WO2003001966A2 - Diagnostic capsule and method of use - Google Patents

Diagnostic capsule and method of use Download PDF

Info

Publication number
WO2003001966A2
WO2003001966A2 PCT/US2002/019619 US0219619W WO03001966A2 WO 2003001966 A2 WO2003001966 A2 WO 2003001966A2 US 0219619 W US0219619 W US 0219619W WO 03001966 A2 WO03001966 A2 WO 03001966A2
Authority
WO
WIPO (PCT)
Prior art keywords
capsule
intestinal tract
signal
location
acoustic
Prior art date
Application number
PCT/US2002/019619
Other languages
French (fr)
Other versions
WO2003001966A3 (en
Inventor
Olivier K. Colliou
Ted W. Layman
Sharon L. Lake
Harm Tenhoff
Timothy J. Hughes
Mir A. Imran
Original Assignee
Entrack, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entrack, Inc. filed Critical Entrack, Inc.
Priority to AU2002315385A priority Critical patent/AU2002315385B2/en
Priority to CA2451807A priority patent/CA2451807C/en
Priority to JP2003508213A priority patent/JP2004538055A/en
Priority to EP02742233.6A priority patent/EP1408820B1/en
Publication of WO2003001966A2 publication Critical patent/WO2003001966A2/en
Publication of WO2003001966A3 publication Critical patent/WO2003001966A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • A61M31/002Devices for releasing a drug at a continuous and controlled rate for a prolonged period of time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00082Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • A61B5/036Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs by means introduced into body tracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14539Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring pH
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4233Evaluating particular parts, e.g. particular organs oesophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4255Intestines, colon or appendix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6873Intestine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36007Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of urogenital or gastrointestinal organs, e.g. for incontinence control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • A61B2562/162Capsule shaped sensor housings, e.g. for swallowing or implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/37205Microstimulators, e.g. implantable through a cannula

Definitions

  • This invention relates to a device and method for mapping, diagnosing and treating the intestinal tract using a capsule passing through the intestinal tract. Further, this invention relates to a capsule tracking system for tracking a capsule's location, including for tracking a corresponding diagnosis or treatment, along the length of an intestinal tract. The invention also relates to various treatment and diagnosis methods and devices that may be used with such a capsule and in such a tracking system. One of such devices and methods concerns influencing and/or measuring the electrical behavior of the intestinal tract.
  • Swallowable telemetry capsules have been used in a number of treatment and diagnostic applications. Some swallowable capsules have been proposed to deliver medication to specific areas of the intestinal tract where the release of the medication is actuated by an external RF signal received by the capsule. The signal actuates an electromechanical device within the capsule to release the medication. Similarly, some capsules have been proposed to acquire samples from the intestinal tract where actuation of an electromechanical sampling device is remotely controlled and the capsule is then retrieved when excreted.
  • capsules have been proposed, for example, to take pictures or video images, or measure pH, pressure or temperature.
  • An autonomous capsule with electrodes has been proposed to provide electrical stimulation while moving through the Gl tract to restore motor evacutory function of the Gl tract.
  • Such a device has been proposed to propel a capsule through the gut.
  • Telemetry treatment and/or diagnostic capsules with mapping capabilities have been proposed to identify a target treatment site on a three- dimensional map of the intestinal tract.
  • the proposed systems include capsules that transmit RF signals to externally located antennas. The relative amplitudes of the RF signals received by the antennas are used to determine relative location of the capsule based on the correlation between the capsule to antenna distance and RF amplitude (signal strength).
  • the location of the capsule in two or three- dimensional space is determined based on RF amplitude. From the location information, a map of the capsule's path in space may be created.
  • the capsule is used for treatment or diagnosis purposes at a target location.
  • a capsule with a mechanical cogwheel has been proposed to calculate the small bowel length and small bowel transit velocity.
  • the device relies on the turning of the cogwheel by contact with the intestinal wall during small bowel transit to calculate centimeters of travel.
  • 3D mapping may not repeatably identify a precise location within the intestines when a subsequent capsule is passed through the tract.
  • the intestinal organs tend to shift with the filling or emptying of the various portions of the digestive system, and they tend to move with peristalsis.
  • a patient's abdomen also moves with respiration and change in patient position.
  • the 3D tracking system may identify the wrong portion of the intestinal tract when a later capsule passes through.
  • a tracking system that accurately and repeatably identifies a desired location in the intestinal tract so that a location identified by a first capsule is substantially the same as a location identified by a subsequently passed capsule. It would also be desirable to provide a capsule and tracking system that does not rely on RF transmission amplitude data for accurate tracking.
  • telemetry capsules have been used in therapeutic and diagnostic applications. Such therapeutic and diagnostic devices have typically involved providing medication to a location in the intestinal tract alone or in combination with sampling the fluids of the intestinal tract. The pH, temperature and pressure have also been measured. It would be desirable to provide capsules with new diagnostic and treatment modalities, particularly in a manner that would combine the treatment with tracking and diagnostic capabilities, to treat difficult to access regions of the intestinal tract
  • Another diagnostic/therapeutic area of interest is in identifying blockages or other diseased portions of the intestine and the ability to biopsy the specific location where there is such a blockage or disease It would also be of interest to assist a surgeon in specifically marking a site for surgery prior to surgical intervention for easier identification of the site
  • Motihty disorders in some situations relate to abnormalities in the periodic, coordinated contractile activity of the smooth muscles associated with the intestinal tract
  • Various organs of the intestinal tract such as the stomach, small intestine and colon contain cells that are believed to govern the organs' periodic contractile behavior In healthy humans, in certain intestinal tract regions, these cells generate and propagate rhythmic electrical signals
  • Consistent slow wave or pacesetter potentials have been observed and higher frequency spike activity has been observed.
  • the pacesetter potentials are continuously propagating, relatively low frequency, cyclic- depolarizations of the smooth muscle lining. The higher frequency spike bursts tend to correspond with smooth muscle contractile activity including segmentation and peristalsis.
  • the pacesetter potentials are combined with a chemical or neural excitation of the cells, smooth muscle contractile activity may occur and that the pacesetter potentials control and coordinate the frequency and direction of the contractions.
  • electrical stimulation of the gastrointestinal tract has been proposed to treat motility related disorders and other gastrointestinal diseases.
  • the electrical stimulation has been proposed in a number of forms, such as, e.g., pacing; electrical contractile stimulation or other stimulation; e.g., to treat nausea.
  • Electrical pacing of the intestinal tract is generally defined as periodic electrical stimulation that captures and/or controls the frequency of the pacesetter potential or slow wave activity of the intestinal organ (including in a retrograde direction).
  • Electrical contractile stimulation generally refers to stimulation that directly causes or results in muscular contraction associated with the intestinal tract.
  • dysrhythmias of the intestinal tract pacesetter potentials may be present.
  • Electrical pacing of pacesetter potentials has been proposed to induce regular rhythms for the pacesetter potentials with the intent of inducing regular or controlled intestinal tract contractions. Pacing has also been suggested to cause retrograde propagation of pacesetter potentials.
  • electrical contractile stimulation of the intestinal tract has been proposed to induce peristalsis.
  • Many currently proposed intestinal tract electrical stimulation procedures are relatively invasive and require accessing the intestinal tract through the abdomen, e.g., in an open or a laparoscopic procedure. The devices used typically require implanting permanent leads, electrodes and a pacemaker within the body. Therefore, it would be desirable to provide a less invasive device for electrically stimulating the intestinal tract, particularly in combination with a system for tracking the device and delivering the treatment to an identified location.
  • the present invention provides a capsule having diagnostic and/or treatment capabilities, and a system for tracking the capsule through the intestinal tract.
  • a tracking system provides an improved system for determining the coordinates of a capsule in three-dimensional space.
  • an acoustic signal is transmitted between a capsule as it is passing through the intestinal tract, and a location external a patient's body.
  • an acoustic transmitter or transmitters are located either at the capsule or location external to the patient's body and the acoustic receivers) or sensor(s) are located at the other of either the capsule or location external a patient's body.
  • the velocity of an acoustic signal through tissue is predictable (ultrasound transmits through tissue at about 1540 meters per second).
  • the relative capsule distance(s) to the location(s) external the patient's body is determined. Also, it should be noted that the transit time of the acoustic signal is linearly proportional to the distance traveled.
  • a capsule passing through the intestinal tract transmits an acoustic signal through the body to a plurality of externally located acoustic sensors.
  • the relative capsule distances to the sensors are determined using the amount of time the signal takes to travel to the receiver. Triangulation of the comparative distances will result in a location of the capsule in space (for example, on a Cartesian coordinate system).
  • a reference signal is used to identify the time of acoustic signal origination.
  • reference signal may be in the form of an RF reference signal delivered from the capsule to an external sensor where the capsule emits the acoustic signal.
  • the RF reference signal is delivered at predetermined time from the emission of the acoustic signal.
  • the RF signal which travels at the speed of light, is received by the sensors relatively instantaneously.
  • the RF signal is used by the sensor/ receiver to determine when the acoustic signal was transmitted.
  • an external, telemetrically delivered electromagnetic control signal may be used to trigger the emission of the acoustic signal from the capsule, thereby providing a time reference.
  • the reference signal may also be a trigger signal that triggers emission of the acoustic signal from and external transducer.
  • the reference signal may utilize other communication media to provide a reference signal. For example, an infrared link or a distributed resistive link could be used.
  • signals may be transmitted either to or from the capsule.
  • Another embodiment provides a tracking system that tracks a capsule's linear position along the intestinal tract length or a portion thereof. As the capsule moves through the tract, it senses diagnostic information. The tracking system correlates sensed diagnostic information with the capsule's corresponding linear position when the information is sensed. From the diagnostic information, a location along the length traveled is identified for treatment or therapeutic functions, which also include acting on the intestinal tract for a therapeutic purpose, e.g., to mark the location for surgical intervention. A location along the length may also be identified for further diagnosis, including using subsequently passed capsules. In a subsequent pass of a capsule, the capsule's linear position is monitored until it reaches the position along the length identified by a previous capsule.
  • the subsequent capsule then provides, treatment, further diagnosis, or marking.
  • the tracking system provides a means for locating a portion of the intestinal tract that is relatively independent of intestinal tract shifting or movement.
  • the system also provides repeatable tracking independent of the location of the sensors or pods on the patient.
  • the system of this embodiment thus allows for subsequent passes of the capsule where the sensors or pods have been repositioned, for example in a later treatment cycle.
  • the sensors are provided with the ability to actively locate each other in a three dimensional coordinate system. This allows the sensors to re-calibrate to determine their relative location when they have moved due to respiration, or other patient movement. Because the location of the capsule in a preferred embodiment of the tracking system depends on the relative location of the sensors, re-establishing the relative sensor location on a regular basis compensates for sensor movement during a procedure using tracking.
  • the position of a capsule along a length of the intestinal tract is determined by first identifying the capsule's 3-dimensional position over time, for example, on a Cartesian coordinate system created by the pods.
  • the tracking system includes a processor that monitors the signals from the pods and that uses incremental change in position over time to convert the 3D capsule location information to linear travel distance measurements.
  • the linear travel distance measurements are then used to derive the capsule's position along the length of the intestinal tract portion of interest.
  • the tracking system uses acoustic transmission time from the capsule to external sensors to determine the capsules 3D coordinates as described herein.
  • An initial location of the capsule is preferably first identified, such as, when it reaches the pylorus.
  • Such position may be determined by a number of means such as by determining capsule movement indicative that the capsule is moving from the stomach into the small intestine, including, for example change in location, or acceleration.
  • a capsule's initial location may be determined, for example by pressure, which changes when the capsule passes through the pylorus, or pH, which changes when the capsule enters the duodenum.
  • Another feature of the invention provides a system to compensate for variations in capsule location determinations along the length of the intestinal tract that are due to intestinal smooth muscle contractions and corresponding foreshortening of the intestinal tract. For example, pressure may be measured to determine the relative relaxation/contraction of the tract and the corresponding foreshortening. The determination of capsule location may be a factor of such pressure.
  • Another feature of the invention provides a filter that detects and filters out capsule movement not corresponding to actual movement along the length of the tract. For example, by observing the orientation and type of movement, movement that is not statistically related to movement along the intestinal length may be filtered out.
  • Another feature of the invention is a capsule having a plurality of acoustic transducers to provide information concerning directional orientation of the capsule.
  • the linear tracking system may not require sensing of additional parameters to determine location, the linear tracking is used as a diagnostic tool when combined with other sensed information to provide a diagnostic linear map of the intestinal tract or a portion thereof (such as the small intestine.) Further, the tracking system is preferably combined with both diagnostic and treatment functions.
  • a diagnostic capsule provides a diagnostic linear map of the intestinal tract
  • a treatment capsule is passed through intestinal tract portion. The treatment capsule that travels through the intestinal tract is monitored by the tracking system for its relative linear position until it reaches a position along the intestinal tract length to be treated. The mechanism for providing the treatment is then actuated, typically by a telemetrically delivered control signal.
  • a number of capsules may be used as a combined diagnostic and treatment system. For example, a first capsule obtains information on the capsule position along the intestinal length and corresponding diagnostic information (if desired, a diagnostic linear map of the tract). Another capsule may then be passed through the tract to provide treatment and/or diagnosis at a desired location along the length of the tract. Once the length of the tract has been mapped, any number of subsequent capsules may be passed through to further obtain diagnostic information or to provide treatment. Using this technique a clear map of diagnostic information vs. length of intestine may be obtained. Additional capsules may be used at a later time using the same map for additional diagnosis, treatment or follow up.
  • a combination of capsules may be swallowed in a spaced apart sequence where more than one capsule is in the digestive system at one time.
  • a diagnostic capsule may sense a number of parameters such as, for example, pH for assessing acidity levels in the intestinal tract, electrical activity, electrical impedance, optical parameters for detection of specific reflected or transmitted light spectra, e.g. blood, objects or obstructions in the intestinal tract, pressure for intestinal tract manometric data acquisition and various diagnostic purposes such as determining effectiveness of stimulation, blockages or constrictions, etc., etc.
  • An acoustic transducer for example, piezoelectric crystals, may be used for performing diagnostic ultrasound imaging of the intestinal tract etc.
  • a temperature transducer may be used.
  • capsule transit time, velocity, and acceleration may be calculated and used to identify locations or segments of the intestine where there are motility disorders (such as segmental diseases).
  • a treatment capsule with the described tracking system subsequently passing through the identified portion to be treated will be signaled to provide treatment.
  • the treatment capsule may include but does not require any diagnostic sensors.
  • the treatment capsules may perform one or more of a number of treatment functions.
  • Such treatment may take several forms or combinations that may include, for example, delivering an electrically stimulating signal, treating bleeding with ablation, clotting agents or coagulants, active or passive drug delivery or gene therapy treatment at specific portions of the tract, an inflatable element for performing balloon plasty of the intestinal tract, for placing a stent (e.g. for strictures), a self expanding stent delivery system, tissue biopsy or content sampling devices, or marking devices, (e.g.
  • the capsule system includes a sensor for detecting the presence of blood.
  • a sensor for detecting the presence of blood For example, an optical sensor or a chemical sensor may be provided that senses the presence of blood.
  • the capsule is passed through the intestine and the location of the capsule along the length of the tract where the blood is sensed is identified.
  • a treatment capsule having bipolar electrodes is then passed through the intestinal tract until it reaches the identified length of the tract where bleeding is occurring.
  • An external power source is coupled to an RF coil within the capsule to deliver a current through the electrodes to ablate or cauterize the bleeding tissue.
  • a site where bleeding is present may be treated using a subsequently passed capsule having a balloon tamponade, i.e. an inflatable member that uses compression and/or a thrombogenic substance coated on the inflatable member to help cause hemostasis.
  • a balloon tamponade i.e. an inflatable member that uses compression and/or a thrombogenic substance coated on the inflatable member to help cause hemostasis.
  • Another embodiment of the capsule system comprises a diagnostic capsule that includes a sensor (such as a pressure sensor) that identifies a blockage, stricture or narrowing of the intestine.
  • a sensor such as a pressure sensor
  • the location of the capsule along the length of the intestine is tracked.
  • the sensed blockage is correlated to the capsules linear position along the intestinal tract.
  • the tracking system tracks the linear position of a treatment capsule as it passes through the tract until it reaches the location of the blockage.
  • An externally transmitted telemetric signal causes a balloon plasty capsule to deploy an expandable member that dilates the intestinal passage.
  • a variable size balloon may be used to determine the extent of a blockage.
  • a balloon may be inflated at the suspected blockage area.
  • the balloon is gradually deflated until it passes through the blocked area.
  • the diameter of the balloon when the balloon is able to pass through the constricted site may, e.g., be used to determine extent of the blockage.
  • the diameter of the balloon may be approximated from the
  • a balloon may be provided with an expandable support structure over the balloon such as a stent.
  • the stent may be deployed within the intestinal tract when the balloon is expanded and thereby provide additional radial support of the intestinal wall.
  • Another embodiment of the capsule system provides a diagnostic capsule for which position and corresponding diagnostic information are tracked along the length of the intestinal tract.
  • a location for surgical intervention is identified based on the diagnostic information and a second capsule is passed through the tract.
  • a telemetric signal is delivered from an external device that triggers the release of a marker within the tract at the desired location.
  • marker may include, for example a radiopaque marker that may be located with an x-ray system during a procedure, a fluorescing compound that is used to identify the location (e.g., fluorescein), or a dye that stains through the wall of the intestine (e.g.
  • staining marking or tattooing ink, such as india ink, methylene blue or purified carbon powder, radiopaque dye).
  • the markers may assist a surgeon in a laparoscopic or open procedure where such imaging systems are used during the procedure or where visualization is possible, e.g. of a stain.
  • a capsule may be used to mark a location in the intestinal tract by affixing itself to the intestinal wall at an identified location.
  • Such capsule may include deployable anchor mechanisms where an actuation mechanism causes the anchor to deploy.
  • an external telemetric command signal may trigger the release of such anchor.
  • Such anchor may be provided in a number of forms including an expandable member, or other wall engaging mechanism.
  • the capsule may also be provided with a light emission source such as a laser or an IR source, that emits light to enable location of the capsule, preferably when the capsule is affixed to the intestinal wall.
  • Another embodiment of the treatment capsule system is an ingestible capsule that will electrically stimulate a predetermined portion of the intestinal tract.
  • Electrical stimulation is generally defined herein to mean any application of an electrical signal or of an electromagnetic field to tissue of the intestinal tract for a therapeutic purpose or to obtain diagnostic information.
  • electrical signals are delivered to intestinal tract tissue by at least one electrode, preferably a bipolar electrode pair, or one or more selected electrode pairs coupled to the capsule that electrically stimulates the intestinal tract as the capsule passes through it.
  • the electrodes deliver a signal that is designed to cause desired therapeutic effect, for example, a smooth muscle response, i.e., stimulation or inhibition of contraction or peristaltic motion.
  • the electrodes may deliver the electrical stimulation to the smooth muscle by contacting, for example, the tissue that forms the intestinal lining or the mucosal tissue of the intestinal tract.
  • the electrical stimulation signal entrains a slow wave signal of a portion of the intestinal tract smooth muscle that is clinically absent, weak, of an undesirable frequency, sporadic or otherwise not optimal.
  • the capsule may transmit other electric stimuli.
  • the electrical stimulus is designed to trigger the spike burst electrical activity of the smooth muscle associated with smooth muscle contractions.
  • the stimulating signals may also be designed to inhibit the inherent smooth muscle pacing potentials, to reduce smooth muscle contractions.
  • the signals may also be designed to disrupt the natural waveform and effectively alter the existing or inherent pacing.
  • the stimulation electrodes provide stimulation either by way of a preprogrammed generator or one that is programmed while the capsule is in the intestine, e.g., based on sensed parameters or response to stimulation.
  • the capsule acts as a slave to an external device providing master stimulation signals that are received by the capsule and delivered to the tissue.
  • the stimulation capsule of the present invention may include a plurality of electrodes that may be utilized for forward or backward electrical stimulation, e.g., where the order in which a series of electrode pairs are activated can cause peristalsis to move in a directional manner.
  • a plurality of electrode or bipolar electrode pairs may be provided.
  • Such electrodes, electrode pairs or combination of electrodes or electrode pairs may be selected for delivering stimulation pulses, (either preprogrammed or programmed while the electrodes are deployed in the intestine) to optimize various parameters, e.g. impedance, current density, optimal tissue contact, etc.
  • the capsule is swallowed or alternatively delivered endoscopically to a predetermined portion of the intestinal tract.
  • the capsule is sized and has a conformity such that it can then readily pass through the intestinal tract.
  • the capsule may pass from the stomach to the small intestine to the colon and exit from the intestinal tract through a bowel movement, permitting its recovery if desired.
  • the capsule may, in general, move with the food material as it passes through the intestinal tract.
  • the capsule is preferably provided with RF or other signal transmission capabilities, e.g., light.
  • the signal transmission may be used in a number of manners.
  • the system may have RF signal transmission capabilities that enable determination of a location of the capsule by providing a reference for the time of the acoustic signal initiation.
  • the signal transmission capabilities may also be used for telemetric communication between the capsule and an external device, e.g., to communicate data to the external device or to receive additional capsule programming information, command signals, or stimulation signals from the external device.
  • the capsule may be used to sense electrical parameters.
  • the capsule electrodes can be used to sense native pacesetter potential (slow wave activity) as well as spike burst activity which corresponds to muscular contractions.
  • the electrodes may also be used to determine tissue impedance. By recording the electrically sensed signals and combining that information with tracking information a comprehensive knowledge of the electrical behavior of the intestinal tract can be gained.
  • Information such as absence of slow wave activity, slow wave frequency, presence of spike burst activity, number of spike burst events per slow wave, and spike burst frequency can assist the clinician in detection and pinpoint location of various disorders such as intestinal neuropathy, tachyarrhythmu, ileus, etc
  • the electrical characteristics are correlated to the capsule's movement along the length of the tract to provide a diagnostic linear map ot the intestinal tract
  • a number ot capsules may be passed through in series so that the capsules follow each other in short spaced time intervals
  • a subsequent capsule may provide electrical stimulation based on the sensed conditions
  • a number ot capsules may be passed through, each time obtaining diagnostic information or providing treatment according to the linear map
  • the elect ⁇ cal stimulation capsule may be provided with one or more sensors for sensing various conditions in the intestinal tract Also, the information obtained by the sensors may by communicated via telemetry to a control or locating device that evaluates the sensed information and sends a control signal to the capsule in response, instructing the capsule to perform a particular function or may provide such stimulation signals to the capsule to be delivered through the electrodes on the capsule
  • the capsule may combine the elect ⁇ cal stimulation feature with other therapeutic or diagnostic capsule functions such as, for example, drug delivery, biopsy or other material sample recovery, etc
  • the sensed parameter may be used to ascertain whether or not the stimulated portion is contracting in response to electrical stimuli received from the capsule For example, the pressure or change in pressure within the tract at a particular location may be indicative of a contractive response to electrical stimulation
  • an elect ⁇ cal stimulation capsule may respond to the sensed information by performing a function, such as, for example, by initiating, altering or ceasing deliv ery of stimulation signals upon sensing of elect ⁇ cal activity, pressure or pH conditions that identify the location of the capsule or condition of the intestinal tract at the location
  • the inventive capsule includes an encasing at least a portion of which is dissolvable in fluids in the intestinal tract
  • the encasing may selectively dissolve depending on the pH of the tract
  • the encasing may dissolve in the small intestine w here the pH is substantially neutral in comparison to the acidic stomach conditions Dissolving the encasing may release a component contained within the capsule for example, so that encased electrodes are exposed or deployed at a desired location
  • Another feature of the invention is a capsule having the capability ot functioning regardless of the directional orientation in the intestinal tract
  • the capsule and method described above are used in stimulating the small intestine
  • One variation of this embodiment provides tor small intestine pacing
  • Figure 1 illustrates the tracking system of the present invention positioned on a user
  • Figure 2 is a side partial cross-sectional view of a pod of the tracking system of Fig 1
  • Figure 3 A and 3B are partial cross-sectional views of a first embodiment of a capsule of the present invention with tracking capabilities, used with the tracking system of the present invention
  • Figure 4 illustrates the electronic circuitry of the capsule illustrated in
  • Figure 5 illustrates a schematic of the electronics of the recorder of the tracking system of the present invention
  • Figure 6 illustrates the pods such as the one illustrated in Fig 2 set up in an x, ⁇ , z Cartesian coordinate system
  • Figure 7 illustrates the location of a capsule on the x, y, z Cartesian coordinate system ot
  • Figures 8A-G illustrate a timing diagram of signal emission and reception of an exemplary tracking system of the present invention
  • Figure 8A illustrates the emission of the RF reference signal
  • Figure SB illustrates the emission of an ultrasound signal from the capsule
  • Figure 8C illustrates the timing of the reception of the RF reference signal b the Pods
  • Figure 8D illustrates the timing of the reception of the ultrasonic signal at the first Pod
  • Figure 8E illustrates the timing of the reception of the ultrasonic signal at the second Pod
  • Figure 8F illustrates the timing of the reception of the ultrasonic signal at the third Pod
  • Figure 8G illustrates the timing of the reception of the ultrasonic signal at the fourth Pod
  • Figure 9 illustrates a partial cross-sectional view of a second embodiment of a capsule of the present invention
  • Figure 10 illustrates a partial cross-sectional view of a third embodiment of a capsule of the present invention
  • Figures 1 IA illustrates an example of the length of a gastrointestinal system
  • Figure 1 IB illustrates an example of a map of pH as sensed in relation to the linear position of a capsule along the length of the tract of Figure 1 1
  • Figure 1 IC illustrates an example of a map of pressure as sensed in relation to the linear position of a capsule along the length of the tract of Figure 1 IA
  • Figure 1 I D illustrates an example of a map of electrical activity as sensed in relation to the linear position of a capsule along the length of the tract of Figure 1 I A
  • Figure 12 illustrates a partial cross-sectional v iew of a fourth embodiment of a capsule of the present invention
  • Figure 13 illustrates the electronic circuitry for the capsule of Figure 12, including ablation electronics.
  • Figure 14 illustrates the electronic circuitry for an external power source for the ablation function of the capsule of Figure 12.
  • Figure 15 is a partial cross-sectional view of a fifth embodiment of a capsule of the present invention having a dissolvable encasing containing a deployable stimulation electrode.
  • Figure 16 is a side elevational view of the capsule shown in Figure 15 with the encasing dissolved and the deployable stimulation electrode deployed.
  • Figures 17A, 17B and 17C are graphs showing the programmable pacing parameters of the capsule shown in Figures 1 and 16.
  • Figure 18 is a side elevational view of a sixth embodiment of the capsule of the present invention.
  • Figure 19 is a cut away view of a seventh embodiment of a capsule of the present invention and showing stimulation electrodes wrapped about the capsule and encapsulated in a dissolvable encasing that is partially cut away.
  • Figure 20 is a partial cross sectional view of the embodiment of Figure 19 with the electrodes deployed.
  • Figure 21 is a partial cross sectional view of an eighth embodiment of a capsule of the present invention with pressure sensing capabilities.
  • Figure 22 is an enlarged cross sectional view of a portion of the capsule shown in Figure 21.
  • Figure 23 illustrates alternative electronic circuitry that may be used with the stimulation capsule.
  • the tracking system 160 comprises an external recorder 105; four pods 101 , 102, 103 and 104 respectively, containing both acoustic and EM emitter/receivers; and a capsule 1 10 that is swallowable or otherwise positionable to move within an intestinal tract.
  • the recorder 105 is secured to the external abdomen of the patient.
  • the pods 101 , 102, 103 and 104 are adhered to the skin of the patient and have an acoustic transmitting/coupling material, e.g., a gel layer, interfacing between the skin of the patient and the pods 101 , 102. 103, 104.
  • an acoustic transmitting/coupling material e.g., a gel layer
  • the pod 101 comprises an outer plastic casing 106 enclosing an acoustic transducer 107a and an RF coil 108a.
  • the casing 106 has an interfacing wall 106a for interfacing with the skin of a patient.
  • An adhesive layer 109 is formed on a portion of the interfacing wall 106a, for adhering the pod 101 to the patient's skin while a remaining portion of the interfacing wall 106a is exposed to the patient's skin.
  • the acoustic transducer 107a is attached to the wall 106a within the casing 106 adjacent the exposed portion of the wall 106a in a manner that allows the acoustic or ultrasonic energy to transmit through the interfacing wall 106a.
  • an acoustic backing material 107m is provided that absorbs the acoustic energy transmitted in the direction towards the backing material 107m.
  • a gel or other acoustically transmitting/coupling material is placed on the outside of the exposed portion of the interfacing wall 106a.
  • the output of the acoustic transducer 107a is coupled to wires 100a that are coupled to the recorder 105 through the wire conduit 100 extending out of the casing 106.
  • Pods 102, 103, and 104 are similarly constructed.
  • a first embodiment of a capsule 1 10 comprises a liquid impermeable and airtight capsule body 1 1 1.
  • the capsule of the present invention is sized so that it is capable of being ingested for passage through the intestinal tract.
  • a preferred embodiment of the capsule is to be sized so that it has a length ranging from about 1.5 to 2.5 cm and having a diameter of about 8 mm or less.
  • the capsule can be appropriately sized.
  • the capsule body 1 1 1 contains and protects the enclosed circuitry from body fluids while passing through the intestinal tract.
  • At least a portion of the capsule body 1 1 1 is constructed of an ultrasound transmitting material that is compatible for use in the human body such as, for example, a medical grade plastic, e.g., polyethylene.
  • a radiopaque marker 1 1 l a is embedded in the plastic casing so that in the event it is necessary to locate the device via an external imaging source, its location may be identified.
  • a dissolvable encasing (not shown) may surround the capsule body 1 1 1.
  • the encasing may be formed of a suitable dissolvable material such as, for example, a soluble gelatin or enteric coating that is dissolvable in the body fluids contained in the stomach or intestinal tract.
  • the capsule body 1 1 1 includes a generally hemispherical back end 131 and a generally hemispherical front end 132.
  • the back end 131 includes an inner end surface 131a.
  • the front end 132 includes an inner end surface 132a.
  • the overall conformation of the ingestible capsule 1 10 is cylindrical in shape forming a substantially smooth outer capsule surface.
  • the capsule 1 10 includes an RF coil 135 for transmitting and receiving RF signals, and an acoustic transducers 136a, 136b, and 136c located within the capsule body 1 1 1.
  • the acoustic transducers 136a and 136b are located against the inner end surfaces 132a and 13 1a respectively with an acoustic transmitting/coupling material filling any gap between the transducers 136a and 136b and the end surfaces 132a, 13 la in a manner so that the transducers can transmit acoustic, preferably ultrasonic waves through the capsule body 1 1 1 to the surrounding tissue or material.
  • Acoustic transducer 136c is cylindrical in shape, extending around an inner circumference of the capsule.
  • An acoustic transmitting/coupling material similarly fills any gap between the acoustic transducer 136c and the inner wall of the capsule body 1 1 1.
  • the acoustic transducers 136a-c are arranged in combination to transmit acoustic signals relatively omni-directionally.
  • the transducer 136a comprises a piezoelectric crystal 137 located between electrode plates 138 that when energized cause the crystal to oscillate at an ultrasonic frequency (preferably between 100kHz and 5MHz).
  • An acoustic backing material 139 such as, oxide particles in a flexible polymer, e.g., an epdxy matrix tungsten powder, is placed on the back of the transducer 136a to absorb any acoustic transmissions in a direction opposite to the end surface 132a.
  • the acoustic transducers 136b and 136c are constructed in a similar manner to transducer 136a and of similar materials.
  • an acoustic transducer or transducers may be used to provide relativelv omni directional acoustic si nal transmission.
  • the RF coil 135 and the acoustic transducers 136a, 136b and 136c are electrically coupled to the electronics 1 13 which is powered by battery 1 14.
  • An elongate member 1 15 is affixed to the back end 13 1 of the capsule body 1 1 1.
  • First and second bipolar electrodes 1 16, 1 17 are located on the elongate member 1 15, the second bipolar electrode 1 17 being electrically opposite of the first electrode 1 16.
  • the elongate member 1 15 is preferably formed of an elastically behaving material such as a Ni-Ti alloy.
  • the capsule body 1 1 1 also includes a pH sensor 133 on the capsule body 1 1 1.
  • the pH sensor 133 is formed with dissimilar metals such as, e.g., silver chloride and antimony that sense differences in pH and convert the sensed result into a calibrated electrical signal.
  • the pH sensor is coupled to the electronics 1 13 by electrical conductors. Referring now to Figure 4, the electronic circuitry 1 13 of the capsule
  • the electronic circuitry 1 13 is a chip that includes a number of optional connectors, and, as such, may be used in a number of different diagnostic or therapeutic capsule configurations.
  • the electronic circuitry 1 13 of the capsule 1 10 comprises, a microprocessor or controller 122 for controlling the operations of the electronic circuitry, an internal clock 121 , and battery device 114 such as a pair of lithium iodine batteries, for powering the various components of the circuit 1 13.
  • the controller 122 and battery device 1 14 are coupled to each of the major components of the circuit as would be known to one of ordinary skill in the art.
  • the controller 122 is coupled to ROM 123, which contains the program instructions for the controller 122 and any other permanently stored information that allows the microprocessor/controller 122 to operate.
  • the controller 122 addresses memory in a location in ROM 123 through address bus 1 3a and the ROM 123 provides the stored program instruction to the controller 122 via data bus 123b.
  • the electrode plates 138 of the acoustic transducer 136a are powered through oscillator 137a controlled by the controller 122 to produce a desired acoustic wave output.
  • electrode plates of acoustic transducers 136b and 136c are powered through oscillators 137b and 137c, respectively. controlled by the controller 122.
  • the controller 122 controls the RF coil 135 that acts either to deliver an RF tracking signal or as a telemetry device for communicating data to the recorder 105.
  • the RF coil 1 5 delivers signals to or receives signals from the RF coils 108a-d (Fig. 5) in the pods 101, 102, 103, and 104.
  • controller 122 will respectively, at fixed time intervals, order the transmission of an RF signal and an acoustic signal using the RF coil 135 and at least one of acoustic transducers 136a-
  • the controller's commands will inco ⁇ orate a preset time interval between the RF signal transmission and acoustic signal initiation. Such time interval (which could be zero) will be factored in at the recorder 105 to determine acoustic wave transmission time.
  • the capsule's acoustic transducers 136a- 136c transmit the acoustic signals immediately, or a defined time after the RF reference signal.
  • the acoustic transducer 136a will emit a first signal a predetermined time after the RF signal
  • the second and third acoustic transducers 136b and 136c will emit second and third signals respectively at predetermined times after the RF signal and sufficiently spaced in time from the other signals so that the acoustic signals may be differentiated.
  • the second and third acoustic signal may be referenced from second and third differentiated RF signals.
  • the buffered oscillator 1 19 is disabled. Telemetry signals received on RF coil
  • the detector circuit 1 19a is preferably selected based on the modulation used for the telemetry signals.
  • One or more sensors e.g., 127a (pressure), 127b (pH), 127c (optical). 127d (temperature), and 1 16, 1 17(electrodes) may be coupled to controller 122 tlirough A/D converters (with amplifiers) 126a, 126b, 126c, 126d, 126e which convert a representative analog electrical signal into a digital signal. Suitable sensors of these types are generally known in the art and may be located within, on. or external to the capsule body 1 1 1. The electrodes 1 16, 1 17 used to deliver the stimulation are also used to sense electrical activity or impedance as described in further detail herein.
  • the controller 122 is coupled to RAM 120 via an address bus 120a for addressing a location in RAM 120 and a bi-directional data bus 120b for delivering information to and from RAM 120.
  • the RAM 120 includes event memory 124 that temporarily stores data recorded by sensors 127a-127d and electrodes 1 16, 1 17.
  • RAM 120 also includes a programmable memory 125 which may be programmed, for example, via telemetry while the capsule 110 is within the intestinal tract, to provide treatment protocols.
  • the data stored in the event memory 124 may be sent to external coils 108a-d (Fig. 5) intermittently as data bursts via telemetry through the RF coil 135, as opposed to continuously in order to save battery power.
  • the data stored in the programmable memory 125 may include specifications for the electrical stimulation operating modes (e.g. waveform, type of stimulation: for pacing, inducing contraction or other type) and various procedure parameters (e.g., when to deliver a drug or electrical stimulation). Such programming may be done in response to sensed information or it may be done automatically by an external controller or as desired by a treating physician, etc.
  • the electrical stimulation operating modes e.g. waveform, type of stimulation: for pacing, inducing contraction or other type
  • various procedure parameters e.g., when to deliver a drug or electrical stimulation.
  • Controller 122 is coupled to a buffered oscillator 1 19 that provides an RF signal to be emitted from the RF coil 135.
  • the RF signal is preferably at about 100kHz to about 5MHz so that the signal is efficiently transmitted through tissue.
  • the controller 122 controls the oscillator 1 19 and provides data for example, various sensed data such as pressure, pH, impedance, electrical activity, etc.. to be modulated with the RF signal to be delivered through RF coil 135.
  • the controller 122 may also be coupled through stimulation driver 1 18 and coupling capacitors 1 16a, 1 1 7a to bipolar stimulating electrodes 1 16, 1 17, respectively. Electrical stimulation may be provided in a manner similar to that described herein with reference to the stimulating electrodes 16a-c, 17a-b, 56. 57, 66, 67. 86, and 87 of Figures 15-
  • the stimulation modes and parameters can be preprogrammed or set by an external device that telemetrically communicates the parameters.
  • the battery 1 14 has its output supplied to a DC-to-DC converter 130 to provide a higher voltage, which is utilized for electrical stimulation pulses.
  • the DC-to-DC converter 130 is conventional and provides an output voltage of 15 to 20 volts.
  • the circuit 1 13 may include one or more drivers 128a, 128b, 128c, 128d that drive various devices, for example, diagnostic or therapeutic electromechanical devices, such as controlling valves, solenoids, etc, for, e.g., drug delivery, biopsy, content sampling, or a marker release, etc.
  • the controller 122 provides a signal to a driver 128a-
  • the circuit may also include a stepping driver 129 coupled to a stepper motor for example for rotating an imaging device (e.g., diagnostic ultrasonic device) or actuating a biopsy device, etc.
  • a stepping driver 129 coupled to a stepper motor for example for rotating an imaging device (e.g., diagnostic ultrasonic device) or actuating a biopsy device, etc.
  • the electronic circuitry 140 of the recorder 105 comprises: a microprocessor or controller 142 for controlling the operations of the electronic circuitry, an internal clock 141 , and power source such as a battery 147 for powering the various components of the circuit 140.
  • the controller 142 and battery device 147 are coupled to each of the major components of the circuit in a manner known to one of ordinary skill in the art.
  • the electronic circuitry 140 is coupled to the pods 101 , 102, 103 and
  • RF coil sensors 10S a-d which respectively include RF coil sensors 10S a-d and acoustic transducers 107 a-d that send and receive signals to and from the capsule 1 10.
  • the details of the coupling of the transducer 107a and 108a are illustrated in Fig. 5.
  • the transducers 107b-d and coils 108b-d are coupled in a similar manner not shown.
  • the output of the RF coil 108a is coupled through a demodulator 155 to the controller 142.
  • the demodulator 155 demodulates the information carried by the RF signal received by the RF coil
  • Such information may include, for example, telemetrically delivered sensed data.
  • the RF coil 108a may emit an RF reference signal.
  • the controller 142 controls the output of the RF coil 108a, which communicates with the capsule 1 10.
  • the controller 142 is coupled to an oscillator 156 that provides a carrier signal, preferably having a characteristic frequency in the range of 100kHz to 5MHz so that it may be efficiently transmitted through tissue to the capsule.
  • the controller 142 provides data to be modulated with the RF signal, for example, commands to the capsule 1 10 to provide treatment, treatment parameters, etc.
  • the controller 142 controls the output of acoustic transducer 107a through oscillator 157, which provides the oscillating frequency to the transducer when the pod is pinging another pod, i.e., when the pods are sending signals to calibrate the pods and identify their locations on the coordinate system.
  • the controller 142 also receives the representative acoustic signal from the transducer 107a through automatic gain control device 158 which brings the voltage or current levels within a predefined range, and tlirough filter 159.
  • the controller 142 is further coupled to ROM 143, which contains the program instructions for the controller 142 and any other permanently stored information that allows the microprocessor/controller 142 to operate.
  • the controller 142 addresses memory in ROM 143 via address bus 143a and the ROM 143 provides the stored program instruction to the controller 142 via data bus 143b.
  • the controller 142 is coupled to RAM 144 via address bus 144a and bi-directional data bus 144b.
  • the RAM 144 comprises event memory 145 that temporarily stores data sent via telemetry from the capsule 1 10 to the RF coils 108 a-d in the pods 101 - 104 until the data is downloaded onto a computer using external data port 150.
  • the RAM 144 is also used to store the data concerning lag times between the RF signal and acoustic signals received by transducers 107 a-d, and RF coils 108 a-d in the pods 101 - 104.
  • the RAM 144 also comprises a programmable memory 146. which is used to specify operation modes (e.g.
  • the recorder 105 also includes a display 151 to show recorded data, sensed parameters, treatment parameters, and status of device (e.g., capsule position, battery charge status, etc.).
  • the recorder 105 also includes a data input device 152 such as a keyboard, pad or input screen for inputting new parameters, programming the capsule, changing the treatment scheme, viewing various data or turning the device on or off.
  • the input is coupled through a buffer 154 to the controller 142.
  • the controller 142 is coupled to a speaker 153 for providing audible information such as an alert.
  • the pods 101 ,102,103, and 104 are set up in an Cartesian (x,y,z) coordinate system.
  • the origin of the coordinate system is defined as the location of pod 101.
  • the y-axis is defined as the line that passes tlirough pod 101 and pod 102.
  • the x-y plane is defined as the plane that intersects pods 101, 102 and 103.
  • the z-axis is perpendicular to the x-y plane.
  • Pod 104 is located off of the x-y plane.
  • Pod 102 (0, y 2 , 0)
  • Pod 103 (x , y 3 , 0)
  • Pod 104 (x 4 , y 4 , z 4 ) where the pod coordinates y 2 , x 3 , y 3 , x , y , and z are initially unknown.
  • the coordinates of the pods are initially determined in the following manner. As illustrated in FIG. 1
  • , d 23 , d 24 , and d 34 represent the distances between pods 101 and 102, 101 and 103, 101 and 104, 102 and 103, 102 and 104, and 103 and 104, respectively.
  • the pods which can both emit and receive electromagnetic and acoustic (including ultrasound) signals, will sense time-lags between the RF and acoustic signals sent between the pods along the distances d ' ]2 , dn, d
  • the pods communicate with a processor located in the recorder that calculates the distance and determines the coordinates.
  • the time-lags are multiplied by the velocity of sound to calculate the distances (di;, dn, d ⁇ 4 , d 23 , di-i, and d 34 ) between the pods.
  • X 2 , Z 2, and z 3 are defined as having the value of 0.
  • the six pod coordinates, y 2 . x 3 , y , x 4 , y , and z 4 may be solved.
  • Single solutions for all the coordinates may be obtained by setting the following position restrictions: y 2 > 0; x 3 > 0; and z 4 > 0.
  • pod 101 should be placed on the right side of the user, pod 102 on the left side, pod 103 on the lower abdomen, and pod 104 on the upper abdomen as illustrated in Figure 1.
  • the pod coordinates are determined whenever the pods are repositioned.
  • the pod coordinates may also be re-established at regular intervals to account for movement and thus relative change in pod position.
  • the location of the capsule in space may be determined as follows.
  • the range-finding capability of the pods measure the distances between the capsule 110 and each pod.
  • the capsule 110 emits an RF signal 205 and a sychronized ultrasonic signal 206 that is emitted a predetermined time interval after the RF signal 205 is emitted.
  • the ultrasound signal 206 is emitted immediately following the RF signal 205.
  • Second and third acoustic signals emitted from the second and third transducers 136b and 136c would be similar to the signal emitted from transducer 136a except that they preferably emitted after the first signal 206 and at predetermined time intervals from the RF signal 205.
  • the signals from the additional acoustic transducers 136b and 136c may also alternatively have different waveforms as that of the first signal 206.
  • Figure 8C illustrates the timing of when the RF signal 205 is received at the pods.
  • Figures 8 D-G illustrate the timing of when the ultrasound signal 206 is respectively received at pods 101 , 102, 103, and 104. Because the RF signal 205 travels at the speed of light, it is received by the pods 101 , 102, 103 and 104 at a relatively negligible time delay in comparison to the ultrasonic signal which travels generally at about 1540 meters per second in human tissue.
  • the distances Ci, c 2 , c 3 , and c 4 represent the distances between the capsule and pods 101 , 102, 103, and 104, respectively.
  • the pods 101, 102, 103 and 104 receive the ultrasound signal 206 transmitted from the capsule 1 10 at varying times depending on the distances c-,, C , c 3 , and c 4 respectively.
  • Such time lags may be represented as illustrated, for example, in Figure 8 as ti, t 2 , t 3 , and corresponding to distances C
  • the time-lags will then be multiplied by the velocity of sound to calculate the distances (ci, c 2 , c 3 , and c 4 ) between the capsule 1 10 and each pod.
  • a three-dimensional or four- dimensional map of the capsule's trip through the intestinal system can be generated by measuring the capsule's coordinates at fixed time intervals.
  • linear travel distance measurements can be made by using Pythagoras' Theorem. Incremental linear distances can be calculated and then summed to obtain a total linear travel distance (L):
  • the additional transducer will deliver a signal at time intervals between the acoustic signals of the first transducer.
  • the signals from the additional transducer may have a different waveform to differentiate the signal from signals corresponding to the first transducer.
  • the orientation information may provide additional information that is used to cancel out retrograde capsule movement.
  • Figures 1 1 A-D an example of a linear map of an intestinal tract and corresponding maps of sensed information are illustrated.
  • Figure 1 1 A illustrates an example of a linear map of a gastrointestinal tract.
  • Figure 1 I B illustrates an example of a map of pH sensed by a capsule in relation to its linear position along the length of the tract of Figure 1 IA.
  • Figure 1 I C illustrates an example of a map of pressure sensed by a capsule in relation to its linear position along the length of the tract of Figure 1 1 A.
  • Figure 1 ID illustrates an example of a map of electrical activity sensed by a capsule in relation to its linear position along the length of the tract of Figure 1 1 A. These maps may be plotted from sensed information on a display screen in the illustrated format or as otherwise may be desirable by a user.
  • the parameters shown in the maps in Figures 1 1 B-D may be determined by a capsule having sensing capabilities. As the capsule passes through the intestinal tract and its location along the length is determined, other parameters relating to the condition of the intestinal tract may be sensed periodically or continuously. The sensed conditions may be sent via telemetry to one or more pod receivers. This may occur independently from the time of the RF reference signal transmission and the acoustic signal transmission so that the telemetry signal is independent of the coordinate determining RF reference signal. The sensed information is mapped along the length of the intestine by the tracking system as described above. A linear map of sensed information is overlaid on the linear map of the intestine so that unusual parameter values, or areas to be treated may be determined.
  • Capsule 170 comprises a capsule body 171 including an electronic circuit 113 and battery 174 coupled to the electronic circuit 1 13.
  • the capsule further comprises a compressed gas source 165 and an inflatable balloon 167 externally fixed to the capsule body 171.
  • the gas source 165 is in fluid communication with a valve 166 that opens into a chamber 168 in the balloon 167.
  • the chamber 168 of the balloon 167 further is in fluid communication with a valve 169 that opens to a gas exit port 172 that is in fluid communication with the intestinal tract.
  • the valves are coupled through drivers 128a, 128b in electronic circuit 113.
  • the operation of the valves 166, 169 is controlled by the controller 122 in the electronic circuit. 113.
  • the capsule is delivered after a diagnostic capsule using an optical sensor has been passed through the intestinal tract to obtain a map of optically sensed parameters along the length of the tract.
  • the capsule 170 is ingested.
  • the tracking system identifies when the capsule 170 has reached the blocked site.
  • the tracking system sends a telemetric control signal to the RF coil 175 that instructs the controller 122 to inflate the balloon 167.
  • the controller activates valve 166 through driver 128a which opens to allow compressed gas from the gas source 165 to fill the chamber 168 of the balloon.
  • the inflation of the balloon 167 expands the intestinal wall at the site of the balloon 167 to open the blockage.
  • the controller 122 then opens the valve 169 through driver 128b to allow the gas to escape from the chamber 168 through the gas exit port 172 and into the intestinal tract.
  • the controller may release the gas upon an external telemetrically delivered command that is initiated by, for example, a physician who is observing the capsule and balloon under fluoroscopy, to determine if and when a blockage has been opened.
  • the balloon may be preprogrammed to expand for a predetermined amount of time.
  • the expandable member may be used for a variety of diagnostic or treatment purposes, for example, pressure sensing, opening partial blockages, measuring the openings of partially blocked or constricted areas, providing hemostasis, delivering therapeutic substances that are coated on the balloon 167, or affixing a capsule in an identified location to mark the location in the intestine.
  • An expandable support member such as a stent may be provided on the balloon for placement within a stricture upon expansion of the balloon.
  • the capsule may be provided with a self- expanding support structure such as a self-expanding stent.
  • Figure 10 illustrates a third embodiment of a treatment capsule of the present invention.
  • Capsule 180 comprises a capsule body 181 including an electronic circuit 1 13 and battery 184 coupled to the electronic circuit 113.
  • the capsule further comprises a pump 187 filled with a dye such as, e.g., fluorescein or methylene blue to provide a surgeon with identification of a site for surgery.
  • a dye such as, e.g., fluorescein or methylene blue to provide a surgeon with identification of a site for surgery.
  • a marker may include, for example a radiopaque marker that may be located with an active x-ray system during a procedure, a radioactive material that may be interrogated by a passive system, a fluorescing compound that is used to identify the location, or a dye that stains through the wall of the intestine.
  • the compounds may assist a surgeon in a laparoscopic or open procedure where such imaging systems are used during the procedure or where visualization, e.g., of a dye or stain is possible.
  • the pump is coupled to a valve 189 by a conduit 188.
  • the pump 187 and the valve 189 are controlled by the controller 122 in the electronic circuitry 1 13 through drivers 128c and 128d.
  • the capsule 180 is delivered after a diagnostic capsule having a diagnostic sensor has been passed through the intestinal tract to obtain a map of sensed parameters along the length of the tract. After a site along the length of the tract has been identified for surgical intervention, the capsule 180 is ingested.
  • the tracking system identifies when the capsule 180 has reached the identified site.
  • the tracking system sends a telemetric control signal to the RF coil 1 S5 that instructs the controller 122 to activate the pump 187.
  • the controller activates the pump 187 through driver 128c.
  • the controller also activates valve 189 through driver 128d which opens to allow dye from the pump 187 to exit the pump through conduit 188 and valve 189 and be sprayed onto the adjacent intestinal wall. The dye thus marks a location for surgical intervention.
  • the capsule 180 may also be used to release a gas into the intestinal tract at a given location where e.g. a blockage or other anatomical feature is believed to exist. Using fluoroscopy, the anatomy may be observed. Similarly, using a capsule such as capsule 180, a fluid such as a radiopaque fluid may be released near a contriction or other area to be imaged where pump 187 pumps the fluid into the intestinal tract through a conduit 188 and valve 189.
  • a fluid such as a radiopaque fluid may be released near a contriction or other area to be imaged where pump 187 pumps the fluid into the intestinal tract through a conduit 188 and valve 189.
  • FIG. 12- 14 illustrate a fourth embodiment of a treatment capsule of the present invention.
  • Capsule 210 comprises a capsule body 21 1 including an electrocautery ablation circuit 213, an electronic circuit 1 13, and a battery 214 coupled to the electronic circuit 1 13.
  • the capsule 210 also comprises an elongate member 225 with a larger area return electrode 227 located thereon.
  • the elongate member 225 and electrodes 226, 227 are constructed in a manner similar to elongate member 15 and electrodes 16a, 16b, and 16c described with respect to Figures 15- 16 herein.
  • a small area ablation electrode 226 is located on the capsule body 21 1 , preferably in the form of a ring.
  • a thermocouple sensor 127d is located on the capsule body 21 1 immediately adjacent to the ablation electrode 226 so that the sensor can sense the temperature of tissue that is being treated by the ablation elelctrode
  • An RF coil 215 and acoustic transducers 2 16a-c operate in a similar manner as RF coil 135 and transducers 136 a-c described herein. In this embodiment, the RF coil 215 operates at a frequency of about 1 MHz.
  • the ablation electronics include, an ablation coil 22 1 , electrodes 226, 227, and an ablation circuit 213 including a capacitor 222.
  • the ablation coil 221 that is tuned to a frequency of about 250kHz, thus the co'ils 215 and 221 receive di fferent frequencies, enabling them to distinguish between a telemetry signal and an ablation power signal.
  • An external variable power generator 230 ( Figure 14) supplies an RF signal at 250kHz through power transmitter coil 23 1 .
  • the ablation signal received by the ablation coil 221 and parallel capacitor 222 (which together form a tuned circuit to separate the ablation signal from the telemetry signal) is then delivered to electrodes 226, 227. .
  • the ablation electrode 226 has a considerably smaller area than the return electrode 227 so that the current density is greater at the ablation electrode 226 where the ablation current is to be focused on the adjacent tissue.
  • the thermocouple sensor 127d provides an electrical signal representative of the temperature of the adjacent tissue, through the A/D converter 126d of the capsule circuit 1 13. The signal is converted to a digital signal that is provided to the controller 122 of the circuit 1 13. The signal is telemetrically delivered to the controller 142 of the recorder 105 in a manner as described herein.
  • the power is controlled by the controller 142 of the recorder 105 which is coupled to the power generator 230 by way of connector 233.
  • the controller 142 in the recorder electronics 140 will regulate the power output to the ablation electronics based on feedback information as sensed by the thermocouple 127d on the capsule body 21 1 and delivered via telemetry from the capsule RF coil 215.
  • the regulation of the power is significant in this embodiment as the RF ablation signal strength may vary with distance from the capsule, the type of the tissue being treated, the impedance of the tissue being treated.
  • the temperature feedback loop is intended to prevent over or under heating of the tissue.
  • the treatment is initiated by a user by activating a switch 234 coupled to the power generator 230.
  • the tracking system is used in a manner as described above.
  • a location to be treated along the length of the intestinal tract is first identified by a first capsule passing through the tract.
  • the capsule will have an optical, chemical or other means for determining a location where bleeding is occuring.
  • This location is identified in a subsequent pass of the ablation capsule 210 ' and the user turns the ablation power on when the appropriate location is identified to ablate or cauterize the tissue that is bleeding.
  • a site where bleeding is present may be treated using a subsequently passed capsule having a balloon tamponade, i.e. an inflatable member that uses compression and/or a thrombogenic substance coated on the inflatable member to help cause hemostasis.
  • FIG. 10 A capsule embodiment having an inflatable member is described herein with reference to Figures 21 and 22.
  • Figures 15-16 illustrate a fifth embodiment of the capsule of the present invention.
  • the capsule 10 comprises a treatment and sensing device that may be used with the tracking system.
  • the capsule 10 is used to sense electrical parameters of the intestinal wall and/or to treat the intestinal tract by electrically stimulating the intestinal wall.
  • the capsule 10 comprises a liquid impermeable and airtight capsule body 1 1.
  • the capsule body 1 1 contains electronic circuitry 1 13, battery 1 14, RF coil 135 and acoustic transducers 136a-c as described above with reference to Figs. 3 A and 3B.
  • the capsule body 1 1 protects the enclosed circuitry from body fluids while passing through the intestinal tract.
  • the capsule body 11 is formed of a material that is compatible for use in the human body, for example, a medical grade plastic or polymer.
  • Electrodes 16a, 16b and 16c are located on the elongate member 15.
  • Two second, larger area electrodes 17a and 17b extend around the width of the capsule body 1 1.
  • Electrodes 16a-c may be selected in a number of combinations to form electrode pairs to deliver stimulation to the intestinal wall (or alternatively to sense electrical activity of the intestinal wall). Additionally, one or more of electrodes 17a and/or 17b may be utilized to work with one or more of electrodes 16a- 16c where current density will be concentrated at the smaller electrode(s) 16a, 16b, and/or 16c.
  • the capsule electronics may include logic to select which electrodes should deliver stimulation pulses for optimal stimulation.
  • the electronics may similarly control which electrodes may be used to sense electrical activity of the intestinal wall.
  • an external processing unit may determine optimal electrode selection that is communicated to the capsule by a telemetry command signal.
  • the capsule 1 1 may be used for stimulation and subsequent measurement of electrical parameters. This function may be used for diagnostic purposes, for example, to determine if the intestinal wall is properly conducting electrical pulses or if the wall at a particular location is an electrically hypo-active or "dead" area.
  • the capsule electrodes are electrically configured so that a plurality of adjacent electrode pairs can be used where a first pair stimulates the intestinal wall at a first location and the second pair then detects signals at a second location that are propagated from the original stimulation signal.
  • electrodes 17a and 17b are used to deliver a stimulation signal and an electrode pair formed from at least two of electrodes 16a-c are used to sense resulting signals propagated in an orad direction.
  • signal propagation in the aborad direction i.e., from the back of the capsule to the front assuming the front of the capsule is oriented in a direction away from the mouth is determined using an electrode pair formed from at least two of electrodes 16a-c are used to deliver a stimulation signal and electrodes 17a and 17b sense resulting propagated signals.
  • a dissolvable encasing 12 surrounds the elongate member 15, the electrodes 16a-c, and at least a portion of the capsule body 1 1.
  • the elongate member 15 is in a coiled or compressed position.
  • the encasing 12 is formed of a suitable dissolvable material such as, for example, a soluble gelatin or enteric coating that is dissolvable in the body fluids contained in the intestinal tract. Such materials may be selectively dissolved based on the pH condition so that the encasing 12 dissolves after the capsule 10 has passed through the highly acidic stomach and into the more neutral small intestine.
  • a suitable dissolvable material such as, for example, a soluble gelatin or enteric coating that is dissolvable in the body fluids contained in the intestinal tract.
  • Such materials may be selectively dissolved based on the pH condition so that the encasing 12 dissolves after the capsule 10 has passed through the highly acidic stomach and into the more neutral small intestine.
  • the elongate member 15 is preferably formed of a material that has elastic properties such as a Ni-Ti alloy, which permits it to be compressed into the initial configuration and to release into its elongate state when the encasing 12 has dissolved. As shown in Fig. 16, the elongate member 15 extends into its elongate form when the encasing 12 has dissolved.
  • the capsule body 1 1 is provided with a front portion 1 l a and a back portion I l b of reduced diameter.
  • the encasing 12 is bonded to the back portion 1 lb by suitable means such as an adhesive.
  • the diameter of the back portion 1 l b is reduced by a sufficient amount so that the thickness of the encasing 12 forms a substantially smooth outer capsule surface in conjunction with the outer surface of the front portion 1 la of the capsule body 1 1.
  • the overall conformation of the ingestible capsule 1 1 is cylindrical in shape having a generally hemispherical end surface 23 on the front portion
  • Dissolvable encasing 12 also has a generally hemispherical end surface 12a.
  • the elongate flexible member 15 have an extremity which has a curved configuration so as to ensure that the stimulation electrodes 16a-c are maintained in close proximity to the wall of the intestinal tract as the capsule 10 moves through the intestinal tract as hereinafter described.
  • the electrode 17 is formed of a conducting layer of a suitable metal such as gold deposited on the surface of the capsule body 1 1.
  • the additional electrodes 16b and 16c may be carried by additional elongate members constructed and secured to the capsule body 1 1 in a similar manner as elongate member 15.
  • the electronic circuitry 1 13 shown in Figure 4 is capable of producing various types of programmable waveforms.
  • Figures 17A and 17B illustrate examples of stimulation waveforms that may be used in stimulating the smooth muscle layer of the intestinal tract.
  • Figure 17 illustrates a waveform design for stimulating the intestinal tract.
  • the waveform 300 has a pulse amplitude of between 1 and 30 niA, a pulse width of between 0.5 and 300 ms, and a frequency of about between 8 to 12 cycles per minute (this corresponds to a repetition period of between 5 to 7.5 seconds).
  • Figure 17B illustrates an alternative vvavefo ⁇ n design for stimulating the intestinal tract.
  • the waveform 400 utilizes bursts of pulses rather than a single pulse.
  • the burst repetition rate is selected, preferably, to be between about 8 to 12 cycles per minute (this corresponds to a burst repetition period of between 5 to 7.5 seconds).
  • the duration of a pulse in this example is between about 300 ⁇ s and 20 ms, and has an amplitude of about 1 -30 mA.
  • the frequency of the burst pulses during a burst period are about 50 to 100 Hz corresponding to a pulse repetition period of 10 to 20 ms.
  • the burst duration can vary from about 0.6 ms to 1 second.
  • electrical stimulation programs and strategies which can be utilized for providing electrical stimulation parameters through the circuitry 1 13, the principal focus being providing electrically stimulating parameters for the intestinal tract, preferably the small intestine.
  • FIG 18 illustrates a sixth embodiment of a capsule of the present invention.
  • Stimulation capsule 50 is generally constructed in a similar manner as capsule 1 10.
  • Capsule 50 comprises first bipolar electrode 56 and a second, electrically opposite bipolar electrode 57 on a capsule body 51 in longitudinally spaced apart positions.
  • the electrodes 56, 57 are connected by conductors to the electronics 1 13 within the capsule body 51.
  • various electrical stimulation parameters including those described herein, may be used.
  • a seventh embodiment of the capsule is shown in Figures 19 and 20.
  • Capsule 60 comprises a stimulation electrode deployment mechanism consisting of a loop 76 formed of an elastic material wrapped about the capsule body 61.
  • Bipolar stimulating electrodes 66 and 67 are carried by the loop 76 and are connected to the electronic circuitry 1 13 in the capsule body 61 by conductors (not shown) extending through the hollow tubular member forming the loop 76.
  • a dissolvable encasing 62 is provided over the capsule body 61. This encasing 62 can be formed of the same material as the encasing 12 in the embodiment shown in Figure 15.
  • the loop 76 When encasing 62 is dissolved, the loop 76 will expand to the ovoid looped configuration shown in Figure 20, bringing the stimulation electrodes 66 and 67 into contact with the wall of the intestinal tract as the capsule 60 travels through the intestinal tract.
  • the loop 76 allows the electrodes 66, 67 to be positioned behind (orad to) the capsule 60 regardless of its orientation in the intestinal tract.
  • the loop 76 will be in contact with the wall of the tract.
  • the friction forces of the loop 76 dragging along the wall will cause the loop 76 to shift such that the electrodes 66, 67 are generally behind (orad to) the capsule.
  • a contraction stimulated by the electrodes 66, 67 will tend to result in forward (aborad) movement of the capsule as the stimulated contraction propagates along the intestinal tract.
  • FIGS. 21 and 22 illustrate an eighth embodiment of a capsule of the present invention.
  • Capsule 80 includes an expandable member.
  • Electronic circuitry 1 13 is located in the capsule body 81.
  • a pressure transducer 127a also located in the capsule body 81 is coupled to circuitry 1 13.
  • the pressure transducer 127a comprises a commercially available silicone or other suitable plastic bridge pressure transducer that measures hydrostatic pressure to determine changes in pressures as described below.
  • An elongate member 85 is affixed to an end of the capsule body 81.
  • Bipolar stimulation electrodes 86, 87 are located in a spaced apart relationship, rearwardly on the elongate member 85.
  • Conductors 95 extend through the flexible elongate member 85 connecting the electrodes 86, 87 to the electronics 1 13.
  • Opposing ends 92a, 92b of an inflatable balloon 92 are mounted forwardly of the electrodes 86, 87 on the flexible elongate tubular member 85 by a suitable adhesive (not shown).
  • a balloon inflation/deflation lumen 94 is provided in the flexible elongate member 85 and extends from the capsule body 81 to an inflation port 93 that opens into the interior of the balloon 92 as shown in Figure 22.
  • the balloon inflation/deflation lumen 94 is coupled to the pressure transducer 127a so that compression pressures sensed by the balloon 92 will be supplied to the pressure transducer 127a as the pressure of the gas in the balloon 92 and the lumen 94 changes.
  • the capsule 80 includes a dissolvable encasing (not shown) of the same type as the encasing 12 shown in Figure 15. Similar to the encasing shown in Fig. 15. such an encasing would enclose the flexible elongate member 85 including the inflatable balloon 92 and electrodes 86, 87 and would dissolve, e.g. in the small intestine releasing the elongate member 85 as illustrated in Figs. 21 and 22.
  • a balloon inflator is provided within the capsule 80 comprising a small canister 97 of compressed C0 2 or other suitable gas.
  • the canister 97 is coupled to the lumen 94 through a valve connection 98.
  • valve 98 The operation of the valve 98 is controlled by the electronics 113 through a driver 128a, b, c, or d.
  • the electronics 1 13 When the flexible elongate member 85 is deployed upon dissolving of the encasing, the electronics 1 13 cause the valve 98 to open and inflate the balloon 92.
  • the balloon 92 can be pre-inflated with a gas or fluid before enclosure within the encasing.
  • the inflation canister 97 and valve 98 may be eliminated.
  • the balloon 92 is formed of a gas impermeable material so that it will remain inflated over substantial periods of time.
  • the balloon may be formed, for example, of polyurethane, PET, nylon or polyethylene.
  • the capsules shown in the various embodiments in Figures 12 and 18-22 are used in conjunction with the circuitry shown in Figure 4 or Figure 13 in small intestine electrical stimulation.
  • a small intestine suited for treatment using the capsule may be diseased and incapable of adequate contractile activity.
  • the nerves of the small intestine may be compromised due to gastric or diabetic neuropathy. Because of such a disorder, the patient may have a motility disorder that would be advantageously treated using small intestine electrical stimulation.
  • the stimulator capsule may also be used to measure other electrical characteristics such as EMG or impedance as described herein with respect to the electronic circuitry 1 13 show in Figure 4.
  • a patient wishing to treat a motility disorder ingests a capsule of the present invention near the beginning, midway, or following the ingestion of food.
  • a capsule when ingested will travel through the esophagus into the stomach.
  • the encasing is readily dissolved by the fluids within the stomach or duodenum, permitting the flexible elongate member carrying the stimulation electrode to be deployed.
  • the capsule is preferably used with the tracking system described herein where treatment is triggered by an external (telemetry) signal from the tracking device.
  • a first capsule may be delivered and an electrical parameter of the intestine may be mapped with respect to the length of the intestine.
  • a second capsule may be delivered and used to provide electrical stimulation at an identified location along the length of the tract.
  • An external signal to the capsule signals when to begin and end stimulation.
  • the electrical stimulation capsule may also be used independent of the tracking system.
  • the capsule can be programmed to begin emitting electrical stimuli to one or more stimulation electrodes 16a-c, and/or 17, within a predetermined time after ingestion, for example, within one to one and one-half hours after ingestion into the stomach, at which time it is most probable that the capsule would have passed into the duodenum along with food material passing from the stomach.
  • a single capsule may stimulate and measure the electrical parameters. The capsule may sense electrical parameters and when a clinically undesirable electrical parameter is detected, the capsule may provide an appropriate electrical stimulation in response.
  • the capsule may be constructed to sense when it is in the duodenum, for example with a pH sensor or a pressure sensor.
  • the electronics 1 13 can be triggered to commence at the time the encasing is dissolved and the stimulation electrode is exposed to body fluids.
  • electrical stimuli can be triggered by the electronics 1 13 to commence within a predetermined time after the encasing dissolves. In such case, the capsule is enclosed in a gel material that dissolves after it leaves the stomach when it reaches the small intestine.
  • electronic circuitry 1 13 When triggered, electronic circuitry 1 13 initiates electrical stimuli to the small intestine of the patient, at periodic intervals, such as, for example using one or more waveforms like those shown in Figures 17A and 17B.
  • Alternative electronic circuitry 313 illustrated in Figure 23 may be used with any of the stimulation capsules illustrated herein.
  • the electronic circuitry 313 is used in a simplified stimulation system.
  • the capsule receives basic instructions.
  • the instructions may be a trigger signal to trigger a stimulation pulse or burst of pulses with predetermined stimulation parameters, such as amplitude and pulse width, to be emitted by the capsule.
  • the instructions may also include information regarding the stimulation parameters for the pulses to be emitted.
  • the instructions to trigger and/or specify a stimulation pulse or burst of pulses to be delivered to the intestinal wall are telemetrically delivered to the electronic circuitry 313.
  • the electronic circuit 313 is simplified and includes a microprocessor 312, ROM 315, RAM 316, a clock 31 1, a telemetry coil 335, a battery 314 a dc-dc converter for stimulation 330, a telemetry detection circuit 3 17, and a pacing driver 318.
  • the microprocessor 312 is coupled to the ROM 315, which contains program instructions for the microprocessor 312 and any other permanently stored information that allows the microprocessor 312 to operate. ROM 315 may also contain default and standard stimulation parameters.
  • the microprocessor 312 addresses memory in a location in the ROM 3 15 through address bus 315a and the ROM 315 provides the stored program inst ⁇ ictions to the microprocessor 312 via data bus 315b.
  • the microprocessor is coupled to the RAM 3 16 via an address bus 3 16a for addressing a location in the RAM 316 and a bi-directional data bus 316b for delivering information to and from the RAM 316.
  • the RAM 316 may be used by the microprocessor 3 12 to store custom stimulation parameters sent via telemetry prior to a series of stimulation pulses or bursts of pulses, or, just before each stimulation pulse or burst of pulses.
  • RAM 316 may also temporarily store an identification code to specify the already stored default, standard or custom stimulation parameters to be used for stimulating the intestinal wall.
  • the trigger signals for each stimulating pulse or burst of pulses and the stimulation parameter instructions are supplied through the telemetry coil 335 to the microprocessor 312 and are then delivered through the pacing driver 18 in real time to the intestinal wall (through electrodes as described herein).
  • the capsule itself does not direct the stimulation or the intestinal wall but receives directions from an external source and delivers stimulation accordingly and in real time to the intestinal wall.
  • the embodiment of Figure 23 could be further simplified by replacing the microprocessor 312, ROM 3 15, RAM 316, and clock 311 with logic gates or a state machine.
  • some or all of the stimulation parameters may be preset and stored in the hardware in the capsule. For example, stimulation amplitudes could be stored as 5 different states in a simple state machine.
  • the telemetry instruction signal could then consist of a simple pulse train that would represent the trigger signal as well as encode one of the five stimulation amplitudes while using an otherwise fixed stimulation pattern.
  • Fig 19, 20 86, 87 (Fig. 21); and 1 16, 1 17 (Fig 3 A) may be used to create peristaltic contractions in the wall to cause movement of food material along with the capsule in the intestine.
  • inhibition of peristaltic contractions by electrical stimulation may be effected by delivering electrical pulses designed to inhibit or interfere with the inherent electrical potentials, resulting in failure of normal peristaltic contractile activity.
  • synchronized stimulating pulses to the wall of the small intestine by the use of multiple pairs ot stimulating electrodes such as, for example, a plurality of pairs similar to electrodes 16a-c carried on the flexible elongate tubular member secured to the capsule as shown in Figure
  • the rapidity of movement of food material through the small intestine can be controlled by the stimulating parameters such as frequency or amplitude of the signals utilized for supplying elect ⁇ cal stimuli or pulses to the intestinal tract
  • the capsule may provide certain stimulation patterns in the small intestine until it reaches the colon (This may be determined by sensed elect ⁇ cal or other parameters, or by a predetermined time interval)
  • the elect ⁇ cal stimuli can be terminated or alternatively they can continue to be generated at the same or different parameters as the capsule passes through the colon until it exits from the body through the rectum in a bowel movement
  • the patient can have additional capsules on hand and ingest a capsule with each meal
  • the electrode configuration preferably comprises two separate electrical elements forming electrically opposite bipolar electrodes
  • a monopolar or unipolar construction with a remote return is also contemplated by the invention
  • Spacing of the bipolar electrode elements from one another will preferably be about 5 mm
  • Electrodes formed on an elongate member will preferably be constructed from a metal wire or strip wound in a helical manner around the elongate tail portion
  • the electrode metal will preferably be corrosion resistant and biocompatible such as Gold,
  • a helical winding pattern is preferred to provide an electrode that is more flexible than a solid cylinder, and thereby allow the elongate tail to be more easily wound or compressed for containment in the dissolvable portion of the capsule
  • An alternative construction is contemplated where the electrode is embedded in an insulating polymer with an insulated lead extending w ithin or along the elongate member into the capsule body
  • a dev ice may be provided where electrodes may be selected to maximize these parameters. For example a plurality of electrode pairs may be prov ided from w hich the optimal pair of electrodes may be selected Also individual electrodes may be configured to form a pair of bipolar electrodes upon selection
  • the electrical pulses or pulse train supplied to the stimulation electrodes can be at suitable stimulation intervals as for example, in the case of pacing type electrical stimulation, every few seconds up to ten seconds in the small intestine or several hours m the colon
  • the pressures which are created by peristalsis of the intestinal contractions it is often desirable to measure the pressures which are created by peristalsis of the intestinal contractions. Referring to Figures 21 and 22, this can be readily measured by sensing the compressive forces exerted on the balloon 92 with transducer 91 By sensing such pressures and supplying the information by telemetry to the external recorder 105, it is possible to ascertain the efficacy of the stimulation being applied to the particular portion of the intestinal tract and if necessary to adjust the elect ⁇ cal stimulation parameters to create the desired contractile forces being sensed by the balloon and the pressure transducer For example, if the sensed pressure indicates suboptimal contractile response, the stimulation parameters may be adjusted, e g , telemetrically If the existence of contractions is detected, the stimulation electrodes may be turned off This may also serve to conserve battery power
  • ⁇ capsule of the present invention is in small intestine electrical stimulation.
  • Electronic circuitry is disposed within the capsule and creates electrical stimuli for causing peristaltic motion of the small intestine tor causing pacing of peristaltic motion in the small intestine
  • Other effects on the electrical, chemical, and/or neural systems of the intestinal tract may be achieved with electrical stimulation
  • One example includes an electrical stimulus that is used to interfere with the natural pacesetter potential and thus prevent organized intestinal tract contractile activity from occurring
  • the present invention provides an improved method and device for tracking an autonomous capsule as well as a method and device for tracking and diagnosing the gastiointestmal tract, preferably using a tracking device
  • the direction of the ultrasound signal used for locating the capsule is reversed
  • the capsule receives the ultrasound signals generated by the pods and retransmits the signals on the RF earner back to the pods or external monitor
  • the capsule position may be located by measuring the time delay from transmission of the ultrasound s ⁇ gnal(s) by the pod(s) to their reception by the capsule Rather than activating all pods simultaneously, each pod may be sequentially activated to transmit ultrasound Accordingly, the pod to capsule path is identified by the time of transmission from a particular pod When a single pod is activated in this way for transmission, all the remaining pods may also be switched to receive the ultrasound signal from the transmitting pod. This allows the pod-to-pod delay times to be measured, so that the relative position of the pods can be dete ⁇ nined on an ongoing basis
  • each pod may generate a unique ultrasound frequency allowing the signals to be separated by filtering
  • a continuous wave signal with amplitude modulation may be used rather than a narrower pulse
  • time delays may be measured by measuring the phase of the received signals relative to the transmitted signal.
  • Alternative reference signals may be used to establish when the acoustic signal is transmitted.
  • an infra-red link or a distributed resistive link may be used.
  • Infra-red links may be constructed using light emitting diodes with an infra-red wavelength chosen to minimized the effects of tissue/light attenuation.
  • the light transmitters and sensors may be on the capsule and/or at the external location for one or two way signal transmission.
  • the light may be modulated with a high frequency carrier in a similar manner to an RF link.
  • the modulated light signal can then be detected after it has passed through the tissue using a light sensor or sensors.
  • a distributed resistive link may be used to directly couple an electrical carrier signal through the body to an external sensor or sensors, or alternatively or additionally from an external transmitter to electrode sensors coupled to the capsule.
  • a small high frequency carrier typically 100kHz or above, is preferably chosen for the carrier frequency to prevent any muscle stimulation by the carrier.
  • the sensor on the capsule or at the external location would then detect the high frequency carrier signal, which would be attenuated by the distributed resistive divider formed by the conductive body tissue.
  • the external source or sensor would be coupled into the body via two skin electrodes, spaced at some distance apart. Electrodes on the capsule would be used to receive (or transmit) such carrier signal.
  • the high frequency carrier would preferably be modulated in the same way as an RF link, using amplitude, frequency or other modulation schemes as are well known in the art.
  • the various signals e.g., going to or from the capsule, would be placed on different carrier frequencies to allow for easy separation via filtering, of the outgoing and incoming signals.
  • the ultrasound transmitters and receivers may be configured to establish such transmission times and thus the location of the capsule
  • the possible location of the capsule may be defined by a paraboloid plane between the two receivers
  • additional such paraboloid planes representing possible locations may be determined The intersection of the planes provides information from w hich the actual location of the capsule may be derived
  • the actual location of the capsule may be determined
  • the differential distance is determined by multiplying the differential time between the reception of the ultrasound signal at one pod and the reception at the other pod times the speed of sound in tissue
  • the possible location of the capsule based on the derived differential distance is represented by a paraboloid plane between the two pods
  • the detected differential time between receiver one and three and the differential time between receivers two and three provide additional paraboloid planes of possible capsule locations
  • Two paraboloid planes intersect in a paraboloid or ellipsoid line, intersection with a third paraboloid plane defines one or more points of possible capsule locations
  • Strategic positioning of the acoustic reference receivers, use of additional receivers and/or exclusion of invalid mathematical solutions may enable a single solution to be obtained for capsule location

Abstract

A capsule tracking system (160) is provided for tracking a capsule's (110) location along the length of an intestinal tract as various treatment and/or sensing modalities are employed. In one variation, an acoustic signal is used to determine the location of the capsule (110). The method of use is also set forth.

Description

CAPSULE AND METHOD FOR TREATING OR DIAGNOSING THE
INTESTINAL TRACT
Field of the Invention:
This invention relates to a device and method for mapping, diagnosing and treating the intestinal tract using a capsule passing through the intestinal tract. Further, this invention relates to a capsule tracking system for tracking a capsule's location, including for tracking a corresponding diagnosis or treatment, along the length of an intestinal tract. The invention also relates to various treatment and diagnosis methods and devices that may be used with such a capsule and in such a tracking system. One of such devices and methods concerns influencing and/or measuring the electrical behavior of the intestinal tract.
Background of the Invention:
Different areas of the intestinal tract have varying degrees of surgical accessibility. For example, there has been great difficulty in diagnosing and treating disorders in the human small intestine because of the length of the small intestine (typically about 21 feet or 7 meters), and its inaccessibility.
Also certain regions of the colon have proven difficult to access for treatment. Accordingly, it would be desirable to provide a less or minimally invasive device for diagnosing or treating difficult to access portions of the intestinal tract, such as, the small intestine and colon. Swallowable telemetry capsules have been used in a number of treatment and diagnostic applications. Some swallowable capsules have been proposed to deliver medication to specific areas of the intestinal tract where the release of the medication is actuated by an external RF signal received by the capsule. The signal actuates an electromechanical device within the capsule to release the medication. Similarly, some capsules have been proposed to acquire samples from the intestinal tract where actuation of an electromechanical sampling device is remotely controlled and the capsule is then retrieved when excreted. Other capsules have been proposed, for example, to take pictures or video images, or measure pH, pressure or temperature. An autonomous capsule with electrodes has been proposed to provide electrical stimulation while moving through the Gl tract to restore motor evacutory function of the Gl tract. Such a device has been proposed to propel a capsule through the gut.
Telemetry treatment and/or diagnostic capsules with mapping capabilities have been proposed to identify a target treatment site on a three- dimensional map of the intestinal tract. Generally, the proposed systems include capsules that transmit RF signals to externally located antennas. The relative amplitudes of the RF signals received by the antennas are used to determine relative location of the capsule based on the correlation between the capsule to antenna distance and RF amplitude (signal strength). According to these proposed systems, using four or more antennas and triangulation techniques, the location of the capsule in two or three- dimensional space is determined based on RF amplitude. From the location information, a map of the capsule's path in space may be created. In subsequent passes of the capsule through the intestinal tract, the capsule is used for treatment or diagnosis purposes at a target location. In addition, it has been proposed to use video images in combination with such RF determined spatial information to identify a target location in first and subsequent capsule passes.
A capsule with a mechanical cogwheel has been proposed to calculate the small bowel length and small bowel transit velocity. The device relies on the turning of the cogwheel by contact with the intestinal wall during small bowel transit to calculate centimeters of travel.
Many disadvantages are inherent in the current capsule tracking techniques. Tracking systems using RF amplitude data from signals transmitted through body tissue have a high degree of error and inadequate resolution for accurate intestinal tract mapping. (With 1cm intestinal diameters and substantial overlap of intestines, an accurate resolution is necessary.) The resolution problems are due to a number of possible inaccuracies, which are compounded because RF signal strength over distance varies in a nbn-Iinear fashion. RF signal is directional, and thus its strength varies with the direction of the signal or the orientation of the coil transmitter with respect to the fixed coil receiver. Thus, without any change in location, a change in orientation may cause a dramatic change in RF amplitude at the antenna. Further, RF transmission is absorbed by tissue, particularly at higher frequencies. Thus the larger coils that would be required to transmit lower frequency RF signals, constrain the ability to miniaturize an optimal device. In addition to RF resolution issues, due to movement and shifting of the intestinal organs within the abdomen, 3D mapping may not repeatably identify a precise location within the intestines when a subsequent capsule is passed through the tract. The intestinal organs tend to shift with the filling or emptying of the various portions of the digestive system, and they tend to move with peristalsis. A patient's abdomen also moves with respiration and change in patient position. Thus, given the intestinal shifting along with the intestine's small diameter and overlap, the 3D tracking system may identify the wrong portion of the intestinal tract when a later capsule passes through. Therefore, it would be desirable to provide a tracking system that accurately and repeatably identifies a desired location in the intestinal tract so that a location identified by a first capsule is substantially the same as a location identified by a subsequently passed capsule. It would also be desirable to provide a capsule and tracking system that does not rely on RF transmission amplitude data for accurate tracking. As noted above, telemetry capsules have been used in therapeutic and diagnostic applications. Such therapeutic and diagnostic devices have typically involved providing medication to a location in the intestinal tract alone or in combination with sampling the fluids of the intestinal tract. The pH, temperature and pressure have also been measured. It would be desirable to provide capsules with new diagnostic and treatment modalities, particularly in a manner that would combine the treatment with tracking and diagnostic capabilities, to treat difficult to access regions of the intestinal tract
One clinically significant condition that has been challenging to treat in the intestines is bleeding Location of bleeding in the intestinal tract is very difficult to identify and requires surgical intervention to correct if it persists Therefore, it would be desirable to provide a method and device for identifying a location of intestinal bleeding and for treating the location in a less invasive manner
Another diagnostic/therapeutic area of interest is in identifying blockages or other diseased portions of the intestine and the ability to biopsy the specific location where there is such a blockage or disease It would also be of interest to assist a surgeon in specifically marking a site for surgery prior to surgical intervention for easier identification of the site
Another clinically significant parameter is the transit time of materials through the intestines Current techniques in measuπng transit time involve ingesting a material that reacts with the contents of the colon such that the patient's breath gives off a detectable gas at such time This technique is not very precise and does not provide information on, e g , which particular portion of the tract is responsible for transit abnormalities Some patients have segmental diseases where a segment of the intestine does not have adequate moti ty Thus, velocity of travel of materials through vaπous portions of the intestine would be of interest in determining where there may be segmental disease
Motihty disorders in some situations relate to abnormalities in the periodic, coordinated contractile activity of the smooth muscles associated with the intestinal tract Various organs of the intestinal tract such as the stomach, small intestine and colon contain cells that are believed to govern the organs' periodic contractile behavior In healthy humans, in certain intestinal tract regions, these cells generate and propagate rhythmic electrical signals In general, several types of electrical potential activities have been observed in the intestinal tract Consistent slow wave or pacesetter potentials have been observed and higher frequency spike activity has been observed. The pacesetter potentials are continuously propagating, relatively low frequency, cyclic- depolarizations of the smooth muscle lining. The higher frequency spike bursts tend to correspond with smooth muscle contractile activity including segmentation and peristalsis. In general, when the spike burst activity occurs, it appears to be at a fixed time delay with respect to the slow wave potentials. It is believed that when the pacesetter potentials are combined with a chemical or neural excitation of the cells, smooth muscle contractile activity may occur and that the pacesetter potentials control and coordinate the frequency and direction of the contractions.
Accordingly, it would be of interest to provide a means for observing the electrical activity such as, for example, the vagal nerve activity, the electromyogram, or of the intestinal smooth muscle layers, etc., to determine whether the electrical activity is abnormal, indicating possible disease. Electrical stimulation of the gastrointestinal tract has been proposed to treat motility related disorders and other gastrointestinal diseases. The electrical stimulation has been proposed in a number of forms, such as, e.g., pacing; electrical contractile stimulation or other stimulation; e.g., to treat nausea. Electrical pacing of the intestinal tract is generally defined as periodic electrical stimulation that captures and/or controls the frequency of the pacesetter potential or slow wave activity of the intestinal organ (including in a retrograde direction). Electrical contractile stimulation generally refers to stimulation that directly causes or results in muscular contraction associated with the intestinal tract. In some disease states, dysrhythmias of the intestinal tract pacesetter potentials may be present. Electrical pacing of pacesetter potentials has been proposed to induce regular rhythms for the pacesetter potentials with the intent of inducing regular or controlled intestinal tract contractions. Pacing has also been suggested to cause retrograde propagation of pacesetter potentials. Also, electrical contractile stimulation of the intestinal tract has been proposed to induce peristalsis. Many currently proposed intestinal tract electrical stimulation procedures are relatively invasive and require accessing the intestinal tract through the abdomen, e.g., in an open or a laparoscopic procedure. The devices used typically require implanting permanent leads, electrodes and a pacemaker within the body. Therefore, it would be desirable to provide a less invasive device for electrically stimulating the intestinal tract, particularly in combination with a system for tracking the device and delivering the treatment to an identified location.
Summary of the Invention:
The present invention provides a capsule having diagnostic and/or treatment capabilities, and a system for tracking the capsule through the intestinal tract. One embodiment of a tracking system provides an improved system for determining the coordinates of a capsule in three-dimensional space. According to this embodiment, an acoustic signal is transmitted between a capsule as it is passing through the intestinal tract, and a location external a patient's body. As such an acoustic transmitter or transmitters are located either at the capsule or location external to the patient's body and the acoustic receivers) or sensor(s) are located at the other of either the capsule or location external a patient's body. The velocity of an acoustic signal through tissue is predictable (ultrasound transmits through tissue at about 1540 meters per second). Using the amount of time the signal takes to travel to the receiver(s) and the signal velocity, the relative capsule distance(s) to the location(s) external the patient's body is determined. Also, it should be noted that the transit time of the acoustic signal is linearly proportional to the distance traveled.
In one preferred embodiment, a capsule passing through the intestinal tract transmits an acoustic signal through the body to a plurality of externally located acoustic sensors. The relative capsule distances to the sensors are determined using the amount of time the signal takes to travel to the receiver. Triangulation of the comparative distances will result in a location of the capsule in space (for example, on a Cartesian coordinate system). According to a preferred embodiment, a reference signal is used to identify the time of acoustic signal origination. In one variation, reference signal may be in the form of an RF reference signal delivered from the capsule to an external sensor where the capsule emits the acoustic signal. In this variation, the RF reference signal is delivered at predetermined time from the emission of the acoustic signal. The RF signal, which travels at the speed of light, is received by the sensors relatively instantaneously. The RF signal is used by the sensor/ receiver to determine when the acoustic signal was transmitted. Alternatively, in another variation, an external, telemetrically delivered electromagnetic control signal may be used to trigger the emission of the acoustic signal from the capsule, thereby providing a time reference. Where the acoustic transmitter is at located externally of the patient, the reference signal, for example, may also be a trigger signal that triggers emission of the acoustic signal from and external transducer. In various other embodiments, the reference signal may utilize other communication media to provide a reference signal. For example, an infrared link or a distributed resistive link could be used. According to these alternative embodiments, signals may be transmitted either to or from the capsule. Another embodiment provides a tracking system that tracks a capsule's linear position along the intestinal tract length or a portion thereof. As the capsule moves through the tract, it senses diagnostic information. The tracking system correlates sensed diagnostic information with the capsule's corresponding linear position when the information is sensed. From the diagnostic information, a location along the length traveled is identified for treatment or therapeutic functions, which also include acting on the intestinal tract for a therapeutic purpose, e.g., to mark the location for surgical intervention. A location along the length may also be identified for further diagnosis, including using subsequently passed capsules. In a subsequent pass of a capsule, the capsule's linear position is monitored until it reaches the position along the length identified by a previous capsule. At that location, the subsequent capsule then provides, treatment, further diagnosis, or marking. Because the intestinal tract length is relatively constant; the tracking system provides a means for locating a portion of the intestinal tract that is relatively independent of intestinal tract shifting or movement. Thus, the system also provides repeatable tracking independent of the location of the sensors or pods on the patient. The system of this embodiment thus allows for subsequent passes of the capsule where the sensors or pods have been repositioned, for example in a later treatment cycle. In a preferred embodiment, the sensors are provided with the ability to actively locate each other in a three dimensional coordinate system. This allows the sensors to re-calibrate to determine their relative location when they have moved due to respiration, or other patient movement. Because the location of the capsule in a preferred embodiment of the tracking system depends on the relative location of the sensors, re-establishing the relative sensor location on a regular basis compensates for sensor movement during a procedure using tracking.
Preferably, the position of a capsule along a length of the intestinal tract is determined by first identifying the capsule's 3-dimensional position over time, for example, on a Cartesian coordinate system created by the pods. The tracking system includes a processor that monitors the signals from the pods and that uses incremental change in position over time to convert the 3D capsule location information to linear travel distance measurements. The linear travel distance measurements are then used to derive the capsule's position along the length of the intestinal tract portion of interest. Preferably the tracking system uses acoustic transmission time from the capsule to external sensors to determine the capsules 3D coordinates as described herein. An initial location of the capsule is preferably first identified, such as, when it reaches the pylorus. Such position may be determined by a number of means such as by determining capsule movement indicative that the capsule is moving from the stomach into the small intestine, including, for example change in location, or acceleration.
Alternatively a capsule's initial location may be determined, for example by pressure, which changes when the capsule passes through the pylorus, or pH, which changes when the capsule enters the duodenum.
Another feature of the invention provides a system to compensate for variations in capsule location determinations along the length of the intestinal tract that are due to intestinal smooth muscle contractions and corresponding foreshortening of the intestinal tract. For example, pressure may be measured to determine the relative relaxation/contraction of the tract and the corresponding foreshortening. The determination of capsule location may be a factor of such pressure. Another feature of the invention provides a filter that detects and filters out capsule movement not corresponding to actual movement along the length of the tract. For example, by observing the orientation and type of movement, movement that is not statistically related to movement along the intestinal length may be filtered out.
Another feature of the invention is a capsule having a plurality of acoustic transducers to provide information concerning directional orientation of the capsule.
Although the linear tracking system may not require sensing of additional parameters to determine location, the linear tracking is used as a diagnostic tool when combined with other sensed information to provide a diagnostic linear map of the intestinal tract or a portion thereof (such as the small intestine.) Further, the tracking system is preferably combined with both diagnostic and treatment functions. In use, after a diagnostic capsule provides a diagnostic linear map of the intestinal tract, a treatment capsule is passed through intestinal tract portion. The treatment capsule that travels through the intestinal tract is monitored by the tracking system for its relative linear position until it reaches a position along the intestinal tract length to be treated. The mechanism for providing the treatment is then actuated, typically by a telemetrically delivered control signal.
A number of capsules may be used as a combined diagnostic and treatment system. For example, a first capsule obtains information on the capsule position along the intestinal length and corresponding diagnostic information (if desired, a diagnostic linear map of the tract). Another capsule may then be passed through the tract to provide treatment and/or diagnosis at a desired location along the length of the tract. Once the length of the tract has been mapped, any number of subsequent capsules may be passed through to further obtain diagnostic information or to provide treatment. Using this technique a clear map of diagnostic information vs. length of intestine may be obtained. Additional capsules may be used at a later time using the same map for additional diagnosis, treatment or follow up. Also a combination of capsules may be swallowed in a spaced apart sequence where more than one capsule is in the digestive system at one time. A diagnostic capsule may sense a number of parameters such as, for example, pH for assessing acidity levels in the intestinal tract, electrical activity, electrical impedance, optical parameters for detection of specific reflected or transmitted light spectra, e.g. blood, objects or obstructions in the intestinal tract, pressure for intestinal tract manometric data acquisition and various diagnostic purposes such as determining effectiveness of stimulation, blockages or constrictions, etc., etc. An acoustic transducer, for example, piezoelectric crystals, may be used for performing diagnostic ultrasound imaging of the intestinal tract etc. Also, a temperature transducer may be used. Also, from the positional information over time, capsule transit time, velocity, and acceleration may be calculated and used to identify locations or segments of the intestine where there are motility disorders (such as segmental diseases).
A treatment capsule with the described tracking system subsequently passing through the identified portion to be treated will be signaled to provide treatment. The treatment capsule may include but does not require any diagnostic sensors. The treatment capsules may perform one or more of a number of treatment functions. Such treatment may take several forms or combinations that may include, for example, delivering an electrically stimulating signal, treating bleeding with ablation, clotting agents or coagulants, active or passive drug delivery or gene therapy treatment at specific portions of the tract, an inflatable element for performing balloon plasty of the intestinal tract, for placing a stent (e.g. for strictures), a self expanding stent delivery system, tissue biopsy or content sampling devices, or marking devices, (e.g. staining, marking or tattooing ink, such as india ink, methylene blue or purified carbon powder; radiopaque dye; or magnetic devices) e.g., for locating a portion of the tract for surgery, etc. One embodiment of the capsule system includes a sensor for detecting the presence of blood. For example, an optical sensor or a chemical sensor may be provided that senses the presence of blood. The capsule is passed through the intestine and the location of the capsule along the length of the tract where the blood is sensed is identified. A treatment capsule having bipolar electrodes is then passed through the intestinal tract until it reaches the identified length of the tract where bleeding is occurring. An external power source is coupled to an RF coil within the capsule to deliver a current through the electrodes to ablate or cauterize the bleeding tissue. Alternatively, a site where bleeding is present may be treated using a subsequently passed capsule having a balloon tamponade, i.e. an inflatable member that uses compression and/or a thrombogenic substance coated on the inflatable member to help cause hemostasis.
Another embodiment of the capsule system comprises a diagnostic capsule that includes a sensor (such as a pressure sensor) that identifies a blockage, stricture or narrowing of the intestine. The location of the capsule along the length of the intestine is tracked. The sensed blockage is correlated to the capsules linear position along the intestinal tract. The tracking system tracks the linear position of a treatment capsule as it passes through the tract until it reaches the location of the blockage. An externally transmitted telemetric signal causes a balloon plasty capsule to deploy an expandable member that dilates the intestinal passage. In one variation, a variable size balloon may be used to determine the extent of a blockage. In this variation, for example, a balloon may be inflated at the suspected blockage area. The balloon is gradually deflated until it passes through the blocked area. The diameter of the balloon when the balloon is able to pass through the constricted site may, e.g., be used to determine extent of the blockage. The diameter of the balloon may be approximated from the
l l volume of inflation medium in the balloon. In another variation a balloon may be provided with an expandable support structure over the balloon such as a stent. The stent may be deployed within the intestinal tract when the balloon is expanded and thereby provide additional radial support of the intestinal wall.
Another embodiment of the capsule system provides a diagnostic capsule for which position and corresponding diagnostic information are tracked along the length of the intestinal tract. A location for surgical intervention is identified based on the diagnostic information and a second capsule is passed through the tract. When the second capsule reaches the linear position of the location for surgical intervention, a telemetric signal is delivered from an external device that triggers the release of a marker within the tract at the desired location. Such marker may include, for example a radiopaque marker that may be located with an x-ray system during a procedure, a fluorescing compound that is used to identify the location (e.g., fluorescein), or a dye that stains through the wall of the intestine (e.g. staining, marking or tattooing ink, such as india ink, methylene blue or purified carbon powder, radiopaque dye). The markers may assist a surgeon in a laparoscopic or open procedure where such imaging systems are used during the procedure or where visualization is possible, e.g. of a stain.
In an alternative embodiment, a capsule may be used to mark a location in the intestinal tract by affixing itself to the intestinal wall at an identified location. Such capsule may include deployable anchor mechanisms where an actuation mechanism causes the anchor to deploy. For example, an external telemetric command signal may trigger the release of such anchor. Such anchor may be provided in a number of forms including an expandable member, or other wall engaging mechanism. The capsule may also be provided with a light emission source such as a laser or an IR source, that emits light to enable location of the capsule, preferably when the capsule is affixed to the intestinal wall.
Another embodiment of the treatment capsule system is an ingestible capsule that will electrically stimulate a predetermined portion of the intestinal tract. Electrical stimulation is generally defined herein to mean any application of an electrical signal or of an electromagnetic field to tissue of the intestinal tract for a therapeutic purpose or to obtain diagnostic information. According to this embodiment, electrical signals are delivered to intestinal tract tissue by at least one electrode, preferably a bipolar electrode pair, or one or more selected electrode pairs coupled to the capsule that electrically stimulates the intestinal tract as the capsule passes through it. The electrodes deliver a signal that is designed to cause desired therapeutic effect, for example, a smooth muscle response, i.e., stimulation or inhibition of contraction or peristaltic motion. The electrodes may deliver the electrical stimulation to the smooth muscle by contacting, for example, the tissue that forms the intestinal lining or the mucosal tissue of the intestinal tract.
In one preferred treatment method, the electrical stimulation signal entrains a slow wave signal of a portion of the intestinal tract smooth muscle that is clinically absent, weak, of an undesirable frequency, sporadic or otherwise not optimal. Also, the capsule may transmit other electric stimuli. In one embodiment the electrical stimulus is designed to trigger the spike burst electrical activity of the smooth muscle associated with smooth muscle contractions. The stimulating signals may also be designed to inhibit the inherent smooth muscle pacing potentials, to reduce smooth muscle contractions. The signals may also be designed to disrupt the natural waveform and effectively alter the existing or inherent pacing.
The stimulation electrodes provide stimulation either by way of a preprogrammed generator or one that is programmed while the capsule is in the intestine, e.g., based on sensed parameters or response to stimulation. In one embodiment, the capsule acts as a slave to an external device providing master stimulation signals that are received by the capsule and delivered to the tissue.
The stimulation capsule of the present invention may include a plurality of electrodes that may be utilized for forward or backward electrical stimulation, e.g., where the order in which a series of electrode pairs are activated can cause peristalsis to move in a directional manner. A plurality of electrode or bipolar electrode pairs may be provided. Such electrodes, electrode pairs or combination of electrodes or electrode pairs may be selected for delivering stimulation pulses, (either preprogrammed or programmed while the electrodes are deployed in the intestine) to optimize various parameters, e.g. impedance, current density, optimal tissue contact, etc.
The capsule is swallowed or alternatively delivered endoscopically to a predetermined portion of the intestinal tract. The capsule is sized and has a conformity such that it can then readily pass through the intestinal tract. For example, the capsule may pass from the stomach to the small intestine to the colon and exit from the intestinal tract through a bowel movement, permitting its recovery if desired. Also, the capsule may, in general, move with the food material as it passes through the intestinal tract.
The capsule is preferably provided with RF or other signal transmission capabilities, e.g., light. The signal transmission may be used in a number of manners. As described above, the system may have RF signal transmission capabilities that enable determination of a location of the capsule by providing a reference for the time of the acoustic signal initiation. The signal transmission capabilities may also be used for telemetric communication between the capsule and an external device, e.g., to communicate data to the external device or to receive additional capsule programming information, command signals, or stimulation signals from the external device.
The capsule may be used to sense electrical parameters. For example the capsule electrodes can be used to sense native pacesetter potential (slow wave activity) as well as spike burst activity which corresponds to muscular contractions. The electrodes may also be used to determine tissue impedance. By recording the electrically sensed signals and combining that information with tracking information a comprehensive knowledge of the electrical behavior of the intestinal tract can be gained. Information such as absence of slow wave activity, slow wave frequency, presence of spike burst activity, number of spike burst events per slow wave, and spike burst frequency can assist the clinician in detection and pinpoint location of various disorders such as intestinal neuropathy, tachyarrhythmu, ileus, etc Preferably the electrical characteristics are correlated to the capsule's movement along the length of the tract to provide a diagnostic linear map ot the intestinal tract
A number ot capsules may be passed through in series so that the capsules follow each other in short spaced time intervals A first capsule pro ider diagnostic information correlated to the capsule's position along the length of the intestine A subsequent capsule may provide electrical stimulation based on the sensed conditions A number ot capsules may be passed through, each time obtaining diagnostic information or providing treatment according to the linear map
The electπcal stimulation capsule may be provided with one or more sensors for sensing various conditions in the intestinal tract Also, the information obtained by the sensors may by communicated via telemetry to a control or locating device that evaluates the sensed information and sends a control signal to the capsule in response, instructing the capsule to perform a particular function or may provide such stimulation signals to the capsule to be delivered through the electrodes on the capsule The capsule may combine the electπcal stimulation feature with other therapeutic or diagnostic capsule functions such as, for example, drug delivery, biopsy or other material sample recovery, etc Finally, the sensed parameter may be used to ascertain whether or not the stimulated portion is contracting in response to electrical stimuli received from the capsule For example, the pressure or change in pressure within the tract at a particular location may be indicative of a contractive response to electrical stimulation
As an alternative to relying on the tracking system descnbed herein, an electπcal stimulation capsule may respond to the sensed information by performing a function, such as, for example, by initiating, altering or ceasing deliv ery of stimulation signals upon sensing of electπcal activity, pressure or pH conditions that identify the location of the capsule or condition of the intestinal tract at the location In a variation, the inventive capsule includes an encasing at least a portion of which is dissolvable in fluids in the intestinal tract The encasing may selectively dissolve depending on the pH of the tract For example, the encasing may dissolve in the small intestine w here the pH is substantially neutral in comparison to the acidic stomach conditions Dissolving the encasing may release a component contained within the capsule for example, so that encased electrodes are exposed or deployed at a desired location
Another feature of the invention is a capsule having the capability ot functioning regardless of the directional orientation in the intestinal tract In a preferred embodiment, the capsule and method described above are used in stimulating the small intestine One variation of this embodiment provides tor small intestine pacing
Additional features of the invention will appear from the following description in which the preferred embodiments are set forth in detail in conjunction with the accompanying drawings
Detailed Description of the Drawings:
Figure 1 illustrates the tracking system of the present invention positioned on a user Figure 2 is a side partial cross-sectional view of a pod of the tracking system of Fig 1
Figure 3 A and 3B are partial cross-sectional views of a first embodiment of a capsule of the present invention with tracking capabilities, used with the tracking system of the present invention Figure 4 illustrates the electronic circuitry of the capsule illustrated in
Figure 1
Figure 5 illustrates a schematic of the electronics of the recorder of the tracking system of the present invention
Figure 6 illustrates the pods such as the one illustrated in Fig 2 set up in an x, \, z Cartesian coordinate system
Figure 7 illustrates the location of a capsule on the x, y, z Cartesian coordinate system ot Fig 6 Figures 8A-G illustrate a timing diagram of signal emission and reception of an exemplary tracking system of the present invention Figure 8A illustrates the emission of the RF reference signal Figure SB illustrates the emission of an ultrasound signal from the capsule
Figure 8C illustrates the timing of the reception of the RF reference signal b the Pods
Figure 8D illustrates the timing of the reception of the ultrasonic signal at the first Pod Figure 8E illustrates the timing of the reception of the ultrasonic signal at the second Pod
Figure 8F illustrates the timing of the reception of the ultrasonic signal at the third Pod
Figure 8G illustrates the timing of the reception of the ultrasonic signal at the fourth Pod
Figure 9 illustrates a partial cross-sectional view of a second embodiment of a capsule of the present invention
Figure 10 illustrates a partial cross-sectional view of a third embodiment of a capsule of the present invention Figures 1 IA illustrates an example of the length of a gastrointestinal system
Figure 1 IB illustrates an example of a map of pH as sensed in relation to the linear position of a capsule along the length of the tract of Figure 1 1 A Figure 1 IC illustrates an example of a map of pressure as sensed in relation to the linear position of a capsule along the length of the tract of Figure 1 IA
Figure 1 I D illustrates an example of a map of electrical activity as sensed in relation to the linear position of a capsule along the length of the tract of Figure 1 I A
Figure 12 illustrates a partial cross-sectional v iew of a fourth embodiment of a capsule of the present invention Figure 13 illustrates the electronic circuitry for the capsule of Figure 12, including ablation electronics.
Figure 14 illustrates the electronic circuitry for an external power source for the ablation function of the capsule of Figure 12. Figure 15 is a partial cross-sectional view of a fifth embodiment of a capsule of the present invention having a dissolvable encasing containing a deployable stimulation electrode.
Figure 16 is a side elevational view of the capsule shown in Figure 15 with the encasing dissolved and the deployable stimulation electrode deployed.
Figures 17A, 17B and 17C are graphs showing the programmable pacing parameters of the capsule shown in Figures 1 and 16.
Figure 18 is a side elevational view of a sixth embodiment of the capsule of the present invention. Figure 19 is a cut away view of a seventh embodiment of a capsule of the present invention and showing stimulation electrodes wrapped about the capsule and encapsulated in a dissolvable encasing that is partially cut away.
Figure 20 is a partial cross sectional view of the embodiment of Figure 19 with the electrodes deployed. Figure 21 is a partial cross sectional view of an eighth embodiment of a capsule of the present invention with pressure sensing capabilities. Figure 22 is an enlarged cross sectional view of a portion of the capsule shown in Figure 21.
Figure 23 illustrates alternative electronic circuitry that may be used with the stimulation capsule.
Detailed Description of the Preferred Embodiments
Referring to Figure 1 , there is illustrated a tracking system 160 of the present invention positioned on a patient. The tracking system 160 comprises an external recorder 105; four pods 101 , 102, 103 and 104 respectively, containing both acoustic and EM emitter/receivers; and a capsule 1 10 that is swallowable or otherwise positionable to move within an intestinal tract. The recorder 105 is secured to the external abdomen of the patient. The pods 101 , 102, 103 and 104 are adhered to the skin of the patient and have an acoustic transmitting/coupling material, e.g., a gel layer, interfacing between the skin of the patient and the pods 101 , 102. 103, 104. As illustrated in Figure 2, the pod 101 comprises an outer plastic casing 106 enclosing an acoustic transducer 107a and an RF coil 108a. The casing 106 has an interfacing wall 106a for interfacing with the skin of a patient. An adhesive layer 109 is formed on a portion of the interfacing wall 106a, for adhering the pod 101 to the patient's skin while a remaining portion of the interfacing wall 106a is exposed to the patient's skin. The acoustic transducer 107a is attached to the wall 106a within the casing 106 adjacent the exposed portion of the wall 106a in a manner that allows the acoustic or ultrasonic energy to transmit through the interfacing wall 106a. On the opposite side of the acoustic transducer 107a, an acoustic backing material 107m is provided that absorbs the acoustic energy transmitted in the direction towards the backing material 107m. Typically a gel or other acoustically transmitting/coupling material is placed on the outside of the exposed portion of the interfacing wall 106a. The output of the acoustic transducer 107a is coupled to wires 100a that are coupled to the recorder 105 through the wire conduit 100 extending out of the casing 106. The RF coil
108a is coupled through wires 100b also extending through wire conduit 100 to recorder 105. Pods 102, 103, and 104 are similarly constructed.
As illustrated in Figures 3 A and 3B, a first embodiment of a capsule 1 10 comprises a liquid impermeable and airtight capsule body 1 1 1. In general, the capsule of the present invention is sized so that it is capable of being ingested for passage through the intestinal tract. For adult human use, a preferred embodiment of the capsule is to be sized so that it has a length ranging from about 1.5 to 2.5 cm and having a diameter of about 8 mm or less. For children and larger and smaller animals, the capsule can be appropriately sized. The capsule body 1 1 1 contains and protects the enclosed circuitry from body fluids while passing through the intestinal tract. At least a portion of the capsule body 1 1 1 is constructed of an ultrasound transmitting material that is compatible for use in the human body such as, for example, a medical grade plastic, e.g., polyethylene. A radiopaque marker 1 1 l a is embedded in the plastic casing so that in the event it is necessary to locate the device via an external imaging source, its location may be identified. A dissolvable encasing (not shown) may surround the capsule body 1 1 1. The encasing may be formed of a suitable dissolvable material such as, for example, a soluble gelatin or enteric coating that is dissolvable in the body fluids contained in the stomach or intestinal tract. Such materials may be selectively dissolved based on the pH condition so that the encasing dissolves after the capsule 1 10 has passed through the highly acidic stomach and into the more neutral small intestine. The capsule body 1 1 1 includes a generally hemispherical back end 131 and a generally hemispherical front end 132. The back end 131 includes an inner end surface 131a. The front end 132 includes an inner end surface 132a. The overall conformation of the ingestible capsule 1 10 is cylindrical in shape forming a substantially smooth outer capsule surface.
The capsule 1 10 includes an RF coil 135 for transmitting and receiving RF signals, and an acoustic transducers 136a, 136b, and 136c located within the capsule body 1 1 1. The acoustic transducers 136a and 136b are located against the inner end surfaces 132a and 13 1a respectively with an acoustic transmitting/coupling material filling any gap between the transducers 136a and 136b and the end surfaces 132a, 13 la in a manner so that the transducers can transmit acoustic, preferably ultrasonic waves through the capsule body 1 1 1 to the surrounding tissue or material. Acoustic transducer 136c is cylindrical in shape, extending around an inner circumference of the capsule. An acoustic transmitting/coupling material similarly fills any gap between the acoustic transducer 136c and the inner wall of the capsule body 1 1 1. The acoustic transducers 136a-c are arranged in combination to transmit acoustic signals relatively omni-directionally. The transducer 136a comprises a piezoelectric crystal 137 located between electrode plates 138 that when energized cause the crystal to oscillate at an ultrasonic frequency (preferably between 100kHz and 5MHz). An acoustic backing material 139, such as, oxide particles in a flexible polymer, e.g., an epdxy matrix tungsten powder, is placed on the back of the transducer 136a to absorb any acoustic transmissions in a direction opposite to the end surface 132a. The acoustic transducers 136b and 136c are constructed in a similar manner to transducer 136a and of similar materials.
Other configurations of an acoustic transducer or transducers may be used to provide relativelv omni directional acoustic si nal transmission. The RF coil 135 and the acoustic transducers 136a, 136b and 136c are electrically coupled to the electronics 1 13 which is powered by battery 1 14. An elongate member 1 15 is affixed to the back end 13 1 of the capsule body 1 1 1. First and second bipolar electrodes 1 16, 1 17 are located on the elongate member 1 15, the second bipolar electrode 1 17 being electrically opposite of the first electrode 1 16. The elongate member 1 15 is preferably formed of an elastically behaving material such as a Ni-Ti alloy. The capsule body 1 1 1 also includes a pH sensor 133 on the capsule body 1 1 1. The pH sensor 133 is formed with dissimilar metals such as, e.g., silver chloride and antimony that sense differences in pH and convert the sensed result into a calibrated electrical signal. The pH sensor is coupled to the electronics 1 13 by electrical conductors. Referring now to Figure 4, the electronic circuitry 1 13 of the capsule
1 10 is illustrated. The electronic circuitry 1 13 is a chip that includes a number of optional connectors, and, as such, may be used in a number of different diagnostic or therapeutic capsule configurations. The electronic circuitry 1 13 of the capsule 1 10 comprises, a microprocessor or controller 122 for controlling the operations of the electronic circuitry, an internal clock 121 , and battery device 114 such as a pair of lithium iodine batteries, for powering the various components of the circuit 1 13. As such, the controller 122 and battery device 1 14 are coupled to each of the major components of the circuit as would be known to one of ordinary skill in the art.
The controller 122 is coupled to ROM 123, which contains the program instructions for the controller 122 and any other permanently stored information that allows the microprocessor/controller 122 to operate. The controller 122 addresses memory in a location in ROM 123 through address bus 1 3a and the ROM 123 provides the stored program instruction to the controller 122 via data bus 123b. The electrode plates 138 of the acoustic transducer 136a are powered through oscillator 137a controlled by the controller 122 to produce a desired acoustic wave output. Similarly, electrode plates of acoustic transducers 136b and 136c are powered through oscillators 137b and 137c, respectively. controlled by the controller 122. The controller 122 controls the RF coil 135 that acts either to deliver an RF tracking signal or as a telemetry device for communicating data to the recorder 105. The RF coil 1 5 delivers signals to or receives signals from the RF coils 108a-d (Fig. 5) in the pods 101, 102, 103, and 104. For tracking purposes, controller 122 will respectively, at fixed time intervals, order the transmission of an RF signal and an acoustic signal using the RF coil 135 and at least one of acoustic transducers 136a-
136c. The controller's commands will incoφorate a preset time interval between the RF signal transmission and acoustic signal initiation. Such time interval (which could be zero) will be factored in at the recorder 105 to determine acoustic wave transmission time. In the preferred embodiment, the capsule's acoustic transducers 136a- 136c transmit the acoustic signals immediately, or a defined time after the RF reference signal. The acoustic transducer 136a will emit a first signal a predetermined time after the RF signal, the second and third acoustic transducers 136b and 136c will emit second and third signals respectively at predetermined times after the RF signal and sufficiently spaced in time from the other signals so that the acoustic signals may be differentiated. Alternatively, the second and third acoustic signal may be referenced from second and third differentiated RF signals.
When the RF coil 135 is receiving an external telemetry signal, the buffered oscillator 1 19 is disabled. Telemetry signals received on RF coil
135 are detected in a detector circuit 1 19a and communicated to microprocessor 122. The detector circuit 1 19a is preferably selected based on the modulation used for the telemetry signals.
One or more sensors, e.g., 127a (pressure), 127b (pH), 127c (optical). 127d (temperature), and 1 16, 1 17(electrodes) may be coupled to controller 122 tlirough A/D converters (with amplifiers) 126a, 126b, 126c, 126d, 126e which convert a representative analog electrical signal into a digital signal. Suitable sensors of these types are generally known in the art and may be located within, on. or external to the capsule body 1 1 1. The electrodes 1 16, 1 17 used to deliver the stimulation are also used to sense electrical activity or impedance as described in further detail herein.
The controller 122 is coupled to RAM 120 via an address bus 120a for addressing a location in RAM 120 and a bi-directional data bus 120b for delivering information to and from RAM 120. The RAM 120 includes event memory 124 that temporarily stores data recorded by sensors 127a-127d and electrodes 1 16, 1 17. RAM 120 also includes a programmable memory 125 which may be programmed, for example, via telemetry while the capsule 110 is within the intestinal tract, to provide treatment protocols. The data stored in the event memory 124 may be sent to external coils 108a-d (Fig. 5) intermittently as data bursts via telemetry through the RF coil 135, as opposed to continuously in order to save battery power. The data stored in the programmable memory 125 may include specifications for the electrical stimulation operating modes (e.g. waveform, type of stimulation: for pacing, inducing contraction or other type) and various procedure parameters (e.g., when to deliver a drug or electrical stimulation). Such programming may be done in response to sensed information or it may be done automatically by an external controller or as desired by a treating physician, etc.
Controller 122 is coupled to a buffered oscillator 1 19 that provides an RF signal to be emitted from the RF coil 135. The RF signal is preferably at about 100kHz to about 5MHz so that the signal is efficiently transmitted through tissue. -The controller 122 controls the oscillator 1 19 and provides data for example, various sensed data such as pressure, pH, impedance, electrical activity, etc.. to be modulated with the RF signal to be delivered through RF coil 135. The controller 122 may also be coupled through stimulation driver 1 18 and coupling capacitors 1 16a, 1 1 7a to bipolar stimulating electrodes 1 16, 1 17, respectively. Electrical stimulation may be provided in a manner similar to that described herein with reference to the stimulating electrodes 16a-c, 17a-b, 56. 57, 66, 67. 86, and 87 of Figures 15-
22. The stimulation modes and parameters can be preprogrammed or set by an external device that telemetrically communicates the parameters.
The battery 1 14 has its output supplied to a DC-to-DC converter 130 to provide a higher voltage, which is utilized for electrical stimulation pulses. The DC-to-DC converter 130 is conventional and provides an output voltage of 15 to 20 volts. Further the circuit 1 13 may include one or more drivers 128a, 128b, 128c, 128d that drive various devices, for example, diagnostic or therapeutic electromechanical devices, such as controlling valves, solenoids, etc, for, e.g., drug delivery, biopsy, content sampling, or a marker release, etc. The controller 122 provides a signal to a driver 128a-
128d based on a preset program in ROM 123, on sensed parameters stored in RAM 120, and/or on a telemetrically received signal from the recorder 105 or RF coils 108a-d in the pods, 101- 104. The circuit may also include a stepping driver 129 coupled to a stepper motor for example for rotating an imaging device (e.g., diagnostic ultrasonic device) or actuating a biopsy device, etc.
Referring now to Figure 5, a schematic of the electronic circuitry 140 of the recorder 105 of the present invention is illustrated. The electronic circuitry 140 of the recorder 105 comprises: a microprocessor or controller 142 for controlling the operations of the electronic circuitry, an internal clock 141 , and power source such as a battery 147 for powering the various components of the circuit 140. The controller 142 and battery device 147 are coupled to each of the major components of the circuit in a manner known to one of ordinary skill in the art. The electronic circuitry 140 is coupled to the pods 101 , 102, 103 and
104, which respectively include RF coil sensors 10S a-d and acoustic transducers 107 a-d that send and receive signals to and from the capsule 1 10. The details of the coupling of the transducer 107a and 108a are illustrated in Fig. 5. The transducers 107b-d and coils 108b-d are coupled in a similar manner not shown. The output of the RF coil 108a is coupled through a demodulator 155 to the controller 142. The demodulator 155 demodulates the information carried by the RF signal received by the RF coil
108a. Such information may include, for example, telemetrically delivered sensed data. Also, the RF coil 108a may emit an RF reference signal. The controller 142 controls the output of the RF coil 108a, which communicates with the capsule 1 10. The controller 142 is coupled to an oscillator 156 that provides a carrier signal, preferably having a characteristic frequency in the range of 100kHz to 5MHz so that it may be efficiently transmitted through tissue to the capsule. The controller 142 provides data to be modulated with the RF signal, for example, commands to the capsule 1 10 to provide treatment, treatment parameters, etc. The controller 142 controls the output of acoustic transducer 107a through oscillator 157, which provides the oscillating frequency to the transducer when the pod is pinging another pod, i.e., when the pods are sending signals to calibrate the pods and identify their locations on the coordinate system. The controller 142 also receives the representative acoustic signal from the transducer 107a through automatic gain control device 158 which brings the voltage or current levels within a predefined range, and tlirough filter 159.
The controller 142 is further coupled to ROM 143, which contains the program instructions for the controller 142 and any other permanently stored information that allows the microprocessor/controller 142 to operate. The controller 142 addresses memory in ROM 143 via address bus 143a and the ROM 143 provides the stored program instruction to the controller 142 via data bus 143b.
The controller 142 is coupled to RAM 144 via address bus 144a and bi-directional data bus 144b. The RAM 144 comprises event memory 145 that temporarily stores data sent via telemetry from the capsule 1 10 to the RF coils 108 a-d in the pods 101 - 104 until the data is downloaded onto a computer using external data port 150. For tracking purposes, the RAM 144 is also used to store the data concerning lag times between the RF signal and acoustic signals received by transducers 107 a-d, and RF coils 108 a-d in the pods 101 - 104. The RAM 144 also comprises a programmable memory 146. which is used to specify operation modes (e.g. waveform, type of stimulation: for pacing, inducing contraction or other type) and various procedure parameters that may be transmitted to the capsule 1 10 through RF coils 108a-d via telemetry. The recorder 105 also includes a display 151 to show recorded data, sensed parameters, treatment parameters, and status of device (e.g., capsule position, battery charge status, etc.). The recorder 105 also includes a data input device 152 such as a keyboard, pad or input screen for inputting new parameters, programming the capsule, changing the treatment scheme, viewing various data or turning the device on or off. The input is coupled through a buffer 154 to the controller 142. The controller 142 is coupled to a speaker 153 for providing audible information such as an alert.
In Figures 6 and 7, the pods 101 ,102,103, and 104 are set up in an Cartesian (x,y,z) coordinate system. The origin of the coordinate system is defined as the location of pod 101. The y-axis is defined as the line that passes tlirough pod 101 and pod 102. The x-y plane is defined as the plane that intersects pods 101, 102 and 103. The z-axis is perpendicular to the x-y plane. Pod 104 is located off of the x-y plane. Thus, the coordinates of the pods in this defined coordinate system are:
Pod 101: (0, 0, 0)
Pod 102: (0, y2, 0) Pod 103: (x , y3, 0)
Pod 104: (x4, y4, z4) where the pod coordinates y2, x3, y3, x , y , and z are initially unknown.
Once the pods are placed as illustrated in Figure 1, the coordinates of the pods are initially determined in the following manner. As illustrated in
Figure 6, the distances dι2, d|3, d| , d23, d24, and d34 represent the distances between pods 101 and 102, 101 and 103, 101 and 104, 102 and 103, 102 and 104, and 103 and 104, respectively The pods, which can both emit and receive electromagnetic and acoustic (including ultrasound) signals, will sense time-lags between the RF and acoustic signals sent between the pods along the distances d' ]2, dn, d| , d23, d2α, and d34, i.e., the pods will ping each other. The pods communicate with a processor located in the recorder that calculates the distance and determines the coordinates. The time-lags are multiplied by the velocity of sound to calculate the distances (di;, dn, dι4, d23, di-i, and d34) between the pods.
Under Pythagoras' Theorem the following six equations relate the coordinates of the pods and the distances between them: (x2-xι)2 + (y:-yι)2 + (Z2-Zι)2 = d12 2 ( 1)
3: + (y3-yι)2 ÷ (z3-z,)2 = d13 2 (2)
(xd-x1)2 + (y4-yι)2 + (z -z1)2 = d14 2 (3)
(x3-x2)2 + (y3-Y2)2 + (z3-z2)2 = d23 2 (4)
(χ 4-x2)2 + (y4-y2)2 + (Z4-Z2)2 = d24 2 (5) (X4-X3)2 + (y4-y3)2 + (Z4-Z3)2 = d34 2 (6)
The pod coordinates Xi, yi. Z| X2, Z2, and z3 are defined as having the value of 0. Thus, plugging in the known pod coordinates, the equations can be rewritten as:
Figure imgf000028_0001
*3 2÷y 2 = d,3 2 (2') x4 2+y4 2+Z4 2 = d14 2 (3') 32÷(y3-y2)2 = 23 2 (4') x4 2+(y4-y2)2÷z4 2 = d24 2 (5') (x4-x3)2+(y4-y3)2+z4 2 = d34 2 (6')
With these six equations, and the determined distances, dι2, dn, d|4, d 3, d24, and d3 , the six pod coordinates, y2. x3, y , x4, y , and z4 may be solved. Single solutions for all the coordinates may be obtained by setting the following position restrictions: y2 > 0; x3 > 0; and z4 > 0. In other words, pod 101 should be placed on the right side of the user, pod 102 on the left side, pod 103 on the lower abdomen, and pod 104 on the upper abdomen as illustrated in Figure 1.
The determination of the solutions for the six pod coordinates y2. X3. y3, x4, y4. and z are described below:
Equation (V) gives: y:=d,2 (I")
Plugging (1") into (4') and subtracting (4') from (2') gives: y3 = (d12 :÷d,3 2-d23 2)/(2d,2) (2")
Plugging (2") back into (2') gives:
Figure imgf000029_0001
where y3 has been solved above.
Plugging (1') into (5') and then subtracting (5') from (3') gives: y4 = (d122 + d 2-d24 2)7(2d12) (4")
Subtracting (6') from (3') gives: Xx44 == ((dd1 1442 - dd3344 22 ++ XX3322 + yy33 22 -- 22 yy33y4)/ (2 x3) (5") where x3, y3 and y4 have been solved above.
Plugging (4") and (5") into (3') gives: z4 = (d14 2 -X42 -y4 2) 5 (6") where x4 and y4 have been solved above.
The pod coordinates are determined whenever the pods are repositioned. The pod coordinates may also be re-established at regular intervals to account for movement and thus relative change in pod position. As illustrated in Figures 7 and 8A-G, using the coordinates of the pods, the location of the capsule in space may be determined as follows. The range-finding capability of the pods measure the distances between the capsule 110 and each pod. As illustrated in Figures 8A-B, the capsule 110 emits an RF signal 205 and a sychronized ultrasonic signal 206 that is emitted a predetermined time interval after the RF signal 205 is emitted. In the preferred embodiment the ultrasound signal 206 is emitted immediately following the RF signal 205. In this drawing, for illustrative purposes the signal emitted from transducer 136a is illustrated. Second and third acoustic signals emitted from the second and third transducers 136b and 136c would be similar to the signal emitted from transducer 136a except that they preferably emitted after the first signal 206 and at predetermined time intervals from the RF signal 205. The signals from the additional acoustic transducers 136b and 136c may also alternatively have different waveforms as that of the first signal 206. Figure 8C illustrates the timing of when the RF signal 205 is received at the pods. Figures 8 D-G illustrate the timing of when the ultrasound signal 206 is respectively received at pods 101 , 102, 103, and 104. Because the RF signal 205 travels at the speed of light, it is received by the pods 101 , 102, 103 and 104 at a relatively negligible time delay in comparison to the ultrasonic signal which travels generally at about 1540 meters per second in human tissue. The distances Ci, c2, c3, and c4 represent the distances between the capsule and pods 101 , 102, 103, and 104, respectively. The pods 101, 102, 103 and 104 receive the ultrasound signal 206 transmitted from the capsule 1 10 at varying times depending on the distances c-,, C , c3, and c4 respectively. Such time lags may be represented as illustrated, for example, in Figure 8 as ti, t2, t3, and corresponding to distances C|, c2, c3, and c4, respectively. The time-lags will then be multiplied by the velocity of sound to calculate the distances (ci, c2, c3, and c4) between the capsule 1 10 and each pod.
Using Pythagoras' Theorem the following equations relate the coordinates of the capsule (xn, yn, zn) and pods, and the distance between them: (xn- ι)2 + (Vn-yi)2 + (Zπ-Z|)2 = Cf (7) ( n- )2 ÷ (yn-y:)2 ÷ (Zn-z2)2 = c2 2 (8)
( n-X3)2 + (yn-y3)2 + (z„-Z3)2 = C3 2 (9)
(xn-x4)2 + (yn-y4)2 + (zn-z4)2 = c 2 (10) These four equations may be solved to obtain a single solution- for the three coordinates of the capsule, x,„ yπ, and zn.
According to one embodiment, a three-dimensional or four- dimensional map of the capsule's trip through the intestinal system can be generated by measuring the capsule's coordinates at fixed time intervals.
Alternatively, linear travel distance measurements can be made by using Pythagoras' Theorem. Incremental linear distances can be calculated and then summed to obtain a total linear travel distance (L):
L= ∑0 m[( π+r π) + (yπ+,-yn)2 + (zn+ 1-Zn)2 ] ,
where m is equal to the number of incremental distances and where (xn, yπ, zn) and (xπ+ι,yn+ι,Zπ+ι) are consecutive capsule coordinate measurements used to measure incremental linear distances traveled. In this manner a linear map of the capsule's position along the intestinal tract may be obtained. Such a map shows the position of the capsule along the tract independent of actual 3D spatial orientation. Thus, errors based on intestinal shifting, peristaltic motion, patient positioning, and change in pod location are reduced without requiring additional sensed information. Retrograde peristaltic motion can occur in the small intestine. An algorithm may be used to cancel out any backtracking travel measurements when calculating the linear distance traveled by the capsule. As described below using an additional acoustic transducer, (e.g., located on the opposite end of the capsule) and obtaining the same positional information may provide information on capsule orientation and direction of capsule movement.
Preferably, the additional transducer will deliver a signal at time intervals between the acoustic signals of the first transducer. The signals from the additional transducer may have a different waveform to differentiate the signal from signals corresponding to the first transducer. The orientation information may provide additional information that is used to cancel out retrograde capsule movement. Referring to Figures 1 1 A-D, an example of a linear map of an intestinal tract and corresponding maps of sensed information are illustrated. Figure 1 1 A illustrates an example of a linear map of a gastrointestinal tract. Figure 1 I B illustrates an example of a map of pH sensed by a capsule in relation to its linear position along the length of the tract of Figure 1 IA.
Figure 1 I C illustrates an example of a map of pressure sensed by a capsule in relation to its linear position along the length of the tract of Figure 1 1 A. Figure 1 ID illustrates an example of a map of electrical activity sensed by a capsule in relation to its linear position along the length of the tract of Figure 1 1 A. These maps may be plotted from sensed information on a display screen in the illustrated format or as otherwise may be desirable by a user.
The parameters shown in the maps in Figures 1 1 B-D may be determined by a capsule having sensing capabilities. As the capsule passes through the intestinal tract and its location along the length is determined, other parameters relating to the condition of the intestinal tract may be sensed periodically or continuously. The sensed conditions may be sent via telemetry to one or more pod receivers. This may occur independently from the time of the RF reference signal transmission and the acoustic signal transmission so that the telemetry signal is independent of the coordinate determining RF reference signal. The sensed information is mapped along the length of the intestine by the tracking system as described above. A linear map of sensed information is overlaid on the linear map of the intestine so that unusual parameter values, or areas to be treated may be determined. Upon a second pass of a capsule, the area or portion of the tract to be treated may be located along the length of the linear map created from the first capsule pass. The second capsule uses a similar method to determine its position along the length of the tract and its linear travel position is compared to the linear travel position of the first capsule. Thus, when the capsule has traveled the appropriate position along the tract, the segment of the tract may then be treated. Treatment may be triggered by a telemetric signal sent to the capsule when the recorder and external controller have calculated the appropriate linear position. Referring now to Figure 9, there is illustrated a second embodiment of a treatment capsule of the present invention. Capsule 170 comprises a capsule body 171 including an electronic circuit 113 and battery 174 coupled to the electronic circuit 1 13. An RF coil 175 and acoustic transducers 176a- c operate in a similar manner as RF coil 135 and transducers 136a-c described herein. The capsule further comprises a compressed gas source 165 and an inflatable balloon 167 externally fixed to the capsule body 171. The gas source 165 is in fluid communication with a valve 166 that opens into a chamber 168 in the balloon 167. The chamber 168 of the balloon 167 further is in fluid communication with a valve 169 that opens to a gas exit port 172 that is in fluid communication with the intestinal tract. The valves are coupled through drivers 128a, 128b in electronic circuit 113. The operation of the valves 166, 169 is controlled by the controller 122 in the electronic circuit. 113. In use, the capsule is delivered after a diagnostic capsule using an optical sensor has been passed through the intestinal tract to obtain a map of optically sensed parameters along the length of the tract. After a blockage site along the length has been determined, the capsule 170 is ingested. Using the RF coil 175 and acoustic transducers 176a-c of the tracking system described above, the tracking system identifies when the capsule 170 has reached the blocked site. The tracking system sends a telemetric control signal to the RF coil 175 that instructs the controller 122 to inflate the balloon 167. The controller activates valve 166 through driver 128a which opens to allow compressed gas from the gas source 165 to fill the chamber 168 of the balloon. The inflation of the balloon 167 expands the intestinal wall at the site of the balloon 167 to open the blockage. The controller 122 then opens the valve 169 through driver 128b to allow the gas to escape from the chamber 168 through the gas exit port 172 and into the intestinal tract. The controller may release the gas upon an external telemetrically delivered command that is initiated by, for example, a physician who is observing the capsule and balloon under fluoroscopy, to determine if and when a blockage has been opened. Alternatively, the balloon may be preprogrammed to expand for a predetermined amount of time. The expandable member may be used for a variety of diagnostic or treatment purposes, for example, pressure sensing, opening partial blockages, measuring the openings of partially blocked or constricted areas, providing hemostasis, delivering therapeutic substances that are coated on the balloon 167, or affixing a capsule in an identified location to mark the location in the intestine. An expandable support member such as a stent may be provided on the balloon for placement within a stricture upon expansion of the balloon. Alternatively, the capsule may be provided with a self- expanding support structure such as a self-expanding stent. Figure 10 illustrates a third embodiment of a treatment capsule of the present invention. Capsule 180 comprises a capsule body 181 including an electronic circuit 1 13 and battery 184 coupled to the electronic circuit 113. An RF coil 185 and acoustic transducers 186a-c operate in a similar manner as RF coil 135 and transducer 136a-c described herein. The capsule further comprises a pump 187 filled with a dye such as, e.g., fluorescein or methylene blue to provide a surgeon with identification of a site for surgery. Such marker may include, for example a radiopaque marker that may be located with an active x-ray system during a procedure, a radioactive material that may be interrogated by a passive system, a fluorescing compound that is used to identify the location, or a dye that stains through the wall of the intestine. The compounds may assist a surgeon in a laparoscopic or open procedure where such imaging systems are used during the procedure or where visualization, e.g., of a dye or stain is possible. The pump is coupled to a valve 189 by a conduit 188. The pump 187 and the valve 189 are controlled by the controller 122 in the electronic circuitry 1 13 through drivers 128c and 128d. In use, the capsule 180 is delivered after a diagnostic capsule having a diagnostic sensor has been passed through the intestinal tract to obtain a map of sensed parameters along the length of the tract. After a site along the length of the tract has been identified for surgical intervention, the capsule 180 is ingested. Using the RF coil 185 and acoustic transducers 186a-c of the tracking system described above, the tracking system identifies when the capsule 180 has reached the identified site. The tracking system sends a telemetric control signal to the RF coil 1 S5 that instructs the controller 122 to activate the pump 187. The controller activates the pump 187 through driver 128c. The controller also activates valve 189 through driver 128d which opens to allow dye from the pump 187 to exit the pump through conduit 188 and valve 189 and be sprayed onto the adjacent intestinal wall. The dye thus marks a location for surgical intervention.
The capsule 180 may also be used to release a gas into the intestinal tract at a given location where e.g. a blockage or other anatomical feature is believed to exist. Using fluoroscopy, the anatomy may be observed. Similarly, using a capsule such as capsule 180, a fluid such as a radiopaque fluid may be released near a contriction or other area to be imaged where pump 187 pumps the fluid into the intestinal tract through a conduit 188 and valve 189.
Figure 12- 14 illustrate a fourth embodiment of a treatment capsule of the present invention. Capsule 210 comprises a capsule body 21 1 including an electrocautery ablation circuit 213, an electronic circuit 1 13, and a battery 214 coupled to the electronic circuit 1 13. The capsule 210 also comprises an elongate member 225 with a larger area return electrode 227 located thereon. The elongate member 225 and electrodes 226, 227 are constructed in a manner similar to elongate member 15 and electrodes 16a, 16b, and 16c described with respect to Figures 15- 16 herein. A small area ablation electrode 226 is located on the capsule body 21 1 , preferably in the form of a ring. A thermocouple sensor 127d is located on the capsule body 21 1 immediately adjacent to the ablation electrode 226 so that the sensor can sense the temperature of tissue that is being treated by the ablation elelctrode
226 and provide a feedback loop to an external controller 142 that regulates the power delivered to the ablation electrode 226. An RF coil 215 and acoustic transducers 2 16a-c operate in a similar manner as RF coil 135 and transducers 136 a-c described herein. In this embodiment, the RF coil 215 operates at a frequency of about 1 MHz.
As illustrated in Figure 13, the ablation electronics include, an ablation coil 22 1 , electrodes 226, 227, and an ablation circuit 213 including a capacitor 222. The ablation coil 221 that is tuned to a frequency of about 250kHz, thus the co'ils 215 and 221 receive di fferent frequencies, enabling them to distinguish between a telemetry signal and an ablation power signal. An external variable power generator 230 (Figure 14) supplies an RF signal at 250kHz through power transmitter coil 23 1 . The ablation signal received by the ablation coil 221 and parallel capacitor 222 (which together form a tuned circuit to separate the ablation signal from the telemetry signal) is then delivered to electrodes 226, 227. . The ablation electrode 226 has a considerably smaller area than the return electrode 227 so that the current density is greater at the ablation electrode 226 where the ablation current is to be focused on the adjacent tissue. The thermocouple sensor 127d provides an electrical signal representative of the temperature of the adjacent tissue, through the A/D converter 126d of the capsule circuit 1 13. The signal is converted to a digital signal that is provided to the controller 122 of the circuit 1 13. The signal is telemetrically delivered to the controller 142 of the recorder 105 in a manner as described herein.
As illustrated in Figure 14, the power is controlled by the controller 142 of the recorder 105 which is coupled to the power generator 230 by way of connector 233. The controller 142 in the recorder electronics 140 will regulate the power output to the ablation electronics based on feedback information as sensed by the thermocouple 127d on the capsule body 21 1 and delivered via telemetry from the capsule RF coil 215. The regulation of the power is significant in this embodiment as the RF ablation signal strength may vary with distance from the capsule, the type of the tissue being treated, the impedance of the tissue being treated. Thus, the temperature feedback loop is intended to prevent over or under heating of the tissue. In addition, the treatment is initiated by a user by activating a switch 234 coupled to the power generator 230.
In use, the tracking system is used in a manner as described above. A location to be treated along the length of the intestinal tract is first identified by a first capsule passing through the tract. Preferably the capsule will have an optical, chemical or other means for determining a location where bleeding is occuring. This location is identified in a subsequent pass of the ablation capsule 210 'and the user turns the ablation power on when the appropriate location is identified to ablate or cauterize the tissue that is bleeding. In a variation of the embodiment, a site where bleeding is present may be treated using a subsequently passed capsule having a balloon tamponade, i.e. an inflatable member that uses compression and/or a thrombogenic substance coated on the inflatable member to help cause hemostasis. A capsule embodiment having an inflatable member is described herein with reference to Figures 21 and 22. Figures 15-16 illustrate a fifth embodiment of the capsule of the present invention. The capsule 10 comprises a treatment and sensing device that may be used with the tracking system. The capsule 10 is used to sense electrical parameters of the intestinal wall and/or to treat the intestinal tract by electrically stimulating the intestinal wall. The capsule 10 comprises a liquid impermeable and airtight capsule body 1 1. The capsule body 1 1 contains electronic circuitry 1 13, battery 1 14, RF coil 135 and acoustic transducers 136a-c as described above with reference to Figs. 3 A and 3B. The capsule body 1 1 protects the enclosed circuitry from body fluids while passing through the intestinal tract. The capsule body 11 is formed of a material that is compatible for use in the human body, for example, a medical grade plastic or polymer.
An elongate member 15 is affixed to an end of the capsule body 1 1. Electrodes 16a, 16b and 16c are located on the elongate member 15. Two second, larger area electrodes 17a and 17b extend around the width of the capsule body 1 1. Electrodes 16a-c may be selected in a number of combinations to form electrode pairs to deliver stimulation to the intestinal wall (or alternatively to sense electrical activity of the intestinal wall). Additionally, one or more of electrodes 17a and/or 17b may be utilized to work with one or more of electrodes 16a- 16c where current density will be concentrated at the smaller electrode(s) 16a, 16b, and/or 16c. The capsule electronics may include logic to select which electrodes should deliver stimulation pulses for optimal stimulation. The electronics may similarly control which electrodes may be used to sense electrical activity of the intestinal wall. Alternatively, an external processing unit may determine optimal electrode selection that is communicated to the capsule by a telemetry command signal. In one preferred embodiment, the capsule 1 1 may be used for stimulation and subsequent measurement of electrical parameters. This function may be used for diagnostic purposes, for example, to determine if the intestinal wall is properly conducting electrical pulses or if the wall at a particular location is an electrically hypo-active or "dead" area. In a preferred embodiment, the capsule electrodes are electrically configured so that a plurality of adjacent electrode pairs can be used where a first pair stimulates the intestinal wall at a first location and the second pair then detects signals at a second location that are propagated from the original stimulation signal. Accordingly, in a variation of one embodiment, to determine if the intestinal wall is electrically abnormal, e.g., is electrically hypo-active, electrodes 17a and 17b are used to deliver a stimulation signal and an electrode pair formed from at least two of electrodes 16a-c are used to sense resulting signals propagated in an orad direction. In a variation of another embodiment, signal propagation in the aborad direction, i.e., from the back of the capsule to the front assuming the front of the capsule is oriented in a direction away from the mouth is determined using an electrode pair formed from at least two of electrodes 16a-c are used to deliver a stimulation signal and electrodes 17a and 17b sense resulting propagated signals. As illustrated in Figure 15, a dissolvable encasing 12 surrounds the elongate member 15, the electrodes 16a-c, and at least a portion of the capsule body 1 1. When encapsulated by the encasing 12, the elongate member 15 is in a coiled or compressed position.
The encasing 12 is formed of a suitable dissolvable material such as, for example, a soluble gelatin or enteric coating that is dissolvable in the body fluids contained in the intestinal tract. Such materials may be selectively dissolved based on the pH condition so that the encasing 12 dissolves after the capsule 10 has passed through the highly acidic stomach and into the more neutral small intestine.
The elongate member 15 is preferably formed of a material that has elastic properties such as a Ni-Ti alloy, which permits it to be compressed into the initial configuration and to release into its elongate state when the encasing 12 has dissolved. As shown in Fig. 16, the elongate member 15 extends into its elongate form when the encasing 12 has dissolved.
The capsule body 1 1 is provided with a front portion 1 l a and a back portion I l b of reduced diameter. The encasing 12 is bonded to the back portion 1 lb by suitable means such as an adhesive. The diameter of the back portion 1 l b is reduced by a sufficient amount so that the thickness of the encasing 12 forms a substantially smooth outer capsule surface in conjunction with the outer surface of the front portion 1 la of the capsule body 1 1. The overall conformation of the ingestible capsule 1 1 is cylindrical in shape having a generally hemispherical end surface 23 on the front portion
1 1a and a generally hemispherical end surface 24 on the back portion 1 lb. Dissolvable encasing 12 also has a generally hemispherical end surface 12a.
It is desirable that the elongate flexible member 15 have an extremity which has a curved configuration so as to ensure that the stimulation electrodes 16a-c are maintained in close proximity to the wall of the intestinal tract as the capsule 10 moves through the intestinal tract as hereinafter described. The electrode 17 is formed of a conducting layer of a suitable metal such as gold deposited on the surface of the capsule body 1 1. Alternatively, the additional electrodes 16b and 16c may be carried by additional elongate members constructed and secured to the capsule body 1 1 in a similar manner as elongate member 15.
The electronic circuitry 1 13 shown in Figure 4 is capable of producing various types of programmable waveforms. Figures 17A and 17B illustrate examples of stimulation waveforms that may be used in stimulating the smooth muscle layer of the intestinal tract. Figure 17 illustrates a waveform design for stimulating the intestinal tract. In a preferred embodiment, the waveform 300 has a pulse amplitude of between 1 and 30 niA, a pulse width of between 0.5 and 300 ms, and a frequency of about between 8 to 12 cycles per minute (this corresponds to a repetition period of between 5 to 7.5 seconds). Figure 17B illustrates an alternative vvavefoπn design for stimulating the intestinal tract. The waveform 400 utilizes bursts of pulses rather than a single pulse. The burst repetition rate is selected, preferably, to be between about 8 to 12 cycles per minute (this corresponds to a burst repetition period of between 5 to 7.5 seconds). The duration of a pulse in this example is between about 300μs and 20 ms, and has an amplitude of about 1 -30 mA. The frequency of the burst pulses during a burst period are about 50 to 100 Hz corresponding to a pulse repetition period of 10 to 20 ms. The burst duration can vary from about 0.6 ms to 1 second. As is well known to those skilled in the art, there are many different types of electrical stimulation programs and strategies which can be utilized for providing electrical stimulation parameters through the circuitry 1 13, the principal focus being providing electrically stimulating parameters for the intestinal tract, preferably the small intestine.
Figure 18 illustrates a sixth embodiment of a capsule of the present invention. Stimulation capsule 50 is generally constructed in a similar manner as capsule 1 10. Capsule 50 comprises first bipolar electrode 56 and a second, electrically opposite bipolar electrode 57 on a capsule body 51 in longitudinally spaced apart positions. The electrodes 56, 57 are connected by conductors to the electronics 1 13 within the capsule body 51. According to this embodiment, various electrical stimulation parameters, including those described herein, may be used. A seventh embodiment of the capsule is shown in Figures 19 and 20.
Capsule 60 comprises a stimulation electrode deployment mechanism consisting of a loop 76 formed of an elastic material wrapped about the capsule body 61. Bipolar stimulating electrodes 66 and 67 are carried by the loop 76 and are connected to the electronic circuitry 1 13 in the capsule body 61 by conductors (not shown) extending through the hollow tubular member forming the loop 76. As shown in Figure 19, a dissolvable encasing 62 is provided over the capsule body 61. This encasing 62 can be formed of the same material as the encasing 12 in the embodiment shown in Figure 15. When encasing 62 is dissolved, the loop 76 will expand to the ovoid looped configuration shown in Figure 20, bringing the stimulation electrodes 66 and 67 into contact with the wall of the intestinal tract as the capsule 60 travels through the intestinal tract. The loop 76 allows the electrodes 66, 67 to be positioned behind (orad to) the capsule 60 regardless of its orientation in the intestinal tract. As the capsule 60 moves through the intestinal tract the loop 76 will be in contact with the wall of the tract. The friction forces of the loop 76 dragging along the wall will cause the loop 76 to shift such that the electrodes 66, 67 are generally behind (orad to) the capsule. In this regard, a contraction stimulated by the electrodes 66, 67 will tend to result in forward (aborad) movement of the capsule as the stimulated contraction propagates along the intestinal tract.
Figures 21 and 22 illustrate an eighth embodiment of a capsule of the present invention. Capsule 80 includes an expandable member. In Figures
21 and 22, an inflatable member with pressure sensing capabilities is illustrated. Electronic circuitry 1 13 is located in the capsule body 81. A pressure transducer 127a, also located in the capsule body 81 is coupled to circuitry 1 13. The pressure transducer 127a comprises a commercially available silicone or other suitable plastic bridge pressure transducer that measures hydrostatic pressure to determine changes in pressures as described below.
An elongate member 85 is affixed to an end of the capsule body 81. Bipolar stimulation electrodes 86, 87 are located in a spaced apart relationship, rearwardly on the elongate member 85. Conductors 95 extend through the flexible elongate member 85 connecting the electrodes 86, 87 to the electronics 1 13. Opposing ends 92a, 92b of an inflatable balloon 92 are mounted forwardly of the electrodes 86, 87 on the flexible elongate tubular member 85 by a suitable adhesive (not shown). A balloon inflation/deflation lumen 94 is provided in the flexible elongate member 85 and extends from the capsule body 81 to an inflation port 93 that opens into the interior of the balloon 92 as shown in Figure 22. The balloon inflation/deflation lumen 94 is coupled to the pressure transducer 127a so that compression pressures sensed by the balloon 92 will be supplied to the pressure transducer 127a as the pressure of the gas in the balloon 92 and the lumen 94 changes.
The capsule 80 includes a dissolvable encasing (not shown) of the same type as the encasing 12 shown in Figure 15. Similar to the encasing shown in Fig. 15. such an encasing would enclose the flexible elongate member 85 including the inflatable balloon 92 and electrodes 86, 87 and would dissolve, e.g. in the small intestine releasing the elongate member 85 as illustrated in Figs. 21 and 22. A balloon inflator is provided within the capsule 80 comprising a small canister 97 of compressed C02 or other suitable gas. The canister 97 is coupled to the lumen 94 through a valve connection 98. The operation of the valve 98 is controlled by the electronics 113 through a driver 128a, b, c, or d. When the flexible elongate member 85 is deployed upon dissolving of the encasing, the electronics 1 13 cause the valve 98 to open and inflate the balloon 92.
Alternatively, the balloon 92 can be pre-inflated with a gas or fluid before enclosure within the encasing. In this case, the inflation canister 97 and valve 98 may be eliminated. The balloon 92 is formed of a gas impermeable material so that it will remain inflated over substantial periods of time. The balloon may be formed, for example, of polyurethane, PET, nylon or polyethylene.
In a preferred operation and use, the capsules shown in the various embodiments in Figures 12 and 18-22, are used in conjunction with the circuitry shown in Figure 4 or Figure 13 in small intestine electrical stimulation. A small intestine suited for treatment using the capsule may be diseased and incapable of adequate contractile activity. For example the nerves of the small intestine may be compromised due to gastric or diabetic neuropathy. Because of such a disorder, the patient may have a motility disorder that would be advantageously treated using small intestine electrical stimulation. The stimulator capsule may also be used to measure other electrical characteristics such as EMG or impedance as described herein with respect to the electronic circuitry 1 13 show in Figure 4. A patient wishing to treat a motility disorder ingests a capsule of the present invention near the beginning, midway, or following the ingestion of food. A capsule when ingested will travel through the esophagus into the stomach. Where a dissolvable encasing is utilized for encapsulating the elongate member and electrode(s), the encasing is readily dissolved by the fluids within the stomach or duodenum, permitting the flexible elongate member carrying the stimulation electrode to be deployed.
The capsule is preferably used with the tracking system described herein where treatment is triggered by an external (telemetry) signal from the tracking device. A first capsule may be delivered and an electrical parameter of the intestine may be mapped with respect to the length of the intestine. A second capsule may be delivered and used to provide electrical stimulation at an identified location along the length of the tract. An external signal to the capsule signals when to begin and end stimulation.
The electrical stimulation capsule may also be used independent of the tracking system. In a variation of the embodiment, the capsule can be programmed to begin emitting electrical stimuli to one or more stimulation electrodes 16a-c, and/or 17, within a predetermined time after ingestion, for example, within one to one and one-half hours after ingestion into the stomach, at which time it is most probable that the capsule would have passed into the duodenum along with food material passing from the stomach. As an alternative, a single capsule may stimulate and measure the electrical parameters. The capsule may sense electrical parameters and when a clinically undesirable electrical parameter is detected, the capsule may provide an appropriate electrical stimulation in response.
Such a system would have the advantage of not requiring external gear such as the recorder and pods. Also, the capsule may be constructed to sense when it is in the duodenum, for example with a pH sensor or a pressure sensor. Also, the electronics 1 13 can be triggered to commence at the time the encasing is dissolved and the stimulation electrode is exposed to body fluids. Alternatively, electrical stimuli can be triggered by the electronics 1 13 to commence within a predetermined time after the encasing dissolves. In such case, the capsule is enclosed in a gel material that dissolves after it leaves the stomach when it reaches the small intestine.
When triggered, electronic circuitry 1 13 initiates electrical stimuli to the small intestine of the patient, at periodic intervals, such as, for example using one or more waveforms like those shown in Figures 17A and 17B.
Alternative electronic circuitry 313 illustrated in Figure 23 may be used with any of the stimulation capsules illustrated herein. According to an alternative embodiment, the electronic circuitry 313 is used in a simplified stimulation system. According to a preferred embodiment of the system, prior to each stimulation pulse or burst of pulses the capsule receives basic instructions. The instructions may be a trigger signal to trigger a stimulation pulse or burst of pulses with predetermined stimulation parameters, such as amplitude and pulse width, to be emitted by the capsule. The instructions may also include information regarding the stimulation parameters for the pulses to be emitted. The instructions to trigger and/or specify a stimulation pulse or burst of pulses to be delivered to the intestinal wall are telemetrically delivered to the electronic circuitry 313.
The electronic circuit 313 is simplified and includes a microprocessor 312, ROM 315, RAM 316, a clock 31 1, a telemetry coil 335, a battery 314 a dc-dc converter for stimulation 330, a telemetry detection circuit 3 17, and a pacing driver 318. The microprocessor 312 is coupled to the ROM 315, which contains program instructions for the microprocessor 312 and any other permanently stored information that allows the microprocessor 312 to operate. ROM 315 may also contain default and standard stimulation parameters. The microprocessor 312 addresses memory in a location in the ROM 3 15 through address bus 315a and the ROM 315 provides the stored program instαictions to the microprocessor 312 via data bus 315b. The microprocessor is coupled to the RAM 3 16 via an address bus 3 16a for addressing a location in the RAM 316 and a bi-directional data bus 316b for delivering information to and from the RAM 316. The RAM 316 may be used by the microprocessor 3 12 to store custom stimulation parameters sent via telemetry prior to a series of stimulation pulses or bursts of pulses, or, just before each stimulation pulse or burst of pulses. RAM 316 may also temporarily store an identification code to specify the already stored default, standard or custom stimulation parameters to be used for stimulating the intestinal wall.
The trigger signals for each stimulating pulse or burst of pulses and the stimulation parameter instructions are supplied through the telemetry coil 335 to the microprocessor 312 and are then delivered through the pacing driver 18 in real time to the intestinal wall (through electrodes as described herein). Thus, the capsule itself does not direct the stimulation or the intestinal wall but receives directions from an external source and delivers stimulation accordingly and in real time to the intestinal wall. The embodiment of Figure 23 could be further simplified by replacing the microprocessor 312, ROM 3 15, RAM 316, and clock 311 with logic gates or a state machine. In such variation, some or all of the stimulation parameters may be preset and stored in the hardware in the capsule. For example, stimulation amplitudes could be stored as 5 different states in a simple state machine. The telemetry instruction signal could then consist of a simple pulse train that would represent the trigger signal as well as encode one of the five stimulation amplitudes while using an otherwise fixed stimulation pattern.
The electrical pulses provided by the electronics 1 13 through the electrode pairs 16a-c, 17 (as selected)(Fig 15, 16); 56, 57 (Fig. 18); 66, 67
(Fig 19, 20); 86, 87 (Fig. 21); and 1 16, 1 17 (Fig 3 A) may be used to create peristaltic contractions in the wall to cause movement of food material along with the capsule in the intestine. In an alternative embodiment where it is desired to retard motility in the small intestine, inhibition of peristaltic contractions by electrical stimulation may be effected by delivering electrical pulses designed to inhibit or interfere with the inherent electrical potentials, resulting in failure of normal peristaltic contractile activity. In certain situations with respect to motihty disorders, it may be desirable to supply synchronized stimulating pulses to the wall of the small intestine by the use of multiple pairs ot stimulating electrodes such as, for example, a plurality of pairs similar to electrodes 16a-c carried on the flexible elongate tubular member secured to the capsule as shown in Figure
12 and synchronizing the pulses in forward (aborad) or reverse (orad) directions in order to cause forward or rev erse stimulation of the intestinal tract
As the capsule passes along the intestinal tract, it continues to suppK successive stimuli through the intestine The rapidity of movement of food material through the small intestine can be controlled by the stimulating parameters such as frequency or amplitude of the signals utilized for supplying electπcal stimuli or pulses to the intestinal tract The capsule may provide certain stimulation patterns in the small intestine until it reaches the colon (This may be determined by sensed electπcal or other parameters, or by a predetermined time interval) At this time the electπcal stimuli can be terminated or alternatively they can continue to be generated at the same or different parameters as the capsule passes through the colon until it exits from the body through the rectum in a bowel movement Where it is necessary for the patient to ingest a capsule each time food is ingested bv the patient, the patient can have additional capsules on hand and ingest a capsule with each meal
The electrode configuration preferably comprises two separate electrical elements forming electrically opposite bipolar electrodes However, a monopolar or unipolar construction with a remote return is also contemplated by the invention Spacing of the bipolar electrode elements from one another will preferably be about 5 mm Electrodes formed on an elongate member will preferably be constructed from a metal wire or strip wound in a helical manner around the elongate tail portion The electrode metal will preferably be corrosion resistant and biocompatible such as Gold,
Platinum, Titanium, etc A helical winding pattern is preferred to provide an electrode that is more flexible than a solid cylinder, and thereby allow the elongate tail to be more easily wound or compressed for containment in the dissolvable portion of the capsule An alternative construction is contemplated where the electrode is embedded in an insulating polymer with an insulated lead extending w ithin or along the elongate member into the capsule body
By varying the spacing between the stimulation electrodes or the size of the electrodes, it is possible to change the current density passing through the wall of the intestine during stimulation A dev ice may be provided where electrodes may be selected to maximize these parameters. For example a plurality of electrode pairs may be prov ided from w hich the optimal pair of electrodes may be selected Also individual electrodes may be configured to form a pair of bipolar electrodes upon selection
The electrical pulses or pulse train supplied to the stimulation electrodes can be at suitable stimulation intervals as for example, in the case of pacing type electrical stimulation, every few seconds up to ten seconds in the small intestine or several hours m the colon
In connection with the electπcal stimulation functions described herein, it is often desirable to measure the pressures which are created by peristalsis of the intestinal contractions. Referring to Figures 21 and 22, this can be readily measured by sensing the compressive forces exerted on the balloon 92 with transducer 91 By sensing such pressures and supplying the information by telemetry to the external recorder 105, it is possible to ascertain the efficacy of the stimulation being applied to the particular portion of the intestinal tract and if necessary to adjust the electπcal stimulation parameters to create the desired contractile forces being sensed by the balloon and the pressure transducer For example, if the sensed pressure indicates suboptimal contractile response, the stimulation parameters may be adjusted, e g , telemetrically If the existence of contractions is detected, the stimulation electrodes may be turned off This may also serve to conserve battery power
One method of use of α capsule of the present invention is in small intestine electrical stimulation. Electronic circuitry is disposed within the capsule and creates electrical stimuli for causing peristaltic motion of the small intestine tor causing pacing of peristaltic motion in the small intestine Other effects on the electrical, chemical, and/or neural systems of the intestinal tract may be achieved with electrical stimulation One example includes an electrical stimulus that is used to interfere with the natural pacesetter potential and thus prevent organized intestinal tract contractile activity from occurring
The present invention provides an improved method and device for tracking an autonomous capsule as well as a method and device for tracking and diagnosing the gastiointestmal tract, preferably using a tracking device
Various modifications and combinations are contemplated by this invention and may be made without departing from the scope of the invention
For example, in another embodiment of the tracking system, the direction of the ultrasound signal used for locating the capsule is reversed In this embodiment, the capsule receives the ultrasound signals generated by the pods and retransmits the signals on the RF earner back to the pods or external monitor In this way, the capsule position may be located by measuring the time delay from transmission of the ultrasound sιgnal(s) by the pod(s) to their reception by the capsule Rather than activating all pods simultaneously, each pod may be sequentially activated to transmit ultrasound Accordingly, the pod to capsule path is identified by the time of transmission from a particular pod When a single pod is activated in this way for transmission, all the remaining pods may also be switched to receive the ultrasound signal from the transmitting pod. This allows the pod-to-pod delay times to be measured, so that the relative position of the pods can be deteπnined on an ongoing basis
If simultaneous transmission from all pods is desired, the ultrasound signals from each pod may be separated by using a variety of methods For example, each pod may generate a unique ultrasound frequency allowing the signals to be separated by filtering
In one variation, for example, a continuous wave signal with amplitude modulation may be used rather than a narrower pulse In such variation, time delays may be measured by measuring the phase of the received signals relative to the transmitted signal.
Alternative reference signals may be used to establish when the acoustic signal is transmitted. For example, an infra-red link or a distributed resistive link may be used. Infra-red links may be constructed using light emitting diodes with an infra-red wavelength chosen to minimized the effects of tissue/light attenuation. The light transmitters and sensors may be on the capsule and/or at the external location for one or two way signal transmission. The light may be modulated with a high frequency carrier in a similar manner to an RF link. The modulated light signal can then be detected after it has passed through the tissue using a light sensor or sensors. A distributed resistive link may be used to directly couple an electrical carrier signal through the body to an external sensor or sensors, or alternatively or additionally from an external transmitter to electrode sensors coupled to the capsule. A small high frequency carrier, typically 100kHz or above, is preferably chosen for the carrier frequency to prevent any muscle stimulation by the carrier. The sensor on the capsule or at the external location would then detect the high frequency carrier signal, which would be attenuated by the distributed resistive divider formed by the conductive body tissue. To transmit or receive the signal to or from an external location, the external source or sensor would be coupled into the body via two skin electrodes, spaced at some distance apart. Electrodes on the capsule would be used to receive (or transmit) such carrier signal. The high frequency carrier would preferably be modulated in the same way as an RF link, using amplitude, frequency or other modulation schemes as are well known in the art. Preferably, the various signals e.g., going to or from the capsule, would be placed on different carrier frequencies to allow for easy separation via filtering, of the outgoing and incoming signals.
Further, as an alternative to using an externally detectable signal such as an RF signal, as a reference signal to establish the time at which the acoustic pulse is emitted, the ultrasound transmitters and receivers may be configured to establish such transmission times and thus the location of the capsule Based on the differential time between two ultrasound receiv ers receiv ing an ultrasound pulse from a capsule, the possible location of the capsule may be defined by a paraboloid plane between the two receivers Using more than two receivers, additional such paraboloid planes representing possible locations may be determined The intersection of the planes provides information from w hich the actual location of the capsule may be derived By filtering out impossible locations (e g . by knowing points that would e outside a patient's body, e g , based on pod placement on a patient, or by adding additional pods for additional location information), the actual location of the capsule may be determined
According to one variation, the differential distance is determined by multiplying the differential time between the reception of the ultrasound signal at one pod and the reception at the other pod times the speed of sound in tissue The possible location of the capsule based on the derived differential distance is represented by a paraboloid plane between the two pods When a third acoustic reference receiver is added, the detected differential time between receiver one and three and the differential time between receivers two and three provide additional paraboloid planes of possible capsule locations Two paraboloid planes intersect in a paraboloid or ellipsoid line, intersection with a third paraboloid plane defines one or more points of possible capsule locations Strategic positioning of the acoustic reference receivers, use of additional receivers and/or exclusion of invalid mathematical solutions (e g outside of the patient's body) may enable a single solution to be obtained for capsule location The foregoing embodiments and variations of the invention are illustrative and not contemplated to be limiting, having been presented by way of example Numerous other variations and embodiments, as would be apparent to one of ordinary skill in the art, are contemplated as falling within the scope of the invention as defined by the claims and equivalents thereof

Claims

What is claimed is:
1. A system for tracking the location of an autonomous capsule through the gastro-intestinal tract of a patient comprising: an acoustic transducer transmitter and an acoustic transducer receiver, wherein the acoustic transmitter is arranged to transmit a tracking signal from the acoustic transmitter to the acoustic receiver, between the autonomous capsule and a location external to a patient's body, and wherein in use, the acoustic transmitter is located at one of the autonomous capsule and the location external the patient's body and the acoustic receiver is located at the other of the autonomous capsule and the location external the patient's body.
2. The system of claim 1 wherein the acoustic transmitter is located at the capsule and in use, the receiver is located at the location external to the patient's body.
3. The system of claim 1 wherein the acoustic receiver is located at the capsule and in use, the acoustic transmitter is located at the location external to the patient's body.
4. The system of claim 1 wherein the acoustic receiver comprises a transducer configured to convert an acoustic signal sent by the acoustic transmitter, into a representative electrical signal.
5. The system of claim 4 further comprising a processor wherein the acoustic receiver is configured to communicate with the processor, and wherein the processor is configured to receive the representative electrical signal.
6. The system of claim 5 wherein the processor is configured to determine the transmission time of the tracking signal from the acoustic transmitter to the acoustic receiver from the representative electrical signal.
7. The system of claim 6 wherein the processor is configured to determine a capsule location in three-dimensional space.
8. The system of claim 6 wherein the processor is configured to determine a capsule location along a length of a portion of an intestinal tract.
9. The system of claim 5 wherein the processor is configured to determine a location of the capsule on a coordinate system, at least in part based on the representative electrical signal.
10. The system of claim 9 wherein the system further comprises a reference signal generator arranged to generate a reference signal at a predetermined time interval from transmission of the acoustic signal and a reference signal receiver, wherein the reference signal receiver is arranged to receive the reference signal and communicate the reference signal to the processor, wherein the processor is configured to use the reference signal to determine transmission time of the acoustic signal between the capsule and the location external to the patient's body, and to determine the location of the capsule on the coordinate system.
1 1. The system of claim 10 wherein the reference signal is an RF telemetry signal.
12. The system of claim 10 wherein the reference signal generator is located at the capsule.
13. The system of claim 9 wherein the processor comprises a tracking system arranged to determine a location of the capsule along a length of a portion of the intestinal tract.
14. The system of claim 13 wherein the tracking system is arranged to determine the location along the length of the intestinal tract, from a determination of a plurality of locations of the capsule as the capsule passes tlirough the portion of the intestinal tract.
15. The system of claim 1 wherein the capsule further comprises a sensor for sensing a characteristic of the intestinal tract adjacent a location of the capsule within a portion of the intestinal tract.
16. The system of claim 15 wherein the sensor comprises an electrode and wherein the characteristic comprises an electrical parameter of the intestinal tract.
17. The system of claim 16 wherein the electrical parameter comprises electrical impedance of an intestinal wall.
18. The system of claim 16 wherein the electrical parameter comprises an electrical potential over at least a portion of an intestinal wall.
19 The capsule of claim 18 wherein the electrical potential comprises a pacesetter potential.
20. The capsule of claim 18 wherein the electrical potential comprises inherent spike bursts.
21. The capsule of claim 18 wherein the electrical potential comprises an induced pacesetter potential.
22. The capsule of claim 18 wherein the electrical potential comprises an induced spike burst.
23. The system of claim 15 wherein the sensor comprises a pressure sensor.
24. The system of claim 15 wherein the sensor comprises an optical sensor.
25. The system of claim 15 wherein the sensor comprises a pH sensor.
26. The system of claim 15 wherein the sensor comprises a strain gauge.
27. The system of claim 26 wherein the strain gauge is arranged to measure contractile force.
28. The system of claim 15 wherein the sensor comprises a temperature sensing device.
29 The system of claim 15 wherein the sensor comprises a chemical sensor arranged to sense the presence of a chemical
30 The system of claim 1 further comprising a sampling device for obtaining a sample from the intestinal tract
3 1 The system of claim 1 wherein the capsule comprises a treatment device for providing treatment to the intestinal tract
32. The system of claim 3 1 wherein the treatment device comprises a therapeutic agent delivery device
33. The system of claim 31 wherein the treatment device comprises an electncally stimulating electrode
34 The system of claim 3 1 wherein the treatment device comprises a marker for identifying a location.
35 The system of claim 15 wherein the capsule further comprises a telemetry device arranged to transmit a telemetry signal corresponding to the characteristic sensed by the sensor
36 The system of claim 35 further comprising a telemetry receiver for receiving the telemetry signal.
37 The system of claim 36 further comprising a processor wherein the telemetry receiver is coupled to the processor and wherein the processor is arranged to identify the location of the sensed characteristic withm the portion of the intestinal tract
38 The system of claim 37 wherein the processor is arranged to identify the location of the sensed characteristic along a length of the portion of the intestinal tract
39 The system of claim 38 further comprising a second capsule wherein the second capsule comprises a treatment device arranged to provide treatment to the intestinal tract
40 The system of claim 39 wherein the system further comprises a second acoustic transmitter arranged to transmit a tracking signal from the second acoustic transmitter to the acoustic receiver, between the second capsule and the location external to the patient's body, and wherein the second acoustic transmitter is located at the second capsule, and wherem the acoustic receiver is located at the location external the patient's body
41 The system of claim 40 wherein the acoustic receiver is configured to convert the acoustic signal transmitted by the second acoustic transducer to a second representative electπcal signal and configured to communicate the second representative electrical signal to the processor, and wherein the processor is configured to determine a location of the second capsule along the length of the portion of the intestinal tract
42 The system of claim 41 wherein the processor is configured to determine when the second capsule is at the location of the sensed characteristic based at least in part on the second representative signal
43 The system of claim 41 wherein the second capsule comprises a second telemetry device operatively coupled to the treatment device, and wherein the processor is configured to control an external telemetry transmitter to transmit a control signal to the second capsule, the control signal being received by the second telemetry device, wherein the control signal causes the treatment device to provide treatment to the intestinal tract at a selected location along the length of the portion of the intestinal tract
44 The system ot claim 43 wherein the selected location is the location ot the sensed characteristic
45 The system of claim 39 wherein the system fuπher comprises a second acoustic recei er arranged to receive a second acoustic signal transmitted from the acoustic transmitter, between the second capsule and the location external to the patient's body, and wherein the second acoustic recei er is located at the second capsule, and wherein the acoustic transmitter is located at the location external the patient's body
46 The system of claim 49 wherein the second acoustic receiver comprises a transducer configured to conveπ the second acoustic signal to a second representative elelctncal signal and configured to communicate with the processor, wherein the processor is configured to determine the location of the second capsule along the length of the portion of the intestinal tract
47 The system of claim 46 wherein the processor is configured to determine when the second capsule is at the location of the sensed characteristic based at least in part on the second representative signal
48 The system of claim 46 wherein the second capsule compnses a second telemetry device operati ely coupled to the treatment device, and wherein the processor is configured to control an external telemetry transmitter to transmit a control signal to the second capsule, the control signal being received by the second telemetry device, wherein the control signal causes the treatment device to provide treatment to the intestinal tract at a selected location along the length of the portion of the intestinal tract
49 The system of claim 48 wherein the selected location is the location of the sensed characteristic
50 A system for treating or diagnosing the intestinal tract comprising an autonomous capsule comprising an acoustic transducer, the transducer being arranged to emit an acoustic signal detectable externally of a patient's body as the capsule passes through at least a portion of the intestinal tract; and at least one external acoustic receiver configured to sense the acoustic signal transmitted by the capsule.
51. The system of claim 50 wherein the system comprises a plurality of external acoustic receivers configured to sense the acoustic signal transmitted by the capsule.
52. The system of claim 50 fuπher comprising a reference generator arranged to generate a time reference from which the time of the acoustic signal generation is determined.
53 The system of claim 52 wherein the reference signal is a trigger signal arranged to trigger generation of the acoustic signal.
54. The system of claim 50 wherein the capsule comprises a plurality of acoustic transducers, each of the plurality of transducer being arranged to emit an acoustic signal detectable by the at least one acoustic receiver as the capsule passes through at least a portion of the intestinal tract, to provide information from which the orientation of the capsule may be derived.
55. The system of claim 50 wherein the at least one external acoustic receiver comprises a transducer for converting the acoustic signal to a representative electrical signal and an output for communicating the electrical signal.
56. The system of claim 55 further comprising: a processor configured to communicate with the output of the at least one acoustic receiver, wherein the processor is arranged to determine location of the capsule on a coordinate system based at least in part on the electrical signal of the at least one acoustic receiver.
57. The system of claim 56 wherein the capsule further comprises a reference signal generator arranged to generate a reference signal at a predetermined time interval from transmission of the acoustic signal and at least one external reference signal receiver, wherein the at least one external reference receiver is arranged to receive the reference signal and communicate the reference signal to the processor, wherein the processor is arranged to use the reference signal to determine transmission time of the acoustic signal from the capsule to the at least one acoustic receiver and to determine the location of the capsule on the coordinate system.
58. The system of claim 57 wherein the reference signal generator is an RF telemetry device.
59. The system of claim 56 wherein the processor comprises a tracking system arranged to determine a location of the capsule along a length of the portion of the intestinal tract.
60. The system of claim 59 wherein the location along the length is based on the determination of a plurality of locations of the capsule as the capsule passes through the portion of the intestinal tract.
61. The system of claim 50 wherein the capsule further comprises a sensor for sensing a characteristic of the intestinal tract adjacent the location of the capsule within the portion of the intestinal tract.
62. The system of claim 61 wherein the sensor comprises an electrode and wherein the characteristic comprises an electrical parameter of the intestinal tract.
63. The system of claim 62 wherein the electrical parameter comprises electrical impedance of an intestinal wall.
64. The system of claim 62 wherein the electrical parameter comprises an electrical potential over at least a portion of an intestinal wall.
65 The system of claim 64 wherein the electrical potential comprises a pacesetter potential
66 The system of claim 64 wherein the electrical potential comprises inherent spike bursts
67 The system of claim 64 wherein the electrical potential comprises an induced pacesetter potential
68 The system of claim 64 wherein the electπcal potential comprises an induced spike burst
69 The system of claim 61 wherein the sensor comprises a pressure sensor
70 The system of claim 61 wherein the sensor comprises an optical sensor
71 The system of claim 61 wherein the sensor comprises a pH sensor
72 The system of claim 61 wherein the sensor comprises a strain gauge
73 The system of claim 72 wherein the strain gauge is arranged to measure contractile force
74 The system of claim 61 wherein the sensor comprises a temperature sensing device
75 The system of claim 61 wherein the sensor comprises a chemical sensor arranged to sense the presence of a chemical
76 The system of claim 50 further comprising a sampling device for obtaining a sample from the intestinal tract
77 The system of claim 61 wherein the capsule further comprises a telemetry circuit for transmitting a telemetry signal corresponding to the characteristic sensed by the sensor
78 The system ot claim 77 further comprising a telemetry receiver for receiving the telemetry signal
79 The system of claim 78 wherein the telemetry receiver is coupled to the processor and wherein the processor is arranged to identify the location of the sensed characteristic within the portion of the intestinal tract
80 The system of claim 79 wherein the processor is arranged to identify the location of the sensed characteristic along a length of the portion of the intestinal tract
81 The system of claim 50 wherein the capsule comprises a treatment device arranged to provide treatment to the intestinal tract
82 The system of claim 81 wherein the treatment device comprises a therapeutic agent delivery device
83 The system of claim 81 wherein the treatment device compnses an electrically stimulating electrode
84 The system of claim 81 wherein the treatment device comprises a marker for identifying a location
85 The system of claim 59 further comprising a second capsule wherein the second capsule comprises a treatment device for providing treatment to the intestinal tract
S6 The system of claim 85 wherein the second capsule further comprises a second acoustic transducer, the second acoustic transducer being arranged to emit a second acoustic signal detectable externally of a patient's body as the second capsule passes tlirough at least a poπion of the intestinal tract
87. The system of claim 86 wherein the at least one external acoustic receiver is configured to sense the second acoustic signal transmitted by the second capsule, wherein the at least one external acoustic receiver comprises a transducer configured to convert the second acoustic signal transmitted by the second capsule to a second representative electrical signal, and a second output configured to communicate the second representative electrical signal to the processor; and wherein the processor is arranged to determine a location of the second capsule along the length of the portion of the intestinal tract.
88. The system of claim 87 wherein the second capsule comprises a telemetry device operatively coupled to the treatment device, and wherein the processor is configured to control an external telemetry transmitter to transmit a control signal to the second capsule, the control signal being received by the telemetry device, wherein the control signal causes the treatment device to provide treatment to the intestinal tract at a selected location along the length of the portion of the intestinal tract.
89. An autonomous capsule for treatment or diagnosis of an intestinal tract of a patient comprising: a capsule body sized to pass through the intestinal tract of a patient, the capsule body including an acoustic transducer, the acoustic transducer being arranged to emit an acoustic signal detectable externally of a patient's body as the capsule passes through at least a portion of the intestinal tract; and a reference signal generator arranged to generate a signal from which the time of the acoustic signal generation is determined.
90. The capsule of claim 89 wherein the capsule further comprises a sensor arranged to sense a characteristic of the intestinal tract adjacent the location of the capsule within the portion of the intestinal tract.
91. The capsule of claim 89 further comprising a sampling device for obtaining a sample from the intestinal tract.
92. The capsule of claim 89 wherein the capsule further comprises a treatment device for providing treatment to the intestinal tract.
93. The capsule of claim 89 wherein the capsule comprises a plurality of acoustic transducers, each of the plurality of transducers being arranged to emit a signal detectable externally of a patient's body, to provide information from which orientation of the capsule is determined.
94. An autonomous capsule for treatment or diagnosis of an intestinal tract including a capsule body comprising a plurality of acoustic transducers and an energy source coupled to each of the transducers, each of the plurality of transducers being arranged to emit an acoustic signal detectable externally of a patient's body as the capsule passes through at least a portion of the intestinal tract to provide information from which the orientation of the capsule is derived.
95. A system for treating or diagnosing the intestinal tract comprising: an autonomous capsule comprising an acoustic transducer, the transducer being arranged to emit an acoustic signal detectable externally of a patient's body as the capsule passes through at least a portion of the intestinal tract; and a reference signal generator arranged to generate a signal from which the time of the acoustic signal generation is determined.
96. An intestinal tract diagnostic system comprising: a capsule including: a sensor arranged to sense a condition of a portion of an intestinal tract at a plurality of locations along a length; and a position identifier configured to transmit information identifying the location of the capsule as it passes through the portion of the intestinal tract.
An external receiver, external to the capsule configured to receive the information identifying the location of the capsule; and a processor coupled to the external receiver to receive the information identifying the location of the capsule, the processor configured to determine a position of the capsule along a length of the portion of the intestinal tract at each of the plurality of locations.
97. The intestinal tract diagnostic system of claim 96 wherein the processor is configured to correlate the location of the capsule along the length of the portion of the intestinal tract with the condition sensed by the sensor at the location along the length of the portion of the intestinal tract.
98. The intestinal tract diagnostic system of claim 97 further comprising: a display coupled to the processor, the display being configured to display a diagnostic map of sensed conditions of the intestinal tract along the length of the portion of the intestinal tract.
99. The intestinal tract diagnostic system of claim 96 wherein the capsule further comprises a telemetry circuit configured to transmit a telemetry signal containing information corresponding to a sensed condition.
100. The intestinal tract diagnostic system of claim 99 fuπher comprising a telemetry receiver wherein the telemetry receiver is arranged to receive the telemetry signal and to communicate the information corresponding to the sensed condition to the processor.
101. An intestinal tract treatment system comprising: a first capsule including: a sensor arranged to sense a condition of a portion of an intestinal tract at a location of the first capsule along a length of a portion of the intestinal tract as the first capsule passes through a portion of the intestinal tract; a first position identifier configured to transmit information identifying the location of the first capsule and a sensed condition transmitter configured to transmit information concerning the sensed condition; and; a receiver external to the first capsule, configured to receive the information identifying the location of the first capsule and information concerning the sensed condition; a processor configured to communicate with the receiver to receive the information identifying location of the first capsule and information concerning the sensed condition, wherein the processor is configured to determine α location of the sensed condition along a length of the portion of the intestinal tract at the location, and a second capsule including a treatment de ice arranged to provide a therapeutic function within the portion of the intestinal tract, and a second position identifier configuied to transmit information identifying a location of the second capsule along the length of the the portion of the intestinal tract as it passes through the portion of the intestinal tract, wherein the processor is configured to determine a location of the second capsule corresponding to the location of the sensed condition along the length of the intestinal tract
102 The intestinal tract treatment system of claim 101 wherein said receiver comprises a plurality of recei ers
103 The intestinal tract treatment system of claim 102 where said plurality of receivers comprises a position identification receiver configured to receive the informaiton identifying the location of the first capsule and a sensed condition receiver configured to receive information concerning the sensed condition
104 The intestinal tract treatment system of claim 101 wherein the second capsule includes a treatment actuating de ice operative to cause the treatment device to provide a therapeutic function
105 The intestinal tract treatment system of claim 104 wherein the second capsule fuπher comprises a telemetry circuit configured to receive a command signal from an external transmitter to control the treatment actuating device
106 The intestinal tract treatment system of claim 105 wherein the processor is operatively coupled to the external transmitter to cause the external transmitter to provide the command signal when the second capsule has reached a location along the length of the tract to be treated
107 The intestinal tract treatment system of claim 106 wherein the location along the length of the tract to be treated is the location of the sensed condition
108 A method tor treating an intestinal tract of a patient comprising the steps of providing a first capsule comprising a first acoustic transducer, providing a second acoustic transducer acoustically coupled to the patient at a location external to the patient's body, introducing the first capsule into the intestinal tract wherem the capsule moves tlirough the intestinal tract, causing an acoustic signal to be emitted between the first and second acoustic transducers as the first capsule passes through at least a portion of the intestinal tract, determining a time lag between emitting the acoustic signal from the one the first and second transducers and receiving the signal at the other of the first and second transducers, and determining a first location of the capsule at least in part from the time lag
109 The method of claim 108 wherein the step of providing a second transducer comprises providing a plurality of external transducers coupled to the patient at a plurality of corresponding locations external to the patient's body
1 10 The method of claim 109 further comprising the steps of causing at least one acoustic signal to be emitted between the first acoustic transducer and the plurality of external transducers, and determining a plurality of corresponding time lags between emitting the at least one acoustic signal between the first transducer and the plurality of external transducers, to determine a capsule location within space as the capsule moves through a portion of the intestinal tract
1 1 1 The method of claim 1 10 further comprising the steps of providing the capsule with a sensor, and sensing a condition of the intestinal tract with the sensor
1 12 The method of claim 1 1 1 further comprising the step of coπelating the condition w ith the capsule location within space
1 13 The method of claim 1 1 1 wherein the step of sensing a condition of the intestinal tract comprises sensing pressure
1 14 The method of claim 1 1 1 wherein the step of sensing a condition of the intestinal tract comprises sensing inherent electrical signals of a smooth muscle associated with the intestinal tract
1 15 The method of claim 1 1 1 wherein the step of sensing comprises sensing at a plurality of locations.
1 16. The method of claim 1 15 further comprising the step of creating a map of sensed conditions with respect to the locations
1 17 The method of claim 1 1 1 further comprising the steps of providing signals representative of each of the time lags to a processor, providing a telemetry circuit for communicating a signal representative of the sensed condition to a telemetry receiver external of the patient, wherein the telemetry receiver is coupled to the processor that identifies the location along the length of the portion of the intestinal tract where the condition is sensed, providing a signal representativ e ot the sensed condition to the telemetry receiver
1 18 The method of claim 108 further comprising the step of determining a plurality of locations of the capsule as the capsule moves through a portion of the intestinal tract to determine the capsule's position along a length of the intestinal tract
1 19 The method of claim 1 18 further compnsing the step of providing the capsule with a sensor, and sensing a condition of the intestinal tract with the sensor
120 The method of claim 1 19 further comprising the step of correlating the condition with a location along the length of the tract
121 The method of claim 120 further comprising the step of determining a location for treatment
122 The method of claim 1 19 wherein the step of sensing comprises sensing at a plurality of locations
123 The method of claim 121 further compnsing the step of providing a second capsule comprising a third acoustic transducer and a treatment device coupled to a telemetry circuit, introducing the second capsule into the intestinal tract wherein the second capsule moves through the intestinal tract, causing a second acoustic signal to be emitted between the first and third acoustic transducers as the capsule passes through at least α portion of the intestinal tract, identifying when the second capsule has reached the location for treatment, and sending a control signal to the telemetry circuit of the second capsule to actuate the treatment device to treat the intestinal tract at the location for treatment along the length of the portion of the intestinal tract where the condition is sensed
124 The method of claim 108 further comprising the steps of identifying a location for treatment along the length of the portion of the intestinal tract, providing a second capsule comprising α third acoustic transducer and α treatment device coupled to a telemetry circuit, introducing a second capsule into the intestinal tract wherein the second capsule moves through the intestinal tract, causing a second acoustic signal to be emitted between the first and third acoustic transducers as the capsule passes through at least a portion of the intestinal tract, determining a time lag between emitting the acoustic signal from one the first and third acoustic transducers and receiving the signal at the other of the first and third acoustic transducers, and determining a location of the second capsule at least in part from the time lag, identifying when the second capsule has reached the location for treatment, and treating the intestinal tiact at the location for treatment
125 The method of claim 124 wherein the telemetry circuit is arranged to receive a signal from a telemetry transmitter external of the patient, and wherein the step of treating the intestinal tract comprises the step of providing a control signal from the telemetry transmitter to the telemetry circuit to instruct the second capsule to provide treatment at the location
126 The method of claim 108 wherein the first transducer ot the first capsule comprises an acoustic transmitter and wherein the second transducer located external to the patient's body comprises an acoustic receiver, and wherein the acoustic signal is transmitted from the first transducer to the second transducer
127 The method of claim 126 wherein the step of determining α time lag comprises providing the first capsule with an electromagnetic signal transmitter, transmitting an electromagnetic signal from the electromagnetic signal transmitter at a predetermined time interval with respect to emitting the acoustic signal, receiving the electromagnetic signal at an electromagnetic signal receiver external to the patient, and determining the time lag based on the time between receiv ing the electromagnetic signal and receiving the the acoustic signal
128 A method of treating a portion of an intestinal tract compnsing the steps of passing a capsule through the portion of the intestinal tract determining the capsule's location along the length of the portion of the intestinal tract, identifying a location along the length to be treated, passing a second capsule through the intestinal tract, identifying when the second capsule has reached the location along the length to be treated, and providing treatment with the second capsule to the location along the length of the intestinal tract
129 The method of claim 128 wherein the second capsule comprises a stimulating electrode and wherein the step of providing treatment to the tract comprises delivering an electrically stimulating signal to the tract w ith the stimulating electrode
130 The method of claim 129 wherein the step of deliv ering an electrically stimulating signal to the intestinal tract comprises electrically stimulating the small intestine
13 1 The method ot claim 129 w herein the step of delivering an electrically stimulating signal to the intestinal tract comprises electrically stimulating the small intestine to induce smooth muscle contractions
132 The method of claim 129 wherein the step ot delivering an electrically stimulating signal to the intestinal tract comprises electrically stimulating the small intestine to inhibit smooth muscle contractions
133 The method of claim 129 wherein the step of delivering an electncally stimulating signal to the intestinal tract comprises supplying a plurality of electrical pulses to the wall of the intestinal tract
134 The method of claim 133 wherein the pulses compπse burst pulses
135 The method of claim 129 wherein the step of de venng an electncally stimulating signal to the intestinal tract comprises pacing the intestinal tract
136 The method of claim 135 wherein the step of pacing the intestinal tract comprises pacing the small intestine
137 The method of claim 129 wherein the step of delivering an electrically stimulating signal to the intestinal tract comprises entraining the slow wave signal of the small intestine
138 A method for diagnosing and/or treating an intestinal tract comprising providing a capsule comprising a capsule body including an electronic circuit, and at least one electrode coupled to the capsule body, the at least one electrode being in communication with the electronic circuit, introducing the capsule into the intestinal tract w herein the capsule moves through the intestinal tract so that the at least one electrode is in contact with tissue in the intestinal tract, receiving an inherent electrical signal from the tissue in the electronic circuit tlirough the electrode, identifying a location along a length of the intestinal tract corresponding to the inherent electrical signal
139 The method of claim 138 further comprising providing a second capsule comprising a second capsule body including a second electronic circuit; and at least one second electrode coupled to the second capsule body, the at least one second electrode being in communication with the second electronic circuit, introducing the second capsule into the intestinal tract wherein the second capsule moves through the intestinal tract so that the second electrode is in contact with tissue in the intestinal tract, delivering a second electncally stimulating signal from the at least one second electrode to the location along the length of the intestinal tract
140 A system for treating or diagnosing the intestinal tract of a patient compnsing4 first capsule means for passing through the intestinal tract of a patient; means for tracking the first capsule means, the means for tracking located external to the patient's body; an acoustic signal means for transmitting an acoustic signal between the first capsule means as it is passing through the intestinal tract of a patient, and the means for tracking; a location determining means for determining the location of the first capsule means on a coordinate system
141 The system of claim 140 wherein the location determining means comprises a time differential means for determining the transmission time of the acoustic signal between the external means and the capsule means
142 The system of claim 141 wherein the location determining means comprises a reference means for determining the time of origin of the acoustic signal
143 The system of claim 140 wherein the location determining means is configured to determine at least one location ot the first capsule means along the length of a portion of an intestinal tract
144 The system of claim 143 further comprising second capsule means for passing through the intestinal tract and means for tracking the second capsule means along the length of the portion of the intestinal tract at at least one tracked location, wherein the means for tracking the second capsule means includes means for correlating the at least one tracked location of the second capsule means with the at least one location of the first capsule means
1^ A system for treating or diagnosing the intestinal tract of a patient compnsing a capsule means for emitting a detectable acoustic signal as it passes through at least a portion of the intestinal tract, and receiver means for receiving the acoustic signal external to the patient, the receiver means comprising at least one acoustic sensor, processor means for determining the location of the capsule means on a coordinate system based on the acoustic signal received at the receiver means
146 The system of claim 145 further comprising reference means for determining the time lag between emitting the detectable acoustic signal and receiving the acoustic signal at the at least one acoustic sensor
147 A system for treating or diagnosing the intestinal tract of a patient comprising capsule means for passing through a portion ot an intestinal tract, means for determining location of the capsule means along α length of a portion of the intestinal tract, sensing means for sensing a characteristic of the intestinal tract, tracking means for tracking the location of the capsule means with respect to the sensed characteristic at the location.
148 The system of claim 147 wherein the means for determining location of the capsule means comprises an acoustic means for determining location
149 The system of claim 147 further comprising means for diagnosing a location for treatment along the length of the portion of the intestinal tract.
150. The system of claim 149 further compnsing means for treating the location for treatment along the length of the portion of the intestinal tract.
151. The system of claim 150 wherein the means for treating compnses: a second capsule means; means for determining the location of the second capsule means along the length of a portion of the intestinal tract; and means for actuating the means for treating when the second capsule is located at the location for treatment.
152. A capsule for treatment or diagnosis of an intestinal tract of a patient compnsing: a capsule means for emitting a detectable acoustic signal as it passes through at least a portion of the intestinal tract; and reference means for determining the time of acoustic signal origination from the capsule means.
153 The capsule of claim 152 further comprising sensor means for sensing a characteristic of the intestinal tract.
154. The capsule of claim 152 further comprising a sampling means for obtaining a sample from the intestinal tract.
155. The capsule of claim 152 further comprising a treatment means for providing treatment to the intestinal tract.
156. A capsule for treatment or diagnosis of an intestinal tract comprising: a capsule body; an electronic circuit; and at least one electrode coupled to the capsule body, the at least one electrode being in communication with the electronic circuit, wherein the capsule body is ananged to pass through at least a portion of the intestinal tract, whereby the at least one electrode is positioned to be in electrical contact with at least a portion of the intestinal tract, wherein the at least one electrode is located on an elongate member coupled to the capsule body.
157. The capsule of claim 1356 wherein the elongate member comprises an elastically behaving material.
158. The capsule of claim 157 wherein the elastically behaving material has reversible deformation upon removal of a load from the material.
159. The capsule of claim 156 wherein the at least one electrode comprises a plurality of stimulating electrodes spaced longitudinally on the elongate member and at least one conductor coupling the plurality of electrodes to the electronic circuit.
160. The capsule of claim 156 wherein the elongate member is movable between stored and deployed positions, and further including a dissolvable encasing carried by the capsule body for retaining the flexible elongate member in the stored position.
161. The capsule of claim 156 wherein a plurality of electrodes are located on the elongate member.
162. The capsule of claim 161 wherein at least one electrode pair is selectable from the plurality of electrodes.
163. A capsule for treatment or diagnosis of an intestinal tract comprising: a capsule body; an electronic circuit; and at least three electrodes coupled to the capsule body, the electrodes being in communication with the electronic circuit, wherein the capsule body is arranged to pass through at least a portion of the intestinal tract, whereby at least one electrode pair is selectable from the at least three electrodes.
164. A capsule for treatment or diagnosis of an intestinal tract comprising: a capsule body: an electronic circuit; and at least one electrode coupled to the capsule body, the electrode being in communication with the electronic circuit, a sensor arranged to measure contractile forces exerted by a portion of the intestinal tract wherein the capsule body is arranged to pass through at least a portion of the intestinal tract, whereby the electrode is positioned to be in electrical contact with at least a portion of the intestinal tract, wherein the sensor comprises a pressure sensing device, and wherein the pressure sensing device comprises an inflatable member having an inner chamber for receving an inflation medium and a pressure transducer in fluid communication with the inner chamber, the pressure transducer configured to convert the sensed pressure into a representative electrical signal.
165. The capsule of claim 164 wherein the inflatable member is located on an elongate member having a lumen therethrough, wherein the lumen is in fluid communication with the inner chamber and the pressure transducer.
166. The capsule of claim 164 further comprising an inflation device arranged to inflate the inflatable member with the inflation medium.
167. A capsule for diagnosing an intestinal tract comprising: a first electrode pair and a second electrode pair spaced from the first electrode pair; a stimulation circuit configured to provide a stimulating signal through the first electrode pair and a sensing circuit configured to sense an electrical signal through the second electrode pair.
168. A method for diagnosing an intestinal tract comprising the steps of: providing a capsule having a first electrode pair and a second electrode pair spaced from the first electrode pair, and a stimulation circuit coupled to the first electrode pair and a sensing circuit coupled to the second electrode pair; introducing the capsule into the intestinal tract of a patient; delivering a stimulation signal to the first electrode pair; and sensing with the second electrode pair, an electrical potential in the intestinal tract adjacent the second electrode pair and resulting from the stimulation signal delivered through the first electrode pair.
169. A capsule for treatment or diagnosis of an intestinal tract comprising: a capsule body including an electronic circuit; at least one electrode coupled to the capsule body, the at least one electrode being in communication with the electronic circuit, wherein the capsule body is arranged to pass through at least a portion of the intestinal tract, whereby the at least one electrode is positioned to be in electrical contact with at least a portion of the intestinal tract; and a telemetry circuit operative to receive an instruction signal comprising a trigger signal from an external source, the telemetry circuit coupled to the at least one electrode so that when the capsule is deployed and a trigger signal is provided, an electrical stimulation pulse is delivered to a portion of the intestinal wall.
170. The capsule of claim 169 wherein the instruction signal further comprises a stimulation parameter instruction.
171. The capsule of claim 169 wherein the stimulation pulse comprises a burst of pulses.
172. The capsule of claim 169 wherein the stimulation pulse comprises a series of stimulation pulses.
173. The capsule of claim 169 wherein the stimulation pulse comprises a plurality of temporally spaced electrical pulses to the wall of the intestinal tract.
174. A method for treating an intestinal tract comprising the steps of: providing a capsule comprising: a capsule body including an electronic circuit; at least one electrode coupled to the capsule body, the at least one electrode being in communication with the electronic circuit; and a telemetry circuit coupled to the at least one electrode; introducing the capsule into the intestinal tract wherein the capsule moves through the intestinal tract; and transmitting an instruction signal comprising a trigger signal from an external source to the telemetry circuit to trigger a stimulation pulse provided to a portion of the intestinal wall.
175. The method of claim 174 wherein the step of transmitting an instruction signal to the telemetry circuit to trigger a stimulation pulse comprises transmitting a trigger signal to the telemetry circuit to trigger a burst of pulses.
176. The method of claim 174 wherein the step of transmitting an instruction signal comprises transmitting a trigger signal to electrically stimulate the small intestine.
177. The method of claim 176 wherein the small intestine is stimulated to cause smooth muscle contractions.
178. The method of claim 176 wherein the small intestine is stimulated to inhibit smooth muscle contractions.
179. The method of claim 174 wherein the step of transmitting an instruction signal from an external source to the telemetry circuit to trigger a stimulation pulse provided to a portion of the intestinal wall comprises supplying a plurality of temporally spaced electrical pulses to the wall of the intestinal tract.
180. The method of claim 174 further comprising the step of transmitting a plurality of instruction signals comprising a plurality of trigger signals from an external source to the telemetry circuit, wherein the trigger signals to trigger a plurality of stimulation pulses configured to pace a portion of intestinal tract.
181. The method of claim 180 wherein the trigger signals are configured to pace the small intestine.
182. The method of claim 174 further comprising the step of transmitting a plurality of instruction signals comprising a plurality of trigger signals from an external source to the telemetry circuit to trigger a plurality of stimulation pulses configured to entrain the slow wave signal of the small intestine.
183. The method of claim 179 wherein the stimulation pulse comprises burst pulses.
184. The method of claim 174 wherein one or more stimulation pulses cause peristaltic motion in the intestinal tract.
PCT/US2002/019619 2001-06-26 2002-06-20 Diagnostic capsule and method of use WO2003001966A2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002315385A AU2002315385B2 (en) 2001-06-26 2002-06-20 Diagnostic capsule and method of use
CA2451807A CA2451807C (en) 2001-06-26 2002-06-20 Capsule and method for treating or diagnosing the intestinal tract
JP2003508213A JP2004538055A (en) 2001-06-26 2002-06-20 Diagnostic capsule and method of using the same
EP02742233.6A EP1408820B1 (en) 2001-06-26 2002-06-20 Capsule for treating or diagnosing the intestinal tract

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/892,404 2001-06-26
US09/892,404 US7160258B2 (en) 2001-06-26 2001-06-26 Capsule and method for treating or diagnosing the intestinal tract

Publications (2)

Publication Number Publication Date
WO2003001966A2 true WO2003001966A2 (en) 2003-01-09
WO2003001966A3 WO2003001966A3 (en) 2003-04-17

Family

ID=25399897

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2002/019619 WO2003001966A2 (en) 2001-06-26 2002-06-20 Diagnostic capsule and method of use
PCT/US2003/041351 WO2005096937A2 (en) 2001-06-26 2003-12-22 Capsule and method for treating or diagnosing conditions or diseases of the intestinal tract

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2003/041351 WO2005096937A2 (en) 2001-06-26 2003-12-22 Capsule and method for treating or diagnosing conditions or diseases of the intestinal tract

Country Status (6)

Country Link
US (13) US7160258B2 (en)
EP (1) EP1408820B1 (en)
JP (1) JP2004538055A (en)
AU (2) AU2002315385B2 (en)
CA (1) CA2451807C (en)
WO (2) WO2003001966A2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357794A (en) * 2003-06-02 2004-12-24 Olympus Corp Endoscope device
JP2005102851A (en) * 2003-09-29 2005-04-21 Olympus Corp Medication capsule, capsule type medical device, capsule type medical device system and control method
WO2006025457A1 (en) * 2004-09-01 2006-03-09 Olympus Corporation Antenna unit and method for manufacturing antenna unit
JP2006102361A (en) * 2004-10-08 2006-04-20 Olympus Corp Intracorporeal medical treatment apparatus
JP2008506419A (en) * 2003-12-17 2008-03-06 チェック キャップ エルエルシー Detection of intraluminal polyps
JP2008513182A (en) * 2004-09-21 2008-05-01 シャロン ヴェンチャーズ リサーチ インコーポレイテッド Tissue expansion device
JP2008521541A (en) * 2004-12-02 2008-06-26 ギブン イメージング リミテッド In vivo electrical stimulation devices, systems, and methods
WO2008030482A3 (en) * 2006-09-06 2008-08-21 Arneson Michael R System and method for acoustic information exchange involving an ingestible low power capsule
US7824347B2 (en) 2001-06-26 2010-11-02 Entrack, Inc. System for marking a location for treatment within the gastrointestinal tract
US7988620B2 (en) 2004-01-14 2011-08-02 Olympus Corporation Capsule endoscope apparatus
US8021356B2 (en) 2003-09-29 2011-09-20 Olympus Corporation Capsule medication administration system, medication administration method using capsule medication administration system, control method for capsule medication administration system
US8257257B2 (en) 2004-09-08 2012-09-04 Olympus Corporation Capsule type medical device
US8394118B2 (en) 2004-09-21 2013-03-12 Airxpanders, Inc. Tissue expanders and methods of use
US8401262B2 (en) 2001-06-20 2013-03-19 Given Imaging, Ltd Device, system and method for motility measurement and analysis
US9351632B2 (en) 2008-07-09 2016-05-31 Innurvation, Inc. Displaying image data from a scanner capsule
US9392961B2 (en) 2003-12-17 2016-07-19 Check-Cap Ltd. Intra-lumen polyp detection
US9526584B2 (en) 2004-09-21 2016-12-27 Airxpanders, Inc. Tissue expanders, implants, and methods of use
US11116658B2 (en) 2015-06-28 2021-09-14 Oberon Sciences Ilan Ltd. Devices for gastrointestinal stimulation and uses thereof

Families Citing this family (518)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US20090030309A1 (en) 2007-07-26 2009-01-29 Senorx, Inc. Deployment of polysaccharide markers
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US7983734B2 (en) 2003-05-23 2011-07-19 Senorx, Inc. Fibrous marker and intracorporeal delivery thereof
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US8498693B2 (en) 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US8666495B2 (en) 1999-03-05 2014-03-04 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US9101765B2 (en) 1999-03-05 2015-08-11 Metacure Limited Non-immediate effects of therapy
US7558616B2 (en) * 1999-03-11 2009-07-07 Biosense, Inc. Guidance of invasive medical procedures using implantable tags
US7590441B2 (en) * 1999-03-11 2009-09-15 Biosense, Inc. Invasive medical device with position sensing and display
US7549960B2 (en) * 1999-03-11 2009-06-23 Biosense, Inc. Implantable and insertable passive tags
US6575991B1 (en) 1999-06-17 2003-06-10 Inrad, Inc. Apparatus for the percutaneous marking of a lesion
US20070203531A9 (en) * 1999-12-03 2007-08-30 Medtronic, Inc. Heart rate variability control of gastric electrical stimulator
US6600953B2 (en) * 2000-12-11 2003-07-29 Impulse Dynamics N.V. Acute and chronic electrical signal therapy for obesity
CN1277589C (en) * 2000-05-31 2006-10-04 超治疗股份有限公司 Electropancreatography
US20020072780A1 (en) 2000-09-26 2002-06-13 Transneuronix, Inc. Method and apparatus for intentional impairment of gastric motility and /or efficiency by triggered electrical stimulation of the gastrointestinal tract with respect to the intrinsic gastric electrical activity
ES2409758T3 (en) 2000-11-20 2013-06-27 Senorx, Inc. Tissue site markers for in vivo imaging
EP1357971B1 (en) * 2001-01-05 2015-05-20 Metacure Limited Regulation of eating habits
IL143260A (en) * 2001-05-20 2006-09-05 Given Imaging Ltd Array system and method for locating an in vivo signal source
IL150167A (en) * 2001-06-11 2010-05-17 Arkady Glukhovsky Device for in vivo imaging
US6939292B2 (en) * 2001-06-20 2005-09-06 Olympus Corporation Capsule type endoscope
EP1421775A4 (en) 2001-06-28 2009-12-23 Given Imaging Ltd In vivo imaging device with a small cross sectional area and methods for construction thereof
WO2003005877A2 (en) * 2001-07-12 2003-01-23 Given Imaging Ltd. Device and method for examining a body lumen
US7585283B2 (en) * 2001-07-12 2009-09-08 Given Imaging Ltd. Device and method for examining a body lumen
US6934573B1 (en) * 2001-07-23 2005-08-23 Given Imaging Ltd. System and method for changing transmission from an in vivo sensing device
US20060184039A1 (en) * 2001-07-26 2006-08-17 Dov Avni Apparatus and method for light control in an in-vivo imaging device
US6951536B2 (en) * 2001-07-30 2005-10-04 Olympus Corporation Capsule-type medical device and medical system
FR2828642B1 (en) * 2001-08-16 2004-08-27 Sylvain Meyer DEVICE FOR DETERMINING THE VALUE OF AT LEAST ONE PHYSICAL PARAMETER AND / OR FOR DETERMINING AT LEAST ONE COMPOUND IN A LIVING BEING
JP3756797B2 (en) * 2001-10-16 2006-03-15 オリンパス株式会社 Capsule type medical equipment
US20030171655A1 (en) * 2002-03-08 2003-09-11 Newman Richard W. Combination otoscope
JP3869291B2 (en) * 2002-03-25 2007-01-17 オリンパス株式会社 Capsule medical device
US7797033B2 (en) * 2002-04-08 2010-09-14 Smart Pill Corporation Method of using, and determining location of, an ingestible capsule
US20030216622A1 (en) * 2002-04-25 2003-11-20 Gavriel Meron Device and method for orienting a device in vivo
US7106367B2 (en) * 2002-05-13 2006-09-12 Micron Technology, Inc. Integrated CMOS imager and microcontroller
JP2004041709A (en) * 2002-05-16 2004-02-12 Olympus Corp Capsule medical care device
US20040193229A1 (en) * 2002-05-17 2004-09-30 Medtronic, Inc. Gastric electrical stimulation for treatment of gastro-esophageal reflux disease
US7357037B2 (en) * 2002-07-10 2008-04-15 Orthodata Technologies Llc Strain sensing system
US20040088022A1 (en) * 2002-07-26 2004-05-06 Transneuronix, Inc. Process for electrostimulation treatment of morbid obesity
US20040032957A1 (en) * 2002-08-14 2004-02-19 Mansy Hansen A. Sensors and sensor assemblies for monitoring biological sounds and electric potentials
US7118531B2 (en) * 2002-09-24 2006-10-10 The Johns Hopkins University Ingestible medical payload carrying capsule with wireless communication
US20060036158A1 (en) 2003-11-17 2006-02-16 Inrad, Inc. Self-contained, self-piercing, side-expelling marking apparatus
JP2006509574A (en) * 2002-12-16 2006-03-23 ギブン イメージング リミテッド Apparatus, system, and method for selective actuation of in-vivo sensors
US7141071B2 (en) 2002-12-23 2006-11-28 Python Medical, Inc. Implantable digestive tract organ
US7037343B2 (en) 2002-12-23 2006-05-02 Python, Inc. Stomach prosthesis
JP2006512130A (en) * 2002-12-26 2006-04-13 ギブン・イメージング・リミテツド Immobilizable in vivo sensing device
JP2004219329A (en) * 2003-01-16 2004-08-05 Ntt Docomo Inc Method, system and instrument for measuring position, and in-vivo wireless device
KR100522132B1 (en) * 2003-01-25 2005-10-18 한국과학기술연구원 Data receiving method and apparatus in human body communication system
US20050058701A1 (en) * 2003-01-29 2005-03-17 Yossi Gross Active drug delivery in the gastrointestinal tract
JP2006517827A (en) * 2003-01-29 2006-08-03 イー−ピル・ファーマ・リミテッド Delivery of active drugs in the gastrointestinal tract
US20040267240A1 (en) * 2003-01-29 2004-12-30 Yossi Gross Active drug delivery in the gastrointestinal tract
US20040150560A1 (en) * 2003-01-31 2004-08-05 Jun Feng Positioning system and method
JP4149838B2 (en) * 2003-03-04 2008-09-17 オリンパス株式会社 Capsule medical device
US7430449B2 (en) 2003-03-14 2008-09-30 Endovx, Inc. Methods and apparatus for testing disruption of a vagal nerve
US20040210141A1 (en) * 2003-04-15 2004-10-21 Miller David G. Apparatus and method for dissipating heat produced by TEE probes
DE10317368B4 (en) * 2003-04-15 2005-04-21 Siemens Ag Wireless endoscopy apparatus and method of operating the same
US7316930B1 (en) 2003-04-21 2008-01-08 National Semiconductor Corporation Use of vertically stacked photodiodes in a gene chip system
US7141016B2 (en) * 2003-04-25 2006-11-28 Medtronic, Inc. Systems and methods for monitoring gastrointestinal system
AU2003232040A1 (en) * 2003-05-06 2005-01-21 Biomedix S.A. Method and system for treating irritable bowel syndrome
US7742818B2 (en) * 2003-05-19 2010-06-22 Medtronic, Inc. Gastro-electric stimulation for increasing the acidity of gastric secretions or increasing the amounts thereof
US7620454B2 (en) * 2003-05-19 2009-11-17 Medtronic, Inc. Gastro-electric stimulation for reducing the acidity of gastric secretions or reducing the amounts thereof
WO2004105583A2 (en) * 2003-05-23 2004-12-09 Arizona Board Of Regents Piezo micro-markers for ultrasound medical diagnostics
US7877133B2 (en) 2003-05-23 2011-01-25 Senorx, Inc. Marker or filler forming fluid
JP4943841B2 (en) * 2003-06-20 2012-05-30 メタキュアー リミティド Gastrointestinal methods and devices for use in treating disorders
JP4451217B2 (en) * 2004-06-01 2010-04-14 オリンパス株式会社 Capsule type communication system, capsule type medical device and biological information receiving device
US20090012530A1 (en) * 2003-07-15 2009-01-08 Fowler Dennis L Insertable Device and System For Minimal Access Procedure
US7066879B2 (en) * 2003-07-15 2006-06-27 The Trustees Of Columbia University In The City Of New York Insertable device and system for minimal access procedure
US7554452B2 (en) * 2003-07-18 2009-06-30 Cary Cole Ingestible tracking and locating device
US8792985B2 (en) 2003-07-21 2014-07-29 Metacure Limited Gastrointestinal methods and apparatus for use in treating disorders and controlling blood sugar
US20070060971A1 (en) * 2003-07-21 2007-03-15 Ofer Glasberg Hepatic device for treatment or glucose detection
US9700450B2 (en) 2003-07-28 2017-07-11 Baronova, Inc. Devices and methods for gastrointestinal stimulation
US20090259236A2 (en) 2003-07-28 2009-10-15 Baronova, Inc. Gastric retaining devices and methods
US8821521B2 (en) 2003-07-28 2014-09-02 Baronova, Inc. Gastro-intestinal device and method for treating addiction
US9498366B2 (en) 2003-07-28 2016-11-22 Baronova, Inc. Devices and methods for pyloric anchoring
US8048169B2 (en) * 2003-07-28 2011-11-01 Baronova, Inc. Pyloric valve obstructing devices and methods
US7460896B2 (en) * 2003-07-29 2008-12-02 Given Imaging Ltd. In vivo device and method for collecting oximetry data
DE10336734A1 (en) * 2003-08-11 2005-03-10 Siemens Ag Tissue anchor for endorobots
US7399274B1 (en) 2003-08-19 2008-07-15 National Semiconductor Corporation Sensor configuration for a capsule endoscope
WO2005024687A1 (en) * 2003-09-02 2005-03-17 Fujitsu Limited Medicine dosage management method, medicine, and medicine dosage management device
US7603158B2 (en) * 2003-09-04 2009-10-13 Adrian Nachman Current density impedance imaging (CDII)
DE10346678A1 (en) * 2003-10-08 2005-05-12 Siemens Ag Endoscopy device comprising an endoscopy capsule or an endoscopy head with an image recording device and imaging method for such an endoscopy device
US7054690B2 (en) * 2003-10-22 2006-05-30 Intrapace, Inc. Gastrointestinal stimulation device
DE10349659A1 (en) * 2003-10-24 2005-06-09 Siemens Ag System for the localization of lesions in hollow organs
WO2005044094A1 (en) * 2003-11-11 2005-05-19 Olympus Corporation Capsule type medical device system and capsule type medical device
US20050273002A1 (en) 2004-06-04 2005-12-08 Goosen Ryan L Multi-mode imaging marker
US7193611B2 (en) * 2003-12-12 2007-03-20 Yu-Yu Chen Computer cursor pointing device with electric stimulator
US8306592B2 (en) * 2003-12-19 2012-11-06 Olympus Corporation Capsule medical device
US20050137656A1 (en) * 2003-12-23 2005-06-23 American Environmental Systems, Inc. Acoustic-optical therapeutical devices and methods
JP4150663B2 (en) * 2003-12-25 2008-09-17 オリンパス株式会社 In-subject position detection system
JP2005192632A (en) * 2003-12-26 2005-07-21 Olympus Corp Subject interior moving state detecting system
WO2005062717A2 (en) * 2003-12-31 2005-07-14 Given Imaging Ltd. In-vivo sensing device with detachable part
US8702597B2 (en) * 2003-12-31 2014-04-22 Given Imaging Ltd. Immobilizable in-vivo imager with moveable focusing mechanism
WO2005067817A1 (en) * 2004-01-13 2005-07-28 Remon Medical Technologies Ltd Devices for fixing a sensor in a body lumen
JP4578817B2 (en) * 2004-02-06 2010-11-10 オリンパス株式会社 Surgical lesion identification system
DE602005027311D1 (en) * 2004-02-06 2011-05-19 Olympus Corp RECEIVER
ITPI20040008A1 (en) * 2004-02-17 2004-05-17 Dino Accoto ROBOTIC CAPSULE FOR INTRA-BODY BIOMEDICAL APPLICATIONS
US7657298B2 (en) 2004-03-11 2010-02-02 Stryker Leibinger Gmbh & Co. Kg System, device, and method for determining a position of an object
JP2005253798A (en) * 2004-03-12 2005-09-22 Olympus Corp Internally introduced device in subject
US20050222637A1 (en) * 2004-03-30 2005-10-06 Transneuronix, Inc. Tachygastrial electrical stimulation
US7654985B2 (en) * 2004-03-30 2010-02-02 Given Imaging Ltd. Controlled detachment of intra-luminal medical device
US20050222638A1 (en) * 2004-03-30 2005-10-06 Steve Foley Sensor based gastrointestinal electrical stimulation for the treatment of obesity or motility disorders
DE102004016694B4 (en) * 2004-03-31 2012-05-16 Siemens Ag A method for obtaining medically relevant data from the gastrointestinal tract of a human or an animal and a suitable dosage form
US8353896B2 (en) * 2004-04-19 2013-01-15 The Invention Science Fund I, Llc Controllable release nasal system
US8000784B2 (en) * 2004-04-19 2011-08-16 The Invention Science Fund I, Llc Lumen-traveling device
US20070010868A1 (en) * 2004-04-19 2007-01-11 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Lumenally-active device
US9801527B2 (en) * 2004-04-19 2017-10-31 Gearbox, Llc Lumen-traveling biological interface device
US8024036B2 (en) * 2007-03-19 2011-09-20 The Invention Science Fund I, Llc Lumen-traveling biological interface device and method of use
US20050234440A1 (en) * 2004-04-19 2005-10-20 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System with a sensor for perfusion management
US7998060B2 (en) * 2004-04-19 2011-08-16 The Invention Science Fund I, Llc Lumen-traveling delivery device
US20070244520A1 (en) * 2004-04-19 2007-10-18 Searete Llc Lumen-traveling biological interface device and method of use
US8337482B2 (en) * 2004-04-19 2012-12-25 The Invention Science Fund I, Llc System for perfusion management
US8092549B2 (en) 2004-09-24 2012-01-10 The Invention Science Fund I, Llc Ciliated stent-like-system
US9011329B2 (en) * 2004-04-19 2015-04-21 Searete Llc Lumenally-active device
US8361013B2 (en) * 2004-04-19 2013-01-29 The Invention Science Fund I, Llc Telescoping perfusion management system
US7850676B2 (en) * 2004-04-19 2010-12-14 The Invention Science Fund I, Llc System with a reservoir for perfusion management
US9373166B2 (en) * 2004-04-23 2016-06-21 Siemens Medical Solutions Usa, Inc. Registered video endoscopy and virtual endoscopy
EP1593374A1 (en) * 2004-05-07 2005-11-09 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Remote control release of encapsulated material
WO2005112895A2 (en) * 2004-05-20 2005-12-01 Spectrum Dynamics Llc Ingestible device platform for the colon
ATE481032T1 (en) * 2004-05-21 2010-10-15 Given Imaging Ltd DEVICE, SYSTEM AND METHOD FOR IN VIVO SAMPLING
US20050267555A1 (en) * 2004-05-28 2005-12-01 Marnfeldt Goran N Engagement tool for implantable medical devices
JP4547192B2 (en) * 2004-06-15 2010-09-22 オリンパス株式会社 Antenna device
US7596403B2 (en) * 2004-06-30 2009-09-29 Given Imaging Ltd. System and method for determining path lengths through a body lumen
US7664551B2 (en) * 2004-07-07 2010-02-16 Medtronic Transneuronix, Inc. Treatment of the autonomic nervous system
JP4445812B2 (en) * 2004-07-08 2010-04-07 オリンパス株式会社 Intra-subject introduction apparatus and intra-subject introduction system
US10646109B1 (en) * 2004-07-19 2020-05-12 Hypermed Imaging, Inc. Device and method of balloon endoscopy
US8612016B2 (en) 2004-08-18 2013-12-17 Metacure Limited Monitoring, analysis, and regulation of eating habits
US20060173361A1 (en) * 2004-08-20 2006-08-03 Vanderbilt University Endoscopy capsule with site marking capability and application of the same
US8321173B2 (en) * 2004-08-25 2012-11-27 Wallance Daniel I System and method for using magnetic sensors to track the position of an object
US8560041B2 (en) * 2004-10-04 2013-10-15 Braingate Co., Llc Biological interface system
WO2006040768A2 (en) * 2004-10-11 2006-04-20 Given Imaging Ltd. Device, system and method for in-vivo cauterization
US20060122522A1 (en) * 2004-12-03 2006-06-08 Abhi Chavan Devices and methods for positioning and anchoring implantable sensor devices
WO2006064502A2 (en) * 2004-12-14 2006-06-22 E-Pill Pharma, Ltd. Local delivery of drugs or substances using electronic permeability increase
US7606621B2 (en) * 2004-12-21 2009-10-20 Ebr Systems, Inc. Implantable transducer devices
WO2006069215A2 (en) * 2004-12-21 2006-06-29 Ebr Systems, Inc. Leadless cardiac system for pacing and arrhythmia treatment
ATE399501T1 (en) * 2004-12-30 2008-07-15 Given Imaging Ltd SYSTEM FOR LOCALIZING AN IN-VIVO SIGNAL SOURCE
JP2008526289A (en) * 2004-12-30 2008-07-24 ギブン イメージング エルティーディー Apparatus, system, and method for programmable in vivo imaging
WO2006070368A2 (en) * 2004-12-30 2006-07-06 Given Imaging Ltd. Method and system for treatment of an in vivo site
WO2006074029A2 (en) * 2005-01-06 2006-07-13 Cyberkinetics Neurotechnology Systems, Inc. Neurally controlled and multi-device patient ambulation systems and related methods
IL166183A0 (en) * 2005-01-06 2006-01-15 Yissum Res Dev Co Novel diagnostic and imaging techniques of the gi tract
US8095209B2 (en) * 2005-01-06 2012-01-10 Braingate Co., Llc Biological interface system with gated control signal
US20060167564A1 (en) * 2005-01-10 2006-07-27 Flaherty J C Limb and digit movement system
US10390714B2 (en) 2005-01-12 2019-08-27 Remon Medical Technologies, Ltd. Devices for fixing a sensor in a lumen
CN101237903A (en) * 2005-01-18 2008-08-06 皇家飞利浦电子股份有限公司 System and method for controlling traversal of an ingested capsule
US20080194912A1 (en) * 2005-01-18 2008-08-14 Koninklijke Philips Electronics, N.V. Electronically Controlled Ingestible Capsule for Sampling Fluids in Alimentary Tract
JP2006212051A (en) * 2005-02-01 2006-08-17 Yamaha Corp Capsule type imaging device, in vivo imaging system and in vivo imaging method
US8852083B2 (en) * 2005-02-04 2014-10-07 Uti Limited Partnership Self-stabilized encapsulated imaging system
US20060178857A1 (en) * 2005-02-10 2006-08-10 Barajas Leandro G Quasi-redundant smart sensing topology
US9821158B2 (en) 2005-02-17 2017-11-21 Metacure Limited Non-immediate effects of therapy
JP2006230906A (en) * 2005-02-28 2006-09-07 Toshiba Corp Medical diagnostic system and apparatus, and endoscope
JP4974541B2 (en) * 2005-03-08 2012-07-11 株式会社半導体エネルギー研究所 Manufacturing method of wireless chip
US20060202269A1 (en) 2005-03-08 2006-09-14 Semiconductor Energy Laboratory Co., Ltd. Wireless chip and electronic appliance having the same
WO2006129321A2 (en) 2005-06-02 2006-12-07 Metacure N.V. Gi lead implantation
WO2007080595A2 (en) 2006-01-12 2007-07-19 Metacure N.V. Electrode assemblies, tools, and methods for gastric wall implantation
IL174531A0 (en) * 2005-04-06 2006-08-20 Given Imaging Ltd System and method for performing capsule endoscopy diagnosis in remote sites
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
EP1714607A1 (en) * 2005-04-22 2006-10-25 Given Imaging Ltd. Device, system and method for motility measurement and analysis
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
WO2006116718A2 (en) 2005-04-28 2006-11-02 Proteus Biomedical, Inc. Pharma-informatics system
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US20060270899A1 (en) * 2005-05-13 2006-11-30 Omar Amirana Magnetic pill with camera and electrical properties
WO2006123346A2 (en) * 2005-05-19 2006-11-23 E-Pill Pharma, Ltd. Ingestible device for nitric oxide production in tissue
EP1888620A1 (en) * 2005-05-24 2008-02-20 responsif GmbH Method for producing virus-type particles containing an active substance
JP4813190B2 (en) * 2005-05-26 2011-11-09 オリンパスメディカルシステムズ株式会社 Capsule medical device
WO2006131522A1 (en) * 2005-06-10 2006-12-14 Siemens Aktiengesellschaft Device and method for diagnosis and/or treatment of functional gastrointestinal diseases
US20070005071A1 (en) * 2005-06-30 2007-01-04 Cannuflow, Inc. System and method for locating resorbable tissue fixation devices
US20070003612A1 (en) * 2005-06-30 2007-01-04 Microsoft Corporation Capsule
US8491464B2 (en) * 2005-07-08 2013-07-23 Olympus Corporation In-vivo information acquiring apparatus, in-vivo information acquiring system, and in-vivo information acquiring method
DE102005032371A1 (en) * 2005-07-08 2007-01-11 Siemens Ag endoscopy capsule
DE102005032369A1 (en) * 2005-07-08 2007-01-11 Siemens Ag endoscopy capsule
DE102005032378A1 (en) * 2005-07-08 2007-01-11 Siemens Ag Magnetic navigable endoscopy capsule with sensor for detecting a physiological size
DE102005032289B4 (en) * 2005-07-11 2011-06-30 Siemens AG, 80333 endoscopy system
US7324915B2 (en) * 2005-07-14 2008-01-29 Biosense Webster, Inc. Data transmission to a position sensor
EP1905345A4 (en) * 2005-07-20 2012-04-25 Olympus Medical Systems Corp Apparatus and system for detaining a device for introduction into body cavity
US9047746B1 (en) 2005-07-20 2015-06-02 Neil Euliano Electronic medication compliance monitoring system and associated methods
CA2616010C (en) * 2005-07-20 2013-11-05 Neil R. Euliano Medication compliance system and associated methods
WO2007014084A1 (en) * 2005-07-22 2007-02-01 Dow Global Technologies Inc. Oral drug compliance monitoring using sound detection
US20090124871A1 (en) * 2005-08-22 2009-05-14 Khalil Arshak Tracking system
EP1920418A4 (en) * 2005-09-01 2010-12-29 Proteus Biomedical Inc Implantable zero-wire communications system
JP2007068622A (en) * 2005-09-05 2007-03-22 Olympus Corp Acquisition system for biological information of subject
CA2562580C (en) 2005-10-07 2014-04-29 Inrad, Inc. Drug-eluting tissue marker
US8442841B2 (en) 2005-10-20 2013-05-14 Matacure N.V. Patient selection method for assisting weight loss
SG132553A1 (en) * 2005-11-28 2007-06-28 Pang Ah San A device for laparoscopic or thoracoscopic surgery
US8295932B2 (en) 2005-12-05 2012-10-23 Metacure Limited Ingestible capsule for appetite regulation
US20070129703A1 (en) * 2005-12-06 2007-06-07 D Andrea David T Ingestible pressure sensing capsule
WO2007066288A2 (en) * 2005-12-07 2007-06-14 Koninklijke Philips Electronics, N.V. Electronic gastrointestinal screening
TW200724066A (en) * 2005-12-21 2007-07-01 Everest Display Inc Capsule image sensing and storage device
EP1965853B1 (en) * 2005-12-22 2011-10-12 Koninklijke Philips Electronics N.V. Device for controlled release of chemical molecules
US7945308B2 (en) * 2005-12-27 2011-05-17 General Electric Company Systems, methods and apparatus for an endo-rectal receive-only probe
US8060214B2 (en) * 2006-01-05 2011-11-15 Cardiac Pacemakers, Inc. Implantable medical device with inductive coil configurable for mechanical fixation
US20070249900A1 (en) * 2006-01-19 2007-10-25 Capso Vision, Inc. In vivo device with balloon stabilizer and valve
US20070255098A1 (en) * 2006-01-19 2007-11-01 Capso Vision, Inc. System and method for in vivo imager with stabilizer
BRPI0706915A2 (en) * 2006-02-03 2011-04-12 Baronova Inc device for applying energy to the gastrointestinal tract, method of treating gastrointestinal disorders and method of treating obesity
WO2007104755A1 (en) 2006-03-13 2007-09-20 Novo Nordisk A/S Secure pairing of electronic devices using dual means of communication
CN101401314B (en) * 2006-03-13 2013-04-24 诺沃-诺迪斯克有限公司 Medical system comprising dual purpose communication means
US20080058786A1 (en) * 2006-04-12 2008-03-06 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Autofluorescent imaging and target ablation
US20080058788A1 (en) 2006-04-12 2008-03-06 Searete Llc., A Limited Liability Corporation Of The State Of Delaware Autofluorescent imaging and target ablation
DE202006006268U1 (en) * 2006-04-12 2006-06-14 Branofilter Gmbh Device for detachable fastening of dust filter bag in dust evacuation equipment has flange part which is pluggable to adaptor plate radially outside of annular seal and is pivotally connected to adaptor plate
US9198563B2 (en) 2006-04-12 2015-12-01 The Invention Science Fund I, Llc Temporal control of a lumen traveling device in a body tube tree
US20070249046A1 (en) * 2006-04-20 2007-10-25 Shields Donald J Jr Apparatus and method for the static application of therapeutic ultrasound and stem cell therapy of living tissues
CA2649447A1 (en) * 2006-04-25 2007-11-08 Dow Global Technologies Inc. Oral drug compliance monitoring using magnetic-field sensors
US20070255231A1 (en) * 2006-04-27 2007-11-01 Sdgi Holdings, Inc. Vented directional delivery cannula with openings of different shape for use with flowable materials and method for use thereof
US20070255230A1 (en) * 2006-04-27 2007-11-01 Sdgi Holdings, Inc. Vented directional delivery cannula with openings of different size for use with flowable materials and method for use thereof
CN101496042A (en) 2006-05-02 2009-07-29 普罗秋斯生物医学公司 Patient customized therapeutic regimens
WO2007136712A2 (en) * 2006-05-17 2007-11-29 Medtronic, Inc. Electrical stimulation therapy to promote gastric distention for obesity management
US20070270651A1 (en) * 2006-05-19 2007-11-22 Zvika Gilad Device and method for illuminating an in vivo site
US7482969B2 (en) * 2006-06-14 2009-01-27 Board Of Trustees Of The University Of Illinois Material movement sensing techniques
US20080172073A1 (en) * 2006-06-16 2008-07-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Active blood vessel sleeve
US8163003B2 (en) 2006-06-16 2012-04-24 The Invention Science Fund I, Llc Active blood vessel sleeve methods and systems
CN101472639A (en) * 2006-06-20 2009-07-01 皇家飞利浦电子股份有限公司 Electronic capsule for treating gastrointestinal disease
US7616982B1 (en) * 2006-06-22 2009-11-10 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Determination and application of location and angular orientation of a pill transmitter within a body
DE102006000318A1 (en) * 2006-07-03 2008-01-10 Novineon Healthcare Technology Partners Gmbh Device for bleeding detection
US20080020037A1 (en) * 2006-07-11 2008-01-24 Robertson Timothy L Acoustic Pharma-Informatics System
JP5084200B2 (en) * 2006-08-29 2012-11-28 オリンパスメディカルシステムズ株式会社 Capsule guidance system
WO2008030480A2 (en) * 2006-09-06 2008-03-13 Innurvation, Inc. Ingestible low power sensor device and system for communicating with same
US20080058597A1 (en) * 2006-09-06 2008-03-06 Innurvation Llc Imaging and Locating Systems and Methods for a Swallowable Sensor Device
US20080071248A1 (en) * 2006-09-15 2008-03-20 Cardiac Pacemakers, Inc. Delivery stystem for an implantable physiologic sensor
ES2369203T3 (en) * 2006-09-15 2011-11-28 Cardiac Pacemakers, Inc. ANCHORAGE FOR AN IMPLANTABLE MEDICAL DEVICE.
US8676349B2 (en) 2006-09-15 2014-03-18 Cardiac Pacemakers, Inc. Mechanism for releasably engaging an implantable medical device for implantation
US20080077184A1 (en) * 2006-09-27 2008-03-27 Stephen Denker Intravascular Stimulation System With Wireless Power Supply
US9227011B2 (en) 2006-09-29 2016-01-05 MEDIMETRICS Personalized Drug Delivery B.V. Miniaturized threshold sensor
US8054140B2 (en) * 2006-10-17 2011-11-08 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
US20080097249A1 (en) * 2006-10-20 2008-04-24 Ellipse Technologies, Inc. External sensing system for gastric restriction devices
JP5916277B2 (en) * 2006-10-25 2016-05-11 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible control activation identifier
WO2008053396A2 (en) * 2006-10-31 2008-05-08 Koninklijke Philips Electronics N.V. Design of swallowable multi-nozzle, dosing device for releasing medicines in the gastrointesinal tract
WO2008057720A1 (en) * 2006-11-08 2008-05-15 Cardiac Pacemakers, Inc. Implant for securing a sensor in a vessel
CN101541372A (en) * 2006-11-20 2009-09-23 史密丝克莱恩比彻姆公司 Method and system for evaluating gastrointestinal motility
US20080306355A1 (en) * 2006-11-20 2008-12-11 Smithkline Beecham Corporation Method and System for Monitoring Gastrointestinal Function and Physiological Characteristics
US8718193B2 (en) * 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US8067772B2 (en) * 2006-12-05 2011-11-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
EP3542748B1 (en) 2006-12-12 2023-08-16 C. R. Bard, Inc. Multiple imaging mode tissue marker
US8401622B2 (en) 2006-12-18 2013-03-19 C. R. Bard, Inc. Biopsy marker with in situ-generated imaging properties
US8702591B2 (en) * 2007-01-12 2014-04-22 Olympus Medical Systems Corp. Capsule medical apparatus
US20080161639A1 (en) * 2006-12-28 2008-07-03 Olympus Medical Systems Corporation Capsule medical apparatus and body-cavity observation method
JP2008178544A (en) * 2007-01-24 2008-08-07 Olympus Corp Wireless feeding system, capsule endoscope and capsule endoscope system
MY165368A (en) * 2007-02-01 2018-03-21 Proteus Digital Health Inc Ingestible event marker systems
EP3236524A1 (en) 2007-02-14 2017-10-25 Proteus Digital Health, Inc. In-body power source having high surface area electrode
EP2117639B1 (en) * 2007-02-21 2013-05-22 St. Jude Medical AB Detect eating to initiate gastric pacing
EP2119025A1 (en) * 2007-02-28 2009-11-18 Rf Surgical Systems, Inc. Method, apparatus and article for detection of transponder tagged objects, for example during surgery
WO2008112577A1 (en) 2007-03-09 2008-09-18 Proteus Biomedical, Inc. In-body device having a multi-directional transmitter
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
JP4936528B2 (en) * 2007-03-28 2012-05-23 富士フイルム株式会社 Capsule endoscope system and method for operating capsule endoscope system
ATE474496T1 (en) * 2007-04-04 2010-08-15 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant Anna REMOTE CONTROLLED ENDOSCOPIC CAPSULE
US7696877B2 (en) 2007-05-01 2010-04-13 Rf Surgical Systems, Inc. Method, apparatus and article for detection of transponder tagged objects, for example during surgery
US8204599B2 (en) * 2007-05-02 2012-06-19 Cardiac Pacemakers, Inc. System for anchoring an implantable sensor in a vessel
EP1987774A1 (en) * 2007-05-03 2008-11-05 BrainLAB AG Measurement of sonographic acoustic velocity using a marker device
US20080281375A1 (en) * 2007-05-07 2008-11-13 Transtimulation Research, Inc. Gastrointestinal stimulator device for digestive and eating disorders
US9364666B2 (en) * 2007-05-07 2016-06-14 Transtimulation Research, Inc. Method of using a gastrointestinal stimulator device for digestive and eating disorders
US20080287833A1 (en) * 2007-05-16 2008-11-20 Semler John R Method of evaluating gastroparesis using an ingestible capsule
US20080283066A1 (en) * 2007-05-17 2008-11-20 Cardiac Pacemakers, Inc. Delivery device for implantable sensors
US8718773B2 (en) 2007-05-23 2014-05-06 Ebr Systems, Inc. Optimizing energy transmission in a leadless tissue stimulation system
US8540632B2 (en) * 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
US7634318B2 (en) 2007-06-14 2009-12-15 Cardiac Pacemakers, Inc. Multi-element acoustic recharging system
JP5099681B2 (en) * 2007-06-29 2012-12-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic probe, ultrasonic diagnostic apparatus, and method for estimating surface temperature of ultrasonic probe
WO2009017988A1 (en) * 2007-07-27 2009-02-05 Mediscience Technology Corp. Method and system for managing power consumption in a compact diagnostic capsule
US10441766B2 (en) * 2007-08-08 2019-10-15 Given Imaging Ltd. Method for clearing a body lumen environment
EP2180831A4 (en) * 2007-08-16 2011-03-02 Rdc Rafael Dev Corp Ltd An ultrasonic capsule
US7930033B2 (en) * 2007-08-17 2011-04-19 Jianfeng Chen Appendicular and rectal stimulator device for digestive and eating disorders
US8165663B2 (en) * 2007-10-03 2012-04-24 The Invention Science Fund I, Llc Vasculature and lymphatic system imaging and ablation
WO2009033049A1 (en) 2007-09-07 2009-03-12 Baronova, Inc. Device for intermittently obstructing a gastric opening and method of use
WO2009036256A1 (en) * 2007-09-14 2009-03-19 Corventis, Inc. Injectable physiological monitoring system
PT2192946T (en) * 2007-09-25 2022-11-17 Otsuka Pharma Co Ltd In-body device with virtual dipole signal amplification
SE532140C2 (en) * 2007-09-28 2009-11-03 Clinical Laserthermia Systems Device for positioning implantable leads
US20090088618A1 (en) 2007-10-01 2009-04-02 Arneson Michael R System and Method for Manufacturing a Swallowable Sensor Device
WO2009045297A1 (en) * 2007-10-01 2009-04-09 Medtronic, Inc. Gastric electrical stimulation with lockout interval anti-desensitization feature
US9197470B2 (en) * 2007-10-05 2015-11-24 Innurvation, Inc. Data transmission via multi-path channels using orthogonal multi-frequency signals with differential phase shift keying modulation
US8235903B2 (en) * 2007-10-12 2012-08-07 Innoscion, Llc Remotely controlled implantable transducer and associated displays and controls
US8789536B2 (en) 2007-10-17 2014-07-29 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8707964B2 (en) * 2007-10-31 2014-04-29 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8303573B2 (en) 2007-10-17 2012-11-06 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US20090105561A1 (en) * 2007-10-17 2009-04-23 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Medical or veterinary digestive tract utilization systems and methods
US8808276B2 (en) * 2007-10-23 2014-08-19 The Invention Science Fund I, Llc Adaptive dispensation in a digestive tract
CA2703486A1 (en) * 2007-10-23 2009-04-30 Allergan, Inc. Pressure sensing intragastric balloon
US8808271B2 (en) * 2007-10-31 2014-08-19 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US20090163894A1 (en) * 2007-10-31 2009-06-25 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Medical or veterinary digestive tract utilization systems and methods
US8333754B2 (en) * 2007-10-31 2012-12-18 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
US8109920B2 (en) * 2007-10-31 2012-02-07 The Invention Science Fund I, Llc Medical or veterinary digestive tract utilization systems and methods
EP2215726B1 (en) * 2007-11-27 2018-01-10 Proteus Digital Health, Inc. Transbody communication systems employing communication channels
JP5265179B2 (en) * 2007-11-28 2013-08-14 オリンパスメディカルシステムズ株式会社 Capsule medical system
US20090137866A1 (en) * 2007-11-28 2009-05-28 Searete Llc, A Limited Liability Corporation Of The State Delaware Medical or veterinary digestive tract utilization systems and methods
US20090149839A1 (en) * 2007-12-11 2009-06-11 Hyde Roderick A Treatment techniques using ingestible device
WO2009091239A1 (en) 2008-01-15 2009-07-23 Erasmus University Medical Center Rotterdam System and method for monitoring pressure within a living body
US8529441B2 (en) * 2008-02-12 2013-09-10 Innurvation, Inc. Ingestible endoscopic optical scanning device
US20100016662A1 (en) * 2008-02-21 2010-01-21 Innurvation, Inc. Radial Scanner Imaging System
DK2268261T3 (en) * 2008-03-05 2017-08-28 Proteus Digital Health Inc Edible event markers with multi-mode communications and systems as well as methods for using them
JP2009240756A (en) * 2008-03-14 2009-10-22 Fujitsu Component Ltd Capsule for medical device
JP2009226066A (en) * 2008-03-24 2009-10-08 Olympus Corp Capsule medical device
WO2009120636A1 (en) * 2008-03-25 2009-10-01 Ebr Systems, Inc. Temporary electrode connection for wireless pacing systems
CN101569540B (en) * 2008-04-29 2011-05-11 香港理工大学 Wireless ultrasonic scanning system
US8406490B2 (en) 2008-04-30 2013-03-26 Given Imaging Ltd. System and methods for determination of procedure termination
CA2723363A1 (en) * 2008-05-07 2009-11-12 The Smartpill Corporation Method of determining the slow wave of a gastrointestinal tract
WO2009137666A2 (en) * 2008-05-08 2009-11-12 The Trustees Of The University Of Pennsylvania Chemiluminescence enhanced detection
WO2009151946A2 (en) * 2008-05-27 2009-12-17 Rf Surgical Systems, Inc. Multi-modal transponder and method and apparatus to detect same
US8111162B2 (en) * 2008-05-28 2012-02-07 Rf Surgical Systems, Inc. Method, apparatus and article for detection of transponder tagged objects, for example during surgery
US20090312627A1 (en) * 2008-06-16 2009-12-17 Matott Laura A Radio-labeled ingestible capsule
SG10201702853UA (en) 2008-07-08 2017-06-29 Proteus Digital Health Inc Ingestible event marker data framework
WO2010008936A1 (en) * 2008-07-15 2010-01-21 Cardiac Pacemakers, Inc. Implant assist apparatus for acoustically enabled implantable medical device
US8287902B2 (en) * 2008-07-23 2012-10-16 Rainbow Medical Ltd. Enhanced-diffusion capsule
EP2313003B1 (en) 2008-08-13 2016-08-03 Proteus Digital Health, Inc. Ingestible circuitry
FR2935604B1 (en) * 2008-09-08 2012-01-06 Centre Nat Rech Scient METHOD AND DEVICE FOR MARKING A MEDIUM, AND MARKER USABLE IN SUCH A METHOD
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
CN101721194B (en) * 2008-10-14 2011-11-09 鸿富锦精密工业(深圳)有限公司 Capsule endoscope and method for manufacturing lenses thereof
EP2350969A4 (en) * 2008-10-14 2012-08-29 Proteus Biomedical Inc Method and system for incorporating physiologic data in a gaming environment
US8386010B2 (en) * 2008-10-23 2013-02-26 Covidien Lp Surgical tissue monitoring system
US8726911B2 (en) 2008-10-28 2014-05-20 Rf Surgical Systems, Inc. Wirelessly detectable objects for use in medical procedures and methods of making same
US8264342B2 (en) * 2008-10-28 2012-09-11 RF Surgical Systems, Inc Method and apparatus to detect transponder tagged objects, for example during medical procedures
KR101192690B1 (en) * 2008-11-13 2012-10-19 프로테우스 디지털 헬스, 인코포레이티드 Ingestible therapy activator system, therapeutic device and method
US20110196454A1 (en) * 2008-11-18 2011-08-11 Proteus Biomedical, Inc. Sensing system, device, and method for therapy modulation
JP2012511961A (en) * 2008-12-11 2012-05-31 プロテウス バイオメディカル インコーポレイテッド Judgment of digestive tract function using portable visceral electrical recording system and method using the same
TWI503101B (en) 2008-12-15 2015-10-11 Proteus Digital Health Inc Body-associated receiver and method
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
KR101203719B1 (en) * 2008-12-16 2012-11-21 한국전자통신연구원 Capsule endoscopy system, medical system and operation method of medical system
CA2742765C (en) 2008-12-30 2016-04-12 C.R. Bard Inc. Marker delivery device for tissue marker placement
SG172846A1 (en) 2009-01-06 2011-08-29 Proteus Biomedical Inc Ingestion-related biofeedback and personalized medical therapy method and system
MY153758A (en) 2009-01-06 2015-03-13 Proteus Digital Health Inc Pharmaceutical dosages delivery system
US8694129B2 (en) 2009-02-13 2014-04-08 Cardiac Pacemakers, Inc. Deployable sensor platform on the lead system of an implantable device
US8246565B2 (en) 2009-02-25 2012-08-21 The Invention Science Fund I, Llc Device for passively removing a target component from blood or lymph of a vertebrate subject
US8538532B2 (en) * 2009-03-03 2013-09-17 Medtronic, Inc. Electrical stimulation therapy to promote gastric distention for obesity management
WO2010111403A2 (en) 2009-03-25 2010-09-30 Proteus Biomedical, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
AU2010235197B2 (en) * 2009-03-31 2014-10-16 Covidien Lp Method of determining body exit of an ingested capsule
MX2011011506A (en) * 2009-04-28 2012-05-08 Proteus Biomedical Inc Highly reliable ingestible event markers and methods for using the same.
US20100286628A1 (en) * 2009-05-07 2010-11-11 Rainbow Medical Ltd Gastric anchor
US8414559B2 (en) * 2009-05-07 2013-04-09 Rainbow Medical Ltd. Gastroretentive duodenal pill
US20110066175A1 (en) * 2009-05-07 2011-03-17 Rainbow Medical Ltd. Gastric anchor
US9149423B2 (en) 2009-05-12 2015-10-06 Proteus Digital Health, Inc. Ingestible event markers comprising an ingestible component
US20100324365A1 (en) * 2009-06-17 2010-12-23 Daniel Victor Marquez Diagnostic Capsule with Software that Triggers Imaging Equipment
EP2461818B1 (en) 2009-08-03 2018-10-17 Incube Labs, Llc Swallowable capsule and method for stimulating incretin production within the intestinal tract
EP2467707A4 (en) 2009-08-21 2014-12-17 Proteus Digital Health Inc Apparatus and method for measuring biochemical parameters
BR112012001910A2 (en) 2009-09-21 2019-09-24 Medtronic Inc waveforms for electrical stimulation therapy
CN103079632A (en) * 2009-09-29 2013-05-01 梅迪梅特里科斯个性化药物传输私人有限公司 Intrauterine electronic capsule for administering a substance
US9409013B2 (en) 2009-10-20 2016-08-09 Nyxoah SA Method for controlling energy delivery as a function of degree of coupling
US9192353B2 (en) * 2009-10-27 2015-11-24 Innurvation, Inc. Data transmission via wide band acoustic channels
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
JP5649657B2 (en) 2009-11-20 2015-01-07 ギブン イメージング リミテッドGiven Imaging Ltd. System and method for controlling power consumption of in-vivo devices
US9226686B2 (en) * 2009-11-23 2016-01-05 Rf Surgical Systems, Inc. Method and apparatus to account for transponder tagged objects used during medical procedures
UA109424C2 (en) 2009-12-02 2015-08-25 PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS
EP2515759A4 (en) 2009-12-23 2015-01-21 Given Imaging Inc Method of evaluating constipation using an ingestible capsule
US8721620B2 (en) 2009-12-24 2014-05-13 Rani Therapeutics, Llc Swallowable drug delivery device and methods of drug delivery
EP2525712A1 (en) * 2010-01-21 2012-11-28 DeLaval Holding AB Bolus
JP4959856B2 (en) * 2010-01-29 2012-06-27 オリンパスメディカルシステムズ株式会社 Method for manufacturing capsule medical device
US8934975B2 (en) 2010-02-01 2015-01-13 Metacure Limited Gastrointestinal electrical therapy
US9014779B2 (en) 2010-02-01 2015-04-21 Proteus Digital Health, Inc. Data gathering system
US8647259B2 (en) 2010-03-26 2014-02-11 Innurvation, Inc. Ultrasound scanning capsule endoscope (USCE)
BR112012025650A2 (en) 2010-04-07 2020-08-18 Proteus Digital Health, Inc. miniature ingestible device
EA034268B1 (en) 2010-04-16 2020-01-23 Юниверсити Оф Теннесси Рисерч Фаундейшн Systems and methods for predicting gastrointestinal impairment
US8863820B2 (en) * 2010-05-12 2014-10-21 Invodane Engineering Ltd Measurement device for heat exchanger and process for measuring performance of a heat exchanger
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
US8771201B2 (en) * 2010-06-02 2014-07-08 Vital Herd, Inc. Health monitoring bolus
GB2535657A (en) * 2010-07-13 2016-08-24 Sandhill Scient Inc Apparatus and method for detecting and measuring condition of esophageal mucosa and indications of gastroesophageal reflux disease
US8776802B2 (en) * 2010-08-25 2014-07-15 Brown University Methods and systems for prolonged localization of drug delivery
EP2428161A3 (en) * 2010-09-10 2017-03-29 Assistance Publique, Hopitaux De Paris Method and system for localising an ingestible element for the functional investigation of the digestive tract
US8694091B2 (en) * 2010-10-04 2014-04-08 Delaval Holding Ab In vivo determination of acidity levels
US20140031642A1 (en) * 2010-10-29 2014-01-30 Check-Cap Ltd. Intra body capsule motion sensing and position determination systems and methods
EP2642983A4 (en) 2010-11-22 2014-03-12 Proteus Digital Health Inc Ingestible device with pharmaceutical product
US9259386B2 (en) 2010-12-23 2016-02-16 Rani Therapeutics, Llc Therapeutic preparation comprising somatostatin or somatostatin analogoue for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9149617B2 (en) 2010-12-23 2015-10-06 Rani Therapeutics, Llc Device, system and methods for the oral delivery of therapeutic compounds
US9415004B2 (en) 2010-12-23 2016-08-16 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9861683B2 (en) 2010-12-23 2018-01-09 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8764733B2 (en) 2010-12-23 2014-07-01 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9283179B2 (en) 2010-12-23 2016-03-15 Rani Therapeutics, Llc GnRH preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8846040B2 (en) 2010-12-23 2014-09-30 Rani Therapeutics, Llc Therapeutic agent preparations comprising etanercept for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9402806B2 (en) 2010-12-23 2016-08-02 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8809271B2 (en) 2010-12-23 2014-08-19 Rani Therapeutics, Llc Therapeutic agent preparations comprising liraglutide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8734429B2 (en) 2010-12-23 2014-05-27 Rani Therapeutics, Llc Device, system and methods for the oral delivery of therapeutic compounds
US10639272B2 (en) 2010-12-23 2020-05-05 Rani Therapeutics, Llc Methods for delivering etanercept preparations into a lumen of the intestinal tract using a swallowable drug delivery device
US8809269B2 (en) 2010-12-23 2014-08-19 Rani Therapeutics, Llc Therapeutic agent preparations comprising insulin for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9629799B2 (en) 2010-12-23 2017-04-25 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8980822B2 (en) 2010-12-23 2015-03-17 Rani Therapeutics, Llc Therapeutic agent preparations comprising pramlintide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9284367B2 (en) 2010-12-23 2016-03-15 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US9402807B2 (en) 2010-12-23 2016-08-02 Rani Therapeutics, Llc Therapeutic agent preparations for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
US8969293B2 (en) 2010-12-23 2015-03-03 Rani Therapeutics, Llc Therapeutic agent preparations comprising exenatide for delivery into a lumen of the intestinal tract using a swallowable drug delivery device
WO2012125425A2 (en) 2011-03-11 2012-09-20 Proteus Biomedical, Inc. Wearable personal body associated device with various physical configurations
CN103687646B (en) 2011-03-17 2016-09-21 基文影像公司 Capsule phototherapy
FR2973682A1 (en) * 2011-04-07 2012-10-12 Univ Paris Curie PROBE CONFORMIED FOR MOVING INTO A FLUID EMPLI VOLUME AND METHOD FOR MOVING SUCH PROBE
WO2012165426A1 (en) * 2011-05-30 2012-12-06 オリンパスメディカルシステムズ株式会社 Antenna device, antenna and antenna holder
EP3711658A1 (en) * 2011-06-14 2020-09-23 Gravitas Medical Inc. Apparatus for guiding medical care based on detected gastric function
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
RU2014106126A (en) 2011-07-21 2015-08-27 Протеус Диджитал Хелс, Инк. DEVICE, SYSTEM AND METHOD OF MOBILE COMMUNICATION
BR112014007612A2 (en) 2011-09-30 2017-04-25 Nyxoah SA modulated appliance configured for deployment
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
WO2013112920A1 (en) 2012-01-25 2013-08-01 Nevro Corporation Lead anchors and associated systems and methods
WO2013120184A1 (en) 2012-02-17 2013-08-22 Micropharma Limited Ingestible medical device
WO2014074625A1 (en) * 2012-02-21 2014-05-15 Allurion Technologies, Inc. Anatomically adapted ingestible delivery systems and methods
US10182932B2 (en) 2012-02-21 2019-01-22 Allurion Technologies, Inc. Methods and devices for deploying and releasing a temporary implant within the body
ES2704775T3 (en) 2012-02-21 2019-03-19 Allurion Tech Inc Devices for the deployment and release of a temporary implant in the body
WO2013143600A1 (en) * 2012-03-30 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for the treatment of metabolic disorders.
WO2013165964A1 (en) * 2012-04-30 2013-11-07 Carnegie Mellon University An ingestible, electrical device for stimulating tissues in a gastrointestinal tract of an organism
US9788883B2 (en) 2012-05-10 2017-10-17 Given Imaging Ltd. Method and apparatus for in-vivo cauterization of lesions and malignancies
CA2874620C (en) 2012-05-29 2022-07-26 Autonomix Medical, Inc. Endoscopic sympathectomy systems and methods
US20140051924A1 (en) * 2012-08-16 2014-02-20 Capso Vision, Inc In Vivo Capsule Device with Electrodes
AU2013293234B2 (en) 2012-07-23 2017-08-31 Otsuka Pharmaceutical Co., Ltd. Techniques for manufacturing ingestible event markers comprising an ingestible component
US10045713B2 (en) * 2012-08-16 2018-08-14 Rock West Medical Devices, Llc System and methods for triggering a radiofrequency transceiver in the human body
US8900142B2 (en) 2012-08-16 2014-12-02 Rock West Solutions, Inc. System and methods for locating a radiofrequency transceiver in the human body
SG11201503027SA (en) 2012-10-18 2015-05-28 Proteus Digital Health Inc Apparatus, system, and method to adaptively optimize power dissipation and broadcast power in a power source for a communication device
US11149123B2 (en) 2013-01-29 2021-10-19 Otsuka Pharmaceutical Co., Ltd. Highly-swellable polymeric films and compositions comprising the same
US20140221741A1 (en) * 2013-02-07 2014-08-07 Capso Vision, Inc. Self Assembly of In-Vivo Capsule System
EP4215111A3 (en) * 2013-03-08 2023-08-23 Li Galli B.V. Vaginal drug delivery and/or diagnostic system
US10448860B2 (en) * 2013-03-13 2019-10-22 The Johns Hopkins University System and method for bioelectric localization and navigation of interventional medical devices
JP5941240B2 (en) 2013-03-15 2016-06-29 プロテウス デジタル ヘルス, インコーポレイテッド Metal detector device, system and method
WO2014151929A1 (en) 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Personal authentication apparatus system and method
GB201304738D0 (en) 2013-03-15 2013-05-01 Mars Inc Sampling Device
BR112015023344B1 (en) 2013-03-15 2022-05-31 Baronova, Inc Device for intermittently occluding a gastric opening; and reconfiguration method installing an occlusion device
AU2014240401B2 (en) * 2013-03-15 2018-11-15 Rani Therapeutics, Llc Device for oral delivery of therapeutic compounds
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
CN105307719B (en) 2013-05-30 2018-05-29 格雷厄姆·H.·克雷西 Local nerve stimulation instrument
EP3005281A4 (en) 2013-06-04 2017-06-28 Proteus Digital Health, Inc. System, apparatus and methods for data collection and assessing outcomes
US9265935B2 (en) 2013-06-28 2016-02-23 Nevro Corporation Neurological stimulation lead anchors and associated systems and methods
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US9270503B2 (en) 2013-09-20 2016-02-23 Proteus Digital Health, Inc. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
JP2016537924A (en) 2013-09-24 2016-12-01 プロテウス デジタル ヘルス, インコーポレイテッド Method and apparatus for use with electromagnetic signals received at frequencies that are not accurately known in advance
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
US10055549B2 (en) * 2013-10-10 2018-08-21 Wireless Medical Monitoring, Inc. Method and apparatus for wireless health monitoring and emergent condition prediction
EP3060096A4 (en) * 2013-10-22 2017-11-15 Lu, Ganyu System and method for capsule device with multiple phases of density
US10945635B2 (en) 2013-10-22 2021-03-16 Rock West Medical Devices, Llc Nearly isotropic dipole antenna system
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
US9872293B1 (en) * 2013-11-22 2018-01-16 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Intelligent data transfer for multiple sensor networks over a broad temperature range
US10521561B1 (en) * 2013-12-17 2019-12-31 Etectrx, Inc. Electronic compliance system and associated methods
EP2886160A1 (en) * 2013-12-23 2015-06-24 Theraclion SA Device for treatment of a tissue and method of preparation of an image of an image-guided device for treatment of a tissue
US8960010B1 (en) 2013-12-23 2015-02-24 Fresenius Medical Care Holdings, Inc. Automatic detection and adjustment of a pressure pod diaphragm
CN105848557B (en) * 2013-12-27 2018-09-28 王康怀 Capsule camera device with multispectral light source
US11571112B2 (en) 2014-01-07 2023-02-07 The General Hospital Corporation Method and apparatus for recording microscopic images from within a living person or organism using an implantable device
US10357180B2 (en) * 2014-01-16 2019-07-23 D.T.R. Dermal Therapy Research Inc. Health monitoring system
US10219748B2 (en) 2014-01-22 2019-03-05 Nutech Ventures Gastrointestinal sensor implantation system
WO2015152958A1 (en) 2014-03-31 2015-10-08 Rf Surgical Systems, Inc. Method, apparatus and article for detection of transponder tagged objects, for example during surgery
AU2014389461B2 (en) 2014-03-31 2019-04-18 Covidien Lp Hand-held spherical antenna system to detect transponder tagged objects, for example during surgery
CN103876702A (en) * 2014-04-10 2014-06-25 重庆金山科技(集团)有限公司 Capsule endoscopy system with ultrasonic positioning function and capsule endoscopy thereof
US9669224B2 (en) 2014-05-06 2017-06-06 Medtronic, Inc. Triggered pacing system
US9492671B2 (en) * 2014-05-06 2016-11-15 Medtronic, Inc. Acoustically triggered therapy delivery
US9492396B2 (en) 2014-07-15 2016-11-15 Yossi Gross Enhanced drug delivery pill
RU2711434C2 (en) * 2014-09-17 2020-01-17 Марс, Инкорпорейтед Sampling device and method for use thereof
WO2016042302A1 (en) * 2014-09-17 2016-03-24 Mars, Incorporated Device
US11096677B2 (en) 2014-09-18 2021-08-24 Covidien Lp Regions of varying physical properties in a compressible cell collection device
US10751033B2 (en) 2014-09-18 2020-08-25 Covidien Lp Use of expansion-force elements in a compressible cell collection device
US10792020B2 (en) 2014-09-18 2020-10-06 Covidien Lp Tapered geometry in a compressible cell collection device
CN107438404B (en) * 2014-09-25 2021-07-20 普罗根尼蒂公司 Electromechanical pill device with positioning capability
CA2957067C (en) * 2014-09-26 2019-02-19 Fresenius Medical Care Holdings, Inc. Pressure output device for extracorporeal hemodialysis machine
US10912875B2 (en) * 2014-10-09 2021-02-09 Fresenius Medical Care Holdings, Inc. Sensing negative pressure with a pressure transducer
US9462968B2 (en) 2014-10-17 2016-10-11 General Electric Company System and method for assessing bowel health
US9597507B2 (en) 2014-10-31 2017-03-21 Medtronic, Inc. Paired stimulation pulses based on sensed compound action potential
US9750923B2 (en) 2014-11-19 2017-09-05 Velóce Corporation Wireless communications system integrating electronics into orally ingestible products for controlled release of active ingredients
DE112014007039T8 (en) * 2014-11-20 2017-09-07 Olympus Corporation Capsule endoscope system, capsule endoscope, capsule endoscope wireless communication procedure and program
CN107205630A (en) * 2014-12-04 2017-09-26 M·特罗尔萨斯 The capsule coating controlled for capturing images
US20160183878A1 (en) * 2014-12-27 2016-06-30 John C. Weast Technologies for managing device functions of an ingestible computing device
CN104473611B (en) * 2015-01-19 2018-01-30 吉林大学 Capsule endoscope system with ultrasonic wave positioning function
WO2016118749A1 (en) 2015-01-21 2016-07-28 Covidien Lp Detectable sponges for use in medical procedures and methods of making, packaging, and accounting for same
AU2016200113B2 (en) 2015-01-21 2019-10-31 Covidien Lp Wirelessly detectable objects for use in medical procedures and methods of making same
WO2016118755A1 (en) 2015-01-21 2016-07-28 Covidien Lp Sterilizable wirelessly detectable objects for use in medical procedures and methods of making same
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
AU2016200928B2 (en) 2015-02-26 2020-11-12 Covidien Lp Apparatuses to physically couple transponder to objects, such as surgical objects, and methods of using same
US9690963B2 (en) 2015-03-02 2017-06-27 Covidien Lp Hand-held dual spherical antenna system
USD775331S1 (en) 2015-03-02 2016-12-27 Covidien Lp Hand-held antenna system
US10193209B2 (en) 2015-04-06 2019-01-29 Covidien Lp Mat based antenna and heater system, for use during medical procedures
US20160317131A1 (en) * 2015-04-29 2016-11-03 Siemens Medical Solutions Usa, Inc. Medical diagnostic imaging ultrasound probe battery pack radio
WO2016191715A1 (en) * 2015-05-27 2016-12-01 Senseonics, Incorporated Wireless analyte monitoring
EP3302265B1 (en) * 2015-05-31 2023-08-02 Check-Cap Ltd. Drug delivery capsule
EP3108810A1 (en) * 2015-06-23 2016-12-28 Valtronic Technologies (Holding) SA Ingestible device for measuring glucose concentration
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
US10143364B2 (en) * 2015-07-23 2018-12-04 Ankon Technologies Co., Ltd Controlled image capturing method including position tracking and system used therein
CN105030342A (en) * 2015-09-01 2015-11-11 济南华奥医药科技有限公司 Robot capsule
TWI567407B (en) * 2015-09-25 2017-01-21 國立清華大學 An electronic device and an operation method for an electronic device
US10531907B2 (en) 2015-11-20 2020-01-14 Covidien Lp Devices, systems, and methods for treating ulcerative colitis and other inflammatory bowel diseases
TWI616180B (en) 2016-06-29 2018-03-01 國立成功大學 Upper gastrointestinal bleeding monitoring system
CN109661211A (en) * 2016-06-29 2019-04-19 埃尔瓦有限公司 Robot apparatus for debridement and relevant system and method
CN106053115B (en) * 2016-07-18 2018-08-28 合肥凯利光电科技有限公司 The industrial detection method of job stability in the warm and humid environment of digestive tract power detector
TWI728155B (en) 2016-07-22 2021-05-21 日商大塚製藥股份有限公司 Electromagnetic sensing and detection of ingestible event markers
IL297016B2 (en) 2016-09-09 2024-01-01 Biora Therapeutics Inc Electromechanical ingestible device for delivery of a dispensable substance
AU2017348094B2 (en) 2016-10-26 2022-10-13 Otsuka Pharmaceutical Co., Ltd. Methods for manufacturing capsules with ingestible event markers
EP3551047A1 (en) 2016-12-07 2019-10-16 Progenity, Inc. Gastrointestinal tract detection methods, devices and systems
CA3046093A1 (en) * 2016-12-14 2018-06-21 Progenity Inc. Treatment of a disease of the gastrointestinal tract with an il-1 inhibitor
WO2018116029A1 (en) * 2016-12-22 2018-06-28 King Abdullah University Of Science And Technology Dissolvable sensor system for environmental parameters
IL250090B (en) 2017-01-12 2018-10-31 Melcap Systems Ltd Capsule to be ingested by a subject and a gastrointestinal system thereof
IL268900B2 (en) 2017-03-31 2023-11-01 Biora Therapeutics Inc Localization systems and methods for an ingestible device
US11541015B2 (en) 2017-05-17 2023-01-03 Massachusetts Institute Of Technology Self-righting systems, methods, and related components
EP3624778A4 (en) 2017-05-17 2021-03-10 Massachusetts Institute of Technology Self-righting articles
KR101994935B1 (en) * 2017-06-07 2019-07-01 (의)삼성의료재단 PH measuring apparatus and PH monitoring system comprising the same
CA3067021A1 (en) * 2017-06-12 2018-12-20 Incube Labs, Llc Swallowable capsule, system and method for measuring gastric emptying parameters
WO2019008571A1 (en) * 2017-07-02 2019-01-10 Oberon Sciences Ilan Ltd. A subject-specific system and method for prevention of body adaptation for chronic treatment of disease
WO2019071075A1 (en) * 2017-10-06 2019-04-11 Massachusetts Institute Of Technology Flexible piezoelectric devices for gastrointestinal motility sensing
US10953225B2 (en) 2017-11-07 2021-03-23 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
CN111712234B (en) * 2017-12-06 2023-09-08 詹姆斯·菲利普·琼斯 Sampling capsule system
EP4344724A2 (en) 2018-02-26 2024-04-03 Allurion Technologies, Inc. Automatic-sealing balloon-filling catheter system
WO2019222570A1 (en) 2018-05-17 2019-11-21 Massachusetts Institute Of Technology Systems for electrical stimulation
WO2019226745A1 (en) * 2018-05-22 2019-11-28 Velis Christopher J P Therapy delivery systems and methods for miniaturized intra-body controllable medical devices
US11291382B2 (en) 2018-06-01 2022-04-05 Diversatek Healthcare, Inc. System and method for detecting and measuring the condition of intraluminal esophageal mucosa
EP4295820A3 (en) 2018-07-06 2024-02-28 Allurion Technologies, Inc. Binary fluid control valve system
WO2020031175A1 (en) * 2018-08-04 2020-02-13 Photopill Medical Ltd. Device and method for in-vivo positioning
US10675248B2 (en) 2018-08-14 2020-06-09 Alma Therapeutics Ltd. Expandable pill
US11883232B2 (en) * 2018-09-11 2024-01-30 Olympus Medical Systems Corporation Radial ultrasound capsule and system
WO2020069012A2 (en) 2018-09-25 2020-04-02 Miraki Innovation Think Tank, Llc In-vivo robotic imaging, sensing and deployment devices and methods for medical scaffolds
WO2020106750A1 (en) 2018-11-19 2020-05-28 Progenity, Inc. Methods and devices for treating a disease with biotherapeutics
WO2020123916A1 (en) 2018-12-13 2020-06-18 Allurion Technologies, Inc. Enhanced fluid delivery system
JP2022523121A (en) 2019-02-01 2022-04-21 マサチューセッツ インスティテュート オブ テクノロジー Systems and methods for liquid injection
KR102239107B1 (en) * 2019-02-19 2021-04-13 전남대학교산학협력단 Module type Capsule Endoscope capable of Disassembling and Assembling in the Digestive tract
CN113710162A (en) 2019-04-16 2021-11-26 因泰克医疗公司 Enhanced detection and analysis of bioacoustic signals
CN110384468B (en) * 2019-06-04 2022-05-10 聚融医疗科技(杭州)有限公司 Capsule endoscope
KR20220025834A (en) 2019-06-26 2022-03-03 뉴로스팀 테크놀로지스 엘엘씨 Non-invasive neural activators with adaptive circuits
US11793980B2 (en) * 2019-08-31 2023-10-24 Celero Systems, Inc. Intestinal attachment device
WO2021062309A1 (en) * 2019-09-26 2021-04-01 Miraki Innovation Think Tank, Llc Miniaturized intra-body controllable medical device
US11541216B2 (en) 2019-11-21 2023-01-03 Massachusetts Institute Of Technology Methods for manufacturing tissue interfacing components
WO2021119299A1 (en) * 2019-12-12 2021-06-17 GroGuru, Inc. Wireless two-way communication in complex media
WO2021119482A1 (en) 2019-12-13 2021-06-17 Progenity, Inc. Ingestible device for delivery of therapeutic agent to the gastrointestinal tract
WO2021126921A1 (en) 2019-12-16 2021-06-24 Neurostim Solutions, Llc Non-invasive nerve activator with boosted charge delivery
IT202000001792A1 (en) * 2020-01-30 2021-07-30 Giorgi Carlo De INGESTABLE DEVICE INCLUDING AN OPTIMIZED ACOUSTIC EMISSION MECHANISM
US11620464B2 (en) 2020-03-31 2023-04-04 Covidien Lp In-vivo introducible antenna for detection of RF tags
EP4178414A2 (en) * 2020-07-08 2023-05-17 PROCEPT BioRobotics Corporation Hemostasis methods and apparatuses
EP4185194A1 (en) * 2020-07-24 2023-05-31 MediBeacon Inc. Systems and methods for home transdermal assessment of gastrointestinal function
US20230372703A1 (en) * 2020-10-15 2023-11-23 Massachusetts Institute Of Technology Ingestible electronic device
CN112450857A (en) * 2020-11-30 2021-03-09 成都柏睿泰生物科技有限公司 Micro intelligent capsule for gastrointestinal examination, pH value positioning and targeted quantitative drug delivery
WO2022192762A1 (en) * 2021-03-12 2022-09-15 Celero Systems, Inc. Ingestible anxiety monitoring and treatment system
US20210361256A1 (en) * 2021-07-18 2021-11-25 Real Image Technology Co., Ltd Gastrointestinal motility measurement system
US20230190084A1 (en) * 2021-12-16 2023-06-22 Karl Storz Imaging, Inc. Implantable Internal Observation Device and System
WO2023154244A1 (en) * 2022-02-08 2023-08-17 Trustees Of Tufts College Ingestible biosensing capsule with integrated thread-based sensors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609564C1 (en) 1996-03-12 1997-06-26 Fraunhofer Ges Forschung Ultrasonic communication system for location of diagnostic capsule
WO1998011823A1 (en) 1996-09-20 1998-03-26 Cardiovascular Imaging Systems, Inc. Three-dimensional intraluminal ultrasound image reconstruction

Family Cites Families (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US703953A (en) * 1901-03-09 1902-07-01 Nat Self Winding Clock Company Self-winding electric clock.
JPS36022343B1 (en) 1959-12-24 1961-11-18 Univ Tokyo
DE1090817B (en) 1960-01-07 1960-10-13 Telefunken Gmbh Pill-shaped, swallowable transmitter
US3229664A (en) * 1964-10-06 1966-01-18 Hermann K Cymara Double drop barn cleaner
US3403684A (en) * 1964-11-23 1968-10-01 Ariel I. Stiebel Electrical stimulator
US3672352A (en) * 1969-04-09 1972-06-27 George D Summers Implantable bio-data monitoring method and apparatus
US3682160A (en) 1969-10-16 1972-08-08 Matsushita Electric Ind Co Ltd Physiological signal transmitter for use inside the body
US3659600A (en) 1970-02-24 1972-05-02 Estin Hans H Magnetically operated capsule for administering drugs
US3791377A (en) 1971-06-30 1974-02-12 T Norby Radio capsule battery
US3739279A (en) 1971-06-30 1973-06-12 Corning Glass Works Radio capsule oscillator circuit
US3971362A (en) 1972-10-27 1976-07-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Miniature ingestible telemeter devices to measure deep-body temperature
US4239040A (en) 1976-10-19 1980-12-16 Kabushiki Kaisha Daini Seikosha Capsule for medical use
US4481952A (en) 1978-03-22 1984-11-13 Jerzy Pawelec Device for the study of the alimentary canal
JPS5519124A (en) 1978-07-27 1980-02-09 Olympus Optical Co Camera system for medical treatment
DE2928477C3 (en) 1979-07-14 1982-04-15 Battelle-Institut E.V., 6000 Frankfurt Device for the release of substances at defined locations in the digestive tract
US5993378A (en) 1980-10-28 1999-11-30 Lemelson; Jerome H. Electro-optical instruments and methods for treating disease
JPS57156736A (en) 1981-03-23 1982-09-28 Olympus Optical Co Therapeutic capsule apparatus
JPS57163309A (en) 1981-04-01 1982-10-07 Olympus Optical Co Ltd Capsule apparatus for medical use
DE3440177A1 (en) 1984-11-02 1986-05-15 Friedrich Dipl.-Ing. 8031 Eichenau Hilliges Television recording and replay device for endoscopy on human and animal bodies
FR2591095B3 (en) 1985-12-09 1988-10-07 Lambert Alain UNGEABLE MODULE FOR FUNCTIONAL EXPLORATION OF THE DIGESTIVE TUBE.
JPH01193644A (en) * 1988-01-28 1989-08-03 Hitachi Ltd Position detector for ultrasonic probe
US4844076A (en) 1988-08-26 1989-07-04 The Johns Hopkins University Ingestible size continuously transmitting temperature monitoring pill
DE3836349A1 (en) 1988-10-25 1990-05-03 Forschungsgesellschaft Fuer Bi CATHETER FOR MEASURING MOTILITY AND PERISTALTICS IN HOSE-SHAPED ORGANS WHICH CONTAIN THEIR CONTENT BY SIMULTANEOUS MULTIPLE IMPEDANCE MEASUREMENT
US5024240A (en) * 1989-01-03 1991-06-18 Mcconnel Fred M S Manofluorography system, method for forming a manofluorogram and method for preparing a swallowing profile
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
JPH03136636A (en) * 1989-10-14 1991-06-11 Olympus Optical Co Ltd Position detecting device of medical capsule
US5064285A (en) 1990-05-25 1991-11-12 State Of Israel, Ministry Of Defense Position-controlled electromagnetic assembly
US5170801A (en) 1990-10-02 1992-12-15 Glaxo Inc. Medical capsule device actuated by radio-frequency (rf) signal
US5167626A (en) 1990-10-02 1992-12-01 Glaxo Inc. Medical capsule device actuated by radio-frequency (RF) signal
JP2941040B2 (en) * 1990-11-09 1999-08-25 オリンパス光学工業株式会社 Pipe self-propelled device
JP2948900B2 (en) * 1990-11-16 1999-09-13 オリンパス光学工業株式会社 Medical capsule
US5217449A (en) 1990-12-11 1993-06-08 Miyarisan Kabushiki Kaisha Medical capsule and apparatus for activating the same
US5279607A (en) 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
US5395366A (en) 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
FR2688997A1 (en) 1992-03-26 1993-10-01 Lambert Alain Autonomous telemetric capsule for exploring small bowel - contains sampler for carrying out mucous biopsies, radio transmitter and position detector
US5271449A (en) * 1992-06-03 1993-12-21 Herrick Douglas J Detachable barrier for a doorway
JPH0663045A (en) * 1992-08-20 1994-03-08 Olympus Optical Co Ltd Ultrasonic endoscope
JP2875690B2 (en) 1992-09-09 1999-03-31 株式会社フジクラ Storage method of rubber stress cone molding for cable connection part
JP3101099B2 (en) * 1992-10-30 2000-10-23 科学技術振興事業団 Apparatus and method for measuring three-dimensional position and orientation of robot by ultrasonic wave
US6256522B1 (en) 1992-11-23 2001-07-03 University Of Pittsburgh Of The Commonwealth System Of Higher Education Sensors for continuous monitoring of biochemicals and related method
JP3020376B2 (en) 1993-03-26 2000-03-15 サージミヤワキ株式会社 Internal body identification device for animals
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
JPH0789627A (en) 1993-07-30 1995-04-04 Canon Inc Cleaning of roller
JP3279409B2 (en) * 1993-10-18 2002-04-30 オリンパス光学工業株式会社 Medical capsule device
US5479935A (en) 1993-10-21 1996-01-02 Synectics Medical, Inc. Ambulatory reflux monitoring system
ZA948393B (en) 1993-11-01 1995-06-26 Polartechnics Ltd Method and apparatus for tissue type recognition
US5602301A (en) * 1993-11-16 1997-02-11 Indiana University Foundation Non-human mammal having a graft and methods of delivering protein to myocardial tissue
US5415181A (en) 1993-12-01 1995-05-16 The Johns Hopkins University AM/FM multi-channel implantable/ingestible biomedical monitoring telemetry system
IL108352A (en) 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
EP0672427A1 (en) 1994-03-17 1995-09-20 Siemens-Elema AB System for infusion of medicine into the body of a patient
US5819736A (en) 1994-03-24 1998-10-13 Sightline Technologies Ltd. Viewing method and apparatus particularly useful for viewing the interior of the large intestine
JPH07269504A (en) * 1994-03-28 1995-10-17 Suzuki Motor Corp Air hydraulic converting circuit
JP3631265B2 (en) 1994-04-27 2005-03-23 オリンパス株式会社 In-vivo observation device
IE70735B1 (en) 1994-08-15 1996-12-11 Elan Med Tech Orally administrable delivery device
US5522798A (en) 1994-10-17 1996-06-04 Abbott Laboratories Control of a multi-channel drug infusion pump using a pharmacokinetic model
IL112064A (en) 1994-12-19 1999-01-26 Israel State Apparatus and method for remote sensing of an object
US5515853A (en) 1995-03-28 1996-05-14 Sonometrics Corporation Three-dimensional digital ultrasound tracking system
US6718210B1 (en) * 1995-06-07 2004-04-06 Case Western Reserve University Functional neuromuscular stimulation system
US6445884B1 (en) 1995-06-22 2002-09-03 3Dv Systems, Ltd. Camera with through-the-lens lighting
JP3869005B2 (en) 1995-06-22 2007-01-17 3ディブイ・システムズ・リミテッド Telecentric stereoscopic camera and method
US5833603A (en) 1996-03-13 1998-11-10 Lipomatrix, Inc. Implantable biosensing transponder
WO1997036646A1 (en) 1996-04-01 1997-10-09 Valery Ivanovich Kobozev Electrical gastro-intestinal tract stimulator
US5690691A (en) 1996-05-08 1997-11-25 The Center For Innovative Technology Gastro-intestinal pacemaker having phased multi-point stimulation
JP3662072B2 (en) * 1996-06-07 2005-06-22 オリンパス株式会社 Medical capsule device
US7819807B2 (en) * 1996-06-28 2010-10-26 Sonosite, Inc. Balance body ultrasound system
US5792048A (en) 1996-09-03 1998-08-11 Schaefer; Guenter Indentification pill with integrated microchip: smartpill, smartpill with integrated microchip and microprocessor for medical analyses and a smartpill, smartbox, smartplague, smartbadge or smartplate for luggage control on commercial airliners
GB9619470D0 (en) 1996-09-18 1996-10-30 Univ London Imaging apparatus
US5836981A (en) * 1997-01-17 1998-11-17 Paceseter, Inc. Pacemaker circuit and associated methods for generating electrical stimulation signals
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US5792053A (en) * 1997-03-17 1998-08-11 Polartechnics, Limited Hybrid probe for tissue type recognition
US6324418B1 (en) 1997-09-29 2001-11-27 Boston Scientific Corporation Portable tissue spectroscopy apparatus and method
US5984875A (en) 1997-08-22 1999-11-16 Innotek Pet Products, Inc. Ingestible animal temperature sensor
US5899876A (en) 1997-08-27 1999-05-04 Becton, Dickinson And Company Multiple site drug delivery system
US6240312B1 (en) 1997-10-23 2001-05-29 Robert R. Alfano Remote-controllable, micro-scale device for use in in vivo medical diagnosis and/or treatment
IL122602A0 (en) 1997-12-15 1998-08-16 Tally Eitan Zeev Pearl And Co Energy management of a video capsule
IL122716A0 (en) 1997-12-22 1998-08-16 Tally Eitan Zeev Pearl And Co System and method for in vivo delivery of autonomous capsule
US6239724B1 (en) 1997-12-30 2001-05-29 Remon Medical Technologies, Ltd. System and method for telemetrically providing intrabody spatial position
FR2782280B1 (en) * 1998-08-12 2000-09-22 Inst Francais Du Petrole SUPPORTED CATALYSTS FOR USE IN ORGANIC COMPOUND TRANSACTION REACTIONS
JP4689825B2 (en) 1998-08-26 2011-05-25 センサーズ・フォー・メデセン・アンド・サイエンス・インコーポレーテッド Optical detector
IL126727A (en) * 1998-10-22 2006-12-31 Given Imaging Ltd Method for delivering a device to a target location
US8636648B2 (en) * 1999-03-01 2014-01-28 West View Research, Llc Endoscopic smart probe
US6464687B1 (en) * 1999-03-09 2002-10-15 Ball Semiconductor, Inc. Implantable drug delivery system
US7575550B1 (en) * 1999-03-11 2009-08-18 Biosense, Inc. Position sensing based on ultrasound emission
US6170488B1 (en) 1999-03-24 2001-01-09 The B. F. Goodrich Company Acoustic-based remotely interrogated diagnostic implant device and system
US6285897B1 (en) * 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
GB2352636B (en) 1999-08-03 2003-05-14 Univ College London Hospitals Improved passage-travelling device
IL131242A0 (en) 1999-08-04 2001-01-28 Given Imaging Ltd A method for temperature sensing
GB9930000D0 (en) * 1999-12-21 2000-02-09 Phaeton Research Ltd An ingestible device
US6794628B2 (en) 2000-01-03 2004-09-21 3Dv Systems, Ltd. Solid state optical shutter
IL150810A0 (en) 2000-01-19 2003-02-12 Given Imaging Ltd A system for detecting substances
US7039453B2 (en) * 2000-02-08 2006-05-02 Tarun Mullick Miniature ingestible capsule
KR100800040B1 (en) 2000-03-08 2008-01-31 기븐 이미징 리미티드 A capsule for in vivo imaging
IL142026A (en) 2000-03-14 2008-04-13 Yissum Res Dev Co Device and method for in vitro detection of blood
US6475145B1 (en) 2000-05-17 2002-11-05 Baymar, Inc. Method and apparatus for detection of acid reflux
IL163684A0 (en) 2000-05-31 2005-12-18 Given Imaging Ltd Measurement of electrical characteristics of tissue
AU2001277163A1 (en) 2000-07-24 2002-02-05 Motorola, Inc. Ingestible electronic capsule
US20020099310A1 (en) 2001-01-22 2002-07-25 V-Target Ltd. Gastrointestinal-tract sensor
JP4249479B2 (en) 2000-09-27 2009-04-02 ギブン イメージング リミテッド Immobilizable in vivo detection device
US6929636B1 (en) 2000-11-08 2005-08-16 Hewlett-Packard Development Company, L.P. Internal drug dispenser capsule medical device
AU2002222460A1 (en) 2000-12-07 2002-06-18 Given Imaging Ltd. Method and system for use of a pointing device with moving images
KR100870033B1 (en) 2001-01-16 2008-11-21 기븐 이미징 리미티드 System and method for wide field imaging of body lumens
JP3974527B2 (en) 2001-01-16 2007-09-12 ギブン・イメージング・リミテツド System and method for determining body cavity status in vivo
CN1310617C (en) 2001-01-22 2007-04-18 V-目标技术有限公司 Ingestible pill
US6584346B2 (en) * 2001-01-22 2003-06-24 Flowmaster, Inc. Process and apparatus for selecting or designing products having sound outputs
CN100469308C (en) 2001-03-14 2009-03-18 吉温成象有限公司 Method and system for detecting colorimetric abnormalites
WO2002080376A2 (en) 2001-03-29 2002-10-10 Given Imaging Ltd. A method for timing control
US7409243B2 (en) * 2001-04-04 2008-08-05 Mirabel Medical Ltd. Breast cancer detection
EP1418845A4 (en) 2001-04-04 2006-06-07 Given Imaging Ltd Induction powered in vivo imaging device
US7119814B2 (en) 2001-05-18 2006-10-10 Given Imaging Ltd. System and method for annotation on a moving image
IL143260A (en) 2001-05-20 2006-09-05 Given Imaging Ltd Array system and method for locating an in vivo signal source
US7160258B2 (en) 2001-06-26 2007-01-09 Entrack, Inc. Capsule and method for treating or diagnosing the intestinal tract
WO2003005877A2 (en) * 2001-07-12 2003-01-23 Given Imaging Ltd. Device and method for examining a body lumen
US7037343B2 (en) 2002-12-23 2006-05-02 Python, Inc. Stomach prosthesis
US7141071B2 (en) 2002-12-23 2006-11-28 Python Medical, Inc. Implantable digestive tract organ
WO2004091361A2 (en) 2002-12-24 2004-10-28 Entrack, Inc. Optical capsule and spectroscopic method for treating or diagnosing the intestinal tract
WO2005058210A1 (en) 2003-12-19 2005-06-30 Patrick Leahy An anti-reflux system
JP6089627B2 (en) 2012-11-26 2017-03-08 株式会社リコー Power consumption estimation apparatus and power consumption estimation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19609564C1 (en) 1996-03-12 1997-06-26 Fraunhofer Ges Forschung Ultrasonic communication system for location of diagnostic capsule
WO1998011823A1 (en) 1996-09-20 1998-03-26 Cardiovascular Imaging Systems, Inc. Three-dimensional intraluminal ultrasound image reconstruction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1408820A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8401262B2 (en) 2001-06-20 2013-03-19 Given Imaging, Ltd Device, system and method for motility measurement and analysis
US10226608B2 (en) 2001-06-26 2019-03-12 Entrack, Inc. Optical capsule and spectroscopic method for treating and diagnosing the intestinal tract
US8360976B2 (en) 2001-06-26 2013-01-29 Entrack, Inc. Optical capsule and spectroscopic method for treating or diagnosing the intestinal tract
US7824347B2 (en) 2001-06-26 2010-11-02 Entrack, Inc. System for marking a location for treatment within the gastrointestinal tract
US8005536B2 (en) 2001-06-26 2011-08-23 Entrack, Inc. Capsule and method for treating or diagnosing conditions or diseases of the intestinal tract
JP2004357794A (en) * 2003-06-02 2004-12-24 Olympus Corp Endoscope device
JP2005102851A (en) * 2003-09-29 2005-04-21 Olympus Corp Medication capsule, capsule type medical device, capsule type medical device system and control method
US8021356B2 (en) 2003-09-29 2011-09-20 Olympus Corporation Capsule medication administration system, medication administration method using capsule medication administration system, control method for capsule medication administration system
JP2008506419A (en) * 2003-12-17 2008-03-06 チェック キャップ エルエルシー Detection of intraluminal polyps
US9392961B2 (en) 2003-12-17 2016-07-19 Check-Cap Ltd. Intra-lumen polyp detection
US7988620B2 (en) 2004-01-14 2011-08-02 Olympus Corporation Capsule endoscope apparatus
WO2006025457A1 (en) * 2004-09-01 2006-03-09 Olympus Corporation Antenna unit and method for manufacturing antenna unit
US7492320B2 (en) 2004-09-01 2009-02-17 Olympus Corporation Antenna unit and method for manufacturing antenna unit
CN100464701C (en) * 2004-09-01 2009-03-04 奥林巴斯株式会社 Antenna unit and method for manufacturing antenna unit
US8257257B2 (en) 2004-09-08 2012-09-04 Olympus Corporation Capsule type medical device
US8394118B2 (en) 2004-09-21 2013-03-12 Airxpanders, Inc. Tissue expanders and methods of use
US8617198B2 (en) 2004-09-21 2013-12-31 Airxpanders, Inc. Tissue expanders and methods of use
US8808322B2 (en) 2004-09-21 2014-08-19 Airxpanders, Inc. Tissue expanders and methods of use
US10792121B2 (en) 2004-09-21 2020-10-06 AirX Bioscience, LLC Tissue expanders and methods of use
JP2008513182A (en) * 2004-09-21 2008-05-01 シャロン ヴェンチャーズ リサーチ インコーポレイテッド Tissue expansion device
US9526584B2 (en) 2004-09-21 2016-12-27 Airxpanders, Inc. Tissue expanders, implants, and methods of use
US10245117B2 (en) 2004-09-21 2019-04-02 Airxpanders, Inc. Tissue expanders, implants, and methods of use
JP2006102361A (en) * 2004-10-08 2006-04-20 Olympus Corp Intracorporeal medical treatment apparatus
JP2008521541A (en) * 2004-12-02 2008-06-26 ギブン イメージング リミテッド In vivo electrical stimulation devices, systems, and methods
US10320491B2 (en) 2006-09-06 2019-06-11 Innurvation Inc. Methods and systems for acoustic data transmission
US9900109B2 (en) 2006-09-06 2018-02-20 Innurvation, Inc. Methods and systems for acoustic data transmission
WO2008030482A3 (en) * 2006-09-06 2008-08-21 Arneson Michael R System and method for acoustic information exchange involving an ingestible low power capsule
US9788708B2 (en) 2008-07-09 2017-10-17 Innurvation, Inc. Displaying image data from a scanner capsule
US9351632B2 (en) 2008-07-09 2016-05-31 Innurvation, Inc. Displaying image data from a scanner capsule
US11324564B2 (en) 2013-02-21 2022-05-10 AirX Bioscience, LLC Tissue expanders, implants, and methods of use
US11116658B2 (en) 2015-06-28 2021-09-14 Oberon Sciences Ilan Ltd. Devices for gastrointestinal stimulation and uses thereof

Also Published As

Publication number Publication date
US20170050006A1 (en) 2017-02-23
US20040068204A1 (en) 2004-04-08
EP1408820B1 (en) 2017-03-01
US8617070B2 (en) 2013-12-31
WO2003001966A3 (en) 2003-04-17
US20160135720A1 (en) 2016-05-19
US20140058317A1 (en) 2014-02-27
JP2004538055A (en) 2004-12-24
US9456774B2 (en) 2016-10-04
CA2451807C (en) 2011-08-30
US8005536B2 (en) 2011-08-23
EP1408820A4 (en) 2008-06-04
US20020198470A1 (en) 2002-12-26
US7824347B2 (en) 2010-11-02
US20150196745A1 (en) 2015-07-16
WO2005096937A3 (en) 2006-06-15
US9167990B2 (en) 2015-10-27
WO2005096937A2 (en) 2005-10-20
CA2451807A1 (en) 2003-01-09
US7160258B2 (en) 2007-01-09
AU2002315385B2 (en) 2007-08-09
EP1408820A2 (en) 2004-04-21
US20170007154A1 (en) 2017-01-12
US20040162469A1 (en) 2004-08-19
US10226608B2 (en) 2019-03-12
US8915867B2 (en) 2014-12-23
AU2003299961A1 (en) 2005-10-27
US20110306897A1 (en) 2011-12-15
US20140206986A1 (en) 2014-07-24
AU2003299961A8 (en) 2005-10-27
US20130137993A1 (en) 2013-05-30
US8517961B2 (en) 2013-08-27
US8360976B2 (en) 2013-01-29
US9414768B2 (en) 2016-08-16
US20110046479A1 (en) 2011-02-24
US20040162501A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US9456774B2 (en) System for marking a location for treatment within the gastrointestinal tract
AU2002315385A1 (en) Diagnostic capsule and method of use
EP2046434B1 (en) Medicament delivery system
US7371215B2 (en) Endoscopic instrument for engaging a device
AU2002329174B2 (en) Gastric treatment and diagnosis device and method
WO2004091361A2 (en) Optical capsule and spectroscopic method for treating or diagnosing the intestinal tract
US20080065169A1 (en) Endoscopic Instrument for Engaging a Device
JPH07111985A (en) Capsule apparatus for medical treatment
JP2005535376A (en) System and method for monitoring and stimulating GI tract movement
AU2002329174A1 (en) Gastric treatment and diagnosis device and method
JP2010063880A (en) Pacemaker with position sensor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2451807

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003508213

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2002742233

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002742233

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002315385

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2002742233

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2002315385

Country of ref document: AU