WO2002095493A1 - Plaque active - Google Patents

Plaque active Download PDF

Info

Publication number
WO2002095493A1
WO2002095493A1 PCT/IB2002/001818 IB0201818W WO02095493A1 WO 2002095493 A1 WO2002095493 A1 WO 2002095493A1 IB 0201818 W IB0201818 W IB 0201818W WO 02095493 A1 WO02095493 A1 WO 02095493A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage capacitor
electrode
electrodes
width
active plate
Prior art date
Application number
PCT/IB2002/001818
Other languages
English (en)
Inventor
Steven C. Deane
Original Assignee
Koninklijke Philips Electronics N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics N.V. filed Critical Koninklijke Philips Electronics N.V.
Priority to JP2002591904A priority Critical patent/JP2004527012A/ja
Priority to EP02730605A priority patent/EP1395872B1/fr
Priority to KR10-2003-7000860A priority patent/KR20030029630A/ko
Priority to DE60223801T priority patent/DE60223801D1/de
Publication of WO2002095493A1 publication Critical patent/WO2002095493A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings

Definitions

  • the application relates to an active plate including a storage capacitor and to a method of making the active plate, and in particular to a storage capacitor, pixel structure and method for making an active plate as used for example in an active matrix liquid crystal display.
  • Active matrix liquid crystal displays are widely used for providing high quality displays in a number of applications, for example laptop personal computers.
  • transistors corresponding to individual pixel electrodes are used to drive the liquid crystal display.
  • the transistors are generally thin film transistors (TFTs).
  • TFTs thin film transistors
  • active matrix liquid crystal displays include an active plate carrying the active pixel electrodes and corresponding TFT drive transistors and an opposed passive plate supporting a counter electrode, with liquid crystal sandwiched between the active and passive plates.
  • a conventional active plate of an AMLCD is illustrated in top view in Figure 1 and in section along A-A in Figure 2.
  • the active plate is formed on a substantially flat substrate 1.
  • Row electrodes 2 and column electrodes 4 extend across the active plate in substantially perpendicular directions.
  • Gate electrodes 6 extend off the row electrodes 2 to form the bottom gate of each pixel element.
  • Insulating regions 8 separate the row and column electrodes.
  • Capacitor electrodes 10 likewise extend across the active matrix, parallel to the row electrodes.
  • An insulating layer 16 is formed over the gate electrode to form the gate insulating layer and over the capacitor electrode to form the capacitor dielectric.
  • a semiconductor region 12 is formed over the insulating layer 16.
  • the semiconductor region includes a lower undoped amorphous silicon layer 14 extending from a source region 34 to a drain region 36 over the gate insulating layer 16 and highly doped contact regions 18 at the source and drain regions 34,36.
  • a source contact 32 connects to the source region 34 and a drain contact 30 connects to the drain region 36.
  • a spur 24 extends from the column electrode 4 to connect to the source contact 32.
  • TFT thin film transistor
  • the TFT structure is covered by an insulating layer 20.
  • a via hole 22 connects through this insulating layer to the drain contact 30.
  • a storage capacitor is formed between the pixel electrode 26 and the capacitance line 10.
  • a top capacitor electrode 28 is formed in each pixel above the insulating layer 16 over the storage capacitor electrode 10.
  • the pixel electrode 26 connects to the top capacitor electrode 28 through a via hole 22.
  • the single pixel electrode and TFT structure described above is repeated across the substrate 1 to define a matrix of pixels.
  • Typical processes for making arrays of pixel electrodes to form active plates use photolithography and etching to pattern the various layers used to make up the structure. Many processes employ five mask layers, although some processes have been proposed using only four mask layers. The need to deposit material layers, define photoresist on each layer and then etch or develop away as much as 95% of each material layer limits possible cost savings. Moreover, photolithography is a high cost process which uses tools with a high capital cost, limited throughput and which consumes large quantities of costly photoresist and developer.
  • an active plate comprising: a substrate; a first metallisation layer defining gate electrodes and further defining first storage capacitor electrodes extending longitudinally across the substrate; a second metallisation layer defining source and drain electrodes and second storage capacitor electrodes; a semiconductor body layer forming thin film transistor bodies between the source and drain electrodes; and an insulation layer between first and second storage capacitor electrodes, wherein the drain electrode extends across the width of the gate electrode, and the second storage capacitor electrode overlaps the lateral edges of the first storage capacitor electrode.
  • the second capacitor electrode extends across the first capacitor electrode and the drain electrode extends across the gate electrode.
  • the gate electrode line width and the first storage capacitor electrode line width will tend to vary together, since both are formed in the same first metallisation layer. Because the drain electrode extends across the width of the gate and the second storage capacitor electrode extends across the first capacitor electrode, the storage capacitance will tend to vary in parallel with the gate-drain capacitance. Accordingly, the kick back voltage which is the ratio of these two quantities will be much less dependent on variability in the patterning process used to define the first metallisation layer of the gate electrode and the first capacitor electrode.
  • the second storage capacitor electrode may be formed from a plurality of elements having a width within a factor of 2 of the width of the drain electrode. This may allow a reduction in the sensitivity of the kick-back voltage to variation in the width of the second metallisation layer.
  • the plurality of elements may extend in a direction substantially normal to the first storage capacitor electrode.
  • the second storage capacitor may be formed from a plurality of elements extending laterally across the width of the first capacitor electrode and connected together by at least one element extending longitudinally. This structure reduces the sensitivity of the kick-back voltage to variations in the widths either of the first or the second metallisation layer.
  • the active plate may incorporate features to permit one or more layers to be formed from a lower definition patterning process.
  • the semiconductor body may extend longitudinally over the gate electrode, so that any hairs or tails extending from the semiconductor body will remain over the gate electrode without significantly affecting the structure by creating short circuits.
  • the gate electrodes may extend longitudinally across the substrate. They may have substantially constant width. These features facilitate the use of a lower definition patterning process for the gate electrode layer.
  • the active plate may be incorporated in a liquid crystal display having liquid crystal arranged between active and passive plates.
  • the invention also relates to a method of manufacture of an active plate, comprising the steps of: depositing and patterning using a lower definition patterning process a first metallisation layer on a substrate, the first metallisation layer defining gate electrodes and first storage capacitor electrodes extending longitudinally across the substrate; depositing an insulation layer; depositing and patterning using a lower definition patterning process a semiconductor body layer forming thin film transistor bodies; and depositing and patterning using a higher definition process a second metallisation layer defining source and drain electrodes and second storage capacitor electrodes, wherein the second storage capacitor electrodes overlap the lateral edges of the first storage capacitor electrode.
  • the overlapping second storage capacitor electrode reduces adverse effects from the use of lower definition processes used to pattern some of the layers, especially the first metallisation layer.
  • the device thus manufactured may exhibit a lower variation in kick back voltage than would otherwise be the case.
  • the higher definition process may be photolithography and the lower definition process may be printing.
  • the drain electrode may extend across the width of the gate electrode.
  • This structure is suitable in any application where it is desired that the storage capacitance tends to follow any variation in capacitance between two electrodes of a TFT.
  • Figure 1 is a top view of a conventional active matrix liquid crystal display
  • Figure 2 shows a section through the thin film transistor in the arrangement of Figure 1 ;
  • FIGS 3a to 3e illustrate in top view the manufacturing steps for making an active plate according to an embodiment of the invention
  • Figure 4 is a side section along B-B of the active plate shown in Figure 3e;
  • Figures 5a to 5d are detailed views of the form of a capacitor electrode in embodiments of the invention and in comparative examples;
  • Figure 6 is a schematic side section of a liquid crystal device according to the invention.
  • Figure 3 illustrates, in top schematic view, the steps of an exemplary method of manufacturing a thin-film device according to the invention.
  • Figure 4 illustrates the thin film device thus made, in section through B-B.
  • the device is an active plate of an active matrix liquid crystal display.
  • the method of manufacturing an active plate according to the exemplary embodiment begins with a substrate 1.
  • the substrate is made of a transparent material, such as glass, with an upper surface 40, which may, as shown, be substantially flat.
  • a first metallisation layer 2,10 is printed on the surface 40 of the substrate 1.
  • the metallisation layer 2,10 defines a plurality of row electrodes 2 that extend across the substrate, and a plurality of storage capacitor lines 10 that likewise extend across the substrate parallel to the row electrodes 2. For clarity, only one row electrode 2 and one storage capacitor line 10 are shown in Figure 3 but it will be appreciated that a number of row electrodes 2 and storage capacitor lines 10 may be provided to make an array.
  • the first metallisation layer 2,10 is printed in a single offset printing operation that prints across the substrate in a row direction 42 parallel to the row electrodes 2.
  • Both the row 2 and capacitance 10 electrodes are of substantially constant width in the area of the array used for the display. Any tails 44 which occur at the end of the row 2 and capacitance 10 electrodes occur outside the area of the display and accordingly have little effect.
  • a gate dielectric layer 16 of silicon nitride is then formed over the whole of the substrate 1.
  • semiconductor islands 12 are formed. These are formed by depositing a layer of intrinsic amorphous silicon 14 (i a-Si:H) and then a layer of doped amorphous silicon 18 (n+ a-Si:H). Each layer is printed using a mask of the same form.
  • the semiconductor islands 12 are arranged longitudinally over the row electrodes and are rectangular in form, with the long sides of the rectangles 12 parallel to the row electrodes 2, i.e. along the row direction 42. The printing is carried out in the row direction 42.
  • the regions 6 of the row electrodes 2 under the semiconductor islands 12 act as gate electrodes.
  • the next step is to provide a second metallisation layer 4,28,30,46.
  • This is deposited over the whole substrate and then patterned using conventional photolithography.
  • the metallisation layer forms column electrodes 4 which extend across the substrate in a direction perpendicular to the row electrodes 2 and parts of which constitute source contacts 32. Fingers 46 extend from the column electrodes round the drain electrode to form a further source contact 32.
  • the second metallisation layer also forms a drain electrode 30.
  • the column electrodes 4, the fingers 46 and the drain electrode 30 extend across the semiconductor island 12 perpendicularly to the row direction 42.
  • the second metallisation layer 4,28,30,46 is also used to form the top electrodes 28 of the storage capacitors 48.
  • the shape of the top electrodes will be discussed later.
  • the insulating layer 16 acts as the capacitor dielectric between the top electrodes 28 and the storage capacitor lines 10.
  • the second metallisation layer 4,28,30,46 is then used as an etch mask to carry out a back-channel etching step to etch away the doped amorphous silicon layer 18 except under the second metallisation layer 4,30, 46. This leaves the intrinsic amorphous silicon layer 14 over the row electrodes 2 to form the channels of thin film transistors.
  • the regions 6 of the row electrodes 2 under the semiconductor island form the gates of the thin film transistors.
  • the channel length of the thin film transistors is defined by the higher definition patterning method of photolithography instead of the lower definition method of printing.
  • the arrangement of layers, and especially the simple form of the semiconductor island and row electrodes, means that inaccuracies in the definition of the semiconductor island and row electrodes is less critical than with conventional array structures.
  • a passivation layer 20 is then formed over the whole of the substrate.
  • the passivation layer may be patterned by a lower definition method, such as printing.
  • a contact hole mask is then printed and used to etch vias 22 above the top electrode 28 of the capacitor and the drain 30.
  • the passivation layer 20 is of silicon nitride. Other materials may be used, such as polymer material.
  • the contact hole mask is then removed, as is known.
  • Pixel electrodes 26 of Indium tin oxide (ITO) are then printed over the passivation layer 20 to complete the active plate.
  • the printing direction is perpendicular to the row direction 42.
  • the gap between the pixel electrode 26 and adjacent row electrodes 2 is sufficient that trailing hairs 44 from the pixel electrodes do not overlap the adjacent row electrodes 2.
  • the pixel electrode contacts the drain 30 and the top capacitor electrode 28 through the via holes 22.
  • the top electrode 28 overlaps the lateral edges of the lower storage capacitor electrode 10. In this way, if the width of the row electrode 2 and the capacitor electrode 10 is a little larger or smaller than the nominal, designed value, the capacitance of the storage capacitor will increase, but so will the gate-drain capacitance of the TFT.
  • the kick-back voltage is proportional to the product of the change in gate voltage at the end of the addressing pulse and the ratio of the gate-drain capacitance to the total pixel capacitance, i.e. the storage capacitance plus the liquid crystal capacitance between active and passive plates plus the gate- drain capacitance.
  • the kickback voltage thus depends on the ratio of the gate-drain capacitance and the storage capacitance and the pixel capacitance. Since these capacitances tend to vary in corresponding ways, their ratio and hence the kick-back voltage varies much less with process variation than in prior arrangements.
  • the reduction in variation of the kick-back voltage is not dependent on the particular form of the gate electrode 6.
  • the invention may also be used in arrangements where the gate electrode 6 is in the form of a spur extending laterally from row electrodes 2, as long as the drain extends across the width of the gate electrode. Nevertheless, the use of a row electrode 2 as the gate electrode 6 with a semiconductor body 12, thereon does permit the structure to be manufactured more easily using lower definition patterning process.
  • Figure 5 illustrates a number of possible shapes of the second electrode 28 of the storage capacitor.
  • the second metallisation layer 4, 28, 30, 46 defining the drain electrode 30 and patterned to provide the second storage capacitor electrode 28 having a plurality of fingers 50 is provided above the first metallisation layer 2,10.
  • the invention is also applicable in arrangements where the second metallisation layer 4, 28, 30,46 is provided under the first metallisation layer 2,10.
  • FIG 5a illustrates the arrangement described in the previously mentioned co-pending application, in which the second electrode 28 is wholly above and within the area of the first storage capacitor electrode 10.
  • the second capacitor 28 overlaps the edges of the lower capacitor electrode 10.
  • the width of the gate electrode tends to be likewise broader.
  • the capacitance of the storage capacitor 48 and the parasitic gate drain capacitance of the TFT vary in parallel, and any variation in the kickback voltage is reduced. Calculations have shown that the design using this capacitor has only 40% of the sensitivity to variations in the metallisation layer width of the gate electrode 2 and the lower capacitor electrode 10 compared with that shown in Figure 5a.
  • Figure 5c has less sensitivity to variation in the width of the second metallisation layer 4,28,30,46 that forms the column electrodes 4, the drain electrode 30 and the second electrode 28 of the storage capacitor 48.
  • Variation in the width of the drain electrode 30 is matched in the second storage electrode 28 of the gate capacitor, so the gate-drain and storage capacitances tend to vary in parallel. Modelling suggests that this arrangement can very substantially reduce the sensitivity of the kickback voltage to variations in the width of the features in the second metallisation layer 4,28,30,46.
  • Figure 5d illustrates an arrangement in accordance with the invention which combines both of the benefits of Figure 5b and c. In this case, the storage capacitor 48 design reduces the effect of variation in the width of both the first 2,10 and second 4,28,30,46 metallisation layers. It is not essential that the fingers 50 in the second metallisation layer
  • connection may be through separate vias 22 corresponding to each finger.
  • the vias 22 may connect to a conductor in another layer, conveniently the pixel electrode 26.
  • Figure 6 illustrates a schematic section through a liquid crystal display having an active plate 62, a passive plate 64 and liquid crystal 66 between the active and passive plates.
  • the skilled person will be familiar with the manufacture of liquid crystal display devices from active plates in this way.
  • the invention is not limited to the arrangements shown.
  • the invention has been described with a particular form of thin film transistor and capacitor, the invention is applicable to other forms of active plates having a storage capacitor and thin film transistors.
  • One example application where the approach of the invention may be suitable is in the manufacture of large image sensors, e.g. industrial X-ray detectors, which may have TFTs integrated with storage capacitors,
  • the substrate may be opaque and the plate may operate on reflective light.
  • the pixel electrode need not be transparent.
  • some or all of the layers may be formed by covering the substrate with the material of the layer, printing a resist pattern onto the material and etching away the material where not required to pattern the layer.
  • the use of printed resist avoids the need to process photoresist with photolithography techniques. In this way a lower cost printing technique may be used for patterning without needing to directly print the layer used.
  • the invention is not restricted to the manufacture of bottom-gated structures such as that described above, but is also applicable to the manufacture of top-gated structures. As the skilled person will appreciate, the order of the layers will determine the order of the manufacturing steps.
  • the row electrodes forming the gate may be deposited and patterned followed by the gate insulation layer followed by the semiconductor regions and then the source and drain metallisations.
  • the row electrodes defining the gate may be defined after the source and drain metallisations, the semiconductor layer and gate insulator are deposited.
  • the described embodiment uses photolithography as the higher resolution process and printing as the lower resolution process.
  • the invention is also applicable to other sets of processes.
  • the lower resolution process used for most of the layers may be a lower resolution photolithography process for example using a contact aligner, and for the higher resolution process a projection aligner may be used.
  • a contact aligner may be used as the higher resolution process, with printing used as the lower resolution process.
  • the invention may also be applied with a variety of semiconductor technologies.
  • the amorphous silicon layer described may be replaced by any of a number of semiconductor types. Examples include polysilicon, organic semiconductors, ll-VI semiconductors such as CdTe, lll-V semiconductors such as GaAs, and others.
  • the metallisation layers may be of aluminium, copper, or any convenient conductor, not necessarily metal.

Abstract

Le condensateur de stockage d'un afficheur à cristaux liquides à matrice active est configuré de manière à comporter une deuxième électrode (28) qui recouvre latéralement la première électrode (10). Le drain d'un transistor à couche mince s'étend à travers la grille d'électrode (2). La grille d'électrode (2) et la première électrode (10) du condensateur de stockage sont formées à partir d'une couche de métallisation. La largeur de la grille d'électrode (2) et la première électrode (10) auront tendance à varier en parallèle, en raison d'une dispersion de fabrication. Cette variation parallèle tend à éliminer une variation ultérieure dans la tension de retour.
PCT/IB2002/001818 2001-05-23 2002-05-21 Plaque active WO2002095493A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002591904A JP2004527012A (ja) 2001-05-23 2002-05-21 アクティブ・プレート
EP02730605A EP1395872B1 (fr) 2001-05-23 2002-05-21 Procede de fabrication d'une plaque active
KR10-2003-7000860A KR20030029630A (ko) 2001-05-23 2002-05-21 능동 플레이트
DE60223801T DE60223801D1 (de) 2001-05-23 2002-05-21 Herstellungsverfahren für eine aktive platte

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0112563.2 2001-05-23
GBGB0112563.2A GB0112563D0 (en) 2001-05-23 2001-05-23 Active plate

Publications (1)

Publication Number Publication Date
WO2002095493A1 true WO2002095493A1 (fr) 2002-11-28

Family

ID=9915158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/001818 WO2002095493A1 (fr) 2001-05-23 2002-05-21 Plaque active

Country Status (9)

Country Link
US (1) US6912037B2 (fr)
EP (1) EP1395872B1 (fr)
JP (1) JP2004527012A (fr)
KR (1) KR20030029630A (fr)
CN (1) CN1295557C (fr)
DE (1) DE60223801D1 (fr)
GB (1) GB0112563D0 (fr)
TW (1) TW574583B (fr)
WO (1) WO2002095493A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10354866B4 (de) * 2002-12-31 2009-10-01 Lg Display Co., Ltd. Verfahren zum Herstellen einer Flüssigkristallanzeigevorrichtung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524224A (ja) * 2002-04-26 2005-08-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ アクティブマトリクスディスプレイ装置
JP5200443B2 (ja) * 2007-07-30 2013-06-05 セイコーエプソン株式会社 有機トランジスタ及びアクティブマトリックス基板
US8739096B2 (en) * 2011-12-15 2014-05-27 International Business Machines Corporation Micro-electro-mechanical structure (MEMS) capacitor devices, capacitor trimming thereof and design structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514029A2 (fr) * 1991-05-15 1992-11-19 International Business Machines Corporation Dispositif d'affichage à cristal liquide
US5946065A (en) * 1995-10-31 1999-08-31 Sharp Kabushiki Kaisha Transmission type LCD with an organic interlayer insulating film having a plurality of microscopic hollows
US5969782A (en) * 1997-06-25 1999-10-19 Hyundai Electronics Industries Co., Ltd. Active matrix liquid crystal display having interdigitated pixel and first counter electrodes in the same plane and a second counter connected to the first counter electrode via a contact hole in a insulating layer
EP1229379A2 (fr) * 2001-01-31 2002-08-07 Matsushita Electric Industrial Co., Ltd. Elément d'affichage à cristaux liquides à matrice

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593631B1 (fr) * 1986-01-27 1989-02-17 Maurice Francois Ecran d'affichage a matrice active a resistance de grille et procedes de fabrication de cet ecran
KR970008455B1 (en) * 1988-03-18 1997-05-24 Seiko Epson Corp Thin film transistor
FR2662290B1 (fr) * 1990-05-15 1992-07-24 France Telecom Procede de realisation d'un ecran d'affichage a matrice active et a condensateurs de stockage et ecran obtenu par ce procede.
FR2679057B1 (fr) * 1991-07-11 1995-10-20 Morin Francois Structure d'ecran a cristal liquide, a matrice active et a haute definition.
KR970011972A (ko) * 1995-08-11 1997-03-29 쯔지 하루오 투과형 액정 표시 장치 및 그 제조 방법
JP3418653B2 (ja) * 1995-09-28 2003-06-23 シャープ株式会社 アクティブマトリクス型液晶表示装置
JP3069280B2 (ja) * 1995-12-12 2000-07-24 松下電器産業株式会社 アクティブマトリックス型液晶表示素子及びその駆動方法
US5936126A (en) * 1996-06-19 1999-08-10 Basf Aktiengesellschaft Process for reacting an organic compound in the presence of a supported ruthenium catalyst
JP3133676B2 (ja) * 1996-06-25 2001-02-13 松下電器産業株式会社 液晶表示装置
JP3312101B2 (ja) * 1996-07-02 2002-08-05 シャープ株式会社 液晶表示装置
JP2973934B2 (ja) * 1996-07-11 1999-11-08 日本電気株式会社 液晶表示装置、及び液晶表示装置を搭載した電子機器
GB0105145D0 (en) * 2001-03-02 2001-04-18 Koninkl Philips Electronics Nv Thin film transistors and method of manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0514029A2 (fr) * 1991-05-15 1992-11-19 International Business Machines Corporation Dispositif d'affichage à cristal liquide
US5946065A (en) * 1995-10-31 1999-08-31 Sharp Kabushiki Kaisha Transmission type LCD with an organic interlayer insulating film having a plurality of microscopic hollows
US5969782A (en) * 1997-06-25 1999-10-19 Hyundai Electronics Industries Co., Ltd. Active matrix liquid crystal display having interdigitated pixel and first counter electrodes in the same plane and a second counter connected to the first counter electrode via a contact hole in a insulating layer
EP1229379A2 (fr) * 2001-01-31 2002-08-07 Matsushita Electric Industrial Co., Ltd. Elément d'affichage à cristaux liquides à matrice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10354866B4 (de) * 2002-12-31 2009-10-01 Lg Display Co., Ltd. Verfahren zum Herstellen einer Flüssigkristallanzeigevorrichtung

Also Published As

Publication number Publication date
EP1395872B1 (fr) 2007-11-28
TW574583B (en) 2004-02-01
EP1395872A1 (fr) 2004-03-10
DE60223801D1 (de) 2008-01-10
CN1463383A (zh) 2003-12-24
US20020176031A1 (en) 2002-11-28
KR20030029630A (ko) 2003-04-14
GB0112563D0 (en) 2001-07-18
CN1295557C (zh) 2007-01-17
JP2004527012A (ja) 2004-09-02
US6912037B2 (en) 2005-06-28

Similar Documents

Publication Publication Date Title
EP1256836B1 (fr) LCD comportant des lignes de bus recouvertes d'électrodes d'image et une couche isolante entre elles
US5668650A (en) Thin film transistor panel having an extended source electrode
US7221425B2 (en) Substrate for a display device, liquid crystal display device comprising overlapping connecting lines of the scan lines and method of manufacturing the same
US7425476B2 (en) Manufacturing method of a thin film transistor array panel
US5796448A (en) Structure for a parasitic capacitor and a storage capacitor in a thin film transistor-liquid crystal display and a method for making the same
US6686229B2 (en) Thin film transistors and method of manufacture
KR100348995B1 (ko) 4 마스크를 이용한 액정표시소자의 제조방법 및 그에 따른 액정표시소자
US4990460A (en) Fabrication method for thin film field effect transistor array suitable for liquid crystal display
US20030213959A1 (en) Active matrix substrate for a liquid crystal display and method of forming the same
US6795133B2 (en) Higher and lower definition patterning of an active plate
US7253035B2 (en) Thin film transistor array panel and manufacturing method thereof
US20070093005A1 (en) Thin film transistor panel and method of manufacture
US6870187B2 (en) Thin film transistor array panel and manufacturing method thereof
US6912037B2 (en) Higher and lower definition patterning of an active plate
US20020140877A1 (en) Thin film transistor for liquid crystal display and method of forming the same
US20070128551A1 (en) Manufacturing method of thin film transistor array panel
US20050179365A1 (en) Active matrix display device
WO2004036303A1 (fr) Panneau de reseau de transistors en couche mince et procede de fabrication du panneau
KR101026797B1 (ko) 박막 트랜지스터 표시판 및 그 제조 방법
KR20070014335A (ko) 박막 트랜지스터 표시판의 제조 방법
KR20040102173A (ko) 매트릭스 디스플레이 디바이스 및 이의 제조 방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020037000860

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002730605

Country of ref document: EP

Ref document number: 028017994

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037000860

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002591904

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002730605

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2002730605

Country of ref document: EP