WO2002059392A1 - Method for growing carbon nanotubes above a base that is to be electrically contacted and a component - Google Patents

Method for growing carbon nanotubes above a base that is to be electrically contacted and a component Download PDF

Info

Publication number
WO2002059392A1
WO2002059392A1 PCT/DE2002/000194 DE0200194W WO02059392A1 WO 2002059392 A1 WO2002059392 A1 WO 2002059392A1 DE 0200194 W DE0200194 W DE 0200194W WO 02059392 A1 WO02059392 A1 WO 02059392A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
carbon nanotubes
contacted
substrate
metal
Prior art date
Application number
PCT/DE2002/000194
Other languages
German (de)
French (fr)
Inventor
Franz Kreupl
Wolfgang HÖNLEIN
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2002059392A1 publication Critical patent/WO2002059392A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76876Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for deposition from the gas phase, e.g. CVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/32056Deposition of conductive or semi-conductive organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/5226Via connections in a multilevel interconnection structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1073Barrier, adhesion or liner layers
    • H01L2221/1084Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L2221/1089Stacks of seed layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the invention relates to a method for growing carbon nanotubes above an electrically contactable substrate and a component.
  • nanotubes for example, when using such carbon nanotubes as a via interconnect in microelectronics, metallic catalysts must be applied to the contact surface of a microelectronic circuit, which in most cases is a conductor track, so that they can be applied to them using For example, a deposition from the gas phase (CVD process) carbon nanotubes can be grown.
  • CVD process gas phase carbon nanotubes
  • the underlay to be contacted must be covered with a surface covering the underlay
  • Catalyst material may be provided during or before structuring, which is suitable to catalyze the growth of carbon nanotubes.
  • the deposition of the material of the substrate to be contacted must microelectronic circuit are stopped so that after the deposition of the catalyst material and after the
  • the dry etching technique is used to structure a microelectronic substrate to be contacted
  • the catalyst surface is oxidized during the subsequent ashing of the paint and thus made unusable.
  • this catalyst material could be deposited onto the substrate of the microelectronic circuit to be contacted by simply sputtering on or evaporating the catalyst material. However, this will cover the entire surface of the microelectronic circuit, i.e. not only covered the surface of the substrate of the microelectronic circuit to be contacted with catalyst material. This also provides coverage of the via sidewalls, so that when carbon nanotubes are subsequently grown, they are everywhere, i.e. not only on the via floor with its conductor track, which is to be contacted as a support.
  • each individual substrate to be contacted must be contacted with an electrode in order to then cover the substrate to be contacted with catalyst material in an electrolyte by current flow. This procedure is on is time-consuming and costly and complicates it
  • [1] also describes a low-temperature process for synthesizing carbon nanotubes using a gas-phase deposition process (chemical vapor deposition process, CVD process).
  • a field emitter with a layer of carbon nanotubes is known from [2], which provides a high current density even at a low electrical voltage.
  • the carbon nanotubes are also formed using a CVD process.
  • the invention is therefore based on the problem of providing an improved method for growing carbon nanotubes on a substrate to be contacted.
  • this problem is solved by providing a method for growing carbon nanotubes above a predetermined area of a substrate to be contacted,
  • Carbon nanotubes grown according to the above inventive method Carbon nanotubes grown according to the above inventive method.
  • the method according to the invention has several important advantages over the prior art.
  • a substrate of a microelectronic circuit to be contacted for example a conductor track of a microelectronic circuit, which lies on the bottom of an etched via, can be produced before the metal which is catalytically active for the growth of carbon nanotubes is applied (including CMP structuring processes) without having to interrupt the manufacturing process before the catalytically active metal is applied.
  • a subsequent ashing step can be dispensed with in the method according to the invention, so that the applied, catalytically active metal is not damaged by oxidation and made unusable.
  • catalytically active metal is only applied at those points where it is necessary for the later growth of carbon nanotubes. This is in marked contrast to conventional sputtering or vapor deposition processes, in which the catalytic metal to be applied not only to the substrate of the microelectronic circuit to be contacted, but to the entire surface of the substrate to be contacted containing microelectronic circuit is applied.
  • a first layer is first deposited directly onto the predetermined area of the substrate of the microelectronic circuit to be contacted, and then a second layer with the catalytically active metal is deposited directly onto the first layer.
  • the first layer preferably has metal atoms and can promote this adhesion in the event that the second layer with the catalytically active metal adheres poorly to the substrate to be contacted.
  • the first Layer that is deposited directly on the specified area of the substrate to be contacted is electrically conductive.
  • this first layer preferably has metal atoms.
  • the growth of the carbon nanotubes on the catalytically active metal can be above the predetermined value
  • the base to be contacted can be a conductor track of a microelectronic circuit.
  • This conductor track can have copper or aluminum per se.
  • any metal oxide present on the surface of the substrate can be applied before the first layer is applied to the substrate contacting pad are removed.
  • Such removal can, according to the invention, for example with hydrogen plasma, i.e. reducing, or with acid.
  • the first layer which is deposited directly onto the predetermined area of the substrate of the microelectronic circuit to be contacted, consists of PdCl 2 .
  • This layer of PdCl 2 can be applied, for example, by adding an aqueous solution with approximately: 0.25 g / 1 to approximately 12.5 g / 1 PdCl 2 , About 0.25 to about 12.5% by volume, 36% HCl and
  • the second metal layer which is applied directly on the first layer can consist of nickel.
  • nickel is the catalytically active metal for growing carbon nanotubes.
  • the nickel can be applied to the first layer by using an aqueous solution
  • Fig.la shows a cross section of a section of a microelectronic circuit 107.
  • Circuit 107 has a substrate 100, a
  • Dielectric layer 101 and a conductor track 102 to be understood as a base to be contacted.
  • Fig.la is the area of the dielectric 101 that is above the
  • Conductor 102 is already removed, for example by means of a photolithographic etching process (this step precedes the process sequence shown and is not shown per se). Furthermore, there is a metal oxide layer 103 on the surface of the conductor track 102 in FIG.la, which is formed from the oxide of the metal of the conductor track 102.
  • Fig. Lb shows the state of manufacture of the microelectronic circuit 107 after the metal oxide layer 103 above the conductor track 102 has been removed. This removal can take place, for example, under strongly reducing conditions.
  • the treatment of the microelectronic circuit with hydrogen plasma or with acid, for example mineral acid is suitable for removing the oxide layer 103 on the conductor track 102.
  • Fig.lc shows the manufacturing state of the microelectronic
  • This first layer 104 on the conductor track 102 in this exemplary embodiment preferably consists of PdCl 2 .
  • the first layer 104 may contain by contacting an aqueous solution
  • Fig.ld shows the state of manufacture of the microelectronic circuit 107 after a second layer 105 with the catalytically active metal has been applied directly to the first layer 104.
  • This second layer 105 preferably consists of nickel, which is used to grow carbon
  • Nanotubes can function as a catalytically active metal.
  • the second layer 105 made of nickel can be placed directly on the first layer 104 made of PdCl 2 by contacting an aqueous solution containing ⁇ about 45 g / 1 NiCl 2 ,
  • Fig.le shows the state of production of the microelectronic circuit 107, in which carbon nanotubes 106 have been grown on the surface of the catalytically active metal 105. Due to the fact that the catalytically active metal of the second layer 105, in this exemplary embodiment nickel, only increases above the contacting conductor track 102, only grow in this
  • Embodiment of the present invention in the end, a targeted application of carbon nanotubes 106 to a specific area of a microelectronic
  • Carbon nanotubes 106 remain free. As part of this
  • Separation process from the gas phase can be grown.

Abstract

The invention relates to a method for growing carbon nanotubes above a base that is to be electrically contacted. According to said method, at least one metal, which is catalytically active in the growth of carbon nanotubes is applied above the predetermined area of the base that is to be contacted, by means of an electrodeless deposition method and carbon nanotubes are grown on the catalytically active metal.

Description

Beschreibungdescription
Verfahren zum Wachsen von Kohlenstoff-Nanoröhren oberhalb einer elektrisch zu kontaktierenden Unterlage sowie BauelementProcess for growing carbon nanotubes above an electrically contactable substrate and component
Die Erfindung betrifft ein Verfahren zum Wachsen von Kohlenstoff-Nanoröhren oberhalb einer elektrisch zu kontaktierenden Unterlage sowie ein Bauelement.The invention relates to a method for growing carbon nanotubes above an electrically contactable substrate and a component.
Um die hohe elektrische Leitfähigkeit von Kohlenstoff-To ensure the high electrical conductivity of carbon
Nanoröhren zum Beispiel bei der Anwendung solcher Kohlenstoff- Nanoröhren als Via-Interconnect in der Mikroelektronik auszunützen, müssen auf die zu kontaktierende Unterlage eines mikroelektronischen Schaltkreises, welche in den meisten Fällen eine Leiterbahn ist, metallische Katalysatoren aufgebracht werden, so dass auf diesen mit Hilfe von beispielsweise einer Abscheidung aus der Gasphase (CVD- Verfahren) Kohlenstoff-Nanoröhren aufgewachsen werden können. Hierzu muss die zu kontaktierende Unterlage durch eine Bedeckung der Oberfläche der Unterlage mit einemTo use nanotubes, for example, when using such carbon nanotubes as a via interconnect in microelectronics, metallic catalysts must be applied to the contact surface of a microelectronic circuit, which in most cases is a conductor track, so that they can be applied to them using For example, a deposition from the gas phase (CVD process) carbon nanotubes can be grown. For this purpose, the underlay to be contacted must be covered with a surface covering the underlay
Katalysatormaterial während oder vor der Strukturierung versehen werden, das geeignet ist, um das Wachstum von Kohlenstoff-Nanoröhren zu katalysieren.Catalyst material may be provided during or before structuring, which is suitable to catalyze the growth of carbon nanotubes.
Es gibt im Stand der Technik einige bekannte Verfahren zumThere are some known methods for
Versehen der Oberfläche einer zu kontaktierenden Unterlage eines mikroelektronischen Schaltkreises mit einem Metall. Diese bekannte Verfahren sind jedoch meist mit erheblichen Nachteilen verbunden, die entweder das Aufbringen und/oder das anschließende Wachsen von Kohlenstoff-Nanoröhren erschweren.Providing the surface of a substrate of a microelectronic circuit to be contacted with a metal. However, these known methods are usually associated with considerable disadvantages, which either complicate the application and / or subsequent growth of carbon nanotubes.
Bei einer Damascene-Strukturierung muss zum Beispiel die Abscheidung des Materials der zu kontaktierenden Unterlage des mikroelektronischen Schaltkreises so gestoppt werden, dass nach dem Abscheiden des Katalysatormaterials sowie nach demIn the case of damascene structuring, for example, the deposition of the material of the substrate to be contacted must microelectronic circuit are stopped so that after the deposition of the catalyst material and after the
CMP-Strukturierungsverfahren (CMP = Chemical MechanicalCMP structuring method (CMP = Chemical Mechanical
Polishing) noch genügend oder ausreichend Katalysatormaterial auf der Oberfläche der zu kontaktierenden Unterlage zurückbleibt, um ein katalytisches Aufwachsen von Kohlenstoff-Polishing) sufficient or sufficient catalyst material remains on the surface of the substrate to be contacted in order to allow catalytic growth of carbon
Nanoröhren zu bewirken.To effect nanotubes.
Wird die Trockenätz-Technik zum Strukturieren einer zu kontaktierenden Unterlage eines mikroelektronischenThe dry etching technique is used to structure a microelectronic substrate to be contacted
Schaltkreises verwendet, so wird beim anschließenden Veraschen des Lacks die Katalysatoroberfläche oxidiert und somit unbrauchbar gemacht .Circuit used, the catalyst surface is oxidized during the subsequent ashing of the paint and thus made unusable.
Weiterhin könnte durch einfaches Aufsputtern oder Aufdampfen des Katalysatormaterials dieses Katalysatormaterial auf die zu kontaktierende Unterlage des mikroelektronischen Schaltkreises abgeschieden werden. Dadurch wird jedoch die ganze Oberfläche des mikroelektronischen Schaltkreises, d.h. nicht nur die Oberfläche der zu kontaktierenden Unterlage des mikroelektronischen Schaltkreises mit Katalysatormaterial bedeckt. Des weiteren bekommt man hierdurch eine Bedeckung der Via-Seitenwände, so dass bei dem anschliessenden Aufwachsen von Kohlenstoff-Nanoröhren diese überall, d.h. nicht nur auf den als zu kontaktierende Unterlage anzusehenden Via-Boden mit seiner Leiterbahn, aufwachsen.Furthermore, this catalyst material could be deposited onto the substrate of the microelectronic circuit to be contacted by simply sputtering on or evaporating the catalyst material. However, this will cover the entire surface of the microelectronic circuit, i.e. not only covered the surface of the substrate of the microelectronic circuit to be contacted with catalyst material. This also provides coverage of the via sidewalls, so that when carbon nanotubes are subsequently grown, they are everywhere, i.e. not only on the via floor with its conductor track, which is to be contacted as a support.
Wird das Katalysatormaterial auf die zu kontaktierende Unterlage des mikroelektronischen Schaltkreises galvanisch aufgebracht, so muss jede einzelne zu kontaktierende Unterlage mit einer Elektrode kontaktiert werden, um dann in einem Elektrolyten durch Stromfluß diese zu kontaktierende Unterlage mit Katalysatormaterial zu bedecken. Dieses Verfahren ist an sich zeit- und kostenaufwendig und erschwert dasIf the catalyst material is galvanically applied to the substrate of the microelectronic circuit to be contacted, each individual substrate to be contacted must be contacted with an electrode in order to then cover the substrate to be contacted with catalyst material in an electrolyte by current flow. This procedure is on is time-consuming and costly and complicates it
Herstellungsverfahren erheblich.Manufacturing process significantly.
Ferner ist in [1] ein Niedertemperatur-Verfahren zum Synthetisieren von Kohlenstoff-Nanoröhren unter Verwendung eines Abscheideverfahrens aus der Gasphase (Chemical Vapour Deposition-Verfahren, CVD-Verfahren) beschrieben.[1] also describes a low-temperature process for synthesizing carbon nanotubes using a gas-phase deposition process (chemical vapor deposition process, CVD process).
Aus [2] ist ein Feldemitter mit einer Schicht aus Kohlenstoff- Nanoröhren bekannt, welcher eine hohe Stromdichte selbst bei einer niedrigen elektrischen Spannung bereitstellt.A field emitter with a layer of carbon nanotubes is known from [2], which provides a high current density even at a low electrical voltage.
Andere Feldemitter-Vorrichtungen mit Kohlenstoff-Nanoröhren sind in [3], [4] und [5] beschrieben.Other field emitter devices with carbon nanotubes are described in [3], [4] and [5].
Gemäß [2], [3], [4] und [5] werden die Kohlenstoff-Nanoröhren ebenfalls unter Verwendung eines CVD-Verfahrens gebildet.According to [2], [3], [4] and [5], the carbon nanotubes are also formed using a CVD process.
Somit liegt der Erfindung das Problem zugrunde, ein verbessertes Verfahren zum Wachsen von Kohlenstoff-Nanoröhren auf einer zu kontaktierenden Unterlage bereitzustellen.The invention is therefore based on the problem of providing an improved method for growing carbon nanotubes on a substrate to be contacted.
Erfindungsgemäß wird dieses Problem durch Bereitstellen eines Verfahrens zum Wachsen von Kohlenstoff-Nanoröhren oberhalb eines vorgegebenen Bereichs einer zu kontaktierenden Unterlage,According to the invention, this problem is solved by providing a method for growing carbon nanotubes above a predetermined area of a substrate to be contacted,
• bei dem zumindest ein für den Wachstum von Kohlenstoff- Nanoröhren katalytisch aktives Metall oberhalb des vorgegebenen Bereichs der zu kontaktierenden Unterlage mittels eines elektrolosen Abscheideverfahrens aufgebracht wird, undIn which at least one metal which is catalytically active for the growth of carbon nanotubes is applied above the predetermined area of the substrate to be contacted by means of an electroless deposition process, and
• bei dem Kohlenstoff-Nanoröhren auf dem katalytisch aktiven Metall gewachsen werden. Das Problem wird weiterhin durch ein Bauelement gelöst, das• in which carbon nanotubes are grown on the catalytically active metal. The problem is still solved by a component that
Kohlenstoff-Nanoröhren, die gemäß dem obenstehenden erfindungsgemäßen Verfahren gewachsen sind, aufweist.Carbon nanotubes grown according to the above inventive method.
Das erfindungsgemäße Verfahren bringt gegenüber dem Stand der Technik einige wichtige Vorteile mit sich.The method according to the invention has several important advantages over the prior art.
Zum Beispiel kann im Gegensatz zum Damascene-Verfahren eine zu kontaktierende Unterlage eines mikroelektronischen Schaltkreises, beispielsweise eine Leiterbahn eines mikroelektronischen Schaltkreises, die am Boden eines geätzten Vias liegt, noch vor dem Aufbringen des für den Wachstum von Kohlenstoff-Nanoröhren katalytisch aktiven Metalls, fertig hergestellt werden (einschließlich CMP- Strukturierungsverfahren) , ohne das Herstellungsverfahren zwischenzeitlich noch vor dem Aufbringen des katalytisch aktiven Metalls unterbrechen zu müssen.For example, in contrast to the Damascene process, a substrate of a microelectronic circuit to be contacted, for example a conductor track of a microelectronic circuit, which lies on the bottom of an etched via, can be produced before the metal which is catalytically active for the growth of carbon nanotubes is applied (including CMP structuring processes) without having to interrupt the manufacturing process before the catalytically active metal is applied.
Weiterhin kann beim erfindungsgemäßen Verfahren von einem anschließenden Veraschungsschritt abgesehen werden, so dass das aufgebrachte, katalytisch aktive Metall nicht durch Oxidation beschädigt und unbrauchbar gemacht wird.Furthermore, a subsequent ashing step can be dispensed with in the method according to the invention, so that the applied, catalytically active metal is not damaged by oxidation and made unusable.
Ein weiterer, sehr wichtiger Vorteil des erfindungsgemäßen Verfahrens gegenüber dem Stand der Technik ist darin zu sehen, dass bei ihm das katalytisch aktive Metall ausschließlich an denjenigen Stellen aufgebracht wird, auf denen es zum späteren Wachsen von Kohlenstoff-Nanoröhren erforderlich ist. Dies steht im deutlichen Gegensatz zu herkömmlichen Aufsputter- oder Aufdampfverfahren, bei dem das aufzubringende katalytische Metall nicht nur auf die zu kontaktierende Unterlage des mikroelektronischen Schaltkreises, sondern auf die gesamte Oberfläche des die zu kontaktierende Unterlage enthaltenden, mikroelektronischen Schaltkreises aufgebracht wird.Another, very important advantage of the method according to the invention over the prior art is that the catalytically active metal is only applied at those points where it is necessary for the later growth of carbon nanotubes. This is in marked contrast to conventional sputtering or vapor deposition processes, in which the catalytic metal to be applied not only to the substrate of the microelectronic circuit to be contacted, but to the entire surface of the substrate to be contacted containing microelectronic circuit is applied.
Des weiteren sind beim erfindungsgemäßen Verfahren keine Elektroden erforderlich, da das erfindungsgemäße Verfahren auf einen inneren statt auf einen von außen eingespeisten Stromfluß beruht.Furthermore, no electrodes are required in the method according to the invention, since the method according to the invention is based on an internal current flow instead of an outside current.
Schließlich ermöglicht das chemische Abscheiden in Kombination Zusammenhang mit dem Wachsen von Kohlenstoff-Nanoröhren, dass eine sehr gleichmäßige Dicke der aufzubringenden Schicht aus katalytisch aktivem Metall erzielt werden kann. Des weiteren kann diese Dicke an sich in einfacher Weise durch Einstellen der Konzentration des katalytisch aktiven Metalls bzw. des Vorläufers des katalytisch aktiven Metalls in der Lösung und/oder durch Einstellen der Reaktionszeit den Anforderungen des Einzelfalls angepasst werden. So wird gegenüber dem Stand der Technik gewährleistet, dass das zum Wachsen von Kohlenstoff-Nanoröhren vorgesehene, katalytisch aktive Metall in einer diesem Zweck dienlichen Dicke und Beschaffenheit oberhalb des zum Wachsen von Kohlenstoff-Nanoröhren vorgesehenen Bereichs aufgebracht werden kann.Finally, chemical deposition in combination with the growth of carbon nanotubes enables a very uniform thickness of the layer of catalytically active metal to be applied. Furthermore, this thickness per se can be easily adapted to the requirements of the individual case by adjusting the concentration of the catalytically active metal or the precursor of the catalytically active metal in the solution and / or by adjusting the reaction time. This ensures that the catalytically active metal provided for the growth of carbon nanotubes can be applied in a thickness and quality that is suitable for this purpose above the area provided for the growth of carbon nanotubes.
Gemäß einem Ausführungsbeispiel der Erfindung wird zunächst eine erste Schicht direkt auf den vorgegebenen Bereich der zu kontaktierenden Unterlage des mikroelektronischen Schaltkreises abgeschieden und anschließend eine zweite Schicht mit dem katalytisch aktiven Metall direkt auf die erste Schicht abgeschieden. Vorzugsweise weist die erste Schicht Metallatome auf, und kann für den Fall, dass die zweite Schicht mit dem katalytisch aktiven Metall schlecht auf der zu kontaktierenden Unterlage haftet, diese Haftung fördern. In diesem Fall ist es erforderlich, dass die erste Schicht, die direkt auf den vorgegebenen Bereich der zu kontaktierenden Unterlage abgeschieden wird, elektrisch leitfähig ist. Zu diesem Zweck weist diese erste Schicht vorzugsweise Metallatome auf.According to one exemplary embodiment of the invention, a first layer is first deposited directly onto the predetermined area of the substrate of the microelectronic circuit to be contacted, and then a second layer with the catalytically active metal is deposited directly onto the first layer. The first layer preferably has metal atoms and can promote this adhesion in the event that the second layer with the catalytically active metal adheres poorly to the substrate to be contacted. In this case it is necessary that the first Layer that is deposited directly on the specified area of the substrate to be contacted is electrically conductive. For this purpose, this first layer preferably has metal atoms.
Erfindungsgemäß kann das Wachsen der Kohlenstoff-Nanoröhren auf dem katalytisch aktiven Metall oberhalb des vorgegebenenAccording to the invention, the growth of the carbon nanotubes on the catalytically active metal can be above the predetermined value
Bereichs der zu kontaktierenden Unterlage des mikroelektronischen Schaltkreises mittels eines Abscheideverfahrens aus der Gasphase erfolgen.Area of the substrate to be contacted of the microelectronic circuit by means of a deposition process from the gas phase.
Wie oben bereits angedeutet kann beim erfindungsgemäßen Verfahren die zu kontaktierende Unterlage eine Leiterbahn eines mikroelektronischen Schaltkreises sein. Diese Leiterbahn kann an sich Kupfer oder Aluminium aufweisen.As already indicated above, in the method according to the invention the base to be contacted can be a conductor track of a microelectronic circuit. This conductor track can have copper or aluminum per se.
Zum Fördern sowohl der Haftung als auch des elektrischen Kontakts zwischen der ersten Schicht, die direkt auf der zu kontaktierenden Unterlage liegt, und der zu kontaktierenden Unterlage selbst kann vor dem Aufbringen der ersten Schicht auf die zu kontaktierende Unterlage eventuell vorhandenes Metalloxid auf der Oberfläche der zu kontaktierenden Unterlage entfernt werden. Ein solches Entfernen kann erfindungsgemäß beispielsweise mit Wasserstoffplasma, d.h. reduzierend, oder mit Säure erfolgen.To promote both the adhesion and the electrical contact between the first layer, which lies directly on the substrate to be contacted, and the substrate to be contacted itself, any metal oxide present on the surface of the substrate can be applied before the first layer is applied to the substrate contacting pad are removed. Such removal can, according to the invention, for example with hydrogen plasma, i.e. reducing, or with acid.
Bei einem Ausführungsbeispiel der Erfindung besteht die erste Schicht, die direkt auf den vorgegebenen Bereich der zu kontaktierenden Unterlage des mikroelektronischen Schaltkreises abgeschieden wird, aus PdCl2. Diese Schicht aus PdCl2 kann beispielsweise dadurch aufgebracht werden, indem eine wässrige Lösung mit etwa: • 0,25 g/1 bis etwa 12,5 g/1 PdCl2, • etwa 0,25 bis etwa 12,5 Vol.-%, 36% HCl undIn one embodiment of the invention, the first layer, which is deposited directly onto the predetermined area of the substrate of the microelectronic circuit to be contacted, consists of PdCl 2 . This layer of PdCl 2 can be applied, for example, by adding an aqueous solution with approximately: 0.25 g / 1 to approximately 12.5 g / 1 PdCl 2 , About 0.25 to about 12.5% by volume, 36% HCl and
• etwa 0 bis 20 Vol.-% Glyzerin/Ethanol in Kontakt mit dem vorgegebenen Bereich der zu kontaktierenden Unterlage gebracht wird und anschließend mit 10 Vol.-% HCl und anschließend nochmals mit Wasser gespült wird.• about 0 to 20 vol .-% glycerin / ethanol is brought into contact with the specified area of the substrate to be contacted and then rinsed with 10 vol .-% HCl and then again with water.
Gemäß einem weiteren Ausführungsbeispiel der vorliegenden Erfindung kann die zweite Metallschicht, die direkt auf der ersten Schicht aufgebracht wird, aus Nickel bestehen. Nickel ist in diesem Fall das zum Wachsen von Kohlenstoff-Nanoröhren katalytisch aktive Metall. Das Nickel kann auf die erste Schicht aufgebracht werden, indem eine wässerige Lösung mitAccording to a further exemplary embodiment of the present invention, the second metal layer which is applied directly on the first layer can consist of nickel. In this case, nickel is the catalytically active metal for growing carbon nanotubes. The nickel can be applied to the first layer by using an aqueous solution
• etwa 45 g/1 NiCl2,About 45 g / 1 NiCl 2 ,
• etwa 11 g/1 NaOCl, • etwa 100 g/1 Natriumeitrat und• about 11 g / 1 NaOCl, • about 100 g / 1 sodium citrate and
• etwa 50 g/1 Ammoniumchlorid in Kontakt mit der ersten Schicht gebracht wird und anschließend mit H20 gespült wird. Hier ist das Natriumeitrat als das reduzierende Mittel anzusehen, das das NiCl2 noch in der Lösung in die Reinmetallform reduziert, so dass dieses in Reinmetallform auf die erste Schicht abscheidet.• about 50 g / 1 ammonium chloride is brought into contact with the first layer and then rinsed with H 2 0. Here the sodium citrate is to be regarded as the reducing agent that reduces the NiCl 2 in the solution into the pure metal form, so that it deposits in pure metal form on the first layer.
Ein Ausführungsbeispiel der Erfindung ist in den Figuren dargestellt und wird im Weiteren näher erläutert.An embodiment of the invention is shown in the figures and is explained in more detail below.
Es zeigenShow it
Figuren la bis le in schematischer Weise den Ablauf einesFigures la to le schematically the sequence of a
Ausführungsbeispiels des erfindungsgemäßen Verfahrens mit einem im Querschnitt dargestellten Ausschnitts eines mikroelektronischen Schaltkreises. Fig.la zeigt einen Querschnitt eines Ausschnitts eines mikroelektronischen Schaltkreises 107. Der mikroelektronischeEmbodiment of the method according to the invention with a section of a microelectronic circuit shown in cross section. Fig.la shows a cross section of a section of a microelectronic circuit 107. The microelectronic
Schaltkreis 107 weist ein Substrat 100, eineCircuit 107 has a substrate 100, a
Dielektrikumschicht 101 und eine als zu kontaktierende Unterlage zu verstehende Leiterbahn 102 auf. Bei demDielectric layer 101 and a conductor track 102 to be understood as a base to be contacted. In which
Fertigungszustand des mikroelektronischen Schaltkreises 107 inManufacturing state of the microelectronic circuit 107 in
Fig.la ist der Bereich des Dielektrikums 101, der oberhalb derFig.la is the area of the dielectric 101 that is above the
Leiterbahn 102 liegt, beispielsweise mittels eines photolithographischen Ätzverfahrens bereits entfernt worden (dieser Schritt ist dem gezeigten Verfahrensablauf vorgeschaltet und ist an sich nicht gezeigt) . Des weiteren existiert auf der Oberfläche der Leiterbahn 102 in Fig.la eine Metalloxidschicht 103, die aus dem Oxid des Metalls der Leiterbahn 102 gebildet ist.Conductor 102 is already removed, for example by means of a photolithographic etching process (this step precedes the process sequence shown and is not shown per se). Furthermore, there is a metal oxide layer 103 on the surface of the conductor track 102 in FIG.la, which is formed from the oxide of the metal of the conductor track 102.
Fig.lb zeigt den Fertigungszustand des mikroelektronischen Schaltkreises 107, nachdem die Metalloxidschicht 103 oberhalb der Leiterbahn 102 entfernt worden ist. Dieses Entfernen kann beispielsweise unter stark reduzierenden Bedingungen erfolgen. Hierzu ist die Behandlung des mikroelektronischen Schaltkreises mit Wasserstoffplasma oder mit Säure, beispielsweise Mineralsäure, zum Entfernen der Oxidschicht 103 auf der Leiterbahn 102 geeignet.Fig. Lb shows the state of manufacture of the microelectronic circuit 107 after the metal oxide layer 103 above the conductor track 102 has been removed. This removal can take place, for example, under strongly reducing conditions. For this purpose, the treatment of the microelectronic circuit with hydrogen plasma or with acid, for example mineral acid, is suitable for removing the oxide layer 103 on the conductor track 102.
Fig.lc zeigt den Fertigungszustand des mikroelektronischenFig.lc shows the manufacturing state of the microelectronic
Schaltkreises 107, nachdem eine erste, als Primerschicht anzusehende Schicht 104 direkt auf der Leiterbahn 102 aufgebracht ist. Vorzugsweise besteht diese erste Schicht 104 auf der Leiterbahn 102 in diesem Ausführungsbeispiel aus PdCl2. Die erste Schicht 104 kann durch Inkontaktbringen einer wässrigen Lösung enthaltendCircuit 107 after a first layer 104, which is to be regarded as a primer layer, is applied directly to the conductor track 102. This first layer 104 on the conductor track 102 in this exemplary embodiment preferably consists of PdCl 2 . The first layer 104 may contain by contacting an aqueous solution
• etwa 0,25 g/1 bis etwa 12,5 g/1 PdCl2,About 0.25 g / 1 to about 12.5 g / 1 PdCl 2 ,
• etwa 0,25 bis etwa 12,5 Vol.-%, 36% HCl und • etwa 0 bis etwa 20 Vol.-% Glyzerin/Ethanol mit der zu kontaktierenden Leiterbahn 102 und durch anschließendes Spülen mit 10 Vol.-% HCl und nochmaligem Spülen mit Wasser erfolgen.About 0.25 to about 12.5% by volume, 36% HCl and About 0 to about 20 vol.% Glycerol / ethanol with the conductor track 102 to be contacted and then rinsed with 10 vol.% HCl and rinsed again with water.
Fig.ld zeigt den Fertigungszustand des mikroelektronischen Schaltkreises 107, nachdem direkt auf die erste Schicht 104 eine zweite Schicht 105 mit dem katalytisch aktiven Metall aufgebracht worden ist. Vorzugsweise besteht diese zweite Schicht 105 aus Nickel, das zum Wachsen von Kohlenstoff-Fig.ld shows the state of manufacture of the microelectronic circuit 107 after a second layer 105 with the catalytically active metal has been applied directly to the first layer 104. This second layer 105 preferably consists of nickel, which is used to grow carbon
Nanoröhren als katalytisch aktives Metall funktionieren kann. Gemäß diesem Ausführungsbeispiel der vorliegenden Erfindung kann die zweite Schicht 105 aus Nickel direkt auf der ersten Schicht 104 aus PdCl2 durch Inkontaktbringen einer wässrigen Lösung enthaltend β etwa 45 g/1 NiCl2,Nanotubes can function as a catalytically active metal. According to this exemplary embodiment of the present invention, the second layer 105 made of nickel can be placed directly on the first layer 104 made of PdCl 2 by contacting an aqueous solution containing β about 45 g / 1 NiCl 2 ,
• etwa 11 g/1 NaOCl, β etwa 100 g/1 Natriumeitrat undAbout 11 g / 1 NaOCl, β about 100 g / 1 sodium citrate and
• etwa 50 g/1 Ammoniumchlorid mit der ersten Schicht 104 aus PdCl2 und durch anschließendes• about 50 g / 1 ammonium chloride with the first layer 104 of PdCl 2 and by subsequent
Spülen mit H20 aufgebracht werden. Das in der letztgenannten Lösung vorhandene NiCl2 wird noch in der Lösung durch das Natriumeitrat zur Reinmetallform reduziert (Ni°) , und das Nickel in Reinmetallform scheidet dann auf die erste Schicht 104 PdCl2 ab.Rinsing with H 2 0 are applied. The NiCl 2 present in the latter solution is still reduced in solution by the sodium citrate to the pure metal form (Ni °), and the nickel in pure metal form then deposits on the first layer 104 of PdCl 2 .
Fig.le zeigt den Fertigungsstand des mikroelektronischen Schaltkreises 107, bei welchem Kohlenstoff-Nanoröhren 106 auf der Oberfläche des katalytisch aktiven Metalls 105 gewachsen worden sind. Aufgrund der Tatsache, dass das katalytisch aktive Metall der zweiten Schicht 105, in diesem Ausführungsbeispiel Nickel, sich nur oberhalb der zu kontaktierenden Leiterbahn 102 befindet, wachsen nur in diesemFig.le shows the state of production of the microelectronic circuit 107, in which carbon nanotubes 106 have been grown on the surface of the catalytically active metal 105. Due to the fact that the catalytically active metal of the second layer 105, in this exemplary embodiment nickel, only increases above the contacting conductor track 102, only grow in this
Bereich Kohlenstoff-Nanoröhren auf. So ermöglicht diesesArea of carbon nanotubes. So this enables
Ausführungsbeispiel der vorliegenden Erfindung im Endeffekt ein gezieltes Aufbringen von Kohlenstoff-Nanoröhren 106 auf einen bestimmten Bereich eines mikroelektronischenEmbodiment of the present invention in the end, a targeted application of carbon nanotubes 106 to a specific area of a microelectronic
Schaltkreises 107, während alle anderen, nicht vorgegebenenCircuit 107, while all others, not predetermined
Bereiche des mikroelektronischen Schaltkreises 107 von denAreas of the microelectronic circuit 107 from the
Kohlenstoff-Nanoröhren 106 frei bleiben. Im Rahmen diesesCarbon nanotubes 106 remain free. As part of this
Ausführungsbeispiels der vorliegenden Erfindung ist es bevorzugt, dass die Kohlenstoff-Nanoröhren 106 mittels einesEmbodiment of the present invention, it is preferred that the carbon nanotubes 106 by means of a
Abscheideverfahrens aus der Gasphase (CVD-Verfahren) gewachsen werden.Separation process from the gas phase (CVD process) can be grown.
In einem weiteren, den Schritt in Fig.le anschließenden Schritt ist es dann möglich, die Kohlenstoff-Nanoröhren 106 mit einem weiteren leitenden Körper in Kontakt zu bringen, um diesen weiteren leitenden Körper mit der Leiterbahn 102 über die Kohlenstoff-Nanoröhren 106, die zweite Schicht 105 aus Nickel und die erste Schicht 104 aus PdCl2 elektrisch zu kontaktieren.In a further step following the step in FIG. 1e, it is then possible to bring the carbon nanotubes 106 into contact with a further conductive body in order to connect this further conductive body to the conductor track 102 via the carbon nanotubes 106, the second Electrically contact layer 105 made of nickel and the first layer 104 made of PdCl 2 .
Es ist anzumerken, dass für die Beschaffenheit der zweiten Schicht mit katalytisch aktivem Metall alle Metalle möglich sind, die im Stande sind, den Wachstum von Kohlenstoff- Nanoröhren zu katalysieren und die sich mittels eines elektrolosen Abscheideverfahrens abscheiden lassen. In diesem Dokument sind folgende Veröffentlichungen zitiert:It should be noted that for the nature of the second layer with catalytically active metal, all metals are possible which are able to catalyze the growth of carbon nanotubes and which can be deposited by means of an electroless deposition process. The following publications are cited in this document:
[1] EP 1 061 041 AI[1] EP 1 061 041 AI
[2] EP 1 061 544 AI[2] EP 1 061 544 AI
[3] US 5,973,444 A[3] US 5,973,444 A
[4] US 6,062,931 A[4] US 6,062,931 A
[5] US 5,726,524 [5] US 5,726,524
BezugszeichenlisteLIST OF REFERENCE NUMBERS
100 Substrat100 substrate
101 Dielektrikumschicht101 dielectric layer
102 Leiterbahn aus Metall 1 (zu kontaktierende Unterlage eines mikroelektronischen Schaltkreises)102 conductor track made of metal 1 (pad of a microelectronic circuit to be contacted)
103 Oxid des Metalls 1103 oxide of metal 1
104 Primerschicht104 primer layer
105 katalytisches Metall 2105 catalytic metal 2
106 Kohlenstoff-Nanoröhren, gewachsen auf dem katalytischen Metall 2106 carbon nanotubes grown on the catalytic metal 2
107 Ausschnitt eines mikroelektronischen Schaltkreises 107 Section of a microelectronic circuit

Claims

Ansprüche Expectations
1. Verfahren zum Wachsen von Kohlenstoff-Nanoröhren oberhalb einer elektrisch zu kontaktierenden Unterlage • bei dem zumindest ein für den Wachstum von Kohlenstoff- Nanoröhren katalytisch aktives Metall oberhalb der elektrisch zu kontaktierenden Unterlage mittels eines elektrolosen Abscheideverfahrens aufgebracht wird, und1. Method for growing carbon nanotubes above an electrically contactable substrate • in which at least one metal which is catalytically active for the growth of carbon nanotubes is applied above the substrate to be electrically contacted by means of an electroless deposition method, and
• bei dem Kohlenstoff-Nanoröhren auf dem katalytisch aktiven Metall gewachsen werden.• in which carbon nanotubes are grown on the catalytically active metal.
2. Verfahren gemäß Anspruch 1,2. The method according to claim 1,
• bei dem eine erste Schicht direkt auf die elektrisch zu kontaktierende Unterlage abgeschieden wird und • bei dem eine zweite Schicht mit dem katalytisch aktiven Metall direkt auf die erste Schicht abgeschieden wird.• in which a first layer is deposited directly on the substrate to be contacted electrically and • in which a second layer with the catalytically active metal is deposited directly on the first layer.
3. Verfahren gemäß Anspruch 2 , bei dem die erste Schicht Metallatome aufweist.3. The method of claim 2, wherein the first layer has metal atoms.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, bei dem das Wachsen der Kohlenstoff-Nanoröhren mittels eines Abscheideverfahrens aus der Gasphase erfolgt .4. The method according to any one of claims 1 to 3, wherein the growth of the carbon nanotubes takes place by means of a deposition process from the gas phase.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, bei dem die elektrisch zu kontaktierende Unterlage eine Leiterbahn eines mikroelektronischen Schaltkreises ist.5. The method according to any one of claims 1 to 4, wherein the pad to be electrically contacted is a conductor track of a microelectronic circuit.
6. Verfahren gemäß Anspruch 5, bei dem die Leiterbahn Kupfer oder Aluminium aufweist.6. The method according to claim 5, wherein the conductor track comprises copper or aluminum.
7. Verfahren gemäß einem der Ansprüche 2 bis 6, bei dem vor dem Aufbringen αer ersten Schicht direkt auf die elektrisch zu kontaktierende Unterlage eventuell vorhandenes Metalloxid auf der Oberfläche der elektrisch zu kontaktierenden Unterlage entfernt wird.7. The method according to any one of claims 2 to 6, in which any metal oxide on the surface of the substrate to be contacted is removed directly on the substrate to be electrically contacted prior to the application of the first layer.
8. Verfahren gemäß Anspruch 7 , bei dem das Entfernen des Metalloxids durch Behandeln der Oberfläche der elektrisch zu kontaktierenden Unterlage mit Wasserstoffplasma oder mit Säure erfolgt.8. The method according to claim 7, wherein the removal of the metal oxide is carried out by treating the surface of the pad to be contacted electrically with hydrogen plasma or with acid.
9. Verfahren gemäß einem der Ansprüche 2 bis 8, bei dem die erste Schicht aus PdCl2 besteht.9. The method according to any one of claims 2 to 8, wherein the first layer consists of PdCl 2 .
10. Verfahren gemäß Anspruch 9, bei dem die erste Schicht PdCl2 aufgebracht wird, indem β eine wässrige Lösung mit o etwa 0,25 g/1 bis etwa 12,5 g/1 PdCl2, o etwa 0,25 bis etwa 12,5 vol.% 36% HCl und o etwa 0-20 vol.% Glyzerin/EtOH in Kontakt mit der elektrisch zu kontaktierenden10. The method of claim 9, wherein the first layer of PdCl 2 is applied by β an aqueous solution with o about 0.25 g / 1 to about 12.5 g / 1 PdCl 2 , o about 0.25 to about 12 , 5 vol.% 36% HCl and o about 0-20 vol.% Glycerin / EtOH in contact with the electrical contact
Unterlage gebracht wird und • anschließend mit 10 vol.% HCl gespült wird.Is brought underlay and • then rinsed with 10 vol.% HCl.
11. Verfahren gemäß einem der Ansprüche 2 oder 10, bei dem die zweite Metallschicht aus Nickel besteht.11. The method according to any one of claims 2 or 10, wherein the second metal layer consists of nickel.
12. Verfahren gemäß Anspruch 11, bei dem die zweite Metallschicht aus Nickel aufgebracht wird, indem • eine wäßrige Lösung mit o etwa 45 g/1 NiCl2, o etwa 11 g/1 NaOCl, o etwa 100 g/1 Natriumzitrat und o etwa 50 g/1 Ammoniumchlorid in Kontakt mit der ersten Schicht gebracht wird und • anschließend mit H20 gespült wird.12. The method according to claim 11, wherein the second metal layer of nickel is applied by • an aqueous solution with o about 45 g / 1 NiCl 2 , o about 11 g / 1 NaOCl, o about 100 g / 1 sodium citrate and o about 50 g / 1 ammonium chloride is brought into contact with the first layer and • then rinsed with H 2 0.
13. Bauelement, das Kohlenstoff-Nanoröhren aufweist, die gemäß einem Verfahren gemäß einem der Ansprüche 1 bis 12 gewachsen wurden. 13. The component having carbon nanotubes that have been grown according to a method according to any one of claims 1 to 12.
1/11.1
FIG1AFIG1A
Figure imgf000018_0001
Figure imgf000018_0001
FIG1B VFIG1B V
Figure imgf000018_0002
Figure imgf000018_0002
FIG1C VFIG1C V
Figure imgf000018_0003
Figure imgf000018_0003
FIG1D VFIG1D V
Figure imgf000018_0004
Figure imgf000018_0004
PCT/DE2002/000194 2001-01-25 2002-01-22 Method for growing carbon nanotubes above a base that is to be electrically contacted and a component WO2002059392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10103340.0 2001-01-25
DE10103340A DE10103340A1 (en) 2001-01-25 2001-01-25 Process for growing carbon nanotubes above an electrically contactable substrate and component

Publications (1)

Publication Number Publication Date
WO2002059392A1 true WO2002059392A1 (en) 2002-08-01

Family

ID=7671730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2002/000194 WO2002059392A1 (en) 2001-01-25 2002-01-22 Method for growing carbon nanotubes above a base that is to be electrically contacted and a component

Country Status (2)

Country Link
DE (1) DE10103340A1 (en)
WO (1) WO2002059392A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033370A1 (en) * 2002-10-11 2004-04-22 Massachusetts Institute Of Technology Nanopellets and method of making nanopellets
WO2005033358A2 (en) * 2003-09-30 2005-04-14 Infineon Technologies Ag Method for depositing a conductive material on a substrate, and semiconductor contact device
EP1566814A1 (en) * 2002-11-28 2005-08-24 Shinano Kenshi Kabushiki Kaisha Electric contact member
EP1614765A2 (en) * 2004-07-07 2006-01-11 Commissariat A L'Energie Atomique Low temperature growth of oriented carbon nanotubes
JP2007531243A (en) * 2003-07-07 2007-11-01 ゲルコアー リミテッド ライアビリティ カンパニー ELECTRONIC DEVICE USING NANOTUBE AREA AND SUPPORTING THERMAL HEAT SINK ACTION AND ITS MANUFACTURING METHOD
JP2010103525A (en) * 2008-10-27 2010-05-06 Samsung Led Co Ltd Led package
US20120231290A1 (en) * 2009-07-03 2012-09-13 National Tsing Hua University Metal nanostructure and preparation thereof
CN105226006A (en) * 2014-06-12 2016-01-06 中芯国际集成电路制造(上海)有限公司 The formation method of interconnection structure
US9494615B2 (en) 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248644B4 (en) * 2002-10-18 2008-07-03 Semikron Elektronik Gmbh & Co. Kg The power semiconductor module
DE10307815B3 (en) * 2003-02-24 2004-11-11 Infineon Technologies Ag Integrated electronic component with specifically created nanotubes in vertical structures and its manufacturing process
DE10331528A1 (en) * 2003-07-11 2005-02-03 Infineon Technologies Ag DRAM semiconductor memory cell and method for its production
DE10351230B3 (en) * 2003-11-03 2005-03-10 Infineon Technologies Ag Selective and surface deposition of catalyst on strip conductor in integrated circuit comprises preparing acidic or alkaline aqueous solution of catalyst, applying on conductor, and removing excess solution
DE102007039905A1 (en) 2007-08-23 2008-08-28 Siemens Ag Heat conducting material layer production method for use in solar technology, involves elongation of multiple nodular fibers in longitudinal direction having heat conductivity more than in another direction
DE102007039904A1 (en) 2007-08-23 2008-08-28 Siemens Ag Heat-conductive material layer manufacturing method, involves inserting fibers in field area and transporting towards carrier layer, where fibers have large heat-conductivity toward fiber longitudinal direction than other direction
DE102010026529A1 (en) 2010-07-08 2012-01-26 Converteam Gmbh Heat sink with an electrical component
DE102020216315A1 (en) 2020-12-18 2022-06-23 Zf Friedrichshafen Ag Power module for operating an electric vehicle drive with optimized cooling and contacting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
US6146227A (en) * 1998-09-28 2000-11-14 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of MEMS devices
EP1061544A1 (en) * 1999-06-15 2000-12-20 Iljin Nanotech Co., Ltd. Field emitter having carbon nanotube film, method of fabricating the same, and field emission display device using the field emitter.

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872422A (en) * 1995-12-20 1999-02-16 Advanced Technology Materials, Inc. Carbon fiber-based field emission devices
US5726524A (en) * 1996-05-31 1998-03-10 Minnesota Mining And Manufacturing Company Field emission device having nanostructured emitters
EP1061041A1 (en) * 1999-06-18 2000-12-20 Iljin Nanotech Co., Ltd. Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same
US6062931A (en) * 1999-09-01 2000-05-16 Industrial Technology Research Institute Carbon nanotube emitter with triode structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129901A (en) * 1997-11-18 2000-10-10 Martin Moskovits Controlled synthesis and metal-filling of aligned carbon nanotubes
US6146227A (en) * 1998-09-28 2000-11-14 Xidex Corporation Method for manufacturing carbon nanotubes as functional elements of MEMS devices
EP1061544A1 (en) * 1999-06-15 2000-12-20 Iljin Nanotech Co., Ltd. Field emitter having carbon nanotube film, method of fabricating the same, and field emission display device using the field emitter.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VAJTAI R ET AL: "Carbon nanotube network growth on palladium seeds", CURRENT TRENDS IN NANOTECHNOLOGIES: FROM MATERIALS TO SYSTEMS. SYMPOSIUM S, EMRS SPRING MEETING 2001, STRASBOURG, FRANCE, 5-8 JUNE 2001, vol. C19, no. 1-2, 2 January 2002 (2002-01-02), Materials Science & Engineering C, Biomimetic and Supramolecular Systems, 2 Jan. 2002, Elsevier, Netherlands, pages 271 - 274, XP002200555, ISSN: 0928-4931 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033370A1 (en) * 2002-10-11 2004-04-22 Massachusetts Institute Of Technology Nanopellets and method of making nanopellets
US7507987B2 (en) 2002-10-11 2009-03-24 Massachusetts Institute Of Technology Method of making packets of nanostructures
EP1566814A1 (en) * 2002-11-28 2005-08-24 Shinano Kenshi Kabushiki Kaisha Electric contact member
EP1566814A4 (en) * 2002-11-28 2006-10-11 Shinano Kenshi Co Electric contact member
US7202586B2 (en) 2002-11-28 2007-04-10 Shinano Kenshi Kabushiki Kaisha Electrical contact member
CN1327454C (en) * 2002-11-28 2007-07-18 信浓绢糸株式会社 Electric contact member
JP2007531243A (en) * 2003-07-07 2007-11-01 ゲルコアー リミテッド ライアビリティ カンパニー ELECTRONIC DEVICE USING NANOTUBE AREA AND SUPPORTING THERMAL HEAT SINK ACTION AND ITS MANUFACTURING METHOD
JP4754483B2 (en) * 2003-07-07 2011-08-24 ルミネイション リミテッド ライアビリティ カンパニー ELECTRONIC DEVICE USING NANOTUBE AREA AND SUPPORTING THERMAL HEAT SINK ACTION AND ITS MANUFACTURING METHOD
WO2005033358A2 (en) * 2003-09-30 2005-04-14 Infineon Technologies Ag Method for depositing a conductive material on a substrate, and semiconductor contact device
WO2005033358A3 (en) * 2003-09-30 2005-07-21 Infineon Technologies Ag Method for depositing a conductive material on a substrate, and semiconductor contact device
EP1614765A2 (en) * 2004-07-07 2006-01-11 Commissariat A L'Energie Atomique Low temperature growth of oriented carbon nanotubes
EP1614765A3 (en) * 2004-07-07 2006-05-03 Commissariat A L'Energie Atomique Low temperature growth of oriented carbon nanotubes
FR2872826A1 (en) * 2004-07-07 2006-01-13 Commissariat Energie Atomique LOW-TEMPERATURE GROWTH OF CARBON NANOTUBES ORIENTED
US8034218B2 (en) 2004-07-07 2011-10-11 Commissariat A L'energie Atomique Low temperature growth of oriented carbon nanotubes
JP2010103525A (en) * 2008-10-27 2010-05-06 Samsung Led Co Ltd Led package
US9494615B2 (en) 2008-11-24 2016-11-15 Massachusetts Institute Of Technology Method of making and assembling capsulated nanostructures
US20120231290A1 (en) * 2009-07-03 2012-09-13 National Tsing Hua University Metal nanostructure and preparation thereof
CN105226006A (en) * 2014-06-12 2016-01-06 中芯国际集成电路制造(上海)有限公司 The formation method of interconnection structure

Also Published As

Publication number Publication date
DE10103340A1 (en) 2002-08-22

Similar Documents

Publication Publication Date Title
DE10006964C2 (en) Electronic component with a conductive connection between two conductive layers and method for producing an electronic component
WO2002059392A1 (en) Method for growing carbon nanotubes above a base that is to be electrically contacted and a component
DE2729030C2 (en) Method for producing a multilayer conductor pattern for monolithically integrated semiconductor circuits
DE112006001397B4 (en) Carbon nanotube wiring contacts and methods of making same
DE112005001489T5 (en) Atomic layer deposited tantalum containing adhesive layer
DE2720893A1 (en) METHOD OF MANUFACTURING A METAL-SEMICONDUCTOR INTERFACE
DE2926614A1 (en) METHOD FOR PRODUCING A FINE DISTRIBUTED ALLOY FROM PRECIOUS METAL AND VANADIUM, CATALYST MADE THEREOF AND THE CATODE MADE THEREOF
EP1825534A1 (en) Method for structured application of molecules on a strip conductor and molecular memory matrix
DE10238024B4 (en) Method for integrating air as a dielectric in semiconductor devices
DE69936281T2 (en) Process for improving the electrical conductivity of metals, metal alloys and metal oxides
EP0002703A1 (en) Method of production of thin conducting metal strips on semiconductor substrates and strips produced by this method
DE2132034A1 (en) Process for the production of interconnections for electrical assemblies on solid bodies
DE102004039803B4 (en) Method for producing a conductive path arrangement with increased capacitive coupling and associated interconnect arrangement
EP1597760B1 (en) Integrated electronic component having specifically produced nanotubes in vertical structures
EP0177845A1 (en) Integrated circuit with multilayer wiring and method for manufacturing it
DE102018111220B3 (en) Method for producing an atomic trap and atomic trap
DE19723096B4 (en) Method for forming a connection line
DE102011053259A1 (en) SEMICONDUCTOR STRUCTURE AND METHOD FOR THE PRODUCTION THEREOF
DE2613759C3 (en) Method for producing a multilayer metal connection contact for a semiconductor component
DE102008042107A1 (en) Electronic component and method for its production
EP1482073A2 (en) Process for fabrication of ultra-thin homogeneous metal layers
DE4406769C2 (en) Method for producing ohmic contacts on a SiC semiconductor body
EP1502299B1 (en) Contacting of nanotubes
EP1323183A1 (en) Method for producing a microelectronic circuit and a microelectronic circuit
EP2128899A1 (en) Method for electrodepositing a metal, especially copper, use of said method and integrated circuit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP