WO2003017557A2 - Method of high pass filtering a data set - Google Patents

Method of high pass filtering a data set Download PDF

Info

Publication number
WO2003017557A2
WO2003017557A2 PCT/US2002/026366 US0226366W WO03017557A2 WO 2003017557 A2 WO2003017557 A2 WO 2003017557A2 US 0226366 W US0226366 W US 0226366W WO 03017557 A2 WO03017557 A2 WO 03017557A2
Authority
WO
WIPO (PCT)
Prior art keywords
data set
flattened
data
adaptive
filtering
Prior art date
Application number
PCT/US2002/026366
Other languages
French (fr)
Other versions
WO2003017557A3 (en
Inventor
Thomas Daniel Raymond
Daniel Richard Hamrick
Daniel R. Neil
Original Assignee
Wavefront Sciences, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wavefront Sciences, Inc. filed Critical Wavefront Sciences, Inc.
Priority to JP2003521526A priority Critical patent/JP2005500605A/en
Priority to AU2002323264A priority patent/AU2002323264A1/en
Priority to KR10-2004-7002541A priority patent/KR20040032947A/en
Priority to US10/252,416 priority patent/US6790688B2/en
Publication of WO2003017557A2 publication Critical patent/WO2003017557A2/en
Publication of WO2003017557A3 publication Critical patent/WO2003017557A3/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration by the use of local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Abstract

An improved method of high pass filtering a data set includes flattening the data set and then filtering the flattened data set with an adaptive filter. The data set is flattened by fitting it to a predetermined function, and then obtaining the difference between the original data set and the fitted data set. Beneficially, the predetermined function is a polynomial. The adaptive filter includes a masking function that has a constant, non-zero value (e.g., 1) within the bounds of the original data set and value of zero outside the bounds of the original data set.

Description

TITLE OF THE INVENTION
METHOD OF HIGH PASS FILTERING A DATA SET
BACKGROUND AND SUMMARY
[0001] Field.
[0002] This invention pertains to the field of digital signal processing and, more
particularly, to a method of high-pass filtering a digital data set.
[0003] Description.
[0004] Data filtering is a widely used method of processing a data set to suppress noise
and/or other unwanted signal components to reveal or transmit only the desired data. There exist a vast number of methods of data filtering that are well described in many texts on
signal processing. Digital signal processing has grown vastly in the last few decades because
of the ready availability of Digital Signal Processors (DSPs) and small fast computers.
Indeed the use of digital signals is ubiquitous in audio compact disks.
[0005] Data filtering in the real world always contends with finite data sets and extraction of signals from the data sets near the set boundaries is problematic. Whether one uses
convolution techniques or transform techniques, if the data terminates abruptly, the discontinuity will lead to the formation of artifacts that can corrupt the desired signals.
Generally one attempts to collect data over an interval sufficiently large that the signal levels either decay to a constant value, or are periodic, or the data is windowed using an apodization method.
[0006] Unfortunately there exist situations where such acquisition or window techniques cannot be applied.
[0007] One example of such a situation is the nanotopographic measurement of substrates,
such as semiconductor wafers, glass substrates of liquid crystal display (LCD) panels, etc. In this application, the data set is two-dimensional and has a fixed boundary where a relatively large discontinuity exists and cannot be avoided. The data set is the height, or height
variation, across the wafer surface up to the wafer edge. The desired signal consists of
typically small amplitude variations of a few nanometers composed of spatial frequencies in the range of approximately 1 mm"1 to .05 mm"1. As is well known, frequency and wavelength
are reciprocally related. As the work presented here is motivated by application to filtering of spatial rather than time domain signals, wavelengths are used throughout this specification.
That said, the signals of interest contain spatial wavelengths of order 1 to 20 mm. The wafers are hundreds of micrometers thick, hence the edge of the wafer presents a large discontinuity
compared to the desired signal. To further complicate the situation, the desired signal rides
upon signals of much larger amplitude (tens of micrometers) composed of wavelengths longer
than 20 mm. (These signals may reflect large-scale "waves" in the overall surface of the wafer
due to the wafer manufacturing process).
[0008] The challenge is to filter the measured amplitude data to retrieve the desired nanotopographic data, without introducing artifacts of the filtering process as discussed above. [0009] Traditional filter techniques fail to produce accurate filtered data near the wafer
edge because of these filtering artifacts. FIG. 1 illustrates a height- variation plot for a silicon
wafer where z=0 is defined to be the average height of the surface. While normalizing for the
average height does reduce the discontinuity from hundreds of micrometers, it remains at several micrometers at best, for typical wafers.
[00010] FIG. 2 shows the result of applying a traditional high pass filter to the data of FIG. 1,
the filter consisting of a two dimensional convolution with a Gaussian kernel of σ = 5 mm
and a square support 20 mm on the side. While the center of the wafer now reveals the desired nanotopographic data previously masked by the long wavelength data having much
greater amplitude variations, the remaining edge discontinuity has corrupted the data near the
wafer edge. The colored regions on the map indicate areas where the filtered height exceeded
the range from -100 to + 100 nm. The effect of the wafer edge begins to distort the filtered data within about 10 mm of the edge of the wafer.
[00011] The reason the traditional method fails is that it requires data outside the data
bounds in order to calculate the filtered result near the data boundary. This data is often, as in
this illustration, simply zeros inserted for convenience. Alternately, one could try to extrapolate the data from within the data boundary, or perhaps use a Gershberg type algorithm
to create the data. In any event, the data outside the original data bounds is created, not real.
[00012] For example, assume the data is simply zero-padded outside the original bounds. A
standard high pass convolution filter is obtained by taking the difference between the original data and data that has been low pass filtered. In the area of nanotopography of silicon wafers, a common low pass filter employed is a simple convolution with a fixed kernel, e.g., a
Gaussian kernel. The convolution is often denoted by:
1) / ® g ≡ \f(x ~τ)g(x)dx = \f(x)g(x - τ)άx
where in this case, /denotes the wafer surface data, and g the filter kernel.
[00013] Note that the convolution is symmetric in/and g. Often g is assumed to be a fixed function that is normalized to unity:
Figure imgf000005_0001
[00014] The above equations illustrate the convolution in a single dimension, but extension
to two dimensions is straightforward. Ideally the bounds of the integral are over all space,
but practically, the bounds are finite and determined by the data set and the width of the
kernel. Applying this function near the original data boundaries necessarily implies including
points outside the original data boundary. When the data is zero-padded, the result of this
operation is a value that can be systematically lower or higher than the data well within the data bounds depending on whether the data within the bounds was on average greater or less
than zero, respectively. If the discontinuity at the data boundary is large compared to the
features of interest, this systematic trend will corrupt the desired data. [00015] Accordingly, it would be advantageous to provide an improved method of high-pass
filtering a data set. It would also be advantageous to provide such an improved method that handles discontinuities at the data set boundary with reduced artifacts. Other and further
objects and advantages will appear hereinafter.
[00016] The present invention comprises an improved method of high pass filtering a finite data set. The method has many applications, but is particularly applicable to image processing and to nanotopographic measurements of substrates, such as semiconductor or
glass substrates.
[00017] In one aspect of the invention, a method of high pass filtering an input data set comprises flattening the input data set; and adaptive filtering the flattened data set.
[00018] La another aspect of the invention, a method of high pass filtering an input data set comprises fitting the input data set to a preset function to produce a fitted data set; obtaining a
difference between the input data set and the fitted data set to produce a flattened data set;
adaptive filtering the flattened data set; and masking the adaptive filtered data set by a
masking function that is a fixed non-zero value when the adaptive filtered data corresponds to
a location in the measured data set and is zero when the adaptive filtered data corresponds to a location outside the measured data set.
[00019] In yet another aspect of the invention, a method of obtaining nanotopographic data for a substrate, comprises measuring a height profile across an entire surface of the substrate
to obtain a measured data set; fitting the measured data set to a preset function and producing
a flattened data set by taking a difference between the measured data set and the fitted data set; adaptive filtering the flattened data set to produce an adaptive filtered data set; and multiplying the adaptive filtered data set by a masking function that is a fixed non-zero value
when the adaptive filtered data corresponds to a location within the measured data set and is
zero when the adaptive filtered data corresponds to a location outside the measured data set.
BRIEF DESCRIPTION OF THE DRAWINGS
[00020] FIG. 1 illustrates a height-variation plot for a silicon wafer;
[00021] FIG. 2 illustrates the result of applying a traditional high pass filter to the data of
FIG. 1;
[00022] FIG. 3 illustrates the result of flattening the measured data shown in FIG. 1;
[00023] FIG. 4 illustrates the result of applying an adaptive filter to the measured data shown
in FIG. 1;
[00024] FIG. 5 illustrates the result of flattening and then adaptive filtering the measured data shown in FIG. 1;
[00025] FIG. 6 is a flowchart illustrating a method 600 of high pass filtering a data set.
DETAILED DESCRIPTION
[00026] FIG. 6 is a flowchart illustrating a method 600 of high pass filtering a data set. The
method 600 is a two-step process.
[00027] In a first step 610, the data set is "flattened." First, a slowly varying function is fit to the measured data set. Then, the fitted data set (data points obtained from the function) are subtracted from the measured data set (or vice versa) to produce a flattened data set.
Beneficially, the slowly varying function is fit to the measured data by employing a least
squares fit algorithm. This "flattening" step 610 leaves the high frequency content untouched while reducing the discontinuity at the data edge. The difference between the measured data
and the "fit function" is set to zero outside the original data boundaries.
[00028] Then, in a second step 620, the resultant flattened data set from step 610 is filtered using an adaptive normalized convolution filter, as described in more detail below.
[00029] Flattening.
[00030] In the step 610, the measured data set is fit to a predetermined, slowly varying, function. The concept is to fit the data to a function whose frequency content is dominated by frequencies that will be attenuated in a subsequent step.
[00031] For the case of nanotopographic measurement of semiconductor or glass wafers, as
discussed above, a polynomial of order 7 to 11 is beneficially employed. A 9th order
polynomial will contain frequencies up to about 9 times the lowest frequency supported by the wafer, i.e., 9/D for a wafer of diameter D. Only the available measured data is fit to the
polynomial, without any assumptions about data values outside the original data bounds.
Hence, the fit function represents the low frequency content of the wafer shape all the way to
the edge of the wafer.
[00032] Most beneficially, for filtering data obtained from 200 mm semiconductor wafers, an 11th order polynomial is employed. The choice of the polynomial order is made according
to the degree of suppression of the long wavelength features desired. In effect, the order of the polynomial and the dimension over which it is fit, determine the cut off wavelength of the
flattener. A rule of thumb for the determination of the polynomial order is that:
3) N < D/λ
where N is the polynomial order, D is the domain of the data, and λ is the desired cut off
wavelength of the high pass filter.
[00033] This selection ensures that the flattening step 610 does not suppress features comprised of wavelengths shorter than λ, but does suppress features comprised of
wavelengths longer than λ.
[00034] FIG. 3 illustrates the result of flattening the measured data shown in FIG. 1 using the
procedure described above. The flattened data begins to reveal the nanotopographic features, but also shows a much smaller discontinuity at the edge and no apparent distortion at the
wafer edge. The polynomial used for this example is a 9th order polynomial.
[00035] Adaptive Filtering.
[00036] In a step 620, the flattened data set is passed through an adaptive convolution filter.
The filter is designed to allow g to adapt as it approaches the wafer edge. Adaptive filter kernels are not new to the filtering community, and are often applied in image processing. In
those cases, the kernel may be adapted by masking it as it approaches a feature.
[00037] However, the disclosed method is far superior to previous methods in that no assumptions about the data outside the data bounds are required. Here, as the kernel approaches the wafer edge, it is allowed to go to zero outside the wafer boundary. [00038] If the data were already zero padded, a constant kernel could be employed to achieve
the exact same result. The problem with this simple approach is that the kernel is not
constant and the assumption that it is normalized is not valid for all results of the convolution. Therefore if the data was zero padded, the effective area under g would actually diminish,
hence the convolution value that would be obtained would be too small.
[00039] This problem is addressed by defining a normalized convolution as follows:
Figure imgf000010_0001
where Mis a masking function that is that is a fixed non-zero value (e.g., 1) when the
adaptive filtered data corresponds to a location within the original measured data set, and is 0 when the adaptive filtered data corresponds to a location outside the original measured data
set.
[00040] This definition is equal to the traditional convolution filter for all points well within the data bounds of the original data set, but it differs near the data boundary. Indeed, if the
data were initially zero padded, the numerator is exactly equal to the traditional convolution
filter previously described. The difference is then primarily in the normalization. Note that
the multiplicative factor M in the definition prevents singularities.
[00041] One drawback of using this approach is that the cutoff frequency of the filter becomes dependent on the position in the data set. This is because the kernel support is position dependent and the cutoff frequency is weakly dependent on the kernel support. In
the case of filtering data for nanotopography, the low frequency cutoff increases by as much
as a factor of two. Fortunately, in the nanotopography application, this increased transmission at low frequencies is not as important an issue as extracting the high frequency data.
[00042] The adaptive filter could be implemented as a true high pass filter, or by low-pass filtering the flattened data set and then subtracting the low pass filtered data set from the flattened data set input to the adaptive filter.
[00043] FIG. 4 illustrates the result of applying an adaptive filter to the unflattened measured data shown in FIG. 1. One can see an improvement over the traditional filter, but the filtered data near the edge is still affected by the discontinuity.
[00044] FIG. 5 illustrates the result of applying the two-step process 600 (flattening with 9th order polynomial followed by adaptive filtering) to the measured data shown in FIG. 1. The result clearly shows the desired high frequency detail all the way to the wafer edge. Indeed,
flattening the data improves the long wavelength features in the interior of the wafer as well.
[00045] The filtering method described herein has clear advantages over traditional filtering methods when the available data do not trend to zero naturally. No windowing of the data is
required nor is any assumption about the data trend. All of the available data is used, and no
data is fabricated. The disclosed method improves over standard convolution and Fourier
techniques in that it handles data near the data boundary optimally without making
assumptions about the data itself. All that is required to optimize the filter is the selection of the desired cut off wavelength. With this selection, the order of the polynomial used in the flattening step and the cut off wavelength of the adaptive filter kernel are determined. This
filtering method has advantages over the traditional methods because of its improved treatment of the data near the data boundary.
[00046] The method described herein takes advantage of increased computational
capabilities in today's electronics and rides on the trend toward increased digital signal processing. This technique is obviously applicable to wafer topography and image processing as described above, but also has wide application to analysis of one-dimensional data, e.g.,
RADAR, coherent LIDAR and audio signals.
[00047] While preferred embodiments are disclosed herein, many variations are possible
which remain within the concept and scope of the invention. Such variations would become
clear to one of ordinary skill in the art after inspection of the specification, drawings and claims herein. The invention therefore is not to be restricted except within the spirit and
scope of the appended claims.

Claims

CLAIMSWhat is claimed is:
1. A method of obtaining nanotopographic data for a substrate, comprising:
measuring a height profile across an entire surface of the substrate to obtain a
measured data set; and
high pass filtering the measured data set, said high pass filtering comprising, fitting the measured data set to a preset function and producing a flattened data set by taking a difference between the measured data set and the fitted data set,
adaptive filtering the flattened data set to produce an adaptive filtered data set,
and multiplying the adaptive filtered data set by a masking function that is a fixed
non-zero value when the adaptive filtered data corresponds to a location within the measured data set and is zero when the adaptive filtered data corresponds to a location outside the
measured data set.
2. The method of claim 1 wherein the substrate is one of a semiconductor substrate
and a glass substrate.
3. The method of claim 1, wherein the preset function is a polynomial function.
4. The method of claim 3, wherein the polynomial function has a polynomial order
between 9 and 11.
5. The method of claim 1, wherein adaptive filtering the flattened data set comprises high pass filtering the flattened data set.
6. The method of claim 1 , wherein the measured data set is fitted to the preset
function with a least squares fit algorithm.
7. The method of claim 1, wherein adaptive filtering the flattened data set comprises
low pass filtering the flattened data set and subtracting the low pass filtered data set from the
flattened data set.
8. A method of high pass filtering an input data set, comprising:
fitting the input data set to a preset function to produce a fitted data set; obtaining a difference between the input data set and the fitted data set to produce a
flattened data set; adaptive filtering the flattened data set; and
masking the adaptive filtered data set by a masking function that is a fixed non-zero value when the adaptive filtered data corresponds to a location in the measured data set and is
zero when the adaptive filtered data corresponds to a location outside the measured data set.
9. The method of claim 8, wherein the preset function is a polynomial function.
10. The method of claim 8, wherein the polynomial function has a polynomial order between 9 and 11.
11. The method of claim 8, wherein the measured data set is fitted to the preset
function with a least squares fit algorithm.
12. The method of claim 8, wherein adaptive filtering the flattened data set comprises
high pass filtering the flattened data set.
13. The method of claim 8, wherein adaptive filtering the flattened data set comprises low pass filtering the flattened data set and subtracting the low pass filtered data set from the
flattened data set.
14. A method of high pass filtering an input data set, comprising:
flattening the input data set; and
adaptive filtering the flattened data set.
15. The method of claim 14, wherein flattening the input data set comprises: fitting the input data set to a preset function to produce a fitted data set; obtaining a difference between the input data set and the fitted data set to produce the flattened data set.
16. The method of claim 15, wherein the preset function is a polynomial function.
17. The method of claim 16, wherein the polynomial function has a polynomial order
between 9 and 11.
PCT/US2002/026366 2001-08-21 2002-08-20 Method of high pass filtering a data set WO2003017557A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003521526A JP2005500605A (en) 2001-08-21 2002-08-20 High-pass filtering method for datasets
AU2002323264A AU2002323264A1 (en) 2001-08-21 2002-08-20 Method of high pass filtering a data set
KR10-2004-7002541A KR20040032947A (en) 2001-08-21 2002-08-20 Method of high pass filtering a data set
US10/252,416 US6790688B2 (en) 2001-08-21 2002-09-24 Method of high pass filtering a data set

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31347401P 2001-08-21 2001-08-21
US60/313,474 2001-08-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/252,416 Continuation US6790688B2 (en) 2001-08-21 2002-09-24 Method of high pass filtering a data set

Publications (2)

Publication Number Publication Date
WO2003017557A2 true WO2003017557A2 (en) 2003-02-27
WO2003017557A3 WO2003017557A3 (en) 2003-07-31

Family

ID=23215830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/026366 WO2003017557A2 (en) 2001-08-21 2002-08-20 Method of high pass filtering a data set

Country Status (5)

Country Link
US (1) US6790688B2 (en)
JP (1) JP2005500605A (en)
KR (1) KR20040032947A (en)
AU (1) AU2002323264A1 (en)
WO (1) WO2003017557A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002334017A (en) * 2001-05-10 2002-11-22 Fujitsu Ltd Processor, managing method for processor, program, and system
US20050041845A1 (en) * 2003-08-20 2005-02-24 Payne Randall Kenneth Medical imaging system with tissue-selective image sharpening
JP5319876B2 (en) * 2006-07-31 2013-10-16 株式会社日立ハイテクノロジーズ Surface inspection apparatus and surface inspection method
US8630479B2 (en) * 2011-01-07 2014-01-14 Kla-Tencor Corporation Methods and systems for improved localized feature quantification in surface metrology tools
US10330608B2 (en) * 2012-05-11 2019-06-25 Kla-Tencor Corporation Systems and methods for wafer surface feature detection, classification and quantification with wafer geometry metrology tools
JP5862492B2 (en) * 2012-07-09 2016-02-16 信越半導体株式会社 Semiconductor wafer evaluation method and manufacturing method
AU2014202494A1 (en) * 2013-05-08 2014-11-27 Practice Insight Pty Ltd A system and method for categorizing time expenditure of a computing device user
EP2801943A1 (en) * 2013-05-08 2014-11-12 Wisetime Pty Ltd A system and method for generating a chronological timesheet
EP3364247A1 (en) * 2017-02-17 2018-08-22 ASML Netherlands B.V. Methods & apparatus for monitoring a lithographic manufacturing process

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510944A (en) * 1982-12-30 1985-04-16 Porges Stephen W Method and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems
US4528639A (en) * 1982-10-29 1985-07-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of and apparatus for generating an inerstitial point in a data stream having an even number of data points
US5301108A (en) * 1993-02-01 1994-04-05 General Electric Company Computed tomography system with z-axis correction
US5388909A (en) * 1993-09-16 1995-02-14 Johnson; Shane R. Optical apparatus and method for measuring temperature of a substrate material with a temperature dependent band gap
US5526446A (en) * 1991-09-24 1996-06-11 Massachusetts Institute Of Technology Noise reduction system
US5764345A (en) * 1995-09-12 1998-06-09 Corning Incorporated Methods for detecting inhomogeneities, specifically, striae, infused silica glasses
US5790692A (en) * 1994-09-07 1998-08-04 Jeffrey H. Price Method and means of least squares designed filters for image segmentation in scanning cytometry
US5973777A (en) * 1996-06-25 1999-10-26 Hitachi, Ltd. Method and apparatus for inspecting defects of surface shape

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129724A (en) * 1991-01-29 1992-07-14 Wyko Corporation Apparatus and method for simultaneous measurement of film thickness and surface height variation for film-substrate sample
US5357372A (en) * 1992-04-07 1994-10-18 Hughes Aircraft Company Ultra-compact, wide field of view virtual image display optical system
US5502566A (en) * 1993-07-23 1996-03-26 Wyko Corporation Method and apparatus for absolute optical measurement of entire surfaces of flats
US6122405A (en) * 1993-08-27 2000-09-19 Martin Marietta Corporation Adaptive filter selection for optimal feature extraction
JPH10253346A (en) * 1997-01-07 1998-09-25 Nikon Corp Apparatus for measuring aspheric shape and manufacture of aspheric optical member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528639A (en) * 1982-10-29 1985-07-09 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of and apparatus for generating an inerstitial point in a data stream having an even number of data points
US4510944A (en) * 1982-12-30 1985-04-16 Porges Stephen W Method and apparatus for evaluating rhythmic oscillations in aperiodic physiological response systems
US5526446A (en) * 1991-09-24 1996-06-11 Massachusetts Institute Of Technology Noise reduction system
US5301108A (en) * 1993-02-01 1994-04-05 General Electric Company Computed tomography system with z-axis correction
US5388909A (en) * 1993-09-16 1995-02-14 Johnson; Shane R. Optical apparatus and method for measuring temperature of a substrate material with a temperature dependent band gap
US5790692A (en) * 1994-09-07 1998-08-04 Jeffrey H. Price Method and means of least squares designed filters for image segmentation in scanning cytometry
US5764345A (en) * 1995-09-12 1998-06-09 Corning Incorporated Methods for detecting inhomogeneities, specifically, striae, infused silica glasses
US5973777A (en) * 1996-06-25 1999-10-26 Hitachi, Ltd. Method and apparatus for inspecting defects of surface shape

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1986, CAMBRIDGE UNIVERSITY PRESS article PRESS W.H. ET AL.: 'Numerical recipes', XP002964096 pages 417-420, 436-443, 495-528 *

Also Published As

Publication number Publication date
WO2003017557A3 (en) 2003-07-31
AU2002323264A1 (en) 2003-03-03
US20030046321A1 (en) 2003-03-06
KR20040032947A (en) 2004-04-17
JP2005500605A (en) 2005-01-06
US6790688B2 (en) 2004-09-14

Similar Documents

Publication Publication Date Title
CN109883547B (en) Broadband spectral signal denoising method based on wavelet threshold difference
Unser et al. B-spline signal processing. I. Theory
Burt Fast algorithms for estimating local image properties
Guo et al. Speckle filtering of ultrasonic images using a modified non local-based algorithm
Neelamani et al. Wavelet-based deconvolution for ill-conditioned systems
US6790688B2 (en) Method of high pass filtering a data set
CN102818629A (en) Micro-spectrometer signal denoising method based on stable wavelet transform
Teng et al. Modified pyramid dual tree direction filter‐based image denoising via curvature scale and nonlocal mean multigrade remnant filter
Kaur et al. Survey of de-noising methods using filters and fast wavelet transform
CN111242854A (en) Image denoising method
CN112991230A (en) Synthetic aperture radar image processing method
Nagarajan et al. Removal of noise in MRI images using a block difference‐based filtering approach
CN109724693B (en) Fusion spectrum denoising method based on stationary wavelet
CN112730712B (en) Method for improving LC-MS data signal-to-noise ratio
CN113375065B (en) Method and device for eliminating trend signal in pipeline leakage monitoring
Szostek et al. Real-time digital filters for signal processing in flow-injection analysis: Part 1. General considerations and simulation study
Raj et al. Extended speckle reduction anisotropic diffusion filter to despeckle ultrasound images
CN109840896B (en) Image denoising method based on gradient and self-adaptive curvature characteristics
JP2003519369A (en) Reconstruction of sample topography
Yan et al. A Power Thresholding Function-based Wavelet Image Denoising Method.
Sullivan Surface topography filtering
CN112819733B (en) Directional bilateral image filtering method and device
JP4890259B2 (en) Spectrum analyzer with resolution filter adjustable by phase variation parameter
Bailey A rank based edge enhancement filter
CN111190226B (en) Three-dimensional seismic data surface wave noise suppression method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 10252416

Country of ref document: US

AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VN YU ZA ZM

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003521526

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047002541

Country of ref document: KR

122 Ep: pct application non-entry in european phase