WO2003027728A1 - Composition for optical material, optical material and photochromic lens - Google Patents

Composition for optical material, optical material and photochromic lens Download PDF

Info

Publication number
WO2003027728A1
WO2003027728A1 PCT/JP2002/009855 JP0209855W WO03027728A1 WO 2003027728 A1 WO2003027728 A1 WO 2003027728A1 JP 0209855 W JP0209855 W JP 0209855W WO 03027728 A1 WO03027728 A1 WO 03027728A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
composition
optical material
weight
meth
Prior art date
Application number
PCT/JP2002/009855
Other languages
French (fr)
Japanese (ja)
Inventor
Mutsuo Kuwada
Katsuyoshi Tanaka
Toshiaki Takaoka
Original Assignee
Nof Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001292633A external-priority patent/JP2003098302A/en
Priority claimed from JP2002241373A external-priority patent/JP2004078054A/en
Priority claimed from JP2002241353A external-priority patent/JP2004075938A/en
Application filed by Nof Corporation filed Critical Nof Corporation
Publication of WO2003027728A1 publication Critical patent/WO2003027728A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/062Polyethers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses

Definitions

  • compositions for optical materials, optical materials and photochromic lenses are Compositions for optical materials, optical materials and photochromic lenses
  • the present invention relates to a photochromic lens having photochromic properties that is colored by sunlight or ultraviolet light and that fades in a B-tone place, an optical material constituting the lens, and a composition for an optical material that can be used as a raw material of the optical material.
  • synthetic resin examples include polydiethylene glycol bisaryl carbonate, polymethyl methacrylate, and polycarbonate.
  • photochromic lenses have been used.
  • the method for producing the photochromic lens include: (1) a method in which a photochromic compound is kneaded into an optical resin and molded (JP-A-61-161286); and (2) a method in which the photochromic compound is dissolved or dispersed.
  • a method of impregnating an optical resin with the resulting solution and dispersing or coating the photochromic compound on the resin surface U.S. Pat.No. 3,216,958, JP-A-61-228402
  • converting the photochromic compound into methyl methacrylate There are known methods of dissolving and curing (JP-A-61-233079, JP-A-1-259013, JP-A-7-2938).
  • the method (1) since the optical resin is melted at a high temperature of 200 ° C. or more, the photochromic compound is deteriorated, and a problem occurs in the dispersibility of the compound. However, there is a problem that the optical response is low. In the method (2), the lens manufacturing process becomes complicated, and it is difficult to control the amount of the photochromic compound impregnated.
  • JP-A-61-233079 discloses a method in which a spiroxazine compound, which is a photochromic compound, is dissolved in methyl methacrylate and cured.
  • This method has disadvantages such as a problem that the photochromic compound is inferior due to the polymerizable monomer and the radical polymerization initiator used, a low optical response of the manufactured optical material, and a low refractive index of about 1.49. is there.
  • JP-A 1-259013 and JP-A 7-2938 disclose a method using a polymerizable aryl carbonate. However, even with this method, the inferiority of the photochromic ridged product cannot be overcome, and the resulting optical material There is a problem that the photoresponse speed of coloring and fading is not sufficient.
  • JP-A-62-267316 describes an optical material having a high refractive index employing a thiourethane resin which is a polymer of polyisocyanate and polythiol.
  • a thiourethane resin which is a polymer of polyisocyanate and polythiol.
  • the photochromic conjugate is dissolved and cured in the polyisocyanate and polythiol for producing the thiourethane resin, there is a problem that the photochromic compound reacts with the isocyanate and cannot exhibit photochromic properties. .
  • An object of the present invention is to provide a photochromic lens having a high photoresponsiveness, a low specific gravity, excellent heat and impact resistance and other physical properties, and a high refractive index, an optical material as the lens material, and the optical material.
  • An object of the present invention is to provide a composition for an optical material which is a raw material of the optical material.
  • At least one compound (A) in which the sum of j and II in the formula (1) is 5 to 7 and the sum of j and n in the formula (1) are at least one compound is 9-11 and (B) 3 to 50 weight 0/0 monomer 100 parts by weight of the composition containing a photochromic compound 0.001: optical material composition comprising 10 parts by weight is provided You.
  • R 1 and R 2 represent a hydrogen atom or a methyl group
  • Ph represents a phenylene group
  • J and n are independently integers from 0 to 11. Are not simultaneously 0.
  • k, m and p are independently 0 or 1.
  • an optical material obtained by polymerizing and curing the composition for optical material.
  • a photochromic lens having the optical material.
  • composition (P) is a polymerizable monomer containing the compound (A) and the compound (B) represented by the formula (1) in a specific ratio.
  • the compound represented by the formula (1) For example, as disclosed in Japanese Patent Publication No. 58-17527, it is not possible to use a specific compound (A) and a specific compound B) in a specific ratio and use in combination with a photochromic compound. unknown.
  • R 1 and R 2 represent a hydrogen atom or a methyl group, and Ph represents a phenylene group.
  • j and n are each independently an integer from 0 to 11; However, i and n do not become 0 at the same time.
  • k, m and p are independently 0 or 1.
  • the compound (A) which is essentially used in the composition (M) is a compound in which the sum of j and n is 5 to 7, and the compound (B) is a compound in which the sum of j and n is 9 to 11 .
  • the composition (M) is a composition of a polymerizable monomer.
  • the sum of j and n is And a monomer selected from the group consisting of an amide compound having a vinyl group (C :), an amide compound having a vinyl group (D), another vinyl compound (E), and a mixture thereof.
  • a mixture (F) which can constitute a thiourethane resin composed of an isocyanate compound and a thiolic compound.
  • the compound (A) gives the optical material after curing a fast light response and also provides various properties required for the optical material such as heat resistance, impact resistance, durability, and hardness.
  • the content ratio of the compound (A) is preferably 15 to 97% by weight in the composition (M).
  • the content ratio of the compound (A) is 15 to 50% by weight, more preferably 15 to 40% by weight in the composition (M).
  • the content of the compound (A) is 50 to 97% by weight, more preferably 50 to 90% by weight in the composition (M).
  • the compound (A) is less than 50 weight 0/0, heat resistance, ⁇ , durability and various properties required for optical materials such as hardness tends to decrease.
  • the compound (B) imparts fast photoresponsiveness to the cured optical material.
  • the content ratio of the compound (B) is 3 to 50% by weight, preferably 4 to 40% by weight in the composition (M). If it exceeds 50% by weight, the heat resistance and hardness of the obtained optical material will be reduced.
  • the relationship between the compound (A) and the compound (B) is 50 to 95 parts by weight of the compound (A) and 5 to 50 parts by weight of the compound (B) when the total amount of both is 100 parts by weight. It is preferable .
  • the fibrous compound (C), which can be blended as necessary in the fibrous composition (II), is a monomer capable of further improving heat resistance and hardness in the cured optical material.
  • the content ratio is usually 3 to 25% by weight, preferably 4 to 20% by weight in composition (M). If the content exceeds 25% by weight, the photoresponsiveness of the cured optical material may be undesirably reduced.
  • the amide compound (D) which can be added as required, prevents the composition (P) of the present invention from deteriorating the photochromic compound due to a radical polymerization initiator described below. It prevents reaction with the isocyanate compound in the mixture (F), and further provides faster optical response to the cured optical material.
  • Examples of the amide compound (D) include, for example, acrylamide, methacrylamide, N-vinylformamide, N-vinylacetamide, N-methyl-N-butylacetamide, N-vinylphthalimide, and 1-viel -2-pyrrolidinone, 1-vinylimidazole, N-isopropylatarylamide, N- (3-dimethylaminopropynole) acrylamide, N- (3-dimethylaminopropyl) methacrylamide, ⁇ , ⁇ -dimethylacrylamide ⁇ , ⁇ , ⁇ -dimethyl methacrylamide, ⁇ , ⁇ ⁇ -ethyl acrylamide, 3-methacrylamide - ⁇ , ⁇ -dimethyl Mouth pyramine, N- (l, l-dimethyl-3-oxobutyl) acrylamide, N- (hydroxymethyl) acrylamide and the like.
  • N, N-dimethylacrylamide, N-isopropylacrylamide, N- (3-dimethylaminopropyl) acrylamide, and N- (3-dimethylaminopropyl) methacrylamide are preferred.
  • two or more kinds may be used in combination.
  • the content ratio is usually 0.1 to 30% by weight, preferably 0.8 to 20% by weight in the composition (M). If the amount is less than 0.1% by weight, it is difficult to obtain a desired effect by adding the amide compound (D). If the amount exceeds 30% by weight, curing may be poor, which is not preferable.
  • the composition (M) contains the mixture (F)
  • the content ratio of the amide compound (D) is preferably 0.8 to 5% by weight in the composition (M).
  • the other vinyl compound (E) which can be blended as necessary, is a polymerizable bur compound other than the compounds (A) to (C) and the amide compound (D). And, for example, a compound in which the sum of] 'and n in the formula (1) is 1, 4 or 8.
  • Other vinyl compounds (E) can be appropriately selected and used to adjust the refractive index, dyeability, heat resistance, hardness and the like of the obtained optical material.
  • Examples of the bull-based compound (E) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, and i-butyl (meth) acrylate.
  • the content ratio is usually 3 to 20% by weight, preferably 4 to 15% by weight in the composition (M).
  • the mixture (F), which can be blended as required, is a mixture of an isocyanate compound and a thiol compound which can constitute a thiourethane resin, and is used for increasing the refractive index of the obtained optical material. Can be blended.
  • isocyanate compound examples include 3-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, isocyanateethyl methacrylate, hexamethylene diisocyanate, and 4,4′-dicyclohexyl methacrylate. And m-xylylene diisocyanate, m-tetramethylenolylene diisocyanate, isophorone diisocyanate, and mixtures thereof.
  • Examples of the thiol compound include ethanedithionole, 1,6-hexanedithiol, 3,3′-dithiodipropionic acid, ethylene glycol dithioglycolate, and 2,2′-thiodiethanethiol , 2,2'-oxyethanethiol, dimercaptotriethylene disulfide, 1,2-dithioglycerin, 1,3-dithioglycerin, 1,4-benzenedithiol, 1,2-bis (mercaptomethylene)
  • Examples include benzene, trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), pentaerythritol tetrakis (mercaptopropionate), and mixtures thereof.
  • the composition (M) Normal 20% to 70% by weight in, rather preferably is 30 to 60 weight 0/0.
  • the mixing ratio of the isocyanate compound and the thiol conjugate in the mixture (F) is usually 1.0 to 4.0, preferably 1.1 to 2.0 in terms of a functional group molar ratio (thiol group / isocyanate group).
  • composition (M) does not contain the mixture (F), from the viewpoint of the operability at the time of operation and the refractive index of the obtained optical material, after satisfying the above-mentioned specifications of the respective conjugates,
  • the content of the compound in which p is 1 and j + n is 2 to 11 in k, p, in and n in the formula (1) in the composition (M) is 60 to 90% by weight, and
  • k, p, m and n are all 0, and the content of the compound in which j is 1 to 11 is 10 to 40% by weight.
  • the refractive index tends to be low, and when the latter compound is less than 10% by weight, the viscosity of the composition (M) may increase and the operability at the time of operation may decrease. This is not desirable.
  • the content of the compound represented by the formula (1) in the composition (M) is 70 to 99.9% by weight, particularly 80 to 99% by weight. % By weight is preferred. If the content is less than 70% by weight, the obtained optical material is provided with a fast light response, and various properties required for the optical material such as heat resistance, impact resistance, durability, and hardness may be deteriorated. .
  • the composition (M) contains the mixture (F)
  • the composition (M) satisfies the above-mentioned requirements for each compound and mixture, and further contains the compound represented by the formula (1) in the composition (M).
  • the ratio is 20-70 weight 0 /. In particular, 30 to 60% by weight is preferable. If the content is less than 20% by weight, the refractive index may not be sufficiently improved, and if the content is more than 70% by weight, the required optical response may not be provided to the obtained optical material.
  • the composition (P) of the present invention has such a property that, based on 100 parts by weight of the composition (M), the light transmittance is changed by ultraviolet light or visible light, and the light transmittance is restored when the light source is cut off.
  • 0.001 to 10 parts by weight preferably 0.01 to 1 part by weight of a photochromic compound. If the amount is less than 0.001 part by weight, the photochromic property of the optical material becomes insufficient, and if the amount exceeds 10% by weight, poor curing of the optical material and light transmittance are remarkably reduced.
  • the photochromic compound examples include mercury dithionate, a spiropyran compound, a spiroxazine compound, a spiroindoline compound, a fulgide compound, a fulgimide compound, an adamantylidene compound, a cyclophan compound, a chromene compound, and a mixture thereof.
  • the composition (P) of the present invention may optionally contain an amine compound. By blending the amine compound, the optical response speed of color development and fading of the obtained optical material is maintained, and deterioration of the photochromic compound due to a trace amount of acid contained in the ester compound in the composition (P) is suppressed. Can be suppressed.
  • amine compound for example, trimethylamine, dimethylamine, triethylene, getylamine, ethylamine, triethanolamine, jetanolamine, rilylamine, ⁇ , ⁇ -dimethylaminoethyl methacrylate, ⁇ , ⁇ -jetyl Aminoethyl methacrylate, ⁇ - (3-dimethylaminopropyl) acrylamide, ⁇ - (3-dimethylaminopropyl) methacrylamide, mercaptoethylamine,) 3-mercaptoethylamine, tetramethylbutanediamine, Examples include triethylenediamine, pyridine, 1,8-diazabicyclo (5,4,0) indene-7 or a mixture thereof.
  • ⁇ , ⁇ -dimethylaminoethyl methacrylate, ⁇ - (3-dimethylaminopropyl) methacrylamide, and 1,8-diazabicyclo (5,4,0) ndecene-7 is preferred.
  • the content ratio is usually 5 to 50,000 ppm, preferably 100 to 30,000 ppm in the composition (II). If it is less than 5 ppm, the desired effect of the amine compound is insufficient, and if it exceeds 50,000 ppm, curing failure may occur, which is not preferable.
  • the composition (M) contains the mixture (F)
  • the content ratio of the amine compound in the composition (P) is preferably 10 to 5000 ppm.
  • the composition (P) of the present invention may further contain an ultraviolet absorber if necessary.
  • an ultraviolet absorber By blending the ultraviolet ray absorbent, UV cut performance can be imparted to the obtained optical material, and deterioration of the optical material and influence on eyes can be reduced.
  • the ultraviolet absorber include a phenyl salicylate compound, a benzophenone compound, a benzotriazole compound, and a cyanoacrylate compound.
  • the content ratio is generally 100 parts by weight of the composition (M). It is always 0.001 to 5 parts by weight, preferably 0.01 to 1 part by weight. If the amount is less than 0.001 part by weight, sufficient UV cut performance cannot be imparted to the obtained optical material. If the amount exceeds 5 parts by weight, the optical material tends to yellow due to coloring of the ultraviolet absorber itself, which is not preferable.
  • the composition (P) of the present invention further contains additives such as an antioxidant, a light stabilizer, a coloring agent, a release agent, a surfactant, and an antibacterial agent in addition to the above-mentioned components in a usual use range. Can be done.
  • the optical material of the present invention is a material obtained by polymerizing and curing the composition (P).
  • a curing agent such as a radical polymerization initiator is added to the composition (P), and the composition is injected into a metal or glass or plastic casting having a desired lens shape or the like. After that, a method of polymerizing and demolding, and the like are included.
  • the resulting optical material is a transparent, solvent-insoluble cross-linked resin.
  • the radical polymerization initiator prevents ⁇ of the photochromic compound at the time of curing, and further suppresses coloring at the time of curing when the composition (P) contains a polyol, a thiol compound, or an isocyanate compound.
  • Preferred examples thereof include a peroxyester-based initiator, a peroxyketal-based initiator, and an azo-based initiator.
  • peroxester type initiator examples include t-hexylperoxynedecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, t-hexylperoxy- 2-ethylhexanoate, 1-cyclohexyl-1-methylethylperoxy neodecanoate, cuminoleperoxy neodecanoate, t-butylpentanoloxy-2-ethylhexanoate T, t-butyl peroxypivalate, t-hexyl phenoloxypivalate, t-butyl oleperoxy neodecanoate, t-butyl peroxyisobutyrate, t-butyl peroxy xylaurate, t -Butylperoxy nonanoate or mixtures thereof.
  • peroxyketal initiator examples include 1,1-bis (t-hexylperoxy) cyclohexane, di-t-butylbutyloxy-2-methylcyclohexane, and 1,1-bis (t-hexylperoxy). Butyl peroxy) -3,3,5-trimethylcyclohexane or a mixture thereof.
  • azo-based initiator for example, azobisisobutyronitrile, azobisdimethinole parelonitrile or a mixture thereof can be mentioned.
  • another curing agent such as another radical polymerization initiator, dibutyltin dilaurate, or dibutyltin di (2-ethylhexanoate) may be used in combination with the curing agent.
  • the amount of the radical polymerization initiator to be added is usually 0.01 to 0 parts by weight, preferably 0.1 to 5 parts by weight, per 100 parts by weight of the composition (M) in the composition (P). Less than 0.01 parts by weight will not cure When the amount is more than 10 parts by weight, the obtained optical material tends to be distorted, which is not preferable.
  • the polymerization curing can be performed by heating or irradiation with active energy rays.
  • the curing condition is usually a polymerization temperature in the range of 30 to 100 ° C, preferably in the temperature range, and the polymerization time is usually 5 to 72 hours, preferably 1C! ⁇ 36 hours.
  • annealing treatment is performed in a nitrogen or air atmosphere at a temperature of 80 to 20 ° C. for 1 to 5 hours.
  • the photochromic lens of the present invention is a lens having the optical material.
  • the optical material is processed into a lens shape, and if necessary, a hard coat process for improving surface hardness and imparting fashionability are provided. For example, by performing a coloring treatment with a disperse dye.
  • the light transmittance of the resin plate was measured according to JIS K 7105. After UV irradiation (SOLAX XC-500ESS, manufactured by Celic Co., Ltd.) on the resin plate, time to color development (Rl), light transmittance at that time (T1) and time to extinction (R2), light transmission at that time
  • the photochromic performance was evaluated by the ratio (2).
  • a steel ball with a weight of 16 g was naturally dropped onto a resin plate from a height of 127 cm, and the one without damage was designated as (a) and the one with damage was designated as (b).
  • a lcmx4cm plate is cut out from a resin plate, and the dynamic viscoelasticity is measured by Toyo Paul Doinne: Leopipelon, and the temperature showing the maximum of tan S is defined as the glass transition temperature (Tg). It was used as an indicator of heat resistance.
  • BPE-6EA 2,2-bis (4- (2-acryloxyethoxy) diethoxypheninole) propane
  • BPE-6E 2,2-bis (4- (2-methacrylic xychetoxy) jetoxyphenyl) propane
  • DA-6EG Hexaethylene glycol diacrylate
  • BPE-10EA 2,2-bis (4- (2-acryloxyethoxy) tetraethoxyphenyl) propane, BPE-10E; 2,2-bis (4- (2-metharyloxyethoxy) tetraethoxyf Enyl) propane, DA9EG; nonaethyleneglyconoresacrylate,
  • A4EG methoxytetraethylene glycol monoacrylate
  • MA4EG methoxytetraethylene dalicol monomethacrylate
  • MA9EG methoxy nona ethylene glycol monomethacrylate.
  • F mixture
  • TMI 3-Isopropenyl-a, (3 ⁇ 4-dimethylbenzyl isocyanate, 'XDI; m-xylylene diisocyanate, ETT; 2,2'-thiojetanethiol,
  • PETT pentaerythritol tetrakis (/ 3-thiopropionate).
  • P4 a chromene compound (4- (3-phenyl-3- (4-piperidine-1-yl-phenylinole) -3H-benzo [f-chromen-6-yl) morpholine).
  • compositions (P) were prepared by blending the respective raw materials shown in Tables 1 to 3.
  • the unit of the numerical value of each raw material in the table is g.
  • 0.4 g of t-butylbenzyloxyneodecanoate was added, and the mixture was injected into a casting mold composed of two glass disks having a diameter of 7 cm and a gasket made of ethylene-propylene wrapper having a thickness of 2 nm.
  • the demolded disk-shaped resin plate was subjected to an annealing treatment at 100 ° C. for another 2 hours to prepare a resin plate as an optical material.
  • Tables 1-1 to 3-1 show the results of each test for the resin plate.
  • a composition (P) was prepared by blending the respective raw materials shown in Table 4. Next, 0.02 g of dibutyltin diperphosphate and 0.4 g of t-butylbenzyloxyneodecanoate were added as curing agents. The resin was cured as in Examples 1 to 32 to prepare a resin plate as an optical material. Table 4-1 shows the results of each test for the resin plate.
  • Comparative Examples 1, 2 and 6 did not contain the compounds (A) and (B)
  • Comparative Example 3 did not contain the compound (B)
  • Comparative Example 4 showed the compound (A).
  • Comparative Example 5 is an example in which the content of the compound (B) containing the compounds (A) and (B) exceeds the content of the present invention. In Comparative Examples 4 and 5, deformation occurred when the mold was released after curing.
  • the resin plate obtained in the examples has not only the basic properties required for optical materials and lenses, but also has excellent photoresponse speed and color stability of the photochromic compound as compared with the resin plate of the comparative example. It was found that the following physical properties were obtained.

Abstract

A high-refraction photochromic lens exhibiting a quick optical response and a low specific gravity and being excellent in heat resistance, impact resistance and so on; an optical material useful as the material of the lens; and a composition useful as the raw material of the optical material. The composition comprises 100 parts by weight of a monomer composition comprising 15 to 97 wt% of at least one compound (A) represented by the general formula (1) wherein j + n = 5 to 7 and 3 to 50 wt% of at least one compound (B) represented thereby wherein j + n = 9 to 11 and 0.001 to 10 parts by weight of a photochromic compound: (1) wherein R1 and R2 are each H or CH3; Ph is phenylene; j and n are each an integer of 0 to 11, with the proviso that j and n are not simultaneously 0 ; and k, m and p are each 0 or 1.

Description

明細書  Specification
光学材料用組成物、 光学材料及ぴフォトク口ミックレンズ 技術分野  Compositions for optical materials, optical materials and photochromic lenses
本発明は、 太陽光や紫外線によって着色し、 B音所で退色するフォトクロミック性を 有するフォトクロミックレンズ、 該レンズを構成する光学材料及び該光学材料の原材 料に利用できる光学材料用組成物に関する。  The present invention relates to a photochromic lens having photochromic properties that is colored by sunlight or ultraviolet light and that fades in a B-tone place, an optical material constituting the lens, and a composition for an optical material that can be used as a raw material of the optical material.
背景技術 Background art
近年、 光学材料の分野では軽量性、 安全性、 ファッション性が益々重視され、 従来 の無機ガラスから合成樹脂へと材料が移行している。 該合成樹脂の代表例としては、 ポリジエチレングリコールビスァリルカーボネート、 ポリメチルメタタリレート、 ポ リカーボネートが挙げられる。  In recent years, in the field of optical materials, light weight, safety, and fashionability have been increasingly emphasized, and materials have shifted from conventional inorganic glass to synthetic resins. Representative examples of the synthetic resin include polydiethylene glycol bisaryl carbonate, polymethyl methacrylate, and polycarbonate.
また最近、 フォトクロミックレンズが使用されるようになっている。 該フォトクロ ミックレンズの製造法としては、例えば、 (1)光学用樹脂にフォトクロミック化合物を 練り込んで成型する方法 (特開昭 61-161286号公報)、(2)フォトクロミック化合物を溶 解又は分散させた溶液に光学用樹脂を含浸させ、 フォトクロミック化合物を樹脂表面 に分散又はコーティングする方法 (米国特許第 3216958号明細書、 特開昭 61-228402 号公報)、 (3)フォトクロミック化合物をメチルメタクリレートに溶解した後、 硬化さ せる方法 (特開昭 61-233079号公報、特開平 1-259013号公報、特開平 7-2938号公報) が知られている。  Recently, photochromic lenses have been used. Examples of the method for producing the photochromic lens include: (1) a method in which a photochromic compound is kneaded into an optical resin and molded (JP-A-61-161286); and (2) a method in which the photochromic compound is dissolved or dispersed. A method of impregnating an optical resin with the resulting solution and dispersing or coating the photochromic compound on the resin surface (U.S. Pat.No. 3,216,958, JP-A-61-228402), (3) converting the photochromic compound into methyl methacrylate There are known methods of dissolving and curing (JP-A-61-233079, JP-A-1-259013, JP-A-7-2938).
前記 (1)の方法では、 光学用樹脂を 200°C以上の高温で溶融するため、 フォトクロミ ック化合物が劣化したり、 該ィ匕合物の分散性にも問題が生じ、 成型物での光応答性が 低いという問題がある。 前記 (2)の方法では、 レンズの製造工程が煩雑になり、 また、 フォトクロミック化合物の含浸量の制御が困難である。  In the method (1), since the optical resin is melted at a high temperature of 200 ° C. or more, the photochromic compound is deteriorated, and a problem occurs in the dispersibility of the compound. However, there is a problem that the optical response is low. In the method (2), the lens manufacturing process becomes complicated, and it is difficult to control the amount of the photochromic compound impregnated.
前記 (3)の方法において、 特開昭 61-233079号公報には、 フォトクロミック化合物 であるスピロォキサジン化合物をメチルメタクリレートに溶解させて硬化させる方法 が開示されている。 該方法では、 用いる重合性モノマ 及びラジカル重合開始剤によ りフォトクロミック化合物が劣ィ匕する問題、 製造された光学材料の光応答性の低さや 屈折率が 1. 49程度と低い等の欠点がある。 前記特開平 1-259013号公報及ぴ特開平 7-2938号公報には、重合性ァリルカーボネートを使用する方法が開示されている。 し かし、 該方法でもフォトクロミツクイ匕合物の劣ィ匕が克服できず、 得られる光学材料の 発色及び退色の光応答速度が十分でないという問題がある。 In the method (3), JP-A-61-233079 discloses a method in which a spiroxazine compound, which is a photochromic compound, is dissolved in methyl methacrylate and cured. This method has disadvantages such as a problem that the photochromic compound is inferior due to the polymerizable monomer and the radical polymerization initiator used, a low optical response of the manufactured optical material, and a low refractive index of about 1.49. is there. JP-A 1-259013 and JP-A 7-2938 disclose a method using a polymerizable aryl carbonate. However, even with this method, the inferiority of the photochromic ridged product cannot be overcome, and the resulting optical material There is a problem that the photoresponse speed of coloring and fading is not sufficient.
また、特開昭 62-267316号公報には、ポリイソシァネートとポリチオールとの重合 物であるチォウレタン樹脂を採用した屈折率が高い光学材料が記載されている。 しか し、 前記チォウレタン樹脂を製造するポリィソシァネート及びポリチオールにフォト クロミックィ匕合物を溶解し硬化させると、 該フォトクロミック化合物がィソシァネ一 トと反応してフォトク口ミック性が発現できないという問題がある。  JP-A-62-267316 describes an optical material having a high refractive index employing a thiourethane resin which is a polymer of polyisocyanate and polythiol. However, when the photochromic conjugate is dissolved and cured in the polyisocyanate and polythiol for producing the thiourethane resin, there is a problem that the photochromic compound reacts with the isocyanate and cannot exhibit photochromic properties. .
以上のように、 従来の各種フォトク口ミック光学材料では、 フォトクロミック化合 物の性能が十分発揮されないことが多い。  As described above, the performance of photochromic compounds is often not sufficiently exhibited with conventional various photochromic optical materials.
発明の開示 Disclosure of the invention
本発明の目的は、 光応答性が速く、 低比重であり、 耐熱性及び耐衝撃性等の諸物性 に優れ、 高屈折率であるフォトクロミックレンズ、 該レンズ材料である光学材料及ぴ 該光学材料の原料となる光学材料用組成物を提供することにある。  An object of the present invention is to provide a photochromic lens having a high photoresponsiveness, a low specific gravity, excellent heat and impact resistance and other physical properties, and a high refractive index, an optical material as the lens material, and the optical material. An object of the present invention is to provide a composition for an optical material which is a raw material of the optical material.
本発明によれば、 式 (1)における jと IIの合計が 5〜7である少なくとも 1種の化合 物 (A)15〜97重量%、及ぴ式 (1)における jと nの合計が 9〜11である少なくとも 1種 の化合物 (B)3〜50重量0 /0を含むモノマー組成物 100重量部と、フォトクロミック化合 物 0.001〜: 10重量部とを含む光学材料用組成物が提供される。 According to the present invention, 15 to 97% by weight of at least one compound (A) in which the sum of j and II in the formula (1) is 5 to 7 and the sum of j and n in the formula (1) are at least one compound is 9-11 and (B) 3 to 50 weight 0/0 monomer 100 parts by weight of the composition containing a photochromic compound 0.001: optical material composition comprising 10 parts by weight is provided You.
R1 0 R2 0 CH。 0 R2 0 R1 R 1 0 R 2 0 CH. 0 R 2 0 R 1
I II I II I II I II I I II I II I II I II I
CH2=C- CO-(CHCH20)j-(CO)k-(Ph-C-Ph)p-(OC)m-(OCH2CH)n-OC- C=CH2 (1) CH 2 = C- CO- (CHCH 20 ) j- (CO) k- (Ph-C-Ph) p- (OC) m- (OCH 2 CH) n-OC- C = CH 2 (1)
CH3 CH 3
(式中、 R1及ぴ R2は水素原子又はメチル基を示し、 Phはフエ二レン基を示す。 j及ぴ nは独立に 0〜 11の整数である。 伹し、 j及ぴ nが同時に 0にはならない。 k、 m及び pは独立に 0又は 1である。 ) (Wherein, R 1 and R 2 represent a hydrogen atom or a methyl group, Ph represents a phenylene group. J and n are independently integers from 0 to 11. Are not simultaneously 0. k, m and p are independently 0 or 1.)
また本発明によれば、 前記光学材料用組成物を重合硬化させて得た光学材料が提供 される。  Further, according to the present invention, there is provided an optical material obtained by polymerizing and curing the composition for optical material.
更に本発明によれば、前記光学材料を有するフォトクロミックレンズが提供される。 発明の好ましい実施の形態  Further, according to the present invention, there is provided a photochromic lens having the optical material. Preferred embodiments of the invention
以下、 本発明を更に詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明の光学材料用組成物 (以下、組成物 (P)という)は、前記式 (1)に示される化合物 (A)及びィヒ合物 (B)を特定割合で含む、 重合性のモノマー組成物 (以下、 組成物 (M)とい う)と、 特定割合のフォトクロミック化合物とを含む。 式 (1)に示される化合物は、 レ ンズ用モノマーとして、 例えば、 特公昭 58-17527号公報等に開示されているが、 特 定の化合物 (A)及び化合物 B)を特定割合で含み、 且つフォトクロミック化合物と組合 せて使用することは知られていない。 The composition for an optical material of the present invention (hereinafter, referred to as composition (P)) is a polymerizable monomer containing the compound (A) and the compound (B) represented by the formula (1) in a specific ratio. A composition (hereinafter, referred to as composition (M)) and a specific proportion of a photochromic compound. The compound represented by the formula (1) For example, as disclosed in Japanese Patent Publication No. 58-17527, it is not possible to use a specific compound (A) and a specific compound B) in a specific ratio and use in combination with a photochromic compound. unknown.
前記式 (1)において、 R1及び R2は水素原子又はメチル基を示し、 Phはフエ二レン基 を示す。 j及び nは独立に 0〜; 11の整数である。但し、: i及ぴ nが同時に 0にはならな い。 k、 m及び pは独立に 0又は 1である。組成物 (M)において必須に用いる化合物 (A) は、 jと nの合計が 5〜7の化合物であり、化合物 (B)は、 jと nの合計が 9〜: 11の化合 物である。 In the above formula (1), R 1 and R 2 represent a hydrogen atom or a methyl group, and Ph represents a phenylene group. j and n are each independently an integer from 0 to 11; However, i and n do not become 0 at the same time. k, m and p are independently 0 or 1. The compound (A) which is essentially used in the composition (M) is a compound in which the sum of j and n is 5 to 7, and the compound (B) is a compound in which the sum of j and n is 9 to 11 .
前記組成物 (M)は、重合性モノマーの組成物であって、前記化合物 (A)及ぴ化合物 (B) の他に、 必要に応じて、 式 (1)における; jと nの合計が 2〜3であるィ匕合物 (C:)、 ビニル 基を有するアミド化合物 (D)、 他のビニル系化合物 (E)及びこれらの混合物からなる群 より選択されるモノマー等を更に含有していても良く、 また、 イソシァネートイ匕合物 とチオールィヒ合物からなるチォウレタン樹脂を構成しうる混合物 (F)を含有していて も良い。 これらは、 所望の目的等に応じて各種組合せて配合することができ、 また、 本発明の所望の目的を損なわない範囲でこれら以外の重合性モノマーを配合すること もできる。  The composition (M) is a composition of a polymerizable monomer.In addition to the compound (A) and the compound (B), if necessary, in the formula (1), the sum of j and n is And a monomer selected from the group consisting of an amide compound having a vinyl group (C :), an amide compound having a vinyl group (D), another vinyl compound (E), and a mixture thereof. And a mixture (F) which can constitute a thiourethane resin composed of an isocyanate compound and a thiolic compound. These can be blended in various combinations according to the desired purpose and the like, and other polymerizable monomers can be blended as long as the desired purpose of the present invention is not impaired.
化合物 (A)は、硬化後の光学材料に速い光応答性をもたせると共に耐熱性、耐衝撃性、 耐久性、 硬度等の光学材料に要求される諸特性を付与する。  The compound (A) gives the optical material after curing a fast light response and also provides various properties required for the optical material such as heat resistance, impact resistance, durability, and hardness.
化合物 (A)としては、 例えば、 2,2-ビス (4-(2- (メタ)ァクリロキシェトキシ)ジェトキ シフエ二ル)プロパン (j + n=6)、 2,2-ビス (4-(2- (メタ)ァクリロキシプロポキシ)ジプロ ポキシフエニル)プロパン (j + n=6)、へキサエチレングリコールジ (メタ)ァクリレート (j+n=6)等が挙げられる。  As the compound (A), for example, 2,2-bis (4- (2- (meth) acryloxyshethoxy) jetoxyphenyl) propane (j + n = 6), 2,2-bis (4 -(2- (meth) acryloxypropoxy) dipropoxyphenyl) propane (j + n = 6), hexaethylene glycol di (meth) acrylate (j + n = 6) and the like.
化合物 (A)の含有割合は、 組成物 (M)中に 15〜97重量%が好ましい。 ここで、 組成 物 (M)が前記混合物 (F)を含む場合の化合物 (A)の含有割合は、 組成物 (M)中に 15〜50 重量%、 より好ましくは 15〜40重量%である。 また組成物 (M)が前記混合物 (F)を含 まない場合の化合物 (A)の含有割合は、 組成物 (M)中に 50〜97重量%、 より好ましく は 50〜90重量%である。 この場合、 化合物 (A)が 50重量0 /0未満では、 耐熱性、 耐衝 撃性、 耐久性、 硬度等の光学材料に要求される諸特性が低下する傾向となる。 The content ratio of the compound (A) is preferably 15 to 97% by weight in the composition (M). Here, when the composition (M) contains the mixture (F), the content ratio of the compound (A) is 15 to 50% by weight, more preferably 15 to 40% by weight in the composition (M). . When the composition (M) does not contain the mixture (F), the content of the compound (A) is 50 to 97% by weight, more preferably 50 to 90% by weight in the composition (M). . In this case, the compound (A) is less than 50 weight 0/0, heat resistance,耐衝撃性, durability and various properties required for optical materials such as hardness tends to decrease.
化合物 (B)は、 硬化後の光学材料に速い光応答性を付与する。  The compound (B) imparts fast photoresponsiveness to the cured optical material.
化合物 (B)としては、 例えば、 2,2-ビス (4-(2- (メタ)アタリロキシエトキシ)テトラエ トキシフエ二ノレ)プロパン 0· + η= 1Ο)、' 2,2-ビス (4-(2- (メタ)ァクリロキシプロポキシ) テトラプロポキシフエニル)プロパン (j + n= 10)、 ノナエチレングリコールジ (メタ)ァ クリレート(j + n=9)、 ノナプロピレングリコールジ (メタ)アタリレート (j + n=9)等が 挙げられる。 As the compound (B), for example, 2,2-bis (4- (2- (meth) ataryloxyethoxy) tetrae Toxipheninole) propane 0 · + η = 1Ο), '2,2-bis (4- (2- (meth) acryloxypropoxy) tetrapropoxyphenyl) propane (j + n = 10), nonaethylene glycol Di (meth) acrylate (j + n = 9), nonapropylene glycol di (meth) acrylate (j + n = 9) and the like.
化合物 (B)の含有割合は、組成物 (M)中に 3〜50重量%、好ましくは 4〜40重量%で ある。 50重量%を超えると得られる光学材料の耐熱性や硬度が低下する。  The content ratio of the compound (B) is 3 to 50% by weight, preferably 4 to 40% by weight in the composition (M). If it exceeds 50% by weight, the heat resistance and hardness of the obtained optical material will be reduced.
化合物 (A)と化合物 (B)との関係は、 両者の合計量を 100重量部とした時、 化合物 (A)50〜95重量部、 ィ匕合物 (B)5〜50重量部であることが好ましい ώ The relationship between the compound (A) and the compound (B) is 50 to 95 parts by weight of the compound (A) and 5 to 50 parts by weight of the compound (B) when the total amount of both is 100 parts by weight. It is preferable .
糸且成物 (Μ)において、 必要により配合できるィヒ合物 (C)は、 硬化後の光学材料におい て、 更に耐熱性、 硬度を向上させることができるモノマーである。  The fibrous compound (C), which can be blended as necessary in the fibrous composition (II), is a monomer capable of further improving heat resistance and hardness in the cured optical material.
化合物 (C)としては、例えば、 2,2-ビス (4- (メタ)ァクリロキシエトキシフエニル)プロ パン (j + n=2)、 2,2-ビス(4-(2- (メタ)アタリ口キシェトキシカルボニルォキシ)フエ二 ル)プロパン j + n=2)、 2,2-ビス (4- (メタ)ァクリロキシプロポキシフエニル)プロパン (j +n=2)、 2,2-ビス (4-(2- (メタ)ァクリロキシプロポキシカルボニルォキシ)フエニル)プ 口パン ΰ· + η=2)、 ジエチレングリコールジ (メタ)ァクリレ一ト(j = 2)、 トリエチレング リコールジ (メタ)ァクリレート (j = 3)、ジプロピレンダリコールジ (メタ)ァクリレート (j =2)、 トリプロピレンダリコールジ (メタ)ァクリレート (j=3)等が挙げられる。  As the compound (C), for example, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane (j + n = 2), 2,2-bis (4- (2- (meta ) Atari mouth xylethoxycarbonyloxy) phenyl) propane j + n = 2), 2,2-bis (4- (meth) acryloxypropoxyphenyl) propane (j + n = 2), 2 , 2-bis (4- (2- (meth) acryloxypropoxycarbonyloxy) phenyl) lip パ ン + + η = 2), diethylene glycol di (meth) acrylate (j = 2), triethylene glycol (Meth) acrylate (j = 3), dipropylene dalicol di (meth) acrylate (j = 2), tripropylene dalicol di (meth) acrylate (j = 3) and the like.
化合物 (C)を配合する場合の含有割合は、組成物 (M)中に通常 3〜25重量%、好まし くは 4〜20重量%である。 25重量%を超えると硬化後の光学材料における光応答性 が低下する恐れがあるので好ましくない。  When compound (C) is added, the content ratio is usually 3 to 25% by weight, preferably 4 to 20% by weight in composition (M). If the content exceeds 25% by weight, the photoresponsiveness of the cured optical material may be undesirably reduced.
組成物 (M)において、必要により配合できるアミド化合物 (D)は、本発明の組成物 (P) において、後述するラジカル重合開始剤によるフォトクロミック化合物の劣ィヒを防ぎ、 また、 フォトクロミック化合物が、前記混合物 (F)におけるィソシァネート化合物と反 応するのを防止し、 更に、 硬化後の光学材料により速い光応答性を付与する。  In the composition (M), the amide compound (D), which can be added as required, prevents the composition (P) of the present invention from deteriorating the photochromic compound due to a radical polymerization initiator described below. It prevents reaction with the isocyanate compound in the mixture (F), and further provides faster optical response to the cured optical material.
アミ ド化合物 (D)としては、 例えば、 アクリルアミド、 メタクリルアミ ド、 N-ビニ ルホルムアミド、 N-ビュルァセトアミド、 N-メチル -N-ビュルァセトアミド、 N-ビニ ルフタルイミド、 1-ビエル- 2-ピロリジノン、 1-ビニルイミダゾール、 N-ィソプロピル アタリルァミ ド、 N-(3—ジメチルァミノプロピノレ)ァクリルァミド、 N-(3-ジメチルァ ミノプロピル)メタクリルァミド、 Ν,Ν-ジメチルァクリルァミド、 Ν,Ν-ジメチルメタ クリルアミ ド、 Ν,Ν -ジェチルァクリルアミ ド、 3-メタクリルアミ ド -Ν,Ν-ジメチルプ 口ピルァミン、 N-(l,l-ジメチル -3-ォキソプチル)アクリルアミド、 N- (ヒドロキシメチ ル)アクリルアミド等が挙げられる。 中でも、 N,N-ジメチルアクリルアミド、 N-イソ プロピルァクリルァミド、 N-(3-ジメチルァミノプロピル)ァクリルァミド、 N-(3-ジメ チルァミノプロピル)メタクリルアミドが好ましい。 使用に際しては、 2種以上混合し て用いることもできる。 Examples of the amide compound (D) include, for example, acrylamide, methacrylamide, N-vinylformamide, N-vinylacetamide, N-methyl-N-butylacetamide, N-vinylphthalimide, and 1-viel -2-pyrrolidinone, 1-vinylimidazole, N-isopropylatarylamide, N- (3-dimethylaminopropynole) acrylamide, N- (3-dimethylaminopropyl) methacrylamide, Ν, Ν-dimethylacrylamide Ν, Ν, Ν-dimethyl methacrylamide, Ν, ジ ェ -ethyl acrylamide, 3-methacrylamide -Ν, Ν-dimethyl Mouth pyramine, N- (l, l-dimethyl-3-oxobutyl) acrylamide, N- (hydroxymethyl) acrylamide and the like. Among them, N, N-dimethylacrylamide, N-isopropylacrylamide, N- (3-dimethylaminopropyl) acrylamide, and N- (3-dimethylaminopropyl) methacrylamide are preferred. When used, two or more kinds may be used in combination.
アミド化合物 (D)を用いる場合の含有割合は、組成物 (M)中に通常 0.1〜30重量%、 好ましくは 0.8〜20重量%である。 0.1重量%未満ではァミド化合物 (D)を配合するこ とによる所望の効果が得られ難く、 30重量%を超えると硬化が不良が生じる恐れがあ るので好ましくない。 また、 組成物 (M)が、 前記混合物 (F)を含む場合のアミド化合物 (D)の含有割合は、 組成物 (M)中に 0.8〜5重量%が好ましい。  When the amide compound (D) is used, the content ratio is usually 0.1 to 30% by weight, preferably 0.8 to 20% by weight in the composition (M). If the amount is less than 0.1% by weight, it is difficult to obtain a desired effect by adding the amide compound (D). If the amount exceeds 30% by weight, curing may be poor, which is not preferable. When the composition (M) contains the mixture (F), the content ratio of the amide compound (D) is preferably 0.8 to 5% by weight in the composition (M).
組成物 (M)において、 必要により配合できる前記他のビニル系化合物 (E)は、 前記化 合物 (A)〜(C)及び前記アミド化合物 (D)以外の重合可能なビュル系ィヒ合物であって、例 えば、 式 (1)における] 'と nの合計が 1、 4又は 8の場合の化合物を含む。 他のビニル 系化合物 (E)は、 得られる光学材料の屈折率、染色性、耐熱性、硬度等を調整するため に適宜選択し使用できる。  In the composition (M), the other vinyl compound (E), which can be blended as necessary, is a polymerizable bur compound other than the compounds (A) to (C) and the amide compound (D). And, for example, a compound in which the sum of] 'and n in the formula (1) is 1, 4 or 8. Other vinyl compounds (E) can be appropriately selected and used to adjust the refractive index, dyeability, heat resistance, hardness and the like of the obtained optical material.
ビュル系化合物 (E)としては、 例えば、 メチル (メタ)ァクリレート、 ェチル (メタ)ァ タリレート、 n-ブチル (メタ)アタリレート、 s-ブチル (メタ)アタリレート、 i-ブチル (メ タ)アタリレート、 n-へキシル (メタ)アタリレート、 2-ェチルへキシル (メタ)ァクリレー ト、 フエニル (メタ)アタリレート、 ベンジル (メタ)アタリレート、 2-ヒ ドロキシェチル (メタ)アタリレート、 グリセロイルモノ(メタ)ァクリレート、 グリシジル (メタ)アタリ レート、 2-メ トキシェチル (メタ)アタリレート、 ジエチレングリコールモノ(メタ)ァク リレート、 メ トキシエトキシェチル (メタ)アタリレート、 トリエチレングリコールモ ノ(メタ)ァクリレート、テトラエチレンダリコールモノ(メタ)ァクリレート、 メトキシ テトラエチレングリコーノレモノ(メタ)ァクリレート、 ノナエチレングリコーノレモノ(メ タ)アタリレート、 メトキシノナエチレングリコールモノ(メタ)アタリレート、 メ トキ シトリエチレングリコール (メタ)ァクリレート、 ポリエチレングリコーノレモノ(メタ) アタリレート、 メ トキシポリエチレングリコール (メタ)アタリレート、 ポリプロピレ ングリコールモノ(メタ)ァクリレート、メ トキシプロピレングリコール (メタ)ァクリレ —ト、 スチレン、 ハロゲン核置換スチレン、 メチル核置換スチレン、 ジビュルべンゼ ン ビュルナフタレン、 ジァリルオルソフタレート、 ジァリルイソフタレート、 ジァ リルテレフタレート、 2,2-ビス (4-(2- (メタ)ァクリロキシエトキシ)エトキシフエニル) プロパン j + n=4)、 2,2-ビス (4-(2- (メタ)ァクリ口キシェトキシ)トリエトキシフエ二 ル)プロパン j + n=8)、 2,2-ビス (4- ((メタ)ァクリ口キシェトキシ)ポリエトキシフエ二 ノレ)プロパン、 2,2-ビス (4-((2- (メタ)ァクリロキシエトキシ)エトキシカルボニルォキシ) フエニル)プロパン (j+n=4)、 2,2-ビス(4-(2- (メタ)ァクリロキシプロポキシ)プロポキ シフエニル)プロパン j + n=4)、 2,2-ビス (4-(2- (メタ)ァクリロキシプロポキシ)トリプ 口ポキシフエニル)プロパン (j + n= 8)、 2,2-ビス (4- ((メタ)ァクリロキシプロポキシ)ポ リプロポキシフエニル)プロパン、 2,2-ビス (4-((2- (メタ)ァクリロキシプロポキシ)プロ ポキシ力ルポニルォキシ)フエニル)プロパン (j + n=4)、 エチレングリコールジ (メタ) アタリレート 0'= 1)、 テトラエチレンダリコールジ (メタ)アタリレート 0· = 4)、 プロピ レングリコールジ (メタ)ァクリレート(j= l)、 テトラプロピレングリコールジ (メタ)ァ タリレート j=4)等が挙げられる。 中でも、 耐熱性、硬度を調整するためには、 (メタ) ァクリル基を 3個以上有するモノマーの使用が好ましい。 Examples of the bull-based compound (E) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, s-butyl (meth) acrylate, and i-butyl (meth) acrylate. Rate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxyxyl (meth) acrylate, glyceroyl mono (Meth) acrylate, glycidyl (meth) acrylate, 2-methoxethyl (meth) acrylate, diethylene glycol mono (meth) acrylate, methoxy ethoxyxyl (meth) acrylate, triethylene glycol mono (meth) Acrylate, tetraethylene dalicol mono (meth) acrylate, methoxy tetraethyl Nonglycone mono (meth) acrylate, nonaethyleneglycone mono (meth) acrylate, methoxynonaethylene glycol mono (meth) acrylate, methoxytriethylene glycol (meth) acrylate, polyethylene glycolone (meth) atari Rate, methoxypolyethylene glycol (meth) acrylate, propylene glycol mono (meth) acrylate, methoxypropylene glycol (meth) acrylate, styrene, halogen-substituted styrene, methyl-substituted styrene, dibutylbenzene bulnaphthalene , Diaryl orthophthalate, diaryl isophthalate, dia Ryl terephthalate, 2,2-bis (4- (2- (meth) acryloxyethoxy) ethoxyphenyl) propane j + n = 4), 2,2-bis (4- (2- (meth) acrylic acid) Xhetoxy) triethoxyphenyl) propane j + n = 8), 2,2-bis (4-((meth) acrylic xylethoxy) polyethoxyphenyl) propane, 2,2-bis (4-(( 2- (meth) acryloxyethoxy) ethoxycarbonyloxy) phenyl) propane (j + n = 4), 2,2-bis (4- (2- (meth) acryloxypropoxy) propoxyphenyl) propane j + n = 4), 2,2-bis (4- (2- (meth) acryloxypropoxy) trip, poxyphenyl) propane (j + n = 8), 2,2-bis (4- ((meta) Acryloxypropoxy) polypropoxyphenyl) propane, 2,2-bis (4-((2- (meth) acryloxypropoxy) propoxyl-propionyloxy) phenyl) propa (j + n = 4), ethylene glycol di (meth) acrylate 0 '= 1), tetraethylene dalichol di (meth) acrylate 0 · = 4), propylene glycol di (meth) acrylate (j = l) ), Tetrapropylene glycol di (meth) phthalate j = 4) and the like. Above all, in order to adjust heat resistance and hardness, it is preferable to use a monomer having three or more (meth) acrylic groups.
他のビニル系化合物 (E)を用いる場合の含有割合は、 組成物 (M)中に通常 3〜20重 量%、 好ましくは 4〜: 15重量%である。  When the other vinyl compound (E) is used, the content ratio is usually 3 to 20% by weight, preferably 4 to 15% by weight in the composition (M).
組成物 (M)において、 必要により配合できる前記混合物 (F)は、 チォウレタン樹脂を 構成しうるイソシァネート化合物及ぴチオール化合物の混合物であつて、 得られる光 学材料の屈折率をより高くするため等に配合することができる。  In the composition (M), the mixture (F), which can be blended as required, is a mixture of an isocyanate compound and a thiol compound which can constitute a thiourethane resin, and is used for increasing the refractive index of the obtained optical material. Can be blended.
前記イソシァネート化合物としては、 例えば、 3-イソプロぺニル - α,α -ジメチルべ ンジルイソシァネート、 ィソシァネ一トェチルメタクリレート、 へキサメチレンジィ ソシァネート、 4, 4'-ジシク口へキシノレメタンジィソシァネート、 m-キシレンジイソシ ァネート、 m-テトラメチノレキシレンジイソシァネート、 イソホロンジイソシァネート 又はこれらの混合物等が挙げられる。  Examples of the above-mentioned isocyanate compound include 3-isopropenyl-α, α-dimethylbenzyl isocyanate, isocyanateethyl methacrylate, hexamethylene diisocyanate, and 4,4′-dicyclohexyl methacrylate. And m-xylylene diisocyanate, m-tetramethylenolylene diisocyanate, isophorone diisocyanate, and mixtures thereof.
前記チオール化合物としては、 例えば、 エタンジチォーノレ、 1,6-へキサンジチォ一 ル、 3,3'-ジチォジプロピオン酸、 エチレングリコールジチォグリコレート、 2,2'-チォ ジエタンチオール、 2,2'-ォキシエタンチォ一ノレ、 ジメルカプトトリエチレンジスルフ イド、 1,2-ジチォグリセリン、 1,3-ジチォグリセリン、 1,4-ベンゼンジチオール、 1,2- ビス(メルカプトメチレン)ベンゼン、 トリメチロールプロパントリス(チォグリコレー ト)、 ペンタエリスリ トールテトラキス(チォグリコレート)、 ペンタエリスリ トールテ トラキス (メルカプトプロピオネート)又はこれらの混合物等が挙げられる。 混合物 ( )を用いる場合の含有割合は、 組成物 (M)中に通常 20〜70重量%、 好まし くは 30〜60重量0 /0である。 また、 混合物 (F)中のイソシァネート化合物とチオールィ匕 合物との配合割合は、官能基モル比 (チオール基 イソシァネート基)で、通常 1.0〜4.0、 好ましくは 1.1〜2.0である。 Examples of the thiol compound include ethanedithionole, 1,6-hexanedithiol, 3,3′-dithiodipropionic acid, ethylene glycol dithioglycolate, and 2,2′-thiodiethanethiol , 2,2'-oxyethanethiol, dimercaptotriethylene disulfide, 1,2-dithioglycerin, 1,3-dithioglycerin, 1,4-benzenedithiol, 1,2-bis (mercaptomethylene) Examples include benzene, trimethylolpropane tris (thioglycolate), pentaerythritol tetrakis (thioglycolate), pentaerythritol tetrakis (mercaptopropionate), and mixtures thereof. Content in the case of using the mixture (), the composition (M) Normal 20% to 70% by weight in, rather preferably is 30 to 60 weight 0/0. The mixing ratio of the isocyanate compound and the thiol conjugate in the mixture (F) is usually 1.0 to 4.0, preferably 1.1 to 2.0 in terms of a functional group molar ratio (thiol group / isocyanate group).
組成物 (M)が前記混合物 (F)を含有しない場合、 作業時の操作性、 得られる光学材料 の屈折率の観点からは、 前述の各ィ匕合物の規定を充足した上で、 更に、 組成物 (M)中 の式 (1)における k、 p、 in及び nのうち pが 1であり、 j + nが 2〜11である化合物の 含有割合が 60〜90重量%で、 且つ式 (1)における k、 p、 m及び nの全てが 0で、 且 つ; jが 1〜: 11である化合物の含有割合が 10〜40重量%であることが好ましい。 前者 の化合物が 60重量%未満では、 屈折率が低くなる傾向があり、後者の化合物が 10重 量%未満では、 組成物 (M)の粘度が増大し作業時の操作性が低下する恐れがあるので 好ましくない。  When the composition (M) does not contain the mixture (F), from the viewpoint of the operability at the time of operation and the refractive index of the obtained optical material, after satisfying the above-mentioned specifications of the respective conjugates, The content of the compound in which p is 1 and j + n is 2 to 11 in k, p, in and n in the formula (1) in the composition (M) is 60 to 90% by weight, and In the formula (1), it is preferable that k, p, m and n are all 0, and the content of the compound in which j is 1 to 11 is 10 to 40% by weight. When the former compound is less than 60% by weight, the refractive index tends to be low, and when the latter compound is less than 10% by weight, the viscosity of the composition (M) may increase and the operability at the time of operation may decrease. This is not desirable.
このような組成物 (M)が混合物 (F)を含有しない場合、 '組成物 (M)中の式 (1)で示され る化合物の含有割合は、 70〜99.9重量%、特に 80〜99重量%が好ましい。 70重量% 未満では得られる光学材料に速い光応答性を付与すると共に、 耐熱性、 耐衝撃性、 耐 久性、硬度等の光学材料に要求される諸特性が低下する恐れがあるので好ましくない。 一方、 組成物 (M)が前記混合物 (F)を含む場合、 前述の各化合物及び混合物の規定を 充足した上で、 更に、組成物 (M)中の式 (1)で示される化合物の含有割合は、 20〜70重 量0 /。、 特に 30〜60重量%が好ましい。 20重量%未満では、 屈折率の向上が不十分と なる恐れがあり、 70重量%を超えると得られる光学材料に要求される光応答性を付与 できない恐れがあるので好ましくない。 When the composition (M) does not contain the mixture (F), the content of the compound represented by the formula (1) in the composition (M) is 70 to 99.9% by weight, particularly 80 to 99% by weight. % By weight is preferred. If the content is less than 70% by weight, the obtained optical material is provided with a fast light response, and various properties required for the optical material such as heat resistance, impact resistance, durability, and hardness may be deteriorated. . On the other hand, when the composition (M) contains the mixture (F), the composition (M) satisfies the above-mentioned requirements for each compound and mixture, and further contains the compound represented by the formula (1) in the composition (M). The ratio is 20-70 weight 0 /. In particular, 30 to 60% by weight is preferable. If the content is less than 20% by weight, the refractive index may not be sufficiently improved, and if the content is more than 70% by weight, the required optical response may not be provided to the obtained optical material.
本発明の組成物 (P)は、 前記組成物 (M)100重量部に対して、 紫外線や可視光線によ り光透過性が変化し、 光源を断つと光透過性が元に戻る特性を有する、 フォトクロミ ック化合物を 0.001〜; 10重量部、 好ましくは 0.01〜1重量部含む。 0.001重量部未満 では光学材料のフォトクロミック性が不十分となり、 10重量%を超えると光学材料の 硬化不良や光線透過率が著しく低下する。  The composition (P) of the present invention has such a property that, based on 100 parts by weight of the composition (M), the light transmittance is changed by ultraviolet light or visible light, and the light transmittance is restored when the light source is cut off. 0.001 to 10 parts by weight, preferably 0.01 to 1 part by weight of a photochromic compound. If the amount is less than 0.001 part by weight, the photochromic property of the optical material becomes insufficient, and if the amount exceeds 10% by weight, poor curing of the optical material and light transmittance are remarkably reduced.
フォトクロミック化合物としては、例えば、ニチオン酸水銀、スピロピラン化合物、 スピロォキサジン化合物、 スピローインドリン化合物、 フルギド化合物、 フルギミド 化合物、 ァダマンチリデン化合物、 シクロフアン化合物、 クロメン化合物又はこれら の混合物等が挙げられる。 本発明の組成物 (P)には、必要によりアミン化合物を配合することができる。該ァミ ン化合物を配合することにより、 得られる光学材料の発色と退色の光応答速度を維持 し、組成物 (P)中のエステル化合物に含まれる極微量の酸による前記フォトクロミック 化合物の劣化を抑制することができる。 Examples of the photochromic compound include mercury dithionate, a spiropyran compound, a spiroxazine compound, a spiroindoline compound, a fulgide compound, a fulgimide compound, an adamantylidene compound, a cyclophan compound, a chromene compound, and a mixture thereof. The composition (P) of the present invention may optionally contain an amine compound. By blending the amine compound, the optical response speed of color development and fading of the obtained optical material is maintained, and deterioration of the photochromic compound due to a trace amount of acid contained in the ester compound in the composition (P) is suppressed. Can be suppressed.
ァミン化合物としては、 例えば、 トリメチルァミン、 ジメチルァミン、 トリエチレ ン、 ジェチルァミン、 ェチルァミン、 トリエタノールァミン、 ジェタノールァミン、 了リルァミン、 Ν,Ν-ジメチルァミノェチルメタクリレート、 Ν,Ν-ジェチルァミノェチ ルメタタリレート、 Ν-(3-ジメチルァミノプロピル)ァクリルァミ ド、 Ν-(3-ジメチルァ ミノプロピル)メタクリルアミド、 メルカプトェチルァミン、 )3 -メルカプトェチル ァミン、 テトラメチ ^ブタンジァミン、 トリエチレンジァミン、 ピリジン、 1,8-ジァ ザビシクロ(5,4,0)ゥンデセン- 7又はこれらの混合物等が挙げられる。 中でも、 Ν,Ν- ジメチルァミノェチルメタクリレート、 Ν-(3-ジメチルァミノプロピル)メタクリルァ ミド、 1,8-ジァザビシク口(5,4,0)ゥンデセン- 7の使用が好ましい。  As the amine compound, for example, trimethylamine, dimethylamine, triethylene, getylamine, ethylamine, triethanolamine, jetanolamine, rilylamine, Ν, Ν-dimethylaminoethyl methacrylate, Ν, Ν-jetyl Aminoethyl methacrylate, Ν- (3-dimethylaminopropyl) acrylamide, Ν- (3-dimethylaminopropyl) methacrylamide, mercaptoethylamine,) 3-mercaptoethylamine, tetramethylbutanediamine, Examples include triethylenediamine, pyridine, 1,8-diazabicyclo (5,4,0) indene-7 or a mixture thereof. Of these, use of Ν, Ν-dimethylaminoethyl methacrylate, Ν- (3-dimethylaminopropyl) methacrylamide, and 1,8-diazabicyclo (5,4,0) ndecene-7 is preferred.
アミンィヒ合物を配合する場合の含有割合は、 組成物 (Ρ)中に通常 5〜50000ppm、 好 ましくは 100〜30000ppmである。 5ppm未満ではァミン化合物による所望の効果が 不十分であり、 50000ppmを超えると硬化不良が生じる恐れがあるので好ましくない。 また、組成物 (M)が前記混合物 (F)を含む場合のァミン化合物の含有割合は、組成物 (P) 中に 10〜5000ppmが好ましい。  When the Aminich compound is blended, the content ratio is usually 5 to 50,000 ppm, preferably 100 to 30,000 ppm in the composition (II). If it is less than 5 ppm, the desired effect of the amine compound is insufficient, and if it exceeds 50,000 ppm, curing failure may occur, which is not preferable. When the composition (M) contains the mixture (F), the content ratio of the amine compound in the composition (P) is preferably 10 to 5000 ppm.
本発明の組成物 (P)は、更に必要により紫外線吸収剤を配合することができる。該紫 外線吸収剤を配合することにより、 得られる光学材料に UVカット性能を付与し、 光 学材料の劣化や目への影響を少なくすることができる。 紫外線吸収剤としては、 例え ば、 サリチル酸フエニル系化合物、 ベンゾフエノン系化合物、 ベンゾトリアゾール系 化合物、 シァノアクリレート系化合物等が挙げられる。 具体的には、 2-(2'-ヒドロキシ -5'-メチルフエニル)ベンゾトリアゾーノレ、 2-(2'-ヒ ドロキシ -3',5'-ジ -t-ブチルフエ- ル) -5-クロロ-ベンゾトリァゾーノレ、 2-(2'-ヒドロキシ -3'-t-ブチル -5'-メチルフエニル) -5- クロロ一ベンゾトリァゾール、 2-(2'-ヒドロキシ -3',5'-ジ -t-ァミルフエニル) -ベンゾトリ ァゾール、 2-(2'-ヒドロキシ -3',5'-ジ -t-ブチルフエ二ノレ)ベンゾトリァゾール、 2-(2'-ヒド ロキシ -5'-t-プチルフエニル)ベンゾトリァゾール、 2-(2'-ヒドロキシ -5'小ォクチルフエ ニル)ベンゾトリァゾール又はこれらの混合物等が挙げられる。  The composition (P) of the present invention may further contain an ultraviolet absorber if necessary. By blending the ultraviolet ray absorbent, UV cut performance can be imparted to the obtained optical material, and deterioration of the optical material and influence on eyes can be reduced. Examples of the ultraviolet absorber include a phenyl salicylate compound, a benzophenone compound, a benzotriazole compound, and a cyanoacrylate compound. Specifically, 2- (2'-hydroxy-5'-methylphenyl) benzotriazolone, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) -5-chloro -Benzotriazonole, 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) -5-chloromonobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di -t-Amylphenyl) -benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylpheninole) benzotriazole, 2- (2'-hydroxy-5'-t-butylphenyl) ) Benzotriazole, 2- (2'-hydroxy-5'small octylphenyl) benzotriazole or a mixture thereof.
紫外線吸収剤を含有させる場合の含有割合は、 組成物 (M)100重量部に対して、 通 常 0.001〜5重量部、好ましくは 0.01〜1重量部である。 0.001重量部未満では得られ る光学材料に十分な UVカツト性能を付与できず、 5重量部を超えると紫外線吸収剤 自体の着色により光学材料を黄変する傾向にあるので好ましくない。 When the ultraviolet absorber is contained, the content ratio is generally 100 parts by weight of the composition (M). It is always 0.001 to 5 parts by weight, preferably 0.01 to 1 part by weight. If the amount is less than 0.001 part by weight, sufficient UV cut performance cannot be imparted to the obtained optical material. If the amount exceeds 5 parts by weight, the optical material tends to yellow due to coloring of the ultraviolet absorber itself, which is not preferable.
本発明の組成物 (P)には、 前記各成分以外にも更に酸化防止剤、光安定剤、着色剤、 離型剤、界面活性剤、抗菌剤等の添加剤を通常の使用範囲で含有させることができる。 本発明の光学材料は、前記組成物 (P)を重合硬化させて得た材料である。該光学材料 の製造法としては、例えば、前記組成物 (P)にラジカル重合開始剤等の硬化剤を添加し、 所望のレンズ形状等の金属製、 ガラス製又はプラスチック製等の注型に注入した後、 重合硬ィ匕させ、 脱型する方法等が挙げられる。 得られる光学材料は、 透明で、 溶媒に 不溶の架橋樹脂である。  The composition (P) of the present invention further contains additives such as an antioxidant, a light stabilizer, a coloring agent, a release agent, a surfactant, and an antibacterial agent in addition to the above-mentioned components in a usual use range. Can be done. The optical material of the present invention is a material obtained by polymerizing and curing the composition (P). As a method for producing the optical material, for example, a curing agent such as a radical polymerization initiator is added to the composition (P), and the composition is injected into a metal or glass or plastic casting having a desired lens shape or the like. After that, a method of polymerizing and demolding, and the like are included. The resulting optical material is a transparent, solvent-insoluble cross-linked resin.
前記ラジカル重合開始剤としては、 硬化時のフォトクロミック化合物の ^^を防止 し、 更に、 組成物 (P)が、 ポリオール、 チオール化合物、 イソシァネート化合物を含む 場合に、 硬化時の着色を抑制することができる、 ペルォキシエステル系開始剤、 ペル ォキシケタール系開始剤又はァゾ系開始剤等が好ましく挙げられる。  The radical polymerization initiator prevents ^^ of the photochromic compound at the time of curing, and further suppresses coloring at the time of curing when the composition (P) contains a polyol, a thiol compound, or an isocyanate compound. Preferred examples thereof include a peroxyester-based initiator, a peroxyketal-based initiator, and an azo-based initiator.
ペルォキシェステル系開始剤としては、 例えば、 t-へキシルペルォキシネォデカノ エート、 1,1,3,3-テトラメチルブチルペルォキシネオデカノエート、 t-へキシルペルォ キシ -2-ェチルへキサノエ一ト、 1-シク口へキシル -1-メチルェチルペルォキシネオデカ ノエート、 クミノレペルォキシネオデカノエート、 t-プチルぺノレォキシ -2-ェチルへキサ ノエ一ト、 t-プチルペルォキシピバレート、 t-へキシルぺノレオキシピバレート、 t-ブチ ノレペルォキシネオデカノエート、 t-ブチルペルォキシィソプチレート、 t-プチルペルォ キシラウレート、 t-ブチルペルォキシノナノエート又はこれらの混合物が挙げられる。 パーォキシケタール系開始剤としては、 例えば、 1,1-ビス (t-へキシルペルォキシ)シ ク口へキサン、 ジ -t-プチルペルォキシ -2-メチルシク口へキサン、 1,1-ビス (t-ブチルぺ ルォキシ) -3,3,5-トリメチルシク口へキサン又はこれらの混合物が挙げられる。  Examples of the peroxester type initiator include t-hexylperoxynedecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, t-hexylperoxy- 2-ethylhexanoate, 1-cyclohexyl-1-methylethylperoxy neodecanoate, cuminoleperoxy neodecanoate, t-butylpentanoloxy-2-ethylhexanoate T, t-butyl peroxypivalate, t-hexyl phenoloxypivalate, t-butyl oleperoxy neodecanoate, t-butyl peroxyisobutyrate, t-butyl peroxy xylaurate, t -Butylperoxy nonanoate or mixtures thereof. Examples of the peroxyketal initiator include 1,1-bis (t-hexylperoxy) cyclohexane, di-t-butylbutyloxy-2-methylcyclohexane, and 1,1-bis (t-hexylperoxy). Butyl peroxy) -3,3,5-trimethylcyclohexane or a mixture thereof.
ァゾ系開始剤としては、 例えば、 ァゾビスイソプチロニトリノレ、 ァゾビスジメチノレ パレロニトリル又はこれらの混合物が挙げられる。  As the azo-based initiator, for example, azobisisobutyronitrile, azobisdimethinole parelonitrile or a mixture thereof can be mentioned.
前記硬化剤には、 必要に応じて他のラジカル重合開始剤、 ジラウリン酸ジプチルス ズ、 ジ (2-ェチルへキサン酸)ジブチルスズ等の他の硬化剤を併用しても良い。  If necessary, another curing agent such as another radical polymerization initiator, dibutyltin dilaurate, or dibutyltin di (2-ethylhexanoate) may be used in combination with the curing agent.
ラジカル重合開始剤の添加量は、 組成物 (P)中の組成物 (M)100重量部に対して、 通 常 0.01〜: L0重量部、好ましくは 0.1〜5重量部である。 0.01重量部未満では硬化が不 十分となり、 10重量部を超えると得られる光学材料に歪みが入る傾向があるので好ま しくない。 The amount of the radical polymerization initiator to be added is usually 0.01 to 0 parts by weight, preferably 0.1 to 5 parts by weight, per 100 parts by weight of the composition (M) in the composition (P). Less than 0.01 parts by weight will not cure When the amount is more than 10 parts by weight, the obtained optical material tends to be distorted, which is not preferable.
前記重合硬化は、 加熱又は活性エネルギー線照射により行うことができる。 硬化条 件は、 通常、 重合温度 30〜100°Cの範囲、 好ましくは該温度範囲で昇温を行い、 重合 時間が通常 5〜72時間、 好ましくは 1C!〜 36時間である。  The polymerization curing can be performed by heating or irradiation with active energy rays. The curing condition is usually a polymerization temperature in the range of 30 to 100 ° C, preferably in the temperature range, and the polymerization time is usually 5 to 72 hours, preferably 1C! ~ 36 hours.
本発明の光学材料の製造において、前記脱型後、窒素又は空気雰囲気下、 80〜: L20°C の温度で 1〜5時間ァニーリング処理することが望ましい。  In the production of the optical material of the present invention, it is preferable that after the demolding, annealing treatment is performed in a nitrogen or air atmosphere at a temperature of 80 to 20 ° C. for 1 to 5 hours.
本発明のフォトク口ミックレンズは、 前記光学材料を有するレンズであり、 通常、 前記光学材料をレンズ形状に加工し、 必要に応じて表面硬度を向上させるためのハー ドコート処理、 ファッション性を付与するための分散染料による着色処理等を行うこ とにより得ることができる。  The photochromic lens of the present invention is a lens having the optical material. Usually, the optical material is processed into a lens shape, and if necessary, a hard coat process for improving surface hardness and imparting fashionability are provided. For example, by performing a coloring treatment with a disperse dye.
実施例 Example
以下、 本発明を実施例により詳細に説明するが、 本発明はこれらに限定されない。 例中の各試験方法は以下のとおりである。  Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto. Each test method in the examples is as follows.
く光茅泉透過率及ぴフォトク口ミック性能 > Kumitou Izumi Transmittance and Photomix Performance>
透過率光度計 (日本電色工業㈱)製)を用い、 JIS K 7105に従レ、、 樹脂板の光線透過 率を測定した。 樹脂板を UV照射 (セリック (株)製 SOLAX XC-500ESS形)した後、 発 色までの時間 (Rl)、 その時の光線透過率 (T1)及び消光までの時間 (R2)、 その時の光線 透過率 ( 2)によりフォトクロミック性能を評価した。  Using a transmittance photometer (manufactured by Nippon Denshoku Industries Co., Ltd.), the light transmittance of the resin plate was measured according to JIS K 7105. After UV irradiation (SOLAX XC-500ESS, manufactured by Celic Co., Ltd.) on the resin plate, time to color development (Rl), light transmittance at that time (T1) and time to extinction (R2), light transmission at that time The photochromic performance was evaluated by the ratio (2).
く屈折率及びァッべ数〉 Refractive index and Abbe number>
アッベ屈折計 (ァタゴ社製)を用い 25°Cで、 樹脂板から lcmxl.5cmの試験片を切り 出して測定した。  Using an Abbe refractometer (manufactured by Atago), a test piece of lcmxl.5 cm was cut out from the resin plate at 25 ° C and measured.
く比重 > Ku specific gravity>
JTS K 7112に従い、 25°Cで水中置換法により比重 (gZcm3)測定した。 According to JTS K 7112, specific gravity (gZcm 3 ) was measured at 25 ° C. by an underwater displacement method.
<耐衝撃性 > <Shock resistance>
重量 16gのスチール製ボールを 127cmの高さから樹脂板上に自然落下させて、 破 損のないものを (a)、 破損のあるものを (b)とした。  A steel ball with a weight of 16 g was naturally dropped onto a resin plate from a height of 127 cm, and the one without damage was designated as (a) and the one with damage was designated as (b).
<耐熱性 > <Heat resistance>
樹脂板から lcmx4cmの板を切り出し、 東洋ポールドウインネ: レオパイプロンに より動的粘弾性を測定し、 その tan Sの最大を示す温度をガラス転移温度 (Tg)として 耐熱†生の指標とした。 A lcmx4cm plate is cut out from a resin plate, and the dynamic viscoelasticity is measured by Toyo Paul Doinne: Leopipelon, and the temperature showing the maximum of tan S is defined as the glass transition temperature (Tg). It was used as an indicator of heat resistance.
尚、 表中の略号は以下のとおりである。  The abbreviations in the table are as follows.
(A):化合物 (A)  (A): Compound (A)
BPE-6EA; 2,2-ビス (4-(2-ァクリロキシエトキシ)ジエトキシフエ二ノレ)プロパン、 BPE-6E; 2,2-ビス (4-(2-メタクリ口キシェトキシ)ジェトキシフエ二ル)プロパン、 DA-6EG;へキサエチレングリコールジァクリレート、  BPE-6EA; 2,2-bis (4- (2-acryloxyethoxy) diethoxypheninole) propane, BPE-6E; 2,2-bis (4- (2-methacrylic xychetoxy) jetoxyphenyl) propane , DA-6EG; Hexaethylene glycol diacrylate,
DM-6EG;へキサエチレングリコールジメタクリレート、 DM-6EG; Hexaethylene glycol dimethacrylate,
(B):化合物 (B)  (B): Compound (B)
BPE-10EA; 2,2-ビス (4-(2-ァクリロキシエトキシ)テトラエトキシフエニル)プロパン、 BPE-10E; 2,2-ビス (4-(2-メタタリロキシエトキシ)テトラエトキシフエニル)プロパン、 DA9EG;ノナエチレングリコーノレジァクリレート、  BPE-10EA; 2,2-bis (4- (2-acryloxyethoxy) tetraethoxyphenyl) propane, BPE-10E; 2,2-bis (4- (2-metharyloxyethoxy) tetraethoxyf Enyl) propane, DA9EG; nonaethyleneglyconoresacrylate,
DM9EG;ノナエチレングリコールジメタクリレート、 DM9EG; Nonaethylene glycol dimethacrylate,
(C):化合物 (C)  (C): Compound (C)
BPE-2EA; 2,2-ビス(4-ァクリロキシエトキシフエニル)プロパン、  BPE-2EA; 2,2-bis (4-acryloxyethoxyphenyl) propane,
BPE-2E; 2,2-ビス (4-メタクリロキシェトキシフエ二ル)プロパン、  BPE-2E; 2,2-bis (4-methacryloxyshetoxyphenyl) propane,
HE-BP; 2,2-ビス (4-(2-メタクリロキシエトキシカルポニルォキシ)フエニル)プロパン、 HE-BP; 2,2-bis (4- (2-methacryloxyethoxycarponoxy) phenyl) propane,
DA2EG;ジエチレングリコールジァクリレート、 DA2EG; diethylene glycol diacrylate,
DM2EG;ジエチレングリコールジメタクリレート、  DM2EG; diethylene glycol dimethacrylate,
(D):アミド化合物 (D)  (D): Amide compound (D)
DMAA; N,N-ジメチルァクリルァミ ド、 ΓΡΑΑ; N-ィソプロピルァクリルァミ ド、 DMAPAA; N-(3-ジメチルァミノプロピル)ァクリルァミ ド、  DMAA; N, N-dimethylacrylamide, ΓΡΑΑ; N-isopropylacrylamide, DMAPAA; N- (3-dimethylaminopropyl) acrylamide,
DMAPMA; N-(3-ジメチルァミノプロピル)メタクリルァミド。 DMAPMA; N- (3-dimethylaminopropyl) methacrylamide.
(E):他のビニル系化合物 (E)  (E): Other vinyl compounds (E)
MA;メチノレアクリレート、 MMA;メチルメタクリレート、  MA: Methynoacrylate, MMA: Methyl methacrylate,
BA; n-ブチノレアクリレート、 BMA; n-ブチノレメタクリレート、 BA; n-butynoleacrylate, BMA; n-butynolemethacrylate,
BzMA;ペンジノレメタクリレート、 BzMA: Penzinole methacrylate,
A4EG;メ トキシテトラエチレングリコールモノアクリレート、  A4EG: methoxytetraethylene glycol monoacrylate,
MA4EG ;メ トキシテトラエチレンダリコールモノメタクリレート、 MA4EG; methoxytetraethylene dalicol monomethacrylate,
A9EG;メ トキシノナエチレングリコールモノアクリレート、 A9EG; methoxy nona ethylene glycol monoacrylate,
MA9EG;メ トキシノナエチレングリコールモノメタクリレート。 (F):混合物 (F) MA9EG: methoxy nona ethylene glycol monomethacrylate. (F): mixture (F)
TMI ; 3-イソプロぺニル - a,(¾ -ジメチルベンジルイソシァネート、 ' XDI; m-キシリレンジィソシァネート、 ETT; 2,2'-チオジェタンチオール、  TMI; 3-Isopropenyl-a, (¾-dimethylbenzyl isocyanate, 'XDI; m-xylylene diisocyanate, ETT; 2,2'-thiojetanethiol,
PETT;ペンタエリスリ トールテトラキス(/3 -チォプロピオネート)。 PETT; pentaerythritol tetrakis (/ 3-thiopropionate).
(ァミン化合物) (Amine compound)
MADM; N,N-ジメチルアミノエチルメタクリレート、  MADM; N, N-dimethylaminoethyl methacrylate,
MADE; N,N-ジェチルァミノェチルメタクリレート、 TMA; トリェチルァミン、 MADE; N, N-Jetylaminoethyl methacrylate, TMA; Triethylamine,
TEA ; トリエチレンジァミン、 TEA; triethylenediamine,
DBU; 1,8-ジァザビシクロ(5,4,0)ゥンデセン- 7  DBU; 1,8-diazabicyclo (5,4,0) pandecene-7
(フォトクロミック化合物)  (Photochromic compound)
P1;スピロピラン化合物 (1',3'-ジヒドロ- 5'-メ トキシ -1',3',3'-トリメチル -6-二トロスピ 口 (2H-1-ベンゾビラン -2,2'-2H-ィンドール))、  P1; Spiropyran compound (1 ', 3'-dihydro-5'-methoxy-1', 3 ', 3'-trimethyl-6-ditrospi (2H-1-benzovirane-2,2'-2H-indole )),
P2;スピロォキサジン化合物(1,3-ジヒドロ- 1,3,3-トリメチル-スピロ(2H-ィンドール- 2,3'-3H-フエナント口 [9,10-b][l,4]]ォキサジン)、  P2: Spirooxazine compound (1,3-dihydro-1,3,3-trimethyl-spiro (2H-indole-2,3′-3H-phenanthone [9,10-b] [l, 4]] oxazine),
P3;フルギド化合物 (3-ァダマンタン -2-ィリデン -4-(1-(2,5-ジメチルチオフェン- 3-ィ ル) -2-メチノレプロピリデン)ジヒドロフラン- 2,5-ジオン)、  P3; fulgide compound (3-adamantane-2-ylidene-4- (1- (2,5-dimethylthiophen-3-yl) -2-methylinopropylidene) dihydrofuran-2,5-dione),
P4;クロメン化合物 (4-(3-フエニル -3-(4-ピぺリジン- 1-ィル-フエ二ノレ) -3H-ベンゾ [f クロメン -6-ィル)モルホリン)。  P4: a chromene compound (4- (3-phenyl-3- (4-piperidine-1-yl-phenylinole) -3H-benzo [f-chromen-6-yl) morpholine).
実施例 1〜32  Examples 1-32
表 1〜3に示す各原料を配合して組成物 (P)を調製した。 ここで、 表中の各原料の数 値の単位は gである。 次に、 t-プチルベルォキシネオデカノエート 0.4 gを添加し、 直 径 7cmの 2枚のガラス製円板と厚さ 2nmiのエチレン-プロピレンラパー製ガスケッ トからなる注型に注入した。 その後、 プログラム温度コントローラー付熱風恒?显槽中 で、 30〜: L20°Cまで 18時間かけて昇温し、次に 120°Cで 2時間保持した後、 40°Cまで 2時間かけて冷却した。 硬化後、 脱型した円盤状の樹脂板を更に 2時間、 100°Cでァ ニーリング処理を行って、 光学材料としての樹脂板を調製した。 樹脂板の各試験結果 を表 1-1〜3-1に示す。  Compositions (P) were prepared by blending the respective raw materials shown in Tables 1 to 3. Here, the unit of the numerical value of each raw material in the table is g. Next, 0.4 g of t-butylbenzyloxyneodecanoate was added, and the mixture was injected into a casting mold composed of two glass disks having a diameter of 7 cm and a gasket made of ethylene-propylene wrapper having a thickness of 2 nm. Then, in a hot-air bath with a programmed temperature controller, the temperature rises from 30 to: L20 ° C over 18 hours, then is maintained at 120 ° C for 2 hours, then cooled to 40 ° C over 2 hours did. After curing, the demolded disk-shaped resin plate was subjected to an annealing treatment at 100 ° C. for another 2 hours to prepare a resin plate as an optical material. Tables 1-1 to 3-1 show the results of each test for the resin plate.
実施例 33〜40  Examples 33-40
表 4に示す各原料を配合して組成物 (P)を調製した。次に、硬化剤としてジラゥリン 酸ジプチルスズを 0.02g、 t-プチルベルォキシネオデカノエートを 0.4g添加し、 実施 例 1〜32と同様に硬化して光学材料としての樹脂板を調製した。樹脂板の各試験結果 を表 4-1に示す。 A composition (P) was prepared by blending the respective raw materials shown in Table 4. Next, 0.02 g of dibutyltin diperphosphate and 0.4 g of t-butylbenzyloxyneodecanoate were added as curing agents. The resin was cured as in Examples 1 to 32 to prepare a resin plate as an optical material. Table 4-1 shows the results of each test for the resin plate.
比較例 1〜6  Comparative Examples 1 to 6
表 5に示す各原料を配合して光学材料用組成物を調製した。 次に、 硬化剤としてジ イソプロピルペル才キシカーボネート 0.6gを添加し、 実施例 1〜32と同様に硬ィ匕し て光学材料としての樹脂板を調製した。 樹脂板の各試験結果を表 5に示す。  Each material shown in Table 5 was blended to prepare a composition for an optical material. Next, 0.6 g of diisopropyl peroxyxycarbonate was added as a curing agent, and hardened in the same manner as in Examples 1 to 32 to prepare a resin plate as an optical material. Table 5 shows the results of each test for the resin plate.
尚、 比較例 1、 2及ぴ 6は化合物 (A)及ぴ (B)を含まない例、 比較例 3は化合物 (B)を 含まない例、比較例 4はィ匕合物 (A)を含まない例、比較例 5は化合物 (A)及ぴ (B)を含む 力 化合物 (B)の含有割合が本発明の規定を超える例である。 また、 比較例 4及ぴ 5 は、 硬化後の脱型時に変形が生じた。  In addition, Comparative Examples 1, 2 and 6 did not contain the compounds (A) and (B), Comparative Example 3 did not contain the compound (B), and Comparative Example 4 showed the compound (A). Comparative Example 5 is an example in which the content of the compound (B) containing the compounds (A) and (B) exceeds the content of the present invention. In Comparative Examples 4 and 5, deformation occurred when the mold was released after curing.
表 1  table 1
Figure imgf000015_0001
表 1-1
Figure imgf000015_0001
Table 1-1
実 施 例  Example
1 2 3 4 5 6 7 8 9 10 11 透過率 (%) 88 88 88 87 87 87 86 86 88 86 87 発色 緑 紫 紫 主  1 2 3 4 5 6 7 8 9 10 11 Transmittance (%) 88 88 88 87 87 87 86 86 88 86 87 Color Green Purple Purple Main
冃 n 鵷 冃 n 鵷
R聰 10 14 15 16 10 12 13 11 10 12 13R Satoshi 10 14 15 16 10 12 13 11 10 12 13
Tl(%) 9 17 13 13 11 14 15 11 15 16 14 性 R2®>) 60 60 60 60 60 60 60 60 60 60 60Tl (%) 9 17 13 13 11 14 15 11 15 16 14 R2®>) 60 60 60 60 60 60 60 60 60 60 60
T2(%) 50 46 44 45 42 48 49 47 48 46 49 評 T2 (%) 50 46 44 45 42 48 49 47 48 46 49 Review
屈折率 (25°C) 1.533 1.546 1.521 1.544 1.516 1.541 1.541 1.532 1.515 1.521 1.527 価 アッベ数 43 39 41 39 42 39 39 41 43 41 40 比重 1.18 1.20 1.18 1.19 1.18 1.21 1.20 1.21 1.18 1.20 1.19 画撃性 (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) 耐熱性 CC) 77 103 93 96 95 100 97 98 95 92 93 Refractive index (25 ° C) 1.533 1.546 1.521 1.544 1.516 1.541 1.541 1.532 1.515 1.521 1.527 Val Abbe number 43 39 41 39 42 39 39 41 43 41 40 Specific gravity 1.18 1.20 1.18 1.19 1.18 1.21 1.20 1.21 1.18 1.20 1.19 (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) Heat resistance CC) 77 103 93 96 95 100 97 98 95 92 93
表 2 Table 2
Figure imgf000017_0001
Figure imgf000017_0001
表 2- 実 施 \列  Table 2- Implementation \ column
12 13 14 15 16 17 18 19 20 21 12 13 14 15 16 17 18 19 20 21
88 88 87 87 86 86 86 86 87 87 発色 紫 紫 紫 青 青 88 88 87 87 86 86 86 86 87 87 Color Purple Purple Purple Blue Blue
物 R1湫) 13 15 9 10 10 10 9 11 10 12 Object R1 chute) 13 15 9 10 10 10 9 11 10 12
Tl(%) 11 12 8 10 12 12 9 10 12 13 性 β2 60 60 60 60 60 60 60 60 60 60Tl (%) 11 12 8 10 12 12 9 10 12 13 Sex β2 60 60 60 60 60 60 60 60 60 60 60
Τ2(%) 49 46 48 43 43 51 50 48 51 49 屈折率 (25 C) 1.538 1.544 1.511 1.516 1.516 1.538 1.528 1.532 L522 1.527 価 アッベ数 40 39 43 42 42 40 42 41 42 40 比重 1.19 1.19 1.18 1.18 1.18 1.20 1.21 1.21 1.19 1.19 耐酵性 (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) 耐熱性 (°C) 91 96 91 95 95 93 95 98 87 93 表 3 Τ2 (%) 49 46 48 43 43 51 50 48 51 49 Refractive index (25 C) 1.538 1.544 1.511 1.516 1.516 1.538 1.528 1.532 L522 1.527 Val Abbe number 40 39 43 42 42 40 42 41 42 40 Specific gravity 1.19 1.19 1.18 1.18 1.18 1.20 1.21 1.21 1.19 1.19 Fermentation resistance (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) Heat resistance (° C) 91 96 91 95 95 93 95 98 87 93 Table 3
実 施 例  Example
22 23 24 25 26 27 28 29 30 31 32 22 23 24 25 26 27 28 29 30 31 32
BPE-6EA 8 8 12BPE-6EA 8 8 12
(A) BPE-6E 14 16 10 14 10 12 10 (A) BPE-6E 14 16 10 14 10 12 10
DA6EG 4  DA6EG 4
DM6EG 4 2 12 4  DM6EG 4 2 12 4
BPE-IOEA 4 4 2 BPE-IOEA 4 4 2
(B) BPE-IOE 2 4 4 2 4 (B) BPE-IOE 2 4 4 2 4
DA9EG 6 2 DM9EG 4 2  DA9EG 6 2 DM9EG 4 2
BPE-2EA 2  BPE-2EA 2
BPE-2E 4 2 2 BPE-2E 4 2 2
(C) HE-BP 2 (C) HE-BP 2
DA2EG 2 4 2  DA2EG 2 4 2
DM2EG 2 2  DM2EG 2 2
DMAA 0.2  DMAA 0.2
(D) IPAA 0.2  (D) IPAA 0.2
DMAPAA 0.2  DMAPAA 0.2
DMAPMA 0.2 DMAPMA 0.2
MA MMA 2 MA MMA 2
BA 2  BA 2
BMA 2  BMA 2
(E) BzMA 2  (E) BzMA 2
A4EG 2  A4EG 2
MA4EG 2  MA4EG 2
A9EG 2  A9EG 2
MA9EG 2 MA9EG 2
,
ァ ン化合物  Fan compound
MADM 0.03 0.06  MADM 0.03 0.06
MADE 0.03 0.06  MADE 0.03 0.06
TMA 0.03 0.06  TMA 0.03 0.06
TEA 0.03 0.03 0.06  TEA 0.03 0.03 0.06
DBU 0.001 0.002 フォトク pミック化合物  DBU 0.001 0.002 Photoc p-mic compound
PI 0.02 0.02 0.02  PI 0.02 0.02 0.02
P2 0.02 0.02 0.02  P2 0.02 0.02 0.02
P3 0.02 0.02  P3 0.02 0.02
P4 0.02 0.02 0.02 表 3-1 P4 0.02 0.02 0.02 Table 3-1
実 施 例  Example
22 23 24 25 26 27 28 29 30 31 32 透過率 (ひ/。) 88 88 88 87 87 87 86 86 88 86 87  22 23 24 25 26 27 28 29 30 31 32 Transmittance (H /) 88 88 88 87 87 87 86 86 88 86 87
—:  —:
発色 緑 緑 緑 紫 紫 η n 赫 鵷 赫 物 R1渺) 8 12 12 12 9 10 10 9 10 10 10 Color green green green purple purple η n 赫 赫 物 物 物 R 12 8 12 12 12 9 10 10 9 10 10 10
Tl(%) 7 14 12 10 7 10 11 8 10 12 11 性 R2(秒) 60 60 60 60 60 60 60 60 60 60 60Tl (%) 7 14 12 10 7 10 11 8 10 12 11 Characteristic R2 (sec) 60 60 60 60 60 60 60 60 60 60 60
T2(%) 52 48 46 50 49 51 52 51 51 50 52 屈折率 (25°C) 1.528 1.539 1.518 1.538 1.511 L538 1.538 1.528 1.511 1.517 1.522 価 43 40 42 40 43 40 39 42 44 42 42 比重 1.18 1.20 1.18 1.19 1.18 1.21 1.20 1.21 1.18 1.20 1.19 耐衝雜 (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) 耐熱 I4(°C) 74 96 90 91 91 95 93 95 92 88 87 T2 (%) 52 48 46 50 49 51 52 51 51 50 52 Refractive index (25 ° C) 1.528 1.539 1.518 1.538 1.511 L538 1.538 1.528 1.511 1.517 1.522 Val 43 40 42 40 43 40 39 42 44 42 42 Specific gravity 1.18 1.20 1.18 1.19 1.18 1.21 1.20 1.21 1.18 1.20 1.19 Impact resistance (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a) Heat resistance I4 (° C) 74 96 90 91 91 95 93 95 92 88 87
W 03 W 03
18 表 4  18 Table 4
Figure imgf000020_0001
表 4-]
Figure imgf000020_0001
Table 4-]
Figure imgf000021_0001
Figure imgf000021_0001
実施例により得られた樹脂板は、 光学材料、 レンズに要求される基本特性を有して いるのみならず、 比較例の樹脂板と比較してフォトクロミック化合物の光応答速度、 色安定性に優れた物性が得られることが判った。  The resin plate obtained in the examples has not only the basic properties required for optical materials and lenses, but also has excellent photoresponse speed and color stability of the photochromic compound as compared with the resin plate of the comparative example. It was found that the following physical properties were obtained.

Claims

請求の範囲  The scope of the claims
1)式 (1)における;)'と nの合計が 5〜7である少なくとも 1種の化合物 (A)15〜97重量0 /0、 及び式 (1)における jと nの合計が 9〜: L1である少なくとも 1種の化合物 (B)3〜50重 量%を含むモノマー組成物 100重量部と、フォトクロミック化合物 0.001〜10重量部 とを含む光学材料用組成物。 In 1) (1);) 'and at least one compound the total of n is 5 to 7 (A) from 15 to 97 weight 0/0, and total 9 of j and n in the formula (1) A composition for an optical material comprising 100 parts by weight of a monomer composition containing 3 to 50% by weight of at least one compound (B) which is L1, and 0.001 to 10 parts by weight of a photochromic compound.
Figure imgf000022_0001
Figure imgf000022_0001
(式中、 R1及び R2は水素原子又はメチル基を示し、 Phはフエ二レン基を示す。 ]'及び nは独立に 0〜: L1の整数である。但し、 j及び nが同時に 0にはならない。 k、 m及び pは独立に 0又は 1である。 ) (Wherein, R 1 and R 2 represent a hydrogen atom or a methyl group, Ph represents a phenylene group.] 'And n are independently an integer of 0 to: L1, provided that j and n are simultaneously It is not 0. k, m and p are independently 0 or 1.)
2)前記モノマー組成物が、 式 (1)における jと nの合計が 2〜3である化合物 (C)、 ビ 二ル基を有するアミド化合物 (D)、 他のビエル系化合物 (E)及びこれらの混合物からな る群より選択されるモノマーを更に含む請求の範囲 1の光学材料用組成物。  2) The monomer composition is a compound (C) in which the sum of j and n in the formula (1) is 2 to 3, an amide compound having a vinyl group (D), another Bier compound (E), and 2. The composition for an optical material according to claim 1, further comprising a monomer selected from the group consisting of these mixtures.
3)前記モノマー組成物力 ィソシァネート化合物とチオールィ匕合物からなるチォゥレ タン樹脂を構成しうる混合物 (F)を更に含む請求の範囲 1の光学材料用組成物。  3) The composition for an optical material according to claim 1, further comprising a mixture (F) capable of forming a thioethane resin comprising the cisocyanate compound and a thiol conjugate.
4)ァミン系化合物を更に含む請求の範囲 1の光学材料用組成物。  4) The composition for an optical material according to claim 1, further comprising an amine compound.
5)ァミン系化合物の含有割合力 光学材料用組成物中に 5〜50000ppmである請求の 範囲 4の光学材料用組成物。  5) The composition for an optical material according to claim 4, wherein the content of the amine compound is 5 to 50,000 ppm in the composition for an optical material.
6)請求の範囲 1の光学材料用組成物を重合硬化させて得た光学材料。  6) An optical material obtained by polymerizing and curing the composition for an optical material according to claim 1.
7)請求の範囲 6の光学材料を有するフォトクロミックレンズ。  7) A photochromic lens comprising the optical material according to claim 6.
PCT/JP2002/009855 2001-09-25 2002-09-25 Composition for optical material, optical material and photochromic lens WO2003027728A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-292633 2001-09-25
JP2001292633A JP2003098302A (en) 2001-09-25 2001-09-25 Monomer composition for plastic optical material, hardened product of the same and lens
JP2002241373A JP2004078054A (en) 2002-08-22 2002-08-22 Monomer formulation for plastic optical material, photochromic optical material and lens
JP2002241353A JP2004075938A (en) 2002-08-22 2002-08-22 Monomer composition for photochromic optical material, photochromic optical material and lens
JP2002-241353 2002-08-22
JP2002-241373 2002-08-22

Publications (1)

Publication Number Publication Date
WO2003027728A1 true WO2003027728A1 (en) 2003-04-03

Family

ID=27347575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009855 WO2003027728A1 (en) 2001-09-25 2002-09-25 Composition for optical material, optical material and photochromic lens

Country Status (1)

Country Link
WO (1) WO2003027728A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431502A (en) * 2013-08-02 2016-03-23 三井化学株式会社 Polymerizable composition for photochromic optical material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621017A (en) * 1994-04-27 1997-04-15 Tokuyama Corporation Photochromic composition and method producing photochromic cured product
EP0773271A1 (en) * 1995-05-26 1997-05-14 Tokuyama Corporation Process for the production of photochromic product of curing
JP2001122926A (en) * 1999-10-29 2001-05-08 Nof Corp Monomer composition for optical material, method of producing synthetic resin lens and lens
US6340765B1 (en) * 1999-05-20 2002-01-22 Tokuyama Corporation Chromene compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621017A (en) * 1994-04-27 1997-04-15 Tokuyama Corporation Photochromic composition and method producing photochromic cured product
EP0773271A1 (en) * 1995-05-26 1997-05-14 Tokuyama Corporation Process for the production of photochromic product of curing
US6340765B1 (en) * 1999-05-20 2002-01-22 Tokuyama Corporation Chromene compound
JP2001122926A (en) * 1999-10-29 2001-05-08 Nof Corp Monomer composition for optical material, method of producing synthetic resin lens and lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431502A (en) * 2013-08-02 2016-03-23 三井化学株式会社 Polymerizable composition for photochromic optical material

Similar Documents

Publication Publication Date Title
CN103703029A (en) Photochromic curable composition
JPWO2002033447A1 (en) Composition for optical material, optical material and plastic lens
JP4334633B2 (en) Polymerized composition for plastic lens
JP2004078052A (en) Method for manufacturing photochromic optical material
EP0134861B1 (en) Resin material for plastic lens and lens composed thereof
WO2021132048A1 (en) Polymerizable composition for optical article, and optical article
JP3556332B2 (en) Plastic lens molding composition and plastic lens using the same
JP7308293B2 (en) Method for manufacturing optical article
JP2003105227A (en) Bluing agent for plastic optical material
WO2003027728A1 (en) Composition for optical material, optical material and photochromic lens
JPH05303003A (en) Composition for optical material and optical material
KR100285889B1 (en) Resin composition for polymerization casting and optical material
JPH01182314A (en) Composition for lens having high abbe&#39;s number
JPH07206944A (en) Composition for forming plastic lens and plastic lens produced by using the composition
JPH0680740A (en) Organic glass with high refractive index
JP2001122926A (en) Monomer composition for optical material, method of producing synthetic resin lens and lens
JP3524739B2 (en) Composition for spectacle lens and spectacle lens
JP2004078054A (en) Monomer formulation for plastic optical material, photochromic optical material and lens
JP2002020433A (en) Monomer composition and its cured item
JP2008090327A (en) Method for producing ultraviolet-absorbing plastic lens
WO2021132050A1 (en) Optical article and method for producing optical article
JP2002014201A (en) Lens made of synthetic resin
JP2800265B2 (en) Composition for high refractive index plastic lens
JP5204946B2 (en) Transparent resin composition and use
JP2003012727A (en) Resin composition comprising high-refractive index (meth) acrylic ester compound and its cured product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS KE KG KP KR KZ LK LR LS LT LU LV MA MD MG MK MW MX MZ NO NZ OM PH PL PT RO SD SE SG SI SK SL TJ TM TN TR TT UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase