in the restriction or blockage of blood flow in the vessels in which they occur. Occlusions result in oxygen deprivation ("ischemia") of tissues supplied by these blood vessels. Prolonged ischemia results in permanent damage of tissue that can lead to myocardial infarction, stroke, or death. Targets for occlusion include coronary arteries, peripheral arteries and other blood vessels. The disruption of an occlusion or thrombolysis can be effected by pharmacological agents and/or mechanical means.
Ultrasonic probes are devices which use ultrasonic energy to fragment body tissue (see, e.g., U.S. Patent No. 5,112,300; U.S. Patent No. 5,180,363; U.S. Patent No. 4,989,583; U.S. Patent No. 4,931,047; U.S. Patent No. 4,922,902; and U.S. Patent No. 3,805,787) and have been used in many surgical procedures. The use of ultrasonic energy has been proposed both to mechanically disrupt clots, and to enhance the intravascular delivery of drugs to clot formations (see, e.g., U.S. Patent No. 5,725,494; U.S. Patent No. 5,728,062; and U.S. Patent No. 5,735,811). Ultrasonic devices used for vascular treatments typically comprise an extra-corporeal transducer coupled to a solid metal wire that is attached to a plurality of wires at the distal end that is then threaded through the blood vessel and placed in contact with the occlusion (see, e.g., U.S. Patent No. 5,269,297). In some cases, the transducer is delivered to the site of the clot, the transducer comprising a bendable plate (see, U.S. Patent No. 5,931,805).
The ultrasonic energy produced by an ultrasonic probe is in the form of very intense, high frequency sound vibrations that result in powerful chemical and physical reactions in the water molecules within a body tissue or surrounding fluids in proximity to the probe. These reactions ultimately result in a process called "cavitation," which can be thought of as a form of cold (i.e., non-thermal) boiling of the water in the body tissue, such that microscopic bubbles are rapidly created and destroyed in the water creating cavities in their wake. As surrounding water molecules rush in to fill the cavity created by collapsed bubbles, they collide with each other with great force. This process is called cavitation and results in shock waves running outward from the collapsed bubbles which can fragment or ablate material such as surrounding tissue in the vicinity of the probe.
Some ultrasonic probes include a mechanism for irrigating an area where the ultrasonic treatment is being performed (e.g., a body cavity or lumen) to wash tissue debris from the area. Mechanisms used for irrigation or aspiration described in the art are generally structured such that they increase the overall cross-sectional profile of the probe, by including inner and outer concentric lumens within the probe to provide irrigation and aspiration channels for removal of particulate matter. In addition to making the probe more invasive, prior art probes also maintain a strict orientation of the aspiration and the irrigation mechanism, such that the inner and outer lumens for irrigation and aspiration remain in a fixed position relative to one another, which is generally closely adjacent the area of treatment. Thus, the irrigation lumen does not extend beyond the suction lumen (i.e., there is no movement of the lumens relative to one another) and any aspiration is limited to picking up fluid and/or tissue remnants within the defined distance between the two lumens.
Another drawback of existing ultrasonic medical probes is that they typically remove tissue relatively slowly in comparison to instruments that excise tissue by mechanical cutting. Part of the reason for this is that existing ultrasonic devices rely on a longitudinal vibration of the tip of the probe for their tissue-disrupting effects. Because the tip of the probe is vibrated in a direction in line with the longitudinal axis of the probe, a tissue-destroying effect is only generated at the tip of the probe. One solution that has been proposed is to vibrate the tip of the probe in a direction other than perpendicular to the longitudinal axis of the probe, in addition to vibrating the tip in the longitudinal direction. It is proposed that such motions will supplement the main point of tissue destruction, which is at the probe tip, since efficiency is determined by surface area of the probe tip. For example, U.S. Patent No. 4,961,424 to Kubota, et al. discloses an ultrasonic treatment device that produces both a primary longitudinal motion, and a supplementary lateral motion of the probe tip to increase the tissue disrupting efficiency. The Kubota, et al. device, however, still relies primarily on the tip of the probe to act as a working surface. The ancillary lateral motion of the probe is intended to provide an incremental efficiency for the device operation. Thus, while destruction of tissue in proximity to the tip of the probe is more efficient, tissue destruction is still predominantly limited to the area in the immediate vicinity at the tip of the probe. The Kubota, et al. device is therefore limited in its ability to ablate tissue within inner surfaces of cylindrical blood vessels, for example, in vascular occlusions. U.S. Patent No. 4,504,264 to Kelman discloses an ultrasonic treatment device containing a probe that is capable of longitudinal vibrations and lateral oscillation. The Kelman device is intended to improve the efficiency of ultrasonic tissue removal by providing a dual function of a fragmentation and a cutting device. Tissue fragmentation is caused primarily by oscillating the tip of the probe in addition to relying on longitudinal vibrations of the probe. Tissue fragmentation is caused primarily at the tip of the device, while the oscillatory motion can be employed by the surgeon to cut tissue, thereby increasing efficiency of surgical procedures. The prior art devices also require complex instrument design that require incorporation of a plurality of electrodes, ultrasound frequency generating elements, switches or voltage controllers.
The longitudinal probe vibration required for tissue ablation in prior art devices necessitates the probe lengths to be relatively short, since use of long probes result in a substantial loss of ultrasonic energy at the probe tip due to thermal dissipation and undesirable horizontal vibration that interferes with the required longitudinal vibration. Effecting ultrasonic transmission through a plurality of flexible thin wires has been found impracticable because: (1) relatively high power (~25 watts) is required to deliver sufficient energy to the probe tip; and (2) such thin wires tend to perform buckling vibrations, resulting in almost the entire ultrasonic power introduced in the probe is dissipated during its passage to the probe tip. Such limitations have precluded the use of ultrasonic tissue ablation devices in surgical procedures wherein access to vascular occlusion requires traversing an anatomically lengthy or sharply curved path along tubular vessels. Furthermore, the relatively high-energy requirement for such devices causes probe heating that can cause fibrin to re-clot blood within the occluded vessel (thermally induced re-occlusion). The elevation in probe temperature is not just limited to probe tip, but also occurs at points wherein the narrow diameter wire probes have to bend to conform to the shape of the blood vessel, thereby limiting causing probe damage and limiting its reuse.
A single thick wire probe on the other hand, cannot negotiate the anatomical curves of tubular arterial and venous vessels due to its inflexibility, and could cause damage to the interior wall of such vessels. Currently, such exchange procedures are not possible because ultrasonic probes used in endovascular procedures are permanently attached to the transducer energy source or a probe handle coupled to such source, such as for example, by welding, thereby precluding probe detachment. Moreover, since probe vibration in such devices in a longitudinal mode, i.e. along the probe longitudinal axis, a proximal contact with the transducer or the probe handle segment connect is essential to prevent a "hammering" effect that can result in probe damage.
In prior art collets for ultrasonic probes, the inner surface of the collet housing mates with the surface of the collet base in an unpredictable and inconsistent manner because of the difficulty in matching the angle of taper on the housing and the base. Even though the collets can be produced on highly accurate machines (i.e., computer controlled lathes, numerically controlled screw machines, etc.), the machine tolerances still create collets that vary within a few thousandths of an inch, which is not an unusual tolerance. Thus, the position of the line contact is inconsistent from collet to collet and can only be located at either the front end or the back end of the collet and cannot be located in the middle. For the same tightening torque, the actual closing force can vary over a wide range from collet to collet.
Thus, there is a need in the art for an improvement over the prior art collets to provide a consistent closing force on the wire for any selected tightening torque. There is also a need in the art for a coupling mechanism for an ultrasonic probe to be releasably coupled to an ultrasonic energy source in a manner to minimize undesirable vibrations that can cause probe damage, and enable efficient transfer of ultrasound energy from an energy source to the ultrasonic probe to maximize its tissue ablation capability.
SUMMARY OF THE INVENTION The present invention is a rapidly attachable and detachable or "quick attachment- detachment" system (referred to herein as "QAD") for an elongated catheter probe of an ultrasonic tissue ablation device, wherein the probe is capable of ultrasonically vibrating substantially in a direction transverse to the probe longitudinal axis for coupling or decoupling it from the ultrasonic energy source. Manipulation and positioning of the probe within narrow body vessels, such as for example vascular arteries, can be accomplished without being limited by the relatively bulky energy source. Specifically, the present invention relates to a coupling mechanism or "collet assembly" that enables rapid attachment and detachment of the ultrasonic probe of the device in a manner so as to maintain a minimal area of contact between the collet assembly segments. This, in turn, enables optimal energy transfer from the ultrasonic energy source of the device to the ultrasonic probe, thereby increasing probe efficiency during tissue ablation. This objective of the present invention is accomplished by providing an attachment and detachment collet assembly that is capable of retaining the ultrasonic probe by maintaining a minimal area of contact or "line-contact" between the probe attachment segment in the collet assembly and the ultrasonic probe.
In one aspect, the present invention provides a probe attachment-detachment system or "collet assembly" that is capable of detachably restraining an ultrasonic catheter probe by maintaining a minimal area of contact, thereby transferring ultrasonic energy from a source to the probe in an optimal and efficient manner.
In another aspect, the present invention provides a guide wire probe assembly with the aforementioned collet that enables intravascular ultrasonic tissue ablation in long and narrow- diameter blood vessels.
Additionally, the present invention provides a method of removing an occlusion in a blood vessel using an ultrasonic device having a quick attachment and detachment line-contact collet assembly.
Additional aspects and features of the present invention will become apparent from the following description, wherein the preferred embodiments are set forth in detail in conjunction with accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be further explained with reference to the attached drawings, wherein like structures are referred to by like numerals throughout the several views. The drawings shown are not necessarily to scale, with emphasis instead generally being placed upon illustrating the principles of the present invention. Figure 1 shows the collet assembly of the present invention that is coupled to a hand piece of an ultrasonic tissue ablation device housing an energy source and an ultrasonic probe that is removably attached to the collet assembly.
Figure 2 A and Figure 2B illustrate the prior art problem of random variability in the line contact between the compression housing and the compression clamp. Figure 2A illustrates an unevenly matched contact mating toward a back end of the compression housing while Figure 2B illustrates an unevenly matched contact mating toward a front end of the compression housing.
Figure 3 shows a cross-sectional view of the line-contact collet assembly of the present invention.
Figures 4A, 4B and 4C show the line-contact collet assembly of the present invention in an attached mode (Figure 4A), in a detached mode (Figure 4B), and in a cross-section in the detached mode (Figure 4C).
Figure 5 shows the compression housing component and highlights the line-contact lip at the terminal end of the housing.
Figure 6A and Figure 6B show cross-sectional views of the line-contact collet assembly of the present invention prior to attachment to an ultrasonic probe (Figure 6A) and after attachment to an ultrasonic probe (Figure 6B).
Figure 7 is a general view of the elongated flexible ultrasonic probe of the present invention.
Figure 8 shows the threaded horn component of the QAD collet-horn assembly.
While the above-identified drawings set forth preferred embodiments of the present invention, other embodiments of the present invention are also contemplated, as noted in the discussion. This disclosure presents illustrative embodiments of the present invention by way of representation and not limitation. Numerous other modifications and embodiments can be devised by those skilled in the art which fall within the scope and spirit of the principles of the present invention. DETAILED DESCRIPTION OF THE INVENTION
The following terms and definitions are used herein:
"Cavitation" as used herein refers to shock waves produced by ultrasonic vibration, wherein the vibration creates a plurality of microscopic bubbles which rapidly collapse, resulting in molecular collision by water molecules which collide with force thereby producing the shock waves.
"Fenestration" as used herein refers to an aperture, window, opening, hole, or space.
"Node" as used herein refers to a region of minimum energy emitted by an ultrasonic probe at or proximal to a specific location along the longitudinal axis probe.
"Anti-node" as used herein refers to a region of maximum energy emitted by an ultrasonic probe at or proximal to a specific location along the longitudinal axis probe.
"Probe" as used herein refers to a device capable of being adapted to an ultrasonic generator means, which is capable of propagating the energy emitted by the ultrasonic generator means along its length, resolving this energy into effective cavitational energy at a specific resonance (defined by a plurality of nodes and anti-nodes at a pre-determined locations (defined as an "active area" of the probe)) and is capable of acoustic impedance transformation of ultrasound energy to mechanical energy.
"Sheath" as used herein refers to a device for covering, encasing, or shielding in whole or in part, a probe or portion thereof connected to an ultrasonic generation means.
"Transverse" as used herein refers to vibration of a probe not parallel to the longitudinal axis of a probe. A "transverse wave" as used herein is a wave propagated along an ultrasonic probe in which the direction of the disturbance at each point of the medium is perpendicular to the wave vector.
"Tuning" as used herein refers to a process of adjusting the frequency of the ultrasonic generator means to select a frequency that establishes a standing wave along the length of the probe.
The present invention provides an ultrasonic medical device operating in a transverse mode for removing a vascular occlusion by causing fragmentation of occlusion materials such as tissue. Because the device is minimally invasive, flexible and articulable, it can be inserted into narrow, tortuous blood vessels without risking damage to those vessels. Transverse vibration of the probe in such a device generates multiple anti-nodes of cavitation energy along the longitudinal axis of the probe, which are resolved into cavitational anti-nodes emanating radially from these anti-nodes at specific points along the probe. The occlusion tissue is fragmented to debris approximately of sub-micron sizes, and the transverse vibration generates a retrograde flow of debris that carries the debris away from the probe tip.
The transverse mode of vibration of the ultrasonic probe according to the invention differs from the axial (or longitudinal) mode of vibration that is conventional in the prior art. Rather than vibrating in the axial direction, the probe vibrates substantially in a direction transverse (perpendicular) to the axial direction. As a consequence of the transverse vibration of the probe, the tissue-destroying effects of the device are not limited to those regions of a tissue coming into contact with the tip of the probe. Rather, as the active portion of the probe is positioned in proximity to an occlusion or other blockage of a blood vessel, the tissue is removed in all areas adjacent to the multiplicity of energy anti-nodes that are produced along the entire length of the probe, typically in a region having a radius of up to about 6 mm around the probe.
By allowing transverse vibrations, fragmentation of large areas of tissue spanning the entire length of the active portion of the probe due to generation of multiple cavitational anti- nodes along the probe length perpendicular to the probe axis occurs.. Since substantially larger affected areas within an occluded blood vessel can be denuded of the occluded tissue in a short time, actual treatment time using the transverse mode ultrasonic medical device according to the invention is greatly reduced as compared to methods using prior art probes that primarily utilize longitudinal vibration (along probe axis) for tissue ablation. A distinguishing feature of the present invention is the ability to utilize probes of extremely small diameter (about 0.025" and smaller) compared to prior art probes without loss of efficiency, since the tissue fragmentation process is not dependent on area of the probe tip (distal end). Highly flexible probes can therefore, be designed to mimic device shapes that enable facile insertion into highly occluded or extremely narrow interstices within blood vessels. Another advantage provided by the present invention is its ability to rapidly remove occlusion tissue from large areas within cylindrical or tubular surfaces such as arteries and arterial valves or selected areas within the tubular walls, which is not possible by previously disclosed devices that rely on the longitudinal vibrating probe tip for effecting tissue fragmentation. An ultrasonic probe functioning in a transverse mode facilitates efficient operation of narrow-diameter probes for rapid tissue ablation. Transversely vibrating ultrasonic probes for tissue ablation are described in the assignee's co-pending patent applications U.S. Serial Nos. 09/975,725; 09/618,352; and 09/917,471, the entirety of those applications are hereby incorporated by reference. These co-pending patent applications describe the design parameters for such a probe its use in ultrasonic devices for tissue ablation. An ultrasonic probe vibrating in a transverse mode for removal of occlusions in blood vessels has been disclosed in assignee's co- pending patent application Serial No. 09/776,015, the entirety of which is hereby incorporated as reference. This co-pending patent application discloses an ultrasonic device in which a transducer is connected to a probe with a flexible tip capable of vibrating in a direction transverse to the probe longitudinal axis. With such a probe a situation may arise where it will be desirable to utilize an elongated probe resembling a catheter guide-wire probe to make possible exchange procedures often used in angioplasty..
The number of anti-nodes occurring along the axial length of the probe is modulated by changing the frequency of energy supplied by the ultrasonic generator. The exact frequency, however, is not critical and a ultrasonic generator run at, for example, 20 kHz is generally sufficient to create an effective number of tissue destroying anti-nodes along the axial length of the probe. In addition, as will be appreciated by those skilled in the art, it is possible to adjust the dimensions of the probe, including diameter, length, and distance to the ultrasonic energy generator, in order to affect the number and spacing of anti-nodes along the probe. The present invention allows the use of ultrasonic energy to be applied to tissue selectively, because the probe transmits energy across a frequency range of from about 20 kHz through about 80 kHz. The amount of ultrasonic energy to be applied to a particular treatment site is a function of the amplitude and frequency of vibration of the probe. In general, the amplitude or throw rate of the energy is in the range of 25 microns to 250 microns, and the frequency in the range of 20,000 to 80,000 Hertz (20-80 kHz). In the currently preferred embodiment, the frequency of ultrasonic energy is from 20,000 Hertz to 35,000 Hertz (20 - 35 kHz). Frequencies in this range are specifically destructive of hydrated (water-laden) tissues and vascular occlusive material, while substantially ineffective toward high-collagen connective tissue, or other fibrous tissues such as, for example, vascular tissues, skin or muscle tissues.
In a preferred embodiment, the ultrasonic medical device of the present invention, comprises an ultrasonic generator that is mechanically coupled to a probe having a proximal and distal end tha is capable of oscillating in a direction transverse to its longitudinal axis. Alternatively, a magneto-strictive generator may be used for generation of ultrasound energy. The preferred generator is a piezoelectric transducer that is mechanically coupled to the probe to enable transfer of ultrasonic excitation energy and cause the probe to oscillate in a transverse direction relative to its longitudinal axis. The device is designed to have a small cross-sectional profile, which also allows the probe to flex along its length, thereby allowing it to be used in a minimally invasive manner. Transverse oscillation of the probe generates a plurality of cavitation anti-nodes along the longitudinal axis of the member, thereby efficiently destroying the occlusion. A significant feature of the invention is the retrograde movement of debris, e.g., away from the tip of the probe i.e. backwards up along the shaft of the probe that results from the transversely generated energy. The amount of cavitation energy to be applied to a particular site requiring treatment is a function of the amplitude and frequency of vibration of the probe, as well as the longitudinal length of the probe tip, the proximity of the tip to a tissue, and the degree to which the probe tip is exposed to the tissues.
A distinguishing feature of the present invention is the ability to utilize probes of extremely small diameter (narrow diameter probes) compared to previously disclosed devices (large diameter probes) without loss of efficiency or efficacy, since the tissue fragmentation process is not dependent on area of the probe tip (distal end). Highly flexible probes can therefore be obtained to mimic device shapes that enable facile insertion into highly occluded or extremely narrow interstices without resulting in breakage of the probe or puncture or damage of the tissue or body cavity while ensuring optimal results.
A second distinguishing feature of the small diameter probes of the invention is that the probe diameter is approximately the same over their entire length, that is, the active tip segment (distal end) and the rear segment (proximal end) of the probes are approximately similar in diameter. In a preferred embodiment, the probe diameter at the proximal end is about 0.025 inches and the probe diameter at the distal end is about 0.015 inches, so the probe is adaptable to standard vascular introducers. Since the rear segment (proximal end) of the probes have no non- cylindrical shape or "bulk", catheters and guides can be introduced over the ends of the elongated wire probes of the invention, thereby allowing their use in standard configuration endovascular procedures.
The ultrasonic device of the invention comprises a longitudinal resonator such as for example, a Mason (Langevin) horn that is in intimate contact with an elongated catheter wire probe through a collet assembly. The horn assembly is in turn, connected to an ultrasound energy source. Upon device activation, ultrasonic energy from the source is transmitted to the horn assembly wherein it is amplified by the horn and in turn, transmitted to the probe thorough the collet assembly. Transverse vibrational modes along the longitudinal axis of the probe that are coupled to the horn resonance will be excited upon the delivery of ultrasonic energy to the probe.
The coupling between the elongated probe and the horn is adjusted so as to present a relatively large impedance mismatch, and be located at an anti-node of the horn. Longitudinal waves impinging on the coupling interface are either reflected back into the horn or transmitted out to the probe in proportion to the degree of impedance mismatch at the coupling interface. In a preferred embodiment, the coupling interface is configured in a manner so as to reflect most of the energy back into the horn. The horn therefore, essentially acts as an energy storage device or "reservoir", thereby allowing a substantial increase in drive amplitude.
Since the energy coupled into the elongated probe is a small portion of the energy reflected back to the horn, changes in the transverse oscillation on the probe due to bending or damping have minimal effect on the longitudinal resonance of the horn. By decoupling the transverse probe oscillation from the longitudinal horn resonance, the electrical source of the vibrations (piezoelectric or magnetostrictive) to compensate only for shifts in the resonant frequency of the horn (due to temperature, manufacturing variations, etc.). The drive mechanism is, therefore, independent of a vibrational motion of the probe.
The transverse vibrating elongated probe of the invention does not require its terminal end be permanently affixed in intimate contact to the horn assembly, since a "hammering" action associated with longitudinal vibration is absent. The elongated probe of the invention can therefore be coupled, and not welded, to the horn via a collet assembly that grips the probe along the cylindrical surface near its terminal end in a non-permanent way. The collet assembly of the invention therefore, allows for quick attachment and detachment of the probe from the horn assembly and source components, thereby enabling manipulation of the elongated flexible probe into anatomically curved blood vessels without hindrance by the bulky horn and energy source components. The probe of the invention can therefore be inserted into a venal cavity, positioned near the occlusion site prior to coupling it to the horn source assembly. The device is then activated to effect tissue ablation and removal, after which the probe is decoupled from the horn and source component for its easy removal from the cavity. hi one embodiment a longitudinal horn is coupled to an elongated wire catheter through a collet assembly that is rapidly attachable and detachable. In a preferred embodiment, the collet assembly comprises a quick attachment-detachment (QAD) collet assembly. The attachment point of the collet assembly to the elongated probe is located at an anti-node of the horn and the dimensions are scaled (i.e., the collet head has a relatively larger diameter at the attachment point than the diameter of the probe) to produce an optimal impedance mismatch.
The QAD collet assembly of the present invention comprises a compression clamp that is housed within an externally mounted compression housing that is capable of exerting a compressive force circumferentially along a line-contact on the compression clamp upon engagement after insertion of the proximal end of an ultrasonic probe into the compression clamp. This, in turn, causes the compression clamp to exert a compressive force on the inserted ultrasonic probe end, thereby causing the probe to be non-removably, yet releasably attached to the collet assembly. The compression clamp applies a restraining inwardly compressive force on the probe that minimizes torquing or twisting of the probe. As a result, the probe can be subject to a multiple attachment and detachment procedures, without causing probe destruction, thereby enabling its extended reuse in surgical procedures.
The coupling between the elongated probe and the horn is adjusted so as to present a relatively large impedance mismatch, and be located at an anti-node of the hom. Longitudinal waves impinging on the coupling interface are either reflected back into the hom or transmitted out to the probe in proportion to the degree of impedance mismatch at the coupling interface. In a preferred embodiment, the coupling interface is configured in a manner so as to reflect most of the energy back into the hom. The horn therefore, essentially acts as an energy storage device or "reservoir", thereby allowing a substantial increase in drive amplitude.
The collet assembly of the present invention comprises a base segment that is capable of coupling to a compression housing segment that is removably attached to the device handle by mechanical assembly, such as for example, a screw thread comprising a locking nut, bayonet mount, keyless chuck and cam fittings. Alternatively, the rear segment of the mechanical assembly is a hollow cylindrical segment comprising a screw thread that allows insertion and attachment of the ultrasonic device handle containing a drive assembly containing a complimentary thread arrangement to be inserted into and non-removably attached to the cylindrical segment by applying a torque. In another embodiment, the ultrasonic probe is mounted to the collet assembly such that the collet assembly grips the probe at a point greater than about 1 mm and less than about 30 mm from the terminus of the probe proximal end, or optionally, is adjustable to any point in between, so as to optimize probe vibration based on the frequency of the ultrasound transducer in the device handle. In another embodiment, the probe attachment, comprising the external collet assembly with the attached probe, is connected to the operating handle of the ultrasonic device.
The elongated ultrasonic probe that is removably restrained by the collet assembly of the present invention is either a single diameter wire with a uniform cross section offering flexural stiffness along the entire length, or is tapered or stepped along its length to control the amplitude of the transverse wave along the entire longitudinal axis. Alternatively, the probe can be cross- sectionally non-cylindrical that is capable of providing both flexural stiffness and support energy conversion along the entire length. The length of the elongated probe of the present invention is chosen so as to be resonant in either in an exclusively transverse mode, or be resonant in combination of transverse and longitudinal modes to provide a wider operating range. In a preferred embodiment, the elongated probe of the present invention is chosen to be from about 30 cm to about 300 cm in length. In a most preferred embodiment, the elongated probe of the invention has a length of about 70 cm to about 210 cm. Suitable probe materials include metallic materials and metallic alloys suited for ultrasound energy transmission. In a preferred embodiment, the metallic material comprising the elongated probe is titanium.
In another embodiment, the elongated probe of the invention is circumferentially enclosed in a sheath that provides a conduit for irrigation fluids, aspiration of fragmented tissue, or for delivery of therapeutic drugs to the occlusion site. The sheath can extend either partially or over the entirety of the probe, and can additionally comprise of fenestrations for directing ultrasonic energy from the probe at specific locations within venal cavities for selective ablation of tissue. An ultrasonic tissue ablation device comprising a sheath for removal of occlusions in blood vessels has been disclosed in assignee's co-pending patent application Serial No. 09/776,015, the entirety of which is hereby incorporated by reference
In another embodiment, the elongated catheter probe is comprised of a proximal end and a distal end with respect to the hom assembly, and is in the form of a long small diameter wire incorporating a series of telescoping segments along its longitudinal axis, such that the largest diameter segment is proximal to the hom assembly, and either continually or segmental, sequentially decreasing diameters from the proximal end to the distal end. With reference to the probe, coupling and horn assemblies as referred to in the figures describing the present invention, the proximal end for each component refers to the end farthest from the probe tip, while distal end refers to the end closest to the probe tip. In another embodiment, the elongated probe is comprised of a non-segmented, uniformly narrow diameter wire, such as for example a guide wire, such as those used in insertion of catheters.
In a preferred embodiment, the QAD collet of the invention is housed within an externally mounted compression clamp or collet assembly comprising a base segment with a longitudinal slit capable of accommodating a narrow-diameter catheter wire probe, and a compression housing that is capable of exerting a compressive force on the base after insertion of the ultrasonic probe into the longitudinal slit, thereby causing a non-removable probe attachment ("attached mode") to the collet assembly. The collet assembly applies a restraining inwardly compressive force on the probe that minimizes torquing or twisting of the probe. As a result, the probe can be subject to a multiple attachment and detachment procedures, without causing probe destruction, thereby enabling its extended reuse in surgical procedures.
The terminal ends of the compression clamp and compression housing components of the collet assembly of the present invention are tapered so as to allow the collet assembly to maintain a true axial orientation, thereby enabling multiple insertions and retractions of the probe into and from the collet assembly prior to and after device use, without causing the probe to kink. Additionally, the shape of the proximal end of the compression clamp (rear segment with respect to the entering probe), is matched with that of the ultrasound energy source generator so as to maximize contact area between the collet assembly and the distal end of the transducer-sound conductor assembly (the "drive assembly"). The proximal end of the collet assembly is shaped in any suitable form providing maximal contact area, including conical, frusto-conical, triangular, square, oblong, and ovoid, upon probe attachment to the collet within the housing assembly, which in turn maintains intimate contact with the drive assembly. The three segment assembly that includes the probe, the collet assembly and the drive assembly, form a single assembled component in the device operational state, in terms of their combined ability to transmit sqund energy from the transducer in the drive assembly to the probe without energy loss thermally or mechanically. The collet assembly of the present invention can be designed to accommodate a series of probe diameters, or for a specific probe diameter by varying the inner diameter of the cylindrical slot. The outer diameters of the collet assembly, however, remains unchanged, thereby allowing attachment of probes of differing diameters into a universal coupling and drive assembly. The collet assembly of the present invention enables (1) attachment of the ultrasonic wire probe of the device in a rapidly detachable manner to the hand piece that either functions as a conduit for ultrasonic energy that is obtained from an externally located element (optionally, the device handle can house the ultrasonic energy source) and (2) transmission of ultrasonic energy from the source element to the ultrasonic wire probe, causing it to vibrate in a substantially transverse mode.
A preferred embodiment of the collet assembly of the present invention comprising a removably attached ultrasonic wire probe and a device handle comprising an ultrasonic energy source housed within is shown in Figure 1. The collet assembly 5 comprises a compression clamp 10 having a proximal end 7 and a tapered distal end 8. The distal end 8 is removably attached to an ultrasonic wire probe 25 whereby the compression clamp 10 is made to remain in intimate contact with the probe 25 by a compression housing 14. The compression clamp 10 of the collet assembly is, in turn, removably attached to an ultrasonic energy source 30 that is housed inside a handle 40 by a thread assembly 34 in a manner so as to remain in intimate contact with the energy source 30. The collet assembly 5, therefore, maintains the ultrasonic wire probe 25 to be in contact with the ultrasonic energy source 30 indirectly, and conductively transfers ultrasonic energy from the energy source 30 to the ultrasonic wire probe 25, thereby causing the ultrasonic wire probe 25 to vibrate substantially in a transverse mode.
The collet assembly 5 of the present invention when coupled to both the ultrasonic wire probe 25 and the handle 40 housing the ultrasonic energy source 30, enables the ultrasonic wire probe 25 and the handle 40 to function as a single rigidly connected unit for efficient transfer of ultrasonic acoustic energy. The efficiency of this energy transfer is substantially influenced by the force with which the collet assembly 5 grips the ultrasonic wire probe 25 in the "attached mode" wherein the probe 25 is non-removably restrained by the collet assembly 5 which causes the probe 25 to physically remain attached to the hand piece segment of the device.
A low grip force exerted by the collet assembly 5 on the ultrasonic wire probe 25 in the attached mode results in substantial loss of energy between the collet assembly 5 and the wire probe 25. Above a threshold level, any further increase in the grip force does not increase the efficiency of energy transfer. In the embodiment shown in Figure 1, the collet assembly grip force is maintained at an optimal level by tightening compression housing 14 over the compression clamp 10 with a calibrated torque wrench. The grip force exerted by collet assembly 5 of the present invention on the ultrasonic wire probe 25 (in the attached mode) provides minimal surface contact between the compression clamp 10 and the compression housing 14. By maintaining such a minimal contact, the collet assembly 5 of the present invention overcomes the difficulty with regard to matching of the tapering angle at the distal end of the compression housing 14 with that of the corresponding tapered distal end of the compression clamp 10, as is the case in prior art collets.
In prior art collets for ultrasonic probes, the inner surface of the collet housing mates with the tapered surface of the collet base in an unpredictable and inconsistent manner because of the difficulty in matching the angle of taper on the housing and the base. Even though the collets can be produced on highly accurate machines (i.e., computer controlled lathes, numerically controlled screw machines, etc.), the machine tolerances still create collets that vary within a few thousandths of an inch, which is not an unusual tolerance. Thus, the position of the line contact is inconsistent from collet to collet and can only be located at either the front end or the back end of the collet and cannot be located in the middle. For the same tightening torque, the actual closing force can vary over a wide range from collet to collet.
In prior art collets, a mating surface of the compression housing and a mating surface of the compression clamp mate in one of three scenarios: (1) perfect mating; (2) unevenly matched mating toward the back end of the compression housing (Figure 2A); or (3) unevenly matched mating toward the front end of the compression housing (Figure 2B). Each of these three mating scenarios will be discussed below. Even under perfect mating between the mating surface of the compression housing and the mating surface of the compression clamp, the friction between the two mating surfaces is substantially high because the circular slot acts as a fulcrum for closing of the longitudinal slot that accommodates the ultrasonic probe. Thus, for the same tightening torque, the actual closing force, and therefore the grip force exerted by the collet assembly on the ultrasonic wire probe in the attached mode, can vary over a wide range for one collet with respect to another. This, in turn, leads to substantial variation in the efficiency of ultrasound energy transfer from the collet assembly to the ultrasonic probe, which can seriously impact probe operation efficiency.
Figure 2A and Figure 2B illustrate the practical situation of random variability in the line contact between the compression housing 14 and the compression clamp 10. In the case of unevenly matched taper angles between the distal end 22 of the compression housing 14 and the distal end 8 of the compression clamp 10, a line contact and not a complete mating of the entire mating surfaces occurs between distal ends of the compression housing 14 and the compression clamp 10. Such a line contact, however, varies positionally in a random manner and results in large variations in the grip force exerted by the collet assembly 5 on the ultrasonic wire probe 25 inserted in longitudinal slot 12, thereby impacting the transfer of ultrasound energy by collet assembly 5 from the energy source 30 to the ultrasonic wire probe 25. Figure 2A illustrates an unevenly matched mating contact 13 toward the back end of the compression housing while Figure 2B illustrates an unevenly matched contact 13 mating toward the front end of the compression housing.
The collet assembly 5 of the present invention takes into consideration that will be significant variation in the machining, and the collet assembly 5 focuses the gripping force only on a line contact. The collet assembly 5 of the present invention overcomes the random variability of the line contact due to the relative taper angles of the compression housing 14 and the compression clamp 10 by providing a housing assembly that is designed to make a line contact with the base at a pre-determined, optimal location. The location of the line contact in the collet assembly 5 of the present invention can be controlled within a close tolerance that is consistent with the choice of machining operation for the individual components forming the collet assembly 5. Since a surface-to-surface contact between the compression housing 14 and the compression clamp 10 is eliminated, the friction between the compression housing 14 and the compression clamp 10 is minimal and a substantial proportion of the tightening torque is directed towards closing the longitudinal slot in the compression clamp 10 (i.e., collet jaw compression). The collet assembly 5 of the present invention provides a consistent grip force on the ultrasonic wire probe 25 for any selected tightening torque. A consistent grip force is exerted by the collet assembly 5 of the present invention on the ultrasonic wire probe 25 in the attached mode that in rum results in a highly efficient transfer of ultrasound energy from the collet assembly 5 to the probe 25 for optimal probe performance upon activation of the ultrasound tissue ablation device.
Figure 3 shows a cross-sectional view of a preferred embodiment of the collet assembly 5 of the present invention wherein a pre-determined line-contact is established between the compression clamp 10 and the compression housing 14. As seen in Figure 3, the collet assembly 5 comprises a cylindrical compression clamp 10 having a proximal end 7 provided with a coupling mechanism 16, and a conical, tapered distal mating surface 9a. The coupling mechanism 16 comprises a thread assembly 19 that is capable of engaging a complementary thread assembly suitably located on a hom assembly (not shown) that forms part of the ultrasonic energy source 30 of the ultrasonic tissue ablation device. The compression clamp 10 further comprises a slit 20 having a centrally located longitudinal slot 12 that extends from the distal end 8 along its longitudinal axis, terminating at a circular slot 11 extending across the diameter of the compression clamp 10, and in a direction perpendicular to the slit 20. The compression clamp 10 further comprises of a thread assembly 15 that is capable of engaging a complementary thread assembly 17 of the compression housing 14. The compression housing 14 comprises a hollow cylinder with a proximal end 18 and a tapered distal end 22. The dimensions of the compression housing 14 are chosen so as to enable it to at least partially accommodate the compression clamp 10. An inner surface of the compression housing 14 comprises a line-contact lip 21 proximal to the distal end 22, extending circumferentially along the inner surface of the compression housing 14. The line-contact lip 21 is capable of providing a mechanism for exerting a circumferential line-contact along the correspondingly located surface proximal to the distal end 8 of the compression clamp 10. In one embodiment, the line-contact lip 21 extends continuously along the inner surface of the compression housing 14 proximal to the tapered distal end 22 upon engaging the compression clamp 10 with the compression housing 14. In another embodiment, the line-contact lip 21 comprises a plurality of discontinuous arctuate segments that extend circumferentially along the inner surface of the compression housing 14 proximal to the tapered distal end 22 that are capable of providing a series of discontinuous line (or point) contacts along the correspondingly located surface proximal to the tapered distal end 8 of the compression clamp 10 upon engaging the compression clamp 10 with the compression housing 14.
The line-contact lip 21 is a surface that extends from the inner surface of the compression housing 14. In a preferred embodiment of the present invention, the line-contact lip 21 is a round surface (i.e., a dimple). Because the line-contact lip 21 is a round surface mating with a flat surface of the compression clamp 10, the line-contact lip 21 makes consistent and repeatable contact with the compression clamp 10 at a pre-determined location. The round surface of the line-contact lip 21 ensures that the line-contact lip 21 mates in a continuous line all the way around the compression clamp 10, thus creating a line contact. Also, the round surface of the line-contact lip 21 ensures that the line-contact lip 21 mates in the same location every time. Those skilled in the art will recognize that the line-contact lip 21 could be other shapes within the spirit and scope of the invention.
The line-contact collet assembly of the present invention ensures consistent and repeatable contact between the compression clamp 10 and the compression housing 14 at a pre- determined location. The design of the inner surface of the compression housing 14 ensures that the line-contact lip 21 mates with the compression clamp 10 in a uniform manner. As best shown in Figure 3, the inner surface of the compression housing 14 has a groove 23 and a notch 24. The groove 23 in the inner surface of the compression housing 14 eliminates surface to surface contact between the compression housing 14 and the compression clamp 10 toward the back end of the mating surfaces 9a and 9b. In a preferred embodiment of the present invention, the groove 23 is machined into the inner surface of the compression housing 14, although those skilled in the art will recognize the that groove 23 can be fabricated using other methods known in the art. The length and depth of the groove 23 can be varied depending on the length of line contact that is desired. Similarly, the notch 24 eliminates surface to surface contact between the compression housing 14 and the compression clamp 10 toward the front end of the mating surfaces 9a and 9b. In a preferred embodiment of the present invention, the notch 24 is machined into the inner surface of the compression housing 14, although those skilled in the art will recognize the that notch 24 can be fabricated using other methods known in the art. The length and depth of the notch 24 can be varied depending on the length of line contact that is desired. Together the groove 23 and the notch 24 ensure that the line-contact lip 21 of the compression housing 14 has consistent and repeatable contact with the compression clamp 10.
The length of the line-contact lip 21 can be varied depending on the desired length of contact between the compression housing 14 and the compression clamp 10. The location of the line-contact lip 21 is controlled in the machining process which is simple to control. On the other hand, the prior art requires controlling the taper angle of two different surfaces (the compression clamp 10 with the compression housing 14) which requires precise machining and accurate alignment and is much more difficult.
Figure 4 A and Figure 4B show assembled and disassembled views of the collet assembly 5 of the present invention, wherein the compression housing 14 is either removably attached to the compression clamp 10 (Figure 4A) or detached from the compression clamp 10 (Figure 4B) by engagement and disengagement of the thread assembly 15 located along the outer surface of the compression clamp 10 with a complementary thread assembly located along the inner surface of compression housing 14 (not shown). Figure 4C shows a cross sectional view of the collet assembly 5 of the present invention comprising the compression clamp 10 and the compression housing 14. A proximal end 7 of compression clamp 10 comprises a thread assembly 19 that is capable of engaging with complementary threading of a hom assembly (not shown) that forms part of the ultrasonic energy source 30. The compression clamp 10 further comprises a slit 20 centrally located along a longitudinal slot 12, and extends inwardly from the tapered distal end 8 along the longitudinal axis of the cylindrical compression clamp 10. The longitudinal slot 12 is capable of removably receiving the ultrasonic wire probe 25. The slit 20 terminates at a perpendicular circular slot 11 which acts as a fulcrum about which the slit 20 and consequently the circular slot 11 are compressed after receiving the probe 25 by the line-contact lip 21 of the compression housing 14 upon engaging thread assembly 15 of the compression clamp 10 with the complementary thread assembly 17 of the compression housing 14.
Figure 5 shows a cross-sectional view of the compression housing 14, including an expanded view of the line-contact lip 21 that extends cirfumferentially along the inner surface of the tapered distal end 22 of the compression housing 14.
Figure 6 A and Figure 6B show cross-sectional views of the line-contact collet assembly 5 of the present invention prior to and after attachment of an ultrasonic wire probe 25 of the ultrasonic tissue ablation device. As seen in Figure 6 A, the line-contact lip 21 in the compression housing 14 remains in intimate surface contact with the corresponding area along the circumference of the compression clamp 10 in the engaged mode. As seen in Figure 6B, the longitudinal slot 12 is capable of removably receiving the probe 25 when the compression housing remains coupled, but not fully engaged (tightened). Following insertion of the probe 25, the compression housing 14 is tightened by applying a pre-determined torque force supplied by a mechanical device, such as for example, a calibrated torquing wrench, that results in the line- contact lip 21 exerting a uniform, compressive force circumferentially on the compression clamp 10, which in turn, causes the probe 25 to be non-removably retained within the longitudinal slot 12 in a manner so as to remain in intimate surface contact with the compression clamp 10. The proximal end 7 of the compression clamp 10 is removably attached to the hom assembly of the ultrasonic energy source (not shown) by engaging the thread assembly 19 with a complementary thread assembly in the hom assembly (not shown). Thus, in the attached mode, the collet assembly 5 of the present invention enables the ultrasonic wire probe 25 to remain in rigid, indirect contact (via the collet assembly) with the ultrasonic energy source 30 of the device that simulates a single component that results in an efficient transfer of ultrasonic energy to the source to the ultrasonic wire probe 25.
Figure 7 shows a preferred embodiment of the elongated ulfrasonic wire probe 25 of the present invention comprising a proximal end 45 and a distal end 50 that includes a probe tip 51. The probe 25 is coupled to a transducer and sound conductor assembly (not shown) that functions as generation and transmission sources of ultrasound energy for activation of the probe 25. The generation source may or may not be a physical part of the device itself. The probe 25 transmits ultrasonic energy received from the sound conductor along its length, and is capable of engaging the sound conductor component at the proximal end 45 via the collet assembly 5 with sufficient restraint to form an acoustical mass that can propagate the ultrasonic energy provided by the ultrasonic energy source (not shown). The probe diameter decreases at defined segment intervals 46, 47, and 48. The segment interval 48 which comprises the probe tip 51 at the distal end 50 is capable of flexing more than the segment intervals 46 and 47 because of the relatively smaller diameter, and thereby enables the probe 25 to generate more cavitation energy along segment interval 48 and the distal end 50. Energy from the ultrasound energy source is transmitted along the length of the probe 25, causing the probe 25 to vibrate in a direction that is transverse to the longitudinal axis of the probe 25. The segment interval 46 has a head segment 52 for engaging the collet assembly 5 of the present invention, which in turn, is attached removably to the sound conductor-transducer assembly. In a preferred embodiment of the present invention, the sound conductor component for providing, amplifying and transferring ultrasonic energy to the ultrasonic wire probe 25 is a Mason (Langevin) horn that is detachably comiected to the probe 25 through the collet assembly 5.
Figure 8 shows one embodiment of the hom assembly 54 of the present invention that is detachably coupled to the proximal end 45 of the ultrasonic wire probe 25. The hom assembly 54 comprises of a distal end 56 that is capable detachably coupling to the line-contact collet assembly 5 of the present invention having removably attached thereto the ultrasonic wire probe 25 and a proximal end 58 that is coupled to a transducer (not shown) functioning as an ultrasound energy source by screw threads 60 and 62 located terminally at either end. As previously discussed, the hom assembly 54 comprising the sound conductor or "hom" functions as an energy reservoir that allows only a small fraction of the energy transmitted by the ultrasonic energy source to the probe 25 via the line-contact collet assembly 5, thereby minimizing energy loss due to probe 25 bending or damping that can occur when the probe 25 is inserted into blood vessels.
The collet assembly 5 of the present invention when used in an ultrasonic tissue ablation device provides several advantages for tissue ablation within narrow arteries over conventional devices. In the present invention, the transverse energy is transmitted extremely efficiently from the energy source (not shown) to the probe 25 by the collet assembly 5 of the present invention due to its line contact with the probe 25. The required force to cause cavitation is, therefore, low. The transverse probe vibration provides sufficient cavitation energy at a substantially low power (~ 1 watt). Because transverse cavitation occurs over a significantly greater length (i.e., along the entire probe longitudinal axis that comes in contact with the tissue), the rates of endovascular materials that can be removed are both significantly greater and faster than conventional devices. The transverse vibrational mode of the elongated probe attached to the collet assembly 5 of the present invention can be attached and detached multiple times without altering the efficiency of energy transfer from the collet assembly 5 to the probe 25 due to the line contact between the compression housing 14 and the compression clamp 10 of the collet assembly 5 occurring reproducibly in a pre-determined manner.
Another advantage offered by the collet assembly 5 of the present invention is the mechanism for probe attachment and detachment by means of a lateral wall compression and decompression provided by the coupling assembly. The probe 25 can be rapidly attached to and detached from the collet assembly 5 without "screwing" or "torquing" that are utilized conventional modes of attachment of ultrasonic probes to the probe handle. This feature facilitates ease of manipulation and positioning of the probe within narrow and torturous venal cavities at the occlusion site prior to and after device use.
All references, patents, patent applications and patent publications cited herein are hereby incorporated by reference in their entireties. Variations, modifications, and other implementations of what is described herein will occur to those of ordinary skill in the art without departing from the spirit and scope of the present invention as claimed. Accordingly, the present invention is to be defined not by the preceding illustrative description but instead by the spirit and scope of the following claims.

Claims

CLAIMSWhat is claimed is:
1. An ultrasonic medical device comprising: a probe having a proximal end and a distal end;
a collet assembly having a compression clamp and a compression housing, wherein the compression clamp engages the proximal end of the probe and the compression housing engages the compression clamp to provide a line-contact between the compression clamp and the compression housing and exert a compressive force circumferentially along the line-contact; and
a sound conductor having a proximal end and a distal end, wherein the distal end is connected to the collet assembly and the proximal end is connected to a transducer capable providing ultrasonic energy,
wherein the proximal end of the probe is releasably attached to the collet assembly enabling the sound conductor to transmit the ultrasonic energy from the transducer to the collet assembly and the probe.
2. The ultrasonic device of claim 1 wherein the collet assembly detachably couples the probe to the sound conductor and the transducer to enable the probe to vibrate at an ultrasonic frequency.
3. The ultrasonic device of claim 1 wherein the compression clamp is capable of detachably engaging the compression housing to exert a compressive force on the compression clamp upon engagement of the compression housing with the compression clamp.
4. The compression housing of claim 1 comprising:
a hollow tube having a proximal end, a distal end, an inner surface and an outer surface; and
a conical segment proximal to the distal end of the hollow tube comprising a line-contact lip extending along at least a portion of the circumference of an inner surface that is capable of exerting a compressive force along a point of contact between the line-contact lip and the compression clamp.
5. The compression housing of claim 4 wherein the line-contact lip extends along the entire circumference along the inner surface of the conical segment.
6. The compression clamp of claim 1 comprising:
a cylindrical segment with a proximal end and a distal end;
a conical segment extending from the distal end of the cylindrical segment;
a slit extending along a longitudinal axis of the conical segment and the cylindrical segment containing a centrally located cylindrical bore capable of exerting a compressive force upon the probe inserted therein;
a mechanical assembly at the proximal end of the compression clamp capable of engaging a sound conductor; and
a mechanical assembly at the distal end of the compression clamp capable of releasably engaging the compression housing.
7. The ultrasonic device of claim 1 wherein the compression clamp is capable of releasably engaging the compression housing whereby the compression housing exerts a compressive force on the compression clamp upon engagement causing the compression clamp to engage and releasably restrain the probe inserted therein.
8. The ultrasonic device of claim 1 wherein the compression clamp transmits ultrasonic energy from the transducer to the probe when the compression clamp engages the compression housing.
9. The collet assembly of claim 1 wherein the collet assembly enables a plurality of attachment and detachment operations of the probe.
10. The ultrasonic device of claim 1 further comprising a handle having a probe attachment mechanism.
11. The ultrasonic device of claim 1 wherein the probe is a flexible guidewire.
12. The ulfrasonic device of claim 1 wherein the probe further comprises a sheath assembly consisting of at least one sheath.
13. The ulfrasonic device of claim 12 wherein the at least one sheath is capable of partially shielding a tissue at the site of a surgical procedure from the probe.
14. The ulfrasonic device of claim 12 wherein the sheath assembly comprises an aspiration conduit, whereby fragments of occlusion materials are removed through the aspiration conduit.
15. The ultrasonic device of claim 12 wherein the sheath assembly further comprises an irrigation conduit for delivering an irrigating fluid.
16. The ultrasonic device of claim 12 wherein the sheath assembly comprises a conduit for delivering a therapeutic agent therethrough.
17. The ultrasonic device of claim 12 wherein the sheath assembly comprises an imaging system enabling positioning of the probe proximal to the occlusion.
18. The ultrasonic device of claim 12 wherein the sheath assembly is a vascular catheter comprising at least one lumen.
19. The ultrasonic device of claim 1 wherein the probe is capable of supporting a standing transverse sound waves to cause generation of ultrasonic cavitation energy in at least one location along the longitudinal axis of the probe.
20. The ultrasonic device of claim 19 wherein the ultrasonic cavitation energy is enhanced at the distal end of the probe.
21. The ultrasonic device of claim 1 wherein the diameter and flexural stiffness of the probe varies along the probe longitudinal axis.
22. The ultrasonic device of claim 1 wherein the diameter of the probe remains unchanged along the entire probe longitudinal axis.
23. The ulfrasonic device of claim 1 wherein the length of the probe is between about 30 centimeters and about 300 centimeters.
24. The ultrasonic device of claim 1 wherein the length of the probe is between about 50 centimeters and about 90 centimeters.
25. The ultrasonic device of claim 1 wherein the sound conductor and the transducer are contained in a handle.
26. The ulfrasonic device of claim 1 wherein the sound conductor comprises a hom assembly capable of providing an impedance mismatch between the sound conductor and the probe.
27. The ultrasonic device of claim 1 wherein the sound conductor connected to the collet assembly is capable of controlling ultrasonic energy transferred to the probe.
28. An ultrasonic device for removing occlusions in blood vessels comprising:
a wire probe having a proximal end, a distal end and a probe longitudinal axis;
a probe attachment mechanism comprising a collet assembly having a compression clamp capable of detachably engaging the wire probe and a compression housing capable of engaging the compression clamp to provide a line-contact with the compression housing and exert a compressive force circumferentially along the line-contact on the compression clamp; and
a sound conductor having a proximal end and a distal end, the distal end being connected to the collet assembly and the proximal end being connected to a transducer capable providing ultrasound energy,
wherein the wire probe is releasably attached at its proximal end of the probe attachment mechanism, enabling the sound conductor to transmit ultrasound energy from the transducer to the wire probe causing the wire probe to be oscillated in a mode that is substantially transverse to the probe longitudinal axis.
29. The ultrasonic device of claim 28 wherein the collet assembly detachably couples the wire probe to the sound conductor and the transducer to enable the wire probe to vibrate at an ultrasonic frequency.
30. The ultrasonic device of claim 28 wherein the compression clamp is capable of detachably engaging the compression housing to exert a compressive force on the compression clamp upon engagement of the compression housing with the compression clamp.
31. The compression housing of claim 28 comprising:
a hollow tube having a proximal end, and a distal end, an inner surface and an outer surface; and
a conical segment proximal to the distal end of the hollow tube comprising a line-contact lip extending along at least a portion of the circumference of an inner surface that is capable of exerting a compressive force along a point of contact between the line-contact lip and the compression clamp.
32. The compression housing of claim 31 wherein the line-contact lip extends along the entire circumference along the inner surface of the conical segment.
33. The compression clamp of claim 28 comprising:
a cylindrical segment with a proximal end and a distal end;
a conical segment extending from the distal end of the cylindrical segment;
a slit extending along a longitudinal axis of the conical segment and the cylindrical segment containing a centrally located cylindrical bore capable of exerting a compressive force upon the wire probe inserted therein;
a mechanical assembly at the proximal end of the compression clamp capable of engaging a sound conductor; and
a mechanical assembly at the distal end of the compression clamp capable of releasably engaging the compression housing.
34. The ulfrasonic device of claim 28 wherein the compression clamp is capable of releasably engaging the compression housing whereby the compression housing exerts a compressive force on the compression clamp upon engagement causing the compression clamp to engage and releasably restrain the wire probe inserted therein.
35. The ultrasonic device of claim 28 wherein the compression clamp transmits ultrasound energy from the transducer to the wire probe when the compression clamp engages the compression housing.
36. The collet assembly of claim 28 wherein the collet assembly enables a plurality of attachment and detachment operations of the wire probe.
37. The ultrasonic device of claim 28 further comprising a handle having a probe attachment mechanism.
38. The ultrasonic device of claim 28 wherein the wire probe is a flexible guidewire.
39. The ultrasonic device of claim 28 wherein the wire probe further comprises a sheath assembly consisting of at least one sheath.
40. The ultrasonic device of claim 39 wherein the sheath assembly is capable of partially shielding a tissue at the site of a surgical procedure from the wire probe.
41. The ultrasonic device of claim 39 wherein the sheath assembly comprises an aspiration conduit, whereby fragments of occlusion materials are removed through the aspiration conduit.
42. The ultrasonic device of claim 39 wherein the sheath assembly further comprises an irrigation conduit for delivering an irrigating fluid.
43. The ultrasonic device of claim 39 wherein the sheath assembly comprises a conduit for delivering a therapeutic agent therethrough.
44. The ultrasonic device claim 39 wherein the sheath assembly comprises an imaging system enabling positioning of the probe proximal to the occlusion.
45. The ultrasonic device of claim 39 wherein the sheath assembly is a vascular catheter comprising at least one lumen.
46. The ultrasonic device of claim 28 wherein the wire probe is capable of supporting a standing transverse sound wave to cause generation of ulfrasonic cavitation energy in at least one location along the longitudinal axis of the wire probe.
47. The ultrasonic device of claim 46 wherein the ultrasonic cavitation energy is enhanced at the distal end of the wire probe.
48. The ultrasonic device of claim 28 wherein the diameter and flexural stiffness of the wire probe varies along the probe longitudinal axis.
49. The ultrasonic device of claim 28 wherein the diameter of the wire probe remains unchanged along the entire probe longitudinal axis.
50. The ultrasonic device of claim 28 wherein the length of the wire probe is between about 30 centimeters and about 300 centimeters.
51. The ultrasonic device of claim 28 wherein the length of the wire probe is between about 50 centimeters and about 90 centimeters.
52. The ultrasonic device of claim 28 wherein the sound conductor and the transducer are contained in a handle.
53. The ultrasonic device of claim 28 wherein the sound conductor comprises a hom assembly capable of providing an impedance mismatch between the sound conductor and the wire probe.
54. The ultrasonic device of claim 28 wherein the sound conductor connected to the collet assembly is capable of controlling ultrasound energy transferred to the wire probe.
55. A method of removing an occlusion in a blood vessel using an ultrasonic device comprising the following steps:
inserting a probe into the blood vessel having the occlusion;
positioning the probe at the occlusion by an axial or a rotational manipulation within the blood vessel;
attaching the probe to a collet assembly by inserting a proximal end of the probe into a compression clamp and engaging a compression housing with the compression clamp to cause a line-contact lip in the compression clamp to exert a compressive force along a line-contact on an external surface of the compression clamp whereby the compression clamp engages the probe;
activating a transducer to cause oscillation of the probe in a substantially transverse mode with respect to the longitudinal axis of the probe; and
detaching the probe from the collet assembly upon completion of surgical procedure and withdrawing the probe from the blood vessel.
56. The method of claim 55 wherein the probe is a flexible guidewire.
57. The method of claim 55 wherein the probe further comprises a sheath assembly comprising at least one sheath.
58. The method of claim 57 wherein the at least one sheath is capable of partially shielding a tissue at the site of the occlusion from the probe.
59. The method of claim 57 wherein the sheath assembly comprises an aspiration conduit, whereby fragments of occlusion materials are removed through the aspiration conduit.
60. The method of claim 57 wherein the sheath assembly further comprises an irrigation conduit enabling a supply of an irrigating fluid to the occlusion.
61. The method of claim 57 wherein the sheath assembly further comprises a conduit for delivering a therapeutic agent therethrough.
62. The method according to claims 57 wherein the sheath assembly further comprises an imaging system enabling positioning of the probe proximal to the occlusion.
63. The method according to claims 57 wherein the sheath assembly is a vascular catheter comprising at least one lumen.
PCT/US2002/032272 2001-10-11 2002-10-10 Ultrasonic probe device with rapid attachment and detachment means having a line contact collet WO2003030777A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002462728A CA2462728A1 (en) 2001-10-11 2002-10-10 Ultrasonic probe device with rapid attachment and detachment means having a line contact collet
JP2003533814A JP2005505344A (en) 2001-10-11 2002-10-10 Ultrasonic probe device comprising a quick attachment means and a detachment means having a line contact collet
EP02782140A EP1441653A2 (en) 2001-10-11 2002-10-10 Ultrasonic probe device with rapid attachment and detachment means having a line contact collet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/975,725 US6695782B2 (en) 1999-10-05 2001-10-11 Ultrasonic probe device with rapid attachment and detachment means
US09/975,725 2001-10-11

Publications (2)

Publication Number Publication Date
WO2003030777A2 true WO2003030777A2 (en) 2003-04-17
WO2003030777A3 WO2003030777A3 (en) 2003-08-21

Family

ID=25523318

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2002/032272 WO2003030777A2 (en) 2001-10-11 2002-10-10 Ultrasonic probe device with rapid attachment and detachment means having a line contact collet
PCT/US2002/032385 WO2003039381A1 (en) 2001-10-11 2002-10-10 Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2002/032385 WO2003039381A1 (en) 2001-10-11 2002-10-10 Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means

Country Status (5)

Country Link
US (2) US6695782B2 (en)
EP (2) EP1441653A2 (en)
JP (2) JP2005505344A (en)
CA (2) CA2462499A1 (en)
WO (2) WO2003030777A2 (en)

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582392B1 (en) 1998-05-01 2003-06-24 Ekos Corporation Ultrasound assembly for use with a catheter
US6723063B1 (en) 1998-06-29 2004-04-20 Ekos Corporation Sheath for use with an ultrasound element
US8506519B2 (en) 1999-02-16 2013-08-13 Flowcardia, Inc. Pre-shaped therapeutic catheter
US6855123B2 (en) * 2002-08-02 2005-02-15 Flow Cardia, Inc. Therapeutic ultrasound system
US6551337B1 (en) * 1999-10-05 2003-04-22 Omnisonics Medical Technologies, Inc. Ultrasonic medical device operating in a transverse mode
US20050119679A1 (en) * 1999-10-05 2005-06-02 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device to treat chronic total occlusions
US20050043629A1 (en) * 1999-10-05 2005-02-24 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device having a probe with a small proximal end
US20040249401A1 (en) * 1999-10-05 2004-12-09 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device with a non-compliant balloon
US20050043753A1 (en) * 1999-10-05 2005-02-24 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device to treat peripheral artery disease
US20040158150A1 (en) * 1999-10-05 2004-08-12 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device for tissue remodeling
US20030236539A1 (en) * 1999-10-05 2003-12-25 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic probe to clear a vascular access device
US20040097996A1 (en) * 1999-10-05 2004-05-20 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using an ultrasonic medical device operating in a transverse mode
US6652547B2 (en) * 1999-10-05 2003-11-25 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode
US7505811B2 (en) 2001-11-19 2009-03-17 Dune Medical Devices Ltd. Method and apparatus for examining tissue for predefined target cells, particularly cancerous cells, and a probe useful in such method and apparatus
US20070255169A1 (en) * 2001-11-19 2007-11-01 Dune Medical Devices Ltd. Clean margin assessment tool
AU2002359576A1 (en) 2001-12-03 2003-06-17 Ekos Corporation Catheter with multiple ultrasound radiating members
US20060177852A1 (en) * 2001-12-12 2006-08-10 Do-Coop Technologies Ltd. Solid-fluid composition
US20080154090A1 (en) * 2005-01-04 2008-06-26 Dune Medical Devices Ltd. Endoscopic System for In-Vivo Procedures
US7809425B2 (en) * 2003-07-24 2010-10-05 Dune Medical Devices Ltd. Method and apparatus for examining a substance, particularly tissue, to characterize its type
US8721565B2 (en) * 2005-08-04 2014-05-13 Dune Medical Devices Ltd. Device for forming an effective sensor-to-tissue contact
US20080287750A1 (en) * 2002-01-04 2008-11-20 Dune Medical Devices Ltd. Ergonomic probes
US8116845B2 (en) * 2005-08-04 2012-02-14 Dune Medical Devices Ltd. Tissue-characterization probe with effective sensor-to-tissue contact
US8032211B2 (en) * 2002-01-04 2011-10-04 Dune Medical Devices Ltd. Probes, systems, and methods for examining tissue according to the dielectric properties thereof
US8019411B2 (en) * 2002-01-04 2011-09-13 Dune Medical Devices Ltd. Probes, systems, and methods for examining tissue according to the dielectric properties thereof
US7720532B2 (en) 2004-03-23 2010-05-18 Dune Medical Ltd. Clean margin assessment tool
US8226629B1 (en) 2002-04-01 2012-07-24 Ekos Corporation Ultrasonic catheter power control
US20030208218A1 (en) * 2002-05-02 2003-11-06 Kenneth E. Kadziauskas Ultrasonic needle cover
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US8133236B2 (en) * 2006-11-07 2012-03-13 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US9955994B2 (en) 2002-08-02 2018-05-01 Flowcardia, Inc. Ultrasound catheter having protective feature against breakage
US6942677B2 (en) 2003-02-26 2005-09-13 Flowcardia, Inc. Ultrasound catheter apparatus
US7220233B2 (en) 2003-04-08 2007-05-22 Flowcardia, Inc. Ultrasound catheter devices and methods
US7137963B2 (en) 2002-08-26 2006-11-21 Flowcardia, Inc. Ultrasound catheter for disrupting blood vessel obstructions
US7604608B2 (en) * 2003-01-14 2009-10-20 Flowcardia, Inc. Ultrasound catheter and methods for making and using same
US7335180B2 (en) 2003-11-24 2008-02-26 Flowcardia, Inc. Steerable ultrasound catheter
JP2004180997A (en) * 2002-12-04 2004-07-02 Olympus Corp Stone crushing apparatus under the use of endoscope
US20040176686A1 (en) * 2002-12-23 2004-09-09 Omnisonics Medical Technologies, Inc. Apparatus and method for ultrasonic medical device with improved visibility in imaging procedures
WO2004060448A2 (en) * 2003-01-03 2004-07-22 Ekos Corporation Ultrasonic catheter with axial energy field
WO2004073505A2 (en) * 2003-02-20 2004-09-02 Prorhythm, Inc. Cardiac ablation devices
US7758510B2 (en) 2003-09-19 2010-07-20 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
US9107590B2 (en) 2004-01-29 2015-08-18 Ekos Corporation Method and apparatus for detecting vascular conditions with a catheter
US7794414B2 (en) * 2004-02-09 2010-09-14 Emigrant Bank, N.A. Apparatus and method for an ultrasonic medical device operating in torsional and transverse modes
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US7904145B2 (en) 2004-03-23 2011-03-08 Dune Medical Devices Ltd. Clean margin assessment tool
US9750425B2 (en) 2004-03-23 2017-09-05 Dune Medical Devices Ltd. Graphical user interfaces (GUI), methods and apparatus for data presentation
US7588559B2 (en) * 2004-07-01 2009-09-15 W&H Dentalwerk Bürmoos GmbH Injection systems
US7540852B2 (en) * 2004-08-26 2009-06-02 Flowcardia, Inc. Ultrasound catheter devices and methods
WO2006041475A1 (en) * 2004-10-06 2006-04-20 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device having a probe with a small proximal end
JP5009159B2 (en) 2004-10-08 2012-08-22 エシコン・エンド−サージェリィ・インコーポレイテッド Ultrasonic surgical instrument
US20060100547A1 (en) * 2004-10-27 2006-05-11 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic medical device to reinforce bone
US8221343B2 (en) 2005-01-20 2012-07-17 Flowcardia, Inc. Vibrational catheter devices and methods for making same
US7803142B2 (en) 2005-02-02 2010-09-28 Summit Access Llc Microtaper needle and method of use
EP1890596B1 (en) * 2005-03-29 2013-10-02 Dune Medical Devices Ltd. Electromagnetic sensors for tissue characterization
US20060229561A1 (en) * 2005-04-08 2006-10-12 Medtronic Vascular, Inc. Integrated detachable introducer
US20070066978A1 (en) * 2005-09-06 2007-03-22 Schafer Mark E Ultrasound medical devices and related methods
US20070167821A1 (en) * 2005-11-30 2007-07-19 Warren Lee Rotatable transducer array for volumetric ultrasound
US20070167826A1 (en) * 2005-11-30 2007-07-19 Warren Lee Apparatuses for thermal management of actuated probes, such as catheter distal ends
US20070167824A1 (en) * 2005-11-30 2007-07-19 Warren Lee Method of manufacture of catheter tips, including mechanically scanning ultrasound probe catheter tip, and apparatus made by the method
US20070167825A1 (en) * 2005-11-30 2007-07-19 Warren Lee Apparatus for catheter tips, including mechanically scanning ultrasound probe catheter tip
US8246642B2 (en) * 2005-12-01 2012-08-21 Ethicon Endo-Surgery, Inc. Ultrasonic medical instrument and medical instrument connection assembly
US20070167965A1 (en) * 2006-01-05 2007-07-19 Ethicon Endo-Surgery, Inc. Ultrasonic medical instrument
US7621930B2 (en) * 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US20070173872A1 (en) * 2006-01-23 2007-07-26 Ethicon Endo-Surgery, Inc. Surgical instrument for cutting and coagulating patient tissue
US20070191712A1 (en) * 2006-02-15 2007-08-16 Ethicon Endo-Surgery, Inc. Method for sealing a blood vessel, a medical system and a medical instrument
US7854735B2 (en) * 2006-02-16 2010-12-21 Ethicon Endo-Surgery, Inc. Energy-based medical treatment system and method
EP1991148B1 (en) * 2006-02-22 2011-05-11 Custom Medical Applications, Inc. Ablation instruments
US9282984B2 (en) * 2006-04-05 2016-03-15 Flowcardia, Inc. Therapeutic ultrasound system
WO2007127176A2 (en) 2006-04-24 2007-11-08 Ekos Corporation Ultrasound therapy system
US7811290B2 (en) 2006-04-26 2010-10-12 Illuminoss Medical, Inc. Apparatus and methods for reinforcing bone
US7806900B2 (en) 2006-04-26 2010-10-05 Illuminoss Medical, Inc. Apparatus and methods for delivery of reinforcing materials to bone
US10499937B2 (en) * 2006-05-19 2019-12-10 Recor Medical, Inc. Ablation device with optimized input power profile and method of using the same
US8246643B2 (en) * 2006-11-07 2012-08-21 Flowcardia, Inc. Ultrasound catheter having improved distal end
US7879041B2 (en) 2006-11-10 2011-02-01 Illuminoss Medical, Inc. Systems and methods for internal bone fixation
JP5442444B2 (en) 2006-11-10 2014-03-12 イルミンオス・メディカル・インコーポレイテッド System and method for internal bone fixation
US10182833B2 (en) 2007-01-08 2019-01-22 Ekos Corporation Power parameters for ultrasonic catheter
EP2111261B1 (en) 2007-01-08 2015-04-15 Ekos Corporation Power parameters for ultrasonic catheter
US8147423B2 (en) * 2007-03-01 2012-04-03 Dune Medical Devices, Ltd. Tissue-characterization system and method
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
AU2008291763A1 (en) * 2007-05-23 2009-03-05 Oscillon Ltd. Apparatus and method for guided chronic total occlusion penetration
US9044568B2 (en) 2007-06-22 2015-06-02 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
WO2009059090A1 (en) * 2007-10-31 2009-05-07 Illuminoss Medical, Inc. Light source
US8974398B2 (en) * 2007-11-08 2015-03-10 St. Jude Medical Coordination Center Bvba Removable energy source for sensor guidewire
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US8403968B2 (en) 2007-12-26 2013-03-26 Illuminoss Medical, Inc. Apparatus and methods for repairing craniomaxillofacial bones using customized bone plates
AU2009215477B2 (en) * 2008-02-20 2014-10-23 Mayo Foundation For Medical Education And Research Systems, devices and methods for accessing body tissue
CA2715895A1 (en) * 2008-02-20 2009-08-27 Mayo Foundation For Medical Education And Research Ultrasound guided systems and methods
US20100010393A1 (en) * 2008-07-08 2010-01-14 Medtronic Vascular, Inc. Treatment of Occlusions by External High Intensity Focused Ultrasound
WO2010086741A1 (en) 2009-01-30 2010-08-05 Lma Urology Limited Medical device
WO2010080886A1 (en) 2009-01-09 2010-07-15 Recor Medical, Inc. Methods and apparatus for treatment of mitral valve in insufficiency
US8210729B2 (en) 2009-04-06 2012-07-03 Illuminoss Medical, Inc. Attachment system for light-conducting fibers
US8512338B2 (en) * 2009-04-07 2013-08-20 Illuminoss Medical, Inc. Photodynamic bone stabilization systems and methods for reinforcing bone
US8226566B2 (en) * 2009-06-12 2012-07-24 Flowcardia, Inc. Device and method for vascular re-entry
US8344596B2 (en) 2009-06-24 2013-01-01 Ethicon Endo-Surgery, Inc. Transducer arrangements for ultrasonic surgical instruments
US8623040B2 (en) 2009-07-01 2014-01-07 Alcon Research, Ltd. Phacoemulsification hook tip
PL2448636T3 (en) 2009-07-03 2014-11-28 Ekos Corp Power parameters for ultrasonic catheter
WO2011071567A1 (en) 2009-08-19 2011-06-16 Illuminoss Medical, Inc. Devices and methods for bone alignment, stabilization and distraction
DE102009052132A1 (en) * 2009-11-05 2011-05-12 Uniphy Elektromedizin Gmbh & Co. Kg Medical device for treating biological tissue
WO2011060062A1 (en) * 2009-11-10 2011-05-19 Illuminoss Medical, Inc. Intramedullary implants having variable fastener placement
US9795404B2 (en) * 2009-12-31 2017-10-24 Tenex Health, Inc. System and method for minimally invasive ultrasonic musculoskeletal tissue treatment
US20110184284A1 (en) * 2010-01-28 2011-07-28 Warsaw Orthopedic, Inc. Non-invasive devices and methods to diagnose pain generators
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
US8740835B2 (en) * 2010-02-17 2014-06-03 Ekos Corporation Treatment of vascular occlusions using ultrasonic energy and microbubbles
DE102010023910A1 (en) * 2010-06-16 2011-12-22 Hpf Gmbh Apparatus and method for removing thrombi
US8684965B2 (en) 2010-06-21 2014-04-01 Illuminoss Medical, Inc. Photodynamic bone stabilization and drug delivery systems
US10888657B2 (en) 2010-08-27 2021-01-12 Ekos Corporation Method and apparatus for treatment of intracranial hemorrhages
US10258505B2 (en) 2010-09-17 2019-04-16 Alcon Research, Ltd. Balanced phacoemulsification tip
US8585601B2 (en) 2010-10-18 2013-11-19 CardioSonic Ltd. Ultrasound transducer
WO2012052926A2 (en) 2010-10-18 2012-04-26 CardioSonic Ltd. Tissue treatment
US9566456B2 (en) * 2010-10-18 2017-02-14 CardioSonic Ltd. Ultrasound transceiver and cooling thereof
US9028417B2 (en) 2010-10-18 2015-05-12 CardioSonic Ltd. Ultrasound emission element
EP2654584A1 (en) 2010-12-22 2013-10-30 Illuminoss Medical, Inc. Systems and methods for treating conditions and diseases of the spine
US11458290B2 (en) 2011-05-11 2022-10-04 Ekos Corporation Ultrasound system
JP5385485B2 (en) * 2011-06-20 2014-01-08 オリンパスメディカルシステムズ株式会社 Ultrasonic treatment device and probe unit
GB2493100B (en) 2011-07-19 2014-08-20 Illuminoss Medical Inc Combination photodynamic devices
US20130023807A1 (en) * 2011-07-21 2013-01-24 Hennessey Daniel J Massager
WO2013059609A1 (en) 2011-10-19 2013-04-25 Illuminoss Medical, Inc. Systems and methods for joint stabilization
US8663116B2 (en) 2012-01-11 2014-03-04 Angiodynamics, Inc. Methods, assemblies, and devices for positioning a catheter tip using an ultrasonic imaging system
WO2013109269A1 (en) 2012-01-18 2013-07-25 Bard Peripheral Vascular, Inc. Vascular re-entry device
US10357304B2 (en) 2012-04-18 2019-07-23 CardioSonic Ltd. Tissue treatment
US9232958B2 (en) * 2012-05-16 2016-01-12 Smith & Nephew, Inc. Reusable blade hub assembly
US11357447B2 (en) 2012-05-31 2022-06-14 Sonivie Ltd. Method and/or apparatus for measuring renal denervation effectiveness
US11406415B2 (en) 2012-06-11 2022-08-09 Tenex Health, Inc. Systems and methods for tissue treatment
US9149291B2 (en) 2012-06-11 2015-10-06 Tenex Health, Inc. Systems and methods for tissue treatment
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US8939977B2 (en) 2012-07-10 2015-01-27 Illuminoss Medical, Inc. Systems and methods for separating bone fixation devices from introducer
EP3895632A1 (en) 2012-08-02 2021-10-20 Bard Peripheral Vascular, Inc. Ultrasound catheter system
US9687281B2 (en) 2012-12-20 2017-06-27 Illuminoss Medical, Inc. Distal tip for bone fixation devices
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
KR20150126611A (en) 2013-03-14 2015-11-12 에코스 코퍼레이션 Method and apparatus for drug delivery to a target site
US10188831B2 (en) 2013-03-14 2019-01-29 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
WO2014188430A2 (en) 2013-05-23 2014-11-27 CardioSonic Ltd. Devices and methods for renal denervation and assessment thereof
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9539020B2 (en) * 2013-12-27 2017-01-10 Ethicon Endo-Surgery, Llc Coupling features for ultrasonic surgical instrument
CA2936453A1 (en) 2014-01-09 2015-07-16 Axiosonic, Llc Systems and methods using ultrasound for treatment
US20150282734A1 (en) 2014-04-08 2015-10-08 Timothy Schweikert Medical device placement system and a method for its use
US9962181B2 (en) 2014-09-02 2018-05-08 Tenex Health, Inc. Subcutaneous wound debridement
US10092742B2 (en) 2014-09-22 2018-10-09 Ekos Corporation Catheter system
KR101698954B1 (en) * 2014-09-24 2017-01-23 한국기계연구원 Tube holder and tube grinding appratus having thterof
US20160189843A1 (en) * 2014-12-29 2016-06-30 Metal Industries Research And Development Centre Magnetic adapter assembly
US9763689B2 (en) 2015-05-12 2017-09-19 Tenex Health, Inc. Elongated needles for ultrasonic applications
EP3307388B1 (en) 2015-06-10 2022-06-22 Ekos Corporation Ultrasound catheter
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10492885B2 (en) * 2015-12-17 2019-12-03 Ethicon Llc Ultrasonic surgical instrument with cleaning port
US11173283B2 (en) * 2016-03-30 2021-11-16 Koninklijke Philips N.V. Torque devices for use with intravascular devices and associated systems and methods
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US10828056B2 (en) 2016-08-25 2020-11-10 Ethicon Llc Ultrasonic transducer to waveguide acoustic coupling, connections, and configurations
US20180140321A1 (en) 2016-11-23 2018-05-24 C. R. Bard, Inc. Catheter With Retractable Sheath And Methods Thereof
US11596726B2 (en) 2016-12-17 2023-03-07 C.R. Bard, Inc. Ultrasound devices for removing clots from catheters and related methods
US10758256B2 (en) 2016-12-22 2020-09-01 C. R. Bard, Inc. Ultrasonic endovascular catheter
US10582983B2 (en) 2017-02-06 2020-03-10 C. R. Bard, Inc. Ultrasonic endovascular catheter with a controllable sheath
US20200094080A1 (en) 2017-03-20 2020-03-26 Sonivie Ltd. Method for treating heart failure by improving ejection fraction of a patient
US11259832B2 (en) 2018-01-29 2022-03-01 Covidien Lp Ultrasonic horn for an ultrasonic surgical instrument, ultrasonic surgical instrument including the same, and method of manufacturing an ultrasonic horn
US11071572B2 (en) 2018-06-27 2021-07-27 Illuminoss Medical, Inc. Systems and methods for bone stabilization and fixation
US10653581B2 (en) 2018-08-12 2020-05-19 Jonathan Hoffman Personal use extracorporeal low frequency shock wave instrument and methods of using same
GB201906743D0 (en) * 2019-05-13 2019-06-26 Versono Medical Ltd Compact uitrasonic endovascular occlusion crossing guidewire system
GB202006665D0 (en) * 2020-05-05 2020-06-17 Versono Medical Ltd Treatment of ischaemia
US20230138253A1 (en) * 2020-03-17 2023-05-04 Koninklijke Philips N.V. Ultrasonic therapy catheter systems and wire connector assemblies
CN111603239B (en) * 2020-04-22 2023-06-02 哈尔滨医科大学 Microwave device for tumor ablation treatment
USD974558S1 (en) 2020-12-18 2023-01-03 Stryker European Operations Limited Ultrasonic knife
US20220233199A1 (en) * 2021-01-22 2022-07-28 Ultratellege Usa Co., Limited Dual ultrasonic catheter and methods of use

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058570A (en) * 1986-11-27 1991-10-22 Sumitomo Bakelite Company Limited Ultrasonic surgical apparatus
US5382228A (en) * 1992-07-09 1995-01-17 Baxter International Inc. Method and device for connecting ultrasound transmission member (S) to an ultrasound generating device

Family Cites Families (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL106732C (en) 1955-03-08
US3526219A (en) 1967-07-21 1970-09-01 Ultrasonic Systems Method and apparatus for ultrasonically removing tissue from a biological organism
NL145136C (en) 1967-07-25 1900-01-01
US3565062A (en) 1968-06-13 1971-02-23 Ultrasonic Systems Ultrasonic method and apparatus for removing cholesterol and other deposits from blood vessels and the like
US3805787A (en) 1972-06-16 1974-04-23 Surgical Design Corp Ultrasonic surgical instrument
US3861391A (en) 1972-07-02 1975-01-21 Blackstone Corp Apparatus for disintegration of urinary calculi
US4016882A (en) 1975-03-05 1977-04-12 Cavitron Corporation Neurosonic aspirator and method
US4236510A (en) 1979-02-21 1980-12-02 Hatter Edward E Ultrasonic tooth cleaning apparatus
US4493694A (en) 1980-10-17 1985-01-15 Cooper Lasersonics, Inc. Surgical pre-aspirator
GB2116046B (en) 1982-03-04 1985-05-22 Wolf Gmbh Richard Apparatus for disintegrating and removing calculi
US4474180A (en) 1982-05-13 1984-10-02 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus for disintegrating kidney stones
US5421819A (en) 1992-08-12 1995-06-06 Vidamed, Inc. Medical probe device
US5370675A (en) 1992-08-12 1994-12-06 Vidamed, Inc. Medical probe device and method
US4504264A (en) 1982-09-24 1985-03-12 Kelman Charles D Apparatus for and method of removal of material using ultrasonic vibraton
US4535759A (en) 1982-09-30 1985-08-20 Cabot Medical Corporation Ultrasonic medical instrument
US4526571A (en) 1982-10-15 1985-07-02 Cooper Lasersonics, Inc. Curved ultrasonic surgical aspirator
US4634420A (en) 1984-10-31 1987-01-06 United Sonics Incorporated Apparatus and method for removing tissue mass from an organism
US4750488A (en) 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
US4922902A (en) 1986-05-19 1990-05-08 Valleylab, Inc. Method for removing cellular material with endoscopic ultrasonic aspirator
US5271735A (en) 1985-10-15 1993-12-21 Albert R. Greenfeld Exterior antimigration refinements for self-cleaning indwelling therapeutic articles
SE461010B (en) 1985-11-08 1989-12-18 Swedemed Ab DEVICE FOR ULTRA SOUND KNIFE
US4867141A (en) 1986-06-18 1989-09-19 Olympus Optical Co., Ltd. Medical treatment apparatus utilizing ultrasonic wave
US4838853A (en) 1987-02-05 1989-06-13 Interventional Technologies Inc. Apparatus for trimming meniscus
US4961424A (en) 1987-08-05 1990-10-09 Olympus Optical Co., Ltd. Ultrasonic treatment device
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4870953A (en) 1987-11-13 1989-10-03 Donmicheal T Anthony Intravascular ultrasonic catheter/probe and method for treating intravascular blockage
US5163421A (en) 1988-01-22 1992-11-17 Angiosonics, Inc. In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging
US4886491A (en) 1988-02-29 1989-12-12 Tulio Parisi Liposuction procedure with ultrasonic probe
US4920954A (en) 1988-08-05 1990-05-01 Sonic Needle Corporation Ultrasonic device for applying cavitation forces
US4989583A (en) 1988-10-21 1991-02-05 Nestle S.A. Ultrasonic cutting tip assembly
US5255669A (en) * 1989-04-12 1993-10-26 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US5180363A (en) 1989-04-27 1993-01-19 Sumitomo Bakelite Company Company Limited Operation device
US4962755A (en) 1989-07-21 1990-10-16 Heart Tech Of Minnesota, Inc. Method for performing endarterectomy
US5123903A (en) * 1989-08-10 1992-06-23 Medical Products Development, Inc. Disposable aspiration sleeve for ultrasonic lipectomy
DE3932966C1 (en) 1989-10-03 1991-04-04 Richard Wolf Gmbh, 7134 Knittlingen, De
US5167619A (en) 1989-11-17 1992-12-01 Sonokineticss Group Apparatus and method for removal of cement from bone cavities
US5176677A (en) 1989-11-17 1993-01-05 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
US5057119A (en) 1989-12-12 1991-10-15 Ultracision Inc. Apparatus and methods for attaching and detaching an ultrasonic actuated blade/coupler and an acoustical mount therefor
US5059210A (en) 1989-12-12 1991-10-22 Ultracision Inc. Apparatus and methods for attaching and detaching an ultrasonic actuated blade/coupler and an acoustical mount therefor
US5171387A (en) 1990-01-19 1992-12-15 Sonokinetics Group Ultrasonic comb horn and methods for using same
US5057182A (en) 1990-01-19 1991-10-15 Sonokinetics Group Ultrasonic comb horn and methods for using same
US5391144A (en) * 1990-02-02 1995-02-21 Olympus Optical Co., Ltd. Ultrasonic treatment apparatus
US5026387A (en) 1990-03-12 1991-06-25 Ultracision Inc. Method and apparatus for ultrasonic surgical cutting and hemostatis
US5112300A (en) 1990-04-03 1992-05-12 Alcon Surgical, Inc. Method and apparatus for controlling ultrasonic fragmentation of body tissue
US5015221A (en) 1990-06-18 1991-05-14 Smith Roger R Differential steering mechanism
US5843017A (en) 1990-07-24 1998-12-01 Yoon; Inbae Multifunctional tissue dissecting instrument
US5073148A (en) 1990-12-20 1991-12-17 Gates Power Drive Products, Inc. Tensioner with damping system
US5267954A (en) 1991-01-11 1993-12-07 Baxter International Inc. Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels
US5380274A (en) 1991-01-11 1995-01-10 Baxter International Inc. Ultrasound transmission member having improved longitudinal transmission properties
US5368558A (en) 1991-01-11 1994-11-29 Baxter International Inc. Ultrasonic ablation catheter device having endoscopic component and method of using same
US5447509A (en) 1991-01-11 1995-09-05 Baxter International Inc. Ultrasound catheter system having modulated output with feedback control
US5957882A (en) 1991-01-11 1999-09-28 Advanced Cardiovascular Systems, Inc. Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels
US5304115A (en) 1991-01-11 1994-04-19 Baxter International Inc. Ultrasonic angioplasty device incorporating improved transmission member and ablation probe
US5312328A (en) 1991-01-11 1994-05-17 Baxter International Inc. Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels
US5405318A (en) 1992-05-05 1995-04-11 Baxter International Inc. Ultra-sound catheter for removing obstructions from tubular anatomical structures such as blood vessels
US5221282A (en) 1991-05-29 1993-06-22 Sonokinetics Group Tapered tip ultrasonic aspirator
US5358505A (en) 1991-05-29 1994-10-25 Sonokinetics, Inc. Tapered tip ultrasonic aspiration method
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5242385A (en) 1991-10-08 1993-09-07 Surgical Design Corporation Ultrasonic handpiece
WO1993008750A2 (en) 1991-11-04 1993-05-13 Baxter International Inc. Ultrasonic ablation device adapted for guidewire passage
US5324299A (en) 1992-02-03 1994-06-28 Ultracision, Inc. Ultrasonic scalpel blade and methods of application
US5695510A (en) 1992-02-20 1997-12-09 Hood; Larry L. Ultrasonic knife
US5269297A (en) 1992-02-27 1993-12-14 Angiosonics Inc. Ultrasonic transmission apparatus
US5713848A (en) 1993-05-19 1998-02-03 Dubrul; Will R. Vibrating catheter
US5380273A (en) 1992-05-19 1995-01-10 Dubrul; Will R. Vibrating catheter
US5741225A (en) 1992-08-12 1998-04-21 Rita Medical Systems Method for treating the prostate
US5300021A (en) 1992-08-20 1994-04-05 Sonokinetics Group Apparatus for removing cores of thermoplastic and elastomeric material
US5524635A (en) * 1992-09-14 1996-06-11 Interventional Technologies Inc. Apparatus for advancing a guide wire
US5243997A (en) 1992-09-14 1993-09-14 Interventional Technologies, Inc. Vibrating device for a guide wire
US5397293A (en) 1992-11-25 1995-03-14 Misonix, Inc. Ultrasonic device with sheath and transverse motion damping
US5469853A (en) 1992-12-11 1995-11-28 Tetrad Corporation Bendable ultrasonic probe and sheath for use therewith
US5312329A (en) 1993-04-07 1994-05-17 Valleylab Inc. Piezo ultrasonic and electrosurgical handpiece
US5630837A (en) 1993-07-01 1997-05-20 Boston Scientific Corporation Acoustic ablation
JP3415203B2 (en) 1993-07-12 2003-06-09 立花 克郎 Ultrasound generator for therapy
US5419761A (en) 1993-08-03 1995-05-30 Misonix, Inc. Liposuction apparatus and associated method
US5427118A (en) 1993-10-04 1995-06-27 Baxter International Inc. Ultrasonic guidewire
US5417672A (en) 1993-10-04 1995-05-23 Baxter International Inc. Connector for coupling an ultrasound transducer to an ultrasound catheter
US5472441A (en) 1993-11-08 1995-12-05 Zomed International Device for treating cancer and non-malignant tumors and methods
US5458612A (en) 1994-01-06 1995-10-17 Origin Medsystems, Inc. Prostatic ablation method and apparatus for perineal approach
US5417654A (en) 1994-02-02 1995-05-23 Alcon Laboratories, Inc. Elongated curved cavitation-generating tip for disintegrating tissue
US5484398A (en) 1994-03-17 1996-01-16 Valleylab Inc. Methods of making and using ultrasonic handpiece
US5672172A (en) 1994-06-23 1997-09-30 Vros Corporation Surgical instrument with ultrasound pulse generator
US5516043A (en) 1994-06-30 1996-05-14 Misonix Inc. Ultrasonic atomizing device
US5507738A (en) * 1994-08-05 1996-04-16 Microsonic Engineering Devices Company, Inc. Ultrasonic vascular surgical system
ES2200002T3 (en) 1994-09-02 2004-03-01 Oversby Pty. Ltd. FACOEMULSION NEEDLE WITH SLOTS.
US5628743A (en) 1994-12-21 1997-05-13 Valleylab Inc. Dual mode ultrasonic surgical apparatus
US5725494A (en) 1995-11-30 1998-03-10 Pharmasonics, Inc. Apparatus and methods for ultrasonically enhanced intraluminal therapy
US5728062A (en) 1995-11-30 1998-03-17 Pharmasonics, Inc. Apparatus and methods for vibratory intraluminal therapy employing magnetostrictive transducers
US5735811A (en) 1995-11-30 1998-04-07 Pharmasonics, Inc. Apparatus and methods for ultrasonically enhanced fluid delivery
US5938692A (en) 1996-03-26 1999-08-17 Urologix, Inc. Voltage controlled variable tuning antenna
US5772627A (en) 1996-07-19 1998-06-30 Neuro Navigational Corp. Ultrasonic tissue resector for neurosurgery
US5971949A (en) * 1996-08-19 1999-10-26 Angiosonics Inc. Ultrasound transmission apparatus and method of using same
US5836896A (en) 1996-08-19 1998-11-17 Angiosonics Method of inhibiting restenosis by applying ultrasonic energy
US5846218A (en) 1996-09-05 1998-12-08 Pharmasonics, Inc. Balloon catheters having ultrasonically driven interface surfaces and methods for their use
US5676649A (en) 1996-10-04 1997-10-14 Alcon Laboratories, Inc. Phacoemulsification cutting tip
US5989274A (en) 1996-10-17 1999-11-23 Ethicon Endo-Surgery, Inc. Methods and devices for improving blood flow to a heart of a patient
US5964756A (en) 1997-04-11 1999-10-12 Vidamed, Inc. Transurethral needle ablation device with replaceable stylet cartridge
US5827203A (en) 1997-04-21 1998-10-27 Nita; Henry Ultrasound system and method for myocardial revascularization
US5989208A (en) 1997-05-16 1999-11-23 Nita; Henry Therapeutic ultrasound system
US5931805A (en) 1997-06-02 1999-08-03 Pharmasonics, Inc. Catheters comprising bending transducers and methods for their use
US6033375A (en) 1997-12-23 2000-03-07 Fibrasonics Inc. Ultrasonic probe with isolated and teflon coated outer cannula
US6077285A (en) * 1998-06-29 2000-06-20 Alcon Laboratories, Inc. Torsional ultrasound handpiece
US6224565B1 (en) 1998-11-13 2001-05-01 Sound Surgical Technologies, Llc Protective sheath and method for ultrasonic probes
US20020077550A1 (en) * 1999-10-05 2002-06-20 Rabiner Robert A. Apparatus and method for treating gynecological diseases using an ultrasonic medical device operating in a transverse mode
US6652547B2 (en) * 1999-10-05 2003-11-25 Omnisonics Medical Technologies, Inc. Apparatus and method of removing occlusions using ultrasonic medical device operating in a transverse mode
US6524251B2 (en) * 1999-10-05 2003-02-25 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5058570A (en) * 1986-11-27 1991-10-22 Sumitomo Bakelite Company Limited Ultrasonic surgical apparatus
US5382228A (en) * 1992-07-09 1995-01-17 Baxter International Inc. Method and device for connecting ultrasound transmission member (S) to an ultrasound generating device

Also Published As

Publication number Publication date
EP1441653A2 (en) 2004-08-04
WO2003039381A1 (en) 2003-05-15
JP2005505344A (en) 2005-02-24
EP1441654A1 (en) 2004-08-04
US20040158151A1 (en) 2004-08-12
CA2462728A1 (en) 2003-04-17
WO2003030777A3 (en) 2003-08-21
CA2462499A1 (en) 2003-05-15
US6695782B2 (en) 2004-02-24
US20020055754A1 (en) 2002-05-09
JP2005507735A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US20030065263A1 (en) Ultrasonic probe device with rapid attachment and detachment means having a line contact collet
US6695782B2 (en) Ultrasonic probe device with rapid attachment and detachment means
US20030036705A1 (en) Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means
AU2002313675B2 (en) Ultrasonic device for tissue ablation and sheath for use therewith
US6554846B2 (en) Sonic burr
US4920954A (en) Ultrasonic device for applying cavitation forces
US8956375B2 (en) Ultrasound catheter devices and methods
EP1182976B1 (en) Ultrasonic medical device operating in a transverse mode
JP4128496B2 (en) Ultrasonic treatment device
WO2004098426A1 (en) Apparatus and method for preshaped ultrasonic probe
AU2002313675A1 (en) Ultrasonic device for tissue ablation and sheath for use therewith
WO1999044514A1 (en) Ultrasonic liposuction probe
AU2002348422A1 (en) Ultrasonic probe device with rapid attachment and detachment means having a line contact collet
JP2007195599A (en) Medical guide wire
US20040210140A1 (en) Apparatus and method for preshaped ultrasonic probe
AU2002363418A1 (en) Ultrasonic probe device having an impedance mismatch with rapid attachment and detachment means
EP1500373A2 (en) Ultrasonic medical device operating in a transverse mode

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002348422

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2462728

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003533814

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002782140

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002782140

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2002782140

Country of ref document: EP