WO2002057335A1 - Polymerization catalyst for polyester, polyester, and process for producing the same - Google Patents

Polymerization catalyst for polyester, polyester, and process for producing the same Download PDF

Info

Publication number
WO2002057335A1
WO2002057335A1 PCT/JP2002/000266 JP0200266W WO02057335A1 WO 2002057335 A1 WO2002057335 A1 WO 2002057335A1 JP 0200266 W JP0200266 W JP 0200266W WO 02057335 A1 WO02057335 A1 WO 02057335A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
aluminum
acid
group
compounds
Prior art date
Application number
PCT/JP2002/000266
Other languages
French (fr)
Japanese (ja)
Inventor
Takahiro Nakajima
Ken-Ichi Tsukamoto
Shoichi Gyobu
Mitsuyoshi Kuwata
Nobuo Moriyama
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001282044A external-priority patent/JP2003082083A/en
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to KR1020037009477A priority Critical patent/KR100872634B1/en
Publication of WO2002057335A1 publication Critical patent/WO2002057335A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/83Alkali metals, alkaline earth metals, beryllium, magnesium, copper, silver, gold, zinc, cadmium, mercury, manganese, or compounds thereof

Definitions

  • Polyester polymerization catalyst polyester, and polyester production method
  • the present invention relates to a polyester polymerization catalyst, a method for producing polyester and polyester, and more particularly, to a polyester polymerization catalyst which gives a polyester having improved filter clogging during molding, and a method for producing polyester and polyester. It is about the method.
  • Polyesters especially polyethylene terephthalate (hereinafter abbreviated as PET), have excellent mechanical and chemical properties, and are suitable for a wide variety of applications, such as textiles for clothing and industrial materials, packaging, and the like. It has been applied to various films and sheets for magnetic tapes and molded products such as bottles and engineering plastics.
  • PET polyethylene terephthalate
  • PET industrially produces bis (2-hydroxyethyl) terephthalate by esterification or transesterification of terephthalic acid or dimethyl terephthalate with ethylene glycol, which is then polycondensed using a catalyst at high temperature and under vacuum. This is obtained.
  • Antimony trioxide is widely used as a catalyst for polycondensation.
  • Antimony trioxide is a catalyst that is inexpensive and has excellent catalytic activity, but has the problem of darkening and foreign matter in PET due to the precipitation of metal antimony during polycondensation. Under such circumstances, a polyester containing no antimony or containing no antimony as a main component of the catalyst is desired.
  • the above foreign matter in the polyester causes the following problems, for example.
  • polyester for film the precipitation of antimony metal becomes a foreign substance in the polyester, which not only causes stains on the die at the time of melt extrusion, but also causes a surface defect of the film. Also, when used as a raw material for hollow molded products, etc. However, it is difficult to obtain a hollow molded product that is transparent.
  • antimony trioxide as a polycondensation catalyst to suppress the occurrence of blackening and foreign matter in PET.
  • generation of black foreign matter in PET is suppressed by using a compound of antimony trioxide, bismuth and selenium as a polycondensation catalyst.
  • Japanese Patent Application Laid-Open No. 9-291141 states that the use of antimony trioxide containing sodium and iron oxides as a polycondensation catalyst suppresses the deposition of antimony metal.
  • these polycondensation catalysts cannot achieve the purpose of reducing the content of antimony after all.
  • phenolic compounds generally have poor catalytic activity.
  • chelating compounds of aluminum have been reported to have higher catalytic activity as polycondensation catalysts than other aluminum compounds, but they have sufficient catalytic properties compared to the above-mentioned antimony compounds and titanium compounds.
  • polyesters polymerized over a long period of time using an aluminum compound as a catalyst have a problem that thermal stability and thermal oxidation stability are poor.
  • the polyester polymerized using the aluminum disulfide compound as a catalyst generates a large amount of foreign matter insoluble in the polyester, which causes clogging of the filter due to the foreign matter during molding of the polyester, and when the polyester is used for fibers.
  • yarn breakage or the like frequently occurs during spinning, and when used in a film, the physical properties of the film deteriorate.
  • Japanese Patent Publication No. 46-41031 discloses that excellent catalytic activity is exhibited when an alkali metal or a compound thereof and a chelate compound of aluminum coexist.
  • Polyester polymerized according to the method described in the publication has a problem that the thermal stability is excellent, but the thermal oxidation stability is still inferior, and that many foreign matters insoluble in the polyester are generated.
  • the filter is clogged due to the foreign matter, and when used for fibers, thread breakage frequently occurs during spinning, and when used for a film, the physical properties of the film are deteriorated. It was not suitable for practical use. ⁇
  • Germanium compounds have already been put into practical use as catalysts which provide polyesters which have excellent catalytic activity and do not have the above-mentioned problems except for antimony compounds, but this catalyst is very expensive. Also, there is the problem that the concentration of catalyst in the reaction system changes due to the distilling out of the reaction system during polymerization, making it difficult to control the polymerization, and there is a problem in using it as the main component of the catalyst. .
  • Japanese Patent Application Laid-Open No. H10-251,394 discloses a method in which a polyester resin is brought into contact with an extractant which is a supercritical fluid in the presence of an acidic substance. Disclosed .
  • a method using a supercritical fluid is not preferable because it is technically difficult and leads to an increase in product cost.
  • the decrease in molecular weight due to heat during the melt molding of polyester not only causes the heat resistance and mechanical properties of the melt molded product to deteriorate, but also lowers the quality of the molded product derived from by-products due to thermal decomposition, for example. It leads to an increase in coloring.
  • Known antimony-catalyzed germanium-catalyst catalysts provide polyesters with relatively good thermal stability during melt molding compared to other titanium catalysts, but still have a complete thermal degradation during melt molding. I can't prevent it. Under such circumstances, a polyester polymerization catalyst that gives a polyester that can minimize the thermal deterioration during melt molding of the polyester has been desired.
  • WO 98/42769 Japanese Patent Publication No. 11-507694, etc., have proposed techniques using an aluminum compound as a polymerization catalyst.
  • the aluminum compound include an aluminum chelate compound such as aluminum-dimethyl acetylacetonate, an inorganic acid salt such as aluminum chloride and aluminum hydroxide, an aluminum salt of a carboxylic acid, and an aluminum alkoxide.
  • Aluminum chelate compounds of aluminum such as luminium dimethyl acetylacetonate are generally expensive, and the aluminum content in the compound is low, leading to increased costs. There is a problem that the solubility is low and the addition method is limited.
  • Aluminum hydroxide and aluminum alkoxide have the problem of low melt penetration into the system and low catalytic activity.
  • Chlorine-containing inorganic acid salts such as aluminum chloride are relatively excellent in catalytic activity, but have a problem of high corrosiveness to the apparatus and a problem of large coloring of the obtained polymer.
  • examples of aluminum salts of carboxylic acids include aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum benzoate and the like.
  • these are generally inexpensive and have a low corrosion property to the apparatus, but have low solubility in the polyester, so that they have poor touch properties and have a problem that turbidity occurs in the obtained polyester.
  • Japanese Patent Application Laid-Open No. 10-324741 describes that polyester using aluminum acetate as a catalyst tends to form insoluble foreign matters and has a problem of poor spinning properties.
  • An object of the present invention is to provide a polyester produced using a polymerization catalyst containing a metal component other than antimony and germanium as a main metal component of the catalyst, and having improved filter clogging during molding and the like. It also provides a method of manufacturing the same.
  • Another object of the present invention is to provide a method for producing a polyester using a novel polyester polymerization catalyst other than an antimony compound and a germanium compound, and to provide a polyester produced by the method. is there.
  • An object of the present invention is to provide a polyester polymerization catalyst which gives a polyester having excellent thermal stability by effectively suppressing thermal deterioration.
  • the present invention also provides improved heat stability when performing melt molding of hollow molded articles such as finolems and bottles, fibers, and engineering plastics using the catalyst.
  • An object of the present invention is to provide a polyester capable of obtaining a high-quality product even if waste generated during molding is reused, and a method for producing a polyester using the polyester polymerization catalyst.
  • Another object of the present invention is a polyester polymerization catalyst which gives a polyester capable of minimizing thermal degradation during melt molding, using the catalyst to form a hollow molded article such as a film or a bottle, or a fiber.
  • the thermal stability of melt molding of engineering plastics and the like has been remarkably improved, and high quality products can be obtained even if virgin resin is used and waste generated during molding is reused.
  • Another object of the present invention is to provide an inexpensive, excellent catalytic activity, less corrosion to equipment, and a foreign substance that is insoluble in polyester without using an antimony compound or a germanium compound as a main component of the catalyst and using aluminum as a main metal component.
  • An object of the present invention is to provide a polyester polymerization catalyst which gives a polyester with reduced generation of polyester and a method for producing the same.
  • the present invention also provides a polyester in a method for producing a polyester using the catalyst.
  • the present inventors have conducted intensive studies aiming at solving the above-mentioned problems, and as a result, when polymerized using a catalyst in which an alkali metal compound or an alkaline earth metal compound and an aluminum hydride are coexisted,
  • the foreign matter insoluble in the resulting polyester is found to be mainly caused by alkali metal compounds or alkaline earth metal compounds.
  • the alkali metal compounds in polyesters It has been found that by setting the content of the aluminum and polyimide to a specific range, the generation of this insoluble foreign matter can be effectively suppressed, and problems such as filter clogging during polyester molding can be improved.
  • the present invention has been completed.
  • the present invention provides, as a solution to the above problems, at least one kind selected from the group consisting of alkali metals and their compounds, and at least one selected from the group consisting of alkaline earth metals and their compounds;
  • a polyester characterized by containing at least one selected from the group consisting of compounds, and having them satisfying the following formulas (1) and (2).
  • the present inventors have conducted intensive studies aiming at solving the above problems, and as a result, when polymerized using a catalyst in which an aluminum metal compound or an aluminum earth compound and an aluminum compound coexist.
  • Foreign substances insoluble in polyester are mainly produced
  • the coexistence of the phosphorus compound effectively reduces these foreign substances.
  • the present invention provides, as a solution to the above problems, at least one selected from the group consisting of alkali metals and their compounds, and alkaline earth metals and their compounds, and at least one selected from the group consisting of aluminum and its compounds Contains at least one kind and at least one kind selected from the group consisting of phosphorus compounds.
  • [M] indicates the total amount (ppm) of alkali metal atoms and alkaline earth metal atoms contained in the polyester, and [A1] and [P] indicate The amounts (ppm) of aluminum and phosphorus atoms contained in the ester are indicated.
  • the present inventors have conducted intensive studies aiming at solving the above-mentioned problems, and as a result, when polymerized using a catalyst in which an aluminum metal compound or an aluminum metal compound and an aluminum compound coexist.
  • the foreign matter that is insoluble in the polyester formed during the process was found to be mainly caused by alkali metal compounds and alkaline earth metal compounds, and as a result of further investigation, it was found that the alkali metal compounds and alkaline earth compounds Among the metal compounds, at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium and their conjugates is used, and their content in the polyester is adjusted to a specific range.
  • the coexistence of a phosphorus compound effectively suppresses the formation of foreign matter insoluble in polyester,
  • the present invention found that the problems of the filter one clogging at the time of molding is improved Reached SI.
  • the present invention provides, as a solution to the above-described problems, at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium, and their conjugates, and a group consisting of aluminum and compounds thereof. At least one, and at least selected from the group consisting of phosphorus compound Bareru more selected - containing species, and lithium, sodium, potassium, beryllium, Maguneshiu beam, calcium and total polymer 1 content of the compounds 0 6 g
  • the present invention provides a polyester characterized in that the amount is 7.0 mol or less per metal atom conversion, and a method for producing the same.
  • the present inventors have conducted intensive studies with the aim of solving the above problems, and as a result, a polyester produced using a polymerization catalyst containing aluminum as a main metal component, and a polyester made from a group consisting of phosphorus compounds.
  • Polyesters containing at least one selected from the group consisting of phenolic compounds and at least one selected from the group consisting of phenolic compounds, and a polyester with a specific ratio of phosphorus atoms to aluminum atoms in a specific range have problems such as filter clogging at the time of molding.
  • the inventors have found that the thermal oxidation stability has been improved, and have reached the present invention.
  • the present invention provides, as a solution to the above-mentioned problems, at least one selected from the group consisting of aluminum and its conjugates, and at least one selected from the group consisting of phosphorus compounds;
  • the selected polyester contains at least one kind, and the ratio of the amount of phosphorus atoms (ppm) to the amount of aluminum atoms (ppm) contained in the polyester is in the range of 0.01 to 50. And a method for producing the same.
  • the present inventors have conducted intensive studies aiming at solving the above-mentioned problems, and as a result, foreign matters insoluble in polyesterol generated when polymerized using an aluminum compound as a catalyst are mainly caused by aluminum compounds.
  • the present invention was found to reduce the problem and to improve the problems such as filter clogging when molding polyester.
  • the present invention provides, as a solution to the above-mentioned problem, a polyester containing at least one selected from the group consisting of aluminum and its conjugates and at least one selected from the group consisting of phosphorus compounds.
  • a polyester ratio to the amount (PP m) of the aluminum atoms of the amount of phosphorus atoms (ppm) is characterized in that it is in the 0.5 to 2 range 0 contained.
  • the present invention also provides the polyester produced using the metal and / or the compound as a catalyst, and a method for producing the polyester.
  • the present inventors have conducted intensive studies with the aim of solving the above problems, and as a result, although aluminum compounds originally have poor catalytic activity, by combining them with a specific amount of phosphorus compounds, they can be used as polymerization catalysts.
  • the present inventors have found that the present invention has an excellent activity and reached the present invention.
  • the use of the polymerization catalyst of the present invention makes it possible to obtain inexpensively a high-quality polyester that does not use an antimony compound.
  • the present invention provides, as a solution to the above-mentioned problem, adding at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds, and adding the phosphorus atom and the aluminum atom to each other.
  • the present invention also relates to a polyester polymerization catalyst comprising at least one selected from the group consisting of aluminum and its conjugates and at least one selected from the group consisting of phosphorus compounds, wherein the catalyst comprises a mole of phosphorus atom and aluminum atom.
  • a polyester polymerization catalyst having a ratio in the above range, a polyester produced using the same, and a method for producing a polyester.
  • the present inventors have conducted intensive studies with the aim of solving the above-mentioned problems. As a result, even if the metal or the metal compound itself has low catalytic activity, it is possible to combine the metal or the metal compound with the phosphorous compound. It becomes a polyester polymerization catalyst that improves the catalytic activity, and such a polyester polymerization catalyst composed of a metal or a metal compound and a phosphorus compound has excellent tactility, without deactivating or removing the catalyst.
  • the present inventors have found that heat deterioration during melt molding is effectively suppressed, and the resulting polymer catalyst is a polyester polymerization catalyst that gives a polyester having excellent heat stability. Thus, the present invention has been completed. .
  • the present invention provides, as a solution to the above-mentioned problem, a polyester polymerization catalyst comprising a metal or a metal compound and a phosphorus conjugate, wherein an activity parameter (AP) satisfies the following formula (10).
  • a polyester polymerization catalyst is provided.
  • AP is the time required to polymerize polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 d1 Zg at a pressure of 275 ° C and a pressure of 0.1 l Torr using a predetermined amount of catalyst.
  • a PX indicates the time (min) required to polymerize PET using the same amount of metal or metal compound of the above catalyst and the same conditions as above. Shown.
  • Another aspect of the present invention is a polyesterlene polymerization catalyst, wherein the thermal stability parameter (TS) of polyethylene terephthalate (; PET) polymerized by using the catalyst satisfies the following equation (9).
  • TS thermal stability parameter
  • PET polyethylene terephthalate
  • the thermal stability of melt molding of films, bottles and other hollow molded articles, fibers, engineering plastics, etc. made of polyesters polymerized using the polyester polymerization catalyst has been significantly improved. Good quality products can be obtained even when used or when the waste generated during molding is reused.
  • TS is the intrinsic viscosity ([eco!:! Is 64 to 0.66 dl / g.) 1 g of PET is placed in a glass test tube, vacuum-dried at 130 ° C for 12 hours, and then placed in a non-circulating nitrogen atmosphere. It is a numerical value calculated from the intrinsic viscosity ([IV] f ) after maintaining the molten state at 300 ° C for 2 hours below.
  • the correlation between the stirring torque of the PET polymerization reaction vessel and the intrinsic viscosity is measured in advance, and the polymerization state is controlled using this stirring torque. It can be obtained by stopping the polymerization when the stirring torque reaches a predetermined value.
  • the present inventors have conducted intensive studies with the aim of improving the feel of aluminum salts of carboxylic acids, and as a result, it has been found that a catalyst obtained by dissolving aluminum carboxylate in water or an organic solvent in advance is used as a catalyst.
  • a catalyst obtained by dissolving aluminum carboxylate in water or an organic solvent in advance is used as a catalyst.
  • the present invention has been proposed. 'That is, the present invention provides water and z or an organic solvent as a solution to the above problem.
  • a method for producing a solution of a polyester heavy carrier comprising a solution in which at least one selected from the group consisting of aluminum carboxylate is dissolved.
  • the polyester of the present invention comprises at least one selected from the group consisting of alkali metal and their compounds, and at least one selected from the group consisting of alkaline earth metals and their compounds, and a carboxylic acid such as a dicarboxylic acid of a polyester or a polycarboxylic acid.
  • a carboxylic acid such as a dicarboxylic acid of a polyester or a polycarboxylic acid.
  • the content is preferably 0.005 mol% or more. If the content is 0.05 monole% or more, a large amount of foreign matter insoluble in the polyester is generated, and as a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur.
  • the coloring of the resin becomes remarkable, and the appearance of the molded article is impaired.
  • the problem that the hydrolysis resistance of the resin is lowered occurs.
  • More preferred range of the content is 0.03 mol% to 0.008 mol%, still more preferably from 0.02 mole 0/0 from 0.01 mol 0/0.
  • the polyester of the present invention is selected from the group consisting of aluminum and its compounds in addition to at least one selected from the group consisting of the above alkali metals and their compounds and alkaline earth metals and their conjugates.
  • the content of at least one selected from the group consisting of alkaline earth metals and their compounds and the content of at least one selected from the group consisting of aluminum and their compounds for alkali metals and their compounds It is necessary that the molar ratio of the sum of the aluminum metal atoms and the aluminum metal atoms to the aluminum metal atoms be 20 or less. This ratio is preferably 0, 1 or more.
  • the ratio exceeds 20
  • a large amount of foreign matter is insoluble in the polyester, resulting in frequent thread breakage during spinning and filter clogging during molding.
  • problems arise.
  • the tactility is significantly reduced.
  • the ratio is less than 0.1, a large amount of foreign matter insoluble in the polyester resulting from the aluminum compound is generated, and the thermal stability of the polyester is also undesirably reduced.
  • a more preferred range of the ratio is in the range of 0.5 to 10.
  • the polyester at least one selected from the group consisting of alkali metal and their compounds and alkaline earth metals and their compounds, and at least one selected from the group consisting of aluminum and their compounds
  • the content of aluminum and the compound thereof of the present invention is 0.001 mole as aluminum atom with respect to the total number of moles of the carboxylic acid component such as dicarboxylic acid and polycarboxylic acid of the polyester. It is preferred that from 0/0 is in the range of 0.05 mol 0/0. If the content of aluminum atoms is more than 0.05 mole 0/0, undesirable because heat stability of poly ester is reduced to produce. If the content of the aluminum atom is less than 0.001 mol / 0 , the contact property is remarkably reduced when used as a catalyst, which is not preferable. More preferably, in the range of 0.005 mole 0/0 of 0.04 mol%, even more preferably from 0.01 mol 0/0 0 - 03 mol 0/0.
  • the polyester of the present invention contains a total of 25 ppm or less of metallic alkali metal and alkaline earth metal atoms from the viewpoint of reducing foreign matters. This content is more preferably 20 ppm or less, and even more preferably 15 p or less.
  • the polyester of the present invention needs to contain at least one selected from the group consisting of alkali metals and their compounds, and alkaline earth metals and their compounds.
  • polyesters containing an alkaline earth metal or a compound thereof have lower thermal stability, are more colored by heating, and have a relatively large amount of foreign substances. It is preferable that the alkaline metal is contained without containing the alkaline earth metal.
  • the polyester of the present invention preferably contains a phosphorus compound. Phosphorization By containing the compound, the effect of suppressing the generation of foreign substances derived from Alri metal or Al earth metal is obtained, and the thermal stability of the polyester is also improved.
  • polyesters containing aluminum or its compounds and alkaline earth metals or their compounds tend to have poor thermal stability and relatively large amounts of foreign substances are generated.
  • a class of metals within the scope of the present invention and further containing a phosphorus compound the problems of heat stability and foreign matters of the polyester are improved.
  • the amount of the phosphorus compound of the present invention, the polymerization to 5 X10- 5 mole% versus the moles of all the structural Yunitto carboxylic acid component such as deer Rupon acid Ya polycarboxylic acid polyester obtained 1 it is preferably in the range of mole 0/0, more preferably
  • Xicr is from 4 mole 0/0 in a range of 0.5 mol 0/0.
  • another polyester of the present invention is obtained by adding at least one kind selected from the group consisting of alkali metal and their compounds and at least one selected from the group consisting of alkaline earth metals and their compounds as a total of metal atoms in the polyester. 0. It must be contained in lppm or more and 150ppm or less. If the content is more than 150 ppm, many foreign matters insoluble in the polyester are generated, and as a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, coloring of the resin becomes remarkable, causing a problem that ⁇ II of the molded article is impaired and a problem that the thermal stability ⁇ hydrolysis resistance ⁇ of the resin is reduced.
  • a more preferable range of the content is lppm or more and 100ppm or less, more preferably 5ppm or more and 50ppm or less.
  • the polyester of the present invention is selected from the group consisting of aluminum and its compounds in addition to at least one selected from the group consisting of the above alkaline metals and their compounds, in addition to the alkaline earth metals and their compounds. At least one Must be contained.
  • the content of at least one selected from the group consisting of alkaline earth metals and their compounds and the content of at least one selected from the group consisting of aluminum and their compounds On the other hand, it is necessary that the ratio of the total content (ppm) of the aluminum metal atoms and the aluminum earth metal atoms (ppm) to the aluminum atom content ( P pm) in the polyester be 40 or less.
  • This ratio is preferably not less than 0.05.If the ratio exceeds 40, a large amount of foreign matter insoluble in the polyester is generated, and as a result, thread breakage during spinning and filter clogging during molding frequently occur. In addition, when used as a catalyst, there is a problem that the catalytic activity is remarkably reduced, and the ratio is smaller than 0.05, which is caused by the aluminum compound. It is not preferable because a large amount of foreign matter insoluble in the polyester is generated, and the thermal stability of the polyester is also deteriorated .. A more preferable range of the ratio is 0.1 to 20 and more preferably 0.5. It is 10 or less.
  • the polyester of the present invention includes, in addition to at least one member selected from the group consisting of alkali metal and their compounds, and alkaline earth metal and their compounds, and at least one member selected from the group consisting of aluminum and its compounds At least one selected from the group consisting of phosphorus compounds. Further, the content of at least one selected from the group consisting of phosphorus compounds and aluminum and at least one selected from the group consisting of the compounds is defined as the content of phosphorus atoms (ppm) and the content of aluminum atoms in the polyester. (ppm) ratio must be 0.01 or more. This ratio is preferably 30 or less.
  • the ratio is less than 0.01, there arises a problem that a large amount of insoluble foreign matter is generated in the polyester due to the aluminum conjugate, and a problem that the thermal stability of the polyester is reduced. If the ratio exceeds 30, a large amount of foreign matter insoluble in the polyester is generated, and if the catalyst activity is significantly reduced for use as a catalyst, a problem arises, which is not preferable.
  • a more preferable range of the ratio is 0.1 or more and 20 or less, and more preferably 1 or more and 10 or less.
  • the polyester at least one selected from the group consisting of alkali metals and their compounds and alkaline earth metals and their compounds.
  • the aluminum and the compound thereof are preferably contained in the polyester in an amount of 0.5 ppm or more and 500 ppm or less as an aluminum atom. If the content of the aluminum atom exceeds 500 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester caused by the aluminum-palladium compound is generated and the thermal stability of the polyester is deteriorated. When the content of the aluminum atom is less than 0.5 ppm, a large amount of foreign substances due to the alkali metal compound or the alkaline earth metal compound is generated, or the catalytic activity is significantly reduced when used as a catalyst, which is preferable. Absent. More preferably, it is in the range of 5 ppm or more and 70 ppm or less, and still more preferably in the range of 10 ppm or more and 30 ppm or less.
  • the phosphorus compound in the present invention is preferably contained in the polyester in a range of lppm to lOOppm as a phosphorus atom. If the phosphorus atom content is less than lp pm, the effect of suppressing the formation of foreign matter insoluble in the polyester is poor, and the thermal stability of the polyester is undesirably reduced. If the content of the phosphorus atom exceeds 100 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester is generated. More preferably, it is in the range of 10 ppm to 200 ppm, and still more preferably in the range of 20 ppm to 100 ppm.
  • the polyester of the present invention needs to contain at least one selected from the group consisting of alkali metals and their compounds, and alkaline earth metals and their compounds.
  • lithium It is preferable to contain at least one selected from the group consisting of sodium, potassium, magnesium, calcium, and compounds thereof from the viewpoint of reducing foreign matters in the polyester ⁇ coloring of the polyester.
  • it contains at least one selected from the group consisting of calcium and their compounds from the viewpoint of reducing the coloring of the polyester. Is preferred.
  • the present invention also relates to a polyester produced using the above-mentioned metal and Z or a compound as a catalyst, and a method for producing the same.
  • the amount of the metal and z or the compound to be added needs to be such that the content of the metal atom in the finally obtained polyester is as described above.
  • the polyester produced by this method the generation of foreign matters insoluble in the polyester is effectively suppressed, and problems such as yarn breakage during spinning and filter clogging during molding are improved.
  • the alkali metals and their compounds and the alkaline earth metals and their compounds used as the polymerization catalyst in the present invention include Li, Na, K, Rb, Cs, Be, Mg, and Ca. It is preferable that at least one metal selected from the group consisting of, Sr, and Ba or a compound thereof is used. Among them, the use of Alkyri metal or a compound thereof reduces foreign matters insoluble in polyester and reduces the heat stability of polyester. It is more preferable because of excellent properties. When an alkali metal or a compound thereof is used, use of L i, N a, K or a compound thereof is preferable. Among them, use of L i or a compound thereof is particularly preferable because foreign matters insoluble in polyester are further reduced.
  • another polyester of the present invention comprises at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium and compounds thereof, and at least one selected from the group consisting of aluminum and compounds thereof. kind, as well as at least one of a free selected from the group consisting of phosphorus compounds, forces one lithium, sodium, potassium, beryllium, magnesium, Cal Shiumu and total polymer 1 content of the compounds O e g per metal atom It is characterized by being 7.0 mol or less in conversion. If the content is more than 7.0 mol, a large amount of foreign matter insoluble in the polyester is generated, and as a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur.
  • the content is preferably at least 0.05 mol, and if less than this, the thermal stability of the resin may be poor, and when used as a catalyst, the catalytic activity may be significantly reduced.
  • the amount is more preferably from 0.1 to 4.0 mol, even more preferably from 0.2 to 2.5 mol, and particularly preferably from 0.2 to 1.2 mol.
  • the content of aluminum and its compound in the polyester of the present invention is preferably 0.5 to 500 ppm as aluminum atoms. If the content of the aluminum atom exceeds 500 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester due to the aluminum conjugate is formed and the thermal stability of the polyester is deteriorated. If the content of aluminum atoms is less than 0.5 ppm, a large amount of foreign substances due to the alkali metal compound or alkaline earth metal compound is generated, or the catalytic activity is significantly reduced when used as a catalyst, which is not preferable. . It is more preferably in the range of 5 to 70 ppm, further preferably in the range of 10 to 40 ppm, and particularly preferably in the range of 15 to 25 ppm.
  • the content of the phosphorus compound in the polyester of the present invention is preferably 1 to 100 ppm as a phosphorus atom. If the phosphorus atom content is less than Slppm, the effect of suppressing the generation of foreign matter insoluble in the polyester is poor, and the thermal stability of the polyester is undesirably reduced. If the phosphorus atom content exceeds 100 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester is generated. More preferably, it is in the range of 10 to 200 ppm, even more preferably in the range of 20 to 100 ppm.
  • the polyester of the present invention needs to contain at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium, and compounds thereof.
  • lithium, sodium It is preferable to contain at least one selected from the group consisting of magnesium, calcium and their conjugates from the viewpoint of reducing foreign matter in the polyester, reducing coloring of the polyester and improving thermal stability.
  • the present invention relates to at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, potassium, and their conjugates; And at least one selected from the group consisting of phosphorus compounds such that the content thereof is in the range described above with respect to the finally obtained polyester.
  • the present invention also relates to a method for producing a polyester using the catalyst. In the polyester obtained by this method, the generation of foreign matters insoluble in polyester is effectively suppressed, and problems such as yarn breakage during spinning and filter clogging during molding are improved.
  • another polyester of the present invention is at least one selected from the group consisting of aluminum and its compounds, and at least one selected from the group consisting of phenol compounds at least one selected from the group consisting of phosphorus compounds. And the amount of phosphorus atoms contained in the polyester
  • ppm and the amount of aluminum atoms (ppm) are in the range of 0.01 to 50. If the ratio of the amount of phosphorus atoms (ppm) to the amount of aluminum atoms (ppm) (the amount of phosphorus atoms / the amount of aluminum atoms) is less than 0.01, a large amount of foreign matters insoluble in the polyester resulting from the aluminized product. As a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, coloring of the resin becomes remarkable, causing a problem that ⁇ II of a molded article is impaired and a problem that thermal stability and thermal oxidation stability of the resin are reduced.
  • the ratio exceeds 50, a large amount of foreign matter insoluble in the polyester is generated, and as a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, when used as a catalyst, there is a problem that the tactility is significantly reduced.
  • the preferred range of the ratio is 0.1-20, more preferably 0.5-10.
  • the content of aluminum and its compound in the polyester of the present invention is preferably 0.5 to 500 ppm as aluminum atoms. If the content of the aluminum atom exceeds 500 PPm, it is not preferable because a large amount of foreign matter insoluble in the polyester due to the aluminum compound is generated and the thermal stability and the thermo-oxidative stability of the polyester are reduced. If the content of the aluminum atom is less than 0.5 ⁇ , the catalytic activity is remarkably reduced when used as a catalyst, which is not preferable. More preferably, it is in the range of 5 to 70 ppm, still more preferably in the range of 10 to 40 ppm, and particularly preferably in the range of 15 to 25 ppm.
  • the polyester of the present invention has a phosphorus compound that improves the catalytic activity of the aluminum compound, suppresses the generation of foreign substances, and improves the thermal stability and thermal oxidation stability of the polyester. It is. Further, by containing a phenolic compound, the thermal acid stability of the polyester is further improved, and as a result, thermal degradation and yellowing of the polyester are suppressed.
  • another aspect of the present invention is a polyester containing at least one selected from the group consisting of phosphorus compounds and at least one selected from the group consisting of phenolic conjugates, and wherein the polyester It is characterized in that the total amount of contained metal atoms is 100 ppm or less with respect to polyester.
  • the polyester has improved the problem of filter clogging at the time of molding, has improved thermal stability and thermal acid stability, and has a small amount of metal atoms.
  • the extract from polyester is also reduced. If the total amount of metal atoms exceeds 100 ppm, it is not preferable because foreign matters in the polyester increase and the quality of the polyester is impaired.
  • Metal atoms are preferably contained in the polyester in a total amount of 1 ppm or more.
  • the total amount of metal atoms is preferably from 3 to 50 ppm, particularly preferably from 5 to 30 ppm.
  • the metal species is not particularly limited, but is preferably at least one selected from alkali metals, alkaline earth metals, and aluminum.
  • the content of the phosphorus compound in the polyester of the present invention is preferably from 1 to 1000 ppm as a phosphorus atom. If the phosphorus atom content is less than lppm, the effect of suppressing the formation of foreign matter insoluble in polyester is poor, and the thermal stability and thermal oxidation stability of polyester are undesirably low. If the phosphorus atom content exceeds 100 ppm, it is not preferable because a large amount of foreign matter insoluble in polyester is generated. More preferably, it is in the range of 10 to 200 ppm, more preferably in the range of 20 to 100 ppm.
  • the polyester of the present invention contains at least one selected from the group consisting of alkali metals and their compounds, and alkaline earth metals and their compounds, physical properties such as thermal stability of the polyester are obtained. Preferred, because it improves.
  • lithium, sodium, potassium, magnesium, calcium It is preferable to contain at least one member selected from the group consisting of a polymer and a compound thereof from the viewpoint of reducing foreign matter in the polyester ⁇ coloring of the polyester. Among these, it is preferable to include at least one selected from the group consisting of lithium, calcium, and compounds thereof because the polyester has excellent thermal stability. Further, it is preferable to contain at least one selected from the group consisting of calcium and a compound thereof from the viewpoint of reducing coloring of the polyester.
  • the polyester of the present invention contains an alkaline metal, an alkaline earth metal, or a compound thereof, the content thereof is 1 X based on the number of moles of the entire polycarboxylic acid unit constituting the polyester.
  • the present invention also relates to a method for producing a polyester as described above using the compound described as a catalyst.
  • another polyester of the present invention is a polyester containing at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds, and the amount of phosphorus atoms contained in the polyester. It is necessary that the ratio of (ppm) to the amount (ppm) of aluminum atoms be in the range of 0.5 to 20. If the ratio is less than 0.5, a large amount of insoluble foreign matter is generated in the polyester due to the aluminum compound. As a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, the coloration of the resin becomes remarkable, causing a problem that the appearance of the molded article is impaired and a problem that the thermal stability of the resin is reduced.
  • the preferred range of the ratio is from 1 to 15, more preferably from 3 to 10.
  • the generation of foreign matters insoluble in the polyester is effective.
  • the problems such as yarn breakage during spinning and filter clogging during molding are improved.
  • the anoreminium and the compound thereof of the present invention are preferably contained in the polyester in an amount of 1 ppm to 100 ppm as aluminum atoms in the polyester. If the content of aluminum atom exceeds 100 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester caused by the aluminum compound is generated and the thermal stability of the polyester is deteriorated.
  • the catalytic activity is significantly reduced when used as a catalyst, which is not preferable. More preferred details, in the range of less 5p P m or more 70 ppm, more preferably from 30ppm less range of LOppm.
  • the phosphorus compound of the present invention is contained in the polyester in a range of 5 ppm or more and 200 ppm or less as a phosphorus atom. If the phosphorus atom content is less than 5 ppm, the effect of suppressing the formation of foreign matter insoluble in polyester is poor, and the thermal stability of the polyester is undesirably low. If the phosphorus atom content exceeds 200 ppm, it is not preferable because a large amount of foreign matter insoluble in polyester is generated. More preferably, it is in the range of 10 ppm to 100 ppm, and even more preferably, it is in the range of 20 ppm to 80 ppm.
  • the form in which the phosphorus compound of the present invention is present in the polymer is not particularly limited.
  • the polyester polymerization catalyst include phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, and phosphinous acid compounds. It is preferable to use the compound in any form of a phosphine compound.
  • a phosphorus compound having such a structure in coexistence with the aluminum-dimethyl conjugate during the polymerization of the polyester, an effect of improving the catalytic activity can be obtained.
  • the phosphonic acid-based conjugate when used, the effect of improving the catalytic activity when used as a catalyst is improved. Large and preferred.
  • phosphonic acid-based compounds a form having an aromatic ring structure is particularly preferable because the effect of improving tactility when used as a catalyst is particularly large.
  • the polyester of the present invention contains at least one kind selected from the group consisting of alkali metal and their hydrated compounds and alkali metal and their compounds
  • the polyester It is preferable because physical properties such as thermal stability are improved.
  • the polyester of the present invention contains an alkaline metal, an alkaline earth metal, and a compound thereof, the content is 1 X with respect to the number of monoles of all the polycarboxylic acid units constituting the polyester.
  • the present invention also relates to a polyester produced using the above-described metal and compound as a catalyst, and a method for producing the same.
  • the amount of the metal and the compound to be added needs to be such that the content of the metal atom to the phosphorus atom in the finally obtained polyester is as described above.
  • the polyester of the present invention is not produced using a heavy vehicle such as an antimony compound, a germanium compound, a titanium compound, a tin compound, or the like.
  • the polyester of the present invention has a polymerization catalyst such as an antimony compound, a germanium compound, a titanium compound, and a tin compound, and the addition of these components causes problems in the above-described products such as the properties, processability, and color tone of the polyester.
  • they are used as a polymerization catalyst, they are effective in improving productivity by shortening the polymerization time, and are preferred.
  • the polyester of the present invention is preferably adjusted to have an antimony atom content of 50 ppm or less with respect to the polyester, since the occurrence of darkening and foreign matters of the polyester is suppressed. It is more preferably 30 ppm or less, and further preferably lOppm or less. On the other hand, the polyester of the present invention preferably does not contain an antimony atom.
  • the polyester of the present invention is preferred to have a germanium atom content of 20 ppm or less with respect to the polyester, so that it is not disadvantageous in cost. More preferably, it is 10 ppm or less, and still more preferably, 5 p or less. On the other hand, the polyester of the present invention preferably does not contain a germanium atom.
  • the content of the titanium atom of the polyester of the present invention is 5 m or less with respect to the polyester, since the heat stability and the color tone of the polyester are excellent. It is more preferably 3 ppm or less, and still more preferably 1 ppm or less.
  • the polyester of the present invention preferably does not contain a titanium atom.
  • the polyester of the present invention further contains cobalt or a compound thereof from the viewpoint of reducing coloring of the polyester.
  • the content of cobalt or its conjugate in the polyester is preferably less than 10 ppm with respect to the polyester as a cobalt atom. It is more preferably less than 5 ppm, and still more preferably 3 ppm or less.
  • cobalt compounds themselves have a certain degree of tactility.However, if they are added to such an extent that they exhibit a sufficient catalytic effect, the resulting polyester polymer will have reduced brightness and reduced thermal stability. Occur.
  • a cobalt compound Can be more effectively eliminated without reducing the brightness and thermal stability of the resulting polyester by adding a small amount of .
  • the purpose of the cobalt compound in the present invention is to eliminate coloration, and it may be added at any stage of the polymerization or after the end of the polymerization reaction.
  • the polyester of the present invention does not contain a copartite atom because the polyester polymer has excellent thermal stability and brightness.
  • another polyester polymerization catalyst of the present invention comprises at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds, and has a monolithic ratio of phosphorus atoms to aluminum atoms. 0.5 to 20.
  • the method for producing a polyester of the present invention is characterized in that the polyester is produced by adding at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds in the above range.
  • the molar ratio is less than 0.5, the catalytic activity is remarkably reduced, and it takes a long time to polymerize a polyester having a predetermined viscosity. In addition, the generation of foreign matter insoluble in the polyester, the coloring of the resin becomes remarkable, and the thermal stability of the resin is reduced.
  • the molar ratio exceeds 20, the catalytic activity is remarkably reduced, and it takes a long time to polymerize a polyester having a predetermined viscosity.
  • the preferred range of the molar ratio is 2 to 15, more preferably 3 to 10, and particularly preferably 4 to 8.
  • the addition amount of the aluminum and the compound of the present invention is in the range of 0.001 lmo 1% to 0.1 mo 1% as aluminum atoms, based on the total number of moles of the polycarboxylate unit constituting the obtained polyester. Is preferred. 0 added
  • the thermal stability and thermo-oxidative stability of the polyester may be reduced, foreign matter insoluble in the polyester may be generated, and the coloration of the resin may be increased.
  • the addition amount is less than 0.001 mo 1%, the catalytic activity may not be sufficiently exhibited.
  • a more preferable range of the addition amount is 0.003 mol% to 0.005 mol 1%, still more preferably 0.005 mol 0 / o to 0.02 mol%, and 0.007 mol% to 0.005 mol%. 015mo 1% is particularly preferred.
  • Aluminum- ⁇ like this The polymerization catalyst of the present invention has a great feature in that it exhibits a sufficient catalytic activity even when the amount of the system component is small. As a result, thermal stability and thermal oxidation stability are excellent, and foreign substances and coloring due to aluminum are reduced.
  • the addition amount of the phosphorus compound of the present invention is preferably in the range of 0.005 mol% to 0.2 mol 1% as a phosphorus atom, based on the number of moles of all the polycarbonate units constituting the obtained polyester. . If the addition amount is less than 0.005 mo 1%, the effect of addition may not be exhibited. If the addition amount exceeds 0.2 mo 1%, on the contrary, the catalysis as a polyester polymerization catalyst may decrease.
  • a more preferred range of addition amount, 0. 007mo l o / 0 ⁇ 0 . 05 is a mo 1%, rather more preferably is 0. 01 ⁇ 1% ⁇ 0. 02mo l %.
  • This technology uses an aluminum compound as the main catalyst component without using a phosphorus compound.This reduces the amount of aluminum compound used, and reduces the thermal stability when a cobalt compound is added and the aluminum compound is used as the main catalyst. Although there is a technology to prevent coloration due to heat, adding a copartite compound to such an extent that it has a sufficient catalytic activity will soon lower the thermal stability. Therefore, it is difficult to achieve both with this technology. According to the present invention, the use of a phosphorus compound in a specific amount does not cause problems such as a decrease in thermal stability and the generation of foreign matter, and furthermore, a metal-containing component.
  • a polymerization catalyst having a sufficient catalytic effect can be obtained even when the amount of aluminum added is small, and by using this polymer, melt molding of polyester films, bottles and other hollow molded articles, fibers and engineering plastics, etc. Thermal stability at the time is improved.
  • the addition of a phosphate ester such as phosphoric acid-trimethylphosphoric acid is not preferable because almost no effect is observed.
  • the phosphorus compound of the present invention may be used in combination with a conventional metal-containing polyester polymerization catalyst such as an antimony conjugate, a titanium compound, a tin compound, and a germanium compound within the range of the addition amount of the present invention.
  • a conventional metal-containing polyester polymerization catalyst such as an antimony conjugate, a titanium compound, a tin compound, and a germanium compound within the range of the addition amount of the present invention.
  • the effect of accelerating the melt polymerization reaction is not recognized.
  • Another feature of the present invention is that a polyester polymerization catalyst, wherein the thermal stability parameter (TS) of polyethylene terephthalate (PET) polymerized using this catalyst satisfies the following formula (9): Features. (9) TS ⁇ 0.20
  • a non-circulating nitrogen atmosphere means a nitrogen atmosphere that does not flow.
  • a glass test tube containing a resin chip is connected to a vacuum line, and the pressure is reduced to O OTorr after 5 times or more of pressure reduction and nitrogen filling. And sealed.
  • the use of a catalyst with a powerful structure provides remarkably excellent melting heat stability against heating and melting when producing molded products such as films, bottles, fibers, etc., and gives molded products with reduced molecular weight, less coloring and less generation of foreign matter.
  • a polyester is obtained.
  • TS is more preferably 0.17 or less, particularly preferably 0.15 or less.
  • a polyester polymerization catalyst that provides PET such that T S falls within the above range has not been known.
  • a polyester polymerization catalyst that gives PET having a TS within the above range is found, and a film made of a polyester polymerized using the polyester polymerization catalyst, a hollow molded article such as a bottle, a fiber, an engineering plastic, etc. It has been found that the thermal stability during melt-molding has been significantly improved, and that high-quality products can be obtained even if virgin resin is used and the waste generated during molding is reused. That is another characteristic.
  • the above-mentioned polyester polymerization catalyst preferably contains at least one selected from the group consisting of phosphorus compounds as a catalyst component.
  • Another polyester polymerization catalyst of the present invention comprises a metal or a metal compound and a phosphorus compound, and is characterized in that the activity parameter (AP) satisfies the following expression (10).
  • AP polymerizes polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 dl "g at a pressure of 275 ° C and a pressure of 0.1 l Torr using a predetermined amount of catalyst.
  • PET polyethylene terephthalate
  • APX is the AP when only the metal or metal compound is used in the same amount as above.
  • the AP measurement method is specifically as follows.
  • Catalyst addition step Add a predetermined amount of catalyst to the above BHET mixture, stir at 245 ° C for 10 minutes at normal pressure under a nitrogen atmosphere, and then heat up to 275 in 50 minutes And gradually lower the pressure of the reaction system of the mixture of oligomers to 0.1 Torr.
  • the polymerization time required for the polycondensation step is defined as A P (min).
  • the production of the BHET mixture in the (BHET production process) is performed by a known method. For example, terephthalic acid and twice the amount of ethylene glycol are charged into a patch-type autoclave equipped with a stirrer, and the esterification reaction is performed while distilling water out of the system at 245 under a pressure of 0.25 MPa. It is manufactured by
  • the AP is more preferably 0.9 APX or less, further preferably 0.8 APX or less, and particularly preferably 0.7 APX or less.
  • Predetermined amount of catalyst in the (catalyst addition step) means the amount of catalyst that is used in a variable amount according to the activity of the catalyst, and is small for high-activity catalysts and low for low-activity catalysts. The amount increases.
  • phosphorus compounds are known as stabilizers for polyesters. It is known that the thermal polymerization can be suppressed.However, conventionally, a polyester polymerization catalyst comprising a metal or a metal compound and a phosphorus compound such that the active parameter AP force falls within the above range has been known. Was not known. In fact, when a polyester is polymerized using an antimony compound, a titanium compound, or a germanium compound, which is a typical catalyst for polyester polymerization, as a polymerization catalyst, the addition of a phosphorus compound promotes the polymerization to a substantially useful level. Is not allowed.
  • an activity parameter AP force S a polyester polymerization catalyst comprising a metal or a metal compound and a phosphine compound having the above-mentioned range is obtained, and a catalyst activity is excellent by using the polymerization catalyst. It is characterized by the fact that without deactivating or removing the catalyst, thermal degradation during melt molding is effectively suppressed and a polyester having excellent ripening stability is provided.
  • the thermal stability parameter (TS) of polyethylene terephthalate (PET) polymerized by using the catalyst preferably satisfies the following expression (9).
  • TS is more preferably 0.18 or less, particularly preferably 0.15 or less.
  • the thermal oxidation stability parameter (TOS) of polyethylene terephthalate (PET) polymerized using the catalyst preferably satisfies the following formula (11).
  • TOS has a melt-polymerized IV of 0.64-0.66 dl / g] PET resin chip is freeze-ground and dried as a powder of 20 mesh or less under vacuum at 130 ° C for 12 hours 0.3 g is placed in a glass test tube, dried under vacuum at 70 for 12 hours, and then heated at 230 ° C for 15 minutes under air dried with silica gel.
  • TOS 0. 245 ⁇ [IV] t '1 - 47 one [IV] s
  • a method of heating under air dried with silica gel for example, a method of connecting a drying tube containing silica gel to the upper part of a glass test tube and heating under dry air can be exemplified.
  • polyester polymerization catalyst having the above-described structure By using the polyester polymerization catalyst having the above-described structure, a polyester which gives a molded article such as film-pottle which is excellent in heat resistance and aging resistance can be obtained.
  • TOS is more preferably 0.09 or less, still more preferably 0.08 or more Byeon.
  • a PET resin chip used for measuring TS and TOS is prepared by quenching from a molten state after the above steps 1) to 3).
  • a shape of the resin tip used for these measurements for example, a cylinder-shaped resin tip with a length of about 3 mni and a diameter of about 2 mm is used.
  • the polyester polymerization catalyst of the present invention preferably has an activity parameter (AP) satisfying the following formula (12).
  • T is an AP when 0.05% by mol of antimony is added to the acid component in the polyethylene terephthalate produced by using the acid catalyst as a catalyst.
  • antimony trioxide used for comparison uses antimony trioxide having a purity of 99% or more.
  • antimony trioxide having a purity of 99% or more.
  • use commercially available Antimony (III) oxide ADRICH CHEMICAL, purity 99.999%).
  • AP is more preferably 1.5T or less, further preferably 1.3T or less, and particularly preferably 1.0T or less.
  • the metal component constituting the polyester polymerization catalyst of the present invention is not particularly limited as long as it is other than antimony, titanium, and germanium.
  • Examples include potassium earth metals, Group IV elements such as aluminum and gallium, Group IV elements such as silicon, various transition metals, and lanthanoid elements. Of these, Group III elements are preferred, and among them, aluminum is particularly preferred.
  • the compounds of these metals are not particularly limited, but specific examples thereof include saturated aliphatic carboxylate salts such as formic acid, acetic acid, propionic acid, butyric acid, and oxalic acid, atalylic acid, and methacrylic acid. Aromatic salts such as unsaturated aliphatic carboxylate, benzoic acid, etc.Halogen-containing carboxylate such as trichloroacetic acid, lactic acid, cunic acid
  • Salicylic acid and other hydroxycanoleponates carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid, bromine Inorganic acid salts such as acid, 1-propanesulfonic acid, 1-pentanesulfonic acid, organic sulfonate such as naphthalenesulfonic acid, organic sulfate such as lauryl sulfate, methoxy, ethoxy, n-propoxy, iso-propoxy, n — Alkoxides such as butoxy and tert-butoxy; chelate compounds such as acetinoleacetonate; hydrides, oxides, and hydroxylated compounds.
  • the preferred amount of the metal component used in the production of the polyester varies depending on the type of metal used.However, it is 1 ⁇ 10 ⁇ as a metal atom based on the total number of moles of the polycarboxylic acid cut constituting the polyester. 6 or more 0.5 mol. / 0 laid preferred that less, more preferably 5 X 1 0- 5 ⁇ 0. 1 mol 0/0. If the amount is 0. Exceeds 5 mol 0/0, the quality such as thermal stability and color tone of the resulting polyester is undesirably lowered. If the amount is less than 1 X 1 0- 6 mol%, the effect is not clear also be added.
  • the polyester polymerization catalyst of the present invention preferably contains at least one selected from the group consisting of aluminum and compounds thereof as a catalyst component.
  • the amount of the aluminum or aluminum compound to be used in the present invention is 0.001 to 0.05 with respect to the number of monoles of all constituent units of the carboxylic acid component such as dicarboxylic acid or polycarboxylic acid of the obtained polyester. preferably the molar 0/0, rather more preferably is 0. 0 0 5 to 0. 0 2 mol 0/0. Usage to zero. 0 0 1 mole 0/0 less der Rutosawa ⁇ properties are sufficiently exhibited it! /, May, if the amount used is 0.0 to 5 mol%, Ya thermostability Deterioration of thermal oxidation stability, generation of foreign matter due to aluminum, In some cases, the addition of coloring becomes a problem.
  • the polymerization catalyst of the present invention has a great feature in that it exhibits sufficient catalytic activity even when the addition amount of the aluminum component is small. As a result, thermal stability and thermal oxidation stability are excellent, and foreign substances and coloring caused by aluminum are reduced.
  • the amount of the phosphorus compound of the present invention preferably from 0.0001 to 0.1 mole 0/0 with respect to the number of moles of all the structural Yunitto polycarboxylic acid component of the polyester obtained, 0.00 5..0. More preferably, it is 05 mol%. If the amount of the phosphorus compound is less than 0.0001 mol%, the effect of the addition may not be exhibited.If the amount exceeds 0.1 mol%, the catalytic activity as a polyester polymer may be reduced. .
  • this polymerization catalyst By using this polymerization catalyst, hollow molded products such as polyesterolefinolem and pottle, fibers and engineered plastics can be obtained. The thermal stability during melt molding of sticks and the like is improved.
  • the addition of a phosphoric acid ester such as phosphoric acid trimethylphosphoric acid is not preferred because no catalytic activity improving effect is observed. Further, even when the phosphorus compound of the present invention is used in combination with the conventional antimony compound, titanium compound, or germanium compound within the range of the addition amount of the present invention, the effect of promoting the melt polymerization reaction is not recognized. .
  • the amount of the aluminum salt of the Lynch compound of the present invention used may be All configuration Interview polycarboxylic acid component Le -.. 0.1 with respect to the number of moles of Tsu bets 0001-0 is preferably 2 mol 0/0, 0.005 to 0 1 further preferably Monore%.
  • Another aspect of the present invention is characterized in that an aluminum carboxylate dissolved in water and / or an organic solvent in advance is used as a catalyst.
  • the aluminum carboxylate of the present invention include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate aluminum laurate, aluminum stearate, and aluminum benzoate. And aluminum triacetate, aluminum lactate, aluminum citrate, aluminum tartrate, and aluminum salicylate. Of these, those having a structure of an acetic acid anolemminium salt, such as aluminum acetate and basic anolemminium acetate, and sulfuric acid. Aluminum is preferred from the viewpoint of solubility in the system and catalytic activity.
  • Examples of the use of an aluminum salt of a carboxylic acid as a polyester polymerization catalyst include aluminum acetate, basic aluminum acetate, aluminum lactate, and aluminum benzoate. Low solubility in water, it has poor catalytic activity and has problems when insoluble foreign matter is formed in the obtained polyester, and there is a problem in using these conjugates as catalysts as they are. .
  • the present invention is characterized in that it has been found that sufficient catalytic activity can be imparted by using a catalyst obtained by dissolving these in water and Z or an organic solvent in advance.
  • the aluminum carboxylate of the present invention Before the aluminum carboxylate of the present invention is added to the polymerization system of the polyester, it must be dissolved in water, Z or an organic solvent in advance and added to the polymerization system.
  • organic solvent glycols are preferably used, and in the case of producing PET, ethylene dalicol is preferably used.
  • Examples of those having the structure of an aluminum salt of acetic acid include basic aluminum acetate, anolemme-triacetate, and aluminum acetate solution. Among these, from the viewpoint of solubility and stability of firewood night. Therefore, the use of basic aluminum acetate is preferred. Of the basic aluminum acetates, the use of aluminum monoacetate or aluminum diacetate is preferred. Any basic aluminum acetate is water And those dissolved in z or an organic solvent must be used as the catalyst. By using a catalyst having such a configuration, it is possible to obtain a polyester having excellent catalytic activity and excellent quality. As the solvent, water diols are preferably used, and when PET is produced, water and Z or ethylene glycol are preferably used.
  • a carboxylate aluminum salt stabilized with boric acid or the like when used as a catalyst, the solubility and solution stability are excellent, the catalyst activity is excellent, and the quality is excellent. It is characterized by finding that polyester can be obtained.
  • the aluminum salt of carboxylic acid those having a structure of an aluminum salt of acetic acid are preferable, and among them, use of basic aluminum acetate is preferable.
  • the stabilizer include urea and thiourea in addition to boric acid, but use of boric acid is preferred.
  • a material stabilized with boric acid When a material stabilized with boric acid is used, it is preferable to use a material stabilized with boric acid in an amount equal to or less than equimolar to aluminum, and in particular, from 1/2 to 1/3 mol of boric acid. It is preferable to use an aluminum compound stabilized with an acid. When the aluminum salt of lipoic acid stabilized with boric acid or the like is used as a catalyst, these must be dissolved in water and / or an organic solvent in advance and added to the polymerization system. It is preferable from the viewpoint of. As the organic solvent, glycols are preferably used. In the case of producing PET, ethylene glycol is preferably used. '
  • a solution in which an aluminum carboxylate is previously dissolved in water is used.
  • an organic solvent such as a diol
  • the aqueous solution may be added to the polymerization system as it is, but in order to reduce the heat shock at the time of addition, a solution obtained by diluting the aqueous solution with a diol such as ethylene dalicol is added to the polymerization system, or It is preferable to add water to the polymerization system by distilling water by replacing the solution diluted with the diol with one solution.
  • the aqueous solution of the aluminum carboxylate is diluted with a diol such as ethylene glycol, it is preferable to dilute the aqueous diol with a diol having a volume ratio of 0.5 to 50 times the volume of water.
  • concentration of the aluminum carboxylate solution to be added to the polymerization system is 0.01 to 1 monore / liter in terms of anolemmi-atom atom, it is insoluble in the obtained polyester. This is preferable because generation of foreign matter is particularly suppressed.
  • the stirring time is preferably 12 hours or more. Then, stir at 60 ° C or more for several hours or more.
  • the temperature in this case is preferably in the range of 60 to 80 ° C.
  • the stirring time is preferably 3 hours or more.
  • the concentration of the 7_ solution is preferably from 5 g / l to 100 g / l, and particularly preferably from 1 Og / 1 to 3 Og / 1.
  • Ethylene glycol is added to the above aqueous solution.
  • the amount of ethylene glycol to be added is preferably 1 to 5 times the volume of the aqueous solution. More preferably, the amount is 2 to 3 times.
  • the ⁇ S is stirred at room temperature for several hours to obtain a homogeneous mixed solution of water and ethylene glycol. Thereafter, the solution is heated and water is distilled off, whereby ethylene glycol can be obtained.
  • the temperature is preferably at least 80 ° C, more preferably at most 120 ° C. More preferably, stirring is carried out at 90 to 110 ° C. for several hours to distill off water.
  • a specific example of a method for preparing an ethylene daricol solution of aluminum lactate used in the present invention will be described.
  • the preparation may be performed at room temperature or under heating, but preferably at room temperature.
  • the concentration of the 7_R solution is preferably 20 g Zl to 100 g / l, and 50 to
  • Ethylene glycol is added to the aqueous solution.
  • the amount of ethylene glycol added is preferably 1 to 5 times the volume of the aqueous solution. More preferably, the amount is 2-3 times.
  • the solution is stirred at room temperature to obtain a uniform mixed solution of water / ethylene glycol, and then the mixture is heated and the water is distilled off to obtain an ethylene glycol solution.
  • the temperature is preferably at least 80 ° C, more preferably at most 120 ° C. More preferably, stirring is performed at 90 to 110 ° C. for several hours to distill off water.
  • the stability of the solution is improved. However, it is preferable because the formation of foreign matter is suppressed.
  • at least one selected from the group consisting of phosphorus compounds may be allowed to coexist.
  • the amount of the phosphorus compound added is preferably such that the molar ratio of phosphorus atoms to aluminum atoms is in the range of 0.1 to 10.
  • the phosphorus compound may be added to a previously prepared solution of the aluminum compound, or the aluminide may be dissolved in the previously prepared solution of the phosphorus compound.
  • both solutions may be prepared by mixing them, or both may be dissolved in a solvent at the same time.
  • the solvent water diols are preferably used, and in the case of producing PET, water or ethylene glycol is preferably used.
  • the amount of the aluminum compound used in the production of the polyester according to the method of the present invention is such that the aluminum atom is used for the number of moles of all constituent units of the carboxylic acid component such as dicarboxylic acid or polycarboxylic acid of the obtained polyester.
  • 0.0 0 1 to 0.0 5 moles 0/0 is preferred as, more preferably 0. 0 0 5 to 0.0 2 mol 0/0.
  • the polymerization catalyst of the present invention has a great feature in that it exhibits sufficient catalytic activity. As a result, thermal stability and thermal oxidation stability are excellent, and foreign substances and coloring due to aluminum are reduced.
  • polyester When producing polyester according to the method of the present invention, it is preferable to use at least one member selected from the group consisting of phosphorus compounds, because the effect of improving physical properties such as thermal stability of polyester can be obtained.
  • the amount of the phosphorus compound used in the production of the polyester according to the method of the present invention is preferably 0.001 to 0.1 with respect to the total number of moles of the constituent polyester of the polycarboxylic acid component of the obtained polyester. preferably 1 mole 0/0, 0. 0 0 5 to 0.0 5 Monore 0/0 der Rukoto further preferred les.
  • the amount of the catalyst added may be adjusted so that the amount of the phosphorus compound falls within the above range. I like it.
  • the phosphorus compound is added separately from the catalyst solution, it is preferable that the total amount of the phosphorus compound added to the polymerization system be within the above range.
  • the phosphorus compound of the present invention By using the phosphorus compound of the present invention in combination, it is possible to obtain a catalyst which exhibits a sufficient catalytic effect even when the amount of aluminum added in the polyester polymerization catalyst is small. If the amount of the phosphorus compound is less than 0.001 mol%, the effect of the addition may not be exhibited. If the amount exceeds 0.1 mol%, the catalyst as a polyester polymerization catalyst may be produced. The activity may decrease, and the tendency of the decrease varies depending on the amount of aluminum used.
  • the polyester is produced according to the method of the present invention, it is preferable not to add an alkali metal, an alkaline earth metal, or a mixture thereof.
  • the second metal-containing component in addition to aluminum or its compound, a small amount of at least one element selected from the group consisting of an aluminum metal and an alkaline earth metal and a compound thereof is added as the second metal-containing component. It is.
  • the second metal-containing component coexists as the polyester heavy vehicle of the present invention.
  • the polyester polymerization catalyst solution of the present invention is preliminarily containing at least one selected from alkali metals, alkaline earth metals and compounds thereof. May be added during the polymerization, or at least one selected from alkali metals, alkaline earth metals and compounds thereof may be added separately from the catalyst solution.
  • the addition of a strong second metal-containing component is effective in suppressing the production of diethylene glycol and increasing the catalytic activity, and therefore, a catalyst component with a higher reaction rate is obtained, which is effective in improving productivity. .
  • a catalyst having sufficient catalytic activity is obtained by adding an alkali metal compound or an alkaline earth metal compound to an aluminum compound.
  • Use of such a known catalyst provides a polyester having excellent thermal stability.
  • a known catalyst using an alkali metal compound or an alkali earth metal compound in an attempt to obtain practical catalytic activity is necessary to add a large amount of them, and when the metal compound is used, the amount of foreign substances caused by the metal compound increases, and when used for fibers, the spinning properties and yarn properties are increased. Physical properties, transparency, thermal stability, thermal oxidation stability, hydrolysis resistance, etc. are bad. Furthermore, the color tone of melt-formed products such as fibers and films deteriorates.
  • the obtained polyester has low thermal stability and thermal oxidative stability in order to obtain practical activity, and is greatly colored by heating. Also increase.
  • the reaction rate can be increased without causing problems such as a decrease in thermal stability, generation of foreign matter, and coloring. Further, the reaction rate can be increased without causing a problem such as a decrease in water resistance.
  • the amount M of Al-Li metal, Al-earth metal and its compound is more than 0.1 mol%, thermal stability decreases, foreign matter is generated and coloration increases, and hydrolysis resistance decreases. A problem may occur in processing. M is 1 X 1 0- 6 mol% Not Mitsurude, the effect is not clear also be added.
  • a cobalt compound In producing the polyester according to the method of the present invention, a cobalt compound
  • the compound is added as a cobalt atom in an amount of less than 10 ppm to the polyester. It is more preferably less than 5 ppm, and still more preferably 3 ppm or less.
  • the solution of the polyester polymerization catalyst of the present invention containing the Coparty conjugate in advance may be added at the time of polymerization, or the Coparty conjugate may be added separately from the catalyst solution.
  • a polyester is produced according to the method of the present invention
  • other polymerization catalysts such as an antimony compound, a titanium compound, a germanium compound, and a tin compound, and the addition of these components can be used as described above for the properties, processability, and color tone of the polyester. Coexistence within the range of the addition amount that does not cause a problem in the product is advantageous and preferable in improving productivity by shortening the polymerization time.
  • the antimony compound can be added in an amount of 50 ppm or less as an antimony atom to the polyester obtained by polymerization. More preferably, it is added in an amount of 30 ppm or less. If the added amount of antimony is more than 50 ppm, metal antimony precipitates, and blackening or foreign matter is generated in polyester, which is not preferable. ,
  • the titanium compound can be added to the polymer obtained by polymerization in a range of ⁇ or less. More preferably, it is added in an amount of 5 ppm or less, more preferably 2 ppm or less. If the added amount of titanium is more than 10 ppm, the thermal stability of the obtained resin is significantly reduced.
  • the germanium compound can be added to the polyester obtained by polymerization in an amount of 20 ppm or less as a germanium atom. More preferably, it is added in an amount of 10 ppm or less. If the amount of germanium added is more than 20 ppm, it is not preferable because it is disadvantageous in terms of cost.
  • an antimony compound When polymerizing the polyester according to the method of the present invention, one or more of an antimony compound, a titanium compound, a germanium compound, and a tin compound can be used.
  • the metal and metal compounds of the present invention and the earth metal and the compounds thereof are not particularly limited, but include, for example, formic acid and vinegar of these metals.
  • Saturated aliphatic carboxylate such as acid, propionic acid, butyric acid and oxalic acid; unsaturated aliphatic carboxylate such as acrylic acid and methacrylic acid; aromatic carboxylic acid salt such as benzoic acid; Gen-containing carboxylate, hydroxy carboxylate such as lactic acid, cunic acid, salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, Inorganic acid salts such as hydrobromic acid, chloric acid, and bromic acid, 1-propanesulfonic acid, 1-pentanesulfonic acid
  • Organic sulfonates such as naphthalenesulfonic acid, organic sulfates such as lauryl sulfate, alkoxides such as methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, and acetyl acetate.
  • the alkali metal or the compound thereof or the alkaline earth metal or the compound thereof according to the present invention is preferably a saturated aliphatic carboxylate, an unsaturated aliphatic carboxylate, or an aromatic carboxylate of these metals.
  • a saturated aliphatic carboxylate an unsaturated aliphatic carboxylate, or an aromatic carboxylate of these metals.
  • hydroxycarboxylates sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid, bromate
  • the selected inorganic acid salt, organic sulfonate, organic sulfate, chelate compound, and oxide is preferred from the viewpoint of easy handling and availability.
  • the aluminum of the present invention or its compound is not particularly limited, but in addition to metal aluminum, for example, aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, Aluminum laurate, aluminum stearate, aluminum benzoate, aluminum triacetate, aluminum lactate, aluminum tartrate Aluminum, carboxylates such as aluminum citrate, aluminum salicylate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, polychlorinated aluminum, ethanol nitrate, aluminum sulfate, ethanol carbonate, aluminum phosphate, Inorganic acid salts such as aluminum phosphonate, aluminum methoxide, aluminum ethoxide, aluminum n -propoxide, aluminum iso-propoxide, aluminum n-poxide, aluminum ptoxide, and other aluminum alkoxides, anolemminium acetate Anorate such as acetonate, aluminum acetyl acetate, aluminum ethynole
  • carboxylate and inorganic acid salt chelate compounds are preferable, and among these, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum dimethyl acetonoleacetonate are further preferable. Particularly preferred.
  • the basic aluminum acetate one stabilized with an additive such as boric acid may be used.
  • the phosphorus compound of the present invention is not particularly limited.
  • phosphate esters such as trimethylphosphoric acid, triethylphosphoric acid, phenylphosphoric acid, triphenylphosphoric acid, phosphorous acid, trimethylphosphite, and triethylphosphoric acid.
  • Phosphite such as phosphite, triffe-nole phosphite, tris (2,4-di-tert-butynolephenyl) phosphite, tetrakis (2,4-di-tert-butyl phenyl) 4,4'-biphenylenediphosphite Esters and the like.
  • More preferred phosphorus compounds of the present invention are at least one selected from the group consisting of phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinous acid compounds, and phosphine compounds. It is a lindani compound.
  • Polyester which is an object of the present invention by containing these phosphorus compounds The effect of improving the physical properties of tellurium is enhanced, and the use of these phosphorus compounds in combination with the aluminum-dimethyl compound of the present invention during the polymerization of polyester has an effect of improving corrosion resistance. .
  • the use of a phosphonic acid-based compound is preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are large.
  • the use of a compound having an aromatic ring structure is highly preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are greatly enhanced.
  • a catalyst exhibiting a sufficient catalytic effect can be obtained even when the addition amount of the alkali metal compound or the alkaline earth metal compound is small. .
  • the phosphonic acid compounds, phosphinic acid compounds, phosphinoxide compounds, phosphonous acid compounds, phosphinous acid compounds, and phosphine compounds referred to in the present invention are represented by the following formulas (Iridai 1) to (I), respectively.
  • Examples of the phosphonic acid type conjugate of the present invention include: Is mentioned.
  • Examples of the phosphinic acid-based compound of the present invention include diphenylphosphinic acid, methinole dipheninolephosphinate, feninole diphenylinolephosphinate, feninolephosphinic acid, methyl feninolephosphinate, Phenyl phosphinate and the like.
  • Examples of the phosphoxide compound of the present invention include diphenylphosphinoxide, methyldiphenylinolephosphinoxide, and triphenylphosphinoxide.
  • the phosphorus compounds of the present invention are represented by the following formulas (i7) to (i7)
  • the compound represented by dani 12) is preferred.
  • R 1 , R 4 , R 5 and R 6 are each independently hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, 7j ⁇ acid group or halogen group
  • R 2 and R 3 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group.
  • the phosphorus compounds of the present invention include, for example, dimethyl methionolephosphonate, dipheninole methylphosphonate, dimethinole pheninolephosphonate, ethyl pheninolephosphonate, dipheninole pheninolephosphonate, dimethyl benzylphosphonate, and benzylphosphonate.
  • a metal chloride of phosphorus is particularly preferable as the phosphorus compound.
  • the metal salt compound of phosphorus is not particularly limited as long as it is a metal salt of a phosphorus compound. However, when a metal salt of a phosphonic acid compound is used, the effect of improving the physical properties of polyester and the effect of improving catalytic activity, which are the objects of the present invention, are large. preferable.
  • the metal salts of phosphorus compounds include monometal salts, dimetal salts, trimetal salts, and the like.
  • the metal part of the metal salt is selected from L i, N a, K :, Be, M g, S r, B a, M n, N i, Cu, and Zn.
  • the use of such a material is preferable because the catalyst activity is greatly improved.
  • Li, Na, and Mg are particularly preferred.
  • the phosphorus metal salt compound of the present invention it is preferable to use at least one selected from the compounds represented by the following general formula (I-dani 16) because the effect of improving physical properties and the effect of improving tactility are large.
  • R 1 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a 7-carbon group containing an acid group, a halogen group, an alkoxyl group, or an amino group.
  • 2 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms including a 7-acid group or an alkoxylate group
  • R 3 represents hydrogen or carbon.
  • M represents a (1 + m) -valent metal cation
  • n represents an integer of 1 or more
  • the hydrocarbon group is an alicyclic structure such as cyclohexyl or a branch. It may contain a structure or an aromatic ring structure such as phenylnaphthyl.
  • R 1 examples include phenyl, 1-naphthyl, 2-naphthyl, 9-thrill, 4-biphenyl, 2-biphenyl, and the like.
  • R 2 includes, for example, hydrogen, methynole group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, long-chain aliphatic group, phenyl group, Examples include a naphthyl group, a substituted phenol group, a naphthyl group, and a group represented by CH 2 CH 2 OH.
  • R 3 O— examples include a hydroxide ion, an alcohol ion, an acetate ion and acetylacetone ion. It is preferable to use at least one selected from the compounds represented by the following general formula (Iridani 17) among the compounds represented by the above general formula (Iridani 16). [Formula 17]
  • R 1 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halogen group, or a hydrocarbon group having 1 to 50 carbon atoms including an alkoxyl group or an amino group.
  • 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxy group or a hydrocarbon group having 1 to 50 carbon atoms including carbonyl, wherein 1 is an integer of 1 or more, and m is 0 or 1 or more.
  • R 1 examples include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl and the like.
  • R 3 O— examples include hydroxide ion, alcohol ion, acetate ion and acetylacetonion.
  • the use of a compound having an aromatic ring structure is preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are large.
  • M is selected from L, Na, K :, Be, Mg, Sr, Ba, Mn, Ni, Cu, and Zn.
  • the effect of improving sex is greatly preferred.
  • Li, Na, and Mg are particularly preferred.
  • Examples of the phosphorus metal salt compound of the present invention include lithium [(1-naphthyl) methylphosphonate], sodium [(1-naphthyl) methylphosphonate], magnesium bis [(1-naphthyl) methylphosphonate], potassium [(2-naphthyl) methylphosphonate], magnesium bis [(2-naphthyl) methylphosphonate], lithium [pentylphosphonate], sodium Pem [ethyl benzinolephosphonate], magnesium bis [benzyl phosphonate], beryllium bis [benzyl phosphonate], strontium bis [benzyl phosphonate], manganese bis [benzyl phenyl phosphonate], benzyl / Sodium Rephosphonate, Magnesium Bis [benzylphosphonic acid], Sodium [(91-anthryl) methylphosphonate], Magnesium bis [(9-1-anthryl) methylphosphonate],
  • lithium [(1-naphthyl) methylphosphonate] sodium [(1-naphthyl) methylphosphonate]
  • magnesium bis [(1-naphthyl) methylphosphonate] lithium [benzyl-ethylphosphonate]
  • Sodium [ethynole benzinolephosphonate] magnesium bis [ethynole benzylphosphonate]
  • sodium benzinolephosphonate sodium benzinolephosphonate
  • magnesium bis [benzinolephosphonate] are particularly preferred.
  • a phosphorus compound having at least one P—OH bond is particularly preferred as the phosphorus compound.
  • Including these phosphorus compounds not only enhances the effect of improving the properties of polyester (I), which is an object of the present invention, but also allows the phosphorus compounds of the present invention to be used during the polymerization of polyester. When used in combination with a compound, the effect of improving the catalytic activity is greatly seen.
  • the phosphorus compound having at least one P-0H bond is not particularly limited as long as it is a phosphorus compound having at least one P-OH in the molecule.
  • the use of a phosphonic acid-based compound having at least one P—OH bond is preferred because the effect of improving the physical properties of the polyester and the effect of improving the catalytic activity are large.
  • the use of a compound having an aromatic ring structure is preferable because the effect of improving physical properties and the effect of improving touch properties are large.
  • the phosphorus compound having at least one P—OH bond of the present invention when at least one selected from compounds represented by the following general formula (Ich 18) is used, the effect of improving physical properties and the effect of improving catalyst activity are obtained. Is preferred.
  • R 1 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group, a halogen group, an anoRECOXINOLE group or an amino group.
  • R 2 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a 7_K acid group or an alkoxy group, and ⁇ is an integer of 1 or more.
  • the hydrocarbon group may contain an alicyclic structure such as cycloalkylhexyl, a branched structure, or an aromatic ring structure such as phenyl-naphthyl.
  • R1 examples include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl-2-biphenyl, and the like.
  • R2 examples include hydrogen, methynole, ethyl, propynole, isopropyl, ⁇ -butyl, sec-butyl, fert-butyl, long-chain aliphatic groups, phenyl groups, Examples include a naphthyl group, a substituted phenyl group, a naphthyl group, and a group represented by one CH 2 CH 2 OH.
  • the use of a compound having an aromatic ring structure is preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are large.
  • Examples of the phosphorus compound having at least one P—OH bond according to the present invention include (1-naphthyl) methylphosphonate, (1-naphthyl) methylphosphonic acid, (2-naphthyl) methylphosphonate, ethylbenzyl, and benzylphosphonate.
  • Examples include ethynolephosphonate, 2-ethylmethynolebenzinolephosphonate, phenyl 4-methylbenzinolephosphonate, methyl 4-aminobenzylphosphonate, and ethyl 4-methoxybenzylphosphonate.
  • (1-naphthyl) methylethyl phosphonate and benzylphosphonic acid ethyl are particularly preferred.
  • a phosphorus compound represented by a chemical formula (Formula 19) can be mentioned.
  • R 1 represents a hydrocarbon group having 1 to 49 carbon atoms, or a hydrocarbon group having 1 to 49 carbon atoms including a hydroxyl group, a halogen group, an alkoxyl group, or an amino group
  • 2 and R 3 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group. It may contain a branched structure or an aromatic ring structure.
  • the compound is a compound in which at least one of R 1 , R 2 , and R 3 in the chemical formula (Fig. 19) contains an aromatic ring structure.
  • the phosphorus compound of the present invention having a large molecular weight has a large effect and is preferred because it is difficult to be distilled off at the time of bonding.
  • the phosphorus compound of the present invention it is preferable to use a phosphorus compound having a phenol moiety in the same molecule.
  • the phosphorus compound and the phenolic compound of the present invention are preferably compounds bonded to each other, that is, a phosphorus compound having a phenol moiety in the same molecule.
  • a phosphorus compound having a phenol moiety in the same molecule By containing a phosphorus compound having a phenol moiety in the same molecule, the effect of improving the physical properties of the polyester, which is an object of the present invention, is enhanced.
  • a phosphorus compound having a phenol moiety in the same molecule during polymerization of the polyester is improved. When used, the effect of enhancing the touch is greater, and therefore, the productivity of polyester is excellent.
  • a phosphorus compound having a phenol moiety in the same molecule When used, the effect of enhancing the touch is greater, and therefore, the productivity of polyester is excellent.
  • the phosphorus compound having a phenol moiety in the same molecule is not particularly limited as long as it is a phosphorus-containing compound having a phenol structure, but a phosphonic acid compound or a phosphinic acid having a phenol moiety in the same molecule
  • the properties of polyester are improved by using one or more compounds selected from the group consisting of phosphine oxide compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinous acid compounds, and phosphine compounds.
  • the effect and the effect of improving the catalytic activity are large and preferable.
  • a phosphonic acid compound having one or more phenol moieties in the same molecule is particularly preferred because the effect of improving the physical properties of the polyester and the effect of improving the catalytic activity are particularly large.
  • the phosphorus compound having a phenol moiety in the same molecule preferably has a hindered phenol structure.
  • R 1 is a substituent such as a hydrocarbon group having 1 to 50 carbon atoms, including a phenolic moiety, a hydroxyl group, a halogen group, an alkoxyl group or an amino group. And represents a hydrocarbon group having 1 to 50 carbon atoms, including a hydrogen atom, and R 4 , R 5 and 6 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halo group. Represents a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a halogen group, an anorecoxyl group, or an amino group.
  • R 2 and R 3 each independently represent hydrogen, a hydrocarbon group having a carbon number of 1 to 50, a carbon number including a substituent such as a hydroxyl group or an alkoxyl group: a hydrocarbon group having a carbon number of! To 50.
  • the hydrocarbon group may contain an alicyclic structure such as a branched structure ⁇ cyclohexyl or an aromatic ring structure such as phenyl ⁇ naphthyl.
  • the ends of R 2 and R 4 may be linked.
  • Examples of the phosphorylated compound having a phenol moiety in the same molecule of the present invention include: p-hydroxyphenylphosphonate phosphonate; -hydroxyphenylphosphonate dimethinole, p-hydroxyphenylphosphonate phospholipid, p-hydroxyphenylenephosphonate Doxy-phenoxy diphosphonate, bis (p-hydroxyphenyl) phosphinic acid, bis ( ⁇ -hydroxyphenyl phenol) methinolate phosphinate, bis (p-hydroxyphenyl phenol) phosphinic acid, ⁇ - Hydroxyphen-norrefinolephosphinic acid, p-Hydroxypheninolepheninolephosphinic acid Methinole, p-Hydroxyphenylpheninolephosphinic acid Phenolate, ⁇ -Hydroxypheninolephosphinic acid, Metinole ninole phosphinate, p-hydroxyf
  • Examples of the compound shown by the above formula (I-Dani 31) include S-Rin 0-220 (manufactured by Sanko Co., Ltd.), which can be used.
  • R 3 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms Represents a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group
  • 4 represents a hydrocarbon group having 1 to 50 carbon atoms including hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group, or carbon.
  • R 4 O— includes, for example, hydroxide ion, alcoholate ion, acetate ion, acetylacetone ion, etc.
  • 1 is an integer of 1 or more
  • m is Represents an integer of 0 or 1 or more
  • 1 + m is 4 or less
  • n an integer of 1 or more.
  • the hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl-naphthyl. )
  • At least one selected from compounds represented by the following general formula (Formula 34) is preferable.
  • Mn + represents an n-valent metal cation; n is 1, 2, 3 or 4 Represents
  • M is Li, Na, K, Be, Mg, Sr, Ba, Mn, Ni, Cu, Z It is preferable to use one selected from n because the effect of improving the catalyst activity is large. Of these, L i, N a, and M g are particularly preferred.
  • Specific metal salt compounds of phosphorus according to the present invention include lithium [3,5-di-tert-butynole 4-hydroxybenzylphosphonate ethyl], sodium [3,5-di-tert-butyne-hydroxybenzylphosphonic acid] Ethyl], Sodium [3,5-di-tert-butynole 4-hydroxybenzinolephosphonic acid], Potassium [3,5-Di-tert-butyl-4-hydroxybenzylphosphonate], Magnesium bis [3,5] —Di-tert-butyl—4-hydroxyethylphosphonate], magnesium bis [3,5—di-tert-butyl_ / le 4-hydroxybenzylphosphonic acid], beryllium bis [3,5—di-tert-butyl] Methyl 4-hydroxybenzylphosphonate], strontium bis [3,5-di-tert-butyl-4-hydroxybenzylphosphonate] ), Barium bis [3,5-
  • lithium [3,5-di-tert-butyl-1-ethylhydroxylphosphonate] sodium [3,5-di-tert-butyl-4-hydroxyethyl phosphonate]
  • magnesium bis [3,5] Tert-butyl-4-hydroxyethylbenzylphosphonate] is particularly preferred.
  • At least one selected from specific phosphorus compounds having at least one P—OH bond represented by (Chemical Formula 35) is particularly preferable.
  • R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 30 carbon atoms.
  • R 3 represents hydrogen, a hydrocarbon group having from 50 to 50 carbon atoms, Represents a hydrocarbon group having 1 to 50 carbon atoms, including a hydroxyl group or an alkoxyl group, and n represents an integer of 1 or more.
  • the hydrocarbon group is an alicyclic structure such as a cis or hexinole or a branched structure such as a phenyl ⁇ naphthyl. It may contain an aromatic ring structure.
  • R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group including a hydroxyl group or an alkoxyl group: a hydrocarbon group having 50 to 50 carbon atoms. It may contain an alicyclic structure or branched structure such as xyl, or an aromatic ring structure such as phenyl-naphthyl.
  • R 3 may be hydrogen, methyl, Echinore group, a propyl group, isopropoxy port propyl group, n- Buchinore group, s e c- heptyl group, ter I- Buchinore group, a long chain fatty Group, phenyl group, naphthyl group, substituted phenyl group ⁇ naphthyl group, group represented by one CH 2 CH 2 ⁇ H, and the like.
  • Specific phosphorus compounds having at least one P-OH bond of the present invention include ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and 3,5-di-tert-butyl-4-hydroxybenzylphosphonate.
  • Methyl, 3,5-di-tert-butyl-isopropyl-4-hydroxybenzylphosphonate Isopropyl, 3,5-di-tert-butyltin 4-hydroxybenzylphosphonate pheninole, 3,5-zy-tert-butynole 4 Octadecyl-hydroxybenzylphosphonate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid, and the like.
  • methyl 3,5-di-tert-butyl-4-hydroxybenzinolephosphonate and methyl 3,5-di-tert-butyl-ru-4-hydroxybenzinolephosphonate are particularly preferred.
  • At least one phosphorus compound selected from the specific phosphorus compounds represented by (Chem. 37) is preferable.
  • R 1 and R 2 each independently represent hydrogen and a hydrocarbon group having 1 to 30 carbon atoms.
  • R 3 and R 4 each independently represent hydrogen and 1 carbon atoms.
  • n represents an integer of 1 or more.
  • the hydrocarbon group is an alicyclic structure such as cyclohexyl or the like. It may contain a branched structure or an aromatic ring structure such as phenyl-naphthyl.
  • R 3 and R 4 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group.
  • the hydrocarbon group may contain an alicyclic structure or branched structure such as cyclohexyl or an aromatic ring structure such as phenyl-naphthyl.
  • R 3 and R 4 include a short-chain aliphatic group such as hydrogen, a methyl group and a butyl group, a long-chain aliphatic group such as octadecyl, a phenyl group, a naphthyl group, and a substituted phenyl group.
  • An aromatic group such as a naphthyl group; a group represented by —CH 2 CH 2 OH;
  • Specific phosphorus compounds of the present invention include diisopropyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, 3,5-di-tert-butynole_4 -hydroxybenzinolephosphonate di-n-butyl ⁇ /, 3 , 5-Di-tert-butynole 4-dihydroxydecinolephosphonate, 3,5-di-tert-butyl-4, hydroxybenzylphosphonate diphenyl, and the like.
  • a particularly desirable compound in the present invention is at least one phosphorus compound selected from the compounds represented by the chemical formulas (Ihi 39) and (Ihi 40). [Formula 39]
  • Irganoxl 222 manufactured by Ciba Specialty Chemicals
  • I-Dani 39 is commercially available, and is also represented by the chemical formula (I-Dani 40).
  • Irgano X 1425 (Ciba-specialty-chemicals ring) is commercially available and usable.
  • the phosphorus conjugate of the present invention it is preferable to use at least one selected from aluminum salts of phosphorus compounds.
  • the aluminum compound and the phosphorus compound contained in the polyester of the present invention are preferably composed of at least one selected from aluminum salts of phosphorus conjugates.
  • Including the aluminum salt of a phosphorus compound not only enhances the effect of improving the physical properties of the polyester, which is the subject of the present invention, but also increases the tactility by using the aluminum salt of a phosphorus compound during the polymerization of the polyester. Therefore, the productivity of polyester is excellent. It is also possible to coexist another aluminum compound or a phosphorus compound / phenol compound in the aluminum salt of the phosphorus compound.
  • an aluminum salt of a phosphorus compound is used, the content of the aluminum and phosphorus atoms in the polyester is a feature of the present invention. It needs to be within the scope of the claims.
  • the aluminum salt of the phosphorus compound is not particularly limited as long as it is a phosphorus compound having an aluminum portion. However, it is preferable to use an aluminum salt of a phosphonic acid compound because the effect of improving the physical properties of the polyester and the catalytic activity are high.
  • the aluminum salt of a phosphorus compound includes a monoanoreminium salt, a dianoreminium salt, a trianoreminium salt, and the like.
  • the use of a compound having an aromatic ring structure is preferable because the effect of improving the physical properties of the polyester and the corrosiveness are high.
  • the aluminum salt of the phosphorus compound of the present invention it is preferable to use at least one selected from the compounds represented by the following general formula (I-Dai 41) because the effect of improving the physical properties of the polyester is high and the contact property is high.
  • R 1 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, including a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • R 2 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a hydrocarbon group having 50 or more carbon atoms including an alkoxy group, and R 3 represents hydrogen or carbon atoms.
  • the hydrocarbon group may include an alicyclic structure such as cyclohexanol, a branched structure, or an aromatic ring structure such as phenylnaphthyl.
  • R 1 examples include phenyl, 1-naphthinole, 2-naphthinole, 9-1 anthryl, 4-bipheninole, 2-bipheninole and the like.
  • R 2 for example, hydrogen, methyl group, ethynole group, propyl group, isopropyl group, n- Butyl group, sec-butyl group, tert-butyl group, long-chain aliphatic group, phenyl group, naphthyl group, substituted phenyl group naphthyl group, group represented by CH 2 CH 2 OH, etc. Is mentioned.
  • R 3 O— examples include a hydroxide ion, an anocholate ion, an ethylene glycolate ion, an acetate ion and an acetylacetone ion.
  • Examples of the aluminum salt of the phosphorus compound of the present invention include an aluminum salt of (1-naphthyl) methylphosphonate, an aluminum salt of mononaphthyl) methylphosphonic acid, an anolemminium salt of (.2-naphthinole) methylethylphosphonate, and benzoinolenate.
  • Anoreminium salt of ethyl phosphonate, aluminum salt of benzylphosphonic acid (91-anthryl) aluminum salt of methylethyl phosphonate, aluminum salt of ethyl 4-hydroxybenzylphosphonate, aluminum salt of ethyl 2-methylbenzylphosphonate, 4 -Aluminum salts of phenyl benzylphosphonate, aluminum salts of methyl 4-aminobenzylphosphonate, aluminum salts of ethyl 4-methoxybenzylphosphonate, aluminum salts of ethyl ethyl phenylphosphonate, etc. It is below. Of these, the aluminum salt of (1-naphthyl) methylphosphonate and the aluminum salt of benzylphosphonate are particularly preferred.
  • the aluminum salt of the phosphorus compound of the present invention is preferably composed of at least one selected from aluminum salts of phosphorus conjugates having a phenol structure.
  • the aluminum compound, the phosphorus compound and the phenol-based conjugate contained in the polyester of the present invention are composed of at least one selected from aluminum salts of a phosphorus-based conjugate having a phenol structure.
  • At least one selected from aluminum salts of specific phosphorus compounds represented by the general formula (Formula 42) is particularly preferred.
  • R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 30 carbon atoms.
  • 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms.
  • R 4 represents a hydrocarbon group having 1 to 50 carbon atoms, including hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, an alkoxyl group, or a carbonyl group.
  • 1 represents an integer of 1 or more
  • m represents 0 'or an integer of 1 or more
  • 1 + m is 3.
  • n represents an integer of 1 or more. It may contain an alicyclic structure or a branched structure such as hexinole, or an aromatic ring structure such as phenyl-naphthyl.
  • R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group
  • R 4 represents hydrogen.
  • the hydrocarbon group may include an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl-naphthyl.
  • R 3 examples include hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, long-chain aliphatic, and phenylene groups.
  • Examples of the above R 4 O— include a hydroxide ion, an alcoholate ion, an ethylene glycolate ion, an acetate ion and a acetylethyl acetate ion.
  • the aluminum salt of the specific phosphorus compound of the present invention includes aluminum salt of 3,5-di-tert-butyl 4-ethyl benzylphosphonate, 3,5-di-tert-butyl-ethyl ester.
  • Aminolemic acid salt of methinole hydroxybenzinolephosphonic acid aluminum salt of 3,5-di-tert-butyl-4-hydroxybenzyl.
  • Examples include phenolic aluminum salts, and aluminum salts of 3,5-di-tert-butyl-4-hydroxyhydroxyphosphonate.
  • aluminum salts of ethyl 3,5-di-tert-butyl-4-hydroxybenzinolephosphonate and aluminum salts of methyl 3,5-di-tert-butyl-1-hydroxybenzinolephosphonate are particularly preferred. Preferred.
  • the amount of the metal atom in the finally obtained polyester is determined as the amount of phosphorus added. It is necessary that the atomic content be within the scope of the claims of the present invention.
  • antimony compound examples include antimony trioxide, antimony pentoxide, antimony acetate, and antimony glycooxide as suitable conjugates, and the use of antimony trioxide is particularly preferable.
  • antimony trioxide examples include germanium dioxide, germanium tetrachloride, etc., and particularly preferred is diggermanium dioxide. Both crystalline and amorphous germanium dioxide can be used.
  • titanium compounds and tin compounds include: titanium compounds such as tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, and tetra-tert-butyl titanate.
  • a composite oxide of titanium and silicon, a composite oxide of titanium and magnesium, and a reaction product of an orthoester or condensed orthoester of titanium, a hydroxycarboxylic acid, and a phosphorus compound are preferable.
  • the Suzui conjugate include dibutinoresuzuoxide, methinolefeninolesuzuoxide, Laetinores, hexetinoresin tin oxide, triethinoresulse hydroxide, monobutylhydroxytin oxide, triisobutyltin acetate, diphenyltin dilaurate, monobutyl / resuzutrichloride, dibutyltin sulfide And dibutyltin hydroxytin oxide, methylstannoic acid, ethyl stannoic acid, and the like. Particularly, use of monobutylhydroxytin oxide is preferable.
  • the cobalt compound that can be added in the present invention is not particularly limited, but specific examples thereof include cobalt acetate, cobalt nitrate, cobalt chloride, cobalt acetylacetonate, cobalt naphthenate, and hydrates thereof. . Among them, cobalt acetate tetrahydrate is particularly preferred.
  • a phenolic compound when producing the polyester according to the method of the present invention, because the thermal stability of the polyester is effectively improved.
  • a phenolic compound by adding a phenolic compound, an effect of improving the tactility can be seen.
  • the phenolic compound of the present invention is not particularly limited as long as it is a compound having a phenol structure.
  • 1,3,5-trimethinole 2,4,6-tris (3,5-Gee tert- Butynole-4-hydroxybenzyl) benzene, tetrakis- [methyl-3- (3,5, -di-ert-butynole-4-hydroxyphenyl) propionate] methane, thiomethylene-bis [3-(3,5 -Di-tert-butyl-4-hydroxyhydroxypropionate] is preferred.
  • the phenolic compound of the present invention preferably has a hindered phenol structure.
  • the phenolic compound of the present invention is used in an amount of 5 ⁇ 10 to 5 mol per mol of all constituent units of carboxylic acid components such as dicarboxylic acid and polycarboxylic acid of the polyester obtained by polymerization. is preferably in the range from 0/0 1 mol% is that more preferably in the range of 1 X 1 0 _ 4 mole 0/0 0.5 5 mole%.
  • the production of the polyester according to the present invention can be carried out by a conventionally known method. For example, when manufacturing PET, a method of esterifying terephthalic acid and ethylene glycol followed by polycondensation, or a transesterification reaction of an alkynoleester of terephthalic acid such as dimethyl terephthalate with ethylene glycol is performed. Then, any of the methods of polycondensation can be carried out. Further, the polymerization apparatus may be a batch type or a continuous type.
  • the catalyst used in polymerizing the polyester according to the method of the present invention has catalytic activity not only in polycondensation reaction but also in esterification reaction and transesterification reaction.
  • the transesterification of an alkyl ester of dicarponic acid such as dimethinole terephthalate with a glycol such as ethylene glycol is usually carried out in the presence of a transesterification catalyst such as zinc.
  • the catalyst of the present invention can also be used in the presence of the catalyst.
  • the catalyst used when polymerizing the polyester according to the method of the present invention has a catalytic property not only in melt polymerization but also in solid phase polymerization and solution polymerization, and the polyester can be produced by any method. It can be manufactured.
  • the catalyst used in polymerizing the polyester according to the method of the present invention can be added to the reaction system at any stage of the polymerization reaction.
  • it can be added to the reaction system before or during the esterification reaction or transesterification reaction and at any stage during the reaction, or immediately before or during the reaction of the polycondensation reaction.
  • Anoremini It is preferable to add the polymer or its compound immediately before the start of the polycondensation reaction.
  • the method of adding the catalyst or other compound used when polymerizing the polyester according to the method of the present invention may be a powder or neat, or a slurry or a solution of a solvent such as ethylene glycol. There is no particular limitation.
  • a component obtained by previously mixing the components of the catalyst and the other compounds may be added, or they may be added separately.
  • the catalyst solution of the aluminum compound of the present invention and other compounds may be added as a premixed mixture, or they may be added separately.
  • the components of the catalyst and the other compounds may be added to the polymerization system at the same time, or each component may be added at a different time. Further, the whole amount of the catalyst and other compounds may be added at once, or may be added several times.
  • the polyester referred to in the present invention refers to one or more selected from polyvalent ruponic acids including dicarponic acid and ester-forming derivatives thereof and one or more selected from polyhydric alcohols including daricol. Or a compound comprising a hydroxoxycarponic acid or an ester-forming derivative thereof, or a compound comprising a cyclic ester.
  • dicarboxylic acids examples include oxalic acid, malonic acid, succinic acid, glutanoleic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecandicarboxylic acid, and 1 1,3-cyclobutanedicanoleponic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicanoreponic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2 Aliphatic dicarbonic acids exemplified by 2,5-norpornanedicarboxylic acid, dimeric acid and the like and ester-forming derivatives thereof, unsaturated aliphatic dicarbones exemplified by fumaric acid
  • Polycarboxylic acids other than these dicarboxylic acids include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarponic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ', 4'-bif Enyltetracarboxylic acid, and ester-forming derivatives thereof, and the like.
  • glycols examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycolone, diethylene glycolone, triethylene glycolone, 1,2-butylene glycol, 1,3-butylene glycol, and 2,3-butylene glycol.
  • polyhydric alcohols other than these glycols trimethylol methane, tri Methylonoleethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol and the like.
  • hydroxycarponic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid,-(2-hydroxyethoxy) benzoic acid, and 4-hydroxycyclohexane Acid or their ester-forming derivatives.
  • cyclic ester examples include ⁇ -force prolacton, monopropiolatatone, ⁇ -methyl-13-propiolatatone, ⁇ -valerolatatatone, glycolide, and lactide.
  • the polyester of the present invention can contain a known phosphorus-based conjugate as a copolymer component.
  • a bifunctional phosphorus compound is preferable, and examples thereof include dimethyl phenylphosphonate, diphenyl phenylphosphonate, (2-carboxyethyl) methylphosphinic acid, (2-carboxyethyl) phenylphosphinic acid, and (2-methylphosphonyl).
  • Methoxylenophosphinic acid Methyl ferrophosphinic acid, (4-Methoxycanolepodinolepheninole) Methinole phenolenophosphinate, [2- (j3-hydroxyethoxycanoleponinole) ethinole] Methynolephosphinic acid Ethylene glycolonoester, (1,2-dicano ⁇ repoxyshetyl) dimethylphosphinoxide, 9,10-dihydro-10-oxaxa (2,3-carboxypropinole) -10-phosphaphenanthrene -10- oxide.
  • these phosphorus compounds By including these phosphorus compounds as copolymer components, it is possible to improve the flame retardancy and the like of the obtained polyester.
  • ester-forming derivatives of polycarboxylic acids or hydroxycarboxylic acids include these alkynole esters, acid chlorides, and acid anhydrides.
  • the polyester used in the present invention is preferably a polyester whose main acid component is terephthalic acid or its ester-forming derivative or naphthalenedicarboxylic acid or its ester-forming derivative, and whose main glycol component is acetylene glycol.
  • Polyester whose main acid component is terephthalic acid or its ester-forming derivative or naphthalene dicarboxylic acid or its ester / forming derivative is defined as terephthalic acid or its ester-forming derivative and its
  • 'A total of 70 mol% or more of boric acid or its ester-forming derivative Is preferably a polyester containing, more preferably a polyester containing more than 80 mol%, more preferably from polyester containing 90 mole 0/0 above.
  • the polyester in which the main dalicol component is alkylenedaricol is preferably a polyester containing 70 mol% or more of anorekylendaricol in total with respect to all glycol components, more preferably 80 mol% or more.
  • the alkylene glycol referred to here may contain a substituent or an alicyclic structure in the molecular chain.
  • Naphthalenedicarboxylic acid or its esterol-forming derivative used in the present invention Naphthalenedicarboxylic acid or its esterol-forming derivative used in the present invention
  • 1,5-naphthalenedicarponic acid 2,6-naphthalenedicanoleponic acid, 2,7-naphthalenedicarboxylic acid, and ester-forming derivatives thereof.
  • phenolic glycol used in the present invention ethylene glycol 1,2-propylene glycolone, 1,3-propylene glycolone, 1,2-butylene glycolone, 1,3-butylene glycolone, 2,3 Butylene glycolone, 1,4-butylene glycolone, 1,5-pentanedionole, Nestypentinoglycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1, 1,3-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedimethanol , 4-six-hexanediethanol, 1,10-de
  • the polyester of the present invention contains oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, and suberic acid as acid components other than terephthalic acid or its ester-forming derivative, naphthalenedicarboxylic acid or its ester-forming derivative.
  • Polycarboxylic acids such as boric acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ', 4, biphenyltetracarponic acid, and their ester-forming derivatives It can be included as a copolymer component. Also, lactic acid, cunic
  • hydroxycarboxylic acid or an ester-forming derivative thereof a hydroxycarboxylic acid or an ester-forming derivative thereof. It is also possible to include a cyclic ester exemplified by ⁇ -force prolatatatone, ⁇ -propiolactone, ⁇ -methinolate ⁇ -propiolactone, ⁇ -palette ratatone, glycolide, lactide and the like.
  • diethylene glycolone, triethylene glycolone, and polyethylene glycolone are used as glycol components other than anoalkylene glycol.
  • the polyester of the present invention may contain a known phosphorus compound as a copolymer component.
  • a known phosphorus compound as a copolymer component.
  • a bifunctional phosphorus compound is preferable.
  • the phosphorus compound a bifunctional phosphorus compound is preferable.
  • Dimethinole pheninolephosphonate dipheninole pheninolephosphonate, (2-methoxyphenolyl) methylphosphinic acid, (2-carboxynorethyl) phenylphosphinic acid, (2-methoxycarboxynorethyl) phenylphosphine Methyl acid, (4-Methoxycanoleponinolephenine) Methinole phenolenophosphinate, [2- (jS-hydroxyshethoxycanoleboninole) ethynole] Ethylene glycol ester of methylphosphinic acid, (1, 2-dicapoxytinole) dimethyl ⁇ / phosphine oxide, 9,10-dihydro-10-oxa- (2,3-carboxypropyl) -10-phosphaphenanthrene-10-oxide.
  • these phosphorus compounds By including these phosphorus compounds as copolymer components, it is possible
  • polyester of the present invention examples include polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, poly (1,4-cyclohexanedimethylene terephthalate), polyethylene naphthalate, polybutylene naphthalate, polypropylene naphthalate and copolymers thereof. Of these, polyethylene terephthalate and its copolymer are particularly preferred.
  • polyester As a component of the polyester in the present invention, it is a preferred embodiment to use a polycarboxylic acid having a sulfonic acid metal salt base as a copolymerization component in order to improve the dyeability when polyester is used as a fiber.
  • the metal sulfonate group-containing compound used as the copolymerization monomer is not particularly limited, but may be 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalanoleic acid, 5-lithium sulfoisophthalanoleic acid, Examples thereof include lithium sulfotelephthalenoleic acid, 5-force lithium snorephoisophthalenoleic acid, 2-force lithium snolephoterephthalenoleic acid, and lower alkyl ester derivatives thereof. In the present invention, it is particularly preferable to use 5-sodium sulfoisophthalic acid or an ester-forming derivative thereof.
  • Copolymerization amount of the metal sulfonate group-containing compound for the acid components constituting the polyester from 0.3 to 10.0 mole 0/0, more preferably is 0.80 to 5.0 mole 0/0
  • the copolymerization amount is too small, the dyeability of the basic dye is inferior. If the copolymerization amount is too large, not only the fiber-forming properties are poor, but also the fiber does not have sufficient strength due to the thickening phenomenon. Further, a metal sulfonate-containing compound 2.0 mole 0 /. By performing the above copolymerization, it is possible to impart normal pressure dyeability to the obtained modified polyester fiber. In addition, it is possible to appropriately reduce the amount of the metal sulfonate group-containing compound by selecting an appropriate easy dye monomer.
  • Examples of the easily dyeable monomer include, but are not particularly limited to, long-chain daricol compounds such as polyethylene daricol and polytetramethylene daricol, and aliphatic dicarboxylic acids such as adipic acid, sebacic acid, and azelaic acid.
  • long-chain daricol compounds such as polyethylene daricol and polytetramethylene daricol
  • aliphatic dicarboxylic acids such as adipic acid, sebacic acid, and azelaic acid.
  • the catalyst can be removed from the polyester or the catalyst can be deactivated by adding a phosphorus compound or the like, thereby further improving the thermal stability of the polyester.
  • the polyesternole of the present invention can contain antioxidants such as phenolic and aromatic amines. By containing one or more of these, for example, the heat stability of polyesternole can be enhanced. You can do things.
  • the polyester of the present invention may contain a bluing agent, an organic, inorganic, or organic metal dye, a pigment, a fluorescent whitening agent, and the like.One or more of these may be contained. By doing so, coloring such as yellowing of the polyester can be suppressed.
  • the polyester of the present invention contains other optional polymers, stabilizers, antioxidants, antistatic agents, antifoaming agents, dyeing improvers, dyes, pigments, anti-glazing agents, and other additives. You can.
  • additives can be added during or after the polymerization of the polyester or at any stage during the molding of the polyester.
  • the suitable stage depends on the properties of the compound and the requirements of the polyester molded article. They differ depending on the performance.
  • the present invention will be described with reference to examples, but the present invention is not limited to these examples as well as the present invention.
  • the contents of phosphorus and antimony and germanium were measured by X-ray fluorescence. Measurement Place the sample polyester in a stainless steel ring with a height of 5 mm and a diameter of 4 Omm n placed on a photographic foe type plate, and place in an oven at 300 mm. C, Heat for 10 minutes to melt. This was taken out, and after cooling, a molded sample was taken out of the ring and measured on a smooth surface. Separately, several polyesters whose content was determined by the chemical analysis method were molded by the above method, and the fluorescence: X-ray intensity was measured, and the values obtained by the chemical analysis method and the calibration curve of the fluorescent X-ray intensity were obtained. It was created. The phosphorus, antimony, and germanium contents in each sample were calculated based on the calibration curve from the fluorescent X-ray intensity data of the measurement sample polyester.
  • the content of other metals was measured by the following method. 1.0 g of polyester is weighed in a platinum crucible, slurried in an electric furnace at 550 ° C, cooled to room temperature, and the ash content is reduced to 6 N hydrochloric acid (hydrofluoric acid / hydrochloric acid in the case of titanium). Mixture), evaporate to dryness, and dissolve in 1.2 N hydrochloric acid. Samples to be subjected to high-frequency plasma emission analysis (ICPS-2000, manufactured by Shimadzu Corporation) and atomic absorption analysis (M-640-12, manufactured by Shimadzu Corporation) did.
  • ICPS-2000 high-frequency plasma emission analysis
  • M-640-12 atomic absorption analysis
  • a solution for preparing a calibration curve in the concentration range of 0.01 to 30 mgZl was prepared, and high-frequency plasma emission analysis (Al, Ca, Mg, Co) and ⁇ Atomic absorption spectroscopy (Na, Li, K) was performed to create a calibration curve, and the metal content in the polyester was calculated from the analytical data of each sample based on the calibration curve.
  • Polyestenol O.lg was dissolved in 25 ml of a 6/4 mixed solvent in a weight ratio of phenol 1,1,2,2-tetrachloroethane and measured at 30 ° C. using an Ubbelohde viscometer.
  • polyester After 0.1 g of polyester was thermally decomposed at 250 ° C. in 2 ml of methanol, it was quantified and determined by gas chromatography (using GC-MB manufactured by Shimadzu Corporation). The column used was a column packed with PEG-HT manufactured by Jenore Science.
  • the measurement was carried out using TA insulnomentone ⁇ $
  • a chip having a diameter of about 2 mm and a length of about 3 mm obtained by the method described in the Examples was air-dried on a filter paper at room temperature for about one day and night, and then used for force measurement.
  • the PET resin chip obtained by melt polymerization After drying the PET resin chip obtained by melt polymerization, it is fed to a melt extruder, and a filter with a pore size of 0.14 ⁇ is used with a filter of 20 ⁇ .
  • the mixture was discharged at 290 ° C. from a spinneret having eight pieces, cooled and oiled according to a conventional method, and then taken out at 172 Om / min. Continue with preheating roller 80 ° C, set temperature 1
  • Freezing and milling were performed using a freezer mill (US Spexne: Model h3 ⁇ 46750). After putting about 2 g of resin chip and dedicated impactor in the dedicated cell, remove the cell The apparatus was set in the apparatus, filled with liquid nitrogen and maintained for about 10 minutes, and then pulverized at RATE 10 (the impactor was moved about 20 times per second) for 5 minutes.
  • TOS 0. 245 ⁇ [IV] fi I "1 ⁇ 47 -. [IV], 47 ⁇
  • the PET resin chip obtained by melt polymerization in each of Examples and Comparative Examples described below was vacuum-dried at 135 ° C. for 6 hours. Thereafter, the mixture was fed to an extruder, melted and extruded in a sheet form at 280 ° C, and quenched and solidified on a metal jaw maintained at a surface temperature of 20 ° C to obtain a cast finolem having a thickness of 1400 ⁇ .
  • this cast film is heated to 100 ° C by a heated jaw group and an infrared heater, and then stretched 3.5 times at a set value in the longitudinal direction with a jaw group having a peripheral speed difference.
  • a uniaxially oriented PET film was obtained.
  • the film was stretched 4.0 times with a tenter in the width direction at 120 ° C with the set value.
  • the film width was fixed, and the film was heated with an infrared heater at 260 ° C for 0.5 seconds.
  • a biaxially oriented PET film having a thickness of 100 ⁇ was obtained.
  • the PET film obtained by the method described in (i) above was cut into strips, dried in a vacuum, put into an extruder, and extruded at a temperature of 280 ° C at a temperature of 280 ° C from a nozzle having a diameter of 5 mm. Thereafter, the pellet was cooled and cut to obtain a recovered pellet.
  • the PET resin chips obtained by melt polymerization and the above-mentioned recovered pellets were mixed at a weight ratio of 50:50, and vacuum-dried at 135 ° C for 6 hours. Then, it was fed to an extruder, melted and extruded into a sheet at 280 ° C, and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C to obtain a cast film having a thickness of 1400 im.
  • this cast film is heated to 100 ° C by a heated roll group and an infrared heater, and then stretched 3.5 times in a longitudinal direction by a set value in a group of jaws having a difference in peripheral speed to a uniaxial orientation.
  • PET film was obtained.
  • the film was stretched 4.0 times at a set value in the width direction at 120 ° C. with a tenter to obtain a biaxially oriented PET film having a thickness of 100 ⁇ m.
  • the obtained film was cut into strips again, and a recovered pellet was obtained in the same manner as described above to form a film. This operation was repeated more than 5 times.
  • the obtained film was cut into a test piece having a length of 8 cm and a width of 4 cm, and the obtained film was gradually pulled in the length direction to evaluate the easiness of the cut. Those that were hard to cut were evaluated as good. ⁇ : good, X: bad.
  • the film obtained by the method of (i) is cut into test pieces of 10 cm in length and 5 cm in width, and the test pieces are treated at 200 ° C for 100 hours using a complete gear hot air dryer.
  • the heat resistance of the film was evaluated based on the ease of cutting when the film was gradually pulled in the length direction. Those that were hard to cut were evaluated as good. ⁇ : Good, X bad.
  • the compound was placed on a cover glass, and measured at a heating rate of 1 ° C / min using a Yanaco MICRO MELTING POINT APPARATUS.
  • Phosphorus was analyzed by molybdenum blue colorimetry after wet decomposition of PET resin chips.
  • Other metals were analyzed by high-frequency plasma emission spectrometry and atomic absorption spectrometry after dissolution of the ashed Z acid.
  • the numerical value obtained from the analysis result is almost the same as the charged amount.However, the phosphorus component volatilizes during polymerization and molding, so it is analyzed. More than the result was added. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. After the addition of the above solution, the mixture was stirred at 245 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Then, over 50 minutes, the pressure of the reaction system was gradually lowered while the temperature was raised to 275 ° C., and the polycondensation reaction was further performed at 275 ° C. and 0.1 Torr as 0.1 l Torr.
  • Table 1 shows the polymerization time required until the IV of polyethylene terephthalate reached 0.65 dl / g.
  • polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was formed into chips according to a conventional method. That is, when a predetermined stirring torque is reached in the melt polymerization, nitrogen is introduced into the autoclave, the pressure is returned to normal pressure, the polycondensation reaction is stopped, and then the molten polymer is continuously reacted under a pressure of about IMPa.
  • the resin was extruded into cold water in a strand form from the lower discharge nozzle and quenched, and a cutter was used to obtain a cylinder-shaped resin tip with a length of about 3 ⁇ and a diameter of about 2 mm.
  • the holding time in cold water was about 20 seconds.
  • the physical properties of PET were measured using this resin chip. The result is that the IV is 0.65 dl / g , the acid value is 2 eq / ton, DEG is 2. lmol ° / o, and Tm is 256.6.
  • C and Tel were 166.0 ° C and Tc2 was 188.6 ° C.
  • L value is 66.0, a value is -1.8
  • the ⁇ value was 3.6.
  • a polyester was polymerized in the same manner as in Example 11 except that the catalyst was changed.
  • Table 1 shows the compounds used as catalysts in each of the examples and comparative examples. These compounds were added so that the content of each metal atom or phosphorus atom in the finally obtained polymer was as shown in Table 1.
  • Table 1 shows the polymerization results of each of the examples and comparative examples, and the evaluation results of the increase in the filtration pressure during spinning and the yarn breakage during stretching.
  • IrganoX14425 was manufactured by Ciba Specialty Chemicals, Inc.
  • Phosphorus compound A was synthesized by the same method as in Example 1-1.
  • a polyester was polymerized in the same manner as in Example 2-1 except that the catalyst was changed. Table 2 shows the results.
  • dimethyl ferrphosphonate was added at a rate of 0.01 mol ° / mol to the acid component in the polymer. was added.
  • the mixture was stirred at 245 ° C for 10 minutes under a nitrogen atmosphere at normal pressure. Then, over 50 minutes, the temperature of the reaction system was gradually lowered while the temperature was raised to 275 ° C, and the polycondensation reaction was further performed at 275 ° (0.1 Torr) with 0.1 lTorr.
  • the polymerization time required for the IV to reach 0.65 dlZg is shown in Table 1.
  • the polyethylene terephthalate having an IV of 0.65 dl / g obtained by the above polycondensation was prepared according to a conventional method.
  • the physical properties of PET were measured using this resin chip, the result was IV of 0.65 dl / g, acid value of 6 eq / ton, DEG of 2. lmol ° /.
  • the temperature was 256.3 ° C. and Tc2 was 186.2 ° C.
  • the L value was 68.9, the a value was ⁇ 2.56, and the b value was 5.49.
  • a polyester was polymerized in the same manner as in Example 3-1 except that the catalyst was changed.
  • Table 3 shows the compounds used as catalysts in each Example and Comparative Example. These compounds were added so that the content of metallic phosphorous in the polymer finally obtained was as shown in Table 3. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions.
  • antimony trioxide was used in combination as a catalyst. Antimony trioxide was added so that the content of antimony atoms in the polymer finally obtained was 50 ppm.
  • Table 3 shows the polymerization results of each Example and Comparative Example, and the evaluation results of the increase in filtration pressure during spinning and the breakage of yarn during stretching.
  • the Irganox 1425 used was that of Chino Specialty Chemicals Co., Ltd., and the Linyi Conjugate A used was the one synthesized by the method described above.
  • Table 4 shows the required polymerization time.
  • polyethylene terephthalate having an IV of 0.65 dlZg obtained by the above polycondensation was formed into chips according to a conventional method.
  • Table 4 shows the ratio of aluminum atoms to phosphorus atoms as a result of measuring the amount of aluminum atoms and the amount of phosphorus atoms contained in the resin chip.
  • the amount of calcium atoms contained in the PET resin chip was 45 ppm, and thus the total content of metal atoms was 65 ppm.
  • Table 4 shows the evaluation results.
  • a polyester was polymerized in the same manner as in Example 4-1 except that the catalyst was changed.
  • a polycondensation catalyst was prepared by adding a solution of aluminum trisacetyl acetonate in 2.5 g / 1 ethylene glycol at 0.014 mol% as aluminum atoms with respect to the acid component constituting the polyester. 0.
  • the amount of lithium atoms contained in the PET resin chip was 4 ppm, so the total content of metal atoms was 24 p.
  • Table 4 shows the results of evaluating the stability of thermal oxidation by using PET resin chips, as well as evaluating the increase in filtration pressure during spinning and yarn breakage during stretching.
  • a polyester was polymerized in the same manner as in Example 41-11 except that the catalyst was changed.
  • a polycondensation catalyst a solution of 13 g Z1 of ethylene chloride in aluminum chloride with aluminum chloride at 0.015 mol% of aluminum acid and a 50 g / 1 solution of lithium acetate dihydrate in ethylene glycol were added to polyester. 0.06 mo 1% was used as a lithium atom with respect to the acid component constituting the metal.
  • Table 4 shows the polymerization time required for the IV of polyethylene terephthalate to reach 0.65 d1 / g.
  • Table 4 shows the results of the evaluation of the thermo-oxidative stability, the increase in the filtration pressure during spinning, and the evaluation of the yarn breakage during stretching using a PET resin chip with an IV of 0.65 dlZg.
  • polyester polymerized using an aluminum compound, a phosphorus compound and a phenolic compound, and the ratio of phosphorus atoms to aluminum atoms in the polyester is determined by the present invention.
  • the polyester has excellent thermal acid stability and excellent spinning and drawing operability.
  • those that do not use a phosphorus compound and a phenolic compound are inferior in thermal oxidative stability, markedly increase in filtration pressure during spinning, and frequently cause yarn breakage during drawing, resulting in poor operability. .
  • the syrup was added so that the phosphorus atom content was as shown in Table 5.
  • An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions.
  • the mixture was stirred at 245 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure.
  • the temperature of the reaction system was gradually lowered while the temperature was raised to 275 ° C, and the polycondensation reaction was further performed at 275 ° C and 0.1 Torr as 0.1 ltor.
  • Table 1 shows the polymerization time required for the IV of polyethylene terephthalate to reach 0.65 dl / g.
  • polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was subjected to chipping according to a conventional method.
  • this PET resin chip the increase in the filtration pressure during spinning and the evaluation of yarn breakage during stretching were performed. Table 5 shows the evaluation results.
  • Table 1 shows the polymerization time required for the IV of polyethylene terephthalate to reach 0.65 d.1 / g.
  • polyethylene terephthalate having an IV of 0.65 d1 ng obtained by the above polycondensation was formed into chips according to a conventional method. Using this PET resin chip, an increase in the filtration pressure during spinning and an evaluation of yarn breakage during stretching were performed. Table 5 shows the evaluation results.
  • a polyester was polymerized in the same manner as in Example 5-1 except that the catalyst was changed.
  • Table 5 shows compounds used as catalysts in each of Examples and Comparative Examples. These iris conjugates have a high content of aluminum and phosphorus in the final polymer. Was added to the amount shown in Table 5. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. Table 5 shows the polymerization results and the evaluation results of the increase in filtration pressure during spinning and the breakage of yarn during stretching. The above-mentioned phosphorus compound A was used. As is evident from the above examples and comparative examples, those in which the contents of anoremidine and phosphorus in the polyester are within the scope of the claims of the present invention are those of spinning and elongation. On the other hand, those which are out of the scope of the claims of the present invention result in a remarkable increase in filtration pressure during spinning and frequent breakage of yarn during stretching, resulting in poor operability.
  • a polyester was polymerized in the same manner as in Example 6-1 except that the catalyst was changed.
  • Table 6 shows the compounds used as catalysts and the amounts added in each Example and Comparative Example. The amount of addition indicates the amount of aluminum atoms or phosphorus atoms with respect to the acid component in the polymer.
  • Table 6 shows the polymerization results. Phosphorus compound A used above, Irganoxl 425 used from Chipa Specialty Chemicals [Table 5]
  • Comparative Example 6-3 polymerization was performed for 120 minutes or more, but did not reach the predetermined viscosity.
  • a solution was prepared by previously mixing aluminum-dimethyltrisacetylacetonate used as a polycondensation catalyst and Irganox 1425 in ethylene daryl.
  • a polyester was polymerized in the same manner as in Example 6-3 except that the solution was added as a catalyst.
  • the polymerization time required until the IV of the polyethylene terephthalate reached 0.65 dl / g was almost the same as in Example 6-3.
  • polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was formed into chips according to a conventional method.
  • the thermal stability parameter (TS) and the thermo-oxidative stability parameter (TOS) were determined. Table 7 shows the results.
  • a film was formed using a PET resin chip, a collected pellet was formed, and a finolem was formed using a collected bellet.
  • Table 7 shows the results of the thermal stability and heat aging resistance of the film.
  • the catalyst of the present invention has high catalytic properties and was obtained by using this:
  • the film made of PET was excellent in both thermal stability and heat aging resistance.
  • a polyester was polymerized in the same manner as in Example 7-1 except that the catalyst was changed.
  • Table 7 shows the compounds used as catalysts and the amounts added.
  • the addition amount of the aluminum compound indicates the addition amount as an aluminum atom to the acid component in the polyester
  • the addition amount of the phosphorus compound B indicates the addition amount of phosphorus atoms to the acid component in the polyester.
  • Table 7 shows the polymerization time (AP) required for the IV of polyethylene terephthalate to reach 0.65 dlZg.
  • polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was subjected to chipping according to a conventional method. This: heat using PET resin chips The qualitative parameters (TS) and thermo-oxidative stability parameters (TOS) were determined. Table 7 shows the results.
  • the catalyst according to the invention has a relatively high tactility and was obtained by using it:
  • the film made of PET was excellent in both heat stability and heat resistance.
  • Antimony trioxide as a catalyst, the performing procedure of Example 7-1 the same way except that the amount added was used as a 0.05 molar 0/0 as antimony atom relative to the acid component in PET Was.
  • antimony trioxide commercially available Antimony (III) oxide (ALDRICH CHEMICAL ne, purity: 99.999%) was used.
  • the antimony trioxide used was a solution of ethylene glycol dissolved in ethylene glycol by stirring at 150 ° C. for about 1 hour so that the concentration became about 10 gZl.
  • Table 7 shows the polymerization time (AP) required for the IV of polyethylene terephthalate to reach 0.65 d1 / g.
  • polyethylene terephthalate having an IV of 0.65 dlZg obtained by the above polycondensation was formed into chips according to a conventional method.
  • the thermal stability parameter (TS) and the thermal oxidation stability parameter (TOS) were determined. Table 7 shows the results.
  • Table 7 shows the results of evaluating the thermal stability and heat resistance of the film.
  • the catalyst of the present invention was excellent in catalytic activity, the thermal stability of a film made of PET obtained using the catalyst was inferior to those of Examples.
  • Comparative Example 7 except that the above-mentioned phosphorus compound A was added to the catalyst of Comparative Example 7-1 so that the added amount thereof was 0.03 mol% as a phosphorus atom with respect to the acid component in the PET. The same operation as in 1 was performed.
  • antimony trioxide commercially available Antimony (III) oxide (ALDRICH CHEMICAL based, purity: 99 ⁇ 999%) was used. Triacid The antimony was added to the ethylene glycol to a concentration of about 10 g / 150. (The solution dissolved by stirring for about 1 hour was used. The polymerization time (AP) required until the polyethylene terephthalate IV reached 0.esdiZg is shown in Table 7. Almost no change in the catalytic activity of antimony trioxide due to this was observed.
  • AP polymerization time
  • Germanium dioxide as a catalyst the addition amount is the same procedure as in Example 7-1, except for using as a 0.03 mol 0/0 as gain Rumaniumu atom relative to the acid component in PET.
  • Table 7 shows the polymerization time (AP) required for the IV of polyethylene terephthalate to reach 0.esdiZg.
  • polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was subjected to chipping in a conventional manner.
  • the thermal stability parameter (TS) and thermal oxidation stability parameter (TOS) were determined. Table 7 shows the results.
  • Table 7 shows the results of evaluating the thermal stability and heat resistance of the film.
  • the catalyst of the present invention has excellent catalytic activity, the thermal stability and heat resistance of a PET film obtained using the same are inferior to those of the examples. Was something.
  • Example 7-1 The same operation as in Example 7-1 was carried out except that aluminum acetyl acetonate was used as a catalyst and the amount of aluminum acetyl acetonate was 0.014 mol% as an aluminum atom with respect to an acid component in the PET. I got it. Polymerization was carried out for 150 minutes or more, but the IV of poly (ethylene terephthalate) did not reach 0.65 d1 / g.
  • Lithium acetate dihydrate as a catalyst in the same manner as in Example 7-1 except that the addition amount is used so as to be 0.01 mol 0/0 of lithium atom relative to the acid component in PET went. Polymerization was performed for 150 minutes or more. The IV of the plate did not reach 0.65 dlZg.
  • the catalyst of the present invention coexisting with the phosphorus compound has excellent catalytic activity, and the resulting polyester has excellent thermal stability.
  • the phosphorus compound is used together with the antimony conjugate, the catalytic activity of the antimony compound is not affected.
  • Deionized water was added at a ratio of 50 ml to 1 g of basic aluminum acetate (hydroxyaluminum diacetate; manufactured by ALDRICH), and the mixture was stirred at room temperature for about 12 hours. Thereafter, stirring was continued while gradually increasing the liquid temperature. When the liquid temperature reaches about 60 ° C, maintain the temperature and stir for about 2 hours.Continue stirring while increasing the liquid temperature.When the liquid temperature reaches about 75 ° C, stir for 2 hours or more. A clear aqueous solution was obtained.
  • basic aluminum acetate hydroxyaluminum diacetate
  • water of the above basic aluminum acetate was used as a polycondensation catalyst for a mixture of bis (2-hydroxyxethinole) terephthalate and polyolomer produced from high-purity terephthalic acid and twice the molar amount of ethylene glycol in a conventional manner.
  • 0.035 mol% of aluminum atom with respect to acid component in polyester and l Og / 1 solution of Irgano X 1425 (Chipa 'Specialty Chemicals) in ethylene glycol with acid component in polyester After adding 0.02 mol% as 425, the mixture was stirred at 245 ° C. for 15 minutes under a nitrogen atmosphere at normal pressure.
  • Comparative Example 7 one 3 germanium dioxide 0.03 68 0.20 0.23 XX aluminum tris ⁇ Se
  • Comparative Example 7 one 5 Lithium acetate dihydrate 0.01 150 or more
  • Basic aluminum acetate (CH 3 C00A1 (0H) 2 ⁇ 1 / 3H 3 B0 3; manufactured by ALDRICH) was stirred ⁇ 2 hours or more in Echire glycol, to obtain an ethylene glycol solution of about 5 g / l concentration.
  • the above base '! ⁇ Ethylene glycol solution of raw aluminum acetate is 0.035mo 1% as an aluminum atom with respect to the acid component in the polyester and Irganoxl 425 (Chipa succinoleti chemicano)
  • Irganoxl 425 Chipa succinoleti chemicano
  • Deionized water was added at a ratio of 10 ml to 1 g of basic aluminum acetate stabilized with about 1 Z 16 mol of folic acid, and the mixture was stirred at room temperature for several hours. Thereafter, the mixture was stirred at about 70 ° C for about 12 hours to obtain a clear aqueous solution.
  • Ethylene glycol was added at a volume ratio of 20 times the volume of the aqueous solution, followed by stirring at room temperature for several hours. Thereafter, water was distilled off from the system while stirring the solution at about 100 ° C. for several hours to obtain an ethylene glycol solution.
  • Heat medium circulation type 2-liter stainless steel autoclave equipped with a stirrer is charged with high-purity terephthalic acid and twice the amount of ethylene glycol, and triethylamine is added at 0.3 mol% to the acid component.
  • the esterification reaction was performed for 115 minutes while distilling water out of the system at, and a mixture of bis (2-hydroxyethyl) terephthalate (BHET) and oligomer (hereinafter referred to as BHET mixture) with an esterification rate of 95% or more I got As a polycondensation catalyst, the above BHET mixture was mixed with a mixed solution of the above basic aluminum acetate-water in water and ethylene glycol in an amount of 0.014 mol% as an aluminum atom to the acid component in the polyester and Irganoxl 425 (T).
  • BHET bis (2-hydroxyethyl) terephthalate
  • oligomer hereinafter referred to as BHET mixture
  • the above-mentioned ethylene dalicol solution of basic aluminum acetate was used in an amount of 0.014mo 1% as an aluminum atom with respect to the acid component in the polyester and 100 g of Irgano x 1425 (manufactured by Ciba Specialty Chemicals).
  • the polyester was polymerized in the same manner as in Example 8-4, except that 1/1 ethylene dalicol ⁇ 3 ⁇ 4 was added to the acid component as Irganox 1425 at 0.01mo 1%.
  • the polymerization time was 133 minutes, and the IV of the obtained PET was 0.6 Odl / g. Table 9 shows other physical properties.
  • An aqueous solution of about 67 gZ1 of aluminum lactate was prepared at room temperature. Thereafter, ethylene glycol was added, and water was distilled off by heating at about 100 ° C. to obtain an ethylene glycol solution of about 29 g / l.
  • the above ethylene glycol solution of aluminum lactate was used as 0.014 mol 1% as an anolemmin atom with respect to the acid component in the polyester and 100 g / l of Irganox 1425 (manufactured by Chipa Specialty Chemicals).
  • the polyester was polymerized in the same manner as in Example 8-4, except that 0.01 mo 1 ° / 0 was added as Irganoxl 425 to the acid component of the recall solution.
  • the polymerization time was 124 minutes, and the IV of the obtained PET was 0.60 dl / g. Table 9 shows other physical properties.
  • the polyester of the present invention includes, for example, interior fabrics represented by clothing fibers, curtains, carpets, futons, etc., textiles for industrial materials represented by bedding fibers, tire cords, ropes, etc., various fabrics, various knits, Fibers such as short-fiber nonwoven fabric and long-fiber nonwoven fabric, packaging films, industrial films, optical films, magnetic tape films, photographic films, street laminating films, contensor films, heat-shrink finolems, gasparia films , White films, films such as easy cut-finolene, non-metallic heat drawn bottles, heat-resistant drawn bottles, hollow molded articles such as direct blow bottles, gas barrier bottles, pressure-resistant bottles, heat-resistant bottles, etc., sheets such as A-PET and C-PET , Glass fiber reinforced polyester, elastomer Various molded products such as A ring plastics, and paints and adhesives can be applied to such.

Abstract

A polyester which is produced with a polymerization catalyst containing metals other than antimony and germanium as major metallic ingredients and which is reduced in filter clogging during molding, etc. The polyester contains at least one member selected from the group consisting of alkali metals, alkali metal compounds, alkaline earth metals, and alkaline earth metal compounds and at least one member selected from the group consisting of aluminum and compounds thereof, the contents of these satisfying the following relationships (1) and (2). [M] < 0.05 (1) [M] / [Al] ≤ 20 (2) ([M] and [A] indicate the total content of the alkali metal atoms and alkaline earth metal atoms and the content of the aluminum atoms, respectively, both in terms of mol% based on the acid ingredient(s) contained in the polyester.) The polyester is usable in a fiber, film, hollow molding, etc.

Description

• 明 細 書 発明の名称  • Description Title of the invention
ポリエステル重合触媒、 ポリエステル、 およ'ぴポリエステルの製造方法 Polyester polymerization catalyst, polyester, and polyester production method
[技 術 分 野] [Technical field]
本発明はポリエステル重合触媒、 ポリエステルおよぴポリエステルの製造方法 に関するものであり、 さらに詳しくは、 成形時のフィルター詰まり等が改善され たポリエステノレを与えるポリエステル重合触媒、 ポリエステルおよぴポリエステ ルの製造方法に関するものである。  TECHNICAL FIELD The present invention relates to a polyester polymerization catalyst, a method for producing polyester and polyester, and more particularly, to a polyester polymerization catalyst which gives a polyester having improved filter clogging during molding, and a method for producing polyester and polyester. It is about the method.
' [背 景 技 術] '[Background technology]
ポリエステル、 特にポリエチレンテレフタレート (以下、 PET と略す) は、 機 械的特性おょぴ化学的特性に優れており、 多用途への応用、 例えば、 衣料用や産 業資材用の繊維、 包装用や磁気テープ用などの各種フィルムやシート、 ボトルや エンジニアリングプラスチックなどの成形物への応用がなされている。  Polyesters, especially polyethylene terephthalate (hereinafter abbreviated as PET), have excellent mechanical and chemical properties, and are suitable for a wide variety of applications, such as textiles for clothing and industrial materials, packaging, and the like. It has been applied to various films and sheets for magnetic tapes and molded products such as bottles and engineering plastics.
PET は、 工業的にはテレフタル酸もしくはテレフタル酸ジメチルとエチレング リコールとのエステル化もしくはエステル交換によってビス (2 -ヒドロキシェチ ル) テレフタレートを製造し、 これを高温、 真空下で触媒を用いて重縮合するこ とで得られる。 重縮合時に用いられる触媒としては、 三酸化アンチモンが広く用 いられている。 三酸化アンチモンは、 安価で、 かつ優れた触媒活性をもつ触媒で あるが、 重縮合時に金属アンチモンが析出するため、 PET に黒ずみや異物が発生 するといつた問題点を有している。 このような経緯で、 アンチモンを全く含まな いか或いはアンチモンを角 ¾媒主成分として含まないポリエステルが望まれている なおポリエステル中の上記の異物は例えば以下のような問題を起こす。  PET industrially produces bis (2-hydroxyethyl) terephthalate by esterification or transesterification of terephthalic acid or dimethyl terephthalate with ethylene glycol, which is then polycondensed using a catalyst at high temperature and under vacuum. This is obtained. Antimony trioxide is widely used as a catalyst for polycondensation. Antimony trioxide is a catalyst that is inexpensive and has excellent catalytic activity, but has the problem of darkening and foreign matter in PET due to the precipitation of metal antimony during polycondensation. Under such circumstances, a polyester containing no antimony or containing no antimony as a main component of the catalyst is desired. The above foreign matter in the polyester causes the following problems, for example.
( 1 ) フィルム用のポリエステルにおいては、 金属アンチモンの析出は、 ポリエ ステル中の異物となり、 溶融押し出し時の口金汚れの原因になるだけでなく、 フ イルムの表面欠点の原因にもなる。 また、 中空の成形品等の原料とした場合には 、 透明性の僂れた中空成形品を得ることが困難である。 (1) In polyester for film, the precipitation of antimony metal becomes a foreign substance in the polyester, which not only causes stains on the die at the time of melt extrusion, but also causes a surface defect of the film. Also, when used as a raw material for hollow molded products, etc. However, it is difficult to obtain a hollow molded product that is transparent.
( 2 ) 繊維用のポリエステル中の異物は、 繊維中に強度低下をもたらす異物とな り、 製糸時の口金汚れやフィルターの濾圧上昇の原因となる。 ポリエステル繊維 の製造においては、 主に操業性の観点から、 異物の発生のないポリエステル重合 触媒が求められる。  (2) Foreign matter in polyester for fibers is a foreign matter that reduces the strength of the fiber and causes stains in a spinneret during spinning and an increase in filtration pressure of a filter. In the production of polyester fibers, a polyester polymerization catalyst free of foreign matter is required mainly from the viewpoint of operability.
重縮合触媒として、 三酸化アンチモンを用いて、 カゝっ PETの黒ずみや異物の発 生を抑制す.る試みが行われている。 例えば、 特許第 2666502号においては、 重縮 合触媒として三酸化ァンチモンとビスマスおよびセレンの化合物を用いることで 、 PET 中の黒色異物の生成を抑制している。 また、 特開平 9- 291141号においては 、 重縮合触媒としてナトリゥムおよび鉄の酸化物を含有する三酸化アンチモンを 用いると、 金属アンチモンの析出が抑制されることを述べている。 ところが、 こ れらの重縮合触媒では、 結局アンチモンの含有量を低減するという目的は達成で きない。  Attempts have been made to use antimony trioxide as a polycondensation catalyst to suppress the occurrence of blackening and foreign matter in PET. For example, in Japanese Patent No. 2666502, generation of black foreign matter in PET is suppressed by using a compound of antimony trioxide, bismuth and selenium as a polycondensation catalyst. Japanese Patent Application Laid-Open No. 9-291141 states that the use of antimony trioxide containing sodium and iron oxides as a polycondensation catalyst suppresses the deposition of antimony metal. However, these polycondensation catalysts cannot achieve the purpose of reducing the content of antimony after all.
ァンチモン化合物以外の重縮合触媒としては、 チタン化合物ゃスズ化合物がす でに提案されているが、 これらを用いて製造されたポリエステルは溶融成形時に 熱劣化を受けやすく、 またポリエステルが著しく着色するという問題点を有する このような、 チタン化合物を重縮合触媒として用いたときの問題点を克服する 試みとして、 例えば、 特開昭 5 5 - 1 1 6 7 2 2号では、 テトラアルコキシチタ ネートをコパルト塩およぴカルシゥム塩と同時に用いる方法が提案されている。 また、 特開平 8— 7 3 5 8 1号によると、 重縮合触媒としてテトラアルコキシチ タネートをコバルト化合物と同時に用い、 力つ蛍光増白剤を用いる方法が提案さ れている。 ところが、 これらの技術では、 テトラアルコキシチタネートを重縮合 触媒として用いたときの P E Tの着色は低減されるものの、 P E Tの熱^を効 果的に抑制することは達成されていない。  As polycondensation catalysts other than antimony compounds, titanium compounds and tin compounds have already been proposed.However, polyesters produced using these compounds are susceptible to thermal degradation during melt molding, and the polyesters are markedly colored. In an attempt to overcome such problems when a titanium compound is used as a polycondensation catalyst, for example, Japanese Patent Application Laid-Open No. 55-116722 discloses that tetraalkoxy titanate is A method has been proposed which is used simultaneously with salt and calcium salt. Also, JP-A-8-73581 proposes a method in which a tetraalkoxy titanate is used simultaneously with a cobalt compound as a polycondensation catalyst, and a fluorescent whitening agent is used. However, with these techniques, although the coloring of PET is reduced when tetraalkoxy titanate is used as a polycondensation catalyst, it has not been achieved to effectively suppress the heat of PET.
ァノレミニゥム化合物は一般に触媒活性に劣ることが知られている。 アルミニウム 化合物の中でも、 アルミニウムのキレート化合物は他のアルミニウム化合物に比 ベて重縮合触媒として高い触媒活性を有することが報告されているが、 上述のァ ンチモン化合物やチタン化合物と比べると十分な触 性を有しているとは言え ず、 しかもアルミ-ゥム化合物を触媒として用いて長時間を要して重合したポリ エステルは熱安定性や熱酸化安定性に劣るという問題点があった。 また、 アルミ 二ゥムィ匕合物を触媒として用いて重合したポリエステルは、 ポリエステルに不溶 性の異物が多く生成し、 ポリエステルの成形時に該異物に起因したフィルター詰 まりが起こり、 かつ繊維に使用したときには紡糸時の糸切れ等が頻繁に起こり、 またフィルムに使用したときはフィルム物性などが悪化するという問題を有して いた。 It is known that phenolic compounds generally have poor catalytic activity. Among aluminum compounds, chelating compounds of aluminum have been reported to have higher catalytic activity as polycondensation catalysts than other aluminum compounds, but they have sufficient catalytic properties compared to the above-mentioned antimony compounds and titanium compounds. Although it has In addition, polyesters polymerized over a long period of time using an aluminum compound as a catalyst have a problem that thermal stability and thermal oxidation stability are poor. In addition, the polyester polymerized using the aluminum disulfide compound as a catalyst generates a large amount of foreign matter insoluble in the polyester, which causes clogging of the filter due to the foreign matter during molding of the polyester, and when the polyester is used for fibers. There has been a problem that yarn breakage or the like frequently occurs during spinning, and when used in a film, the physical properties of the film deteriorate.
—方、 アルカリ金属またはそのィ匕合物とアルミニウムのキレート化合物とを共 存すると優れた触媒活性が発現することが特公昭 46 - 41031号に開示されている。 該公報に記載の方法に従つて重合したポリエステルは、 熱安定性には優れるもの ヽ 熱酸ィ匕安定性には依然劣るという問題を有しており、 また、 ポリエステルに 不溶性の異物が多く生成し、 ポリエステルの成形時に該異物に起因したフィルタ 一詰まりが起こり、 かつ繊維に使用したときには紡糸時の糸切れ等が頻繁に起こ り、 またフィルムに使用したときはフィルム物性などが悪化するという問題を有 しており、 実用には向かなかった。 ·  On the other hand, Japanese Patent Publication No. 46-41031 discloses that excellent catalytic activity is exhibited when an alkali metal or a compound thereof and a chelate compound of aluminum coexist. Polyester polymerized according to the method described in the publication has a problem that the thermal stability is excellent, but the thermal oxidation stability is still inferior, and that many foreign matters insoluble in the polyester are generated. However, when the polyester is molded, the filter is clogged due to the foreign matter, and when used for fibers, thread breakage frequently occurs during spinning, and when used for a film, the physical properties of the film are deteriorated. It was not suitable for practical use. ·
アルミ -ゥム化合物にアル力リ土類金属化合物を添加して十分な触 性を有 する触媒とする技術もある力 実用的な触媒活性を得ようとするとアルカリ土類 金属化合物の 量が多く必要であり、 その結果得られるポリエステルの熱安定 性、 熱酸化安定性が低下し、 加熱による着色が大きく、 ポリエステルに不溶性の 異物の発生量も多くなる。  There is also a technology to add an alkaline earth metal compound to an aluminum-palladium compound to provide a catalyst with sufficient tactility. To achieve practical catalytic activity, the amount of alkaline earth metal compound is large. Necessary, the resulting polyester has reduced thermal stability and thermo-oxidative stability, is greatly colored by heating, and increases the amount of foreign matters insoluble in polyester.
ァンチモン化合物以外で優れた触媒活性を有し力ゝっ上記の問題を有しないポリ エステルを与える触媒としては、 ゲルマニウム化合物がすでに実用化されている が、 この触媒は非常に高価であるという問題点や、 重合中に反応系から外へ留出 しゃすレヽため反応系の触媒濃度が変化し重合の制御が困難になるという課題を有 しており、 触媒主成分として使用することには問題がある。  Germanium compounds have already been put into practical use as catalysts which provide polyesters which have excellent catalytic activity and do not have the above-mentioned problems except for antimony compounds, but this catalyst is very expensive. Also, there is the problem that the concentration of catalyst in the reaction system changes due to the distilling out of the reaction system during polymerization, making it difficult to control the polymerization, and there is a problem in using it as the main component of the catalyst. .
また、 ポリエステルの溶融成形時の熱劣化を抑制する方法として、 ポリエステ ルから触媒を除去する方法も挙げられる。 ポリエステルから触媒を除去する方法 としては、 例えば特開平 1 0— 2 5 1 3 9 4号公報には、 酸性物質の存在下にポ リエステノレ樹脂と超臨界流体である抽出剤とを接触させる方法が開示されている 。 しかし、 このような超臨界流体を用いる方法は技術的に困難である上に製品の コストアップにもつながるので好ましくない。 Further, as a method of suppressing thermal deterioration during melt molding of polyester, there is a method of removing a catalyst from polyester. As a method for removing a catalyst from polyester, for example, Japanese Patent Application Laid-Open No. H10-251,394 discloses a method in which a polyester resin is brought into contact with an extractant which is a supercritical fluid in the presence of an acidic substance. Disclosed . However, such a method using a supercritical fluid is not preferable because it is technically difficult and leads to an increase in product cost.
以上のような経緯で、 ァンチモンぉよぴゲルマニウム以外の金属成分を触媒の 主たる金属成分とする重合触媒であり、 触媒活性に優れ、 カゝっ溶融成形時に熱劣 化をほとんど起こさない熱安定性に優れたポリエステルを与える重合触媒が望ま れている。  Due to the above-mentioned circumstances, it is a polymerization catalyst that uses a metal component other than antimony germanium as the main metal component of the catalyst, and has excellent catalytic activity and thermal stability that causes almost no thermal deterioration during gas-melt molding. There is a demand for a polymerization catalyst that gives a polyester excellent in performance.
ポリエステルの溶融成形時の熱^?による分子量低下.は溶融成形品の耐熱性や 力学特性を低下させてしまう原因となるだけでなく、 熱分解による副生物に由来 する成形品の品質低下、 例えば着色の増加などにつながる。 公知のァンチモン触 媒ゃゲルマ-ゥム触媒は他のチタン触媒などに比べて、 溶融成形時の熱安定性に 比較的優れたポリエステルを与えるものの、 依然として溶融成形時の熱劣化は完 全には防ぐことができない。 このような経緯で、 ポリエステルの溶融成形時の熱 劣化を極力抑えられるようなポリエステルを与えるポリエステル重合触媒が望ま れている。  The decrease in molecular weight due to heat during the melt molding of polyester not only causes the heat resistance and mechanical properties of the melt molded product to deteriorate, but also lowers the quality of the molded product derived from by-products due to thermal decomposition, for example. It leads to an increase in coloring. Known antimony-catalyzed germanium-catalyst catalysts provide polyesters with relatively good thermal stability during melt molding compared to other titanium catalysts, but still have a complete thermal degradation during melt molding. I can't prevent it. Under such circumstances, a polyester polymerization catalyst that gives a polyester that can minimize the thermal deterioration during melt molding of the polyester has been desired.
WO 9 8 / 4 2 7 6 9や特表平 1 1— 5 0 7 6 9 4号などではアルミニウム化 合物を重合触媒として用いる技術が提案されている。 ア ミニウム化合物として は、 アルミ-ゥムァセチルァセトネート等のアルミニウムのキレート化合物、 塩 化アルミニウムや水酸ィヒアルミニウム等の無機酸塩、 カルボン酸のアルミニウム 塩、 あるいはアルミニウムアルコキサイドなどが例示されている。 このうち、 了 ルミニゥムァセチルァセトネート等のアルミニウムのキレート化合物は一般に高 価であり、 かつ化合物中のアルミニウム含有量が低いためコストアップにつなが るという問題やエチレンダリコール等の溶媒に対する溶解度が低く添加方法が制 限されるという問題を有している。 水酸化アルミニウムやアルミニウムアルコキ サイドは系への溶角針生が低く触媒活性が低 、という問題ゃポリエステル中に不溶 性の異物が発生するという問題を有している。 塩ィ匕アルミニウム等の塩素を含有 する無機酸塩は触媒活性には比較的優れるが、 装置に対する腐食性が高いという 問題や得られるポリマーの着色が大きいという問題を有する。  WO 98/42769, Japanese Patent Publication No. 11-507694, etc., have proposed techniques using an aluminum compound as a polymerization catalyst. Examples of the aluminum compound include an aluminum chelate compound such as aluminum-dimethyl acetylacetonate, an inorganic acid salt such as aluminum chloride and aluminum hydroxide, an aluminum salt of a carboxylic acid, and an aluminum alkoxide. Have been. Of these, chelating compounds of aluminum such as luminium dimethyl acetylacetonate are generally expensive, and the aluminum content in the compound is low, leading to increased costs. There is a problem that the solubility is low and the addition method is limited. Aluminum hydroxide and aluminum alkoxide have the problem of low melt penetration into the system and low catalytic activity. (1) There is a problem that insoluble foreign matter is generated in polyester. Chlorine-containing inorganic acid salts such as aluminum chloride are relatively excellent in catalytic activity, but have a problem of high corrosiveness to the apparatus and a problem of large coloring of the obtained polymer.
—方、 カルボン酸のアルミニウム塩としては、 酢酸アルミニウム、 塩基性酢酸 アルミニウム、 乳酸アルミニウム、 安息香酸アルミ-ゥムなどが例示されており 、 これらは、 一般に安価で装置に対する 食性は低いが、 ポリエステルに対する 溶解性が低いため、 触 性に劣るとともに、 得られるポリエステルに濁りが生 じるといった問題を有しており触媒として使用するには問題があった。 例えば、 特開平 1 0— 3 2 4 7 4 1号では、 酢酸アルミニウムを触媒として用いたポリエ ステルは不溶性の異物を形成しやすく、 製糸性に劣るといった問題が生じること が記載されている。 On the other hand, examples of aluminum salts of carboxylic acids include aluminum acetate, basic aluminum acetate, aluminum lactate, aluminum benzoate and the like. However, these are generally inexpensive and have a low corrosion property to the apparatus, but have low solubility in the polyester, so that they have poor touch properties and have a problem that turbidity occurs in the obtained polyester. There was a problem. For example, Japanese Patent Application Laid-Open No. 10-324741 describes that polyester using aluminum acetate as a catalyst tends to form insoluble foreign matters and has a problem of poor spinning properties.
本発明の目的は、 ァンチモンおよびゲルマニウム以外の金属成分を触媒の主た る金属成分とする重合触媒を用いて製造されたポリエステルであって、 かつ成形 時のフィルタ一詰まり等が改善されたポリエステルおよぴその製造方法を提供す るものである。  An object of the present invention is to provide a polyester produced using a polymerization catalyst containing a metal component other than antimony and germanium as a main metal component of the catalyst, and having improved filter clogging during molding and the like. It also provides a method of manufacturing the same.
本発明の別の目的は、 ァンチモン化合物およびゲルマ-ゥム化合物以外の新規 なポリエステル重合触媒を使用してポリエステルを製造する方法おょぴ該方法に より製造されたポリエステルを提供しょうとするものである。  Another object of the present invention is to provide a method for producing a polyester using a novel polyester polymerization catalyst other than an antimony compound and a germanium compound, and to provide a polyester produced by the method. is there.
本発明の別の目的は、 ァンチモン化合物又はゲルマ二ゥム化合物を触媒主成分 として含まず、 触^ ¾性に優れ、 カゝっ触媒の失活もしくは除去をすることなしに 、 溶融成形時の熱劣化が効果的に抑制されて熱安定性に優れたポリエステルを与 えるポリエステル重合触媒を提供するものである。  It is another object of the present invention to provide an anti-catalyst that does not contain an antimony compound or a germanium compound as a main component of the catalyst, has excellent catalytic properties, and does not deactivate or remove the catalyst. An object of the present invention is to provide a polyester polymerization catalyst which gives a polyester having excellent thermal stability by effectively suppressing thermal deterioration.
本発明はまた、 前記触媒を使用した、 フイノレム、 ボトル等の中空成形品、 繊維 、 エンジニアリングプラスチック等の溶融成形を行う際の熱安定性が改善されて おり、パージンの樹脂を使用してもまた成形時に発生する屑を再利用しても品位 に優れた製品が得られるポリエステル、 並びに前記ポリエステル重合触媒を使用 したポリエステルの製造方法を提供することにある。  The present invention also provides improved heat stability when performing melt molding of hollow molded articles such as finolems and bottles, fibers, and engineering plastics using the catalyst. An object of the present invention is to provide a polyester capable of obtaining a high-quality product even if waste generated during molding is reused, and a method for producing a polyester using the polyester polymerization catalyst.
本発明の別の目的は、 溶融成形時の熱劣ィ匕を極力抑えられるようなポリエステ ルを与えるポリエステル重合触媒であって、 前記触媒を使用した、 フィルム、 ボ トル等の中空成形品、 繊維、 エンジニアリングプラスチック等の溶融成形を行う 際の熱安定性が顕著に改善されており、 バージンの樹脂を使用してもまた成形時 に発生する屑を再利用しても品位に優れた製品が得られるポリエステル、 並びに 前記ポリエステル重"^虫媒を使用したポリエステルの製造方法を提供することに める。 本発明の別の目的は、 アンチモン化合物又はゲルマニウム化合物を触媒主成分 として含まず、 アルミニウムを主たる金属成分とし、 安価で、 触媒活性に優れ、 装置への腐食が少なく、 さらにはポリエステルに不溶性の異物の生成が低減した ポリエステルを与えるポリエステル重合触媒およびその製造方法を提供すること にある。 本発明はまた、 前記触媒を使用したポリエステルの製造方法ならぴにポ リエステルを提供する。 Another object of the present invention is a polyester polymerization catalyst which gives a polyester capable of minimizing thermal degradation during melt molding, using the catalyst to form a hollow molded article such as a film or a bottle, or a fiber. The thermal stability of melt molding of engineering plastics and the like has been remarkably improved, and high quality products can be obtained even if virgin resin is used and waste generated during molding is reused. And a method for producing a polyester using the polyester heavy medium. Another object of the present invention is to provide an inexpensive, excellent catalytic activity, less corrosion to equipment, and a foreign substance that is insoluble in polyester without using an antimony compound or a germanium compound as a main component of the catalyst and using aluminum as a main metal component. An object of the present invention is to provide a polyester polymerization catalyst which gives a polyester with reduced generation of polyester and a method for producing the same. The present invention also provides a polyester in a method for producing a polyester using the catalyst.
[発 明 の 開 示] [Disclosure of Invention]
本発明者らは、 上記課題の解決を目指して鋭意検討を重ねた結果、 アルカリ金 属化合物あるいはアル力リ土類金属化合物とアルミニゥムィ匕合物とを共存した触 媒を用いて重合したときに生成するポリエステルに不溶性の異物は、 主にアル力 リ金属化合物あるいはアルカリ土類金属化合物に起因することを見いだし、 さら に、 ポリエステル中のアル力リ金属化合物おょぴアル力リ土類金属化合物とアル ミニゥムィ匕合物の含有量を特定の範囲内にすることによって、 この不溶性の異物 の生成は効果的に抑えられ、 ポリエステルを成形する時のフィルター詰まり等の 問題が改善されることを見いだし本発明を完成した。  The present inventors have conducted intensive studies aiming at solving the above-mentioned problems, and as a result, when polymerized using a catalyst in which an alkali metal compound or an alkaline earth metal compound and an aluminum hydride are coexisted, The foreign matter insoluble in the resulting polyester is found to be mainly caused by alkali metal compounds or alkaline earth metal compounds. Furthermore, the alkali metal compounds in polyesters It has been found that by setting the content of the aluminum and polyimide to a specific range, the generation of this insoluble foreign matter can be effectively suppressed, and problems such as filter clogging during polyester molding can be improved. The present invention has been completed.
すなわち、 本発明は上記課題の解決法として、 アルカリ金属おょぴそれらの化 合物ならぴにアルカリ土類金属およびそれらの化合物からなる群より選ばれる少 なくとも一種と、 アルミニウムおよびそのィ匕合物からなる群より選ばれる少なく とも一種を含有し、 かつそれらを下記 (1 ) および (2 ) 式を満足する * ^有す ることを特徴とするポリエステルを提供する。  That is, the present invention provides, as a solution to the above problems, at least one kind selected from the group consisting of alkali metals and their compounds, and at least one selected from the group consisting of alkaline earth metals and their compounds; A polyester characterized by containing at least one selected from the group consisting of compounds, and having them satisfying the following formulas (1) and (2).
( 1 ) 輔 < 0 . 0 5  (1) suke <0. 0 5
( 2 ) 《M》 Z《A 1》 ≤2 0  (2) << M >> Z << A 1 >> ≤2 0
(式 (1 ) , (2 ) 中、 《M》はポリエステル中の酸成分に対するアルカリ金属 原子とアル力リ土類金属原子の合計のモル0 /0を示し、 《A 1》 はポリエステル中 の酸成分に対するアルミニウム原子のモル%を示す。 ) (In the formula (1), (2), "M" represents the mole 0/0 of the total alkali metal atom and Al force Li earth metal atom to the acid component in the polyester, "A 1" is in the polyester Shows mol% of aluminum atom to acid component.)
また、 本発明者らは、 上記課題の解決を目指して鋭意検討を重ねた結果、 アル 力リ金属化合物またはアル力リ土類金属化合物とアルミニゥム化合物とを共存し た触媒を用いて重合したときに生成するポリエステルに不溶性の異物は主に、 了 ルカリ金属化合物やアル力リ土類金属化合物に起因することを見いだし、 さらに 検討を進めた結果、 リン化合物を共存することでこれらの異物は効果的に低減し 、 さらにポリエステル中の上記金属化合物ゃリン化合物の含有量を特定の範囲内 にすることによって、 ポリエステルに不溶性の異物の生成が効果的に抑えられ、 ポリエステルを成形する時のフィルター詰まり等の問題が改善されることを見い だし本発明に到達した。 In addition, the present inventors have conducted intensive studies aiming at solving the above problems, and as a result, when polymerized using a catalyst in which an aluminum metal compound or an aluminum earth compound and an aluminum compound coexist. Foreign substances insoluble in polyester are mainly produced As a result of finding out that it is caused by the alkali metal compound or the alkaline earth metal compound, and further studying it, the coexistence of the phosphorus compound effectively reduces these foreign substances. By setting the content of the phosphorus compound within the specified range, it is possible to effectively suppress the generation of foreign matters insoluble in the polyester and to improve problems such as filter clogging when molding the polyester. The invention has been reached.
すなわち、 本発明は上記課題の解決法として、 アルカリ金属およびそれらの化 合 ならびにアルカリ土類金属およびそれらの化合物からなる群より選ばれる少 なくとも一種と、 アルミニウムおよびその化合物からなる群より選ばれる少なく とも一種、 ならびにリン化合物からなる群より選ばれる少なくとも一種を含有し That is, the present invention provides, as a solution to the above problems, at least one selected from the group consisting of alkali metals and their compounds, and alkaline earth metals and their compounds, and at least one selected from the group consisting of aluminum and its compounds Contains at least one kind and at least one kind selected from the group consisting of phosphorus compounds.
、 かつそれらを下記 (4 ) 〜 (6 ) 式を満足する量含有することを特徴とするポ リエステルを提供する。 And a polyester containing them in an amount satisfying the following formulas (4) to (6).
( 4 ) 0 . 1≤ [M] ≤ 1 5 0  (4) 0. 1≤ [M] ≤ 1 5 0
( 5 ) [M] / [ A 1 ] ≤ 4 0  (5) [M] / [A1] ≤ 40
( 6 ) [P ] / [A 1≥0 . 0 1  (6) [P] / [A 1≥0.0 1
(式 (4 ) 〜 (6 ) 中、 [M] はポリエステル中に含まれるアルカリ金属原子と アル力リ土類金属原子の合計量 ( p p m) を示し、 [ A 1 ] および [ P ] はポリ エステル中に含まれるアルミニウム原子とリン原子の量 (p p m) をそれぞれ示 す。 )  (In the formulas (4) to (6), [M] indicates the total amount (ppm) of alkali metal atoms and alkaline earth metal atoms contained in the polyester, and [A1] and [P] indicate The amounts (ppm) of aluminum and phosphorus atoms contained in the ester are indicated.)
また、 本発明者らは、 上記課題の解決を目指して鋭意検討を重ねた結果、 アル 力リ金属化合物またはァノレ力リ土類金属化合物とアルミニゥム化合物とを共存し た触媒を用いて重合したときに生成するポリエステルに不溶性の異物は、 主にァ ルカリ金属化合物やアル力リ土類金属化合物に起因することを見いだし、 さらに 検討を進めた結果、 アル力リ金属化合物ま はアル力リ土類金属化合物の中でも リチウム、 ナトリウム、 カリウム、 ベリリウム、 マグネシウム、 カルシウムおよ ぴそれらのィ匕合物からなる群より選ばれる少なくとも一種を使用し、 かつそれら のポリエステル中における含有量を特定の範囲内にし、 さらにリン化合物を共存 することでポリエステルに不溶性の異物の生成が効果的に抑えられ、 ポリエステ ルを成形する時のフィルタ一詰まり等の問題が改善されることを見いだし本発明 に SI達した。 Further, the present inventors have conducted intensive studies aiming at solving the above-mentioned problems, and as a result, when polymerized using a catalyst in which an aluminum metal compound or an aluminum metal compound and an aluminum compound coexist. The foreign matter that is insoluble in the polyester formed during the process was found to be mainly caused by alkali metal compounds and alkaline earth metal compounds, and as a result of further investigation, it was found that the alkali metal compounds and alkaline earth compounds Among the metal compounds, at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium and their conjugates is used, and their content in the polyester is adjusted to a specific range. In addition, the coexistence of a phosphorus compound effectively suppresses the formation of foreign matter insoluble in polyester, The present invention found that the problems of the filter one clogging at the time of molding is improved Reached SI.
すなわち、 本発明は上記課題の解決法として、 リチウム、 ナトリウム、 力リウ ム、 ベリリウム、 マグネシウム、 カルシウムおよびそれらのィ匕合物からなる群よ り選ばれる少なくとも一種と、 アルミニウムおよびその化合物からなる群より選 ばれる少なくとも一種、 ならびにリン化合物からなる群より選ばれる少なくとも —種を含有し、 かつリチウム、 ナトリウム、 カリウム、 ベリリウム、 マグネシゥ ム、 カルシウムおよびそれらの化合物の含有量の合計がポリマー 1 0 6 g当たり 金属原子換算で 7 . 0モル以下であることを特徴とするポリエステルおよびその 製造方法を提供する。 That is, the present invention provides, as a solution to the above-described problems, at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium, and their conjugates, and a group consisting of aluminum and compounds thereof. At least one, and at least selected from the group consisting of phosphorus compound Bareru more selected - containing species, and lithium, sodium, potassium, beryllium, Maguneshiu beam, calcium and total polymer 1 content of the compounds 0 6 g The present invention provides a polyester characterized in that the amount is 7.0 mol or less per metal atom conversion, and a method for producing the same.
また、 本発明者らは、 上記課題の解決を目指して鋭意検討を重ねた結果、 アル ミニゥムを主たる金属成分とする重合触媒を用いて製造されたポリエステルであ つて、 かつリン化合物からなる群より選ばれる少なくとも一種ならぴにフエノー ル系化合物からなる群より選ばれる少なくとも一種を含有レ、 さらにリン原子と アルミニウム原子の含有比を特定の範囲にしたポリエステルは、 成形時のフィル ター詰まりの問題や熱酸化安定性が改善されたものであることを見いだし本発明 に到達した。  The present inventors have conducted intensive studies with the aim of solving the above problems, and as a result, a polyester produced using a polymerization catalyst containing aluminum as a main metal component, and a polyester made from a group consisting of phosphorus compounds. Polyesters containing at least one selected from the group consisting of phenolic compounds and at least one selected from the group consisting of phenolic compounds, and a polyester with a specific ratio of phosphorus atoms to aluminum atoms in a specific range, have problems such as filter clogging at the time of molding. The inventors have found that the thermal oxidation stability has been improved, and have reached the present invention.
すなわち、 本発明は上記課題の解決法として、 アルミニウムおよびそのィ匕合物 からなる群より選ばれる少なくとも一種、 およびリン化合物からなる群より選ば れる少なくとも一種ならぴにフ ノール系化合物からなる群より選ばれる少なく とも一種を含有するポリエステルであって、 かつポリエステル中に含まれるリン 原子の量 (ppm) とアルミニウム原子の量 (ppm) の比が 0 . 0 1〜5 0の範囲であ ることを特徴とするポリエステルおよびその製造方法を提供する。  That is, the present invention provides, as a solution to the above-mentioned problems, at least one selected from the group consisting of aluminum and its conjugates, and at least one selected from the group consisting of phosphorus compounds; The selected polyester contains at least one kind, and the ratio of the amount of phosphorus atoms (ppm) to the amount of aluminum atoms (ppm) contained in the polyester is in the range of 0.01 to 50. And a method for producing the same.
また、 本発明者らは、 上記課題の解決を目指して鋭意検討を重ねた結果、 アル ミニゥム化合物を触媒として用いて重合したときに生成するポリエステノレに不溶 性の異物は主にアルミニウム化合物に起因することを見いだし、 さらに検討を進 めた結果、 ポリエステル中にアルミニウム化合物とリン化合物を共存し、 かつ了 ルミニゥム化合物とリン化合物の含有量を特定の比にすることでこれらの異物は 効果的に低減し、 ポリエステルを成形する時のフィルター詰まり等の問題が改善 されることを見いだし本発明に到達した。 すなわち、 本発明は上記課題の解決法として、 アルミニウムおよびそのィ匕合物 からなる群より選ばれる少なくとも一種とリン化合物からなる群より選ばれる少 なくとも一種を含有するポリエステルであって、 ポリエステル中に含まれるリン 原子の量 (ppm) のアルミニウム原子の量 (PPm) に対する比が 0 . 5〜2 0の範囲 にあることを特徴とするポリエステルを提供する。 In addition, the present inventors have conducted intensive studies aiming at solving the above-mentioned problems, and as a result, foreign matters insoluble in polyesterol generated when polymerized using an aluminum compound as a catalyst are mainly caused by aluminum compounds. As a result of further investigation, it was found that by coexisting aluminum compound and phosphorus compound in polyester, and by setting the content ratio of aluminum compound and phosphorus compound to a specific ratio, these foreign substances can be effectively reduced. The present invention was found to reduce the problem and to improve the problems such as filter clogging when molding polyester. That is, the present invention provides, as a solution to the above-mentioned problem, a polyester containing at least one selected from the group consisting of aluminum and its conjugates and at least one selected from the group consisting of phosphorus compounds. providing a polyester ratio to the amount (PP m) of the aluminum atoms of the amount of phosphorus atoms (ppm) is characterized in that it is in the 0.5 to 2 range 0 contained.
また本発明は、 上記金属および/または化合物を触媒として用いて製造された 上記ポリエステルおよぴその製造方法を提供する。  The present invention also provides the polyester produced using the metal and / or the compound as a catalyst, and a method for producing the polyester.
また、 本発明者らは、 上記課題の解決を目指して鋭意検討を重ねた結果、 アル ミニゥム化合物はもともと触媒活性に劣るが、 これに特定量のリン化合物を組み 合わせることによって、 重合触媒として十分な活性をもつようになることを見い だし本発明に到達した。 本発明の重合触媒を用いると、 アンチモン化合物を用い ない品質に優れたポリエステルを安価に得ることができる。  In addition, the present inventors have conducted intensive studies with the aim of solving the above problems, and as a result, although aluminum compounds originally have poor catalytic activity, by combining them with a specific amount of phosphorus compounds, they can be used as polymerization catalysts. The present inventors have found that the present invention has an excellent activity and reached the present invention. The use of the polymerization catalyst of the present invention makes it possible to obtain inexpensively a high-quality polyester that does not use an antimony compound.
すなわち、 本発明は上記課題の解決法として、 アルミニウムおよびその化合物 からなる群より選ばれる少なくとも一種とリン化合物からなる群より選ばれる少 なくとも一種を添加し、 かつ添加したリン原子とアルミニゥム原子のモル比が 0 . 5〜 2 0の範囲にあることを特徴とするポリエステルの製造方法、 および該方 法により製造されたポリエステルを提供する。 本発明はまた、 アルミニウムおよ びそのィ匕合物からなる群より選ばれる少なくとも一種とリン化合物からなる群よ り選ばれる少なくとも一種とからなるポリエステル重合触媒であって、 リン原子 とアルミニウム原子のモル比が上記の範囲にあることを特徴とするポリエステル 重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製 造方法を提供する。  That is, the present invention provides, as a solution to the above-mentioned problem, adding at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds, and adding the phosphorus atom and the aluminum atom to each other. A method for producing a polyester, wherein the molar ratio is in the range of 0.5 to 20; and a polyester produced by the method. The present invention also relates to a polyester polymerization catalyst comprising at least one selected from the group consisting of aluminum and its conjugates and at least one selected from the group consisting of phosphorus compounds, wherein the catalyst comprises a mole of phosphorus atom and aluminum atom. Provided are a polyester polymerization catalyst having a ratio in the above range, a polyester produced using the same, and a method for producing a polyester.
また、 本発明者らは、 上記課題の解決を目指して鋭意検討を行った結果、 金属 または金属化合物自体は触媒活性が低いものであっても、 これにリンィ匕合物を組 み合わせることで触媒活性が向上するようなポリエステノレ重合触媒となり、 そし てこのような、 金属または金属化合物とリン化合物とからなるポリエステル重合 触媒は触 性に優れ、 力 触媒の失活もしくは除去をすることなしに、 溶融成 形時の熱劣化が効果的に抑制されて熱安定性に優れたポリエステルを与えるポリ エステル重合触媒となることを見いだし、 本発明を完成した。 。 すなわち、 本発明は上記課題の解決法として、 金属または金属化合物とリンィ匕 合物とからなるポリエステル重合触媒であって、 活性パラメータ (AP) が下記 (10) 式を満足することを特徴とするポリエステル重合触媒を提供する。 In addition, the present inventors have conducted intensive studies with the aim of solving the above-mentioned problems. As a result, even if the metal or the metal compound itself has low catalytic activity, it is possible to combine the metal or the metal compound with the phosphorous compound. It becomes a polyester polymerization catalyst that improves the catalytic activity, and such a polyester polymerization catalyst composed of a metal or a metal compound and a phosphorus compound has excellent tactility, without deactivating or removing the catalyst. However, the present inventors have found that heat deterioration during melt molding is effectively suppressed, and the resulting polymer catalyst is a polyester polymerization catalyst that gives a polyester having excellent heat stability. Thus, the present invention has been completed. . That is, the present invention provides, as a solution to the above-mentioned problem, a polyester polymerization catalyst comprising a metal or a metal compound and a phosphorus conjugate, wherein an activity parameter (AP) satisfies the following formula (10). A polyester polymerization catalyst is provided.
(10) AP (m i n) <APX (m i n)  (10) AP (min) <APX (min)
(上記式中.、 A Pは所定量の触媒を用いて 275 °C、 0. lTo r rの減圧度で 固有粘度が 0. 65 d 1 Zgのポリエチレンテレフタレート (PET) を重合す るのに要する時間 (mi n) を示す。 A PXは上記触媒のうち金属または金属化 合物のみを上記と同じ量だけ用いて上記と同じ条件で: P E Tを重合するのに要す る時間 (mi n) を示す。 )  (In the above formula, AP is the time required to polymerize polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 d1 Zg at a pressure of 275 ° C and a pressure of 0.1 l Torr using a predetermined amount of catalyst. A PX indicates the time (min) required to polymerize PET using the same amount of metal or metal compound of the above catalyst and the same conditions as above. Shown.)
別の本発明は、 ポリエステノレ重合触媒であって、 この触媒を用いて重合したポ リエチレンテレフタレート (; PET) の熱安定性パラメータ (TS) が下記 (9 ) 式を満たすことを特徴とする。 該ポリエステル重合触媒を用いて重合したポリ エステルからなるフィルム、 ボトル等の中空成形品、 繊維、 エンジニアリングプ ラスチック等の溶融成形を行う際の熱安定性が顕著に改善されており、 パージン の樹脂を使用してもまた成形時に発生する屑を再利用しても品位に優れた製品が 得られる。  Another aspect of the present invention is a polyesterlene polymerization catalyst, wherein the thermal stability parameter (TS) of polyethylene terephthalate (; PET) polymerized by using the catalyst satisfies the following equation (9). The thermal stability of melt molding of films, bottles and other hollow molded articles, fibers, engineering plastics, etc. made of polyesters polymerized using the polyester polymerization catalyst has been significantly improved. Good quality products can be obtained even when used or when the waste generated during molding is reused.
(9) TS< 0. 20  (9) TS <0.20
(上記式中、 T Sは固有粘度 ( [ェ コ ! :! が 64〜0. 66 d l/gの P ET1 gをガラス試験管に入れ 130°Cで 12時間真空乾燥した後、 非流通窒素 雰囲気下で 300°Cにて 2時間溶融状態に維持した後の固有粘度 ( [ I V] f ) から、 次式により計算される数値である。 (In the above formula, TS is the intrinsic viscosity ([eco!:! Is 64 to 0.66 dl / g.) 1 g of PET is placed in a glass test tube, vacuum-dried at 130 ° C for 12 hours, and then placed in a non-circulating nitrogen atmosphere. It is a numerical value calculated from the intrinsic viscosity ([IV] f ) after maintaining the molten state at 300 ° C for 2 hours below.
TS = 0. 245 { [I V] f1' 47 一 [IV] i -1· 47 } TS = 0.245 {[IV] f1 1 '47 -1 [IV] i- 1 · 47 }
固有粘度が 0. 64〜0. 66 d lZgの PETは、 実際には PET重合反応 容器の撹拌トルクと固有粘度の相関性を予め測定しておき、 重合状態をこの撹拌 トルクにて管理し、 撹拌トルクが所定値に達した時に重合を停止することにより 得ることができる。  In the case of PET with an intrinsic viscosity of 0.64 to 0.66 dlZg, in practice, the correlation between the stirring torque of the PET polymerization reaction vessel and the intrinsic viscosity is measured in advance, and the polymerization state is controlled using this stirring torque. It can be obtained by stopping the polymerization when the stirring torque reaches a predetermined value.
また、 本発明者らは、 カルボン酸のアルミニウム塩の触 性を向上すること を目指して鋭意検討を重ねた結果、 カルボン酸アルミニウム塩を予め水や有機溶 媒に溶解したものを触媒として用いることで触媒活性が向上することを見いだし 本発明を提案するに到った。 ' すなわち、 本発明は上記課題の解決方法として、 水および zまたは有機溶媒にIn addition, the present inventors have conducted intensive studies with the aim of improving the feel of aluminum salts of carboxylic acids, and as a result, it has been found that a catalyst obtained by dissolving aluminum carboxylate in water or an organic solvent in advance is used as a catalyst. To improve catalytic activity The present invention has been proposed. 'That is, the present invention provides water and z or an organic solvent as a solution to the above problem.
、 カルボン酸アルミニウム塩からなる群より選ばれる少なくとも 1種を溶解した 溶液からなるポリエステル重 虫媒ならぴに該溶液の製造方法を提供する。 And a method for producing a solution of a polyester heavy carrier comprising a solution in which at least one selected from the group consisting of aluminum carboxylate is dissolved.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
本発明のポリエステルは、 アル力リ金属およびそれらの化合物ならぴにアル力 リ土類金属およびそれらの化合物からなる群より選ばれる少なくとも一種を、 ポ リエステルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ュニ ットのモル数に対して金属原子として合計して 0. 05モル0 /0未満の量で含有してい なければならない。 また、 0. 005 モル%以上含有することが好ましい。 含有量が 0. 05モノレ%以上だと、 ポリエステルに不溶性の異物が多く生じ、 その結果、 紡糸 時の糸切れや成形時のフィルター詰まり等が頻繁に起こるという問題が発生する 。 また、 レジンの着色が顕著になり、 成形品の外観が損なわれるという問題ゃレ ジンの耐加水分解性が低下するという問題が発生する。 含有量が 0. 005 モル0 /0よ り少ないとレ ンの熱安定性に乏しくなるという問題が発生するとともに、 触媒 として用いる場合に触媒活性が顕著に低下するため好ましくない。 含有量のより 好ましい範囲としては、 0. 008 モル%から 0. 03モル%であり、 さらに好ましくは 0. 01モル0 /0から 0. 02モル0 /0の範囲である。 The polyester of the present invention comprises at least one selected from the group consisting of alkali metal and their compounds, and at least one selected from the group consisting of alkaline earth metals and their compounds, and a carboxylic acid such as a dicarboxylic acid of a polyester or a polycarboxylic acid. must be contained in an amount of less than 0.05 mole 0/0 in total metal atoms relative to the number of moles of all the structural Interview two Tsu City of acid component. Further, the content is preferably 0.005 mol% or more. If the content is 0.05 monole% or more, a large amount of foreign matter insoluble in the polyester is generated, and as a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, the coloring of the resin becomes remarkable, and the appearance of the molded article is impaired. The problem that the hydrolysis resistance of the resin is lowered occurs. With a problem that content is poor in thermal stability less and Le emissions Ri good 0.005 mole 0/0 occurs, is not preferable because the catalytic activity is significantly decreased in the case of using as the catalyst. More preferred range of the content is 0.03 mol% to 0.008 mol%, still more preferably from 0.02 mole 0/0 from 0.01 mol 0/0.
本発明のポリエステルは、 上記のアルカリ金属おょぴそれらの化合物ならびに アルカリ土類金属およびそれらのィ匕合物からなる群より選ばれる少なくとも一種 に加えてアルミニウムおよぴその化合物からなる群より選ばれる少なくとも一種 を含有していなければならない。 また、 アルカリ金属およびそれらの化合物なら ぴにアル力リ土類金属およぴそれらの化合物からなる群より選ばれる少なくとも 一種とアルミニウムおよびその化合物からなる群より選ばれる少なくとも一種の 含有量を、 アル力リ金属原子とアル力リ土類金属原子の合計とアルミニゥム原子 'のモル比が 20以下となるようにすることが必要である。 この比は 0、 1 以上である ことが好ましい。 比が 20を越えると、 ポリエステルに不溶性の異物が多く生じ、 その結果、 紡糸時の糸切れや成形時のフィルター詰まり等が頻繁に起こるという 問題が発生する。 また、 触媒として用いる場合に触 性が顕著に低下するとい う問題が発生する。 比が 0. 1 より小さいと、 アルミニウム化合物に起因するポリ エステルに不溶性の異物が多く生成し、 またポリエステルの熱安定性も低下する ため好ましくない。 比のより好ましい範囲としては 0. 5 から 10の範囲である。 ポリエステル中における、 アル力リ金属おょぴそれらの化合物ならびにアル力 リ土類金属およびそれらの化合物からなる群より選ばれる少なくとも一種とアル ミニゥムおよぴその化合物からなる群より選ばれる少なくとも一種の含有量を上 記範囲とすることで、 ポリエステルに不溶性の異物の発生が効果的に抑制され、 紡糸時の糸切れや成形時のフィルター詰まり等の問題が改善される。 The polyester of the present invention is selected from the group consisting of aluminum and its compounds in addition to at least one selected from the group consisting of the above alkali metals and their compounds and alkaline earth metals and their conjugates. Must contain at least one of the following: In addition, the content of at least one selected from the group consisting of alkaline earth metals and their compounds and the content of at least one selected from the group consisting of aluminum and their compounds for alkali metals and their compounds, It is necessary that the molar ratio of the sum of the aluminum metal atoms and the aluminum metal atoms to the aluminum metal atoms be 20 or less. This ratio is preferably 0, 1 or more. If the ratio exceeds 20, a large amount of foreign matter is insoluble in the polyester, resulting in frequent thread breakage during spinning and filter clogging during molding. Problems arise. In addition, when used as a catalyst, there is a problem that the tactility is significantly reduced. If the ratio is less than 0.1, a large amount of foreign matter insoluble in the polyester resulting from the aluminum compound is generated, and the thermal stability of the polyester is also undesirably reduced. A more preferred range of the ratio is in the range of 0.5 to 10. In the polyester, at least one selected from the group consisting of alkali metal and their compounds and alkaline earth metals and their compounds, and at least one selected from the group consisting of aluminum and their compounds By adjusting the content to the above range, the generation of foreign matters insoluble in polyester is effectively suppressed, and problems such as yarn breakage during spinning and filter clogging during molding are improved.
また、 本発明のアルミニウムおよびその化合物の含有量は、 ポリエステルのジ カルボン酸や多価カルボン酸などのカルボン酸成分の全構成ュ-ットのモル数に 対して、 アルミニウム原子として 0. 001 モル0 /0から 0. 05モル0 /0の範囲にあること が好ましい。 アルミニウム原子の含有量が 0. 05モル0 /0を越えると、 生成するポリ エステルの熱安定性が低下するため好ましくない。 アルミニウム原子の含有量が 0. 001 モ^^ /0以下であると、 触媒として用いる場合に触 性が顕著に低下する ため好ましくない。 より好ましくは、 0. 005 モル0 /0から 0. 04モル%の範囲であり 、 さらに好ましくは 0. 01モル0 /0から 0· 03モル0 /0の範囲である。 Further, the content of aluminum and the compound thereof of the present invention is 0.001 mole as aluminum atom with respect to the total number of moles of the carboxylic acid component such as dicarboxylic acid and polycarboxylic acid of the polyester. it is preferred that from 0/0 is in the range of 0.05 mol 0/0. If the content of aluminum atoms is more than 0.05 mole 0/0, undesirable because heat stability of poly ester is reduced to produce. If the content of the aluminum atom is less than 0.001 mol / 0 , the contact property is remarkably reduced when used as a catalyst, which is not preferable. More preferably, in the range of 0.005 mole 0/0 of 0.04 mol%, even more preferably from 0.01 mol 0/0 0 - 03 mol 0/0.
本発明のポリエステルとしては、 アル力リ金属原子とアル力リ土類金属原子を 合計で 2 5 p p m以下の量で含有することが異物低減の観点から好ましい。 この 含有量は 2 0 p p m以下であることがより好ましく、 1 5 p 以下であること がさらに好ましい。  It is preferable that the polyester of the present invention contains a total of 25 ppm or less of metallic alkali metal and alkaline earth metal atoms from the viewpoint of reducing foreign matters. This content is more preferably 20 ppm or less, and even more preferably 15 p or less.
また、 本発明のポリエステルには、 上記したようにアルカリ金属おょぴそれら の化合物ならびにアル力リ土類金属およびそれらの化合物からなる群より選ばれ る少なくとも一種を含有することが必要であるが、 このうち、 アルカリ土類金属 またはそれらの化合物を含有するポリエステルは、 熱安定性がより低下し、 加熱 による着色が大きく、 異物の発生量も比較的多いため、 本発明のポリエステルに は、 アル力リ土類金属が含有されずにアル力リ金属が含有されていることが好ま しい。  As described above, the polyester of the present invention needs to contain at least one selected from the group consisting of alkali metals and their compounds, and alkaline earth metals and their compounds. Of these, polyesters containing an alkaline earth metal or a compound thereof have lower thermal stability, are more colored by heating, and have a relatively large amount of foreign substances. It is preferable that the alkaline metal is contained without containing the alkaline earth metal.
また、 本発明のポリエステルはリン化合物を含有することが好ましい。 リン化 合物を含有することで、 アル力リ金属やアル力リ土類金属に由来する異物の発生 が抑制されるという効果が得られるとともに、 ポリエステルの熱安定性も改善す る。 Further, the polyester of the present invention preferably contains a phosphorus compound. Phosphorization By containing the compound, the effect of suppressing the generation of foreign substances derived from Alri metal or Al earth metal is obtained, and the thermal stability of the polyester is also improved.
アルミユウム又はそのィヒ合物およびアル力リ土類金属またはそれらの化合物を 含有するポリエステルは、 上述したように、 熱安定性に劣る傾向があり、 異物の 発生量も比較的多いが、 アルカリ土類金属を本発明の範囲で含有し、 さらにリン 化合物を含有することで、 ポリエステルの熱安定性や異物の問題が改善する。 本発明の方法に従ってポリエステルを製造する際にリン化合物を添加すると、 ポリエステルに不溶性の異物の生成が効果的に抑制されるため好ましい。 また、 リン化合物を添加することで、 ポリエステルの熱安定性等も向上することが可能 であるため好ましい。  As described above, polyesters containing aluminum or its compounds and alkaline earth metals or their compounds tend to have poor thermal stability and relatively large amounts of foreign substances are generated. By containing a class of metals within the scope of the present invention and further containing a phosphorus compound, the problems of heat stability and foreign matters of the polyester are improved. It is preferable to add a phosphorus compound when producing the polyester according to the method of the present invention, since the generation of foreign matters insoluble in the polyester is effectively suppressed. Further, the addition of a phosphorus compound is preferable because the thermal stability and the like of the polyester can be improved.
本発明のリン化合物の使用量としては、 重合して得られるポリエステルのジカ ルポン酸ゃ多価カルボン酸などのカルボン酸成分の全構成ュニットのモル数に対 して 5 X10— 5モル%から 1 モル0 /0の範囲であることが好ましく、 更に好ましくはThe amount of the phosphorus compound of the present invention, the polymerization to 5 X10- 5 mole% versus the moles of all the structural Yunitto carboxylic acid component such as deer Rupon acid Ya polycarboxylic acid polyester obtained 1 it is preferably in the range of mole 0/0, more preferably
1 xicr4モル0 /0から 0. 5 モル0 /0の範囲であることである。 1 Xicr is from 4 mole 0/0 in a range of 0.5 mol 0/0.
また、 別の本発明のポリエステルは、 アルカリ金属おょぴそれらの化合物なら ぴにアル力リ土類金属およびそれらの化合物からなる群より選ばれる少なくとも 一種を、 ポリエステル中に金属原子として合計して 0. lppm以上 150ppm以下の量で 含有していなければならない。 含有量が 150ppmより多いと、 ポリエステルに不溶 性の異物が多く生じ、 その結果、 紡糸時の糸切れや成形時のフィルター詰まり等 が頻繁に起こるという問題が発生する。 また、 レジンの着色が顕著になり、 成形 品の^ IIが損なわれるという問題やレジンの熱安定性ゃ耐加水:^性が低下する という問題が発生する。 含有量が 0. lppmより少ないとレジンの熱安定性に乏しく なるという問題が発生するとともに、 触媒として用いる場合に触媒活性が顕著に 低下するという問題が発生する。 含有量のより好ましい範囲としては、 lppm以上 lOOppm以下であり、 さらに好ましくは 5ppm以上 50ppm以下である。  Further, another polyester of the present invention is obtained by adding at least one kind selected from the group consisting of alkali metal and their compounds and at least one selected from the group consisting of alkaline earth metals and their compounds as a total of metal atoms in the polyester. 0. It must be contained in lppm or more and 150ppm or less. If the content is more than 150 ppm, many foreign matters insoluble in the polyester are generated, and as a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, coloring of the resin becomes remarkable, causing a problem that ^ II of the molded article is impaired and a problem that the thermal stability 熱 hydrolysis resistance ^ of the resin is reduced. If the content is less than 0.1 ppm, there is a problem that the thermal stability of the resin is poor, and a problem that the catalytic activity is remarkably reduced when used as a catalyst. A more preferable range of the content is lppm or more and 100ppm or less, more preferably 5ppm or more and 50ppm or less.
本発明のポリエステルは、 上記のアル力リ金属おょぴそれらの化合物ならぴに アルカリ土類金属およびそれらの化合物からなる群より選ばれる少なくとも一種 に加えてアルミニウムおよびその化合物からなる群より選ばれる少なくとも一種 を含有していなければならない。 また、 アルカリ金属おょぴそれらの化合物なら ぴにアル力リ土類金属およびそれらの化合物からなる群より選ばれる少なくとも 一種とアルミニウムおよぴその化合物からなる群より選ばれる少なくとも一種の 含有量を、 ポリエステル中のアル力リ金属原子とアル力リ土類金属原子の合計の 含有量 (ppm) とアルミニウム原子の含有量 (Ppm〉 の比が 40以下となる うにする ことが必要である。 この比は 0. 05以上であることが好ましい。 比が 40を越えると 、 ポリエステルに不溶性の異物が多く生じ、 その結果、 紡糸時の糸切れや成形時 のフィルター詰まり等が頻繁に起こるという問題が発生する。 また、 触媒として 用いる場合に触媒活性が顕著に低下するという問題が発生する。 比が 0. 05より小 さレヽと、 アルミニゥム化合物に起因するポリエステルに不溶' ¾の異物が多く生成 し、 またポリエステルの熱安定性も低下するため好ましくない。 比のより好まし い範囲としては、 0. 1 以上 20以下であり、 さらに好ましくは 0. 5以上 10以下であ る。 The polyester of the present invention is selected from the group consisting of aluminum and its compounds in addition to at least one selected from the group consisting of the above alkaline metals and their compounds, in addition to the alkaline earth metals and their compounds. At least one Must be contained. In addition, for alkali metals and their compounds, the content of at least one selected from the group consisting of alkaline earth metals and their compounds and the content of at least one selected from the group consisting of aluminum and their compounds On the other hand, it is necessary that the ratio of the total content (ppm) of the aluminum metal atoms and the aluminum earth metal atoms (ppm) to the aluminum atom content ( P pm) in the polyester be 40 or less. This ratio is preferably not less than 0.05.If the ratio exceeds 40, a large amount of foreign matter insoluble in the polyester is generated, and as a result, thread breakage during spinning and filter clogging during molding frequently occur. In addition, when used as a catalyst, there is a problem that the catalytic activity is remarkably reduced, and the ratio is smaller than 0.05, which is caused by the aluminum compound. It is not preferable because a large amount of foreign matter insoluble in the polyester is generated, and the thermal stability of the polyester is also deteriorated .. A more preferable range of the ratio is 0.1 to 20 and more preferably 0.5. It is 10 or less.
本努明のポリエステルは、 アル力リ金属およびそれらの化合物ならびにアル力 リ土類金属およびそれらの化合物からなる群より選ばれる少なくとも一種とアル ミニゥムおよびその化合物からなる群より選ばれる少なくとも一種に加えてリン 化合物からなる群より選ばれる少なくとも一種を含有していなければならない。 また、 リン化合物からなる群より選ばれる少なくとも一種とアルミ-ゥムおよび その化合物からなる群より選ばれる少なくとも一種の含有量を、 ポリエステル中 のリン原子の含有量 (ppm) とアルミェゥム原子の含有量 (ppm) の比が 0. 01以上と なるようにすることが必要である。 この比は 30以下であることが好ましい。 比が 0. 01より小さいと、 アルミユウムィ匕合物に起因するポリエステルに不 '溶性の異物 が多く生成するという問題ゃポリエステルの熱安定性が低下するという問題が発 生する。 比が 30を越えると、 ポリエステルに不溶性の異物が多く生成し、 また触 媒として用 ヽる に触媒活性が顕著に低下するとレ、う問題が発生するため好ま しくない。 比のより好ましい範囲としては、 0. 1 以上 20以下であり、 さらに好ま しくは 1 以上 10以下である。  The polyester of the present invention includes, in addition to at least one member selected from the group consisting of alkali metal and their compounds, and alkaline earth metal and their compounds, and at least one member selected from the group consisting of aluminum and its compounds At least one selected from the group consisting of phosphorus compounds. Further, the content of at least one selected from the group consisting of phosphorus compounds and aluminum and at least one selected from the group consisting of the compounds is defined as the content of phosphorus atoms (ppm) and the content of aluminum atoms in the polyester. (ppm) ratio must be 0.01 or more. This ratio is preferably 30 or less. If the ratio is less than 0.01, there arises a problem that a large amount of insoluble foreign matter is generated in the polyester due to the aluminum conjugate, and a problem that the thermal stability of the polyester is reduced. If the ratio exceeds 30, a large amount of foreign matter insoluble in the polyester is generated, and if the catalyst activity is significantly reduced for use as a catalyst, a problem arises, which is not preferable. A more preferable range of the ratio is 0.1 or more and 20 or less, and more preferably 1 or more and 10 or less.
ポリエステル中における、 アルカリ金属おょぴそれらの化合物ならびにアル力 リ土類金属およびそれらの化合物からなる群より選ばれる少なくとも一種とアル ミニゥムおよびその化合物からなる群より選ばれる少なくとも一種、 ならびにリ ン化合物からなる群より選ばれる少なくとも一種の含有量を上記範囲とすること で、 ポリエステルに不溶性の異物の発生が効果的に抑制され、 紡糸時の糸切れや 成形時のフィルター詰まり等の問題が改善される。 . In the polyester, at least one selected from the group consisting of alkali metals and their compounds and alkaline earth metals and their compounds By setting the content of at least one selected from the group consisting of minimium and its compounds, and at least one selected from the group consisting of phosphorus compounds within the above ranges, the generation of foreign matters insoluble in polyester is effectively suppressed, Problems such as yarn breakage during spinning and filter clogging during molding are improved. .
また、 本発明におけるアルミニウムおよびそのィヒ合物は、 ポリエステル中にァ ルミニゥム原子として 0. 5ppm以上 500ppm以下の範囲で含有されていることが好ま しい。 アルミニウム原子の含有量が 500ppmを越えると、 アルミ-ゥム化合物に起 因するポリエステルに不溶性の異物が多く生成したりポリエステルの熱安定性が 低下するため好ましくない。 アルミニウム原子の含有量が 0. 5ppmより少ないと、 アル力リ金属化合物やアル力リ土類金属化合物に起因する異物が多く生成したり 、 触媒として用いる場合に触媒活性が顕著に低下するため好ましくない。 より好 ましくは、 5ppm以上 70ppm以下の範囲であり、 さらに好ましくは lOppm以上 30pp m以下の範囲である。  In the present invention, the aluminum and the compound thereof are preferably contained in the polyester in an amount of 0.5 ppm or more and 500 ppm or less as an aluminum atom. If the content of the aluminum atom exceeds 500 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester caused by the aluminum-palladium compound is generated and the thermal stability of the polyester is deteriorated. When the content of the aluminum atom is less than 0.5 ppm, a large amount of foreign substances due to the alkali metal compound or the alkaline earth metal compound is generated, or the catalytic activity is significantly reduced when used as a catalyst, which is preferable. Absent. More preferably, it is in the range of 5 ppm or more and 70 ppm or less, and still more preferably in the range of 10 ppm or more and 30 ppm or less.
また、 本発明におけるリン化合物は、 ポリエステル中にリン原子として lppm以 上 lOOOppm以下の範囲で含有されていることが好ましい。 リン原子の含有量が lp pmより少ないと、 ポリエステルに不溶性の異物の生成を抑制する効果に乏しく、 またポリエステルの熱安定性が低くなるため好ましくない。 リン原子の含有量が lOOOppmを越えると、 ポリエステルに不溶性の異物が多く生成するため好ましく ない。 より好ましくは、 lOppm以上 200ppm以下の範囲であり、 さらに好ましくは 20ppm以上 lOOppm以下の範囲である。  Further, the phosphorus compound in the present invention is preferably contained in the polyester in a range of lppm to lOOppm as a phosphorus atom. If the phosphorus atom content is less than lp pm, the effect of suppressing the formation of foreign matter insoluble in the polyester is poor, and the thermal stability of the polyester is undesirably reduced. If the content of the phosphorus atom exceeds 100 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester is generated. More preferably, it is in the range of 10 ppm to 200 ppm, and still more preferably in the range of 20 ppm to 100 ppm.
本発明のポリエステルには、 アルカリ金属おょぴそれらの化合物ならびにアル 力リ土類金属およびそれらの化合物からなる群より選ばれる少なくとも一種を含 有することが必要であるが、 これらのうち、 リチウム、 ナトリウム、 カリウム、 マグネシウム、 カルシウムおよびそれらの化合物からなる群より選ばれる少なく とも一種を含有することが、 ポリエステル中の異物の低減ゃポリエステルの着色 の低減の観点から好ましい。 これらの中でも、 リチウム、 カルシウムおよびそれ らの化合物からなる群より選ばれる少なくとも一種を含有するとポリエステルの 熱安定性が優れるため好ましい。 さらにポリエステルの着色低減の観点からカル シゥムおよぴそれらの化合物からなる群より選ばれる少なくとも一種を含有する ことが好ましい。 The polyester of the present invention needs to contain at least one selected from the group consisting of alkali metals and their compounds, and alkaline earth metals and their compounds. Among these, lithium, It is preferable to contain at least one selected from the group consisting of sodium, potassium, magnesium, calcium, and compounds thereof from the viewpoint of reducing foreign matters in the polyester ゃ coloring of the polyester. Among these, it is preferable to contain at least one selected from the group consisting of lithium, calcium and compounds thereof because the polyester has excellent thermal stability. Furthermore, it contains at least one selected from the group consisting of calcium and their compounds from the viewpoint of reducing the coloring of the polyester. Is preferred.
本発明は、 上記した金属および Zまたは化合物を触媒として用いて製造された ポリエステルおよびその製造方法にも関する。 金属および zまたは化合物の添加 量としては、 最終的に得られるポリエステル中における金属原子の含有量が上記 のようになることが必要である。 該方法により製造されたポリエステルは、 ポリ エステルに不溶性の異物の発生が効果的に抑制され、 紡糸時の糸切れや成形時の フィルター詰まり等の問題が改善される。  The present invention also relates to a polyester produced using the above-mentioned metal and Z or a compound as a catalyst, and a method for producing the same. The amount of the metal and z or the compound to be added needs to be such that the content of the metal atom in the finally obtained polyester is as described above. In the polyester produced by this method, the generation of foreign matters insoluble in the polyester is effectively suppressed, and problems such as yarn breakage during spinning and filter clogging during molding are improved.
本発明において重合触媒として使用するアルカリ金属およびそれらの化合物な らびにアルカリ土類金属およびそれらの化合物としては、 L i , N a , K, R b , C s , B e , M g , C a , S r , B aから選択される少なくとも 1種の金属な いしその化合物であることが好ましく、 このうちアル力リ金属ないしその化合物 を使用するとポリエステルに不溶性の異物が低減し、 ポリエステルの熱安定性に も優れるためより好ましい。 アルカリ金属ないしその化合物を使用する場合、 L i , N a , Kないしそれらの化合物の使用が好ましく、 このうち L iないしその 化合物を使用するとポリエステルに不溶性の異物がより低減するためとくに好ま しい。  The alkali metals and their compounds and the alkaline earth metals and their compounds used as the polymerization catalyst in the present invention include Li, Na, K, Rb, Cs, Be, Mg, and Ca. It is preferable that at least one metal selected from the group consisting of, Sr, and Ba or a compound thereof is used. Among them, the use of Alkyri metal or a compound thereof reduces foreign matters insoluble in polyester and reduces the heat stability of polyester. It is more preferable because of excellent properties. When an alkali metal or a compound thereof is used, use of L i, N a, K or a compound thereof is preferable. Among them, use of L i or a compound thereof is particularly preferable because foreign matters insoluble in polyester are further reduced.
また、 別の本発明のポリエステルは、 リチウム、 ナトリウム、 カリウム、 ベリ リウム、 マグネシウム、 カルシウムおよびそれらの化合物からなる群より選ばれ る少なくとも一種と、 アルミニウムおよびその化合物からなる群より選ばれる少 なくとも一種、 ならびにリン化合物からなる群より選ばれる少なくとも一種を含 有し、 力つリチウム、 ナトリウム、 カリウム、 ベリリウム、 マグネシウム、 カル シゥムおよびそれらの化合物の含有量の合計がポリマー 1 O e g当たり金属原子 換算で 7 . 0モル以下であることを特徴とする。 該含有量が 7. 0モルより多い と、 ポリエステルに不溶性の異物が多く生じ、 その結果、 紡糸時の糸切れや成形 時のフィルター詰まり等が頻繁に起こるという問題が発生する。 また、 レジンの 着色が顕著になり、 成形品の外観が損なわれるという問題やレジンの熱安定性や 耐加水分解性が低下するという問題が発生する。 該含有量は 0. 0 5モル以上で あることが好ましく、 これより少ないとレジンの熱安定性に乏しくなる場合があ り、 また触媒として用いる場合に触媒活性が顕著に低下する場合がある。 該含有 量は' 0 . 1〜4 . 0モルであることがより好ましく、 さらに好ましくは 0 . 2〜 2 . 5モルであり、 特に好ましくは 0 . 2〜1 . 2.モルである。 このようなポリ エステルは、 ポリエステルに不溶性の異物の発生が効果的に抑制され、 紡糸時の 糸切れや成形時のフィルター詰まり等の問題が改善される。 Further, another polyester of the present invention comprises at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium and compounds thereof, and at least one selected from the group consisting of aluminum and compounds thereof. kind, as well as at least one of a free selected from the group consisting of phosphorus compounds, forces one lithium, sodium, potassium, beryllium, magnesium, Cal Shiumu and total polymer 1 content of the compounds O e g per metal atom It is characterized by being 7.0 mol or less in conversion. If the content is more than 7.0 mol, a large amount of foreign matter insoluble in the polyester is generated, and as a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, the coloring of the resin becomes remarkable, causing a problem that the appearance of the molded article is impaired, and a problem that the thermal stability and the hydrolysis resistance of the resin are reduced. The content is preferably at least 0.05 mol, and if less than this, the thermal stability of the resin may be poor, and when used as a catalyst, the catalytic activity may be significantly reduced. Said content The amount is more preferably from 0.1 to 4.0 mol, even more preferably from 0.2 to 2.5 mol, and particularly preferably from 0.2 to 1.2 mol. With such a polyester, the generation of foreign matters insoluble in the polyester is effectively suppressed, and problems such as yarn breakage during spinning and filter clogging during molding are improved.
本発明のポリエステル中のアルミニウムおよびその化合物の含有量は、 アルミ ニゥム原子として 0. 5 〜500ppmであることが好ましい。 アルミニウム原子の含有 量が 500ppmを越えると、 アルミニウムィ匕合物に起因するポリエステルに不溶性の 異物が多く生成したりポリエステルの熱安定性が低下するため好ましくない。 ァ ルミニゥム原子の含有量が 0. 5ppmより少ないと、 アルカリ金属化合物やアル力リ 土類金属化合物に起因する異物が多く生成したり、 触媒として用いる場合に触媒 活性が顕著に低下するため好ましくない。 より好ましくは、 5 ~70ppm の範囲で あり、 さらに好ましくは 10〜40ppm の範囲であり、 特に好ましくは 15〜25ppm の 範囲である。  The content of aluminum and its compound in the polyester of the present invention is preferably 0.5 to 500 ppm as aluminum atoms. If the content of the aluminum atom exceeds 500 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester due to the aluminum conjugate is formed and the thermal stability of the polyester is deteriorated. If the content of aluminum atoms is less than 0.5 ppm, a large amount of foreign substances due to the alkali metal compound or alkaline earth metal compound is generated, or the catalytic activity is significantly reduced when used as a catalyst, which is not preferable. . It is more preferably in the range of 5 to 70 ppm, further preferably in the range of 10 to 40 ppm, and particularly preferably in the range of 15 to 25 ppm.
また、 本発明のポリエステル中のリン化合物の含有量は、 リン原子として 1 〜 lOOOppmであることが好ましい。 リン原子の含有量力 Slppmより少ないと、 ポリエ ステルに不溶性の異物の生成を抑制する効果に乏しく、 またポリエステルの熱安 定性が低くなるため好ましくない。 リン原子の含有量が lOOOppm を越えると、 ポ リエステルに不溶性の異物が多く生成するため好ましくない。 より好ましくは、 10〜200ppmの範囲であり、 さらに好ましくは 20〜100ppmの範囲である。  Further, the content of the phosphorus compound in the polyester of the present invention is preferably 1 to 100 ppm as a phosphorus atom. If the phosphorus atom content is less than Slppm, the effect of suppressing the generation of foreign matter insoluble in the polyester is poor, and the thermal stability of the polyester is undesirably reduced. If the phosphorus atom content exceeds 100 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester is generated. More preferably, it is in the range of 10 to 200 ppm, even more preferably in the range of 20 to 100 ppm.
本発明のポリエステルは、 リチウム、 ナトリウム、 カリウム、 ベリリウム、 マ グネシゥム、 カルシウムおよびそれらの化合物からなる群より選ばれる少なくと も一種を含有することが必要であるが、 これらのうち、 リチウム、 ナトリウム、 マグネシウム、 カルシウムおよびそれらのィ匕合物からなる群より選ばれる少なく とも一種を含有することが、 ポリエステル中の異物の低減ゃポリエステルの着色 の低減や熱安定性の向上の観点から好ましい。 これらの中でも、 リチウム、 ナト リゥムおよびそれらの化合物からなる群より選ばれる少なくとも一種を含有する ことが好ましい。  The polyester of the present invention needs to contain at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium, and compounds thereof. Among these, lithium, sodium, It is preferable to contain at least one selected from the group consisting of magnesium, calcium and their conjugates from the viewpoint of reducing foreign matter in the polyester, reducing coloring of the polyester and improving thermal stability. Among these, it is preferable to contain at least one selected from the group consisting of lithium, sodium and their compounds.
本発明は、 リチウム、 ナトリウム、 カリウム、 ベリリウム、 マグネシウム、 力 ルシゥムおよびそれらのィ匕合物からなる群より選ばれる少なくとも一種と、 アル ミエゥムおよびその化合物からなる群より選ばれる少なくとも一種、 ならびにリ ン化合物からなる群より選ばれる少なくとも一種を、 それらの含有量が最終的に 得られるポリエステルに対して上述したような範囲となるように、 触媒として用 いてポリエステルを製造する方法にも関する。 該方法により得られるポリエステ ルは、 ポリエステルに不溶性の異物の発生が効果的に抑制され、 紡糸時の糸切れ や成形時のフィルター詰まり等の問題が改善される。 The present invention relates to at least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, potassium, and their conjugates; And at least one selected from the group consisting of phosphorus compounds such that the content thereof is in the range described above with respect to the finally obtained polyester. The present invention also relates to a method for producing a polyester using the catalyst. In the polyester obtained by this method, the generation of foreign matters insoluble in polyester is effectively suppressed, and problems such as yarn breakage during spinning and filter clogging during molding are improved.
また、 別の本発明のポリエステルは、 アルミニウムおよびその化合物からなる 群より選ばれる少なくとも一種、 およびリン化合物からなる群より選ばれる少な くとも一種ならぴにフヱノール系化合物からなる群より選ばれる少なくとも一種 を含有するポリエステルであって、 かつポリエステル中に含まれるリン原子の量 Further, another polyester of the present invention is at least one selected from the group consisting of aluminum and its compounds, and at least one selected from the group consisting of phenol compounds at least one selected from the group consisting of phosphorus compounds. And the amount of phosphorus atoms contained in the polyester
(ppm) とアルミニゥム原子の量 (ppm) の比が 0 . 0 1〜 5 0の範囲であることを 特徴とする。 リン原子の量 (ppm) とアルミニウム原子の量 (ppm) の比 (リン原子 量/アルミニウム原子量) が 0 . 0 1より小さいと、 アルミニウムィ匕合物に起因 するポリエステルに不溶性の異物が多く生じ、 その結果、 紡糸時の糸切れや成形 時のフィルター詰まり等が頻繁に起こるという問題が発生する。 また、 レジンの 着色が顕著になり、 成形品の^ IIが損なわれるという問題やレジンの熱安定性や 熱酸化安定性が低下するという問題が発生する。 比が 5 0を越えた場合も、 ポリ エステルに不溶性の異物が多く生じ、 その結果、 紡糸時の糸切れや成形時のフィ ルター詰まり等が頻繁に起こるという問題が発生する。 また、 触媒として用いる 場合に触 性が顕著に低下するという問題が発生する。 比の好ましい範囲は 0 . 1〜2 0であり、 より好ましくは 0 . 5〜1 0である。 (ppm) and the amount of aluminum atoms (ppm) are in the range of 0.01 to 50. If the ratio of the amount of phosphorus atoms (ppm) to the amount of aluminum atoms (ppm) (the amount of phosphorus atoms / the amount of aluminum atoms) is less than 0.01, a large amount of foreign matters insoluble in the polyester resulting from the aluminized product. As a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, coloring of the resin becomes remarkable, causing a problem that ^ II of a molded article is impaired and a problem that thermal stability and thermal oxidation stability of the resin are reduced. When the ratio exceeds 50, a large amount of foreign matter insoluble in the polyester is generated, and as a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, when used as a catalyst, there is a problem that the tactility is significantly reduced. The preferred range of the ratio is 0.1-20, more preferably 0.5-10.
本発明のポリエステル中のアルミニウムおよびその化合物の含有量は、 アルミ ニゥム原子として 0. 5 〜500ppmであることが好ましい。 アルミニウム原子の含有 量が 500PPmを越えると、 アルミニウム化合物に起因するポリエステルに不溶性の 異物が多く生成したりポリエステルの熱安定性や熱酸化安定性が低下するため好 ましくない。 アルミニウム原子の含有量が 0. 5ρρηιより少ないと、 触媒として用い る場合に触媒活性が顕著に低下するため好ましくない。 より好ましくは、 5 〜70 ppm の範囲であ.り、 さらに好ましくは 10〜40ppm の範囲であり、 特に好ましくは 15〜25ppmの範囲である。 本発明のポリエステルは、 リン化合物を含有することでアルミニウム化合物の 触媒活性を向上する効果にカ卩えて、 異物の発生が抑えられ、 かつポリエステルの 熱安定性や熱酸化安定性が改善されたものである。 さらに、 フエノール系化合物 を含有することで、 ポリエステルの熱酸ィヒ安定性がより一層向上し、 その結果ポ リエステルの熱劣化や黄変が抑制される。 The content of aluminum and its compound in the polyester of the present invention is preferably 0.5 to 500 ppm as aluminum atoms. If the content of the aluminum atom exceeds 500 PPm, it is not preferable because a large amount of foreign matter insoluble in the polyester due to the aluminum compound is generated and the thermal stability and the thermo-oxidative stability of the polyester are reduced. If the content of the aluminum atom is less than 0.5 ρηη, the catalytic activity is remarkably reduced when used as a catalyst, which is not preferable. More preferably, it is in the range of 5 to 70 ppm, still more preferably in the range of 10 to 40 ppm, and particularly preferably in the range of 15 to 25 ppm. The polyester of the present invention has a phosphorus compound that improves the catalytic activity of the aluminum compound, suppresses the generation of foreign substances, and improves the thermal stability and thermal oxidation stability of the polyester. It is. Further, by containing a phenolic compound, the thermal acid stability of the polyester is further improved, and as a result, thermal degradation and yellowing of the polyester are suppressed.
また、 別の本発明は、 リン化合物からなる群より選ばれる少なくとも一種なら ぴにフエノ一ル系ィ匕合物からなる群より選ばれる少なくとも一種を含有するポリ エステルであって、 かつポリエステル中に含まれる金属原子の総量がポリエステ ルに対して 1 0 0 p p m以下であることを特徴とする。 該ポリエステルは、 成形 時のフィルタ一詰まりの問題が改善されており、 さらに熱安定性や熱酸ィヒ安定性 が改善されており、 かつ金属原子の量が少量であるためポリエステル中の異物が 低減されており、 ポリエステルからの抽出物も低減される。 金属原子の総量が 1 0 0 p p mを越えると、 ポリエステル中の異物が増カ卩しポリエステルの品質が損 なわれるため好ましくない。 金属原子は総量で 1 p p m以上ポリエステル中に含 有されること力 該金属種を触媒として用いる場合に触媒活性が効果的に発揮さ れるため好ましい。 金属原子の総量は 3〜5 0 p p mであることが好ましく、 5 〜3 0ppmであることがとくに好ましい。 金属種としてはとくに限定はされない が、 アルカリ金属、 アルカリ土類金属、 アルミニウムから選ばれる 1種以上であ ることが好ましい。  Further, another aspect of the present invention is a polyester containing at least one selected from the group consisting of phosphorus compounds and at least one selected from the group consisting of phenolic conjugates, and wherein the polyester It is characterized in that the total amount of contained metal atoms is 100 ppm or less with respect to polyester. The polyester has improved the problem of filter clogging at the time of molding, has improved thermal stability and thermal acid stability, and has a small amount of metal atoms. The extract from polyester is also reduced. If the total amount of metal atoms exceeds 100 ppm, it is not preferable because foreign matters in the polyester increase and the quality of the polyester is impaired. Metal atoms are preferably contained in the polyester in a total amount of 1 ppm or more. When the metal species is used as a catalyst, the catalytic activity is effectively exhibited, which is preferable. The total amount of metal atoms is preferably from 3 to 50 ppm, particularly preferably from 5 to 30 ppm. The metal species is not particularly limited, but is preferably at least one selected from alkali metals, alkaline earth metals, and aluminum.
本発明のポリエステル中のリン化合物の含有量は、 リン原子として 1〜1000pp mであることが好ましい。 リン原子の含有量が lppmより少ないと、 ポリエステル に不溶性の異物の生成を抑制する効果に乏しく、 またポリエステルの熱安定性や 熱酸化安定性が低くなるため好ましくない。 リン原子の含有量が lOOOppm を越え ると、 ポリエステルに不溶性の異物が多く生成するため好ましくない。 より好ま しくは、 10〜200ppmの範囲であり、 さらに好ましくは 20〜100ppmの範囲である。 また一方で、 本発明のポリエステルには、 アルカリ金属およびそれらの化合物 ならびにアル力リ土類金属およびそれらの化合物からなる群より選ばれる少なく とも一種を含有すると、 .ポリエステルの熱安定性等の物性が向上するため好まし レ、。 これらのうち、 リチウム、 ナトリウム、 カリウム、 マグネシウム、 カルシゥ ムおよびそれらの化合物からなる群より選ばれる少なくとも一種を含有すること が、 ポリエステル中の異物の低減ゃポリエステルの着色の低減の観点から好まし い。 これらの中でも、 リチウム、 カルシウムおよびそれらの化合物からなる群よ り選ばれる少なくとも一種を含有するとポリエステルの熱安定性が優れるため好 ましい。 さらにポリエステルの着色低減の観点からカルシウムおよびそれらの化 合物からなる群より選ばれる少なくとも一種を含有することが好ましい。 The content of the phosphorus compound in the polyester of the present invention is preferably from 1 to 1000 ppm as a phosphorus atom. If the phosphorus atom content is less than lppm, the effect of suppressing the formation of foreign matter insoluble in polyester is poor, and the thermal stability and thermal oxidation stability of polyester are undesirably low. If the phosphorus atom content exceeds 100 ppm, it is not preferable because a large amount of foreign matter insoluble in polyester is generated. More preferably, it is in the range of 10 to 200 ppm, more preferably in the range of 20 to 100 ppm. On the other hand, when the polyester of the present invention contains at least one selected from the group consisting of alkali metals and their compounds, and alkaline earth metals and their compounds, physical properties such as thermal stability of the polyester are obtained. Preferred, because it improves. Of these, lithium, sodium, potassium, magnesium, calcium It is preferable to contain at least one member selected from the group consisting of a polymer and a compound thereof from the viewpoint of reducing foreign matter in the polyester ゃ coloring of the polyester. Among these, it is preferable to include at least one selected from the group consisting of lithium, calcium, and compounds thereof because the polyester has excellent thermal stability. Further, it is preferable to contain at least one selected from the group consisting of calcium and a compound thereof from the viewpoint of reducing coloring of the polyester.
本発明のポリエステルにアル力リ金属、 アル力リ土類金属並びにそれらの化合 物を含有する場合、 その含有量は、 ポリエステルを構成する全ポリカルボン酸ュ ニットのモル数に対して、 1 X 1 0—6以上 0 . 1モル0 /0未満であることが好まし く、 より好ましくは 5 X 1 0— 6〜0 . 0 5モル0 /0であり、 さらに好ましくは I X 1 0— 5〜 0 . 0 3モル0 /0であり、 特に好ましくは、 1 X 1 0— 5〜0 . 0 1モノレ0 /0 である。 アルカリ金属、 アルカリ土類金属の含有量が少量であるため、 熱安定性 低下、 耐加水分解性の低下、 異物の発生、 着色等の問題が低減される。 アルカリ 金属、 アル力リ土類金属並びにその化合物の含有量が 0 . 1モル%以上になると 熱安定性の低下、 異物発生や着色の増加、 耐加水分解性の低下等が製品加工上問 題となる場合が発生する。 含有量が 1 X 1 0— 6モル%未満では、 含有してもその 効果が明確ではな!/,、。 When the polyester of the present invention contains an alkaline metal, an alkaline earth metal, or a compound thereof, the content thereof is 1 X based on the number of moles of the entire polycarboxylic acid unit constituting the polyester. 1 0 6 or 0.1 mole 0/0 less than the it is rather preferable, more preferably 5 X 1 0 6 ~0. 0 5 mol 0/0, more preferably IX 1 0 5 ~ 0. 0 a 3 mole 0/0, particularly preferably 1 X 1 0- 5 ~0. 0 1 Monore 0/0. Since the content of alkali metals and alkaline earth metals is small, problems such as a decrease in thermal stability, a decrease in hydrolysis resistance, generation of foreign matter, and coloring are reduced. When the content of alkali metals, alkaline earth metals and their compounds exceeds 0.1 mol%, thermal stability is reduced, foreign matter is generated, coloring is increased, and hydrolysis resistance is reduced. May occur. When the content is less than 1 X 1 0- 6 mol%, it is clear that the effect also contain! / ,,.
本発明は、 記した化合物を触媒として用いて上記してきたようなポリエステ ルを製造する方法にも関する。  The present invention also relates to a method for producing a polyester as described above using the compound described as a catalyst.
また、 別の本発明のポリエステルは、 アルミニウムおよびその化合物からなる 群より選ばれる少なくとも一種とリン化合物からなる群より選ばれる少なくとも 一種を含有するポリエステルであり、 かつポリエステル中に含まれるリン原子の 量 (ppm) のアルミニウム原子の量 (ppm) に対する比が 0 . 5〜2 0の範囲にある ことが必要である。 この比が 0 . 5より小さいと、 アルミニウム化合物に起因す るポリエステルに不溶性の異物が多く生じ、 その結果、 紡糸時の糸切れや成形時 のフィルター詰まり等が頻繁に起こるという問題が発生する。 また、 レジンの着 色が顕著になり、 成形品の外観が損なわれるという問題やレジンの熱安定性が低 下するという問題が発生する。 比が 2 0を越えた場合も、 ポリエステルに不溶性 の異物が多く生じ、 その結果、 紡糸時の糸切れや成形時のフィルター詰まり等が 頻繁に起こるという問題が発生する。 また、 触媒として用いる場合に触媒活性が 顕著に低下するという問題が発生する。 比の好ましい範囲は 1〜1 5であり、 よ り好ましくは 3〜1 0である。 Further, another polyester of the present invention is a polyester containing at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds, and the amount of phosphorus atoms contained in the polyester. It is necessary that the ratio of (ppm) to the amount (ppm) of aluminum atoms be in the range of 0.5 to 20. If the ratio is less than 0.5, a large amount of insoluble foreign matter is generated in the polyester due to the aluminum compound. As a result, there is a problem that yarn breakage during spinning and filter clogging during molding frequently occur. In addition, the coloration of the resin becomes remarkable, causing a problem that the appearance of the molded article is impaired and a problem that the thermal stability of the resin is reduced. When the ratio exceeds 20, a large amount of insoluble foreign matter is generated in the polyester, resulting in thread breakage during spinning and filter clogging during molding. A problem that occurs frequently occurs. In addition, when used as a catalyst, there is a problem that the catalytic activity is significantly reduced. The preferred range of the ratio is from 1 to 15, more preferably from 3 to 10.
ポリエステル中における、 アルミニウムおよぴその化合物からなる群より選ば れる少なくとも一種とリン化合物からなる群より選ばれる少なくとも一種の含有 量を上記範囲とすることで、 ポリエステルに不溶性の異物の発生が効果的に抑制 され、 紡糸時の糸切れや成形時のフィルター詰まり等の問題が改善される。 また、 本発明のァノレミニゥムおよびその化合物は、 ポリエステル中にアルミ- ゥム原子として lppm以上 lOOppm以下の範囲で含有されていることが好ましい。 ァ ルミ-ゥム原子の含有量が lOOppmを越えると アルミニウム化合物に起因するポ リエステルに不溶性の異物が多く生成したりポリエステルの熱安定性が低下する ため好ましくない。 アルミニウム原子の含有量力 Slppmより少ないようにすると、 触媒として用いる場合に触媒活性が顕著に低下するため好ましくない。 より好ま しくは、 5pPm以上 70ppm以下の範囲であり、 さらに好ましくは lOppm以上 30ppm 以下の範囲である。 By setting the content of at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds in the polyester within the above range, the generation of foreign matters insoluble in the polyester is effective. The problems such as yarn breakage during spinning and filter clogging during molding are improved. Further, the anoreminium and the compound thereof of the present invention are preferably contained in the polyester in an amount of 1 ppm to 100 ppm as aluminum atoms in the polyester. If the content of aluminum atom exceeds 100 ppm, it is not preferable because a large amount of foreign matter insoluble in the polyester caused by the aluminum compound is generated and the thermal stability of the polyester is deteriorated. If the content of aluminum atoms is less than Slppm, the catalytic activity is significantly reduced when used as a catalyst, which is not preferable. More preferred details, in the range of less 5p P m or more 70 ppm, more preferably from 30ppm less range of LOppm.
また、 本発明のリン化合物は、 ポリエステノレ中にリン原子として 5ppm以上 200p pm以下の範囲で含有されていることが好まし 、。 リン原子の含有量が5 ppmより少 ないと、 ポリエステルに不溶性の異物の生成を抑制する効果に乏しく、 またポリ エステルの熱安定性が低くなるため好ましくない。 リン原子の含有量が 200ppmを 越えると、 ポリエステルに不溶性の異物が多く生成するため好ましくない。 より 好ましくは、 lOppm以上 lOOppm以下の範囲であり、 さらに好ましくは 20ppm以上 80ppm以下の範囲である。 Further, it is preferable that the phosphorus compound of the present invention is contained in the polyester in a range of 5 ppm or more and 200 ppm or less as a phosphorus atom. If the phosphorus atom content is less than 5 ppm, the effect of suppressing the formation of foreign matter insoluble in polyester is poor, and the thermal stability of the polyester is undesirably low. If the phosphorus atom content exceeds 200 ppm, it is not preferable because a large amount of foreign matter insoluble in polyester is generated. More preferably, it is in the range of 10 ppm to 100 ppm, and even more preferably, it is in the range of 20 ppm to 80 ppm.
本発明のリン化合物のポリマー中における存在形態は特に限定はされないが、 ポリエステル重合触媒として、 ホスホン酸系化合物、 ホスフィン酸系化合物、 ホ スフインオキサイド系化合物、 亜ホスホン酸系化合物、 亜ホスフィン酸系化合物 、 ホスフィン系化合物のいずれかの形態で用いることが好ましい。 ポリエステル の重合時に、 これらの構造を有するリン化合物をアルミ-ゥムィ匕合物と共存して 用いることで触媒活性の向上効果が見られる。 これらの中でも、 ホスホン酸系ィ匕 合物の形態であるようにすると、 触媒として用いた場合に触媒活性の向上効果が 大きく好ましい。 ホスホン酸系化合物の中でも、 芳香環構造を有する形態である ようにすると、 触媒として用いた場合に触 性の向上効果がとくに大きく好ま しい。 The form in which the phosphorus compound of the present invention is present in the polymer is not particularly limited. Examples of the polyester polymerization catalyst include phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, and phosphinous acid compounds. It is preferable to use the compound in any form of a phosphine compound. By using a phosphorus compound having such a structure in coexistence with the aluminum-dimethyl conjugate during the polymerization of the polyester, an effect of improving the catalytic activity can be obtained. Among these, when the phosphonic acid-based conjugate is used, the effect of improving the catalytic activity when used as a catalyst is improved. Large and preferred. Among phosphonic acid-based compounds, a form having an aromatic ring structure is particularly preferable because the effect of improving tactility when used as a catalyst is particularly large.
また一方で、 本発明のポリエステルには、 アルカリ金属おょぴそれらのィヒ合物 ならぴにアル力リ土類金属およびそれらの化合物からなる群より選ばれる少なく とも一種を含有すると、 ポリエステルの熱安定性等の物性が向上するため好まし レ、。 これらのうち、 リチウム、 ナトリウム、 カリウム、 マグネシウム、 カルシゥ ムおよびそれらの化合物からなる群より選ばれる少なくとも一種を含有すること が、 ポリエステル中の異物の低減ゃポリエステルの着色の低減の観点から好まし い。  On the other hand, when the polyester of the present invention contains at least one kind selected from the group consisting of alkali metal and their hydrated compounds and alkali metal and their compounds, the polyester It is preferable because physical properties such as thermal stability are improved. Among these, it is preferable to contain at least one selected from the group consisting of lithium, sodium, potassium, magnesium, calcium, and compounds thereof from the viewpoint of reducing foreign matters in the polyester and reducing the coloring of the polyester. .
本発明のポリエステルにアル力リ金属、 アル力リ土類金属並びにそれらの化合 物を含有する場合、 その含有量は、 ポリエステルを構成する全ポリカルボン酸ュ ニットのモノレ数に対して、 1 X 1 0— 6以上 0 . 1モル0 /0未満であることが好まし く、 より好ましくは 5 X 1 0— s〜0 . 0 5モル0 /0であり、 さらに好ましくは I X 1 0— 5〜0 . 0 3モル0 /0であり、 特に好ましくは、 1 X 1 0— 5〜0 . 0 1モル0 /0 である。 アルカリ金属、 アルカリ土類金属の含有量が少量であるため、 熱安定性 低下、 耐加水分解性の低下、 異物の発生、 着色等の問題が低減される。 アルカリ 金属、 アルカリ土類金属並びにその化合物の含有量が 0 . 1モル%以上になると 熱安定性の低下、 異物発生や着色の増加、 耐加水分解性の低下等が製品加工上問 題となる場合が発生する。 含有量が 1 X 1 0— 5モル%未満では、 含有してもその 効果が明確ではない。 When the polyester of the present invention contains an alkaline metal, an alkaline earth metal, and a compound thereof, the content is 1 X with respect to the number of monoles of all the polycarboxylic acid units constituting the polyester. 1 0 6 or 0.1 mole 0/0 less than the it is rather preferable, more preferably 5 X 1 0- s ~0. 0 5 mol 0/0, more preferably IX 1 0 5 ~ 0. 0 a 3 mole 0/0, particularly preferably 1 X 1 0- 5 ~0. 0 1 mol 0/0. Since the content of alkali metals and alkaline earth metals is small, problems such as a decrease in thermal stability, a decrease in hydrolysis resistance, generation of foreign matter, and coloring are reduced. When the content of alkali metals, alkaline earth metals and their compounds is over 0.1 mol%, thermal stability decreases, foreign matters are generated and coloration increases, hydrolysis resistance decreases, and so on. Cases occur. In less than 1 X 1 0- 5 mole% content, the effect is not clear also contain.
本発明は、 上記した金属および化合物を触媒として用いて製造されたポリエス テルおよびその製造方法にも関する。 金属および化合物の添加量としては、 最終 的に得られるポリエステル中における金属原子ゃリン原子の含有量が上記のよう になることが必要である。 該方法により、 ポリエステルに不溶性の異物の発生が 効果的に抑制され、 紡糸時の糸切れや成形時のフィルター詰まり等の問題が改善 される。  The present invention also relates to a polyester produced using the above-described metal and compound as a catalyst, and a method for producing the same. The amount of the metal and the compound to be added needs to be such that the content of the metal atom to the phosphorus atom in the finally obtained polyester is as described above. By this method, the generation of foreign matters insoluble in polyester is effectively suppressed, and problems such as yarn breakage during spinning and filter clogging during molding are improved.
本発明のポリエステルは、 アンチモン化合物、 ゲルマニウム化合物、 チタンィ匕 合物、 スズ化合物などの重 虫媒を用いて製造されたものでないことが好ましい また一方で、 本発明のポリエステルは、 アンチモン化合物、 ゲルマニウム化合 物、 チタン化合物、 スズ化合物などの重合触媒を、 これらの成分の添加が前述の ようなポリエステルの特性、 加工性、 色調等製品に問題を生じない添加量の範囲 内において共存させて用いることは、 これらを重合触媒として用いる場合に重合 時間の短縮による生産性を向上させる際に有効であり、 好ましい。 It is preferable that the polyester of the present invention is not produced using a heavy vehicle such as an antimony compound, a germanium compound, a titanium compound, a tin compound, or the like. On the other hand, the polyester of the present invention has a polymerization catalyst such as an antimony compound, a germanium compound, a titanium compound, and a tin compound, and the addition of these components causes problems in the above-described products such as the properties, processability, and color tone of the polyester. When they are used as a polymerization catalyst, they are effective in improving productivity by shortening the polymerization time, and are preferred.
本発明のポリエステルはアンチモン原子の含有量がポリエステルに対して 5 0 p p m以下の量になるようにすると、 ポリエステルの黒ずみや異物の発生が抑制 されるため好ましい。 より好ましくは 3 0 p p m以下であり、 さらに好ましくは l O p p m以下である。 また一方で、 本発明のポリエステルはアンチモン原子を 含有していないことが好ましい。  The polyester of the present invention is preferably adjusted to have an antimony atom content of 50 ppm or less with respect to the polyester, since the occurrence of darkening and foreign matters of the polyester is suppressed. It is more preferably 30 ppm or less, and further preferably lOppm or less. On the other hand, the polyester of the present invention preferably does not contain an antimony atom.
また、 本発明のポリエステルはゲルマニウム原子の含有量がポリエステルに対し て 2 0 p p m以下の量になるようにすると、 コスト的に不利にならないため好ま しい。 より好ましくは 1 0 p p m以下であり、 さらに好ましくは 5 p 以下で ある。 また一方で、 本発明のポリエステルはゲルマニウム原子を含有していない ことが好ましい。 In addition, the polyester of the present invention is preferred to have a germanium atom content of 20 ppm or less with respect to the polyester, so that it is not disadvantageous in cost. More preferably, it is 10 ppm or less, and still more preferably, 5 p or less. On the other hand, the polyester of the present invention preferably does not contain a germanium atom.
また、 本発明のポリエステルはチタン原子の含有量がポリエステルに対して 5 m以下の量になるようにすると、 ポリエステルの熱安定性や色調に優れるた め好ましい。 より好ましくは 3 p p m以下であり、 さらに好ましくは 1 p p m以 下である。 また一方で、 本発明のポリエステルはチタン原子を含有していないこ とが好ましい。  Further, it is preferable that the content of the titanium atom of the polyester of the present invention is 5 m or less with respect to the polyester, since the heat stability and the color tone of the polyester are excellent. It is more preferably 3 ppm or less, and still more preferably 1 ppm or less. On the other hand, the polyester of the present invention preferably does not contain a titanium atom.
本発明のポリエステルには、 さらに、 コバルトまたはその化合物を含有するこ とが、 ポリエステルの着色を低減する観点から好ましい。 ただし、 ポリエステノレ 中のコバルトまたはそのィ匕合物の含有量としては、 コバルト原子としてポリエス テルに対して 1 0 p p m未満の量で含有する事が好ましい。 より好ましくは 5 p p m未満であり、 さらに好ましくは 3 p p m以下である。  It is preferable that the polyester of the present invention further contains cobalt or a compound thereof from the viewpoint of reducing coloring of the polyester. However, the content of cobalt or its conjugate in the polyester is preferably less than 10 ppm with respect to the polyester as a cobalt atom. It is more preferably less than 5 ppm, and still more preferably 3 ppm or less.
コバルト化合物はそれ自体ある程度の触 性を有していることは知られてい るが、 十分な触媒効果を発揮する程度に添加すると得られるポリエステル重合体 の明るさの低下や熱安定性の低下が起こる。 本発明においては、 コバルト化合物 を上記のような少量で添加による触媒効果が明確でないような添加量にて添加す ることにより、 得られるポリエステルの明るさや熱安定性の低下を起こすことな く着色をさらに効果的に消去できる。 なお本発明におけるコバルト化合物は、 着 色の消去が目的であり、 添加時期は重合のどの段階であってもよく、 重合反応終 了後であってもかまわない。 It is known that cobalt compounds themselves have a certain degree of tactility.However, if they are added to such an extent that they exhibit a sufficient catalytic effect, the resulting polyester polymer will have reduced brightness and reduced thermal stability. Occur. In the present invention, a cobalt compound Can be more effectively eliminated without reducing the brightness and thermal stability of the resulting polyester by adding a small amount of . The purpose of the cobalt compound in the present invention is to eliminate coloration, and it may be added at any stage of the polymerization or after the end of the polymerization reaction.
また一方で、 ポリエステル重合体の熱安定性や明るさが優れたものとなるため 、 本発明のポリエステルはコパルト原子を含有していないことが好ましい。 また、 別の本発明のポリエステル重合触媒は、 アルミニウムおよびその化合物 からなる群より選ばれる少なくとも一種とリン化合物からなる群より選ばれる少 なくとも一種とからなり、 リン原子とアルミニウム原子のモノレ比が 0. 5〜20 の範囲にあることを特徴とする。 また、 本発明のポリエステルの製造方法は、 上 記範囲でアルミニウムおよびその化合物からなる群より選ばれる少なくとも一種 とリン化合物からなる群より選ばれる少なくとも一種を添カロしてポリエステルを 製造することを特徴とする。 モル比が 0. 5より小さいと、 触媒活性が顕著に低 下し、 所定の粘度のポリエステルを重合するのに多大な時間を要する。 また、 ポ リエステルに不溶性の異物の発生やレジンの着色が顕著になったり、 レジンの熱 安定性が低下したりするという問題が発生する。 モル比が 20を越えた場合も、 触媒活性が顕著に低下し、 所定の粘度のポリエステルを重合するのに多大な時間 を要する。 モル比の好ましい範囲は 2〜15であり、 より好ましくは 3〜 10で あり、 特に好ましくは 4〜 8である。  On the other hand, it is preferable that the polyester of the present invention does not contain a copartite atom because the polyester polymer has excellent thermal stability and brightness. Further, another polyester polymerization catalyst of the present invention comprises at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds, and has a monolithic ratio of phosphorus atoms to aluminum atoms. 0.5 to 20. Further, the method for producing a polyester of the present invention is characterized in that the polyester is produced by adding at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds in the above range. And If the molar ratio is less than 0.5, the catalytic activity is remarkably reduced, and it takes a long time to polymerize a polyester having a predetermined viscosity. In addition, the generation of foreign matter insoluble in the polyester, the coloring of the resin becomes remarkable, and the thermal stability of the resin is reduced. When the molar ratio exceeds 20, the catalytic activity is remarkably reduced, and it takes a long time to polymerize a polyester having a predetermined viscosity. The preferred range of the molar ratio is 2 to 15, more preferably 3 to 10, and particularly preferably 4 to 8.
本発明のアルミニウムおよびその化合物の添加量は、 得られるポリエステルを 構成する全ポリカルボン酸ュニットのモル数に対して、 アルミニウム原子として 0. 00 lmo 1 %〜 0. 1 m o 1 %の範囲にあることが好ましい。 添加量が 0 The addition amount of the aluminum and the compound of the present invention is in the range of 0.001 lmo 1% to 0.1 mo 1% as aluminum atoms, based on the total number of moles of the polycarboxylate unit constituting the obtained polyester. Is preferred. 0 added
. 1 m o 1 %を越えると、 ポリエステルの熱安定性や熱酸化安定性の低下や、 ポ リエステルに不溶性の異物の発生やレジンの着色の増カ卩が問題になる場合が発生 する。 添加量が 0. 001 m o 1 %より少ないと触媒活性が十分に発揮されない 場合がある。 添加量のより好ましい範囲は、 0. 003mo l %〜0. 0.5mo 1 %であり、 さらに好ましくは 0. 005mo l 0/o〜0. 02mo l %であり、 0. 007mo l %〜0. 015mo 1 %が特に好ましい。 この様にアルミ-ゥ ム成分の添加量が少なくても本発明の重合触媒は十分な触媒活性を示す点に大き な特徴を有する。 その結果熱安定性や熱酸化安定性が優れ、 アルミニウムに起因 する異物や着色が低減される。 If the content exceeds 1 mo 1%, the thermal stability and thermo-oxidative stability of the polyester may be reduced, foreign matter insoluble in the polyester may be generated, and the coloration of the resin may be increased. If the addition amount is less than 0.001 mo 1%, the catalytic activity may not be sufficiently exhibited. A more preferable range of the addition amount is 0.003 mol% to 0.005 mol 1%, still more preferably 0.005 mol 0 / o to 0.02 mol%, and 0.007 mol% to 0.005 mol%. 015mo 1% is particularly preferred. Aluminum- ゥ like this The polymerization catalyst of the present invention has a great feature in that it exhibits a sufficient catalytic activity even when the amount of the system component is small. As a result, thermal stability and thermal oxidation stability are excellent, and foreign substances and coloring due to aluminum are reduced.
本発明のリン化合物の添加量は、 得られるポリエステルを構成する全ポリカル ボン酸ユニットのモル数に対して、 リン原子として 0. 005mo l%〜0. 2 m o 1 %の範囲にあることが好ましい。 添加量が 0. 005 m o 1 %未満の場合 には添加効果が発揮されない場合があり、 0. 2 m o 1 %を越えて添加すると逆 にポリエステル重合触媒としての触 性が低下する場合がある。 添加量のより 好ましい範囲は、 0. 007mo lo/0〜0. 05 mo 1 %であり、 さらに好まし くは 0. 01ηαο 1%〜0. 02mo l %である。 The addition amount of the phosphorus compound of the present invention is preferably in the range of 0.005 mol% to 0.2 mol 1% as a phosphorus atom, based on the number of moles of all the polycarbonate units constituting the obtained polyester. . If the addition amount is less than 0.005 mo 1%, the effect of addition may not be exhibited. If the addition amount exceeds 0.2 mo 1%, on the contrary, the catalysis as a polyester polymerization catalyst may decrease. A more preferred range of addition amount, 0. 007mo l o / 0 ~0 . 05 is a mo 1%, rather more preferably is 0. 01ηαο 1% ~0. 02mo l %.
リン化合物を使用せず、 アルミニウム化合物を主たる触媒成分とする技術であ つて、 アルミニウム化合物の使用量を低減し、 さらにコバルト化合物を添加して アルミニウム化合物を主触媒とした場合の熱安定性の低下による着色を防止する 技術があるが、 コパルト化合物を十分な触媒活性を有する程度に添加するとやは り熱安定性が低下する。 従って、 この技術では両者を両立することは困難である 本発明によれば、 リン化合物を特定量で使用することにより、 熱安定性の低下 、 異物発生等の問題を起こさず、 しかも金属含有成分のアルミニウムとしての添 加量が少量でも十分な触媒効果を有する重合触媒が得られ、 この重^ 媒を使用 する事によりポリエステルフィルム、 ボトル等の中空成形品、 繊維やエンジニア リングプラスチック等の溶融成形時の熱安定性が改善される。 本発明のリン化合 物の中でもリン酸ゃトリメチルリン酸等のリン酸エステルを添加しても添加効果 がほとんど見られないため好ましくない。 また、 本宪明のリン化合物を本発明の 添加量の範囲で従来のアンチモンィ匕合物、 チタン化合物、 スズ化合物、 ゲルマ二 ゥム化合物等の金属含有ポリエステル重合触媒と組み合わせて使用しても、 溶融 重合反応を促進する効果は認められない。  This technology uses an aluminum compound as the main catalyst component without using a phosphorus compound.This reduces the amount of aluminum compound used, and reduces the thermal stability when a cobalt compound is added and the aluminum compound is used as the main catalyst. Although there is a technology to prevent coloration due to heat, adding a copartite compound to such an extent that it has a sufficient catalytic activity will soon lower the thermal stability. Therefore, it is difficult to achieve both with this technology. According to the present invention, the use of a phosphorus compound in a specific amount does not cause problems such as a decrease in thermal stability and the generation of foreign matter, and furthermore, a metal-containing component. A polymerization catalyst having a sufficient catalytic effect can be obtained even when the amount of aluminum added is small, and by using this polymer, melt molding of polyester films, bottles and other hollow molded articles, fibers and engineering plastics, etc. Thermal stability at the time is improved. Of the phosphorus compounds of the present invention, the addition of a phosphate ester such as phosphoric acid-trimethylphosphoric acid is not preferable because almost no effect is observed. Further, the phosphorus compound of the present invention may be used in combination with a conventional metal-containing polyester polymerization catalyst such as an antimony conjugate, a titanium compound, a tin compound, and a germanium compound within the range of the addition amount of the present invention. However, the effect of accelerating the melt polymerization reaction is not recognized.
また、 別の本発明の特徴は、 ポリエステル重合触媒であって、 この触媒を用い て重合したポリエチレンテレフタレート (PET) の熱安定性パラメ ^"タ (TS ) が下記 (9) 式を満たすことを特徴とする。 (9) TS< 0. 20 Another feature of the present invention is that a polyester polymerization catalyst, wherein the thermal stability parameter (TS) of polyethylene terephthalate (PET) polymerized using this catalyst satisfies the following formula (9): Features. (9) TS <0.20
ただし、, TSは固有粘度 ( [I V] , ) が 0. 64〜0. 66 d l/gの PE Tl gをガラス試験管に入れ 130°Cで 12時間真空乾燥した後、 非流通窒素雰 囲気下で 300°Cにて 2時間溶融状態に維持した後の固有粘度 ( [IV] f ) か ら、 次式により計算される数値である。 However, for TS, put PE Tlg with intrinsic viscosity ([IV],) of 0.64 to 0.66 dl / g in a glass test tube, vacuum-dry at 130 ° C for 12 hours, and then place in a non-circulating nitrogen atmosphere. It is a numerical value calculated from the intrinsic viscosity ([IV] f ) after maintaining the molten state at 300 ° C for 2 hours below.
TS = 0. 245 { [IV] f - 1 47 - [I V] i -1· 47 } TS = 0.245 {[IV] f - 1 47- [IV] i- 1 · 47 }
非流通窒素雰囲気とは、 流通しない窒素雰囲気を意味し、 例えば、 レジンチッ プを入れたガラス試験管を真空ラインに接続し、 減圧と窒素封入を 5回以上繰り 返した後に l O OTo r rとなるように窒素を封入して封管した状態である。 力かる構成の触媒の使用によりフィルム、 ボトル、 繊維等の成形品を製造する 際等の加熱溶融に対する溶融熱安定性が顕著に優れ、 分子量低下や着色や異物の 発生の少な 、成形品を与えるポリエステルが得られる。  A non-circulating nitrogen atmosphere means a nitrogen atmosphere that does not flow.For example, a glass test tube containing a resin chip is connected to a vacuum line, and the pressure is reduced to O OTorr after 5 times or more of pressure reduction and nitrogen filling. And sealed. The use of a catalyst with a powerful structure provides remarkably excellent melting heat stability against heating and melting when producing molded products such as films, bottles, fibers, etc., and gives molded products with reduced molecular weight, less coloring and less generation of foreign matter. A polyester is obtained.
TSは、 0. 1 7以下であることがより好ましく、 0. 15以下であることが 特に好ましい。  TS is more preferably 0.17 or less, particularly preferably 0.15 or less.
従来、 T Sが上記範囲となるような P E Tを与えるポリエステル重合触媒は知 られていなかった。 本発明では、 TSが上記範囲となるような PETを与えるポ リエステル重合触媒を見いだし、 該ポリエステル重合触媒を用いて重合したポリ エステルからなるフィルム、 ボトル等の中空成形品、 繊維、 エンジニアリングプ ラスチック等の溶融成形を行う際の熱安定性が顕著に改善されており、 バージン の樹脂を使用してもまた成形時に発生する屑を再利用しても品位に優れた製品が 得られることを見いだしたことが別の特徴である。  Hitherto, a polyester polymerization catalyst that provides PET such that T S falls within the above range has not been known. In the present invention, a polyester polymerization catalyst that gives PET having a TS within the above range is found, and a film made of a polyester polymerized using the polyester polymerization catalyst, a hollow molded article such as a bottle, a fiber, an engineering plastic, etc. It has been found that the thermal stability during melt-molding has been significantly improved, and that high-quality products can be obtained even if virgin resin is used and the waste generated during molding is reused. That is another characteristic.
上述のポリエステル重合触媒はリン化合物からなる群より選ばれる少なくとも 1種を触^ It成成分として含むことが好ましい。  The above-mentioned polyester polymerization catalyst preferably contains at least one selected from the group consisting of phosphorus compounds as a catalyst component.
別の本発明のポリエステル重合触媒は、 金属または金属化合物とリン化合物と からなるものであって、 活性パラメータ (AP) が下記 (10) 式を満足すること を特 ί敷とする。  Another polyester polymerization catalyst of the present invention comprises a metal or a metal compound and a phosphorus compound, and is characterized in that the activity parameter (AP) satisfies the following expression (10).
(10) AP (m i n) <APX (m i n)  (10) AP (min) <APX (min)
ただし、 A Pは所定量の触媒を用いて 275 °C、 0. lTo r rの減圧度で固有 粘度が 0. 65 d l "gのポリエチレンテレフタレート (PET) を重合するの に要する時間 (mi n) を示し、 APXは上記触媒のうち金属または金属化合物 のみを上記と同じ量だけ用いた場合の A Pである。 However, AP polymerizes polyethylene terephthalate (PET) with an intrinsic viscosity of 0.65 dl "g at a pressure of 275 ° C and a pressure of 0.1 l Torr using a predetermined amount of catalyst. APX is the AP when only the metal or metal compound is used in the same amount as above.
APの測定方法は、 具体的には以下の通りである。  The AP measurement method is specifically as follows.
1) (B HE T製造工程) テレフタル酸とその 2倍モル量のエチレングリコール を使用し、 エステル化率が 95 %のビス ( 2—ヒドロキシェチル) テレフタレー ト (BHET) 及ぴオリゴマーの混合物 (以下、 BHET混合物という) を製造 する。 .  1) (B HET manufacturing process) Mixture of bis (2-hydroxyethyl) terephthalate (BHET) and oligomers using terephthalic acid and 2 times the molar amount of ethylene glycol with an esterification rate of 95% Hereinafter, referred to as BHET mixture). .
2) (触媒添加工程) 上記の BHET混合物に所定量の触媒を添加し、 窒素雰囲 気下常圧にて 245°Cで 10分間撹拌し、 次いで 50分間を要して 275でまで 昇温しつつオリゴマーの混合物の反応系の圧力を徐々に下げて 0. 1 T o r rと する。  2) (Catalyst addition step) Add a predetermined amount of catalyst to the above BHET mixture, stir at 245 ° C for 10 minutes at normal pressure under a nitrogen atmosphere, and then heat up to 275 in 50 minutes And gradually lower the pressure of the reaction system of the mixture of oligomers to 0.1 Torr.
3) (重縮合工程) 275°C、 0. ITo r rで重縮合反応を行い、 ポリエチレ ンテレフタレートの固有粘度 (I V) が 0. 65 d 1 gに到達するまで重合す る。  3) (Polycondensation step) A polycondensation reaction is performed at 275 ° C and 0. ITorr, and polymerization is performed until the intrinsic viscosity (IV) of polyethylene terephthalate reaches 0.65 d 1 g.
4) 重縮合工程に要した重合時間を A P (mi n) とする。  4) The polymerization time required for the polycondensation step is defined as A P (min).
これらは、 バッチ式の反応装置を用いて行う。  These are performed using a batch-type reactor.
1) (BHET製造工程) における BHET混合物の製造は、 公知の方法で行 われる。 例えば、 テレフタル酸とその 2倍モル量のエチレングリコールを撹拌機 付きのパッチ式オートクレーブに仕込み、 0. 25 MP aの加圧下に 245 に て水を系外に留去しつつエステル化反応を行うことにより製造される。  1) The production of the BHET mixture in the (BHET production process) is performed by a known method. For example, terephthalic acid and twice the amount of ethylene glycol are charged into a patch-type autoclave equipped with a stirrer, and the esterification reaction is performed while distilling water out of the system at 245 under a pressure of 0.25 MPa. It is manufactured by
活性パラメータ A Pを上記範囲内とすることにより、 リン化合物を共存するこ とによる熱安定性の向上に加えて、 反応速度がより速く、 重縮合によりポリエス テルを製造する時間がより短縮される。 APは 0. 9 APX以下であることがよ り好ましく、 0. 8 APX以下であることがさらに好ましく、 0. 7APX以下 であることが特に好ましい。  By setting the activity parameter AP within the above range, in addition to improving the thermal stability due to the coexistence of the phosphorus compound, the reaction rate is faster, and the time for producing polyester by polycondensation is further reduced. The AP is more preferably 0.9 APX or less, further preferably 0.8 APX or less, and particularly preferably 0.7 APX or less.
2) (触媒添加工程) における 「所定量の触媒」 とは、 触媒の活性に応じて変 量して使用される触媒量を意味し、 活性の高い触媒では少量であり、 活性の低い 触媒ではその量は多くなる。  2) “Predetermined amount of catalyst” in the (catalyst addition step) means the amount of catalyst that is used in a variable amount according to the activity of the catalyst, and is small for high-activity catalysts and low for low-activity catalysts. The amount increases.
一般に、 リン化合物はポリエステルの安定剤として知られており、 ポリエステ ルの熱劣ィ匕を抑制することが可能であることが知られているが、 従来、 活性パラ メータ A P力 上記の範囲になるような金属または金属化合物とリン化合物とか らなるポリエステル重合触媒は知られていなかった。 実際に、 ポリエステル重合 の代表的な触媒であるアンチモン化合物、 チタン化合物、 あるいはゲルマニウム 化合物を重合触媒としてポリエステルを重合する際に、 リン化合物を添加しても 実質的に有用なレベルまで重合が促進されることは認められない。 本発明では、 活性パラメータ AP力 S、 上記の範囲になるような金属または金属化合物とリン化 合物とからなるポリエステル重合触媒を見 、だし、 該重合触媒を用いることで触 媒活性に優れ、 かつ触媒の失活もしくは除去をすることなしに、 溶融成形時の熱 劣化が効果的に抑制されて熟安定性に優れたポリエステルが与えられることを見 いだしたことに特徴を有する。 In general, phosphorus compounds are known as stabilizers for polyesters. It is known that the thermal polymerization can be suppressed.However, conventionally, a polyester polymerization catalyst comprising a metal or a metal compound and a phosphorus compound such that the active parameter AP force falls within the above range has been known. Was not known. In fact, when a polyester is polymerized using an antimony compound, a titanium compound, or a germanium compound, which is a typical catalyst for polyester polymerization, as a polymerization catalyst, the addition of a phosphorus compound promotes the polymerization to a substantially useful level. Is not allowed. In the present invention, an activity parameter AP force S, a polyester polymerization catalyst comprising a metal or a metal compound and a phosphine compound having the above-mentioned range is obtained, and a catalyst activity is excellent by using the polymerization catalyst. It is characterized by the fact that without deactivating or removing the catalyst, thermal degradation during melt molding is effectively suppressed and a polyester having excellent ripening stability is provided.
■ 上述のポリエステル重合触媒は、 さらに、 該触媒を用いて重合したポリエチレ ンテレフタレート (PET) の熱安定性パラメータ (TS) が下記 (9) 式を満 たすことが好ましい。  (2) In the above-mentioned polyester polymerization catalyst, the thermal stability parameter (TS) of polyethylene terephthalate (PET) polymerized by using the catalyst preferably satisfies the following expression (9).
(9) TS< 0. 20  (9) TS <0.20
力かる構成の触媒の使用により、 触媒活性に優れ、 かつフィルム、 ボトル、 繊 維等の成形品を製造する際等の加熱溶融に対する溶融熱安定性が顕著に優れ、 分 子量低下や着色や異物の発生の少ない成形品を与えるポリエステルが得られる。  The use of a powerfully structured catalyst results in excellent catalytic activity, remarkably excellent melting heat stability against heat melting when manufacturing molded products such as films, bottles, and fibers, and a reduction in molecular weight and coloration. A polyester that gives a molded article with less generation of foreign matter is obtained.
TSは、 0. 18以下であることがより好ましく、 0. 15以下であることが 特に好ましい。  TS is more preferably 0.18 or less, particularly preferably 0.15 or less.
本発明のポリエステノレ重合触媒は、 該触媒を用いて重合したポリエチレンテレ フタレート (PET) の熱酸ィ匕安定性パラメータ (TOS) が下記式 (11) を 満たすことが好ましい。  In the polyester polymerization catalyst of the present invention, the thermal oxidation stability parameter (TOS) of polyethylene terephthalate (PET) polymerized using the catalyst preferably satisfies the following formula (11).
(11) TOS< 0. 10  (11) TOS <0.10
上記式中、 TOSは溶融重合した I Vが 0. 64〜0. 66 d l/gの] PET レジンチップを冷凍粉砕して 20メッシュ以下の粉末として 130 °Cで 12時間 真空乾燥したもの 0. 3 gをガラス試験管に入れ 70 で 12時間真空乾燥した 後、 シリカゲルで乾燥した空気下で 230 °C、 15分間加熱した後の I Vから、 下記計算式を用いて求められる。 TOS = 0. 245 { [IV] t'1- 47 一 [IV] s In the above formula, TOS has a melt-polymerized IV of 0.64-0.66 dl / g] PET resin chip is freeze-ground and dried as a powder of 20 mesh or less under vacuum at 130 ° C for 12 hours 0.3 g is placed in a glass test tube, dried under vacuum at 70 for 12 hours, and then heated at 230 ° C for 15 minutes under air dried with silica gel. TOS = 0. 245 {[IV] t '1 - 47 one [IV] s
[IV] i および [IV] „はそれぞれ加熱試験前と加熱試験後の IV (d 1/ g) を指す。  [IV] i and [IV] „indicate the IV (d 1 / g) before and after the heating test, respectively.
シリカゲノレで乾燥した空気下で加熱する方法としては、 例えば、 シリカゲルを 入れた乾燥管をガラス試験管上部に接続し、 乾燥した空気下で加熱する方法が例 示できる。  As a method of heating under air dried with silica gel, for example, a method of connecting a drying tube containing silica gel to the upper part of a glass test tube and heating under dry air can be exemplified.
上述の構成のポリエステル重合触媒の使用により、 耐熱老ィ匕性にも優れたフィ ルムゃポトルのような成形品を与えるポリエステルが得られる。  By using the polyester polymerization catalyst having the above-described structure, a polyester which gives a molded article such as film-pottle which is excellent in heat resistance and aging resistance can be obtained.
TOSは、 より好ましくは 0. 09以下、 さらに好ましくは 0. 08以卞であ る。  TOS is more preferably 0.09 or less, still more preferably 0.08 or more Byeon.
本発明において、 TS、 TOSを測定するために使用する PETレジンチップ は、 上記 1) 〜3) の工程を経た後、 溶融状態からの急冷によって作製されたも のを使用する。 これらの測定に用いるレジンチップの形状としては、 例えば、 長 さ約 3mni、 直径約 2 mmのシリンダ一形状のレジンチップを使用する。  In the present invention, a PET resin chip used for measuring TS and TOS is prepared by quenching from a molten state after the above steps 1) to 3). As the shape of the resin tip used for these measurements, for example, a cylinder-shaped resin tip with a length of about 3 mni and a diameter of about 2 mm is used.
また本発明のポリエステル重合触媒は、 活性パラメータ (AP) が下記式 (1 2) を満たすことが好ましい。  The polyester polymerization catalyst of the present invention preferably has an activity parameter (AP) satisfying the following formula (12).
(12) AP (mi n) < 2T (m i n)  (12) AP (min) <2T (min)
Tは三酸ィ匕ァンチモンを触媒として生成ポリエチレンテレフタレート中の酸成 分に対してアンチモン原子として 0. 05mo 1 %となるように添加した場合の APである。  T is an AP when 0.05% by mol of antimony is added to the acid component in the polyethylene terephthalate produced by using the acid catalyst as a catalyst.
本発明において比較の為に使用する三酸化アンチモンは、 純度 99%以上の三 酸化アンチモンを使用する。 例えば、 市販品の Antimony (III) oxide (ALDRICH CHEMICAL社製、 純度 99. 999%) を使用する。  In the present invention, antimony trioxide used for comparison uses antimony trioxide having a purity of 99% or more. For example, use commercially available Antimony (III) oxide (ALDRICH CHEMICAL, purity 99.999%).
活性パラメータ APを上記範囲内とすることにより、 反応速度が速く、 重縮合 によりポリエステルを製造する時間が されるため好ましい。 APは 1. 5T 以下であることがより好ましく、 1. 3T以下であることがさらに好ましく、 1 . 0T以下であることが特に好ましい。  It is preferable to set the activity parameter AP within the above range, since the reaction rate is high and the time for producing the polyester by polycondensation is increased. AP is more preferably 1.5T or less, further preferably 1.3T or less, and particularly preferably 1.0T or less.
本発明のポリエステル重合触媒を構成する金属成分としては、 アンチモン、 チ タン、 ゲルマニウム以外であればとくに限定はされないが、 アルカリ金属、 アル カリ土類金属、 アルミニウムやガリウム等の ΙΠΑ族の元素、 ケィ素等の IV Α族の 元素、 各種の遷移金属、 およびランタノイド元素などが挙げられる。 このうち、 ΙΠΑ族の元素が好ましく、 それらの中でもアルミニウムがとくに好ましい。 これ らの金属の化合物としては、 特に限定はされないが、 具体的には、 これら金属の ギ酸、 酢酸、 プロピオン酸、 酪酸、 蓚酸などの飽和脂肪族カルボン酸塩、 アタリ ル酸、 メタクリル酸などの不飽和脂肪族カルボン酸塩、 安息香酸などの芳香族力 ルポン酸塩、 トリクロロ酢酸などのハロゲン含有カルボン酸塩、 乳酸、 クェン酸The metal component constituting the polyester polymerization catalyst of the present invention is not particularly limited as long as it is other than antimony, titanium, and germanium. Examples include potassium earth metals, Group IV elements such as aluminum and gallium, Group IV elements such as silicon, various transition metals, and lanthanoid elements. Of these, Group III elements are preferred, and among them, aluminum is particularly preferred. The compounds of these metals are not particularly limited, but specific examples thereof include saturated aliphatic carboxylate salts such as formic acid, acetic acid, propionic acid, butyric acid, and oxalic acid, atalylic acid, and methacrylic acid. Aromatic salts such as unsaturated aliphatic carboxylate, benzoic acid, etc.Halogen-containing carboxylate such as trichloroacetic acid, lactic acid, cunic acid
、 サリチル酸などのヒドロキシカノレポン酸塩、 炭酸、 硫酸、 硝酸、 リン酸、 ホス ホン酸、 炭酸水素、 リン酸水素、 硫化水素、 亜硫酸、 チォ硫酸、 塩酸、 臭化水素 酸、 塩素酸、 臭素酸などの無機酸塩、 1一プロパンスルホン酸、 1一ペンタンス ルホン酸、 ナフタレンスルホン酸などの有機スルホン酸塩、 ラウリル硫酸などの 有機硫酸塩、 メトキシ、 エトキシ、 n—プロボキシ、 i s o—プロポキシ、 n— ブトキシ、 t e r t—ブトキシなどのアルコキサイド、 ァセチノレアセトネートな どとのキレート化合物、 水素化物、 酸化物、 水酸ィヒ物などが挙げられる。 , Salicylic acid and other hydroxycanoleponates, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid, bromine Inorganic acid salts such as acid, 1-propanesulfonic acid, 1-pentanesulfonic acid, organic sulfonate such as naphthalenesulfonic acid, organic sulfate such as lauryl sulfate, methoxy, ethoxy, n-propoxy, iso-propoxy, n — Alkoxides such as butoxy and tert-butoxy; chelate compounds such as acetinoleacetonate; hydrides, oxides, and hydroxylated compounds.
ポリエステルを製造する際の上記の金属成分の好ましい使用量は、 用いる金属 種によって異なるが、 ポリエステルを構成する全ポリカルボン酸ュ-ットのモル 数に対して、 金属原子として 1 X 1 0ー6以上 0. 5モル。 /0以下であることが好ま しく、 より好ましくは 5 X 1 0— 5〜0 . 1モル0 /0である。 添加量が 0 . 5モル0 /0 を越えると、 得られるポリエステルの熱安定性や色調などの品質が低下するため 好ましくない。 添加量が 1 X 1 0— 6モル%未満では、 添加してもその効果が明確 ではない。 The preferred amount of the metal component used in the production of the polyester varies depending on the type of metal used.However, it is 1 × 10− as a metal atom based on the total number of moles of the polycarboxylic acid cut constituting the polyester. 6 or more 0.5 mol. / 0 laid preferred that less, more preferably 5 X 1 0- 5 ~0. 1 mol 0/0. If the amount is 0. Exceeds 5 mol 0/0, the quality such as thermal stability and color tone of the resulting polyester is undesirably lowered. If the amount is less than 1 X 1 0- 6 mol%, the effect is not clear also be added.
本発明のポリエステル重合触媒はアルミ二ゥムおよびその化合物からなる群よ り選ばれる少なくとも 1種を触媒構成成分として含むことが好ましい。  The polyester polymerization catalyst of the present invention preferably contains at least one selected from the group consisting of aluminum and compounds thereof as a catalyst component.
本発明のアルミニウムないしアルミニウム化合物の使用量としては、 得られる ポリエステルのジカルボン酸や多価カルボン酸などのカルポン酸成分の全構成ュ ニットのモノレ数に対して 0 . 0 0 1〜0 . 0 5モル0 /0が好ましく、 さらに好まし くは、 0 . 0 0 5〜0. 0 2モル0 /0である。 使用量が 0 . 0 0 1モル0 /0未満であ ると触 ^性が十分に発揮されな!/、場合があり、 使用量が 0 . 0 5モル%以上に なると、 熱安定性や熱酸ィ匕安定性の低下、 アルミニウムに起因する異物の発生や 着色の增加が問題になる場合が発生する。 この様にアルミニウム成分の添加量が 少なくても本発明の重合触媒は十分な触媒活性を示す点に大きな特徴を有する。 その結果熱安定性や熱酸ィ匕安定性が優れ、 アルミニウムに起因する異物や着色が 低減される。 The amount of the aluminum or aluminum compound to be used in the present invention is 0.001 to 0.05 with respect to the number of monoles of all constituent units of the carboxylic acid component such as dicarboxylic acid or polycarboxylic acid of the obtained polyester. preferably the molar 0/0, rather more preferably is 0. 0 0 5 to 0. 0 2 mol 0/0. Usage to zero. 0 0 1 mole 0/0 less der Rutosawa ^ properties are sufficiently exhibited it! /, May, if the amount used is 0.0 to 5 mol%, Ya thermostability Deterioration of thermal oxidation stability, generation of foreign matter due to aluminum, In some cases, the addition of coloring becomes a problem. As described above, the polymerization catalyst of the present invention has a great feature in that it exhibits sufficient catalytic activity even when the addition amount of the aluminum component is small. As a result, thermal stability and thermal oxidation stability are excellent, and foreign substances and coloring caused by aluminum are reduced.
本発明のリン化合物の使用量としては、 得られるポリエステルのポリカルボン 酸成分の全構成ュニットのモル数に対して 0. 0001〜0. 1 モル0 /0が好ましく、 0. 00 5 〜0. 05モル%であることがさらに好ましい。 リン化合物の添加量が 0. 0001モル %未満の場合には添加効果が発揮されない場合があり、 0. 1 モル%を超えて添加 すると逆にポリエステル重 媒としての触媒活性が低下する場合がある。 The amount of the phosphorus compound of the present invention, preferably from 0.0001 to 0.1 mole 0/0 with respect to the number of moles of all the structural Yunitto polycarboxylic acid component of the polyester obtained, 0.00 5..0. More preferably, it is 05 mol%. If the amount of the phosphorus compound is less than 0.0001 mol%, the effect of the addition may not be exhibited.If the amount exceeds 0.1 mol%, the catalytic activity as a polyester polymer may be reduced. .
リン化合物を使用せず、 アルミニウム化合物を主たる触媒成分とする技術であ つて、 アルミニウム化合物の使用量を低減し、 さらにコバルト化合物を添加して アルミニウムィ匕合物を主触媒とした場合の熱安定性の低下による着色を防止する 技術があるが、 コパノレト化合物を十分な触媒活性を有する程度に添加するとやは り熱安定性が低下する。 従って、 この技術では両者を両立することは困難である 本発明によれば、 上述のリンィヒ合物の使用により、 熱安定性の低下、 異物発生 等の問題を起こさず、 しかも金属含有成分のアルミ-ゥムとしての添加量が少量 でも十分な触媒効果を有する重合触媒が得られ、 この重合触媒を使用する事によ りポリエステノレフイノレム、 ポトル等の中空成形品、 繊維やエンジニアリンダプラ スチック等の溶融成形時の熱安定性が改善される。 本発明のリン化合物の中でも リン酸ゃトリメチルリン酸等のリン酸エステルを添加しても触媒活性向上効果が 見られないため好ましくない。 また、 本発明のリン化合物を本発明の添加量の範 囲で従来のアンチモンィヒ合物、 チタン化合物、 ゲルマニウムィ匕合物と組み合わせ て使用しても、 溶融重合反応を促進する効果は認められない。  A technology that uses an aluminum compound as the main catalyst component without using a phosphorus compound.This technology reduces the amount of aluminum compound used, and further adds a cobalt compound to make the aluminum catalyst a main catalyst. Although there is a technology to prevent coloring due to a decrease in the properties, adding a copanoleto compound to such an extent that it has sufficient catalytic activity will soon reduce the thermal stability. Therefore, it is difficult to achieve both with this technology. According to the present invention, the use of the above-mentioned Lynch compound does not cause problems such as a decrease in thermal stability and the generation of foreign matter, and furthermore, the metal-containing component aluminum A polymerization catalyst having a sufficient catalytic effect can be obtained even with a small addition amount as a rubber. By using this polymerization catalyst, hollow molded products such as polyesterolefinolem and pottle, fibers and engineered plastics can be obtained. The thermal stability during melt molding of sticks and the like is improved. Of the phosphorus compounds of the present invention, the addition of a phosphoric acid ester such as phosphoric acid trimethylphosphoric acid is not preferred because no catalytic activity improving effect is observed. Further, even when the phosphorus compound of the present invention is used in combination with the conventional antimony compound, titanium compound, or germanium compound within the range of the addition amount of the present invention, the effect of promoting the melt polymerization reaction is not recognized. .
本発明のポリエステノレ重合触媒を構成する成分として、 リン化合物のアルミ二 ゥム塩から選択される少なくとも一種を含むことが好ましい。 リン化合物のァノレ ミニゥム塩に他のァノレミニゥム化合物やリン化合物などを組み合わせて使用する ことも好ましい。  It is preferable to include at least one selected from aluminum salts of phosphorus compounds as components constituting the polyester polymerization catalyst of the present invention. It is also preferable to use a combination of an anoreminium salt of a phosphorus compound with another anoreminium compound or a phosphorus compound.
本発明のリンィヒ合物のアルミニウム塩の使用量としては、 得られるポリエステ ルのポリカルボン酸成分の全構成ュ-ットのモル数に対して 0. 0001〜0. 2 モル0 /0 が好ましく、 0. 005 〜0. 1 モノレ%であることがさらに好ましい。 The amount of the aluminum salt of the Lynch compound of the present invention used may be All configuration Interview polycarboxylic acid component Le -.. 0.1 with respect to the number of moles of Tsu bets 0001-0 is preferably 2 mol 0/0, 0.005 to 0 1 further preferably Monore%.
また、 別の本発明は、 カルボン酸アルミニウム塩を予め水および/または有機 溶媒に溶解したものを触媒として用いることに特徴を有する。  Another aspect of the present invention is characterized in that an aluminum carboxylate dissolved in water and / or an organic solvent in advance is used as a catalyst.
本発明のカルボン酸アルミニウム塩としては、 具体的には、 ギ酸アルミニウム 、 酢酸アルミニウム、 塩基性酢酸アルミニウム、 プロピオン酸アルミニウム、 シ ユウ酸アルミニウム、 アクリル酸アルミニウム ラウリン酸アルミニウム、 ステ アリン酸アルミニウム、 安息香酸アルミニウム、 トリクロ口酢酸アルミニウム、 乳酸アルミニウム、 クェン酸アルミニウム、 酒石酸アルミニウム、 サリチル酸ァ ルミユウムなどが挙げられるが、 これらのうち酢酸アルミニウム、 塩基性酢酸ァ ノレミニゥム等の酢酸のァノレミニゥム塩の構造を有するものや ¾酸アルミニゥムが 系への溶解性や触媒活性の観点から好ましい。  Specific examples of the aluminum carboxylate of the present invention include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate aluminum laurate, aluminum stearate, and aluminum benzoate. And aluminum triacetate, aluminum lactate, aluminum citrate, aluminum tartrate, and aluminum salicylate. Of these, those having a structure of an acetic acid anolemminium salt, such as aluminum acetate and basic anolemminium acetate, and sulfuric acid. Aluminum is preferred from the viewpoint of solubility in the system and catalytic activity.
カルボン酸のアルミエゥム塩をポリエステル重合触媒として用いた例としては 、 酢酸アルミニウム、 塩基性酢酸アルミ-ゥム、 乳酸アルミニウム、 安息香酸ァ ルミユウムなどがこれまでに例示されているが、 これらはいずれもポリエステル に対する溶解性が低いため、 触媒活性に劣るとともに、 得られるポリエステルに 不溶性の異物が生 するといつた問題を有しており、 これらのィ匕合物をそのまま 触媒として使用するには問題があった。 本発明では、 これらを水および Zまたは 有機溶媒に予め溶解したものを触媒として用いることで十分な触媒活性を持たせ ることができることを見いだしたことに特徴を有する。  Examples of the use of an aluminum salt of a carboxylic acid as a polyester polymerization catalyst include aluminum acetate, basic aluminum acetate, aluminum lactate, and aluminum benzoate. Low solubility in water, it has poor catalytic activity and has problems when insoluble foreign matter is formed in the obtained polyester, and there is a problem in using these conjugates as catalysts as they are. . The present invention is characterized in that it has been found that sufficient catalytic activity can be imparted by using a catalyst obtained by dissolving these in water and Z or an organic solvent in advance.
本発明のカルボン酸アルミニウム塩は、 ポリエステルの重合系に添加する前に 、 予め水および Zまたは有機溶媒に溶解した状態にして、 重合系に添加しなけれ ばならない。 有機溶媒としては、 グリコール類の使用が好ましく、 P E Tを製造 する場合は、 エチレンダリコールを用いることが好ましい。  Before the aluminum carboxylate of the present invention is added to the polymerization system of the polyester, it must be dissolved in water, Z or an organic solvent in advance and added to the polymerization system. As the organic solvent, glycols are preferably used, and in the case of producing PET, ethylene dalicol is preferably used.
酢酸のアルミニウム塩の構造を有するものとしては、 塩基性酢酸アルミニウム 、 トリ酢酸ァノレミ-ゥム、 酢酸アルミニウム溶液などが挙げられるが、 これらの 中でも、 溶解性およぴ?薪夜の安定性の観点から、 塩基性酢酸アルミニゥムの使用 が好ましい。 塩基性酢酸アルミニウムの中でも、 モノ酢酸アルミニウム、 あるい はジ酢酸アルミニウムの使用が好ましい。 いずれの塩基性酢酸アルミニウムも水 および zまたは有機溶剤に溶解したものを触媒として用いることが必要である。 かかる構成の触媒を使用することにより、 触媒活性に優れ、 品質に優れたポリエ ステルを得ることが可能になる。 溶剤としては、 水ゃジオール類の使用が好まし く、 P E Tを製造する場合は、 水およぴ Zまたはエチレングリコールの使用が好 ましい。 Examples of those having the structure of an aluminum salt of acetic acid include basic aluminum acetate, anolemme-triacetate, and aluminum acetate solution. Among these, from the viewpoint of solubility and stability of firewood night. Therefore, the use of basic aluminum acetate is preferred. Of the basic aluminum acetates, the use of aluminum monoacetate or aluminum diacetate is preferred. Any basic aluminum acetate is water And those dissolved in z or an organic solvent must be used as the catalyst. By using a catalyst having such a configuration, it is possible to obtain a polyester having excellent catalytic activity and excellent quality. As the solvent, water diols are preferably used, and when PET is produced, water and Z or ethylene glycol are preferably used.
また別の本発明では、 カルボン酸アルミニウム塩が、 ホウ酸等で安定ィ匕された ものを触媒として用いると、 溶解性や溶液の安定性が優れ、 触媒活性に優れると ともに、 品質に優れたポリエステルが得られることを見いだしたことに特徴を有 する。 カルポン酸アルミェゥム塩としては、 酢酸のアルミニウム塩の構造を有す るものが好ましく、 その中でも塩基性酢酸アルミニウムの使用が好ましい。 安定 剤としては、 ホウ酸以外に尿素、 チォ尿素などが挙げられるが、 ホウ酸の使用が 好ましい。 ホウ酸で安定ィヒされたものを用いる場合、 アルミニウムに対して等モ ル以下の量のホウ酸で安定化されたものを用いることが好ましく、 とくに 1 / 2 〜 1 / 3モル量のホウ酸で安定ィ匕されたアルミ二ゥム化合物の使用が好ましい。 力ルポン酸アルミニゥム塩がホゥ酸等で安定化されたものを触媒として用いる場 合、 これらを予め水および/または有機溶剤に溶解した状態にして重合系に添加 すること力 触媒 性およびポリエステルの品質の観点から好ましい。 有機溶媒 としては、 グリコール類の使用が好ましく、 P E Tを製造する場合は、 エチレン グリコールを用いることが好ましい。 '  In another aspect of the present invention, when a carboxylate aluminum salt stabilized with boric acid or the like is used as a catalyst, the solubility and solution stability are excellent, the catalyst activity is excellent, and the quality is excellent. It is characterized by finding that polyester can be obtained. As the aluminum salt of carboxylic acid, those having a structure of an aluminum salt of acetic acid are preferable, and among them, use of basic aluminum acetate is preferable. Examples of the stabilizer include urea and thiourea in addition to boric acid, but use of boric acid is preferred. When a material stabilized with boric acid is used, it is preferable to use a material stabilized with boric acid in an amount equal to or less than equimolar to aluminum, and in particular, from 1/2 to 1/3 mol of boric acid. It is preferable to use an aluminum compound stabilized with an acid. When the aluminum salt of lipoic acid stabilized with boric acid or the like is used as a catalyst, these must be dissolved in water and / or an organic solvent in advance and added to the polymerization system. It is preferable from the viewpoint of. As the organic solvent, glycols are preferably used. In the case of producing PET, ethylene glycol is preferably used. '
塩基性酢酸アルミニウムを予め水酸化テトラ チルアンモニゥム等のアル力リ 化合物と混合したものを触媒として用いることが、 W0 9 8ノ 4 2 7 6 9に開示 されている。 該方法によって不溶性異物の形成が抑制されることが述べられてい るが、 当該技術ではアルカリ化合物の使用が必須であるため、 アルカリ化合物に 起因するポリエステルの着色や異物の生成が問題となる。 本発明では、 当該特許 に記載のアル力リ化合物と本発明のアルミ-ゥムィ匕合物を予め混合することが必 須ではない為、 上述の着色や異物の問題が低減したポリエステルを得ることがで きる。  The use of, as a catalyst, a mixture of basic aluminum acetate in advance with an alkali compound such as tetraethylammonium hydroxide is disclosed in WO98 / 42969. Although it is described that the formation of insoluble foreign matter is suppressed by this method, the use of an alkali compound is essential in this technique, and thus, there is a problem of coloring of polyester and generation of foreign matter caused by the alkali compound. In the present invention, since it is not essential to previously mix the aluminum compound described in the patent and the aluminum-dimethyl conjugate of the present invention, it is possible to obtain a polyester in which the above-described problems of coloring and foreign matter are reduced. it can.
本発明の力ルポン酸アルミニゥム塩を水およぴ Zまたは有機溶媒に溶解した溶 液を製造するために、 カルボン酸アルミニウム塩を予め水に溶解した溶液を用い ることが好ましい。 該水溶液に必要に応じてジオール類等の有機溶剤を加えるこ とが好ましい。 該水溶液をそのまま重合系に添加してもよいが、 添加時のヒート ショックをやわらげる為に、 該水溶液をエチレンダリコール等のジオール類で希 釈したものを重合系に添加するカゝ、 あるいは、 ジオール類で希釈した溶液を液一 液置換することで水を留去したものを重合系に添加することが好ましい。 In order to produce a solution of the aluminum sulfonate salt of the present invention in water or Z or an organic solvent, a solution in which an aluminum carboxylate is previously dissolved in water is used. Preferably. It is preferable to add an organic solvent such as a diol to the aqueous solution as needed. The aqueous solution may be added to the polymerization system as it is, but in order to reduce the heat shock at the time of addition, a solution obtained by diluting the aqueous solution with a diol such as ethylene dalicol is added to the polymerization system, or It is preferable to add water to the polymerization system by distilling water by replacing the solution diluted with the diol with one solution.
カルボン酸アルミニウム塩の水溶液をエチレングリコール等のジオール類で希 釈する場合、 水に対して容量比で 0. 5〜 5 0倍量のジオール類で希釈すること が好ましい。 また、 重合系に添加するカルボン酸アルミ-ゥム塩の溶液の濃度と しては、 ァノレミ-ゥム原子換算で 0 . 0 1〜1モノレ/ リットノレとすると、 得られ るポリエステル中に不溶性の異物の生成がとくに抑制されるため好ましい。 カルボン酸アルミニウム塩を水および/または有機溶剤に溶解する際、 あるい は溶解した溶液に、 ホウ酸等の安定剤やくえん酸、 乳酸、 蓚酸等の酸を添加する ことで溶解性や溶液の安定性が高まるため好ましい。  When the aqueous solution of the aluminum carboxylate is diluted with a diol such as ethylene glycol, it is preferable to dilute the aqueous diol with a diol having a volume ratio of 0.5 to 50 times the volume of water. When the concentration of the aluminum carboxylate solution to be added to the polymerization system is 0.01 to 1 monore / liter in terms of anolemmi-atom atom, it is insoluble in the obtained polyester. This is preferable because generation of foreign matter is particularly suppressed. When dissolving aluminum carboxylate in water and / or an organic solvent, or by adding a stabilizer such as boric acid or an acid such as citric acid, lactic acid, or oxalic acid to the dissolved solution, the solubility or solution It is preferable because the stability is enhanced.
以下に、 本発明で用いられる塩基性酢酸アルミ二ゥムを水および/または有機 溶剤に溶解した溶液の調製方法の具体例を示す。  Hereinafter, specific examples of a method for preparing a solution in which basic aluminum acetate used in the present invention is dissolved in water and / or an organic solvent will be described.
く塩基性酢酸アルミニゥムの水溶液の調製例 > Preparation example of aqueous solution of basic aluminum acetate>
塩基性酢酸アル 二ゥムに水を加え室温で数時間以上撹拌する。 撹拌時間は、 1 2時間以上であることが好ましい。 その後、 6 0 °C以上で数時間以上撹拌を行 う。 この場合の温度は、 6 0〜 8 0 °Cの範囲であることが好ましい。 撹拌時間は 、 3時間以上であることが好ましい。 7_溶液の濃度は、 5 g/l 〜1 0 0 g/l が好 ましく、 とくに 1 O g/1 〜3 O g/1 が好ましい。  Water is added to the basic alcohol acetate, and the mixture is stirred at room temperature for several hours or more. The stirring time is preferably 12 hours or more. Then, stir at 60 ° C or more for several hours or more. The temperature in this case is preferably in the range of 60 to 80 ° C. The stirring time is preferably 3 hours or more. The concentration of the 7_ solution is preferably from 5 g / l to 100 g / l, and particularly preferably from 1 Og / 1 to 3 Og / 1.
<塩基性酢酸アルミニゥムのエチレングリコール溶液の調製例 > <Example of preparation of basic aluminum acetate in ethylene glycol solution>
上述の水溶液に対してエチレングリコールを加える。 エチレングリコールの添 加量は水溶液に対して容量比で 1〜 5倍量が好ましい。 より好ましくは 2〜 3倍 量である。 該^ Sを数時間常温で撹拌することで均一な水 Zエチレングリコール 混令溶液を得る。 その後、 該溶液を加熱し、 水を留去することでエチレングリコ ール? 夜を得ることができる。 温度は 8 0 °C以上が好ましく、 1 2 0°C以下が好 ましい。 より好ましくは 9 0〜 1 1 0 °Cで数時間撹拌して水を留去することが好 ましい。 以下に、 本発明で用いられる乳酸アルミニウムのエチレンダリコール溶液の調 製方法の具体例を示す。 Ethylene glycol is added to the above aqueous solution. The amount of ethylene glycol to be added is preferably 1 to 5 times the volume of the aqueous solution. More preferably, the amount is 2 to 3 times. The ^ S is stirred at room temperature for several hours to obtain a homogeneous mixed solution of water and ethylene glycol. Thereafter, the solution is heated and water is distilled off, whereby ethylene glycol can be obtained. The temperature is preferably at least 80 ° C, more preferably at most 120 ° C. More preferably, stirring is carried out at 90 to 110 ° C. for several hours to distill off water. Hereinafter, a specific example of a method for preparing an ethylene daricol solution of aluminum lactate used in the present invention will be described.
乳酸アルミニウムの水溶液を調製する。 調製は室温下でも加熱下でもよいが室 温下が好ましい。 7_R溶液の濃度は 2 0 g Z l〜1 0 0 g / lが好ましく、 5 0〜 Prepare an aqueous solution of aluminum lactate. The preparation may be performed at room temperature or under heating, but preferably at room temperature. The concentration of the 7_R solution is preferably 20 g Zl to 100 g / l, and 50 to
8 0 g / 1がとくに好ましい。 該水溶液にエチレングリコールを加える。 ェチレ ングリコールの添加量は水溶液に対して容量比で 1〜 5倍量が好ましい。 より好 ましくは 2〜 3倍量である。 該溶液を常温で撹拌し均一な水/エチレングリコー ル混合溶液を得た後、 該親夜を加熱し、 水を留去することでエチレングリコール 溶液を得ることができる。 温度は 8 0 °C以上が好ましく、 1 2 0 °C以下が好まし い。 より好ましくは 9 0〜 1 1 0 °Cで数時間撹拌して水を留去することが好まし い。 80 g / 1 is particularly preferred. Ethylene glycol is added to the aqueous solution. The amount of ethylene glycol added is preferably 1 to 5 times the volume of the aqueous solution. More preferably, the amount is 2-3 times. The solution is stirred at room temperature to obtain a uniform mixed solution of water / ethylene glycol, and then the mixture is heated and the water is distilled off to obtain an ethylene glycol solution. The temperature is preferably at least 80 ° C, more preferably at most 120 ° C. More preferably, stirring is performed at 90 to 110 ° C. for several hours to distill off water.
本発明のポリエステル重合触媒であるカルボン酸アルミニウム塩を水おょぴ Z または有機溶剤に溶解した溶液に、 リン化合物からなる群より選ばれる少なくと も 1種を添加すると、 溶液の安定性が向上し、 異物の形成が抑えられるため好ま しい。 カルボン酸アルミ二ゥム塩を水および/または有機溶剤に溶解した溶液を 調製する際に、 リン化合物からなる群より選ばれる少なくとも 1種を共存させて もよい。 リン化合物の添加量は、 アルミニウム原子に対してリン原子がモル比で 0 . 1〜1 0の範囲となるようにすることが好ましい。 リン化合物の添加方法と しては、 予め調製したアルミニウム化合物の溶液にリン化合物を添加してもよい し、 予め調製したリン化合物の溶液にアルミニウムィ匕合物を溶解してもよい。 あ るいは、 両者の溶液を混合して調製してもよいし、 両者を同時に溶剤に溶解して もよい。 溶剤としては、 水ゃジオール類の使用が好ましく、 P E Tを製造する場 合は、 水おょぴ またはエチレングリコールを用いることが好ましい。  When at least one selected from the group consisting of phosphorus compounds is added to a solution in which aluminum carboxylate, which is the polyester polymerization catalyst of the present invention, is dissolved in water Z or an organic solvent, the stability of the solution is improved. However, it is preferable because the formation of foreign matter is suppressed. When preparing a solution in which aluminum carboxylate is dissolved in water and / or an organic solvent, at least one selected from the group consisting of phosphorus compounds may be allowed to coexist. The amount of the phosphorus compound added is preferably such that the molar ratio of phosphorus atoms to aluminum atoms is in the range of 0.1 to 10. As a method of adding the phosphorus compound, the phosphorus compound may be added to a previously prepared solution of the aluminum compound, or the aluminide may be dissolved in the previously prepared solution of the phosphorus compound. Alternatively, both solutions may be prepared by mixing them, or both may be dissolved in a solvent at the same time. As the solvent, water diols are preferably used, and in the case of producing PET, water or ethylene glycol is preferably used.
本突明の方法に従ってポリエステルを製造する際の、 アルミニゥム化合物の使 用量としては、 得られるポリエステルのジカルボン酸や多価カルボン酸などの力 ルボン酸成分の全構成ュニットのモル数に対してアルミニウム原子として 0. 0 0 1〜0. 0 5モル0 /0が好ましく、 更に好ましくは 0 . 0 0 5〜0 . 0 2モル0 /0 である。 使用量が 0 . 0 0 1モル%未満であると触 性が十分に発揮されない 場合があり、 使用量が 0 . 0 5モル0 /0より多いと、 熱安定性や熱酸ィヒ安定性の低 下、 アルミニウムに起因する異物の発生や着色の増加が問題になる場合が発生す る。 この様にアルミニウム成分の添加量が少なくても本発明の重合触媒は十分な 触媒活性を示す点に大きな特徴を有する。 その結果熱安定性や熱酸化安定性が優 れ、 アルミニウムに起因する異物や着色が低減される。 The amount of the aluminum compound used in the production of the polyester according to the method of the present invention is such that the aluminum atom is used for the number of moles of all constituent units of the carboxylic acid component such as dicarboxylic acid or polycarboxylic acid of the obtained polyester. 0.0 0 1 to 0.0 5 moles 0/0 is preferred as, more preferably 0. 0 0 5 to 0.0 2 mol 0/0. Usage to zero. 0 0 might 1 tactile properties is below mol% is not sufficiently exhibited, the amount used is 0.0 to 5 mol 0/0 greater than, the thermal stability and thermal acid I instability Low In some cases, the generation of foreign matters and the increase in coloring caused by aluminum may cause problems. As described above, even when the addition amount of the aluminum component is small, the polymerization catalyst of the present invention has a great feature in that it exhibits sufficient catalytic activity. As a result, thermal stability and thermal oxidation stability are excellent, and foreign substances and coloring due to aluminum are reduced.
本発明の方法に従って、 ポリエステルを製造する際に、 リン化合物からなる群 より選ばれる少なくとも 1種を用いるとポリエステルの熱安定性等の物性が改善 する効果が見られるため好ましい。  When producing polyester according to the method of the present invention, it is preferable to use at least one member selected from the group consisting of phosphorus compounds, because the effect of improving physical properties such as thermal stability of polyester can be obtained.
本発明の方法に従ってポリエステルを製造する際のリン化合物の使用量として は、 得られるポリエステルのポリカルボン酸成分の全構成ュ-ットのモル数に対 して 0 . 0 0 0 1〜0 . 1モル0 /0が好ましく、 0 . 0 0 5〜0 . 0 5モノレ0 /0であ ることがさらに好ましレ、。 本発明のポリエステル重合触媒であるカルボン酸ァノレ ミニゥム塩の にリン化合物を添加したものを触媒として用いる場合は、 リン 化合物の添加量が上記の範囲となるように触媒の添加量を調節することが好まし い。 リン化合物を触媒溶液とは別に添加する場合は、 重合系に添加されるリン化 合物の合計量が上記の範囲となるようにすることが好ましい。 The amount of the phosphorus compound used in the production of the polyester according to the method of the present invention is preferably 0.001 to 0.1 with respect to the total number of moles of the constituent polyester of the polycarboxylic acid component of the obtained polyester. preferably 1 mole 0/0, 0. 0 0 5 to 0.0 5 Monore 0/0 der Rukoto further preferred les. When a catalyst obtained by adding a phosphorus compound to the carboxylic acid carboxylic acid salt of the polyester polymerization catalyst of the present invention is used as the catalyst, the amount of the catalyst added may be adjusted so that the amount of the phosphorus compound falls within the above range. I like it. When the phosphorus compound is added separately from the catalyst solution, it is preferable that the total amount of the phosphorus compound added to the polymerization system be within the above range.
本発明のリン化合物を併用することにより、 ポリエステル重合触媒中のアルミ 二ゥムとしての添 ξιπ量が少量でも十分な触媒効果を発揮する触媒が得られる。 リ ン化合物の添加量が 0 . 0 0 0 1モル%未満の場合には添加効果が発揮されない 場合があり、 また 0 . 1モル%を超えて添加すると逆にポリエステル重合触媒と しての触媒活性が低下する場合があり、 その低下の傾向は、 アルミニウムの使用 量等により変化する。  By using the phosphorus compound of the present invention in combination, it is possible to obtain a catalyst which exhibits a sufficient catalytic effect even when the amount of aluminum added in the polyester polymerization catalyst is small. If the amount of the phosphorus compound is less than 0.001 mol%, the effect of the addition may not be exhibited. If the amount exceeds 0.1 mol%, the catalyst as a polyester polymerization catalyst may be produced. The activity may decrease, and the tendency of the decrease varies depending on the amount of aluminum used.
本発明の方法に従ってポリエステルを製造する場合には、 アルカリ金属、 アル 力リ土類金属、 もしくはこれらのィ匕合物を添加しないことが好ましい。  When the polyester is produced according to the method of the present invention, it is preferable not to add an alkali metal, an alkaline earth metal, or a mixture thereof.
また一方で、 本発明においてアルミニウムもしくはその化合物に加えて少量の アル力リ金属、 アル力リ土類金属並びにその化合物から選択される少なくとも 1 種を第 2金属含有成分として添加することが好ましい態様である。 また、 本発明 のポリエステル重 虫媒として、 上記第 2金属含有成分を共存することは好まし い態様である。 また、 本発明のポリエステル重合.触媒の溶液にアルカリ金属、 了 ルカリ土類金属並びにその化合物から選択される少なくとも 1種を予め含有させ たものを重合時に添加してもよいし、 触媒溶液とは別にアルカリ金属、 アルカリ 土類金属並びにその化合物から選択される少なくとも 1種を添加してもよい。 か 力る第 2金属含有成分を添加することは、 ジエチレングリコールの生成を抑制す る効果に加えて触媒活性を高め、 従って反応速度をより高めた触媒成分が得られ 、 生産性向上に有効である。 On the other hand, in a preferred embodiment of the present invention, in addition to aluminum or its compound, a small amount of at least one element selected from the group consisting of an aluminum metal and an alkaline earth metal and a compound thereof is added as the second metal-containing component. It is. In a preferred embodiment, the second metal-containing component coexists as the polyester heavy vehicle of the present invention. Also, the polyester polymerization catalyst solution of the present invention is preliminarily containing at least one selected from alkali metals, alkaline earth metals and compounds thereof. May be added during the polymerization, or at least one selected from alkali metals, alkaline earth metals and compounds thereof may be added separately from the catalyst solution. The addition of a strong second metal-containing component is effective in suppressing the production of diethylene glycol and increasing the catalytic activity, and therefore, a catalyst component with a higher reaction rate is obtained, which is effective in improving productivity. .
アルミニウム化合物にアル力リ金属化合物又はアル力リ土類金属化合物を添加 して十分な触媒活性を有する触媒とする技術は公知である。 かかる公知の触媒を 使用すると熱安定性に優れたポリエステルが得られるが、 アル力リ金属化合物又 はアル力リ土類金属化合物を併用した公知の触媒は、 実用的な触媒活性を得よう とするとそれらの添加量が多く必要であり、 アル力リ金属化合物を使用したとき はそれに起因する異物量が多くなり、 繊維に使用したときには製糸性や糸物性が 、 またフィルムに使用したときはフィルム物性、 透明性、 熱安定性、 熱酸化安定 性、 耐加水分解性などが悪ィヒする。 さらには繊維やフィルム等の溶融成形品の色 調が悪化する。 またアルカリ土類金属化合物を併用した場合には、 実用的な活性 を得ようとすると得られたポリエステルの熱安定性、 熱酸化安定性が低下し、 加 熱による着色が大きく、 異物の発生量も多くなる。  It is well known that a catalyst having sufficient catalytic activity is obtained by adding an alkali metal compound or an alkaline earth metal compound to an aluminum compound. Use of such a known catalyst provides a polyester having excellent thermal stability.However, a known catalyst using an alkali metal compound or an alkali earth metal compound in an attempt to obtain practical catalytic activity. Then, it is necessary to add a large amount of them, and when the metal compound is used, the amount of foreign substances caused by the metal compound increases, and when used for fibers, the spinning properties and yarn properties are increased. Physical properties, transparency, thermal stability, thermal oxidation stability, hydrolysis resistance, etc. are bad. Furthermore, the color tone of melt-formed products such as fibers and films deteriorates. In addition, when an alkaline earth metal compound is used in combination, the obtained polyester has low thermal stability and thermal oxidative stability in order to obtain practical activity, and is greatly colored by heating. Also increase.
アルカリ金属、 アルカリ土類金属並びにその化合物を添加する場合、 その使用 量 M (モル0/。) は、 ポリエステルを構成する全ポリカルボン酸ユニットのモル数 に対して、 1 X 1 0— 6以上 0 . 1モル0 /0未満であることが好ましく、 より好まし くは 5 X 1 0—6〜0 . 0 5モル0 /0であり、 さらに好ましくは 1 X 1 0— 5〜0 . 0 3モル0 /0であり、 特に好ましくは、 1 X 1 0— 5〜0 . 0 1モル0 /0である。 アル力 リ金属、 アルカリ土類金属の添加量が少量であるため、 熱安定性低下、 異物の発 生、 着色等の問題を発生させることなく、 反応速度を高めることが可能である。 また、 耐加水^?性の低下等の問題を発生させることなく、 反応速度を高めるこ とが可能である。 アル力リ金属、 アル力リ土類金属並びにその化合物の使用量 M が 0 . 1モル%以上になると熱安定性の低下、 異物発生や着色の増加、 耐加水分 解性の低下等が製品加工上問題となる場合が発生する。 Mが 1 X 1 0— 6モル%未 満では、 添加してもその効果が明確ではない。 When adding an alkali metal, alkaline earth metals and their compounds, its amount M (mol 0 /.), To the number of moles of all the polycarboxylic acids units constituting the polyester, 1 X 1 0- 6 or more 0.1 mole 0 / preferably less than 0 and is, more rather preferably is 5 X 1 0- 6 ~0. 0 5 mol 0/0, more preferably 1 X 1 0- 5 ~0. 0 a 3 mole 0/0, particularly preferably 1 X 1 0- 5 ~0. 0 1 mol 0/0. Since the addition amount of alkali metal and alkaline earth metal is small, the reaction rate can be increased without causing problems such as a decrease in thermal stability, generation of foreign matter, and coloring. Further, the reaction rate can be increased without causing a problem such as a decrease in water resistance. When the amount M of Al-Li metal, Al-earth metal and its compound is more than 0.1 mol%, thermal stability decreases, foreign matter is generated and coloration increases, and hydrolysis resistance decreases. A problem may occur in processing. M is 1 X 1 0- 6 mol% Not Mitsurude, the effect is not clear also be added.
本発明の方法に従ってポリエステルを製造する際には、 さらに、 コバルト化合 物をコバルト原子としてポリエステルに対して 1 0 p p m未満の量で添加する事 が好ましい態様である。 より好ましくは 5 p p m未満であり、 さらに好ましくは 3 p p m以下である。 また、 本発明のポリエステル重合触媒の溶液に予めコパル トィ匕合物を含有させたものを重合時に添加してもよいし、 触媒溶液とは別にコパ ルトィ匕合物を添加してもよい。 In producing the polyester according to the method of the present invention, a cobalt compound In a preferred embodiment, the compound is added as a cobalt atom in an amount of less than 10 ppm to the polyester. It is more preferably less than 5 ppm, and still more preferably 3 ppm or less. Further, the solution of the polyester polymerization catalyst of the present invention containing the Coparty conjugate in advance may be added at the time of polymerization, or the Coparty conjugate may be added separately from the catalyst solution.
また、 一方で本発明の方法に従ってポリエステルを製造する際には、 コノ ルト 化合物を使用しないことが好ましい。  On the other hand, when producing a polyester according to the method of the present invention, it is preferable not to use a connort compound.
本発明の方法に従ってポリエステルを製造する際は、 アンチモン化合物、 チタ ン化合物、 ゲルマニウム化合物、 スズ化合物等の他の重合触媒 、 これらの成分 の添加が前述の様なポリエステルの特性、 加工性、 色調等製品に問題が生じない 添加量の範囲内において共存させて用いることは、 重合時間の短縮による生産性 を向上させる際に有利であり、 好ましい。  When a polyester is produced according to the method of the present invention, other polymerization catalysts such as an antimony compound, a titanium compound, a germanium compound, and a tin compound, and the addition of these components can be used as described above for the properties, processability, and color tone of the polyester. Coexistence within the range of the addition amount that does not cause a problem in the product is advantageous and preferable in improving productivity by shortening the polymerization time.
ただし、 アンチモン化合物としては重合して得られるポリエステルに対してァ ンチモン原子として 50ppm以下の量で添加可能である。 より好ましくは 30ppm以 下の量で添加することである。 アンチモンの添加量を 50ppm より多くすると、 金 属アンチモンの析出が起こり、 ポリエステルに黒ずみや異物が発生するため好ま しくない。 ,  However, the antimony compound can be added in an amount of 50 ppm or less as an antimony atom to the polyester obtained by polymerization. More preferably, it is added in an amount of 30 ppm or less. If the added amount of antimony is more than 50 ppm, metal antimony precipitates, and blackening or foreign matter is generated in polyester, which is not preferable. ,
チタン化合 としては重合して得られるポリマーに対して ΙΟρρπι以下の範囲で 添加する事が可能である。 より好ましくは 5ppm以下、 さらに好ましくは 2ppm以下 の量で添加することである。 チタンの添加量を lOppm より多くすると得られるレ ジンの熱安定性が著しく低下する。  The titanium compound can be added to the polymer obtained by polymerization in a range of ΙΟρρπι or less. More preferably, it is added in an amount of 5 ppm or less, more preferably 2 ppm or less. If the added amount of titanium is more than 10 ppm, the thermal stability of the obtained resin is significantly reduced.
ゲルマ二ゥム化合物としては重合して得られるポリエステル中にゲルマ -ゥム 原子として 20ppm以下の量で添カロすることが可能である。 より好ましくは lOppm 以下の量で添加することである。 ゲルマニウムの添加量を 20ppm より多くすると コスト的に不利となるため好ましくない。  The germanium compound can be added to the polyester obtained by polymerization in an amount of 20 ppm or less as a germanium atom. More preferably, it is added in an amount of 10 ppm or less. If the amount of germanium added is more than 20 ppm, it is not preferable because it is disadvantageous in terms of cost.
本発明の方法に従ってポリエステルを重合する際には、 アンチモン化合物、 チ タン化合物、 ゲルマニウム化合物、 スズ化合物を 1種又は 2種以上使用できる。 本発明のアル力リ金属おょぴそれらの化合物ならびにアル力リ土類金属および それらの化合物としては特に限定はされないが、 例えば、 これら金属のギ酸、 酢 酸、 プロピオン酸、 酪酸、 蓚酸などの飽和脂肪族カルボン酸塩、 アクリル酸、 メ タクリル酸などの不飽和脂肪族カルボン酸塩、 安息香酸などの芳香族カルボン酸 塩、 トリクロ口酢酸などのハ口ゲン含有カルボン酸塩、 乳酸、 クェン酸、 サリチ ル酸などのヒドロキシカルボン酸塩、 炭酸、 硫酸、 硝酸、 リン酸、 ホスホン酸、 炭酸水素、 リン酸水素、 硫化水素、 亜硫酸、 チォ硫酸、 塩酸、 臭化水素酸、 塩素 酸、 臭素酸などの無機酸塩、 1一プロパンスルホン酸、 1一ペンタンスルホン酸When polymerizing the polyester according to the method of the present invention, one or more of an antimony compound, a titanium compound, a germanium compound, and a tin compound can be used. The metal and metal compounds of the present invention and the earth metal and the compounds thereof are not particularly limited, but include, for example, formic acid and vinegar of these metals. Saturated aliphatic carboxylate such as acid, propionic acid, butyric acid and oxalic acid; unsaturated aliphatic carboxylate such as acrylic acid and methacrylic acid; aromatic carboxylic acid salt such as benzoic acid; Gen-containing carboxylate, hydroxy carboxylate such as lactic acid, cunic acid, salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen carbonate, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, Inorganic acid salts such as hydrobromic acid, chloric acid, and bromic acid, 1-propanesulfonic acid, 1-pentanesulfonic acid
、 ナフタレンスルホン酸などの有機スルホン酸塩、 ラウリル硫酸などの有機硫酸 塩、 メ トキシ、 エトキシ、 n—プロポキシ、 i s o—プロポキシ、 n—ブトキシ 、 t e r t—ブトキシなどのアルコキサイド、 ァセチルァセトネートなどとのキ レート化合物、 水素化物、 酸化物、 水酸化物などが挙げられる。 , Organic sulfonates such as naphthalenesulfonic acid, organic sulfates such as lauryl sulfate, alkoxides such as methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, and acetyl acetate. Chelate compounds, hydrides, oxides, hydroxides and the like.
これらの化合物のうち、 水酸ィ匕物等のアルカリ性の強いものを用いる場合、 こ れらはエチレンダリコール等のジオールもしくはアルコール等の有機溶媒に溶解 しにくい傾向があるため、 水溶液で重合系に添加しなければならず重合工程上問 題となる場合が有る。 さらに、 水酸ィ匕物等のアルカリ性の強いものを用いた場合 、 重合時にポリエステルが加水分解等の副反応を受け易くなるとともに、 重合し たポリエステルは着色し易くなる傾向があり、 耐加水分解性も低下する傾向があ る。 従って、 本発明のアルカリ金属またはそれらの化合物あるいはアルカリ土類 金属またはそれらの化合物として好適なものは、 これらの金属の飽和脂肪族カル ボン酸塩、 不飽和脂肪族カルボン酸塩、 芳香族カルボン塩、 ハロゲン含有力ルポ ン酸塩、 ヒドロキシカルボン酸塩、 硫酸、 硝酸、 リン酸、 ホスホン酸、 リン酸水 素、 硫化水素、 亜硫酸、 チォ硫酸、 塩酸、 臭化水素酸、 塩素酸、 臭素酸から選ば れる無機酸塩、 有機スルホン酸塩、 有機硫酸塩、 キレート化合物、 および酸化物 である。 これらの中でもさらに、 取り扱い易さや入手のし易さ等の観点から、 飽 和脂肪族カルボン酸塩、 特に酢酸塩の使用が好ましい。  Among these compounds, when highly alkaline ones such as hydroxylamine are used, they tend to be difficult to dissolve in an organic solvent such as diol or alcohol such as ethylene dalicol. Must be added to the polymer, which may be a problem in the polymerization process. In addition, when a highly alkaline substance such as a hydroxylamine product is used, the polyester is liable to undergo side reactions such as hydrolysis during the polymerization, and the polymerized polyester tends to be colored, Also tends to decrease. Accordingly, the alkali metal or the compound thereof or the alkaline earth metal or the compound thereof according to the present invention is preferably a saturated aliphatic carboxylate, an unsaturated aliphatic carboxylate, or an aromatic carboxylate of these metals. , From halogen-containing sulfonic acids, hydroxycarboxylates, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid, bromate The selected inorganic acid salt, organic sulfonate, organic sulfate, chelate compound, and oxide. Among these, the use of saturated aliphatic carboxylate, especially acetate, is preferred from the viewpoint of easy handling and availability.
本発明のアルミニウムまたはその化合物としては特に限定はされないが、 金属 アルミニウムの他に、 例えば、 ギ酸アルミニウム、 酢酸アルミニウム、 塩基性酢 酸アルミニウム、 プロピオン酸アルミニウム、 蓚酸アルミニウム、 アクリル酸ァ ルミ二ゥム、 ラウリン酸アルミニウム、 ステアリン酸アルミニウム、 安息香酸ァ ルミ二ゥム、 トリクロ口酢酸アルミニウム、 乳酸アルミニウム、 酒石酸アルミ二 ゥム、 クェン酸アルミニウム、 サリチル酸アルミニウムなどのカルボン酸塩、 塩 化アルミニウム、 水酸化アルミニウム、 水酸化塩化アルミニウム、 ポリ塩化アル ミニゥム、 硝酸ァノレミニゥム、 硫酸アルミニウム、 炭酸ァノレミニゥム、 リン酸ァ ルミ二ゥム、 ホスホン酸アルミニウムなどの無機酸塩、 アルミニウムメ トキサイ ド、 アルミニウムェトキサイ ド、 アルミニウム n-プロポキサイド、 アルミユウム iso-プロポキサイド、 アルミニウム n-プトキサイド、 アルミニウム プトキサ イドなどアルミニウムアルコキサイド、 ァノレミニゥムァセチノレアセトネート、 ァ ルミユウムァセチルァセテート、 アルミニウムェチノレアセトアセテート、 アルミ 二ゥムェチノレアセトアセテートジ iso-プロポキサイドなどのァノレミニゥムキレー ト化合物、 トリメチルアルミニウム、 トリェチルアルミェゥムなどの有機アルミ ニゥム化合物あるいはこれらの部分加水^物、 ァノレミユウムのアルコキサイド やアルミニウムキレート化合物とヒドロキシカルボン酸からなる反応生成物、 酸 化アルミニウム、 超微粒子酸化アルミユウム、 アルミニウムシリケート、 アルミ 二ゥムとチタンやケィ素やジルコニウムやアルカリ金属やアルカリ土類金属など との複合酸化物などが挙げられる。 これらのうちカルボン酸塩、 無機酸塩おょぴ キレート化合物が好ましく、 これらの中でもさらに塩基性酢酸アルミニウム、 塩 ィ匕アルミニウム、 水酸化アルミニウム、 水酸化塩化アルミニウムおよびアルミ二 ゥムァセチノレアセトネートがとくに好ましい。 塩基性酢酸アルミニウムはホウ酸 等の添加剤で安定化されたものを用いてもよい。 The aluminum of the present invention or its compound is not particularly limited, but in addition to metal aluminum, for example, aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, Aluminum laurate, aluminum stearate, aluminum benzoate, aluminum triacetate, aluminum lactate, aluminum tartrate Aluminum, carboxylates such as aluminum citrate, aluminum salicylate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, polychlorinated aluminum, ethanol nitrate, aluminum sulfate, ethanol carbonate, aluminum phosphate, Inorganic acid salts such as aluminum phosphonate, aluminum methoxide, aluminum ethoxide, aluminum n -propoxide, aluminum iso-propoxide, aluminum n-poxide, aluminum ptoxide, and other aluminum alkoxides, anolemminium acetate Anorate such as acetonate, aluminum acetyl acetate, aluminum ethynoleacetoacetate, aluminum dimethylenoacetoacetate di-isopropoxide Organic aluminum compounds such as aluminum chelates, trimethylaluminum, and triethylaluminum or their partial hydrolyzates, reaction products consisting of alkanolides of aluminum and aluminum chelates and hydroxycarboxylic acids, aluminum oxide, ultrafine particles Examples include aluminum oxide, aluminum silicate, and composite oxides of aluminum and titanium, silicon, zirconium, alkali metals, alkaline earth metals, and the like. Of these, carboxylate and inorganic acid salt chelate compounds are preferable, and among these, basic aluminum acetate, aluminum chloride, aluminum hydroxide, aluminum hydroxide chloride, and aluminum dimethyl acetonoleacetonate are further preferable. Particularly preferred. As the basic aluminum acetate, one stabilized with an additive such as boric acid may be used.
本発明のリン化合物としては、 特に限定はされないが、 リン酸ならぴにトリメ チルリン酸、 トリェチルリン酸、 フエニルリン酸、 トリフエニルリン酸等のリン 酸エステル、 亜リン酸ならびにトリメチルホスファイ ト、 トリェチルホスフアイ ト、 トリフエ-ノレホスファイ ト、 トリス (2, 4-ジ- tert-ブチノレフエニル) ホスフ アイト、 テトラキス (2, 4 -ジ- tert-ブチルフエニル) 4, 4' - ビフエ二レンジホス フアイト等の亜リン酸エステルなどが挙げられる。  The phosphorus compound of the present invention is not particularly limited. For phosphoric acid, phosphate esters such as trimethylphosphoric acid, triethylphosphoric acid, phenylphosphoric acid, triphenylphosphoric acid, phosphorous acid, trimethylphosphite, and triethylphosphoric acid. Phosphite such as phosphite, triffe-nole phosphite, tris (2,4-di-tert-butynolephenyl) phosphite, tetrakis (2,4-di-tert-butyl phenyl) 4,4'-biphenylenediphosphite Esters and the like.
本発明のより好ましいリン化合物は、 ホスホン酸系化合物、 ホスフィン酸系化 合物、 ホスフィンオキサイド系化合物、 亜ホスホン酸系化合物、 亜ホスフィン酸 系化合物、 ホスフィン系化合物からなる群より選ばれる少なくとも一種のリンィ匕 合物である。 これらのリン化合物を含有することで本発明の課題であるポリエス テルの物性改善効果が高まることにカ卩えて、 ポリエステルの重合時に、 これらの リン化合物を本発明のアルミ-ゥムィ匕合物と共存して用いることで蝕 ^¾性の向 上効果が見られる。 これらの中でも、 ホスホン酸系化合物を用いると物性改善効 果ゃ触媒活性の向上効果が大きく好ましい。 上記したリン化合物の中でも、 芳香 環構造を有する化合物を用いると物性改善効果や触媒活性の向上効果が大きく好 ましい。 本発明のポリエステルの製造時にこのようなリン化合物を用いることで 、 アル力リ金属化合物やアル力リ土類金属化合物の添加量が少量であっても十分 な触媒効果を発揮する触媒が得られる。 More preferred phosphorus compounds of the present invention are at least one selected from the group consisting of phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinous acid compounds, and phosphine compounds. It is a lindani compound. Polyester which is an object of the present invention by containing these phosphorus compounds The effect of improving the physical properties of tellurium is enhanced, and the use of these phosphorus compounds in combination with the aluminum-dimethyl compound of the present invention during the polymerization of polyester has an effect of improving corrosion resistance. . Among these, the use of a phosphonic acid-based compound is preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are large. Among the above-mentioned phosphorus compounds, the use of a compound having an aromatic ring structure is highly preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are greatly enhanced. By using such a phosphorus compound at the time of producing the polyester of the present invention, a catalyst exhibiting a sufficient catalytic effect can be obtained even when the addition amount of the alkali metal compound or the alkaline earth metal compound is small. .
本発明で言うホスホン酸系化合物、 ホスフィン酸系化合物、 ホスフィンォキサ イド系化合物、 亜ホスホン酸系化合物、 亜ホスフィン酸系化合物、 ホスフィン系 化合物とは、 それぞれ下記式 (ィ匕 1) 〜 (ィ匕 6) で表される構造を有する化合物 のことを言う。  The phosphonic acid compounds, phosphinic acid compounds, phosphinoxide compounds, phosphonous acid compounds, phosphinous acid compounds, and phosphine compounds referred to in the present invention are represented by the following formulas (Iridai 1) to (I), respectively. The compound having the structure represented by dani 6).
[化 1]  [Formula 1]
o  o
II  II
-0-P-0-  -0-P-0-
[化 2] [Formula 2]
o  o
-P-0- -P-0-
[化 3] [Formula 3]
o  o
P一 P-one
一 4 [化 4] One four [Formula 4]
一 O— P—〇一  One O— P—〇 一
[化 5 ] [Formula 5]
- P - 0 -  -P-0-
[化 6 ] [Formula 6]
- P  -P
本発明のホスホン酸系ィ匕合物としては、 例えば、 メチルホスホン酸ジメチレ、 メチノレホスホン酸ジフエ二ノレ、 フエ二ノレホスホン酸ジメチノレ、 フエ ノレホスホン 酸ジェチル、 フエニルホスホン酸ジフエニル、 ベンジルホスホン酸ジメチル、 ベ ンジルホスホン酸ジェチルなどが挙げられる。 本発明のホスフィン酸系化合物と しては、 例えば、 ジフエニルホスフィン酸、 ジフエ二ノレホスフィン酸メチノレ、 ジ フエ二ノレホスフィン酸フエ二ノレ、 フエ二ノレホスフィン酸、 フエ二ノレホスフィン酸 メチル、 フエニルホスフィン酸フエニルなどが挙げられる。 本発明のホスフィン ォキサイド系化合物としては、 例えば、 ジフエエルホスフィンォキサイド、 メチ ルジフエ二ノレホスフィンォキサイ ド、 トリフエニルホスフィンォキサイドなどが 挙げられる。 Examples of the phosphonic acid type conjugate of the present invention include: Is mentioned. Examples of the phosphinic acid-based compound of the present invention include diphenylphosphinic acid, methinole dipheninolephosphinate, feninole diphenylinolephosphinate, feninolephosphinic acid, methyl feninolephosphinate, Phenyl phosphinate and the like. Examples of the phosphoxide compound of the present invention include diphenylphosphinoxide, methyldiphenylinolephosphinoxide, and triphenylphosphinoxide.
ホスフィン酸系化合物、 ホスフィンオキサイド系化合物、 亜ホスホン酸系ィ匕合物 、 亜ホスフィン酸系化合物、 ホスフィン系化合物の中では、 本発明のリン化合物 としては、 下記式 (ィ匕 7 ) 〜 (ィ匕 1 2 ) で表される化合物が好ましい。 Among the phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinous acid compounds, and phosphine compounds, the phosphorus compounds of the present invention are represented by the following formulas (i7) to (i7) The compound represented by dani 12) is preferred.
[化 7 ]
Figure imgf000044_0001
[化 8]
Figure imgf000045_0001
[Formula 7]
Figure imgf000044_0001
[Formula 8]
Figure imgf000045_0001
[化 9][Formula 9]
Figure imgf000045_0002
Figure imgf000045_0002
[化 10]
Figure imgf000045_0003
[Formula 10]
Figure imgf000045_0003
[化 11][Formula 11]
Figure imgf000045_0004
[化 12]
Figure imgf000045_0004
[Formula 12]
[ (CH3 ) (CH2 ) 7 ] a P 上記したリン化合物の中でも、 芳香環構造を有する化合物を用いると物性改善 効果や触媒活性の向上効果が大きく好ましい。 [(CH 3 ) (CH 2 ) 7] a P Among the above-mentioned phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are large.
また、 本発明のリン化合物としては、 下記一般式 (化 13) 〜 (化 15) で表 される化合物を用いると物性改善効果や触媒活性の向上効果が特に大きく好まし い。  In addition, when the compounds represented by the following general formulas (Formula 13) to (Formula 15) are used as the phosphorus compound of the present invention, the effect of improving the physical properties and the effect of improving the catalytic activity are particularly preferred.
[化 13]  [Formula 13]
P (=0) R1 (OR2 ) (OR3 ) [化 14] P (= 0) R 1 (OR 2 ) (OR 3 )
P (=0) 1 R4 (OR2 ) [化 15] P (= 0) 1 R 4 (OR 2 )
P (=0) R1 R5 R8 P (= 0) R 1 R 5 R 8
(式 (化 13) 〜 (ィ匕 15) 中、 R1 、 R4 、 R5 、 R6 はそれぞれ独立に水素 、 炭素数 1〜 50の炭化水素基、 7j<酸基またはハ口ゲン基またはアルコキシル基 またはアミノ基を含む炭素数 1〜 50の炭化水素基を表す。 R2 、 R3 はそれぞ れ独立に水素、 炭素数 1〜50の炭化水素基、 水酸基またはアルコキシル基を含 む炭素数 1〜 50の炭化水素基を表す。 ただし、 炭化水素基はシク口へキシル等 の脂環構造やフエニルゃナフチル等の芳香環構造を含んでいてもよレ、。 ) 本発明のリン化合物としては、 上記式 (ィ匕 13) 〜 (ィ匕 15) 中、 R1 、 R4 、 R5 、 R6 が芳香環構造を有する基である化合物がとくに好ましい。 本発明のリン化合物としては、 例えば、 メチノレホスホン酸ジメチル、 メチルホ スホン酸ジフエ二ノレ、 フエ二ノレホスホン酸ジメチノレ、 フエ二ノレホスホン酸ジェチ ル、 フェニノレホスホン酸ジフエ二ノレ、 ベンジルホスホン酸ジメチル、 ベンジルホ スホン酸ジェチノレ、 ジフエ二ノレホスフィン酸、 ジフエ-ノレホスフィン酸メチノレ、 ジフエ二ノレホスフィン酸フエ二ノレ、 フエ二ノレホスフィン酸、 フエ二ノレホスフィン 酸メチノレ、 フエ二ノレホスフィン酸フエ二ノレ、 ジフエ二ノレホスフィンオキサイ ド、 メチノレジフエ二ノレホスフィンォキサイ ド、 トリフエ-ノレホスフィンォキサイ ドな どが挙げられる。 これらのうちで、 フエニルホスホン酸ジメチル、 ベンジノレホス ホン酸ジェチルがとくに好まし!/、。 (Wherein, R 1 , R 4 , R 5 and R 6 are each independently hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, 7j <acid group or halogen group) Or a hydrocarbon group having 1 to 50 carbon atoms including an alkoxyl group or an amino group, and R 2 and R 3 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group. Represents a hydrocarbon group having 1 to 50 carbon atoms, provided that the hydrocarbon group may contain an alicyclic structure such as cyclohexyl or an aromatic ring structure such as phenyl-naphthyl. As the compound, a compound in which R 1 , R 4 , R 5 , and R 6 are groups having an aromatic ring structure in the above formulas (Dani 13) to (Dani 15) is particularly preferable. The phosphorus compounds of the present invention include, for example, dimethyl methionolephosphonate, dipheninole methylphosphonate, dimethinole pheninolephosphonate, ethyl pheninolephosphonate, dipheninole pheninolephosphonate, dimethyl benzylphosphonate, and benzylphosphonate. Getinole, dipheninolephosphinic acid, methinole diphenolenophosphinate, feninole dipheninolephosphinate, feninolephosphinic acid, methinole pheninolephosphine, feninolephosphinate feninolephosphinate, dipheninolephosphine Oxides, methinoresifeninolephosphine oxides, triffee-norephosphine oxides, and the like. Of these, dimethyl phenylphosphonate and getyl benzinolephosphonate are particularly preferred! / ,.
上逮したリン化合物の中でも、 本発明では、 リン化合物としてリンの金属塩化 合物が特に好ましい。 リンの金属塩化合物は、 リン化合物の金属塩であれば特に 限定はされないが、 ホスホン酸系化合物の金属塩を用いると本発明の課題である ポリエステルの物性改善効果や触媒活性の向上効果が大きく好ましい。 リン化合 物の金属塩としては、 モノ金属塩、 ジ金.属塩、 トリ金属塩などが含まれる。 また、 上記したリン化合物の中でも、 金属塩の金属部分が、 L i、 N a、 K:、 B e、 M g、 S r、 B a、 Mn、 N i、 C u、 Z nから選択されたものを用いる と触媒活性の向上^!果が大きく好ましい。 これらのうち、 L i、 N a、 M gがと くに好ましい。  Among the phosphorus compounds arrested above, in the present invention, a metal chloride of phosphorus is particularly preferable as the phosphorus compound. The metal salt compound of phosphorus is not particularly limited as long as it is a metal salt of a phosphorus compound. However, when a metal salt of a phosphonic acid compound is used, the effect of improving the physical properties of polyester and the effect of improving catalytic activity, which are the objects of the present invention, are large. preferable. The metal salts of phosphorus compounds include monometal salts, dimetal salts, trimetal salts, and the like. Further, among the phosphorus compounds described above, the metal part of the metal salt is selected from L i, N a, K :, Be, M g, S r, B a, M n, N i, Cu, and Zn. The use of such a material is preferable because the catalyst activity is greatly improved. Of these, Li, Na, and Mg are particularly preferred.
本発明のリンの金属塩化合物としては、 下記一般式 (ィ匕 1 6 ) で表されるィ匕合 物から選択される少なくとも一種を用いると物性改善効果や触 性の向上効果 が大きく好ましい。 As the phosphorus metal salt compound of the present invention, it is preferable to use at least one selected from the compounds represented by the following general formula (I-dani 16) because the effect of improving physical properties and the effect of improving tactility are large.
[化 1 6 ] [Formula 1 6]
M (RJQ")m
Figure imgf000048_0001
M (R J Q ") m
Figure imgf000048_0001
(式 (ィ匕 1 6 ) 中、 R 1 は水素、 炭素数 1〜 5 0の炭化水素基、 7酸基またはハ 口ゲン基またはアルコキシル基またはァミノ基を含む炭素数 1〜 5 0の炭化水素 基を表す。 2 は、 水素、 炭素数 1〜5 0の炭化水素基、 7酸基またはアルコキ シノレ基を含む炭素数 1〜 5 0の炭化水素基を表す。 R 3 は、 水素、 炭素数 1〜5 0の炭化永素基、 水酸基またはアルコキシル基またはカノレポ二ノレを含む炭素数 1 〜5 0の炭化水素基を表す。 1 は 1以上の整数、 mは 0 または 1以上の整数を表 し、 1+mは 4以下である。 Mは(1+m) 価の金属カチオンを表す。 n は 1以上の整 数を表す。 炭化水素基はシキロへキシル等の脂環構造や分岐構造やフエ二ルゃナ フチル等の芳香環構造を含んでいてもよい。 ) Wherein R 1 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a 7-carbon group containing an acid group, a halogen group, an alkoxyl group, or an amino group. Represents a hydrogen group, 2 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms including a 7-acid group or an alkoxylate group, and R 3 represents hydrogen or carbon. Represents a hydrocarbon group having a carbon number of 1 to 50 including a carbon number of 1 to 50, a hydroxyl group or an alkoxyl group or a canolepodinole, wherein 1 is an integer of 1 or more, and m is 0 or an integer of 1 or more. And 1 + m is 4 or less, M represents a (1 + m) -valent metal cation, n represents an integer of 1 or more, and the hydrocarbon group is an alicyclic structure such as cyclohexyl or a branch. It may contain a structure or an aromatic ring structure such as phenylnaphthyl.)
上記の R 1 としては、 例えばフエニル、 1一ナフチル、 2—ナフチル、 9一了 ンスリル、 4—ビフエ二ノレ、 2—ビフエエルなどが挙げられる。 上記の; R 2 とし ては例えば、 水素、 メチノレ基、 ェチル基、 プロピル基、 イソプロピル基、 n—プ チル基、 s e c一プチル基、 t e r t一ブチル基、 長鎖の脂肪族基、 フエニル基 、 ナフチル基、 置換されたフエ-ル基ゃナフチル基、 一 C H2 C H2 OHで表さ れる基などが挙げられる。 R 3 O— としては例えば、 水酸化物イオン、 アルコラ 一トイオン、 アセテートイオンゃァセチルアセトンイオンなどが挙げられる。 上記一般式 (ィ匕 1 6 ) で表される化合物の中でも、 下記一般式 (ィ匕 1 7 ) で表 される化合物から選択される少なくとも一種を用いることが好ましい。 [化 17] Examples of R 1 include phenyl, 1-naphthyl, 2-naphthyl, 9-thrill, 4-biphenyl, 2-biphenyl, and the like. The above; R 2 includes, for example, hydrogen, methynole group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, long-chain aliphatic group, phenyl group, Examples include a naphthyl group, a substituted phenol group, a naphthyl group, and a group represented by CH 2 CH 2 OH. Examples of R 3 O— include a hydroxide ion, an alcohol ion, an acetate ion and acetylacetone ion. It is preferable to use at least one selected from the compounds represented by the following general formula (Iridani 17) among the compounds represented by the above general formula (Iridani 16). [Formula 17]
M (R30") mM (R 3 0 ") m
Figure imgf000049_0001
Figure imgf000049_0001
(式 (化 17) 中、 R1 は水素、 炭素数 1〜 50の炭化水素基、 水酸基またはハ 口ゲン基またはアルコキシル基またはァミノ基を含む炭素数 1〜 50の炭化水素 基を表す。 R3 は、 水素、 炭素数 1〜 50の炭化水素基、 水酸基またはアルコキ シル基またはカルボニルを含む炭素数 1〜 50の炭化水素基を表す。 1 は 1以上 の整数、 mは 0 または 1以上の整数を表し、 1+mは 4以下である。 Mは(1+m) 価 の金属カチオンを表す。 炭化水素基はシキ口へキシル等の脂環構造や分岐構造や フェ -ルゃナフチル等の芳香環構造を含んでレ、てもよい。 ) (In the formula, R 1 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halogen group, or a hydrocarbon group having 1 to 50 carbon atoms including an alkoxyl group or an amino group. 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxy group or a hydrocarbon group having 1 to 50 carbon atoms including carbonyl, wherein 1 is an integer of 1 or more, and m is 0 or 1 or more. Represents an integer, 1 + m is 4 or less, M represents a (1 + m) -valent metal cation, and the hydrocarbon group is an alicyclic structure or a branched structure such as cis-hexyl or a phenylnaphthyl. And the aromatic ring structure may be included.)
上記の R1 としては、 例えば、 フエニル、 1一ナフチル、 2—ナフチル、 9― アンスリル、 4ービフエニル、 2—ビフエニルなどが挙げられる。 R3 O— とし ては例えば、 水酸化物イオン、 アルコラ一トイオン、 アセテートイオンやァセチ ルァセトンィオンなどが挙げられる。 Examples of R 1 include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl and the like. Examples of R 3 O— include hydroxide ion, alcohol ion, acetate ion and acetylacetonion.
上記したリン化合物の中でも、 芳香環構造を有する化合物を用いると物性改善 効果や触媒活性の向上効果が大きく好ましい。  Among the above-mentioned phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are large.
上記式 (ィ匕 1 '7) の中でも、 Mが、 L i, Na、 K:、 Be、 Mg、 S r、 B a 、 Mn、 N i、 Cu、 Znから選択されたものを用いると触 性の向上効果が 大きく好ましレ、。 これらのうち、 L i、 Na、 Mgがとくに好ましい。  In the above formula (I-Dai 1'7), it is preferable that M is selected from L, Na, K :, Be, Mg, Sr, Ba, Mn, Ni, Cu, and Zn. The effect of improving sex is greatly preferred. Of these, Li, Na, and Mg are particularly preferred.
本発明のリンの金属塩化合物としては、 リチウム [ (1—ナフチル) メチルホ スホン酸ェチル] 、 ナトリウム [ (1一ナフチル) メチルホスホン酸ェチル] 、 マグネシウムビス [ (1一ナフチル) メチルホスホン酸ェチル] 、 カリウム [ ( 2一ナフチル) メチルホスホン酸ェチル]、マグネシウムビス [ (2—ナフチル ) メチルホスホン酸ェチル] 、 リチウム [ペンジルホスホン酸ェチル] 、 ナトリ ゥム [ベンジノレホスホン酸ェチル] 、 マグネシウムビス [ベンジルホスホン酸ェ チル] 、 ベリリウムビス [ベンジルホスホン酸ェチル] 、 ストロンチウムビス [ ベンジルホスホン酸ェチル] 、 マンガンビス [ベンジルホスホン酸ェチル] 、 ベ ンジ/レホスホン酸ナトリウム、 マグネシウムビス [ベンジルホスホン酸] 、 ナト リウム [ ( 9一アンスリル) メチルホスホン酸ェチル] 、 マグネシウムビス [ ( 9一アンスリル) メチルホスホン酸ェチル] 、 ナトリウム [ 4—ヒドロキシベン ジノレホスホン酸ェチノレ] 、 マグネシウムビス [ 4ーヒドロキシベンジノレホスホン 酸ェチル] 、 ナトリウム [ 4—クロ口べンジノレホスホン酸フエニル] 、 マグネシ ゥムビス [ 4一クロ口べンジルホスホン酸ェチル ]·'、 ナトリウム [ 4—ァミノべ ンジノレホスホン酸メチノレ] 、 マグネシウムビス [ 4ーァミノべンジルホスホン酸 メチル] 、 フエニルホスホン酸ナトリウム、 マグネシウムビス [フエニルホスホ ン酸ェチル] 、 亜鉛ビス [フエニルホスホン酸ェチル] などが挙げられる。 これ らの中で、 リチウム [ ( 1—ナフチル) メチルホスホン酸ェチル] 、 ナトリウム [ ( 1一ナフチル) メチルホスホン酸ェチル] 、 マグネシウムビス [ ( 1—ナフ チル) メチルホスホン酸ェチル] 、 リチウム [ベンジルホスホン酸ェチル] 、 ナ トリウム [ベンジノレホスホン酸ェチノレ] 、 マグネシウムビス [ベンジルホスホン 酸ェチノレ] 、 ベンジノレホスホン酸ナトリウム、 マグネシウムビス [ベンジノレホス ホン酸] がとくに好ましい。 Examples of the phosphorus metal salt compound of the present invention include lithium [(1-naphthyl) methylphosphonate], sodium [(1-naphthyl) methylphosphonate], magnesium bis [(1-naphthyl) methylphosphonate], potassium [(2-naphthyl) methylphosphonate], magnesium bis [(2-naphthyl) methylphosphonate], lithium [pentylphosphonate], sodium Pem [ethyl benzinolephosphonate], magnesium bis [benzyl phosphonate], beryllium bis [benzyl phosphonate], strontium bis [benzyl phosphonate], manganese bis [benzyl phenyl phosphonate], benzyl / Sodium Rephosphonate, Magnesium Bis [benzylphosphonic acid], Sodium [(91-anthryl) methylphosphonate], Magnesium bis [(9-1-anthryl) methylphosphonate], Sodium [4-hydroxybenzinolephosphonate], Magnesium Bis [4-hydroxybenzinolephosphonate], Sodium [4-cyclophenylene benzoylphosphonate], Magnesium bis [4-1-chlorobenzylphosphonate ethyl] · ', Sodium [4-aminobenzinolephos] Phosphate Mechinore], magnesium bis [4 Amino base Njiruhosuhon methyl], sodium Fueniruhosuhon acid, magnesium bis [Fueniruhosuho phosphate Echiru], zinc bis [Fueniruhosuhon acid Echiru] and the like. Of these, lithium [(1-naphthyl) methylphosphonate], sodium [(1-naphthyl) methylphosphonate], magnesium bis [(1-naphthyl) methylphosphonate], lithium [benzyl-ethylphosphonate] ], Sodium [ethynole benzinolephosphonate], magnesium bis [ethynole benzylphosphonate], sodium benzinolephosphonate, and magnesium bis [benzinolephosphonate] are particularly preferred.
上述したリン化合物の中でも、 本発明では、 リン化合物として P— O H結合を 少なくとも一つ有するリンィヒ合物がとくに好ましい。 これらのリン化合物を含有 することで本発明の課題であるポリエステノレの物' I"生改善効果がとくに高まること に加えて、 ポリエステルの重合時に、 これらのリン化合物を本発明のアルミ-ゥ ム化合物と共存して用いることで触媒活性の向上効果が大きく見られる。  Among the phosphorus compounds described above, in the present invention, a phosphorus compound having at least one P—OH bond is particularly preferred as the phosphorus compound. Including these phosphorus compounds not only enhances the effect of improving the properties of polyester (I), which is an object of the present invention, but also allows the phosphorus compounds of the present invention to be used during the polymerization of polyester. When used in combination with a compound, the effect of improving the catalytic activity is greatly seen.
P - 0H結合を少なくとも一つ有するリン化合物とは、 分子内に P— O Hを少なくと も一つ有するリン化合物であれば特に限定はされない。 これらのリン化合物の中 でも、 P— OH結合を少なくとも一つ有するホスホン酸系化合物を用いるとポリ エステルの物性改善効果や触媒活性の向上効果が大きく好ましい。 - 上記したリン化合物の中でも、 芳香環構造を有する化合物を用いると物性改善 効果や触 ¾性の向上効果が大きく好ましい。 本発明の P— O H結合を少なくとも一つ有するリン化合物としては、 下記一般 式 (ィヒ 1 8 ) で表される化合物から選択される少なくとも一種を用いると物性改 善効果や触媒活性の向上効果が大きく好ましい。 The phosphorus compound having at least one P-0H bond is not particularly limited as long as it is a phosphorus compound having at least one P-OH in the molecule. Among these phosphorus compounds, the use of a phosphonic acid-based compound having at least one P—OH bond is preferred because the effect of improving the physical properties of the polyester and the effect of improving the catalytic activity are large. -Among the above-mentioned phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the effect of improving physical properties and the effect of improving touch properties are large. As the phosphorus compound having at least one P—OH bond of the present invention, when at least one selected from compounds represented by the following general formula (Ich 18) is used, the effect of improving physical properties and the effect of improving catalyst activity are obtained. Is preferred.
[化 1 8 ]  [Formula 1 8]
0 0
II  II
R ~(CH2)n- •P- ■〇H R ~ (CH 2 ) n- • P-
OR 2  OR 2
(式 (ィヒ 1 8 ) 中、 R 1 は水素、 炭素数 1〜5 0の炭化水素基、 水酸基またはハ 口ゲン基またはァノレコキシノレ基またはァミノ基を含む炭素数 1〜 5 0の炭化水素 基を表す。 R 2 は、 水素、 炭素数 1〜 5 0の炭ィヒ水素基、 7_K酸基またはアルコキ シル基を含む炭素数 1〜5 0の炭化水素基を表す。 η は 1以上の整数を表す。 炭 化水素基はシキロへキシル等の脂環構造や分岐構造やフエニルゃナフチル等の芳 香環構造を含んでいてもよい。. ) (In the formula (Ig 18), R 1 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group, a halogen group, an anoRECOXINOLE group or an amino group. R 2 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a 7_K acid group or an alkoxy group, and η is an integer of 1 or more. The hydrocarbon group may contain an alicyclic structure such as cycloalkylhexyl, a branched structure, or an aromatic ring structure such as phenyl-naphthyl.
上記の R1 としては、 例えば、 フエニル、 1一ナフチル、 2—ナフチル、 9― アンスリル、 4—ビフエ二 2—ビフエニルなどが挙げられる。 上記の R2 と しては例えば、 水素、 メチノレ基、 ェチル基、 プロピノレ基、 イソプロピル基、 η - ブチル基、 s e c一ブチル基、 f e r t一ブチル基、 長鎖の脂肪族基、 フエ-ル 基、 ナフチル基、 置換されたフエ二ル基ゃナフチル基、 一 C H2 C H2 OHで表 される基などが挙げられる。 Examples of R1 include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl-2-biphenyl, and the like. Examples of R2 include hydrogen, methynole, ethyl, propynole, isopropyl, η-butyl, sec-butyl, fert-butyl, long-chain aliphatic groups, phenyl groups, Examples include a naphthyl group, a substituted phenyl group, a naphthyl group, and a group represented by one CH 2 CH 2 OH.
上記したリン化合物の中でも、 芳香環構造を有する化合物を用いると物性改善 効果や触媒活性の向上効果が大きく好ましい。  Among the above-mentioned phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the effect of improving the physical properties and the effect of improving the catalytic activity are large.
本発明の P— O H結合を少なくとも一つ有するリン化合物としては、 ( 1ーナ フチル) メチルホスホン酸ェチル、 (1一ナフチル) メチルホスホン酸、 (2— ナフチル) メチルホスホン酸ェチル、 ベンジルホスホン酸ェチル、 ベンジルホス ホン酸、 (9一アンスリル) メチルホスホン酸ェチル、 4ーヒドロキシベンジル ホスホン酸ェチノレ、 2—メチノレべンジノレホスホン酸ェチル、 4一クロ口べンジノレ ホスホン酸フエニル、 4—ァミノべンジルホスホン酸メチル、 4—メ トキシベン ジルホスホン酸ェチルなどが挙げられる。 これらの中で、 (1一ナフチル) メチ ルホスホン酸ェチル、 ベンジルホスホン酸ェチルがとくに好ましい。 Examples of the phosphorus compound having at least one P—OH bond according to the present invention include (1-naphthyl) methylphosphonate, (1-naphthyl) methylphosphonic acid, (2-naphthyl) methylphosphonate, ethylbenzyl, and benzylphosphonate. Honic acid, (9-anthryl) methyl ethyl phosphonate, 4-hydroxybenzyl Examples include ethynolephosphonate, 2-ethylmethynolebenzinolephosphonate, phenyl 4-methylbenzinolephosphonate, methyl 4-aminobenzylphosphonate, and ethyl 4-methoxybenzylphosphonate. Of these, (1-naphthyl) methylethyl phosphonate and benzylphosphonic acid ethyl are particularly preferred.
本発明の好ましいリン化合物としては、 化学式 (化 19) であらわされるリン 化合物が挙げられる。 '  As a preferred phosphorus compound of the present invention, a phosphorus compound represented by a chemical formula (Formula 19) can be mentioned. '
[化 1 9]  [Formula 1 9]
R1 -CH2 -P (=0) (OR2 ) (OR3 ) R 1 -CH 2 -P (= 0) (OR 2 ) (OR 3 )
(式 (ィヒ 19) 中、 R1 は炭素数:!〜 49の炭化水素基、 または水酸基またはハ ロゲン基またはアルコキシル基またはアミノ基を含む炭素数 1〜49の炭化水素 基を表し、 R2, R3 はそれぞれ独立に水素、 炭素数 1〜50の炭ィヒ水素基、 水酸 基またはアルコキシル基を含む炭素数 1〜 50の炭化水素基を表す。 炭化水素基 は脂環構造や分岐構造や芳香環構造を含んでいてもよい。 ) (In the formula (Ich 19), R 1 represents a hydrocarbon group having 1 to 49 carbon atoms, or a hydrocarbon group having 1 to 49 carbon atoms including a hydroxyl group, a halogen group, an alkoxyl group, or an amino group; 2 and R 3 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, or a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group. It may contain a branched structure or an aromatic ring structure.)
また、 更に好ましくは、 化学式 (ィヒ 19) 中の R1 , R2 , R3 の少なくとも 一つが芳香環構造を含む化合物である。 More preferably, the compound is a compound in which at least one of R 1 , R 2 , and R 3 in the chemical formula (Fig. 19) contains an aromatic ring structure.
これらのリン化合物の具体例を以下に示す。  Specific examples of these phosphorus compounds are shown below.
[化 20]  [Formula 20]
Figure imgf000052_0001
Figure imgf000052_0001
BPADE [化 21]BPADE [Formula 21]
Figure imgf000053_0001
Figure imgf000053_0001
置 A  A
[化 22][Formula 22]
Figure imgf000053_0002
Figure imgf000053_0002
2督 A 2 A
[化 23][Formula 23]
Figure imgf000053_0003
Figure imgf000053_0003
AMPA [化 2 4] AMPA [Formula 2 4]
Figure imgf000054_0001
Figure imgf000054_0001
4PBPADE 4PBPADE
[化 2 5 ] H5
Figure imgf000054_0002
[Formula 2 5] H 5
Figure imgf000054_0002
2PBPADE 2PBPADE
また、 本発明のリン化合物は、 分子量が大きいものの方が萆合時に留去されに くいため効果が大きく好ましい。  In addition, the phosphorus compound of the present invention having a large molecular weight has a large effect and is preferred because it is difficult to be distilled off at the time of bonding.
本発明のリン化合物としてはフエノール部を同一分子内に有するリン化合物を 用いることが好ましい。 また、 本 明のリン化合物とフエノール系化合物は互い に結合した化合物、 すなわちフエノール部を同一分子內に有するリン化合物であ ることが好ましい。 フエノール部を同一分子内に有するリン化合物を含有するこ とで本発明の課題であるポリエステルの物性改善効果が高まることに加えて、 ポ リエステルの重合時にフエノール部を同一分子内に有するリン化合物を用いるこ とで触 性を高める効果がより大きく、 従ってポリエステルの生産性に優れる 。 フエノール部を同一分子内に有するリン化合物を用いる場合、 その含有量は、 ポリエステル中におけるアルミニウム原子とリン原子の含有量が本発明の特許請 求の範囲内になるようにすることが必要である。 As the phosphorus compound of the present invention, it is preferable to use a phosphorus compound having a phenol moiety in the same molecule. Further, the phosphorus compound and the phenolic compound of the present invention are preferably compounds bonded to each other, that is, a phosphorus compound having a phenol moiety in the same molecule. By containing a phosphorus compound having a phenol moiety in the same molecule, the effect of improving the physical properties of the polyester, which is an object of the present invention, is enhanced.In addition, a phosphorus compound having a phenol moiety in the same molecule during polymerization of the polyester is improved. When used, the effect of enhancing the touch is greater, and therefore, the productivity of polyester is excellent. When a phosphorus compound having a phenol moiety in the same molecule is used, its content is determined by the content of the aluminum atom and the phosphorus atom in the polyester. It is necessary to be within the required range.
フエノ一ル部を同一分子内に有するリン化合物としては、 フエノール構造を有 するリンィ匕合物であれば特に限定はされないが、 フエノール部を同一分子内に有 する、 ホスホン酸系化合物、 ホスフィン酸系化合物、 ホスフィンオキサイド系化 合物、 亜ホスホン酸系化合物、 亜ホスフィン酸系化合物、 ホスフィン系ィ匕合物か らなる群より選ばれる一種または二種以上の化合物を用いるとポリエステルの物 性改善効果や触媒活性の向上効果が大きく好ましい。 これらの中でも、 一種また は二種以上のフエノール部を同一分子内に有するホスホン酸系化合物を用いると ポリエステルの物性改善効果や触媒活性の向上効果がとくに大きく好ましい。 フエノール部を同一分子内に有するリン化合物はヒンダードフエノールの構造 を有するものが好ましい。  The phosphorus compound having a phenol moiety in the same molecule is not particularly limited as long as it is a phosphorus-containing compound having a phenol structure, but a phosphonic acid compound or a phosphinic acid having a phenol moiety in the same molecule The properties of polyester are improved by using one or more compounds selected from the group consisting of phosphine oxide compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinous acid compounds, and phosphine compounds. The effect and the effect of improving the catalytic activity are large and preferable. Among these, the use of a phosphonic acid compound having one or more phenol moieties in the same molecule is particularly preferred because the effect of improving the physical properties of the polyester and the effect of improving the catalytic activity are particularly large. The phosphorus compound having a phenol moiety in the same molecule preferably has a hindered phenol structure.
本発明のフエノール部を同一分子内に有するリン化合物としては、 下記一般式 As the phosphorus compound having a phenol moiety in the same molecule of the present invention, the following general formula
(ィ匕 26) 〜 (ィ匕 28) で表されるィ匕合物が好ましい。 Preferred are the iris conjugates represented by (ii dan 26) to (ii dan 28).
[ィ匕 26], '  [Dani 26], '
P (=0) R1 (OR2 ) (OR3 ) [化 27] P (= 0) R 1 (OR 2 ) (OR 3 )
P (=0) R1 R4 (OR2 ) [化 28] P (= 0) R 1 R 4 (OR 2 )
P (=0) R1 R5 R6 P (= 0) R 1 R 5 R 6
(式 (ィヒ 26) 〜 (化 28) 中、 R1 はフエノール部を含む炭素数 1〜50の炭 化水素基、 水酸基またはハロゲン基またはアルコキシル基またはァミノ基などの 置換基おょぴフエノ一ル部を含む炭素数 1〜 50の炭化水素基を表す。 R 4, R 5 , 6 はそれぞれ独立に水素、 炭素数 1〜50の炭化水素基、 水酸基またはハ 口ゲン基またはァノレコキシル基またはァミノ基などの置換基を含む炭素数 1〜 5 0の炭化水素基を表す。 2 , R 3 はそれぞれ独立に水素、 炭素数 1〜5 0の炭 化水素基、 水酸基またはアルコキシル基などの 換基を含む炭素数:!〜 5 0の炭 化水素基を表す。 ただし、 炭化水素基は分岐構造ゃシクロへキシル等の脂環構造 やフエニルゃナフチル等の芳香環構造を含んでいてもよい。 R 2 と R4 の末端ど うしは結合していてもよい。 ) Wherein R 1 is a substituent such as a hydrocarbon group having 1 to 50 carbon atoms, including a phenolic moiety, a hydroxyl group, a halogen group, an alkoxyl group or an amino group. And represents a hydrocarbon group having 1 to 50 carbon atoms, including a hydrogen atom, and R 4 , R 5 and 6 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halo group. Represents a hydrocarbon group having 1 to 50 carbon atoms including a substituent such as a halogen group, an anorecoxyl group, or an amino group. 2 and R 3 each independently represent hydrogen, a hydrocarbon group having a carbon number of 1 to 50, a carbon number including a substituent such as a hydroxyl group or an alkoxyl group: a hydrocarbon group having a carbon number of! To 50. However, the hydrocarbon group may contain an alicyclic structure such as a branched structure ゃ cyclohexyl or an aromatic ring structure such as phenyl ゃ naphthyl. The ends of R 2 and R 4 may be linked. )
本発明のフエノール部を同一分子内に有するリンィ匕合物としては、 例えば、 p ーヒ ドロキシフエ二ノレホスホン酸、 ; —ヒ ドロキシフエニルホスホン酸ジメチノレ 、 p—ヒ ドロキシフエ二ノレホスホン酸ジェチノレ、 p—ヒ ドロキシフエ二ノレホスホ ン酸ジフエ-ノレ、 ビス (p—ヒ ドロキシフエニル) ホスフィン酸、 ビス (ρ—ヒ ドロキシフエ二ノレ) ホスフィン酸メチノレ、 ビス (p—ヒ ドロキシフエ-ノレ) ホス フィン酸フエ二ノレ、 ρ—ヒドロキシフエ-ノレフエ二ノレホスフィン酸、 ρ—ヒドロ キシフエ二ノレフエ二ノレホスフィン酸メチノレ、 p—ヒ ドロキシフエニルフェニノレホ スフイン酸フエ-ノレ、 ρ—ヒドロキシフエ二ノレホスフィン酸、 : —ヒドロキシフ ェニノレホスフィン酸メチノレ、 p—ヒ ドロキシフエ二ノレホスフィン酸フエ二ノレ、 ビ ス (p—ヒ ドロキシフエニル) ホスフィンオキサイド、 トリス (p—ヒ ドロキシ フエ二ノレ) ホスフィンォキサイ ド、 ビス ( p—ヒ ドロキシフエ二ノレ) メチルホス フィンオキサイド、 および下記式 (ィ匕 2 9 ) 〜 (ィヒ 3 2) で表される化合物など が挙げられる。 これらのうちで、 下記式 (ィヒ 3 1 ) で表される化合物および p— ヒドロキシフエ二 ホスホン酸ジメチ^^がとくに好ましい。  Examples of the phosphorylated compound having a phenol moiety in the same molecule of the present invention include: p-hydroxyphenylphosphonate phosphonate; -hydroxyphenylphosphonate dimethinole, p-hydroxyphenylphosphonate phospholipid, p-hydroxyphenylenephosphonate Doxy-phenoxy diphosphonate, bis (p-hydroxyphenyl) phosphinic acid, bis (ρ-hydroxyphenyl phenol) methinolate phosphinate, bis (p-hydroxyphenyl phenol) phosphinic acid, ρ- Hydroxyphen-norrefinolephosphinic acid, p-Hydroxypheninolepheninolephosphinic acid Methinole, p-Hydroxyphenylpheninolephosphinic acid Phenolate, ρ-Hydroxypheninolephosphinic acid, Metinole ninole phosphinate, p-hydroxyfif Phenylinodiphosphinic acid, bis (p-hydroxyphenyl) phosphine oxide, tris (p-hydroxyphenylinole) phosphine oxide, bis (p-hydroxyphenylinole) methylphosphine oxide, and the following formula Compounds represented by (I-29) to (I-32) are exemplified. Among these, a compound represented by the following formula (Ichi 31) and dimethyl p-hydroxyphenylphosphonate are particularly preferred.
[化 2 9 ]  [Formula 2 9]
Figure imgf000056_0001
[化 30]
Figure imgf000056_0001
[Formula 30]
Figure imgf000057_0001
Figure imgf000057_0001
[化 31][Formula 31]
Figure imgf000057_0002
Figure imgf000057_0002
[化 32][Formula 32]
Figure imgf000057_0003
上記の式 (ィ匕 31) にて示されるィ匕合物としては、 S厘 0-220 (三光株式会社 製) があり、 使用可能である。
Figure imgf000057_0003
Examples of the compound shown by the above formula (I-Dani 31) include S-Rin 0-220 (manufactured by Sanko Co., Ltd.), which can be used.
本 明のフエノール部を同一分子内に有するリンィ匕合物の中でも、 下記一般式 (ィ匕 33) で表される特定のリンの金属塩化合物から選択される少なくとも一種 がとくに好ましい。 [化 33]
Figure imgf000058_0001
Among the phosphorus conjugates having a phenol moiety in the same molecule according to the present invention, at least one selected from the specific metal salt compounds of phosphorus represented by the following general formula (III) is particularly preferred. [Formula 33]
Figure imgf000058_0001
( (式 (化 3 3) 中、 1^、 1 2 はそれぞれ独立に水素、 炭素数 1〜30の炭ィ匕 水素基を表す。 R3 は、 水素、 炭素数 1〜50の炭化水素基、 水酸基またはアル コキシル基を含む炭素数 1〜 50の炭化水素基を表す。 4 は、 水素、 炭素数 1 〜50の炭化水素基、 水酸基またはアルコキシル基またはカルボ-ルを含む炭素 数 1〜 50の炭ィヒ水素基を表す。 R4 O— としては例えば、 水酸化物イオン、 ァ ルコラートイオン、 ァセテ一トイオンゃァセチルアセトンイオンなどが挙げられ る。 1 は 1以上の整数、 mは 0 または 1以上の整数を表し、 1+mは 4以下である((In the formula (Formula 3 3), 1 ^, 1 2 each independently represents hydrogen, Sumyi匕hydrogen group having 1 to 30 carbon atoms. R 3 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms Represents a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group, and 4 represents a hydrocarbon group having 1 to 50 carbon atoms including hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group, or carbon. R 4 O— includes, for example, hydroxide ion, alcoholate ion, acetate ion, acetylacetone ion, etc. 1 is an integer of 1 or more, and m is Represents an integer of 0 or 1 or more, and 1 + m is 4 or less
。 Mは (1+m) 価の金属カチオンを表す。 n は 1以上の整数を表す。 炭化水素基は シキロへキシル等 脂環構造や分岐構造やフエニルゃナフチル等の芳香環構造を 含んでいてもよい。 ) . M represents a (1 + m) -valent metal cation. n represents an integer of 1 or more. The hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl-naphthyl. )
これらの中でも、 下記一般式 (化 34) で表される化合物から選択される少な くとも一種が好ましい。  Among them, at least one selected from compounds represented by the following general formula (Formula 34) is preferable.
[化 34] [Formula 34]
Figure imgf000058_0002
Figure imgf000058_0002
(式 (ィ匕 34) 中、 Mn+は n価の金属カチオンを表す。 nは 1, 2, 3または 4 を表す。 ) (Wherein, Mn + represents an n-valent metal cation; n is 1, 2, 3 or 4 Represents )
上記式 (ィ匕 3 3 ) または (ィ匕 3 4 ) の中でも、 Mが、 L i , N a、 K、 B e、 M g、 S r、 B a、 Mn、 N i、 C u、 Z nから選択されたものを用いると触媒 活性の向上効果が大きく好ましい。 これらのうち、 L i、 N a、 M gがとくに好 ましい。  In the above formulas (I-Dani 33) or (I-Dani 34), M is Li, Na, K, Be, Mg, Sr, Ba, Mn, Ni, Cu, Z It is preferable to use one selected from n because the effect of improving the catalyst activity is large. Of these, L i, N a, and M g are particularly preferred.
本発明の特定のリンの金属塩化合物としては、 リチウム [3, 5 —ジ— tert—ブ チノレー 4 ーヒドロキシベンジルホスホン酸ェチル] 、 ナトリウム [3, 5 —ジー te rt—ブチ —ヒドロキシベンジルホスホン酸ェチル] 、 ナトリウム [3, 5 — ジ一 tert—ブチノレー 4 ーヒドロキシベンジノレホスホン酸] 、 カリウム [3, 5 —ジ 一 tert—ブチルー 4 ーヒドロキシベンジルホスホン酸ェチル] 、 マグネシウムビ ス [3, 5 —ジ一 tert—プチル— 4 —ヒドロキシベンジルホスホン酸ェチル] 、 マ グネシゥムビス [3, 5 —ジ一tert—プチ _ /レー 4 ーヒドロキシベンジルホスホン酸 ] 、 ベリリウムビス [3, 5 —ジー tert—ブチルー 4 ーヒドロキシベンジルホスホ ン酸メチル] 、 ストロンチウムビス [3, 5 ージー tert—ブチルー 4 ーヒドロキシ ベンジルホスホン酸ェチル] 、 バリウムビス [3, 5 —ジ— tert—ブチル一4 ーヒ ドロキシベンジノレホスホン酸フエ-ノレ] 、 マンガンビス [3, 5 —ジ一tert—ブチ ルー 4 ーヒドロキシベンジルホスホン酸ェチル] 、 エッケノレビス [3, 5 —ジー te rt一ブチ^/ _4 ーヒドロキシベンジルホスホン酸ェチル] 、 銅ビス [3, 5 —ジ一 tert—プチルー 4 ーヒドロキシベンジルホスホン酸ェチル] 、 亜鉛ビス [3, 5 — ジー tert—プチノレ _4 ーヒドロキシべンジノレホスホン酸ェチノレ] などが挙げられ る。 これらの中で、 リチウム [3, 5 ージー tert—プチル一 4 ーヒドロキシベンジ ルホスホン酸ェチル] 、 ナトリウム [3, 5 —ジ一tert—プチルー 4 —ヒドロキシ ベンジルホスホン酸ェチノレ] 、 マグネシウムビス [3, 5 ージー tert—ブチルー 4 —ヒドロキシべンジルホスホン酸ェチル] がとくに好ましい。  Specific metal salt compounds of phosphorus according to the present invention include lithium [3,5-di-tert-butynole 4-hydroxybenzylphosphonate ethyl], sodium [3,5-di-tert-butyne-hydroxybenzylphosphonic acid] Ethyl], Sodium [3,5-di-tert-butynole 4-hydroxybenzinolephosphonic acid], Potassium [3,5-Di-tert-butyl-4-hydroxybenzylphosphonate], Magnesium bis [3,5] —Di-tert-butyl—4-hydroxyethylphosphonate], magnesium bis [3,5—di-tert-butyl_ / le 4-hydroxybenzylphosphonic acid], beryllium bis [3,5—di-tert-butyl] Methyl 4-hydroxybenzylphosphonate], strontium bis [3,5-di-tert-butyl-4-hydroxybenzylphosphonate] ), Barium bis [3,5-di-tert-butyl-1-hydroxy-4-benzyloxy-phosphonate], manganese bis [3,5-di-tert-butyl-4-ethyl benzylphosphonate] ], Eckenolevis [3,5-Diethyl tert-butyl / ethyl-4-hydroxybenzylphosphonate], Copper Bis [3,5-diethyltert-butyl-4-hydroxybenzylphosphonate], Zinc bis [3,5] 5 — G tert-Putinole_4-hydroxybenzinole phosphonate etinole]. Among these, lithium [3,5-di-tert-butyl-1-ethylhydroxylphosphonate], sodium [3,5-di-tert-butyl-4-hydroxyethyl phosphonate], magnesium bis [3,5] Tert-butyl-4-hydroxyethylbenzylphosphonate] is particularly preferred.
本努明のフエノール部を同一分子内に有するリン化合物の中でも、 下記一般式 Among the phosphorus compounds having a phenol moiety in the same molecule of the present invention, the following general formula
(化 3 5 ) で表される P— OH結合を少なくとも一つ有する特定のリン化合物か ら選択される少なくとも一種がとくに好ましい。 [化 35] At least one selected from specific phosphorus compounds having at least one P—OH bond represented by (Chemical Formula 35) is particularly preferable. [Formula 35]
Figure imgf000060_0001
Figure imgf000060_0001
( (式 (ィヒ 35) 中、 R1 、 R2 はそれぞれ独立に水素、 炭素数 1〜30の炭化 水素基を表す。 R3 は、 水素、 炭素数:!〜 50の炭化水素基、 水酸基またはアル コキシル基を含む炭素数 1〜50の炭化水素基を表す。 nは 1以上の整数を表す 。 炭化水素基はシキ口へキシノレ等の脂環構造や分岐構造ゃフェニルゃナフチル等 の芳香環構造を含んでいてもよい。 ) ((In the formula (Ich 35), R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 30 carbon atoms. R 3 represents hydrogen, a hydrocarbon group having from 50 to 50 carbon atoms, Represents a hydrocarbon group having 1 to 50 carbon atoms, including a hydroxyl group or an alkoxyl group, and n represents an integer of 1 or more.The hydrocarbon group is an alicyclic structure such as a cis or hexinole or a branched structure such as a phenyl ゃ naphthyl. It may contain an aromatic ring structure.)
これらの中でも、 下記一般式 (ィヒ 36) で表される化合物から選択される少な くとも一種が好ましい。  Among these, at least one selected from the compounds represented by the following general formula (Ich 36) is preferable.
[化 36]  [Formula 36]
Figure imgf000060_0002
Figure imgf000060_0002
(式 (ィヒ 36) 中、 R3 は、 水素、 炭素数 1〜50の炭化水素基、 水酸基または アルコキシル基を含む炭素数:!〜 50の炭化水素基を表す。 炭化水素基はシキロ へキシル等の脂環構造や分岐構造やフエニルゃナフチル等の芳香環構造を含んで いてもよい。 ) (In the formula (Ich 36), R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group including a hydroxyl group or an alkoxyl group: a hydrocarbon group having 50 to 50 carbon atoms. It may contain an alicyclic structure or branched structure such as xyl, or an aromatic ring structure such as phenyl-naphthyl.)
上記の R3 としては例えば、 水素、 メチル基、 ェチノレ基、 プロピル基、 イソプ 口ピル基、 n—ブチノレ基、 s e c—プチル基、 t e r ΐ—ブチノレ基、 長鎖の脂肪 族基、 フエニル基、 ナフチル基、 置換されたフエ二ル基ゃナフチル基、 一 C H 2 C H2 〇Hで表される基などが拳げられる。 Examples of the above-mentioned R 3 may be hydrogen, methyl, Echinore group, a propyl group, isopropoxy port propyl group, n- Buchinore group, s e c- heptyl group, ter I- Buchinore group, a long chain fatty Group, phenyl group, naphthyl group, substituted phenyl group ゃ naphthyl group, group represented by one CH 2 CH 2 〇H, and the like.
本努明の] P— O H結合を少なくとも一つ有する特定のリン化合物としては、 3, 5 ージー tert—ブチルー 4 ーヒドロキシベンジルホスホン酸ェチル、 3, 5 —ジー tert—ブチルー 4 —ヒドロキシベンジルホスホン酸メチル、 3, 5 —ジ— ter—ブ チル一 4 ーヒドロキシベンジルホスホン酸イソプロピル、 3, 5 —ジ一 tert—プチ ノレ一 4 ーヒドロキシベンジルホスホン酸フエ二ノレ、 3, 5 ージー tert—ブチノレー 4 ーヒドロキシベンジルホスホン酸ォクタデシル、 3, 5 —ジ一tert—プチルー 4 - ヒドロキシベンジルホスホン酸などが挙げられる。 これらの中で、 3, 5 —ジー te 一プチノレ一 4 ーヒドロキシベンジノレホスホン酸ェチノレ、 3, 5 —ジー tert—プチ' ルー 4 一ヒドロキシベンジノレホスホン酸メチルがとくに好ましい。  Specific phosphorus compounds having at least one P-OH bond of the present invention include ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and 3,5-di-tert-butyl-4-hydroxybenzylphosphonate. Methyl, 3,5-di-tert-butyl-isopropyl-4-hydroxybenzylphosphonate Isopropyl, 3,5-di-tert-butyltin 4-hydroxybenzylphosphonate pheninole, 3,5-zy-tert-butynole 4 Octadecyl-hydroxybenzylphosphonate, 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid, and the like. Among these, methyl 3,5-di-tert-butyl-4-hydroxybenzinolephosphonate and methyl 3,5-di-tert-butyl-ru-4-hydroxybenzinolephosphonate are particularly preferred.
本突明のフエノール部を同一分子内に有するリン化合物の中でも、 下記一般式 Among the phosphorus compounds having the phenol moiety of the present invention in the same molecule, the following general formula
(化 3 7 ) で表される特定のリン化合物から選ばれる少なくとも一種のリン化合 物が好ましい。 At least one phosphorus compound selected from the specific phosphorus compounds represented by (Chem. 37) is preferable.
[化 3 7 ]  [Formula 3 7]
Figure imgf000061_0001
Figure imgf000061_0001
(上記式 (ィ匕 3 7 ) 中、 R 1 、 R 2 はそれぞれ独立に水素、 炭素数 1〜 3 0の炭 化水素基を表す。 R 3 、 R 4 はそれぞれ独立に水素、 炭素数 1〜 5 0の炭化水素 基、 水酸基またはアルコキシル基を含む炭素数 1〜 5 0の炭化水素基を表す。 n は 1以上の整数を表す。 炭化水素基はシク口へキシル等の脂環構造や分岐構造や フエニルゃナフチル等の芳香環構造を含んでいてもよい。 ) (In the formula (I-Dai 37), R 1 and R 2 each independently represent hydrogen and a hydrocarbon group having 1 to 30 carbon atoms. R 3 and R 4 each independently represent hydrogen and 1 carbon atoms. Represents a hydrocarbon group having 1 to 50 carbon atoms including a hydrocarbon group, a hydroxyl group or an alkoxyl group of from 50 to 50. n represents an integer of 1 or more. The hydrocarbon group is an alicyclic structure such as cyclohexyl or the like. It may contain a branched structure or an aromatic ring structure such as phenyl-naphthyl.)
上記一般式 (ィ匕 3 7 ) の中でも、 下記一般式 (ィヒ 3 8 ) で表されるィ匕合物から 選択される少なくとも一種を用いるとポリエステルの物性改善効果や触 性の 向上効果が高く好ましい。 [化 3 8 ] Among at least one of the above-mentioned general formulas (I-Sha 37), the use of at least one kind selected from the following formulas (I-Sha 38) can improve the physical properties and the tactility of the polyester. High and preferred. [Formula 3 8]
Figure imgf000062_0001
Figure imgf000062_0001
(上記式 (ィ匕 3 8 ) 中、 R 34 はそれぞれ独立に水素、 炭素数 1〜5 0の炭 化水素基、 水酸基またはアルコキシル基を含む炭素数 1〜 5 0の炭化水素基を表 す。 炭化水素基はシク口へキシル等の脂環構造や分岐構造やフエニルゃナフチル 等の芳香環構造を含んでいてもよい。 ) (In the above formula (I-Sha 38), R 3 and R 4 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group. The hydrocarbon group may contain an alicyclic structure or branched structure such as cyclohexyl or an aromatic ring structure such as phenyl-naphthyl.
上記の R 34 としては例えば、 水素、 メチル基、 プチル基等の短鎖の脂肪 族基、 ォクタデシル等の長鎖の脂肪族基、 フエニル基、 ナフチル基、 置換された フエ二ル基ゃナフチル基等の芳香族基、 - CH2 CH2 OHで表される基などが 挙げられる。 Examples of R 3 and R 4 include a short-chain aliphatic group such as hydrogen, a methyl group and a butyl group, a long-chain aliphatic group such as octadecyl, a phenyl group, a naphthyl group, and a substituted phenyl group. An aromatic group such as a naphthyl group; a group represented by —CH 2 CH 2 OH;
本発明の特定のリン化合物としては、 3, 5 —ジー tert—プチルー 4 ーヒドロキ シベンジルホスホン酸ジイソプロピル、 3, 5 —ジー tert—プチノレ _4 —ヒドロキ シベンジノレホスホン酸ジー n—ブチ^/、 3, 5 —ジー tert—ブチノレー 4 —ヒドロキ シべンジノレホスホン酸ジォクタデシノレ、 3, 5 —ジー tert—プチルー 4 —ヒドロキ シベンジルホスホン酸ジフエ-ルなどが挙げられる。 これらの中で、 3, 5 —ジー tert—ブチノレー 4 ーヒドロキシベンジルホスホン酸ジォクタデシノレ、 3, 5 —ジー •tert—プチノレ一 4 ーヒドロキシベンジルホスホン酸ジフエエルがとくに好ましい 本発明のフエノール部を同一分子内に有するリン化合物の中でも、 本発明でと くに望ましい化合物は、 化学式 (ィヒ 3 9 ) 、 (ィ匕 4 0 ) で表される化合物から選 ばれる少なくとも一種のリン化合物である。 [化 39] Specific phosphorus compounds of the present invention include diisopropyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, 3,5-di-tert-butynole_4 -hydroxybenzinolephosphonate di-n-butyl ^ /, 3 , 5-Di-tert-butynole 4-dihydroxydecinolephosphonate, 3,5-di-tert-butyl-4, hydroxybenzylphosphonate diphenyl, and the like. Among these, 3,5-di-tert-butynole 4-hydroxybenzylphosphonic acid dioctadecinole and 3,5-di-tert-butynole-1 4-hydroxybenzylphosphonic acid diphenyl are particularly preferred. Among the phosphorus compounds having the above, a particularly desirable compound in the present invention is at least one phosphorus compound selected from the compounds represented by the chemical formulas (Ihi 39) and (Ihi 40). [Formula 39]
Figure imgf000063_0001
Figure imgf000063_0001
[化 40] [Formula 40]
Figure imgf000063_0002
Figure imgf000063_0002
上記の化学式 (ィ匕 39) にて示されるィ匕合物としては、 I r g a n o x l 22 2 (チバ .スペシャルティーケミカノレズ社製) が市販されており、 また化学式 ( ィ匕 40) にて示されるィ匕合物としては I r g a n o X 1425 (チバ ·スぺシャ ルティ一ケミカルズネ環) が市販されており、 使用可能である。 Irganoxl 222 (manufactured by Ciba Specialty Chemicals) as a compound represented by the above chemical formula (I-Dani 39) is commercially available, and is also represented by the chemical formula (I-Dani 40). Irgano X 1425 (Ciba-specialty-chemicals ring) is commercially available and usable.
本発明のリンィ匕合物としては、 リン化合物のアルミニウム塩から選択される少 なくとも一種を用いることが好ましい。 また、 本発明のポリエステルに含有され るアルミニウム化合物とリン化合物はリンィ匕合物のアルミニウム塩から選択され る少なくとも一種からなるものであることが好ま! い。 リン化合物のアルミ-ゥ ム塩を含有することで本発明の課題であるポリエステルの物性改善効果が高まる ことに加えて、. ポリエステルの重合時にリン化合物のアルミニウム塩を用いるこ とで触 性が高く、 従ってポリエステルの生産性に優れる。 リン化合物のアル ミニゥム塩に他のアルミニゥム化合物やリン化合物ゃフェノール系化合物を共存 することも可能である。 リン化合物のアルミニウム塩を用いる 、 その含有量 は、 ポリエステル中におけるアルミニウム原子とリン原子の含有量が本発明の特 許請求の範囲内になるようにすることが必要である。 As the phosphorus conjugate of the present invention, it is preferable to use at least one selected from aluminum salts of phosphorus compounds. The aluminum compound and the phosphorus compound contained in the polyester of the present invention are preferably composed of at least one selected from aluminum salts of phosphorus conjugates. Including the aluminum salt of a phosphorus compound not only enhances the effect of improving the physical properties of the polyester, which is the subject of the present invention, but also increases the tactility by using the aluminum salt of a phosphorus compound during the polymerization of the polyester. Therefore, the productivity of polyester is excellent. It is also possible to coexist another aluminum compound or a phosphorus compound / phenol compound in the aluminum salt of the phosphorus compound. When an aluminum salt of a phosphorus compound is used, the content of the aluminum and phosphorus atoms in the polyester is a feature of the present invention. It needs to be within the scope of the claims.
リン化合物のアルミニウム塩とは、 アルミニウム部を有するリン化合物であれ ば特に限定はされないが、 ホスホン酸系化合物のアルミニゥム塩を用いるとポリ エステルの物性改善効果や触媒活性が高いため好ましい。 リン化合物のアルミ二 ゥム塩としては、 モノアノレミニゥム塩、 ジァノレミニゥム塩、 トリアノレミニゥム塩 などが含まれる。  The aluminum salt of the phosphorus compound is not particularly limited as long as it is a phosphorus compound having an aluminum portion. However, it is preferable to use an aluminum salt of a phosphonic acid compound because the effect of improving the physical properties of the polyester and the catalytic activity are high. The aluminum salt of a phosphorus compound includes a monoanoreminium salt, a dianoreminium salt, a trianoreminium salt, and the like.
上記したリン化合物のアルミニウム塩の中でも、 芳香環構造を有する化合物を 用いるとポリエステルの物性改善効果や蝕 性が高いため好ましい。  Among the above-mentioned aluminum salts of phosphorus compounds, the use of a compound having an aromatic ring structure is preferable because the effect of improving the physical properties of the polyester and the corrosiveness are high.
本発明のリン化合物のアルミニウム塩としては、 下記一般式 (ィ匕 4 1 ) で表さ れる化合物から選択される少なくとも一種を用いるとポリエステルの物性改善効 果ゃ触 性が高いため好ましい。  As the aluminum salt of the phosphorus compound of the present invention, it is preferable to use at least one selected from the compounds represented by the following general formula (I-Dai 41) because the effect of improving the physical properties of the polyester is high and the contact property is high.
[化 4 1 ]  [Formula 4 1]
Al3+(RJCT)
Figure imgf000064_0001
Al 3+ (R J CT)
Figure imgf000064_0001
( (式 (ィ匕 4 1 ) 中、 R 1 は水素、 炭素数 1〜 5 0の炭化水素基、 水酸基または ハ口ゲン基またはアルコキシル基またはァミノ基を含む炭素数 1〜 5 0の炭化水 素基を表す。 R 2 は、 水素、 炭素数 1〜 5 0の炭化水素基、 水酸基またはアルコ キシル基を含む炭素数 〜 5 0の炭化水素基を表ず。 R 3 は、 水素、 炭素数 1〜 5 0の炭化水素基、 水酸基またはアルコキシル基またはカルボニルを含む炭素数 1〜5 0の炭化水素基を表す。 1 は 1以上の整数、 mは 0 または 1以上の整数を 表し、 1+m は 3 である。 n は 1以上の整数を表す。 炭化水素基はシキロへキシノレ 等の脂環構造や分岐構造やフエ-ルゃナフチル等の芳香環構造を含んでいてもよ い。 ) (In the formula, R 1 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, including a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group. R 2 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a hydrocarbon group having 50 or more carbon atoms including an alkoxy group, and R 3 represents hydrogen or carbon atoms. Represents a hydrocarbon group having 1 to 50 carbon atoms including a hydrocarbon group of 1 to 50, a hydroxyl group, an alkoxyl group or a carbonyl, 1 represents an integer of 1 or more, m represents 0 or an integer of 1 or more, and 1+ m is 3. n represents an integer of 1 or more.The hydrocarbon group may include an alicyclic structure such as cyclohexanol, a branched structure, or an aromatic ring structure such as phenylnaphthyl.)
上記の R 1 としては、 例えば、 フエニル、 1一ナフチノレ、 2—ナフチノレ、 9一 アンスリル、 4ービフエ二ノレ、 2一ビフエ二ノレなどが挙げられる。 上記の R 2 と しては例えば、 水素、 メチル基、 ェチノレ基、 プロピル基、 イソプロピル基、 n - ブチル基、 s e c一ブチル基、 t e r ΐ—プチノレ基、 長鎖の脂肪族基、 フエ二ノレ 基、 ナフチル基、 置換されたフヱニル基ゃナフチル基、 一 C H2 C H2 OHで表 される基などが挙げられる。 上記の R 3 O— としては例えば、 水酸化物イオン、 ァノレコラートイオン、 エチレングリコラートイオン、 アセテートイオンやァセチ ルアセトンイオンなどが挙げられる。 Examples of the above R 1 include phenyl, 1-naphthinole, 2-naphthinole, 9-1 anthryl, 4-bipheninole, 2-bipheninole and the like. As the above R 2 , for example, hydrogen, methyl group, ethynole group, propyl group, isopropyl group, n- Butyl group, sec-butyl group, tert-butyl group, long-chain aliphatic group, phenyl group, naphthyl group, substituted phenyl group naphthyl group, group represented by CH 2 CH 2 OH, etc. Is mentioned. Examples of R 3 O— include a hydroxide ion, an anocholate ion, an ethylene glycolate ion, an acetate ion and an acetylacetone ion.
本発明のリン化合物のアルミニウム塩としては、 (1一ナフチル) メチルホス ホン酸ェチルのアルミニウム塩、 一ナフチル) メチルホスホン酸のアルミ二 ゥム塩、 (.2—ナフチノレ) メチルホスホン酸ェチルのァノレミニゥム塩、 ベンジノレ ホスホン酸ェチノレのァノレミニゥム塩、 ベンジルホスホン酸のアルミニウム塩: ( 9一アンスリル) メチルホスホン酸ェチルのアルミニウム塩、 4ーヒドロキシべ ンジルホスホン酸ェチルのアルミニウム塩、 2—メチルベンジルホスホン酸ェチ ルのアルミニゥム塩、 4—クロ口ベンジルホスホン酸フェニルのアルミニゥム塩 、 4—ァミノべンジルホスホン酸メチルのアルミニウム塩、 4ーメ トキシべンジ ルホスホン酸ェチルのアルミニウム塩、 フエ -ルホスホン酸ェチルのアルミニゥ ム塩などが挙げられる。 これらの中で、 (1—ナフチル) メチルホスホン酸ェチ ルのアルミニウム塩、 ベンジルホスホン酸ェチルのアルミニウム塩がとくに好ま しい。  Examples of the aluminum salt of the phosphorus compound of the present invention include an aluminum salt of (1-naphthyl) methylphosphonate, an aluminum salt of mononaphthyl) methylphosphonic acid, an anolemminium salt of (.2-naphthinole) methylethylphosphonate, and benzoinolenate. Anoreminium salt of ethyl phosphonate, aluminum salt of benzylphosphonic acid: (91-anthryl) aluminum salt of methylethyl phosphonate, aluminum salt of ethyl 4-hydroxybenzylphosphonate, aluminum salt of ethyl 2-methylbenzylphosphonate, 4 -Aluminum salts of phenyl benzylphosphonate, aluminum salts of methyl 4-aminobenzylphosphonate, aluminum salts of ethyl 4-methoxybenzylphosphonate, aluminum salts of ethyl ethyl phenylphosphonate, etc. It is below. Of these, the aluminum salt of (1-naphthyl) methylphosphonate and the aluminum salt of benzylphosphonate are particularly preferred.
本発明のリン化合物のアルミニウム塩としては、 フエノール構造を有するリン ィ匕合物のアルミニゥム塩から選択される少なくとも一種からなるものであること が好ましい。 また、 本発明のポリエステルに含有されるアルミニウム化合物とリ ン化合物とフエノ一ル系ィ匕合物はフエノール構造を有するリンィ匕合物のアルミ二 ゥム塩から選択される少なくとも一種からなるものであることが好ましい。 フエ ノール構造を有するリン化合物のアルミ二ゥム塩を含有することで本発明の課題 であるポリエステルの物性改善効果が高まることに加えて、 ポリエステルの重合 時にフエノール構造を有するリン化合物のアルミニウム塩を用いることで触 性が高く、 従ってポリエステルの生産性に優れる。 フエノール構造はヒンダード フエノールの構造であることが好ましい。 フエノール構造を有するリン化合物の アルミユウム塩に他のアルミ二ゥム化合物やリン化合物やフエノール系化合物を 共存することも可能である。 フエノール構造を有するリン化合物のアルミニゥム 塩を用いる場合、 その含有量は、 ポリエステル中におけるアルミニウム原子とリ ン原子の含有量が本発明の特許請求の範囲内になるようにすることが必要である 本発明のフエノール構造を有するリン化合物のアルミ ゥム塩の中でも、 下記The aluminum salt of the phosphorus compound of the present invention is preferably composed of at least one selected from aluminum salts of phosphorus conjugates having a phenol structure. Further, the aluminum compound, the phosphorus compound and the phenol-based conjugate contained in the polyester of the present invention are composed of at least one selected from aluminum salts of a phosphorus-based conjugate having a phenol structure. Preferably, there is. By containing an aluminum salt of a phosphorus compound having a phenol structure, the effect of improving the physical properties of the polyester, which is an object of the present invention, is enhanced. When used, it has high tactility and therefore has excellent polyester productivity. The phenol structure is preferably a hindered phenol structure. It is also possible to coexist another aluminum compound, a phosphorus compound or a phenolic compound with the aluminum salt of a phosphorus compound having a phenol structure. Aluminum of phosphorus compound having phenol structure When a salt is used, it is necessary that the content thereof be such that the content of aluminum atoms and phosphorus atoms in the polyester falls within the scope of the claims of the present invention. The phosphorus compound having a phenol structure of the present invention Among the aluminum salts,
—般式 (化 4 2 ) で表される特定のリン化合物のアルミ ゥム塩から選択される 少なくとも一種がとくに好ましい。 —At least one selected from aluminum salts of specific phosphorus compounds represented by the general formula (Formula 42) is particularly preferred.
[化 4 2 ]  [Formula 4 2]
Figure imgf000066_0001
Figure imgf000066_0001
( (式 (化 4 2) 中、 R 1 、 R 2 はそれぞれ独立に水素、 炭素数 1〜3 0の炭化 水素基を表す。 3 は、 水素、 炭素数:!〜 5 0の炭化水素基、 水酸基またはアル コキシル基を含む炭素数 1〜5 0の炭化水素基を表す。 R4 は、 水素、 炭素数 1 〜5 0の炭化水素基、 水酸基またはアルコキシル基またはカルボニルを含む炭素 数 1〜 5 0の炭化水素塞を表す。 1 は 1以上の整数、 m は 0'または 1以上の整数 を表し、 1+mは 3 である。 n は 1以上の整数を表す。 炭化水素基はシキロへキシ ノレ等の脂環構造や分岐構造やフエニルゃナフチル等の芳香環構造を含んでいても よい。 ) ((In the formula, R 1 and R 2 each independently represent hydrogen or a hydrocarbon group having 1 to 30 carbon atoms. 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms.) Represents a hydrocarbon group having 1 to 50 carbon atoms, including a hydroxyl group or an alkoxyl group, and R 4 represents a hydrocarbon group having 1 to 50 carbon atoms, including hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, an alkoxyl group, or a carbonyl group. Represents a hydrocarbon block of 50. 1 represents an integer of 1 or more, m represents 0 'or an integer of 1 or more, and 1 + m is 3. n represents an integer of 1 or more. It may contain an alicyclic structure or a branched structure such as hexinole, or an aromatic ring structure such as phenyl-naphthyl.)
これらの中でも、 下記一般式 (ィ匕 4 3 ) で表されるィ匕合物から選択される少な くとも一種が好ましい。 [化 4 3 ] Among them, at least one kind selected from the iris products represented by the following general formula (I dan 43) is preferable. [Formula 4 3]
Al3+(R40")m
Figure imgf000067_0001
Al 3+ (R 4 0 ") m
Figure imgf000067_0001
(式 (化 4 3 ) 中、 R3 は、 水素、 炭素数 1〜 5 0の炭化水素基、 水酸基または アルコキシル基を含む炭素数 1〜5 0の炭化水素基を表す。 R 4 は、 水素、 炭素 数 1〜 5 0の炭化水素基、 7k酸基またはアルコキシル基または力ルポエルを含む 炭素数 1〜 5 0の炭化水素基を表す。 1 は 1以上の整数、 m は 0 または 1以上の 整数を表し、 1+m は 3である。 炭ィヒ水素基はシキロへキシル等の脂環構造や分岐 構造やフエニルゃナフチル等の芳香環構造を含んでいてもよレ、。 ) (In the formula, R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group, and R 4 represents hydrogen. Represents a hydrocarbon group having 1 to 50 carbon atoms, including a hydrocarbon group having 1 to 50 carbon atoms, a 7k acid group or an alkoxyl group or a hydrocarbon group having 1 to 50 carbon atoms, where 1 is an integer of 1 or more, and m is 0 or 1 or more. Represents an integer, and 1 + m is 3. The hydrocarbon group may include an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl-naphthyl.
上記の R 3 としては例えば、 水素、 メチル基、 ェチル基、 プロピル基、 イソプ 口ピル基、 n—プチル基、 s e c一ブチル基、 t e r t一プチル基、 長鎖の脂肪 族基、 フエ二ノレ基 ナフチル基、 置換されたフエ二ル基ゃナフチル基、 - CH 2 C H2 OHで表される基などが挙げられる。 上記の R 4 O— としては例えば、 水 酸ィ匕物イオン、 アルコラ一トイオン、 エチレングリコラートイオン、 アセテート イオンゃァセチルァセトンイオンなどが挙げられる。 Examples of R 3 include hydrogen, methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, long-chain aliphatic, and phenylene groups. A naphthyl group; a substituted phenyl group; a naphthyl group; a group represented by —CH 2 CH 2 OH; Examples of the above R 4 O— include a hydroxide ion, an alcoholate ion, an ethylene glycolate ion, an acetate ion and a acetylethyl acetate ion.
本発明の特定のリン化合物のアルミニウム塩とじては、 3, 5 ージー tert—ブチ ルー 4 ーヒ ドロキシベンジルホスホン酸ェチルのアルミ-ゥム塩、 3, 5 ージ一 te rt一プチルー 4 ーヒドロキシベンジノレホスホン酸メチノレのァノレミ-ゥム塩、 3, 5 ージー tert—ブチルー 4 —ヒドロキシベンジル.ホスホ^/酸イソプロピルのアルミ ニゥム塩、 3, 5 —ジー tert—ブチル一4 —ヒドロキシベンジルホスホン酸フエ二 ノレのァノレミニゥム塩、 3, 5 —ジー tert—ブチルー 4 —ヒ ドロキシベンジルホスホ ン酸のアルミユウム塩などが挙げられる。 これらの中で、 3, 5 —ジ一 tert—プチ ルー 4 ーヒドロキシベンジノレホスホン酸ェチルのアルミユウム塩、 3, 5 ージ一 te rt一プチルー 4 ーヒドロキシベンジノレホスホン酸メチルのアルミニウム塩がとく に好ましい。 The aluminum salt of the specific phosphorus compound of the present invention includes aluminum salt of 3,5-di-tert-butyl 4-ethyl benzylphosphonate, 3,5-di-tert-butyl-ethyl ester. Aminolemic acid salt of methinole hydroxybenzinolephosphonic acid, aluminum salt of 3,5-di-tert-butyl-4-hydroxybenzyl.phospho ^ / isopropyl oxyacid, 3,5-di-tert-butyl-1-hydroxybenzylphosphonate Examples include phenolic aluminum salts, and aluminum salts of 3,5-di-tert-butyl-4-hydroxyhydroxyphosphonate. Among these, aluminum salts of ethyl 3,5-di-tert-butyl-4-hydroxybenzinolephosphonate and aluminum salts of methyl 3,5-di-tert-butyl-1-hydroxybenzinolephosphonate are particularly preferred. Preferred.
上記したリン化合物の中で、 アル力リ金属、 アル力リ土類金属またはアルミ二 ゥムの塩を用いる場合、 それらの添加量としては、 最終的に得られるポリエステ ル中における金属原子ゃリン原子の含有量が本発明の特許請求の範囲内になるよ うにすることが必要である。 該方法により、 ポリエステルに不溶性の異物の発生 が効果的に抑制され、 紡糸時の糸切れや成形時のフィルター詰まり等の問題が改 善される。  When an alkali metal, an alkaline earth metal, or an aluminum salt is used in the above phosphorus compound, the amount of the metal atom in the finally obtained polyester is determined as the amount of phosphorus added. It is necessary that the atomic content be within the scope of the claims of the present invention. By this method, the generation of foreign matters insoluble in polyester is effectively suppressed, and problems such as yarn breakage during spinning and filter clogging during molding are improved.
本発明において重合触媒として添加可能なアンチモン化合物としては、 好適な ィ匕合物として三酸化アンチモン、 五酸化アンチモン、 酢酸アンチモン、 アンチモ ングリコキサイドなどが挙げられ、 特に三酸化アンチモンの使用が好ましい。 ま た、 ゲノレマニウム化合物としては、 二酸化ゲルマニウム、 四塩化ゲルマユゥムな どが挙げられ、 特に二酸ィヒゲルマニウムが好ましい。 二酸化ゲルマニウムとして は結晶性のものと非晶性のものの両方が使用できる。  Examples of the antimony compound that can be added as a polymerization catalyst in the present invention include antimony trioxide, antimony pentoxide, antimony acetate, and antimony glycooxide as suitable conjugates, and the use of antimony trioxide is particularly preferable. Examples of the genolemanium compound include germanium dioxide, germanium tetrachloride, etc., and particularly preferred is diggermanium dioxide. Both crystalline and amorphous germanium dioxide can be used.
また、 チタン化合物、 スズ化合物などの他の重^虫媒としては、 チタン化合物 としては、 テトラー n—プロピルチタネート、 テトライソプロピルチタネート、 テトラ一 n—プチルチタネート、 テトライソブチルチタネート、 テトラ _ t e r t—ブチルチタネート、 テトラシクロへキシノレチタネート、 テトラフ 二ノレチタ ネート、 テトラベンジ^^チタネート、 參酸チタン酸リチウム、 蓚酸チタン酸カリ ゥム、 篠酸チタン酸アンモニゥム、 酸化チタン、 チタンとケィ素やジルコニウム やアル力リ金属やアル力リ土類金属などとの複合酸化物、 チタンのオルトエステ ルまたは縮合オルトエステル、 チタンのオルトエステルまたは縮合オルトエステ ルとヒ ドロキシカルボン酸からなる反応生成物、 チタンのオルトエステノレまたは 縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物、 チタンのオルトエステルまたは縮合オルトエステルと少なくとも 2個のヒ ドロキ シル基を有する多価アルコール、 2—ヒドロキシカルボン酸および塩基からなる 反応生成物などが挙げられ、 このうちチタンとケィ素の複合酸化物、 チタンとマ グネシゥムの複合酸ィ匕物、 チタンのオルトエステルまたは縮合オルトエステルと ヒドロキシカルボン酸とリン化合物からなる反応生成物が好ましい。 またスズィ匕 合物としては、 ジブチノレスズオキサイド、 メチノレフエニノレスズオキサイド、 テト ラエチノレスズ、 へキサェチノレジスズオキサイド、 トリエチノレスズハイド口ォキサ イ ド、 モノプチルヒ ドロキシスズオキサイ ド、 トリイソプチルスズアセテート、 ジフエニルスズジラウレート、 モノプチ/レスズトリクロライド、 ジブチルスズサ ルファイ ド、 ジブチノレヒ ドロキシスズォキサイ ド、 メチルスタンノン酸、 ェチル スタンノン酸などが挙げられ、 特にモノブチルヒドロキシスズォキサイドの使用 が好ましい。 Other heavy media such as titanium compounds and tin compounds include: titanium compounds such as tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, and tetra-tert-butyl titanate. , Tetracyclohexinoretitanate, tetrafinoretitanate, tetrabenzi ^^ titanate, lithium titanate, potassium oxalate, ammonium oxalate, ammonium titanate, titanium oxide, titanium and silicon, zirconium and alkali metal Oxide or condensed orthoester of titanium, reaction product of orthoester or condensed orthoester of titanium and hydroxycarboxylic acid, orthoester of titanium, orthoester of titanium Or condensation Reaction product consisting of toester, hydroxycarboxylic acid and phosphorus compound, polyhydric alcohol having at least two hydroxy groups with orthoester or condensed orthoester of titanium, reaction product consisting of 2-hydroxycarboxylic acid and base, etc. Of these, a composite oxide of titanium and silicon, a composite oxide of titanium and magnesium, and a reaction product of an orthoester or condensed orthoester of titanium, a hydroxycarboxylic acid, and a phosphorus compound are preferable. Examples of the Suzui conjugate include dibutinoresuzuoxide, methinolefeninolesuzuoxide, Laetinores, hexetinoresin tin oxide, triethinoresulse hydroxide, monobutylhydroxytin oxide, triisobutyltin acetate, diphenyltin dilaurate, monobutyl / resuzutrichloride, dibutyltin sulfide And dibutyltin hydroxytin oxide, methylstannoic acid, ethyl stannoic acid, and the like. Particularly, use of monobutylhydroxytin oxide is preferable.
本発明において添加可能なコバルト化合物としては特に限定はないが、 具体的 には例えば、 酢酸コバルト、 硝酸コバルト、 塩化コバルト、 コバルトァセチルァ セトネート、 ナフテン酸コバルトおよびそれらの水和物等が挙げられる。 その中 でも特に酢酸コバルト四水塩が好ましい。  The cobalt compound that can be added in the present invention is not particularly limited, but specific examples thereof include cobalt acetate, cobalt nitrate, cobalt chloride, cobalt acetylacetonate, cobalt naphthenate, and hydrates thereof. . Among them, cobalt acetate tetrahydrate is particularly preferred.
本発明の方法に従ってポリエステルを製造する際にフエノール系化合物を添加 すると、 ポリエステルの熱安定性が効果的に向上するため好ましい。 また、 フエ ノール系化合物を添加することで、 触 性の向上効果も見られる。  It is preferable to add a phenolic compound when producing the polyester according to the method of the present invention, because the thermal stability of the polyester is effectively improved. In addition, by adding a phenolic compound, an effect of improving the tactility can be seen.
本発明のフエノール系化合物としては、 フエノール構造を有する化合物であれ ば特に限定はされないが、 例えば、 2, 6-ジ- tert-ブチル- 4一メチルフエノール、 2, 6 -ジ- tert -プチノレ -4—ェチルフェノール、 2, 6-ジシク口へキシル- 4一メチルフ ェノール、 2, 6—ジィソプロピル— 4—ェチルフェノ一ノレ、 2, 6—ジー tert—ァミルー 4一 メチルフェノール、 2, 6 -ジ- tert-オタチル- 4- n—プロピルフェノール、 2, 6-ジシ クロへキシル- 4 - n - オタチノレフエノーノレ、 2-イソプロピノレ- 4 - メチノレ- 6- tert -ブ チノレフエノーノレ、 2- tert- ブチノレ- 2- ェチノレ- 6 - tert-ォクチ/レフエノーノレ、 2-ィ ソプチノレ- 4- ェチノレ- 6- tert-へキシノレフエノーノレ、 2-シクロへキシル -4 - n—プチ ル- 6—イソプロピルフエノール、 1, 1,卜トリス(4—ヒ ドロキシフエ-ル) ェタン 、 1, 1, 3-トリス (2-メチル- 4- ヒ ドロキシ- 5 - tert -ブチルフエニル) ブタン、 ト リエチレングリコ一ルービス [3- (3- tert―プチル- 5—メチノレ- 4一ヒ ドロキシフ ェニル) プロピオネート] 、 1, 6-へキサンジオール一ビス [3- (3, 5-ジ- tert -ブ チル- 4 - ヒ ドロキシフヱ二ノレ) プロピオネート] 、 2, 2 -チオジェチレンビス [3 - (3, 5-ジ- tert -プチル- 4, 4ーヒ ドロキシフエニル) プロピオネート] 、 Ν, Ν'—へ キサメチレンビス (3, 5-ジ -tert -ブチノレ- 4一ヒ ドロキシ一ヒ ドロシンナミ ド) 、 1, 3, 5-トリス (2, 6 -ジメチノレ- 3—ヒ ドロキシ- 4- tert -ブチノレべンジノレ) ィソシァ ヌレート、 1, 3, 5-トリス (3, 5 -ジ- tert -プチルー 4—ヒドロキシベンジノレ) イソシ ァヌレート、 1, 3, 5-トリス [ (3, 5-ジ- tert-ブチル -4一ヒドロキシフエニル) プ 口ピオニルォキシェチル] ィソシァヌレート、 トリス (4 - tert -プチノレ一 2, 6 -ジ メチ/レ -3- ヒドロキシベンジル) イソシァヌレート、 2, 4 -ビス (n—ォクチルチ ォ) -6— (4-ヒドロキシ- 3, 5—ジ- tert -プチルァニリノ) -1, 3, 5—トリアジン、 テトラキス [メチレン (3, 5-ジ- tert-ブチル- 4一ヒドロキシ) ヒドロシンナメー ト] メタン、 ビス [ (3, 3-ビス (3- tert—ブチノレ- 4ーヒドロキシフェニ^/) プチ リックアシッド) グリコーノレエステノレ、 Ν,Ν' —ビス [3- (3, 5 -ジ -tert -プチル- 4 —ヒドロキシフヱ二ノレ) プロピオ-ノレ] ヒドラジン、 2, 2' _オギザミドビス [ェ チノ 3— (3, 5-ジ -tert -ブチル- 4ーヒ ドロキシフエニル) プロピオネート] 、 ビ ス [2 - "tert—プチル- 4ーメチル- 6— (3 - tert- ブチル -5—メチルー 2-ヒドロキシ ベンジル) フエニル] テレフタレート、 1, 3, 5 -トリメチノレ— 2, 4, 6—トリス (3, 5 - ジ- tert-プチノレ- 4 - ヒドロキシベンジノレ) ベンゼン、 3, 9-ビス [1,卜ジメチル 2-The phenolic compound of the present invention is not particularly limited as long as it is a compound having a phenol structure. For example, 2,6-di-tert-butyl-4-monomethylphenol, 2,6-di-tert-butynole- 4-Ethylphenol, 2,6-dicyclohexyl-4-methylphenol, 2,6-diisopropyl-4, ethylphenol, 2,6-ditert-amyl-4-methylphenol, 2,6-diphenol -tert-otatyl-4-n-propylphenol, 2,6-dicyclohexyl-4-n-otatinolephenole, 2-isopropinole-4-methinole-6-tert-butynolephenole, 2-tert-butynole-2-ethynole-6-tert-octyl / refenole, 2-isoptinole-4-ethynole-6-tert-hexynolephenole, 2-cyclohexyl-4-n-butyl- 6-Isopropylphenol, 1,1, Tritris (4-H Droxyphenyl) ethane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, triethyleneglycol-l-bis [3- (3-tert-butyl-5-methynole- 4-Hydroxyphenyl) propionate], 1,6-Hexanediol-bis [3- (3,5-di-tert-butyl-4--4-hydroxyphenyl) propionate], 2,2-thiomethylene Bis [3- (3,5-di-tert-butyl-4,4-hydroxyphenyl) propionate], Ν, Ν'-hexamethylenebis (3,5-di-tert-butynole-4-1-hydroxy) Hydrocinamide), 1,3,5-tris (2,6-dimethinole-3-hydroxy-4-tert-butynolebenzinole) Nurate, 1,3,5-tris (3,5-di-tert-butyl-4-hydroxybenzinole) isocyanurate, 1,3,5-tris [(3,5-di-tert-butyl-4 monohydroxy) Phenyl) p-pionyloxicetyl] isocyanurate, tris (4-tert-butylinole-1,6-dimethyl / le-3-hydroxybenzyl) isocyanurate, 2,4-bis (n-octylthio) -6 — (4-hydroxy-3,5-di-tert-butylylanilino) -1,3,5-triazine, tetrakis [methylene (3,5-di-tert-butyl-4-monohydroxy) hydrocinnamate] methane, bis [ (3,3-bis (3-tert-butynole-4-hydroxyphenyl ^ /) petitic acid) Glyconoreestenole, Ν, Ν'-bis [3- (3,5-di-tert-butyl-4) —Hydroxyphenyl) propio-nore] Hydrazine, 2, 2'-Ogizamide Bis [ethino 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], bis [2- "tert-butyl-4-methyl-6- (3-tert-butyl-5-methyl- 2-Hydroxybenzyl) phenyl] terephthalate, 1,3,5-trimethinole-2,4,6-tris (3,5-di-tert-ptynole-4-hydroxybenzinole) benzene, 3,9-bis [1 , Tridimethyl 2-
{ β - (3- tert—プチノレ- 4ーヒドロキシ- 5- メチルフエ-ル) プロピオニルォキ シ} ェチル] - 2, 4, 8, 10-テトラオキサスピロ [5, 5 ] ゥンデカン、 2, 2 -ビス [4 -{β- (3-tert-Ptinole-4-hydroxy-5-methylphenyl) propionyloxy} ethyl] -2,4,8,10-tetraoxaspiro [5,5] pentane, 2,2-bis [Four -
(2- (3, 5-ジ- tert-ブチル -4ーヒドロキシシンナモイノレオキシ) ) エトキシフエ 二ノレ] プロパン、 β— (3, 5-ジ- tert-ブチノレ -4- ヒ ドロキシフエ二ノレ) プロピオ ン酸アルキルエステル、 テトラキス- [メチル- 3- (3', 5' -ジ- tert-ブチノ 4_ヒド ロキシフエ-ル) プロピオネート] メタン、 ォクタデシル- 3- (3, 5-ジ- tert-ブチ ル— 4一ヒドロキシフエニル) プロピオネート、 1, 1, 3 -トリス(2—メチル—4—ヒド 口キシ- 5- tert-プチルフェニル) ブタン、 チオジェチレン一ビス [3- (3, 5-ジ- ter 1: -ブチル -4 - ヒドロキシフエニル) プロピオネート] エチレンビス (ォキシェチ レン) ビス [3 -(5 - tert - ブチル -4 - ヒドロキシ- m—トリル) プロピオネート] 、 へキサメチレンビス [3- (3, 5-ジ- tert -ブチノレ- 4一ヒドロキシフェ -ノレ) プロピオ ネート、 トリエチレングリコーノレ一ビス- [-3- (3' - tert -プチ/レ- 4一ヒドロキシ- 5 —メチノレフエ二ノレ) ]プロピオネート、 1,1,3—トリス [2— メチノレー 4— [3 -(3, 5—ジ— t ert-ブチル -4—ヒドロキシフエニル) プロピオ二ルォキシ]- 5- tert—ブチノレフェ 二ノレ] ブタンなどを挙げることができる。 これらは、 同時に二種以上を併用する こともできる。 これらのうち、 1, 3, 5 -トリメチノレー 2, 4, 6— トリス (3, 5 -ジー tert - ブチノレ- 4- ヒ ドロキシベンジル) ベンゼン、 テトラキス- [メチル- 3- (3,, 5,-ジ- ert-ブチノレ- 4- ヒ ドロキシフエニル) プロピオネート] メタン、 チオジェチレン 一ビス [3 -(3, 5-ジ- tert-プチル- 4- ヒ ドロキシフエ二ノレ) プロピオネート] が好 ましい。 (2- (3,5-di-tert-butyl-4-hydroxycinnamoinoleoxy)) ethoxypheninole] propane, β- (3,5-di-tert-butynole-4-hydroxypheninole) propio Acid alkyl ester, tetrakis- [methyl-3- (3 ', 5'-di-tert-butino 4_hydroxyphenyl) propionate] methane, octadecyl-3- (3,5-di-tert-butyl — 4-hydroxyphenyl) propionate, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, thioethylene-bis [3- (3,5-di-ter) 1: -Butyl-4-hydroxyphenyl) propionate] Ethylenebis (oxethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3 , 5-di-tert-butynole-4-hydroxypheno-propione) G, triethylene glycolone bis-[-3- (3'-tert-butyl / le-4-hydroxy-5-methinolepheninole)] propionate, 1,1,3-tris [2-methinole 4— [ 3- (3,5-ditert-butyl-4-hydroxyphenyl) propionyloxy] -5-tert-butynolepheninole] butane. These can be used in combination of two or more at the same time. Of these, 1,3,5-trimethinole 2,4,6-tris (3,5-Gee tert- Butynole-4-hydroxybenzyl) benzene, tetrakis- [methyl-3- (3,5, -di-ert-butynole-4-hydroxyphenyl) propionate] methane, thiomethylene-bis [3-(3,5 -Di-tert-butyl-4-hydroxyhydroxypropionate] is preferred.
本発明のフエノール系化合物はヒンダードフエノールの構造を有するものが好 ましい。  The phenolic compound of the present invention preferably has a hindered phenol structure.
本発明のフエノール系化合物の使用量としては、 重合して得られるポリエステ ルのジカルボン酸や多価カルボン酸などのカルボン酸成分の全構成ュニットのモ ル数に対して 5 X 1 0— 5モル0 /0から 1 モル%の範囲であることが好ましく、 更に 好ましくは 1 X 1 0 _4モル0 /0から 0. 5 モル%の範囲であることである。 The phenolic compound of the present invention is used in an amount of 5 × 10 to 5 mol per mol of all constituent units of carboxylic acid components such as dicarboxylic acid and polycarboxylic acid of the polyester obtained by polymerization. is preferably in the range from 0/0 1 mol% is that more preferably in the range of 1 X 1 0 _ 4 mole 0/0 0.5 5 mole%.
本発明によるポリエステルの製造は、 従来公知の方法で行うことができる。 例 えば、 P E Tを製造する場合は、 テレフタル酸とエチレングリコールとのエステ ル化後、 重縮合する方法、 もしくは、 テレフタル酸ジメチルなどのテレフタル酸 のアルキノレエステルとエチレングリコールとのエステル交換反応を行った後、 重 縮合する方法のいずれの方法でも行うことができる。 また、 重合の装置は、 回分 式であっても、 連続式であってもよい。  The production of the polyester according to the present invention can be carried out by a conventionally known method. For example, when manufacturing PET, a method of esterifying terephthalic acid and ethylene glycol followed by polycondensation, or a transesterification reaction of an alkynoleester of terephthalic acid such as dimethyl terephthalate with ethylene glycol is performed. Then, any of the methods of polycondensation can be carried out. Further, the polymerization apparatus may be a batch type or a continuous type.
本発明の方法に従ってポリエステルを重合する際に使用する触媒は、 重縮合反 応のみならずエステル化反応およびエステル交換反応にも触媒活性を有する。 テ レフタル酸ジメチノレなどのジカルポン酸のアルキルエステルとエチレングリコー ルなどのグリコールとのエステル交換反応は、 通常亜鉛などのエステル交換触媒 の存在下で行われるが、 これらの触媒の代わりかもしくはこれらの触媒と共存し て本発明の触媒を用いることもできる。 また、 本発明の方法に従ってポリエステ ルを重合する際に使用する触媒は、 溶融重合のみならず固相重合や溶液重合にお いても触 性を有しており、 ヽずれの方法によってもポリエステルを製造する ことが可能である。 . . 本発明の方法に従ってポリエステルを重合する際に使用する触媒は、 重合反応 の任意の段階で反応系に添加することができる。 例えば、 エステル化反応もしく はエステル交換反応の開始前および反応途中の任意の段階、 もしくは重縮合反応 の開始直前あるいは反応途中に反応系へ添加することができる。 特に、 ァノレミニ ゥムないしその化合物は重縮合反応の開始直前に添加することが好ましい。 本発明の方法に従ってポリエステルを重合する際に使用する触媒あるいはその 他の化合物の添加方法は、 粉末状もしくはニート状であってもよいし、 エチレン グリコールなどの溶媒のスラリ一状もしくは溶液であってもよく、 特に限定され ない。 また、 触媒の構成成分おょぴその他のィヒ合物を予め混合したものを添加し てもよいし、 これらを別々に添加してもよい。 また、 本発明のアルミニウム化合 物の触媒溶液とその他の化合物とを予め混合した混合物として添加してもよいし 、 これらを別々に添加してもよい。 また、 触媒の構成成分およびその他の化合物 を同じ添加時期に重合系に添加してもよく、 それぞれの成分を別々の添加時期に 添加してもよい。 また、 触媒およびその他の化合物の全量を一度に添加しても、 複数回に分けて添カロしてもよい。 The catalyst used in polymerizing the polyester according to the method of the present invention has catalytic activity not only in polycondensation reaction but also in esterification reaction and transesterification reaction. The transesterification of an alkyl ester of dicarponic acid such as dimethinole terephthalate with a glycol such as ethylene glycol is usually carried out in the presence of a transesterification catalyst such as zinc. The catalyst of the present invention can also be used in the presence of the catalyst. Further, the catalyst used when polymerizing the polyester according to the method of the present invention has a catalytic property not only in melt polymerization but also in solid phase polymerization and solution polymerization, and the polyester can be produced by any method. It can be manufactured. The catalyst used in polymerizing the polyester according to the method of the present invention can be added to the reaction system at any stage of the polymerization reaction. For example, it can be added to the reaction system before or during the esterification reaction or transesterification reaction and at any stage during the reaction, or immediately before or during the reaction of the polycondensation reaction. In particular, Anoremini It is preferable to add the polymer or its compound immediately before the start of the polycondensation reaction. The method of adding the catalyst or other compound used when polymerizing the polyester according to the method of the present invention may be a powder or neat, or a slurry or a solution of a solvent such as ethylene glycol. There is no particular limitation. Further, a component obtained by previously mixing the components of the catalyst and the other compounds may be added, or they may be added separately. Further, the catalyst solution of the aluminum compound of the present invention and other compounds may be added as a premixed mixture, or they may be added separately. Further, the components of the catalyst and the other compounds may be added to the polymerization system at the same time, or each component may be added at a different time. Further, the whole amount of the catalyst and other compounds may be added at once, or may be added several times.
本発明に言うポリエステルとは、 ジカルポン酸を含む多価力ルポン酸およびこ れらのエステル形成性誘導体から選ばれる一種または二種以上とダリコールを含 む多価アルコールから選ばれる一種または二種以上とから成るもの、 またはヒド 口キシカルポン酸おょぴこれらのエステル形成性誘導体から成るもの、 または環 状エステルから成るものをいう。  The polyester referred to in the present invention refers to one or more selected from polyvalent ruponic acids including dicarponic acid and ester-forming derivatives thereof and one or more selected from polyhydric alcohols including daricol. Or a compound comprising a hydroxoxycarponic acid or an ester-forming derivative thereof, or a compound comprising a cyclic ester.
ジカルボン酸としては、 蓚酸、 マロン酸、 コハク酸、 グルタノレ酸、 アジピン酸 、 ピメリン酸、 スベリン酸、 ァゼライン酸、 セバシン酸、 デカンジカルボン酸、 ドデカンジカルボン酸、 テトラデカンジカルボン酸、 へキサデカンジカルボン酸 、 1 , 3—シクロブタンジカノレポン酸、 1 , 3—シクロペンタンジカルボン酸、 1 , 2—シクロへキサンジカノレポン酸、 1 , 3—シクロへキサンジカルボン酸、 1 , 4ーシクロへキサンジカルボン酸、 2, 5—ノルポルナンジカルボン酸、 ダイ マ一酸などに例示される飽和脂肪族ジカルポン酸またはこれらのエステル形成性 誘導体、 フマル酸、 マレイン酸、 ィタコン酸などに例示される不飽和脂肪族ジカ ルボン酸またはこれらのエステル形成性誘導体、 オルソフタル酸、 イソフタル酸 、 テレフタル酸、 5— (アルカリ金属) スルホイソフタル酸、 ジフエユン酸、 1 , 3—ナフタレンジ力ノレボン酸、 1, 4一ナフタレンジカノレポン酸、 1, 5—ナ フタレンジカルボン酸、 2 , 6—ナフタレンジ力ノレボン酸、 2 , 7—ナフタレン ジカノレポン酸、 4 , 4, ービフエニルジカルボン酸、 4, 4, 一ビフエ-ルスル ホンジカルボン酸、 4, 4, ービフエ-ルエーテルジカルボン酸、 1, 2—ビス (フエノキシ) ェタン一 p , p, ージカ ^ /ボン酸、 パモイン酸、 アントラセンジ 力ルポン酸などに例示される芳香族ジカルポン酸またはこれらのエステノレ形成性 誘導体が挙げられ、 これらのジカルボン酸のうちテレフタル酸おょぴナフタレン ジカルボン酸とくに 2 , 6—ナフタレンジカルボン酸が好ましい。 Examples of dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutanoleic acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecandicarboxylic acid, and 1 1,3-cyclobutanedicanoleponic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicanoreponic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2 Aliphatic dicarbonic acids exemplified by 2,5-norpornanedicarboxylic acid, dimeric acid and the like and ester-forming derivatives thereof, unsaturated aliphatic dicarbones exemplified by fumaric acid, maleic acid, itaconic acid, etc. Acid or their ester-forming derivatives, orthophthalic acid, isophthalic acid, Talic acid, 5— (alkali metal) Sulfoisophthalic acid, Difuyunic acid, 1,3-Naphthalenedicarboxylic acid, 1,4-Naphthalenedicanoleponic acid, 1,5-Naphthalenedicarboxylic acid, 2, 6— Naphthalenedicarboxylic acid, 2,7-naphthalene dicanoleponic acid, 4,4, -biphenyldicarboxylic acid, 4,4,1-biphenylsulfur Aromatic dicarbones, such as hondicarboxylic acid, 4,4, -biphenyletherdicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p, zika ^ / bonic acid, pamoic acid, anthracenedi Examples thereof include acids and their esterol-forming derivatives. Of these dicarboxylic acids, terephthalic acid and naphthalene dicarboxylic acid, particularly 2,6-naphthalenedicarboxylic acid, are preferred.
これらジカルボン酸以外の多価カルボン酸として、 ェタントリカルボン酸、 プ 口パントリカルボン酸、 ブタンテトラカルポン酸、 ピロメリット酸、 トリメリッ ト酸、 トリメシン酸、 3 , 4 , 3 ' , 4 ' —ビフエニルテトラカルボン酸、 およ びこれらのエステル形成性誘導体などが挙げられる。  Polycarboxylic acids other than these dicarboxylic acids include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarponic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ', 4'-bif Enyltetracarboxylic acid, and ester-forming derivatives thereof, and the like.
グリコールとしてはエチレングリコール、 1 , 2—プロピレングリコール、 1 , 3—プロピレングリコーノレ、 ジエチレングリコーノレ、 トリエチレングリコーノレ 、 1, 2—ブチレングリコール、 1 , 3—ブチレングリコール、 2 , 3—ブチレ ングリ コーノレ、 1, 4ーブチレングリコーノレ、 1, 5—ペンタンジォーノレ、 ネオ ペンチノレグリコール、 1, 6—へキサンジオール、 1, 2—シクロへキサンジォ 一ノレ、 1, 3—シクロへキサンジォーノレ、 1, 4ーシク口へキサンジォ一ノレ、 1 , 2—シク口へキサンジメタノーノレ、 1 , 3—シク口へキサンジメタノール、 1 , 4—シク口へキサンジメタノール、 1, 4ーシク口へキサンジエタノーノレ、 1 , 1 0—デカメチレングリ コーノレ、 1 , 1 2—ドデカンジオール、 ポリエチレン グリコール、 ポリ トリメチレングリコール、 ポリテトラメチレングリコールなど に例示される脂肪族グリコール、 ヒドロキノン、 4, 4 ' —ジヒドロキシビスフ エノーノレ、 1, 4一ビス —ヒドロキシエトキシ) ベンゼン、 1, 4一ビス ( β—ヒ ドロキシエトキシフエェノレ) スノレホン、 ビス ( ρ—ヒドロキシフエ二ノレ) ェ一テノレ、 ビス (J)ーヒ ドロキシフエ-ノレ) スノレホン、 ビス (ρ—ヒ ドロキシフ ェニノレ) メタン、 1 , 2—ビス ( ρ—ヒドロキシフエ二ノレ) ェタン、 ビスフエノ —ル Α、 ビスフエノール C、 2 , 5—ナフタレンジォーノレ、 これらのグリコーノレ にエチレンォキシドが付加したダリコール、 などに例示される芳香族ダリコール が挙げられ、 これらのグリコールのうちエチレングリコールおよぴ 1, 4一プチ レングリコールが好ましい。 Examples of glycols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycolone, diethylene glycolone, triethylene glycolone, 1,2-butylene glycol, 1,3-butylene glycol, and 2,3-butylene glycol. Cornole, 1,4-butylene glycolonele, 1,5-pentanedionole, neopentinole glycol, 1,6-hexanediol, 1,2-cyclohexanedione, 1,3-cyclohexanediole , 1, 4 Shiku port to Kisanjio one Honoré, 1, Cyclohexanedicarboxylic meth no Honoré to 2 sik port 1, Cyclohexanedicarboxylic methanol to 3 consequent opening, 1, 4 - Cyclohexanedicarboxylic methanol to consequent opening, 1, 4 Shiku port Hexanediethanol, 1,10-decamethyleneglycone, 1,12-dodecanediol, polyethylene glycol, Aliphatic glycols exemplified by polytrimethylene glycol, polytetramethylene glycol, hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis-hydroxyethoxy) benzene, 1,4-bis (β-hi (Droxyethoxyphenole) Snorehon, Bis (ρ-hydroxyphene), Bis (J) -Hdroxyphen-nore) Snorehon, Bis (ρ-Hydroxyphen) Methane, 1,2-bis ( ρ-Hydroxyphenol) ethane, bisphenol Α, bisphenol C, 2,5-naphthalenediphenol, and aromatic glycol daricols exemplified by ethylene glycol added to these glycolones. Of these glycols, ethylene glycol and 1,4-butylene glycol Are preferred.
これらグリコール以外の多価アルコールとして、 トリメチロールメタン、 トリ メチローノレェタン、 トリメチロールプロパン、 ペンタエリスリ トール、 グリセ口 ール、 へキサントリオールなどが挙げられる。 As polyhydric alcohols other than these glycols, trimethylol methane, tri Methylonoleethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol and the like.
ヒドロキシカルポン酸としては、 乳酸、 クェン酸、 リンゴ酸、 酒石酸、 ヒドロ キシ酢酸、 3—ヒドロキシ酪酸、 p—ヒドロキシ安息香酸、 - ( 2—ヒドロ キシエトキシ) 安息香酸、 4—ヒドロキシシクロへキサン力 ボン酸、 またはこ れらのエステル形成' [·生誘導体などが挙げられる。  Examples of hydroxycarponic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid,-(2-hydroxyethoxy) benzoic acid, and 4-hydroxycyclohexane Acid or their ester-forming derivatives.
環状エステルとしては、 ε—力プロラク トン、 一プロピオラタトン、 β—メ チルー 13—プロピオラタトン、 δ—バレロラタトン、 グリコリ ド、 ラクチドなど が挙げられる。 Examples of the cyclic ester include ε -force prolacton, monopropiolatatone, β-methyl-13-propiolatatone, δ-valerolatatatone, glycolide, and lactide.
また、 本発明のポリエステルには公知のリン系ィ匕合物を共重合成分として含む ことができる。 リン系化合物としては二官能性リン系化合物が好ましく、 例えば 、 フエニルホスホン酸ジメチル、 フエニルホスホン酸ジフエニル、 (2-カルポキ シルェチル) メチルホスフィン酸、 (2-カルポキシルェチル) フエニルホスフィ ン酸、 (2 -メ トキシカルポキシルェチル) フェ -ルホスフィン酸メチル、 (4 -メ トキシカノレポ二ノレフエ二ノレ) フエ-ノレホスフィン酸メチノレ、 [2— (j3—ヒドロキ シェトキシカノレポ二ノレ) ェチノレ] メチノレホスフィン酸のエチレングリコーノレエス テル、 (1, 2-ジカノ <レポキシェチル) ジメチルホスフィンォキサイド、 9, 10—ジヒ ドロ- 10-ォキサ一 (2, 3-カルボキシプロピノレ) -10-ホスファフェナンスレン- 10- ォキサイドなどが挙げられる。 これらのリン系化合物を共重合成分として含むこ とで、 得られるポリエステルの難燃性等を向上させることが可能である。  Further, the polyester of the present invention can contain a known phosphorus-based conjugate as a copolymer component. As the phosphorus compound, a bifunctional phosphorus compound is preferable, and examples thereof include dimethyl phenylphosphonate, diphenyl phenylphosphonate, (2-carboxyethyl) methylphosphinic acid, (2-carboxyethyl) phenylphosphinic acid, and (2-methylphosphonyl). Methoxylenophosphinic acid, Methyl ferrophosphinic acid, (4-Methoxycanolepodinolepheninole) Methinole phenolenophosphinate, [2- (j3-hydroxyethoxycanoleponinole) ethinole] Methynolephosphinic acid Ethylene glycolonoester, (1,2-dicano <repoxyshetyl) dimethylphosphinoxide, 9,10-dihydro-10-oxaxa (2,3-carboxypropinole) -10-phosphaphenanthrene -10- oxide. By including these phosphorus compounds as copolymer components, it is possible to improve the flame retardancy and the like of the obtained polyester.
多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体として は、 これらのアルキノレエステル、 酸クロライド、 酸無水物などが挙げられる。 本発明で用いられるポリエステルは主たる酸成分がテレフタル酸またはそのェ ステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性 誘導体であり、 主たるグリコール成分がァ キレングリコールであるポリエステ ルが好ましい。 主たる酸成分がテレフタル酸またはそのエステル形成性誘導体も しくはナフタレンジカルボン酸またはそのエステ/ 成性誘導体であるポリエス テルとは、 全酸成分に対してテレフタル酸またはそのエステル形成性誘導体とナ  Examples of the ester-forming derivatives of polycarboxylic acids or hydroxycarboxylic acids include these alkynole esters, acid chlorides, and acid anhydrides. The polyester used in the present invention is preferably a polyester whose main acid component is terephthalic acid or its ester-forming derivative or naphthalenedicarboxylic acid or its ester-forming derivative, and whose main glycol component is acetylene glycol. Polyester whose main acid component is terephthalic acid or its ester-forming derivative or naphthalene dicarboxylic acid or its ester / forming derivative is defined as terephthalic acid or its ester-forming derivative and its
'ボン酸またはそのエステル形成性誘導体を合計して 70モル%以上 含有するポリエステルであることが好ましく、 より好ましくは 80モル%以上含有 するポリエステルであり、 さらに好ましくは 90モル0 /0以上含有するポリエステル である。 主たるダリコール成分がアルキレンダリコールであるポリエステルとは 、 全グリコール成分に対してァノレキレンダリコールを合計して 70モル%以上含有 するポリエステルであることが好ましく、 より好ましくは 80モル%以上含有する ポリエステルであり、 さらに好ましくは 90モル0 /0以上含有するポリエステルであ る。 ここで言うアルキレングリコールは、 分子鎖中に置換基や脂環構造を含んで いても良い。 'A total of 70 mol% or more of boric acid or its ester-forming derivative Is preferably a polyester containing, more preferably a polyester containing more than 80 mol%, more preferably from polyester containing 90 mole 0/0 above. The polyester in which the main dalicol component is alkylenedaricol is preferably a polyester containing 70 mol% or more of anorekylendaricol in total with respect to all glycol components, more preferably 80 mol% or more. a polyester, more preferably Ru polyester der containing 90 mole 0/0 above. The alkylene glycol referred to here may contain a substituent or an alicyclic structure in the molecular chain.
本発明で用いられるナフタレンジ力ルポン酸またはそのエステノレ形成性誘導体  Naphthalenedicarboxylic acid or its esterol-forming derivative used in the present invention
、 1 , 5—ナフタレンジカルポン酸、 2 , 6—ナフタレンジカノレポン酸、 2, 7 一ナフタレンジカルボン酸、 又はこれらのエステル形成性誘導体が好ましい。 本発明で用いられるァノレキレングリコー としては、 エチレングリコー Λ 1 , 2—プロピレングリコーノレ、 1 , 3—プロピレングリコーノレ、 1, 2—ブチレ ングリコーノレ、 1 , 3ーブチレングリコーノレ、 2, 3ーブチレングリコーノレ、 1 , 4—プチレングリコーノレ、 1 , 5—ペンタンジォーノレ、 ネ才ペンチノレグリコー ル、 1, 6—へキサンジオール、 1, 2—シクロへキサンジオール、 1 , 3—シ ク口へキサンジ才ーノレ、 1, 4ーシク口へキサンジォーノレ、 1 , 2—シクロへキ サンジメタノール、 1 , 3—シク口へキサンジメタノーノレ、 1, 4ーシグロへキ サンジメタノール、 1 , 4ーシク口へキサンジエタノール、 1, 1 0—デカメチ レングリコール、 1, 1 2—ドデカンジオール等があげられる。 これらは同時に 2種以上を使用しても良い。 Preferred are 1,5-naphthalenedicarponic acid, 2,6-naphthalenedicanoleponic acid, 2,7-naphthalenedicarboxylic acid, and ester-forming derivatives thereof. As the phenolic glycol used in the present invention, ethylene glycol 1,2-propylene glycolone, 1,3-propylene glycolone, 1,2-butylene glycolone, 1,3-butylene glycolone, 2,3 Butylene glycolone, 1,4-butylene glycolone, 1,5-pentanedionole, Nestypentinoglycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1, 1,3-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanedimethanol , 4-six-hexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, and the like. Two or more of these may be used at the same time.
本発明のポリエステルには、 テレフタル酸またはそのエステル形成性誘導体、 ナフタレンジカルボン酸またはそのエステル形成性誘導体以外の酸成分として蓚 酸、 マロン酸、 コハク酸、 グルタル酸、 アジピン酸、 ピメリン酸、 スベリン酸、 ァゼライン酸、 セパシン酸、 デカンジカルボン酸、 ドデカンジ力 Λ ^ボン酸、 テ トラデカンジカルボン酸、 へキサデカンジカルポン酸、 1, 3—シクロブタンジ カルボン酸、 1 , 3—シクロペンタンジカルボン酸、 1 , 2—シクロへキサンジ カノレポン酸、 1, 3—シクロへキサンジカルボン酸、 1 , 4—シクロへキサンジカ ルボン酸、 2, 5—ノルボルナンジカルボン酸、 ダイマー酸などに例示される飽 和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、 フマル酸、 マレイ ン酸、 イタコン酸などに例示される不飽和脂肪族ジカルボン酸またはこれらのェ ステル形成性誘導体、 オルソフタル酸、 イソフ ル酸、 5— (アルカリ金属) ス ルホイソフタル酸、 ジフェニン酸、 4, 4, ービフエ-ルジカルボン酸、 4, 4 ' 一ビフエニルスルホンジカルボン酸、 4 , 4, -ビフエニルエーテルジカノレポ ン酸、 1 , 2—ビス (フエノキシ) エタンー p, ' —ジカルポン酸、 パモイン 酸、 アントラセンジカルボン酸などに例示される芳香族ジカルボン酸またはこれ らのエステル形成性誘導体、 ェタントリカルボン酸、 プロパントリカルボン酸、 ブタンテトラカルボン酸、 ピロメリット酸、 トリメリット酸、 トリメシン酸、 3 , 4, 3 ' , 4, 一ビフエニルテトラカルポン酸などに例示される多価カルボン 酸おょぴこれらのエステル形成性誘導体などを共重合成分として含むことができ る。 また、 乳酸、 クェン酸、 リンゴ酸、 酒石酸、 ヒドロキシ酢酸、 3—ヒドロキ シ酪酸、 p—ヒ ドロキシ安息香酸、 P - ( 2—ヒ ドロキシエトキシ) 安息香酸、 4—ヒ ドロキシシクロへキサンカルボン酸などに例示されるヒ ドロキシカルボン 酸またはそのエステル形成性誘導体を含むこともできる。 また、 ε—力プロラタ トン、 β一プロピオラク トン、 βーメチノレー β—プロピオラタ トン、 δ一パレ口 ラタトン、 グリコリ ド、 ラクチドなどに例示される環状エステルを含むこともで さる。 The polyester of the present invention contains oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, and suberic acid as acid components other than terephthalic acid or its ester-forming derivative, naphthalenedicarboxylic acid or its ester-forming derivative. , Azelaic acid, sepasic acid, decane dicarboxylic acid, dodecane diacid Λ ^ bonic acid, tetradecane dicarboxylic acid, hexadecan dicarboxylic acid, 1,3-cyclobutane dicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1 1,2-cyclohexanedicanoleponic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedica Saturated aliphatic dicarboxylic acids exemplified by rubonic acid, 2,5-norbornanedicarboxylic acid, dimer acid and the like, and ester-forming derivatives thereof, and unsaturated aliphatic exemplified by fumaric acid, maleic acid and itaconic acid Dicarboxylic acids or their ester-forming derivatives, orthophthalic acid, isophthalic acid, 5- (alkali metal) sulfoisophthalic acid, dipheninic acid, 4,4, -biphenyldicarboxylic acid, 4,4'-biphenylsulfonedicarboxylic acid Acids, 4,4, -biphenyletherdicanoleponic acid, 1,2-bis (phenoxy) ethane-p, '-dicarbonic acid, pamoic acid, aromatic dicarboxylic acids exemplified by anthracenedicarboxylic acid, etc. Ester-forming derivatives of ethanetricarboxylic acid, propanetricarboxylic acid, butanetetraca Polycarboxylic acids such as boric acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ', 4, biphenyltetracarponic acid, and their ester-forming derivatives It can be included as a copolymer component. Also, lactic acid, cunic acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, P- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, etc. And a hydroxycarboxylic acid or an ester-forming derivative thereof. It is also possible to include a cyclic ester exemplified by ε-force prolatatatone, β-propiolactone, β-methinolate β-propiolactone, δ-palette ratatone, glycolide, lactide and the like.
本発明のポリエステルには、 ァノレキレングリコール以外のグリコール成分とし て、 ジエチレングリコーノレ、 トリエチレングリコーノレ、 ポリエチレングリコーノレ In the polyester of the present invention, diethylene glycolone, triethylene glycolone, and polyethylene glycolone are used as glycol components other than anoalkylene glycol.
、 ポリ トリメチレングリコール、 ポリテトラメチレングリコールなどに例示され る脂肪族グリコール、 ヒ ドロキノン、 4, 4, ージヒ ドロキシビスフエノール、 1, 4一ビス ( β—ヒ ドロキシェトキシ) ベンゼン、 1, 4一ビス ( —ヒ ドロ キシェトキシフエニル) スノレホン、 ビス ( ρ—ヒ ドロキシフエ二ノレ) エーテル、 ビス (ρ—ヒ ドロキシフエ二ノレ) スノレホン、 ビス (ρ—ヒ ドロキシフエ-ノレ) メ タン、 1, 2一ビス ( ρ—ヒ ドロキシフエ二ノレ) ェタン、 ビスフエノーノレ Α、 ビ スフエノーノレ C、 2, 5—ナフタレンジォーノレ、 これらのグリコー^^にエチレン ォキシドが付加したダリコールなどに例示される芳香族ダリコール、 トリメチロ ールメタン、 トリメチローノレェタン、 トリメチローノレプロパン、 ペンタエリスリ トール、 グリセロール、 へキサントリオールなどに例示される多価アルコールな どを共重合成分として含むことができる。 , Polytrimethylene glycol, polytetramethylene glycol, etc., aliphatic glycols, hydroquinone, 4,4, dihydroxybisphenol, 1,4-bis (β-hydroxyxetoxy) benzene, 1,4-bis ( —Hydroxyxetoxyphenyl) snorefon, bis (ρ-hydroxypheninole) ether, bis (ρ-hydroxypheninole) sunolefon, bis (ρ-hydroxyphene) methane, 1,2-bis ( ρ-Hydroxyphenolene), bisphenolone ス, bisphenolone C, 2,5-naphthalenedienole, aromatic daricols exemplified by dalicol in which ethylene oxide is added to glyco ^^, and trimethylo Methane, trimethylolone, trimethylololepropane, pentaerythritol, glycerol, polyhydric alcohols exemplified by hexanetriol, and the like can be contained as a copolymerization component.
また、 本発明のポリエステルには公知のリン系化合物を共重合成分として含む ことができる。 リン系化合物としては二官能性リン系化合物が好ましく、 例えば Further, the polyester of the present invention may contain a known phosphorus compound as a copolymer component. As the phosphorus compound, a bifunctional phosphorus compound is preferable. For example,
、 フエ二ノレホスホン酸ジメチノレ、 フエ二ノレホスホン酸ジフエ二ノレ、 (2-力ノレボキ シルェチル) メチルホスフィン酸、 (2-カルボキシノレエチル) フエニルホスフィ ン酸、 (2 -メ トキシカルポキシノレエチル) フエニルホスフィン酸メチル、 (4-メ トキシカノレポ二ノレフエ二ノレ) フエ二ノレホスフィン酸メチノレ、 [2- ( jS—ヒ ドロキ シェトキシカノレボニノレ) ェチノレ] メチルホスフィン酸のェチレングリコールェフヽ テル、 (1, 2-ジカ ポキシェチノレ) ジメチ^/ホスフィンオキサイド、 9, 10—ジヒ ドロ- 10-ォキサ一 (2, 3-カルポキシプロピル) - 10-ホスファフェナンスレン- 10 - ォキサイドなどが挙げられる。 これらのリン系化合物を共重合成分として含むこ とで、 得られるポリエステルの難燃性等を向上させることが可能である。 , Dimethinole pheninolephosphonate, dipheninole pheninolephosphonate, (2-methoxyphenolyl) methylphosphinic acid, (2-carboxynorethyl) phenylphosphinic acid, (2-methoxycarboxynorethyl) phenylphosphine Methyl acid, (4-Methoxycanoleponinolephenine) Methinole phenolenophosphinate, [2- (jS-hydroxyshethoxycanoleboninole) ethynole] Ethylene glycol ester of methylphosphinic acid, (1, 2-dicapoxytinole) dimethyl ^ / phosphine oxide, 9,10-dihydro-10-oxa- (2,3-carboxypropyl) -10-phosphaphenanthrene-10-oxide. By including these phosphorus compounds as copolymer components, it is possible to improve the flame retardancy and the like of the obtained polyester.
本発明のポリエステ としてはポリエチレンテレフタレート、 ポリブチレンテ レフタレート、 ポリプロピレンテレフタレート、 ポリ (1,4 ーシクロへキサンジ メチレンテレフタレート) 、 ポリエチレンナフタレート、 ポリブチレンナフタレ ート、 ポリプロピレンナフタレートおょぴこれらの共重合体が好ましく、 これら のうちポリエチレンテレフタレートおよびこの共重合体が特に好ましい。  Examples of the polyester of the present invention include polyethylene terephthalate, polybutylene terephthalate, polypropylene terephthalate, poly (1,4-cyclohexanedimethylene terephthalate), polyethylene naphthalate, polybutylene naphthalate, polypropylene naphthalate and copolymers thereof. Of these, polyethylene terephthalate and its copolymer are particularly preferred.
本発明のポリエステノレの構成成分として、 ポリエステルを繊維として使用した 場合の染色性改善のために、 スルホン酸アル力リ金属塩基を有するポリカルボン 酸を共重合成分とすることは好ましい態様である。  As a component of the polyester in the present invention, it is a preferred embodiment to use a polycarboxylic acid having a sulfonic acid metal salt base as a copolymerization component in order to improve the dyeability when polyester is used as a fiber.
共重合モノマーとして用いる金属スルホネート基含有化合物としては、 特に限 定されるものではないが、 5—ナトリウムスルホイソフタル酸、 2—ナトリウム スルホテレフタノレ酸、 5 _リチウムスルホイソフタノレ酸、 2—リチウムスルホテ レフタノレ酸、 5—力リウムスノレホイソフタノレ酸、 2—力リウムスノレホテレフタノレ 酸、 またはそれらの低級アルキルエステル誘導体などが挙げられる。 本発明では 特に 5—ナトリゥムスルホイソフタル酸またはそのエステル形成性誘導体の使用 が好ましい。 金属スルホネート基含有化合物の共重合量はポリエステルを構成する酸性分に 対して、 0. 3 〜10. 0モル0 /0が好ましく、 より好ましくは 0. 80〜5. 0 モル0 /0であるThe metal sulfonate group-containing compound used as the copolymerization monomer is not particularly limited, but may be 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalanoleic acid, 5-lithium sulfoisophthalanoleic acid, Examples thereof include lithium sulfotelephthalenoleic acid, 5-force lithium snorephoisophthalenoleic acid, 2-force lithium snolephoterephthalenoleic acid, and lower alkyl ester derivatives thereof. In the present invention, it is particularly preferable to use 5-sodium sulfoisophthalic acid or an ester-forming derivative thereof. Copolymerization amount of the metal sulfonate group-containing compound for the acid components constituting the polyester, from 0.3 to 10.0 mole 0/0, more preferably is 0.80 to 5.0 mole 0/0
。 共重合量が少なすぎると塩基性染料可染性に劣り、 多すぎると繊維とした場合 、 製糸性に劣るだけでなく、 増粘現象により繊維として十分な強度が得られなく なる。 また、 金属スルホネート含有化合物を 2. 0 モル0 /。以上共重合すると、 得ら れた改質ポリエステル繊維に常圧可染性を付与することも可能である。 また適切 な易染ィヒモノマーを選択することで金属スルホネート基含有化合物の使用量を適 宜減少させることは可能である。 易染化モノマーとしては特に限定はしないが、 ポリエチレンダリコール、 ポリテトラメチレンダリコールに代表される長鎖ダリ コール化合物やアジピン酸、 セパシン酸、 ァゼライン酸に代表される脂肪族ジカ ルボン酸が挙げられる。 . If the copolymerization amount is too small, the dyeability of the basic dye is inferior. If the copolymerization amount is too large, not only the fiber-forming properties are poor, but also the fiber does not have sufficient strength due to the thickening phenomenon. Further, a metal sulfonate-containing compound 2.0 mole 0 /. By performing the above copolymerization, it is possible to impart normal pressure dyeability to the obtained modified polyester fiber. In addition, it is possible to appropriately reduce the amount of the metal sulfonate group-containing compound by selecting an appropriate easy dye monomer. Examples of the easily dyeable monomer include, but are not particularly limited to, long-chain daricol compounds such as polyethylene daricol and polytetramethylene daricol, and aliphatic dicarboxylic acids such as adipic acid, sebacic acid, and azelaic acid. Can be
本発明の方法に従ってポリエステル重合をした後に、 このポリエステルから触 媒を除去するか、 またはリン系化合物などの添加によって触媒を失活させること によって、 ポリエステルの熱安定性をさらに高めることができる。  After the polyester is polymerized according to the method of the present invention, the catalyst can be removed from the polyester or the catalyst can be deactivated by adding a phosphorus compound or the like, thereby further improving the thermal stability of the polyester.
本発明のポリエステノレ中にはフエノール系、 芳香族アミン系等の酸化防止剤を 含むことができ、 これらを一種もしくは二種以上含有することによって、 例えば ポリエステノレの熱安定' 1·生を高めることなどができる。  The polyesternole of the present invention can contain antioxidants such as phenolic and aromatic amines. By containing one or more of these, for example, the heat stability of polyesternole can be enhanced. You can do things.
本発明のポリエステル中には、 青み付け剤、 有機系、 無機系、 あるいは有機金 属系の染料、 顔料、 ならびに蛍光増白剤などを含むことができ、 これらを一種も しくは二種以上含有することによって、 ポリエステルの黄み等の着色を抑えるこ とができる。  The polyester of the present invention may contain a bluing agent, an organic, inorganic, or organic metal dye, a pigment, a fluorescent whitening agent, and the like.One or more of these may be contained. By doing so, coloring such as yellowing of the polyester can be suppressed.
本発明のポリエステル中には他の任意の重合体や安定剤、 酸化防止剤、 制電剤 、 消泡剤、 染色性改良剤、 染料、 顔料、 艷消剤、 その他の添加剤が含有されてい て.もよい。  The polyester of the present invention contains other optional polymers, stabilizers, antioxidants, antistatic agents, antifoaming agents, dyeing improvers, dyes, pigments, anti-glazing agents, and other additives. You can.
これらの添加剤は、 ポリエステルの重合時もしくは重合後、 あるいはポリエス テルの成形時の任意の段階で添加することが可能であり、 どの段階が好適かは化 合物の特性ゃポリエステル成形体の要求性能に応じてそれぞれ異なる。 以下、 本発明を実施例により説明するが本突明はもとよりこれらの実施例に限 定されるものではない。 These additives can be added during or after the polymerization of the polyester or at any stage during the molding of the polyester.The suitable stage depends on the properties of the compound and the requirements of the polyester molded article. They differ depending on the performance. Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples as well as the present invention.
本発明の実施例で用いた評価方法について以下に示す。  The evaluation method used in the examples of the present invention will be described below.
(1) ポリマー中の金属おょぴリンの含有量  (1) Content of metallic phosphorous in polymer
リン、 アンチモンおょぴゲルマニウムの含有量は蛍光 X線法で測定した。 測定 試料ポリエステルを写真用フエ口タイプ板上に置いた高さ 5 mm、 直径 4 Omm nステンレス製リング内に投入し、 オーブン内で 300。C、 10分間加熱し溶融 する。 これを取り出し、 冷却後リングから成形サンプルを取り出し、 平滑な面に ついて測定した。 また別途、 化学分析法で含有量が定められたポリエステル数点 を上記の方法で成形し、 蛍光: X線強度を測定し、 化学分析法で求められた値と蛍 光 X線強度の検量線を作成した。 測定試料ポリエステルの蛍光 X線強度データか ら検量線を基に個々のサンプル中のリン、 アンチモン、 およびゲルマニウム含有 量を算出した。  The contents of phosphorus and antimony and germanium were measured by X-ray fluorescence. Measurement Place the sample polyester in a stainless steel ring with a height of 5 mm and a diameter of 4 Omm n placed on a photographic foe type plate, and place in an oven at 300 mm. C, Heat for 10 minutes to melt. This was taken out, and after cooling, a molded sample was taken out of the ring and measured on a smooth surface. Separately, several polyesters whose content was determined by the chemical analysis method were molded by the above method, and the fluorescence: X-ray intensity was measured, and the values obtained by the chemical analysis method and the calibration curve of the fluorescent X-ray intensity were obtained. It was created. The phosphorus, antimony, and germanium contents in each sample were calculated based on the calibration curve from the fluorescent X-ray intensity data of the measurement sample polyester.
その他の金属の含有量の測定は以下の方法で行った。 白金るつぼにポリエステ ル 1. ,0 gを秤取し炭ィ匕したのち電気炉で 550°Cで灰ィ匕し、 室温まで冷却後灰 分を 6 N塩酸 (チタンの場合はフッ酸/塩酸混合物) に溶解し、 蒸発乾固後 1. 2 N塩酸に溶解し、,高周波プラズマ発光分析 (島津製作所製 ICPS- 2000 ) および 原子吸光分析 (島津製作所製 M - 640-12 ) に供するサンプルとした。 また別途、 測定金属毎に市販原子吸光用標準溶液を用いて 0. 01〜30mgZlの濃度範 囲の検量線作成用溶液をつくり、 高周波プラズマ発光分析 (Al, Ca, Mg, Co ) およ ぴ原子吸光分析 (Na,Li,K ) を行い、 検量線を作成し、 この検量線に基づき個々 のサンプルの分析データからポリエステル中の金属含有量を算出した。  The content of other metals was measured by the following method. 1.0 g of polyester is weighed in a platinum crucible, slurried in an electric furnace at 550 ° C, cooled to room temperature, and the ash content is reduced to 6 N hydrochloric acid (hydrofluoric acid / hydrochloric acid in the case of titanium). Mixture), evaporate to dryness, and dissolve in 1.2 N hydrochloric acid. Samples to be subjected to high-frequency plasma emission analysis (ICPS-2000, manufactured by Shimadzu Corporation) and atomic absorption analysis (M-640-12, manufactured by Shimadzu Corporation) did. Separately, using a standard solution for atomic absorption for each metal to be measured, a solution for preparing a calibration curve in the concentration range of 0.01 to 30 mgZl was prepared, and high-frequency plasma emission analysis (Al, Ca, Mg, Co) and ぴAtomic absorption spectroscopy (Na, Li, K) was performed to create a calibration curve, and the metal content in the polyester was calculated from the analytical data of each sample based on the calibration curve.
(2) ポリエステルの固有粘度 ( I V)  (2) Intrinsic viscosity of polyester (IV)
ポリエステノレ O.lgをフエノーノレ I 1,1, 2, 2-テトラクロロェタンの重量比で 6 / 4混合溶媒 25mlに溶解し、 ウベローデ粘度計を用いて温度 30 °Cで測定し た。  Polyestenol O.lg was dissolved in 25 ml of a 6/4 mixed solvent in a weight ratio of phenol 1,1,2,2-tetrachloroethane and measured at 30 ° C. using an Ubbelohde viscometer.
(3) 酸価  (3) Acid value
ポリエステルを冷凍粉碎し、 i 3 0°cで 12時間以上真空乾燥する。 試料 0. 1 gを試験管に精秤し、 ベンジルアルコール 10mlを加え、 溶解させる。 溶解 後、 zk浴で冷却する。 1 Omlのクロ口ホルムを加え、 フエノールフタレインを 指示薬として、 0. 1 Nの Na OHのメタノーノレ Zベンジルアルコール == 1/9 の溶液を使用して滴定して、 酸価を求めた。 The polyester is freeze-ground and vacuum dried at 30 ° C for at least 12 hours. Precisely weigh 0.1 g of the sample in a test tube, add 10 ml of benzyl alcohol, and dissolve. Dissolution Afterwards, it is cooled in a zk bath. 1 Oml of clonal form was added, and titration was performed using a solution of 0.1 N NaOH in methanol / Z benzyl alcohol == 1/9 using phenolphthalein as an indicator to determine an acid value.
(4) ジエチレングリコール含量 (DEG)  (4) Diethylene glycol content (DEG)
ポリエステル 0. 1 gをメタノール 2 m 1中で 250 °Cで加熱分解した後、 ガ スクロマトグラフィー (島津製作所製 GC- MBを使用) により定量して求めた。 力 ラムは、 ジーェノレサイエンス製 PEG— HTを充填したカラムを使用した。 After 0.1 g of polyester was thermally decomposed at 250 ° C. in 2 ml of methanol, it was quantified and determined by gas chromatography (using GC-MB manufactured by Shimadzu Corporation). The column used was a column packed with PEG-HT manufactured by Jenore Science.
(5) 示差走査熱量分析 (DSC) (5) Differential scanning calorimetry (DSC)
TAィンスッノレメントネ ±$|D S C 2920を用いて測定した。 ポリエステノレ約 10. Omgを TAィンスツルメントネ土製ォートサンプラ用専用アルミパンに入れ密封 し、 50°C/分の昇温速度で 280°Cまで加熱し、 280°Cに達してから 1分間 保持した後即座に、 液体窒素中でタエンチした。 その後、 室温から 20°CZ分の 昇温速度で 300°Cまで昇温し、 昇温時結晶化温度 T c 1ならびに融点 Tmを求 めた。 300°Cに達してから 2分間保持した後に、 10°C/分で降温し、 降温時 結晶化温度 T c 2を求めた。 Te l, Tm、 T c 2はそれぞれのピークの極大部 分の温度とした。  The measurement was carried out using TA insulnomentone ± $ | DSC 2920. Put about 10.Omg of polyester in a special aluminum pan for TA instrument sandstone autosampler, seal, heat to 280 ° C at a heating rate of 50 ° C / min, and reach 280 ° C for 1 minute Immediately after holding, they were entangled in liquid nitrogen. After that, the temperature was raised from room temperature to 300 ° C at a rate of 20 ° CZ, and the crystallization temperature Tc1 and melting point Tm at the time of temperature rise were determined. After holding at 300 ° C for 2 minutes, the temperature was lowered at 10 ° C / min, and the crystallization temperature Tc2 at the time of cooling was determined. Te1, Tm, and Tc2 were the temperatures at the local maximums of the respective peaks.
(6) 色相 ,  (6) Hue,
色差計 (東京電色 (株) 雜 ODEL TC-1500MC-88) を使用して、 ハンタ"の L値 、 a値、 b値として測定した。 ポリ: tステルレジンチップを測 料とする場合 は、 実施例に記載の方法で得られた直径約 2 mm、 長さ約 3 mmのチップを約一 昼夜室温にて濾紙の上で風乾した後、 力ラ一測定に使用した。  Using a color difference meter (Tokyo Denshoku Co., Ltd., ODEL TC-1500MC-88), it was measured as L value, a value, and b value of "Hunter." A chip having a diameter of about 2 mm and a length of about 3 mm obtained by the method described in the Examples was air-dried on a filter paper at room temperature for about one day and night, and then used for force measurement.
( 7 ) 紡糸時の濾庄上昇および延伸時の糸切れの評価  (7) Evaluation of rise in filter during spinning and yarn breakage during drawing
溶融重合で得られた PETレジンチップを乾燥後、 溶融押出機に供給し、 フィ ルターとして 20 μΐηのものを使用し、 孔径 0. 14πηηΦのオリフィスを 10 After drying the PET resin chip obtained by melt polymerization, it is fed to a melt extruder, and a filter with a pore size of 0.14πηηΦ is used with a filter of 20 μΐη.
8個有する紡糸口金から 290°Cで吐出させ、 常法に従って冷却、 オイリング後 、 172 Om /分で引き取った。 引き続き、 予熱ローラー 80°C、 セット温度 1The mixture was discharged at 290 ° C. from a spinneret having eight pieces, cooled and oiled according to a conventional method, and then taken out at 172 Om / min. Continue with preheating roller 80 ° C, set temperature 1
50°Cで 2. 127倍に延伸して 47デシテックス、 108フィラメントのポリ エステル延伸糸を得た。 なお、 実施例 1〜5はそれぞれ異なる紡糸機台を用いて 評価を行った。 紡糸時の濾圧上昇の程度により、 以下のように評価した。 It was drawn 2.127 times at 50 ° C. to obtain a polyester drawn yarn of 47 dtex and 108 filaments. Examples 1 to 5 were evaluated using different spinning machine stands. The following evaluation was made according to the degree of increase in the filtration pressure during spinning.
〇:濾圧上昇がほとんど認められない 〇: Little increase in filtration pressure is observed
△:濾圧上昇が認められる Δ: Increase in filtration pressure is observed
X :顕著に濾圧が上昇する  X: Filtration pressure increases significantly
延伸時の糸切れの頻度により、 以下のように評価した。  The following evaluation was made based on the frequency of yarn breakage during stretching.
〇:糸切れがほとんど起こらない 〇: Almost no thread breakage
△:糸切れが起こる △: Yarn break occurs
X :糸切れが多発する X: Thread breaks occur frequently
(8) 熱安定性パラメータ (TS)  (8) Thermal stability parameter (TS)
溶融重合した I Vが 0. 64〜0. 66 d 1/g (溶融試験前; [ I V] , ) の P E Tレジンチップ 1 gを内径約 14 mmのガラス試験管 入れ 130でで 1 2時間真空乾燥した後、 ガラス試験管を真空ラインに接続し、 減圧と窒素封入を 5回以上繰り返した後に 10 OTo r rとなるように窒素を封入して封管した。 この試験管を 300°Cの塩バスに浸漬して 2時間溶融状態に維持した後、 サンプ ルを取り出して冷凍粉碎し、 真空乾燥後、 IV (溶融試験後; [ I V] f ) を測 定した。 この [I V] f カ^、 下記計算式を用いて TSを求めた。 式は、 既報 ( 上山ら: ョ本ゴム協会誌第 63卷第 8号 497頁 1990年) 力 ら引用した。 1 g of PET resin chip with melt-polymerized IV of 0.64-0.66 d1 / g (before melting test; [IV],) is placed in a glass test tube with an inner diameter of about 14 mm, and dried under vacuum at 130 for 12 hours After that, the glass test tube was connected to a vacuum line, and the pressure was reduced and the nitrogen filled was repeated 5 times or more, and then nitrogen was sealed to 10 OTorr and the tube was sealed. After immersing this test tube in a 300 ° C salt bath and maintaining it in a molten state for 2 hours, remove the sample, freeze-pulverize it, dry it in a vacuum, and measure the IV (after the melting test; [IV] f ) did. TS was calculated using this [IV] f power and the following formula. The formula was quoted from a previous report (Ueyama et al .: The Journal of the Rubber Association of Japan, Vol. 63, No. 8, page 497, 1990).
TS = 0. 245 { [I V] f -1· 47 - [IV] 1 -1· 47 } TS = 0. 245 {[IV] f - 1 · 47 - [IV] 1 - 1 · 47}
(9) 熱酸化安定生パラメータ (TOS)  (9) Thermal oxidation stable raw parameters (TOS)
溶融重合した I Vが 0. 64〜0. 66 d 1/gの PETレジンチップを常法 により冷凍 ¾、薛して 20メッシュ以下の粉末にした。 その粉末を 130 °Cで 12 時間真空乾燥したもの 0. 3 gを内径約 8mm、 長さ約 140 mmのガラス試験 管に入れ 70°Cで 12時間真空乾燥した後、 シリカゲルを入れた乾燥管を試験管 上部に接続し、 乾燥した空気下で 230°Cの塩パスに浸漬して 15分間加熱した 。 カロ熱試験後の PETの I Vから、 上記した TSと同じ下記計算式を用いて求め た。 ただし、 [I V] i および [I V] „はそれぞれ加熱試験前とカロ熱試験後の I V (d 1/g) を指す。  Melt polymerized PET resin chips with an IV of 0.64 to 0.66 d1 / g were frozen and extruded by conventional methods into powders of 20 mesh or less. 0.3 g of the powder was vacuum-dried at 130 ° C for 12 hours, placed in a glass test tube with an inner diameter of about 8 mm and a length of about 140 mm, vacuum-dried at 70 ° C for 12 hours, and then dried with silica gel. Was connected to the top of the test tube, immersed in a 230 ° C salt path under dry air, and heated for 15 minutes. From the IV of the PET after the calorific heat test, it was determined using the same formula below as the above TS. Here, [I V] i and [I V] 指 す indicate the I V (d 1 / g) before the heating test and after the calorific heat test, respectively.
冷凍粉碎は、 フリーザーミル (米国スペックスネ: h¾6750型) を用いて行つ た。 専用セルに約 2 gのレジンチップと専用のインパクターを入れた後、 セルを 装置にセットし液体窒素を装置に充填して約 10分間保持し、 その後、 RATE 10 (インパクターが 1秒間に約 20回前後する) にて 5分間粉砕を行った。 TOS = 0. 245 { [IV] fi I"1· 47 - [IV] , .47 } Freezing and milling were performed using a freezer mill (US Spexne: Model h¾6750). After putting about 2 g of resin chip and dedicated impactor in the dedicated cell, remove the cell The apparatus was set in the apparatus, filled with liquid nitrogen and maintained for about 10 minutes, and then pulverized at RATE 10 (the impactor was moved about 20 times per second) for 5 minutes. TOS = 0. 245 {[IV] fi I "1 · 47 -. [IV], 47}
(10) フイノレムの熱安定 '14  (10) Thermal stability of Huinolem '14
(i) フィルムの製膜  (i) Film formation
後述する各実施例おょぴ比較例において溶融重合で得られた P E Tレジンチッ プを 135 °Cで 6時間真空乾燥した。 その後、 押出機に供給し、 280°Cでシー ト状に溶融押し出しして、 表面温度 20 °Cに保った金属口ール上で急冷固化し、 厚さ 1400 μπιのキャス トフイノレムを得た。  The PET resin chip obtained by melt polymerization in each of Examples and Comparative Examples described below was vacuum-dried at 135 ° C. for 6 hours. Thereafter, the mixture was fed to an extruder, melted and extruded in a sheet form at 280 ° C, and quenched and solidified on a metal jaw maintained at a surface temperature of 20 ° C to obtain a cast finolem having a thickness of 1400 μπι.
次に、 このキャストフィルムを加熱された口ール群及ぴ赤外線ヒータ一で 10 0 °Cに加熱し、 その後周速差のある口ール群で長手方向に設定値で 3. 5倍延伸 して一軸配向 PETフィルムを得た。 引き続いて、 テンターで、 120°Cで幅方 向に設定値で 4. 0倍に延伸し、 フィルム幅長を固定した状態で、 260°C、 0 . 5秒間赤外線ヒーターで加熱し、 さらに 200°Cで 23秒間 3 %の弛緩処理を し、 厚さ 100 μπιの二軸配向 PETフィルムを得た。  Next, this cast film is heated to 100 ° C by a heated jaw group and an infrared heater, and then stretched 3.5 times at a set value in the longitudinal direction with a jaw group having a peripheral speed difference. Thus, a uniaxially oriented PET film was obtained. Subsequently, the film was stretched 4.0 times with a tenter in the width direction at 120 ° C with the set value.The film width was fixed, and the film was heated with an infrared heater at 260 ° C for 0.5 seconds. After a 3% relaxation treatment at 23 ° C for 23 seconds, a biaxially oriented PET film having a thickness of 100 µπι was obtained.
(11) 回収ペレットによるフィルムの製膜  (11) Film formation with recovered pellets
上記 (i) に記載の方法で得られた PETフィルムを短冊状に裁断し、 真空乾 燥後、 押出機に投入し、 温度設定 280°Cで溶融樹脂を径 5mmのノズルから押 し出した後、 水で冷却、 切断することによつて回収ぺレットを得た。  The PET film obtained by the method described in (i) above was cut into strips, dried in a vacuum, put into an extruder, and extruded at a temperature of 280 ° C at a temperature of 280 ° C from a nozzle having a diameter of 5 mm. Thereafter, the pellet was cooled and cut to obtain a recovered pellet.
溶融重合で得られた PETレジンチップと前述の回収ペレットを 50 : 50の 重量比で混合し、 135°Cで 6時間真空乾燥した。 その後、 押出機に供給し、 2 80°Cでシート状に溶融押し出しして、 表面温度 20°Cに保った金属ロール上で 急冷固化し、 厚さ 1400 imのキャストフイルムを得た。  The PET resin chips obtained by melt polymerization and the above-mentioned recovered pellets were mixed at a weight ratio of 50:50, and vacuum-dried at 135 ° C for 6 hours. Then, it was fed to an extruder, melted and extruded into a sheet at 280 ° C, and rapidly cooled and solidified on a metal roll maintained at a surface temperature of 20 ° C to obtain a cast film having a thickness of 1400 im.
次に、 このキャストフイルムを加熱されたロール群及び赤外線ヒーターで 10 0 °Cに加熱し、 その後周速差のある口ール群で長手方向に設定値で 3. 5倍延伸 して一軸配向 PETフィルムを得た。 続いて、 テンターで、 120°Cで幅方向に 設定値で 4. 0倍に延伸し、 厚さ 100 μ mの二軸配向 P E Tフィルムを得た。 得られたフィルムを再度短冊状に裁断し、 上記と同様にして回収ペレツトを得 てフィルムの製膜を行った。 本操作を 5回以上繰り返し行つた。 (iii) フィルムの熱安定性評価 Next, this cast film is heated to 100 ° C by a heated roll group and an infrared heater, and then stretched 3.5 times in a longitudinal direction by a set value in a group of jaws having a difference in peripheral speed to a uniaxial orientation. PET film was obtained. Subsequently, the film was stretched 4.0 times at a set value in the width direction at 120 ° C. with a tenter to obtain a biaxially oriented PET film having a thickness of 100 μm. The obtained film was cut into strips again, and a recovered pellet was obtained in the same manner as described above to form a film. This operation was repeated more than 5 times. (iii) Thermal stability evaluation of film
得られたフィルムを長さ 8 cm、 幅 4 cmの試験片に切り出し、 得られたフィ ルムを長さ方向に徐々に引っ張りその切れ易さにより評価した。 切れにくいもの ほど良好として評価した。 〇:良好、 X :不良。  The obtained film was cut into a test piece having a length of 8 cm and a width of 4 cm, and the obtained film was gradually pulled in the length direction to evaluate the easiness of the cut. Those that were hard to cut were evaluated as good. 〇: good, X: bad.
(1 1) フィルム耐熱老化性  (1 1) Heat aging resistance of film
上記 (10) ( i) の方法で得られたフィルムを、 長さ 10 cm、 幅 5 cmの 試験片に切り出し、 試験片をギヤ一式熱風乾燥機を用いて 200°C、 100時間 処理した後のフィルムを長さ方向に徐々に引っ張ったときの切れやすさによりフ イルム耐熱老ィ匕性を評価した。 切れにくいものほど良好として評価した。 〇:良 好、 X 不良。  (10) The film obtained by the method of (i) is cut into test pieces of 10 cm in length and 5 cm in width, and the test pieces are treated at 200 ° C for 100 hours using a complete gear hot air dryer. The heat resistance of the film was evaluated based on the ease of cutting when the film was gradually pulled in the length direction. Those that were hard to cut were evaluated as good. 〇: Good, X bad.
(1 2) 合成したリン化合物の NMR測定  (1 2) NMR measurement of synthesized phosphorus compounds
ィ匕合物を CDC13 または d6-DMS0 に溶解させ、 室温下で Varian GEMINI - 200 を使 つて彻 j定した。 The I匕合was dissolved in CDC1 3 or d6-DMS0, Varian GEMINI at room temperature - was 200 using a connexion Toru j boss.
(1 3) 合成したリン化合物の融点測定  (13) Melting point measurement of synthesized phosphorus compounds
化合物をカバーガラス上にのせ、 Yanaco MICRO MELTING POINT APPARATUSを使 つて 1 °C/minの昇温速度で測定した。  The compound was placed on a cover glass, and measured at a heating rate of 1 ° C / min using a Yanaco MICRO MELTING POINT APPARATUS.
(14) 合成したリン化合物の元素分析  (14) Elemental analysis of synthesized phosphorus compounds
リンの分析は、 PETレジンチップを湿式分解後、 モリブデンブルー比色法に より行った。 その他の金属は、 灰化 Z酸溶解後、 高周波プラズマ発光分析および 原子吸光分析により行つた。  Phosphorus was analyzed by molybdenum blue colorimetry after wet decomposition of PET resin chips. Other metals were analyzed by high-frequency plasma emission spectrometry and atomic absorption spectrometry after dissolution of the ashed Z acid.
(実施例 1一 1)  (Example 11)
(リン化合物の合成例)  (Synthesis example of phosphorus compound)
下記式 (化 44) で表されるリン化合物 (リン化合物 A) の合成 [ィ匕 4 4 ] Synthesis of phosphorus compound (phosphorus compound A) represented by the following formula (Formula 44) [Dani 4 4]
Figure imgf000084_0001
Figure imgf000084_0001
Sodium (0-ethyl 3, 5-di-tert-butyl-4-hydroxybenzylphosphonate)の合成 Synthesis of Sodium (0-ethyl 3, 5-di-tert-butyl-4-hydroxybenzylphosphonate)
50% 7酸化ナトリゥム水溶液 6. 5g (84mmol) とメタノール 6. lml の混合?新夜中 に diethyl (3, 5— di— tert—butyi— 4— hydroxybenzyl) phosphonate (Irganoxl222 (テ ノ -スペシャルティーケミカルズネ環) ) 5g (l½mol) のメタノール溶液 6. lm 1 を加え、 窒素雰囲気下 24時間加熱還流を行った。 反応後、 反応混合物を冷却し ながら濃塩酸 7. 33g (70mmol) を加え、 析出物をろ取、 イソプロパノールで洗浄 後、 ろ液を減圧留去した。 得られた残渣を熱イソプロパノールに溶解させ、 不溶 分をろ取し、 イソプロパノールを減圧留去後、 残渣を熱ヘプタンで洗浄、 乾燥し X Sodium (0-ethyl . 3, 5-di-tert-butyl-4-hydroxybenzylphosphonate) ¾"3. 4g ( 69% ) 得た。  A mixture of 6.5 g (84 mmol) of a 50% sodium hydroxide aqueous solution and 6.lml of methanol was mixed with diethyl (3,5-di-tert-butyi-4-hydroxybenzyl) phosphonate (Irganoxl222 (teno-specialty chemicals) at midnight. Ring)) 5 g (l½mol) of a methanol solution (6 lm 1) was added, and the mixture was heated and refluxed under a nitrogen atmosphere for 24 hours. After the reaction, 7.33 g (70 mmol) of concentrated hydrochloric acid was added while cooling the reaction mixture, the precipitate was collected by filtration, washed with isopropanol, and the filtrate was distilled off under reduced pressure. The obtained residue was dissolved in hot isopropanol, the insoluble matter was filtered off, the isopropanol was distilled off under reduced pressure, and the residue was washed with hot heptane, dried and dried with X Sodium (0-ethyl. 3, 5-di-tert-butyl). -4-hydroxybenzylphosphonate) ¾ "3.4 g (69%) were obtained.
形状:白色粉体 Shape: white powder
融点: 294-302 °C (^ )Melting point: 294-302 ° C (^)
—腿 (d6 - DMS0, δ ) : 1. 078 (3Η, t, J=7Hz) , 1. 354 (18H, s), 2. 711 (2H, d) , —Thigh (d6-DMS0, δ): 1.078 (3Η, t, J = 7Hz), 1.354 (18H, s), 2.711 (2H, d),
3 . 724 (2H, m, J=7Hz) , 6. 626 (1H, s), 6. 9665 (2H, s) 3.724 (2H, m, J = 7Hz), 6.626 (1H, s), 6. 9665 (2H, s)
元素分析 (カツコ内は理論値) : Na 6. 36% (6. 56%) , P 9. 18% (8. 84%) Elemental analysis (theoretical values in Katsuki): Na 6.36% (6.56%), P 9.18% (8.84%)
0-ethyl 3, 5- di - tert - butyi - 4 -] ydroxybenzylphosphonic acid (ジンィ匕合物 A) の合成  0-ethyl 3,5-di-tert-butyi-4-] Synthesis of ydroxybenzylphosphonic acid
室温で撹拌下の Sodium (0- ethyl 3, 5 - di- tert - butyl - 4- hydroxybenzyl- phosphonate) lg (2. 8mmol ) の水溶液 20mlに濃塩酸 1. 5gを加えて 1 時間撹拌し た。 反応混合物に水 150ml を加え、 析出した結晶をろ取、 洗、 乾燥して 0- ethy 1 3, 5-di-tert-butyl-4-hydroxybenzylphosphonic acidを 826mg (88% ) 得た。 形状:板状結晶 ' 1.5 g of concentrated hydrochloric acid was added to 20 ml of an aqueous solution of sodium (0-ethyl 3,5-di-tert-butyl-4-hydroxybenzyl-phosphonate) lg (2.8 mmol) under stirring at room temperature, and the mixture was stirred for 1 hour. 150 ml of water was added to the reaction mixture, and the precipitated crystals were collected by filtration, washed and dried to obtain 826 mg (88%) of 0-ethyl13,5-di-tert-butyl-4-hydroxybenzylphosphonic acid. Shape: Plate Crystal ''
融点: 126-127 °C Melting point: 126-127 ° C
- MR(CDC13, δ):1.207(3Η, t, J=7Hz), 1.436(18H, s), 3.013(2H, d), 3.88 8 (2H, m, J=7Hz) , 7.088 (2H, s), 7.679-8.275 (1H, br) - MR (CDC1 3, δ) : 1.207 (3Η, t, J = 7Hz), 1.436 (18H, s), 3.013 (2H, d), 3.88 8 (2H, m, J = 7Hz), 7.088 (2H, s), 7.679-8.275 (1H, br)
(ポリエステル重合例)  (Example of polyester polymerization)
撹拌機付きの 2リッターステンレス製オートクレープを用いて、 高純度テレフ タル酸とエチレングリコールから常法に従って製造したビス (2—ヒドロキシェ チル) テレフタレートおょぴオリゴマーの混合物に対し、 重縮合触媒としてアル ミニゥムトリスァセチルァセトネートの 2. 5 g/1のエチレングリコーノレ溶液 と上述のリン化合物 Aの 20も/ 1エチレングリコール溶液と酢酸ナトリゥムの 50 g/1エチレンダリコール溶液を加えた。 これらの化合物は最終的に得られ るポリマー中の各金属原子おょぴリン原子の含有量が表 1に示す量となるように 添加した。 添加した触媒中の金属成分は重合中、 成形中に揮散することが少ない ので分析結果で得られた数値が仕込み量とほぼ同様であるが、 リン成分は重合中 、 成形中に揮散するので分析結果より多めに添加した。 また添加量は、 重合に用 いた反応器の特性や重合条件に応じて適切な量を選んだ。 上記溶液の添加後、 窒 素雰囲気下常圧にて 245°Cで 10分間撹拌した。 次いで 50分間を要して 27 5 °Cまで昇温しつつ反応系の圧力を徐々に下げて 0. lTo r rとしてさらに 2 75°C、 0. 1 T o r rで重縮合反応を行った。 ポリエチレンテレフタレートの I Vが 0. 65 d l/gに到達するまでに要した重合時間を表 1に示す。 また、 上記の重縮合にて得られた I Vが 0. 65 d 1 / gのポリエチレンテレフタレー トを常法に従ってチップ化した。 すなわち、 溶融重合で所定の撹拌トルクに到達 した時点でオートクレープに窒素を導入し常圧に戻し重縮合反応を停止させた後 、 約 0. IMPaの加圧下、 溶融ポリマーを連続的に反応缶下部の吐出ノズルより冷水 中にストランド状に押し出して急冷し、 カッターによって、 長さ約 3ηπη、 直径 約 2 mmのシリンダ一形状のレジンチップを得た。 冷水中での保持時間は約 20 秒間であった。 このレジンチップを用いて PETの物性を測定した。 結果は、 IV は 0.65dl/gであり、 酸価は 2eq/tonであり、 DEG は 2. lmol°/oであり、 Tmは 256.6 。C、 Tel は 166.0 °C、 Tc2 は 188.6 °Cであった。 また、 L値は 66.0、 a値は - 1.8 、 ゎ値は3. 6 であった。 Using a 2-liter stainless steel autoclave with a stirrer as a polycondensation catalyst for a mixture of bis (2-hydroxyethyl) terephthalate oligomers produced from high-purity terephthalic acid and ethylene glycol in a conventional manner. Add a 2.5 g / 1 solution of aluminum trisacetyl acetonate in ethylene glycol and a 20/1 / ethylene glycol solution of phosphorus compound A and a 50 g / 1 solution of sodium acetate in ethylene dalicol. Was. These compounds were added so that the content of each metal atom and phosphorus atom in the finally obtained polymer was as shown in Table 1. Since the metal component in the added catalyst rarely volatilizes during polymerization and molding, the numerical value obtained from the analysis result is almost the same as the charged amount.However, the phosphorus component volatilizes during polymerization and molding, so it is analyzed. More than the result was added. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. After the addition of the above solution, the mixture was stirred at 245 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Then, over 50 minutes, the pressure of the reaction system was gradually lowered while the temperature was raised to 275 ° C., and the polycondensation reaction was further performed at 275 ° C. and 0.1 Torr as 0.1 l Torr. Table 1 shows the polymerization time required until the IV of polyethylene terephthalate reached 0.65 dl / g. In addition, polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was formed into chips according to a conventional method. That is, when a predetermined stirring torque is reached in the melt polymerization, nitrogen is introduced into the autoclave, the pressure is returned to normal pressure, the polycondensation reaction is stopped, and then the molten polymer is continuously reacted under a pressure of about IMPa. The resin was extruded into cold water in a strand form from the lower discharge nozzle and quenched, and a cutter was used to obtain a cylinder-shaped resin tip with a length of about 3ηπη and a diameter of about 2 mm. The holding time in cold water was about 20 seconds. The physical properties of PET were measured using this resin chip. The result is that the IV is 0.65 dl / g , the acid value is 2 eq / ton, DEG is 2. lmol ° / o, and Tm is 256.6. C and Tel were 166.0 ° C and Tc2 was 188.6 ° C. L value is 66.0, a value is -1.8 The ゎ value was 3.6.
この P E Tレジンチップを用いて紡糸時の濾圧上昇および延伸時の糸切れの評 価を行った。 評価結果を表 1に示す。  Using this PET resin chip, the evaluation of the increase in filtration pressure during spinning and the breakage of yarn during stretching were performed. Table 1 shows the evaluation results.
(実施例 1ー2〜1一 3、 比較例 1一 1 )  (Examples 1-2 to 11 and Comparative Examples 1 to 1)
触媒を変更したこと以外は実施例 1一 1と同様にしてポリエステルを重合した 。 各実施例および比較例で、 触媒として用いた化合物を表 1にそれぞれ示す。 こ れらの化合物は最終的に得られるポリマー中の各金属原子おょぴリン原子の含有 量が表 1に示す量となるように添加した。 各実施例および比較例の重合結果と紡 糸時の濾圧上昇および延伸時の糸切れの評価結果を表 1に示す。 I r g a n o X 1 4 2 5はチバ ·スペシャルティーケミ ルス、社製のものを使用し、 リン化合物 Aは実施例 1— 1と同じ方法で合成したものを使用した。  A polyester was polymerized in the same manner as in Example 11 except that the catalyst was changed. Table 1 shows the compounds used as catalysts in each of the examples and comparative examples. These compounds were added so that the content of each metal atom or phosphorus atom in the finally obtained polymer was as shown in Table 1. Table 1 shows the polymerization results of each of the examples and comparative examples, and the evaluation results of the increase in the filtration pressure during spinning and the yarn breakage during stretching. IrganoX14425 was manufactured by Ciba Specialty Chemicals, Inc. Phosphorus compound A was synthesized by the same method as in Example 1-1.
上記した実施例および比較例から明らかなように、 ポリエステル中の金属の含 有量が本発明の特許請求の範囲にあるものは、 紡糸および延伸の操業性に優れる のに対して、 本発明の特許請求の範囲外のものは、 紡糸時に濾圧上昇が顕著に起 こったり、 延伸時に糸切れが多発したりし、 操業性に劣る結果となる。  As is clear from the above-mentioned Examples and Comparative Examples, those having a metal content in polyester within the scope of the claims of the present invention are excellent in operability of spinning and drawing, whereas those of the present invention Those outside the scope of the claims cause a remarkable rise in the filtration pressure during spinning, and frequent yarn breakage during drawing, resulting in poor operability.
(実施例 2 - 1 )  (Example 2-1)
高純度テレフタノレ酸とエチレンダリコールから常法に従って製造したビス (2 —ヒドロキシェチノレ) テレフタレートおょぴオリゴマーの混合物に対し、 重縮合 触媒としてアルミニウムトリスァセチルァセトネートの 2. 5 g / 1のエチレン グリコール薪夜と酢酸リチウムニ水和物 5 0 g Z 1のェチレングリコール溶液を 加えた。 これらの化合物は最終的に得られるポリマー中の含有量として表 1に示 す量となるように添加した。 ただし、 含有量はポリマー中の酸成分に対する金属 原子としてのモノレ%を示す。 添加量は、 重合に用いた反応器の特性や重合条件に 応じて適切な量を選んだ。 上記溶液の添加後、 窒素雰囲気下常圧にて 2 4 5 °Cで 1 0分間撹拌した。 次いで 5 0分間を要して 2 7 5 °Cまで昇温しつつ反応系の圧 力を徐々に下げて 0 . 1 T o r rとしてさらに 2 7 5 °C、 0 . 1 T o r rで重縮 合反応を行った。 ポリエチレンテレフタレートの I Vが 0 . 6 5 d l / gに到達 するまでに要した重合時間を表 2に示す。 また、 上記の重縮合にて得られた I V が 0 . 6 5 d l Z gのポリエチレンテレフタレートを常法に従ってチップィ匕した ∞ w 1 To a mixture of bis (2-hydroxyethynole) terephthalate oligomer prepared from terephthalenoic acid of high purity and ethylene dalicol according to a conventional method, 2.5 g of aluminum trisacetylacetonate was used as a polycondensation catalyst. Ethylene glycol firewood 1 and lithium acetate dihydrate 50 g Z 1 in ethylene glycol solution were added. These compounds were added so that the content in the finally obtained polymer was as shown in Table 1. However, the content indicates the percentage of monolith as a metal atom with respect to the acid component in the polymer. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. After the addition of the above solution, the mixture was stirred at 240 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Then, it took 50 minutes to gradually raise the temperature of the reaction system to 275 ° C while gradually reducing the pressure of the reaction system to 0.1 Torr, and further polycondensation at 275 ° C and 0.1 Torr. The reaction was performed. Table 2 shows the polymerization time required for the IV of polyethylene terephthalate to reach 0.65 dl / g. In addition, IV obtained by the above polycondensation was obtained by subjecting polyethylene terephthalate of 0.65 dl Z g to chipping according to a conventional method. ∞ w 1
[表 1] [table 1]
Figure imgf000087_0001
Figure imgf000087_0001
1) ポリ; ステル 106g当たりの金属原子の含有量。 1) Poly; content of the metal atoms per ester 10 6 g.
2) ポリエステル 106g当たりのアルカリ金属原子とアルカリ土類金属原子の含有量の合計。 2) the total content of alkali metal atoms and alkaline earth metal atoms per polyester 10 6 g.
'を用いて紡糸時の濾圧上昇および延伸時の糸切れの評 価を行った。 評価結果を表 2に示す。 'Was used to evaluate the increase in filtration pressure during spinning and yarn breakage during stretching. Table 2 shows the evaluation results.
(実施例 2— 2〜 2— 6、 比較例 2-1— 2-2)  (Examples 2-2 to 2-6, Comparative Examples 2-1 to 2-2)
触媒を変更したこと以外は実施例 2— 1と同様にしてポリエステルを重合した 。 結果を表 2に示す。 実施例 2— 6においては、 重縮合触媒として酢酸マグネシ ゥムと酉乍酸アルミニゥムを添加したことに加えて、 フェエルホスホン酸ジメチル をポリマー中の酸成分に対して 0.01mol°/。添加した。  A polyester was polymerized in the same manner as in Example 2-1 except that the catalyst was changed. Table 2 shows the results. In Examples 2-6, in addition to the addition of magnesium acetate and aluminum phosphate as polycondensation catalysts, dimethyl ferrphosphonate was added at a rate of 0.01 mol ° / mol to the acid component in the polymer. Was added.
上記した実施例および比較例から明らかなように、 ポリエステル中の金属の含 有量が本発明の特許請求の範囲にあるものは、 紡糸および延伸の操業性に優れる のに対して、 本発明の特許請求の範囲外のものは、 紡糸時に濾圧上昇が顕著に起 こったり、 延伸時に糸切れが多発したりし、 操業性に劣る。  As is clear from the above-mentioned Examples and Comparative Examples, those having a metal content in polyester within the scope of the claims of the present invention are excellent in operability of spinning and drawing, whereas those of the present invention Those outside the scope of the claims are inferior in operability because the filtration pressure rises remarkably during spinning, and yarn breakage frequently occurs during drawing.
(実施例 3 - 1)  (Example 3-1)
高純度テレフタル酸とエチレンダリコーノレから常法に従って製造したビス (2 —ヒドロキシェチル) テレフタレートおょぴオリゴマーの混合物に対し、 重縮合 触媒としてアルミニウムトリスァセチルァセトネートの 2. 5 g/lのエチレン グリコール溶液と I r g ano x l 425 (チバ ·スペシャルティーケミカルズ 社製) の 10 g/ュエチレングリコール溶液を加えた。 これらの化合物は最終的 に得られるポリマー中の金属おょぴリンの含有量が表 3に示す量となるように添 加した。 添加量は、 重合に用いた反応器の特性や重合条件に応じて適切な量を選 んだ。 上記溶液の添加後、 窒素雰囲気下常圧にて 245°Cで 10分間撹拌した。 次いで 50分間を要して 275 °Cまで昇温しつつ反応系の圧力を徐々に下げて 0 . lTo r rとしてさらに 275° (、 0. lTo r rで重縮合反応を行った。 ポ リエチレンテレフタレートの IVが 0. 65 d lZgに到達するまでに要した重 合時間を表 1に示す。 また、 上記の重縮合にて得られた IVが 0. 65 d 1/g のポリエチレンテレフタレートを常法に従ってチップィヒした。 このレジンチップ を用いて P E Tの物性を測定した。 結果は、 I Vは 0.65dl/gであり、 酸価は 6eq/ tonであり、 DEGは 2. lmol°/。であり、 Tmは 256.3 °C、 Tc2 は 186.2 °Cであった 。 また、 L値は 68.9、 a値は- 2.56 、 b値は 5.49であった。  To a mixture of bis (2-hydroxyethyl) terephthalate oligomer prepared from conventional terephthalic acid and ethylene dariconole according to a conventional method, 2.5 g of aluminum trisacetyl acetate was used as a polycondensation catalyst. l of ethylene glycol solution and 10 g / ethylene glycol solution of Irgano xl 425 (manufactured by Ciba Specialty Chemicals) were added. These compounds were added so that the content of metal phosphate in the finally obtained polymer was as shown in Table 3. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. After the addition of the above solution, the mixture was stirred at 245 ° C for 10 minutes under a nitrogen atmosphere at normal pressure. Then, over 50 minutes, the temperature of the reaction system was gradually lowered while the temperature was raised to 275 ° C, and the polycondensation reaction was further performed at 275 ° (0.1 Torr) with 0.1 lTorr. The polymerization time required for the IV to reach 0.65 dlZg is shown in Table 1. In addition, the polyethylene terephthalate having an IV of 0.65 dl / g obtained by the above polycondensation was prepared according to a conventional method. The physical properties of PET were measured using this resin chip, the result was IV of 0.65 dl / g, acid value of 6 eq / ton, DEG of 2. lmol ° /. The temperature was 256.3 ° C. and Tc2 was 186.2 ° C. The L value was 68.9, the a value was −2.56, and the b value was 5.49.
'を用いて紡糸時の濾圧上昇およぴ延伸時の糸切れの評 [表 2] Of filtration pressure increase during spinning and yarn breakage during stretching [Table 2]
COCO
Figure imgf000089_0001
Figure imgf000089_0001
1 ) ポリエステル中のアルカリ金属とアルカリ土類金属のモル%の合計 (Μ) とアルミニウムのモル% (A I ) の比 1) Ratio of the sum of mole% of alkali metal and alkaline earth metal in polyester (Μ) and mole% of aluminum (A I)
2) ポリエステル中のアルガリ金属とアルカリ土類金属の合計量(ppm) 2) Total amount of argari metal and alkaline earth metal in polyester (ppm)
Eを行った。 評価結果を表 3に示す。 E performed. Table 3 shows the evaluation results.
(実施例 3— 2〜 3— 9、 比較例 3-1— 3-3)  (Example 3-2 to 3-9, Comparative Example 3-1-3-3)
触媒を変更したこと以外は実施例 3— 1と同様にしてポリエステルを重合した 。 各実施例おょぴ比較例で、 触媒として用いた化合物を表 3にそれぞれ示す。 こ れらの化合物は最終的に得られるポリマー中の金属おょぴリンの含有量が表 3に 示す量となるように添加した。 添加量は、 重合に用いた反応器の特性や重合条件 に応じて適切な量を選んだ。 実施例 3— 9においては、 触媒として三酸化アンチ モンを併用した。 三酸ィ匕アンチモンは最終的に得られるポリマー中のアンチモン 原子の含有量が 50 p pmとなるように添加した。 各実施例およぴ比較例の重合 結果と紡糸時の濾圧上昇および延伸時の糸切れの評価結果を表 3に示す。 I r g a n o x 1425はチノ ·スペシャルティーケミカルズネ: のものを使用し、 リ ンィ匕合物 Aは上述の方法で合成したものを使用した。  A polyester was polymerized in the same manner as in Example 3-1 except that the catalyst was changed. Table 3 shows the compounds used as catalysts in each Example and Comparative Example. These compounds were added so that the content of metallic phosphorous in the polymer finally obtained was as shown in Table 3. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. In Examples 3-9, antimony trioxide was used in combination as a catalyst. Antimony trioxide was added so that the content of antimony atoms in the polymer finally obtained was 50 ppm. Table 3 shows the polymerization results of each Example and Comparative Example, and the evaluation results of the increase in filtration pressure during spinning and the breakage of yarn during stretching. The Irganox 1425 used was that of Chino Specialty Chemicals Co., Ltd., and the Linyi Conjugate A used was the one synthesized by the method described above.
上記した実施例おょぴ比較例から明らかなように、 ポリエステル中の金属およ ぴリンの含有量が本発明の特許請求の範囲にあるものは、 紡糸および延伸の操業 性に優れるのに対して、 本発明の特許請求の範囲外のものは、 紡糸時に濾圧上昇 が顕著に起こったり、 延伸時に糸切れが多発したりし、 操業性に劣る結果となる  As is clear from the above Examples and Comparative Examples, those in which the contents of the metal and phosphorus in the polyester are within the scope of the claims of the present invention are excellent in the operability of spinning and drawing. On the other hand, those outside the scope of the claims of the present invention result in a remarkable increase in filtration pressure during spinning or frequent yarn breakage during drawing, resulting in poor operability.
(実施例 4一 1) (Example 4-1)
撹拌機付きの 2リッターステンレス製オートクレープを用いて、 高純度テレフ タ/レ酸とエチレングリコールから常法に従って製造したビス (2—ヒドロキシェ チル) テレフタレートおょぴオリゴマーの混合物に対し、 重縮合触媒として塩化 アルミニウムの 13 g/ 1のエチレングリコール溶液をポリエステルを構成する 酸成分に対してアルミニウム原子として 0. 014mo l%加え、 I r g a no 1425 (チパ ·スペシャルティーケミカルズ社製) の 10 gZ 1エチレング リコール溶液をポリエステルを構成する酸成分に対して I r g a n ox l 425 として 0. 022mo l %加えて、 窒素雰囲気下常圧にて 245でで 10分間撹 拌した。 次いで 50分間を要して 275 °Cまで昇温しつつ反応系の圧力を徐々に 下げて 0. lTo r rとしてさらに 275°C、 0. 1 T o r rで重縮合反応を行 つた。 ポリエチレンテレフタレートの I Vが 0. 65 d lZgに到達するまでに [表 3] Using a 2-liter stainless steel autoclave equipped with a stirrer, polycondensation is performed on a mixture of bis (2-hydroxyethyl) terephthalate and oligomer prepared from high-purity terephthalic acid / leic acid and ethylene glycol according to a conventional method. As a catalyst, 13 g / 1 of an ethylene glycol solution of aluminum chloride was added in an amount of 0.014 mol% as an aluminum atom to the acid component of the polyester, and 10 gZ of Irga no 1425 (manufactured by Chipa Specialty Chemicals) was added. 0.022 mol% of an ethylene glycol solution was added as Irganoxl 425 to the acid component constituting the polyester, and the mixture was stirred at 245 at normal pressure under a nitrogen atmosphere for 10 minutes. Then, over 50 minutes, the temperature of the reaction system was gradually lowered while the temperature was raised to 275 ° C, and the polycondensation reaction was further performed at 275 ° C and 0.1 Torr as 0.1 l Torr. By the time the IV of polyethylene terephthalate reaches 0.65 dlZg [Table 3]
00 00
Figure imgf000091_0001
Figure imgf000091_0001
1) ポリエステル中のアルカリ金属原子とアルカリ土類金属原子の含有量の合計 (ppnt)  1) Total content of alkali metal and alkaline earth metal atoms in polyester (ppnt)
2) ポリエステル中のアルカリ金厲原子とアルカリ土類金属原子の含有量の合計(ppm) とアルミニウム原子の含有量(ppm)の比 2) The ratio of the total content (ppm) of alkali gold atoms and alkaline earth metal atoms in polyester to the content of aluminum atoms (ppm)
3) ポリエステル Φのリン原子の含有盘 (pm) とアルミニウム原子の含有量(卯 in)の比 3) Polyester Φ ratio of phosphorus atom content と (pm) to aluminum atom content (u in)
4)ポリエステル.中にアンチ 原子として 5 Oppm含有 4) Polyester containing 5 Oppm as anti-atom
要した重合時間を表 4に示す。 また、 上記の重縮合にて得られた I Vが 0. 65 d lZgのポリエチレンテレフタレートを常法に従ってチップ化した。 このレジ ンチップ中に含まれるアルミニウム原子の量とリン原子の量を測定した結果、 な らぴにリン原子に対するアルミニウム原子の比を表 4に示す。 PETレジンチッ プ中に含まれるカルシウム原子の量は 45 p pmであり、 従って金属原子の総含 有量は 65 p p mであった。 この P E Tレジンチップを用いて熱酸化安定性の評 価ならびに紡糸時の濾圧上昇およぴ延伸時の糸切れの評価を行つた。 評価結果を 表 4に示す。 Table 4 shows the required polymerization time. In addition, polyethylene terephthalate having an IV of 0.65 dlZg obtained by the above polycondensation was formed into chips according to a conventional method. Table 4 shows the ratio of aluminum atoms to phosphorus atoms as a result of measuring the amount of aluminum atoms and the amount of phosphorus atoms contained in the resin chip. The amount of calcium atoms contained in the PET resin chip was 45 ppm, and thus the total content of metal atoms was 65 ppm. Using this PET resin chip, the evaluation of thermooxidative stability, the increase in filtration pressure during spinning, and the evaluation of yarn breakage during stretching were performed. Table 4 shows the evaluation results.
(実施例 4 _ 2)  (Example 4_2)
(リン化合物の合成例)  (Synthesis example of phosphorus compound)
下記式 (ィ匕 21) で表されるリン化合物 (NMPA) の合成  Synthesis of phosphorus compound (NMPA) represented by the following formula (I-Dai 21)
窒素雰囲気下、 亜リン酸トリェチル 8.31g(50醒 ol) と 1 -クロロメチルナフタレ ン 8.83g(50mmol) の混合物を 200 °C (外温) でガス(C2H5C1)の発生が終わるまで 約 30分間加熱した。 室温まで冷却後、 無色の油状液体である MPAを 10.38g(粗 収率 75%)得た。  Under a nitrogen atmosphere, a mixture of 8.31 g (50 mmol ol) of triethyl phosphite and 8.83 g (50 mmol) of 1-chloromethylnaphthalene was added at 200 ° C (outside temperature) until the gas (C2H5C1) generation was completed. Heated for minutes. After cooling to room temperature, 10.38 g (crude yield 75%) of MPA as a colorless oily liquid was obtained.
^-NMR (CDCls, δ ): 1.151 (6Η, t), 3.641 (2H, d), 3.948 (4H, m), 7.381— 7.579 ( 4H, m), 7.749-7.867 (2H, m), 8.088- 8· 133 (1H, m)  ^ -NMR (CDCls, δ): 1.151 (6Η, t), 3.641 (2H, d), 3.948 (4H, m), 7.381—7.579 (4H, m), 7.749-7.867 (2H, m), 8.088- 8133 (1H, m)
(ポリエステル重合例)  (Example of polyester polymerization)
触媒を変更したこと以外は実施例 4— 1と同様にしてポリエステルを重合した 。 本実施例においては、 重縮合触媒としてアルミニウムトリスァセチルァセトネ ートの 2. 5 g/ 1のエチレングリコール溶液をポリエステルを構成する酸成分 に対してアルミニウム原子として 0. 014mo 1 %、 上述の NMPAの 50 g / 1エチレングリコール溶液をポリエステルを構成する酸成分に対して NMPA として 0. 02mo l 0/0、 I r g a n o x l 330 (チバ *スペシャルティーケ ミカルズネ: fc ) を最終的に得られるポリエステル換算で 0. 1重量0 /0、 酢酸リチ ゥムニ水和物の 50 g/ 1エチレンダリコール溶液をポリエステルを構成する酸 成分に対してリチウム原子として 0. 01 m o 1 %使用した。 A polyester was polymerized in the same manner as in Example 4-1 except that the catalyst was changed. In this example, a polycondensation catalyst was prepared by adding a solution of aluminum trisacetyl acetonate in 2.5 g / 1 ethylene glycol at 0.014 mol% as aluminum atoms with respect to the acid component constituting the polyester. 0. the 50 g / 1 of ethylene glycol solution of NMPA as NMPA relative to the acid component constituting the polyester 02mo l 0/0, I rganoxl 330 ( Chiba * Specialty Ke Mikaruzune: fc) finally obtained polyester converted in 0.1 wt 0/0, the 50 g / 1 of ethylene da recall solution of acetic acid lithium Umuni hydrate using 0. 01 mo 1% of lithium atom relative to the acid component constituting the polyester.
ポリエチレンテレフタレートの IVが 0. 65 d 1 Zgに到達するまでに要し た重合時間、 得られた P E Tレジンチップ中に含まれるアルミニウム原子の量と リン原子の量を測定した結果、 ならびにリン原子に対するアルミニウム原子の比 を表 4に示す。 PETレジンチップ中に含まれるリチウム原子の量は 4 p pmで あ.り、 従って金属原子の総含有量は 24 p であった。 PETレジンチップを 用いて熱酸ィ匕安定性の評価ならぴに紡糸時の濾圧上昇および延伸時の糸切れの評 価を行つた結果を表 4に示す。 The polymerization time required for the IV of polyethylene terephthalate to reach 0.65 d1 Zg, the amount of aluminum atoms contained in the obtained PET resin chip and Table 4 shows the results of measuring the amount of phosphorus atoms and the ratio of aluminum atoms to phosphorus atoms. The amount of lithium atoms contained in the PET resin chip was 4 ppm, so the total content of metal atoms was 24 p. Table 4 shows the results of evaluating the stability of thermal oxidation by using PET resin chips, as well as evaluating the increase in filtration pressure during spinning and yarn breakage during stretching.
(比較例 4一 1)  (Comparative Example 4-1)
触媒を変更したこと以外は実施例 4一 1と同様にしてポリエステルを重合した 。 重縮合触媒として塩化アルミニウムの 13 gZ 1のエチレンダリコール溶液を ポリエステルを構成する酸成分に対してアルミニウム原子として 0. 015mo 1 %、 酢酸リチウム二水和物の 50 g/1エチレングリコール溶液をポリエステ ルを構成する酸成分に対してリチウム原子として 0. 06 m o 1 %使用した。 ポリエチレンテレフタレートの I Vが 0. 65 d 1/gに到達するまでに要し た重合時間を表 4に示す。 得られた IVが 0. 65 d lZgの PETレジンチッ プを用いて熱酸化安定性の評価ならびに紡糸時の濾圧上昇およぴ延伸時の糸切れ の評価を行つた結果を表 4に示す。  A polyester was polymerized in the same manner as in Example 41-11 except that the catalyst was changed. As a polycondensation catalyst, a solution of 13 g Z1 of ethylene chloride in aluminum chloride with aluminum chloride at 0.015 mol% of aluminum acid and a 50 g / 1 solution of lithium acetate dihydrate in ethylene glycol were added to polyester. 0.06 mo 1% was used as a lithium atom with respect to the acid component constituting the metal. Table 4 shows the polymerization time required for the IV of polyethylene terephthalate to reach 0.65 d1 / g. Table 4 shows the results of the evaluation of the thermo-oxidative stability, the increase in the filtration pressure during spinning, and the evaluation of the yarn breakage during stretching using a PET resin chip with an IV of 0.65 dlZg.
上記した実施例および比較例から明らかなように、 アルミニウム化合物とリン 化合物とフエノール系化合物を用 ヽて重合したポリエステルであって、 ポリエス テル中のリン原子とアルミ-ゥム原子の比が本発明の特許請求の範囲にあるもの は、 ポリエステルの熱酸ィヒ安定性に優れ、 かつ紡糸および延伸の操業性に優れて いる。 一方、 リン化合物とフエノール系化合物を用いないものは、 熱酸化安定性 に劣るとともに、 紡糸時に濾圧上昇が顕著に起こったり、 延伸時に糸切れが多発 したりし、 操業性に劣る結果となる。  As is evident from the above Examples and Comparative Examples, it is a polyester polymerized using an aluminum compound, a phosphorus compound and a phenolic compound, and the ratio of phosphorus atoms to aluminum atoms in the polyester is determined by the present invention. What is claimed in the claims is that the polyester has excellent thermal acid stability and excellent spinning and drawing operability. On the other hand, those that do not use a phosphorus compound and a phenolic compound are inferior in thermal oxidative stability, markedly increase in filtration pressure during spinning, and frequently cause yarn breakage during drawing, resulting in poor operability. .
(実施例 5 - 1)  (Example 5-1)
(ポリエステルの重合例)  (Polymerization example of polyester)
高純度テレフタル酸とエチレンダリコールから常法に従って製造したビス (2 —ヒドロキシェチル) テレフタレートおよびオリゴマーの混合物に対し、 重縮合 触媒としてアルミニウムトリスァセチルァセトネートの 2. 5 g/ 1のエチレン グリコール溶液と上述のリン化合物 Aの 10 gZ 1エチレンダリコール溶液を加 えた。 これらの化合物は最終的に得られるポリマー中のアルミニウム原子おょぴ [表 4] To a mixture of bis (2-hydroxyethyl) terephthalate and oligomers produced from high-purity terephthalic acid and ethylene dalicol according to a conventional method, 2.5 g / 1 of ethylene trisacetylacetonate was used as a polycondensation catalyst. A glycol solution and the above-mentioned 10 gZ1 ethylene dalicol solution of phosphorus compound A were added. These compounds are the aluminum atoms in the final polymer. [Table 4]
Figure imgf000094_0001
Figure imgf000094_0001
1 ) ポリエステル中に含まれるリン原子の量(ppm) とアルミニウム原子の量(pptn) の比 1) Ratio of the amount of phosphorus atoms (ppm) and the amount of aluminum atoms (pptn) contained in polyester
リン原子の含有量が表 5に示す量となるように添カ卩した。 添加量は、 重合に用い た反応器の特性や重合条件に応じて適切な量を選んだ。 上記溶液の添加後、 窒素 雰囲気下常圧にて 245°Cで 10分間撹拌した。 次いで 50分間を要して 275 °Cまで昇温しつつ反応系の圧力を徐々に下げて 0. lTo r rとしてさらに 27 5 °C、 0. 1 To r rで重縮合反応を行つた。 ポリエチレンテレフタレートの I Vが 0. 65 d l/gに到達するまでに要した重合時間を表 1に示す。 また、 上 記の重縮合にて得られた I Vが 0. 65 d 1 / gのポリエチレンテレフタレート を常法に従ってチップィ匕した。 この PETレジンチップを用いて紡糸時の濾圧上 昇およぴ延伸時の糸切れの評価を行つた。 評価結果を表 5に示す。 The syrup was added so that the phosphorus atom content was as shown in Table 5. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. After the addition of the above solution, the mixture was stirred at 245 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Then, over 50 minutes, the temperature of the reaction system was gradually lowered while the temperature was raised to 275 ° C, and the polycondensation reaction was further performed at 275 ° C and 0.1 Torr as 0.1 ltor. Table 1 shows the polymerization time required for the IV of polyethylene terephthalate to reach 0.65 dl / g. In addition, polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was subjected to chipping according to a conventional method. Using this PET resin chip, the increase in the filtration pressure during spinning and the evaluation of yarn breakage during stretching were performed. Table 5 shows the evaluation results.
(実施例 5 2)  (Example 5 2)
高純度テレフタル酸とエチレングリコールから常法に従って製造したビス (2 ーヒドロキシェチル) テレフタレートおょぴオリゴマーの混合物に対し、 重縮合 触媒としてアルミニウムトリスァセチルァセトネートの 2. 5 g/ 1のエチレン グリコール溶液と I r g ano x l 425 (チパ ·スペシャルティーケミカルズ 社製) の 10 g/ 1エチレングリコール溶液を加えた。 これらの化合物は最終的 に得られるポリマー中のアルミ-ゥムおよびリンの含有量が表 5に示す量となる ように添加した。 添加量は、 重合に用いた反応器の特性や重合条件に応じて適切 な量を選んだ。 上記溶液の添加後、 窒素雰囲気下常圧にて 245°Cで 10分間撹 拌した。 次いで 50分間を要して 275 °Cまで昇温しつつ反応系の圧力を徐々に 下げて 0. lTo r rとしてさらに 275°C、 0. 1 T o r rで重縮合反応を行 つた。 ポリエチレンテレフタレートの I Vが 0. 65 d.1/gに到達するまでに 要した重合時間を表 1に示す。 また、 上記の重縮合にて得られた I Vが 0. 65 d 1ノ gのポリエチレンテレフタレートを常法に従ってチップ化した。 この PE Tレジンチップを用いて紡糸時の濾圧上昇および延伸時の糸切れの評価を行った 。 評価結果を表 5に示す。  To a mixture of bis (2-hydroxyethyl) terephthalate and oligomer prepared from high-purity terephthalic acid and ethylene glycol according to a conventional method, 2.5 g / 1 of aluminum trisacetyl acetonate was used as a polycondensation catalyst. An ethylene glycol solution and a 10 g / 1 ethylene glycol solution of Irgano xl 425 (manufactured by Chipa Specialty Chemicals) were added. These compounds were added so that the contents of aluminum and phosphorus in the finally obtained polymer were as shown in Table 5. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. After the addition of the above solution, the mixture was stirred at 245 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Then, over 50 minutes, the temperature of the reaction system was gradually reduced while the temperature was raised to 275 ° C, and the polycondensation reaction was further performed at 275 ° C and 0.1 T rr as 0.1 l Tor. Table 1 shows the polymerization time required for the IV of polyethylene terephthalate to reach 0.65 d.1 / g. In addition, polyethylene terephthalate having an IV of 0.65 d1 ng obtained by the above polycondensation was formed into chips according to a conventional method. Using this PET resin chip, an increase in the filtration pressure during spinning and an evaluation of yarn breakage during stretching were performed. Table 5 shows the evaluation results.
(比較例 5— 1〜5— 2)  (Comparative Example 5-1 to 5-2)
触媒を変更したこと以外は実施例 5— 1と同様にしてポリエステルを重合した 。 各実施例および比較例で、 触媒として用いた化合物を表 5にそれぞれ示す。 こ れらのィ匕合物は最終的に得られるポリマー中のアルミニゥムおよぴリンの含有量 が表 5に示す量となるように添加した。 添加量は、 重合に用いた反応器の特性や 重合条件に応じて適切な量を選んだ。 重合結果と紡糸時の濾圧上昇および延伸時 の糸切れの評価結果を表 5に示す。 リン化合物 Aは上述のものを使用した。 上記した実施例おょぴ比 例から明らかなように、 ポリエステノレ中のァノレミ二 ゥムおよぴリンの含有量が本発明の特許請求の範囲にあるものは、 紡糸および延 伸の操業性に優れるのに対して、 本発明の特許請求の範囲外のものは、 紡糸時に 濾圧上昇が顕著に起こったり、 延伸時に糸切れが多発したりし、 操業性に劣る結 果となる。 A polyester was polymerized in the same manner as in Example 5-1 except that the catalyst was changed. Table 5 shows compounds used as catalysts in each of Examples and Comparative Examples. These iris conjugates have a high content of aluminum and phosphorus in the final polymer. Was added to the amount shown in Table 5. An appropriate amount was selected according to the characteristics of the reactor used for the polymerization and the polymerization conditions. Table 5 shows the polymerization results and the evaluation results of the increase in filtration pressure during spinning and the breakage of yarn during stretching. The above-mentioned phosphorus compound A was used. As is evident from the above examples and comparative examples, those in which the contents of anoremidine and phosphorus in the polyester are within the scope of the claims of the present invention are those of spinning and elongation. On the other hand, those which are out of the scope of the claims of the present invention result in a remarkable increase in filtration pressure during spinning and frequent breakage of yarn during stretching, resulting in poor operability.
(実施例 6 - 1)  (Example 6-1)
(ポリエステルの重合例)  (Polymerization example of polyester)
撹拌機付きの 2リッターステンレス製オートクレープに高純度テレフタル酸と その 2倍モル量のエチレンダリコールを仕込み、 トリェチルアミンを酸成分に対 して 0. 3mo l %加え、 0. 25 MP aの加圧下 245°Cにて水を系外に留去 しながらエステル化反応を 120分間行いビス (2—ヒ ドロキシェチル) テレフ タレートおよびオリゴマーの混合物を得た。 この混合物に対し、 重縮合触媒とし てアルミニウムトリスァセチノレアセトネートの 2. 5 g/ 1のエチレングリコー ル溶液をポリエステル中の酸成分に対してアルミニウム原子として 0. 07 mo 1 %加え、 上述のリン化合物 Aの 10 g / 1エチレングリコール溶液をポリエス テル中の酸成分に対してリン原子として 0. 2 m o 1 %添加し、 窒素雰囲気下常 圧にて 245°Cで 10分間撹拌した。 次いで 50分間を要して 275 °Cまで昇温 しつつ反応系の圧力を徐々に下げて 0. lTo r rとしてさらに 275°C、 0. 1 To r rで重縮合反応を行った。 ポリエチレンテレフタレートの IVが 0. 6 5 d 1 / gに到達するまでに要した重合時間を表 6に示す。  High purity terephthalic acid and twice the molar amount of ethylene dalicol were charged into a 2-liter stainless steel autoclave equipped with a stirrer, and 0.3 mol% of triethylamine was added to the acid component, and 0.25 MPa was applied. The esterification reaction was performed for 120 minutes while distilling water out of the system at a pressure of 245 ° C to obtain a mixture of bis (2-hydroxyxethyl) terephthalate and oligomer. To this mixture, a polycondensation catalyst of aluminum trisacetinoleacetonate in ethylene glycol at a concentration of 2.5 g / 1 was added in an amount of 0.07 mo 1% as an aluminum atom to the acid component in the polyester. A 10 g / 1 ethylene glycol solution of the phosphorus compound A was added as a phosphorus atom to the acid component in the polyester in an amount of 0.2 mo 1%, and the mixture was stirred at 245 ° C. for 10 minutes under a normal pressure under a nitrogen atmosphere. Then, over 50 minutes, the temperature of the reaction system was gradually lowered while the temperature was raised to 275 ° C, and the polycondensation reaction was further performed at 275 ° C and 0.1 Torr as 0.1 l Tor. Table 6 shows the polymerization time required for the IV of polyethylene terephthalate to reach 0.65 d1 / g.
(実施例 6— 2〜 6— 3, 比較例 6— 1〜 6— 3 )  (Example 6—2 to 6—3, Comparative Example 6—1 to 6—3)
触媒を変更したこと以外は実施例 6— 1と同様にしてポリエステルを重合した 。 各実施例おょぴ比較例で、 触媒として用いた化合物と添加量を表 6にそれぞれ 示す。 添加量はポリマー中の酸成分に対するアルミニウム原子おょぴリン原子と しての量を示す。 重合結果を表 6に示す。 リン化合物 Aは上述のものを使用し、 I r g a n o x l 425はチパ ·スペシャルティーケミカルズ社製のものを使用 [表 5 ] A polyester was polymerized in the same manner as in Example 6-1 except that the catalyst was changed. Table 6 shows the compounds used as catalysts and the amounts added in each Example and Comparative Example. The amount of addition indicates the amount of aluminum atoms or phosphorus atoms with respect to the acid component in the polymer. Table 6 shows the polymerization results. Phosphorus compound A used above, Irganoxl 425 used from Chipa Specialty Chemicals [Table 5]
CO CJl
Figure imgf000097_0001
CO CJl
Figure imgf000097_0001
1 ) ポリエステル中のリン原子の含有量 (ppm) とアルミニウム原子の含有量 (ppm) の比 1) Ratio of phosphorus atom content (ppm) and aluminum atom content (ppm) in polyester
した。 比較例 6- 3においては 1 20分間以上重合を行ったが所定の粘度まで到 達しなかった。 did. In Comparative Example 6-3, polymerization was performed for 120 minutes or more, but did not reach the predetermined viscosity.
(実施例 6 - 4)  (Example 6-4)
重縮合触媒として用いるアルミ-ゥムトリスァセチルァセトネートと I r g a n o x 1425を予めエチレンダリコール中で混ぜ合わせた溶液を調製した。 該 溶液を触媒として添加したこと以外は実施例 6— 3と同様にしてポリエステルを 重合した。 ポリエチレンテレフタレートの I Vが 0. 65 d l/gに到達するま でに要した重合時間は実施例 6— 3とほぼ同じであった。  A solution was prepared by previously mixing aluminum-dimethyltrisacetylacetonate used as a polycondensation catalyst and Irganox 1425 in ethylene daryl. A polyester was polymerized in the same manner as in Example 6-3 except that the solution was added as a catalyst. The polymerization time required until the IV of the polyethylene terephthalate reached 0.65 dl / g was almost the same as in Example 6-3.
上記した実施例および比較例から明らかなように、 アルミニウム化合物とリン 化合物の添加量比が本発明の特許請求の範囲にあるものは、 触媒活性に優れ、 従 つてポリエステルの生産性に優れるのに対して、 本発明の特許請求の範囲外のも のは、 触媒活性に劣り、 ポリエステルの生産性に劣る結果となる。  As is evident from the above Examples and Comparative Examples, those in which the addition ratio of the aluminum compound to the phosphorus compound falls within the scope of the claims of the present invention are excellent in catalytic activity and, consequently, excellent in productivity of polyester. On the other hand, what is out of the claims of the present invention results in poor catalytic activity and poor polyester productivity.
(実施例 7— 1)  (Example 7-1)
(ポリエステルの重合例)  (Polymerization example of polyester)
撹拌機付きの 2リッターステンレス製オートクレープに高純度テレフタル酸と その 2倍モノレ量のエチレングリコールを仕込み、 ト.リエチルァミンを酸成分に対 して 0. 3mo l °/0加え、 0. 2 5 MP aの加圧下 245°Cにて水を系外に留去 しながらエステル化反応を 1 20分間行いビス ( 2—ヒドロキシェチル) テレフ タレートおよぴォリゴマーの混合物を得た。 この混合物に対し、 重縮合触媒とし てアルミニウムトリスァセチルァセトネートの 2. 5 g/ 1のエチレングリコー ル? 夜をポリエステル中の酸成分に対してアルミニウム原子として 0. 0 14m o 1 %加え、 上述のリン化合物 Aの 1 0 gZ 1エチレングリコール溶液をポリェ ステル中の酸成分に対してリン原子として 0. 03mo l %添加し、 酢酸リチウ ムニ水和物 50 g/ 1のエチレングリコール溶液を酸成分に対してリチウム原子 として 0. 0 1モル%を加えて、 窒素雰囲気下常圧にて 245 °Cで 10分間撹拌 した。 次いで 50分間を要して 27 5 °Cまで昇温しつつ反応系の圧力を徐々に下 げて 0. 1 T o r rとしてさらに 275°C、 0. 1 T o r rで重縮合反応を行つ た。 ポリエチレンテレフタレートの I Vが 0. 6 5 d 1/gに到達するまでに要 した重合時間 (AP) を表 7に示す。 [表 6] 2 liter stainless steel autoclave equipped with a stirrer was charged with high-purity terephthalic acid twice Monore amount of ethylene glycol, and. Against the acid component a Riechiruamin with 0. 3mo l ° / 0 added 0.2 5 The esterification reaction was carried out for 120 minutes at 245 ° C. under a pressure of MPa while distilling water out of the system to obtain a mixture of bis (2-hydroxyethyl) terephthalate and polyoligomer. To this mixture, 2.5 g / 1 ethylene glycol of aluminum trisacetylacetonate as polycondensation catalyst? At night, 0.014 mol 1% is added as an aluminum atom to the acid component in the polyester, and the above-mentioned 10 gZ1 ethylene glycol solution of the phosphorus compound A is added as 0.1 atom as a phosphorus atom to the acid component in the polyester. 03 mol%, and add ethylene glycol solution of 50 g / l lithium acetate hydrate to the acid component in an amount of 0.01 mol% as lithium atom with respect to the acid component. Stirred for 10 minutes. Then, over 50 minutes, the temperature of the reaction system was gradually lowered while the temperature was raised to 275 ° C, and the polycondensation reaction was further performed at 275 ° C and 0.1 Torr at 0.1 Torr. . Table 7 shows the polymerization time (AP) required for the IV of polyethylene terephthalate to reach 0.65 d1 / g. [Table 6]
CDCD
Figure imgf000099_0001
Figure imgf000099_0001
1 ) リン原子とアルミニウム原子のモル比 1) Molar ratio between phosphorus atom and aluminum atom
また、 上記の重縮合にて得られた I Vが 0. 65 d 1/gのポリエチレンテレ フタレートを常法に従つてチップ化した。 この; P E Tレジンチップを用いて熱安 定性パラメ一夕 (TS) と熱酸化安定性パラメータ '(TOS) を求めた。 結果を 表 7に示す。 In addition, polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was formed into chips according to a conventional method. Using the PET resin chip, the thermal stability parameter (TS) and the thermo-oxidative stability parameter (TOS) were determined. Table 7 shows the results.
また、 上記] PETレジンチップを用いてフィルムの製膜、 回収ペレットの作成 、 ならびに回収べレットによるフイノレムの製膜を行つた。 フィルムの熱安定性と 耐熱老化性を ,した結果を表 7に示す。  In addition, a film was formed using a PET resin chip, a collected pellet was formed, and a finolem was formed using a collected bellet. Table 7 shows the results of the thermal stability and heat aging resistance of the film.
本発明の触媒は触 E¾性が高く、 これを使用して得られた: P E Tからなるフィル ムは熱安定性と耐熱老化性の両者ともに優れるものであった。 The catalyst of the present invention has high catalytic properties and was obtained by using this: The film made of PET was excellent in both thermal stability and heat aging resistance.
(実施例 7 - 2)  (Example 7-2)
(リン化合物の合成例)  (Synthesis example of phosphorus compound)
下記式化 45で表されるリン化合物 (リン化合物 B ) の合成 Synthesis of phosphorus compound (phosphorus compound B) represented by the following formula 45
[ィ匕 45]  [Dani 45]
Figure imgf000100_0001
Figure imgf000100_0001
1 - (1- naphthyl)methy丄 phosphonic acid dieth esterの合成 Synthesis of 1- (1-naphthyl) methy 丄 phosphonic acid dieth ester
窒素雰囲気下、 亜リン酸トリェチノレ 8.31g(50腿 ol) と卜クロロメチルナフタレ ン 8.83g(50mmol) の混合物を 200 °C (外温) でガス(EtCl)の発生が終わるまで約 30分間加熱した。 室温まで冷却後、 無色の油状液体である(1- naphthyi ethyl phosphonic acid diethylesterを 10.38g(粗収率 75%)得た。  Under a nitrogen atmosphere, a mixture of 8.31 g (50 t ol) of triethynole phosphite and 8.83 g (50 mmol) of trichloromethylnaphthalene at 200 ° C (external temperature) for about 30 minutes until the generation of gas (EtCl) ends. Heated. After cooling to room temperature, 10.38 g (75% crude yield) of a colorless oily liquid (1-naphthyiethyl phosphonic acid diethylester) was obtained.
'H-NMR (CDCI3, δ):1.151(6Η, t), 3.641 (2H, d), 3.948 ( H, m), 7.381-7.579 ( 4H, m), 7.749-7.867 (2H, m), 8.088 - 8.133 (1H, m) 'H-NMR (CDCI3, δ): 1.151 (6Η, t), 3.641 (2H, d), 3.948 (H, m), 7.381-7.579 (4H, m), 7.749-7.867 (2H, m), 8.088 -8.133 (1H, m)
2. Sodium [0-ethyl (1 - napirtyl)raethylphosphonate]の合成 50%水酸化ナトリゥム水溶液 6.5g (8½mol) とメタノール 6. lml の混合溶液中に (1-naphthyl) methylphosphonic acid diethylester 5g (18mmol) のメタノール 溶液 6. lml を加え、 窒素雰囲気下 24時間加熱還流を行った。 反応後、 反応混合物 を冷却しながら濃塩酸 6.59g (63mmol) を加え、 析出物をろ取、 イソプロパノー ルで洗浄後、 ろ液を減圧留去した。 得られた残渣を熱イソプロパノールに溶解さ せ、 不溶分をろ取し、 イソプロパノールを減圧留去した。 残渣を熱 n-ヘプタンで 洗浄後、 イソプロパノールで再結晶し、 乾燥して Sodium [0- ethyl (l-naphtyl)me thylp osphonate]を 3.8g (78% ) 得た。 2. Synthesis of Sodium [0-ethyl (1-napirtyl) raethylphosphonate] To a mixed solution of 6.5 g (8 mol) of a 50% aqueous sodium hydroxide solution and 6.lml of methanol was added 6.lml of a methanol solution of 5 g (18 mmol) of (1-naphthyl) methylphosphonic acid diethylester, and the mixture was refluxed for 24 hours under a nitrogen atmosphere. went. After the reaction, 6.59 g (63 mmol) of concentrated hydrochloric acid was added while cooling the reaction mixture, the precipitate was collected by filtration, washed with isopropanol, and the filtrate was distilled off under reduced pressure. The obtained residue was dissolved in hot isopropanol, the insoluble matter was collected by filtration, and isopropanol was distilled off under reduced pressure. The residue was washed with hot n-heptane, recrystallized from isopropanol, and dried to obtain 3.8 g (78%) of sodium [0-ethyl (l-naphtyl) me thylp osphonate].
形状:針状結晶 Shape: needle crystal
融点: 277- l °C (分解) Melting point: 2 77- l ° C (decomposition)
aH-NMR(d6-DMS0, δ):0.961 (3Η, t, J=7Hz), 3.223 (2H, d), 3.589 (2H, m), 7.3 65-7.468 (4H, m, J=7Hz), 7.651-8.314 (3H, m) aH-NMR (d6-DMS0, δ): 0.961 (3Η, t, J = 7 Hz), 3.223 (2H, d), 3.589 (2H, m), 7.3 65-7.468 (4H, m, J = 7 Hz), 7.651-8.314 (3H, m)
3. 0- ethyl (1-naphtyl) methylphosphonic acid (リン化合物 B) の合成 室温で撹拌下の Sodium [0- ethyl (1-naphtyl) methylphosphonate] lg (3.7應 ol ) の水溶液 10mlに濃塩酸 1.9gを加えて 1 時間撹拌した。 反応混合物をトルエンで 抽出し、 トルエン相を水洗後、 トルエンを減圧留去して 0-ethyl (l-naphtyl)met hylp osphonic acidを 497mg (54% ) ネ守に。 3.Synthesis of 0-ethyl (1-naphtyl) methylphosphonic acid (phosphorus compound B) Concentrated hydrochloric acid 1.9 g in 10 ml of aqueous solution of sodium [0-ethyl (1-naphtyl) methylphosphonate] lg (3.7 ol) with stirring at room temperature Was added and stirred for 1 hour. The reaction mixture was extracted with toluene, the toluene phase was washed with water, and the toluene was distilled off under reduced pressure to give 497 mg (54%) of 0-ethyl (l-naphtyl) met hylp osphonic acid.
形状:無色油状液体 Shape: colorless oily liquid
- NMR(CDC13, δ):1.085 (3H, t, J=7Hz), 3.450 (2H, d), 3.719 (2H, m, 7Hz), 7.369-7.532 (4H, m), 7.727-8.043 (3H, m), 10.939(1H, s) - NMR (CDC1 3, δ) : 1.085 (3H, t, J = 7Hz), 3.450 (2H, d), 3.719 (2H, m, 7Hz), 7.369-7.532 (4H, m), 7.727-8.043 (3H , m), 10.939 (1H, s)
(ポリエステノレの重合例)  (Polyester's polymerization example)
触媒を変更したこと以外は実施例 7— 1と同様にしてポリエステルを重合した 。 触媒として用いた化合物と添加量を表 7に示す。 アルミニウム化合物の添加量 はポリエステル中の酸成分に対するアルミニウム原子としての添加量を示し、 リ ン化合物 Bの添加量はポリエステル中の酸成分に対するリン原子どしての添加量 を示す。 ポリエチレンテレフタレートの I Vが 0. .65 d lZgに到達するまで に要した重合時間 (AP) を表 7に示す。  A polyester was polymerized in the same manner as in Example 7-1 except that the catalyst was changed. Table 7 shows the compounds used as catalysts and the amounts added. The addition amount of the aluminum compound indicates the addition amount as an aluminum atom to the acid component in the polyester, and the addition amount of the phosphorus compound B indicates the addition amount of phosphorus atoms to the acid component in the polyester. Table 7 shows the polymerization time (AP) required for the IV of polyethylene terephthalate to reach 0.65 dlZg.
また、 上記の重縮合にて得られた I Vが 0. 65 d 1/gのポリエチレンテレ フタレートを常法に従ってチップィ匕した。 この: PETレジンチップを用いて熱安 定性パラメ一夕 (TS) と熱酸化安定性パラメータ (TOS) を求めた。 結果を 表 7に示す。 Further, polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was subjected to chipping according to a conventional method. This: heat using PET resin chips The qualitative parameters (TS) and thermo-oxidative stability parameters (TOS) were determined. Table 7 shows the results.
また、 上記: PETレジンチップを用いてフィルムの製膜、 回収ペレットの作成 、 ならびに回収ペレットによるフィルムの製膜を行った。 フィルムの熱安定性と 耐熱老化性を評価した結果を表 7に示す。  In addition, the above-mentioned: film formation using a PET resin chip, preparation of a recovered pellet, and film formation using the recovered pellet were performed. Table 7 shows the results of evaluating the thermal stability and heat aging resistance of the film.
本発明の触媒は触 性が比較的高く、 これを使用して得られた: P E Tからなる フィルムは熱安定性と耐熱老ィヒ性の両者ともに優れるものであった。 The catalyst according to the invention has a relatively high tactility and was obtained by using it: The film made of PET was excellent in both heat stability and heat resistance.
(比較例 7—1)  (Comparative Example 7-1)
触媒として三酸化アンチモンを、 その添加量が PET中の酸成分に対してアン チモン原子として 0. 05モル0 /0となるように使用した以外は実施例 7— 1と同 様の操作を行った。 三酸化アンチモンとしては、 巿販の Antimony (III) oxide ( ALDRICH CHEMICALネ ± 、 純度 99. 999%) を使用した。 三酸化アンチモンは 、 濃度が約 l O gZlとなるようにエチレングリコールに 150 °Cで約 1時間撹 拌して溶解させた溶液を使用した。 ポリエチレンテレフタレートの IVが 0. 6 5 d 1/gに到達するまでに要した重合時間 (A P ) を表 7に示す。 Antimony trioxide as a catalyst, the performing procedure of Example 7-1 the same way except that the amount added was used as a 0.05 molar 0/0 as antimony atom relative to the acid component in PET Was. As antimony trioxide, commercially available Antimony (III) oxide (ALDRICH CHEMICAL ne, purity: 99.999%) was used. The antimony trioxide used was a solution of ethylene glycol dissolved in ethylene glycol by stirring at 150 ° C. for about 1 hour so that the concentration became about 10 gZl. Table 7 shows the polymerization time (AP) required for the IV of polyethylene terephthalate to reach 0.65 d1 / g.
また、 上記の重縮合にて得られた I Vが 0. 65 d lZgのポリエチレンテレ フタレートを常法に従ってチップ化した。 この PETレジンチップを用いて熱安 定性パラメータ (TS) と熱酸化安定性パラメータ (TOS) を求めた。 結果を 表 7に示す。  In addition, polyethylene terephthalate having an IV of 0.65 dlZg obtained by the above polycondensation was formed into chips according to a conventional method. Using this PET resin chip, the thermal stability parameter (TS) and the thermal oxidation stability parameter (TOS) were determined. Table 7 shows the results.
また、 上記 PETレジンチップを用いてフィルムの製膜、 回収ペレットの作成 、 ならびに回収ペレットによるフィルムの製膜を行った。 フィルムの熱安定性と 耐熱老ィ匕性を評価した結果を表 7に示す。  Further, using the PET resin chip, a film was formed, a recovered pellet was formed, and a film was formed using the recovered pellet. Table 7 shows the results of evaluating the thermal stability and heat resistance of the film.
本発明の触媒は触媒活性には優れるが、 これを使用して得られた P E Tからなる フィルムの熱安定性は、 実施例のものに比べて劣るものであつた。 Although the catalyst of the present invention was excellent in catalytic activity, the thermal stability of a film made of PET obtained using the catalyst was inferior to those of Examples.
(比較例 7— 2)  (Comparative Example 7-2)
比較例 7-1の触媒に、 さらに上述のリン化合物 Aをその添加量が P E T中の 酸成分に対してリン原子として 0. 03モル%となるように加えたこと以外は比 較例 7— 1と同様の操作を行った。 三酸化アンチモンとしては、 市販の Antimony (III) oxide (ALDRICH CHEMICAL據、 純度 99 · 999%) を使用した。 三酸 ィ匕アンチモンは、 濃度が約 10 g/ となるようにエチレングリコーノレに 150 。(で約 1時間撹拌して溶解させた溶液を使用した。 ポリエチレンテレフタレート の IVが 0. e s d iZgに到達するまでに要した重合時間 (A P ) を表 7に示 す。 リン化合物 Aを併用することによる三酸化ァンチモンの触媒活性の変ィ匕はほ とんど認められなかった。 Comparative Example 7—except that the above-mentioned phosphorus compound A was added to the catalyst of Comparative Example 7-1 so that the added amount thereof was 0.03 mol% as a phosphorus atom with respect to the acid component in the PET. The same operation as in 1 was performed. As antimony trioxide, commercially available Antimony (III) oxide (ALDRICH CHEMICAL based, purity: 99 · 999%) was used. Triacid The antimony was added to the ethylene glycol to a concentration of about 10 g / 150. (The solution dissolved by stirring for about 1 hour was used. The polymerization time (AP) required until the polyethylene terephthalate IV reached 0.esdiZg is shown in Table 7. Almost no change in the catalytic activity of antimony trioxide due to this was observed.
(比較例 7— 3)  (Comparative Example 7-3)
触媒として二酸化ゲルマニウムを、 その添加量が PET中の酸成分に対してゲ ルマニゥム原子として 0. 03モル0 /0となるように使用した以外は実施例 7—1 と同様の操作を行った。 ポリエチレンテレフタレートの IVが 0. e s d iZg に到達するまでに要した重合時間 (AP) を'表 7に示す。 Germanium dioxide as a catalyst, the addition amount is the same procedure as in Example 7-1, except for using as a 0.03 mol 0/0 as gain Rumaniumu atom relative to the acid component in PET. Table 7 shows the polymerization time (AP) required for the IV of polyethylene terephthalate to reach 0.esdiZg.
また、 上記の重縮合にて得られた I Vが 0. 65 d 1/gのポリエチレンテレ フタレートを常法に従つてチップィ匕した。 この: P E Tレジンチップを用いて熱安 定性パラメータ (TS) と熱酸ィ匕安定性パラメータ (TOS) を求めた。 結果を 表 7に示す。  Further, polyethylene terephthalate having an IV of 0.65 d 1 / g obtained by the above polycondensation was subjected to chipping in a conventional manner. Using this PET resin chip, the thermal stability parameter (TS) and thermal oxidation stability parameter (TOS) were determined. Table 7 shows the results.
また、 上記 PETレジンチップを用いてフィルムの製膜、 回収ペレットの作成 、 ならびに回収ペレットによるフィルムの製膜を行った。 フィルムの熱安定性と 耐熱老ィ匕性を評価した結果を表 7に示す。  Further, using the PET resin chip, a film was formed, a recovered pellet was formed, and a film was formed using the recovered pellet. Table 7 shows the results of evaluating the thermal stability and heat resistance of the film.
本発明の触媒は触媒活性には優れるが、 これを使用して得られた P E Tからな るフィルムの熱安定性およぴ耐熱老ィ匕性は 、ずれも、 実施例のものに比べて劣る ものであった。  Although the catalyst of the present invention has excellent catalytic activity, the thermal stability and heat resistance of a PET film obtained using the same are inferior to those of the examples. Was something.
(比較例 7 - 4)  (Comparative Examples 7-4)
触媒としてアルミニウムァセチルァセトネートを、 その添加量が PET中の酸 成分に対してアルミニウム原子として 0. 014モル%となるように使用した以 外は実 例 7— 1と同様の操作を行つた。 150分間以上重合を行つたが、 ポリ エチレンテレフタレートの IVが 0. 65 d 1/gに到達しなかった。  The same operation as in Example 7-1 was carried out except that aluminum acetyl acetonate was used as a catalyst and the amount of aluminum acetyl acetonate was 0.014 mol% as an aluminum atom with respect to an acid component in the PET. I got it. Polymerization was carried out for 150 minutes or more, but the IV of poly (ethylene terephthalate) did not reach 0.65 d1 / g.
(比較例 7— 5)  (Comparative Example 7-5)
触媒として酢酸リチウム二水和物を、 その添加量が PET中の酸成分に対して リチウム原子として 0. 01モル0 /0となるように使用した以外は実施例 7— 1と 同様の操作を行った。 150分間以上重合を行ったが、 ポリエチレンテレフタレ ートの I Vが 0. 65 d lZgに到達しなかった。 Lithium acetate dihydrate as a catalyst, in the same manner as in Example 7-1 except that the addition amount is used so as to be 0.01 mol 0/0 of lithium atom relative to the acid component in PET went. Polymerization was performed for 150 minutes or more. The IV of the plate did not reach 0.65 dlZg.
上記した実施例および比較例から明らかなように、 PETレジンチップの熱安 定性パラメータが本発明の特許請求の範囲にあるものは、 フィルムの熱安定性に 優れたものになり、 フィルム品位に優れるとともに、 屑フィルムを再利用したも のも品位に優れたものとなる。 一方、 本発明の特許請求の範囲外のものは、 フィ ルムの熱安定性に劣るため、 屑フィルムを再利用したフィルムの品位は劣るもの し力心得られない。  As is evident from the above Examples and Comparative Examples, those having the thermal stability parameter of the PET resin chip within the scope of the claims of the present invention have excellent thermal stability of the film and excellent film quality. At the same time, the reuse of waste film will also be excellent. On the other hand, those outside the scope of the claims of the present invention are inferior in thermal stability of the film, so that the quality of the film obtained by recycling the waste film is inferior and cannot be obtained.
また、 ァノレミニゥム化合物およびリチウム化合物はもともと触媒活性に劣るが 、 これにリン化合物を共存した本発明の触媒は触媒活性に優れ、 得られるポリエ ステルの熱安定性にも優れたものが得られる。 一方、 リン化合物をアンチモンィ匕 合物と共存して用いても、 ァンチモン化合物の触媒活性は影響を受けない。  Further, although the anolemminium compound and the lithium compound are originally inferior in catalytic activity, the catalyst of the present invention coexisting with the phosphorus compound has excellent catalytic activity, and the resulting polyester has excellent thermal stability. On the other hand, even when the phosphorus compound is used together with the antimony conjugate, the catalytic activity of the antimony compound is not affected.
(実施例 8 - 1)  (Example 8-1)
(塩基性酢酸アルミニゥムの水溶液の調製例)  (Example of preparation of aqueous solution of basic aluminum acetate)
塩基性酢酸アルミニゥム (ヒ ドロキシアルミユウムジァセテート ; ALDRICH製 ) 1 gに対して 50 m 1の割合で脱ィオン水を加え約 12時間常温で撹拌した。 その後、 徐々に液温を上昇しながら撹拌を続けた。 液温が約 60°Cに到達した時 点で温度を保持して約 2時間撹拌し、 さらに液温を上昇しながら撹拌を続け、 約 75°Cに到達した時点で 2時間以上撹拌してクリァ一な水溶液を得た。  Deionized water was added at a ratio of 50 ml to 1 g of basic aluminum acetate (hydroxyaluminum diacetate; manufactured by ALDRICH), and the mixture was stirred at room temperature for about 12 hours. Thereafter, stirring was continued while gradually increasing the liquid temperature. When the liquid temperature reaches about 60 ° C, maintain the temperature and stir for about 2 hours.Continue stirring while increasing the liquid temperature.When the liquid temperature reaches about 75 ° C, stir for 2 hours or more. A clear aqueous solution was obtained.
(ポリエステル重合例)  (Example of polyester polymerization)
高純度テレフタル酸とその 2倍モル量のェチレングリコールから常法に従つて 製造したビス (2—ヒ ドロキシェチノレ) テレフタレート及ぴォリゴマーの混合物 に対し、 重縮合触媒として上記塩基性酢酸アルミニウムの水?親夜をポリエステル 中の酸成分に対してアルミニウム原子として 0. 035mo l%と I r g a n o X 1425 (チパ 'スペシャルティーケミカルズ社製) の l O g/1エチレング リコール溶液を酸成分に対して I r g a n o x l 425として 0. 02mo l % を加えて、 窒素雰囲気下、 常圧にて 245°Cで 15分間撹拌した。 次いで 55分 間を要して 275 °Cまで昇温しつつ反応系の圧力を徐々に下げて 66. 5P a ( 0. 5To r r) としてさらに 275°C、 66. 5 P aで 90分間重縮合反応を 行った。 得られた PETの IVと Tmを表 8に示す。 7] フイルム熱 フィル厶耐 / As a polycondensation catalyst, water of the above basic aluminum acetate was used as a polycondensation catalyst for a mixture of bis (2-hydroxyxethinole) terephthalate and polyolomer produced from high-purity terephthalic acid and twice the molar amount of ethylene glycol in a conventional manner. 0.035 mol% of aluminum atom with respect to acid component in polyester and l Og / 1 solution of Irgano X 1425 (Chipa 'Specialty Chemicals) in ethylene glycol with acid component in polyester After adding 0.02 mol% as 425, the mixture was stirred at 245 ° C. for 15 minutes under a nitrogen atmosphere at normal pressure. Then, the temperature of the reaction system was gradually decreased while raising the temperature to 275 ° C over 55 minutes to obtain 66.5 Pa (0.5 To rr), and the pressure was further increased at 275 ° C and 66.5 Pa for 90 minutes. A condensation reaction was performed. Table 8 shows the IV and Tm of the obtained PET. 7] Film heat Film resistance /
ィ匕合物 添カロ里 Zmo l l¾ A n ノ、 t o 丁 l nUoc  匕 合 合 mo mo Zmo l l¾ A n ノ, t o 丁 l n Uoc
女疋 ffi ¾i¾1 L !±. ソ レ 一 -ノ \ 卜 リ I  Womanbiki ffi ¾i¾1 L! ±.
実施例 チルァセトネ一ト 0.014  Example: Tilacetone 0.014
7-丄 WF リナウ厶ー水和物 0.01  7- 丄 WF linalum hydrate 0.01
IノIン-^ 1し口物 A リ■ ^ 7Α 0 16 0 01以下 o π アルミニウム卜リスァセ  I I ン ^ ^ ^ A A A Α Α Α Α A
〇 実施例 チルァセトネ一ト 0.014  〇 Example Example 0.014
7 - 2 リン化合物 B 0.03 116 0.14 0.04 〇 〇 比較例 7 - 1 三酸化アンチモン 0.05 75 0.23 0.01 下 X 〇 比較例 7 - 2 三酸化アンチモン 0.05'  7-2 Phosphorus compound B 0.03 116 0.14 0.04 〇 比較 Comparative example 7-1 Antimony trioxide 0.05 75 0.23 0.01 Under X 比較 Comparative example 7-2 Antimony trioxide 0.05 '
リン化合物 A 0.03 77  Phosphorus compound A 0.03 77
比較例73 二酸化ゲルマニウム 0.03 68 0.20 0.23 X X アルミニウムトリスァセ Comparative Example 7 one 3 germanium dioxide 0.03 68 0.20 0.23 XX aluminum tris § Se
比較例.74■チルァセトネ一卜 0.014 150以上 Comparative Example. 7 one 4 ■ Chiruasetone one Bok 0.014 150 or more
比較例75 酢酸リチウム二水和物 0.01 150以上 Comparative Example 7 one 5 Lithium acetate dihydrate 0.01 150 or more
(実施例 8 - 2) .. (塩基性酢酸アルミニゥムのエチレングリコール溶液の調製例) (Example 8-2) .. (Example of preparation of basic aluminum acetate solution in ethylene glycol)
塩基性酢酸アルミニウム (CH3C00A1(0H)2 · 1/3H3B03; ALDRICH製) をェチレ ングリコール中で丄 2時間以上撹拌し、 約 5g/l濃度のエチレングリコール溶液を 得た。 Basic aluminum acetate (CH 3 C00A1 (0H) 2 · 1 / 3H 3 B0 3; manufactured by ALDRICH) was stirred丄2 hours or more in Echire glycol, to obtain an ethylene glycol solution of about 5 g / l concentration.
(ポリエステル重合例)  (Example of polyester polymerization)
重縮^ 媒として、 上記塩基' !·生酢酸アルミニゥムのェチレングリコール溶液を ポリエステル中の酸成分に対してアルミニウム原子として 0. 035mo 1%と I r g a n o x l 425 (チパ ·スぺシヤノレティーケミカノレズネ; h^) の 10 gZ 1エチレンダリコール溶液を酸成分に対して I r g a n o x l 425として 0. 02mo 1 %を加えた以外は実施例 8— 1.と同様の操作を行った。 得られた P E 丁の I Vと Tmを表 8に示す。  As a polycondensation medium, the above base '! · Ethylene glycol solution of raw aluminum acetate is 0.035mo 1% as an aluminum atom with respect to the acid component in the polyester and Irganoxl 425 (Chipa succinoleti chemicano) The same operation as in Example 8-1 was carried out except that a solution of 10 gZ1 ethylene dalicol of the (resin; h ^) was added to the acid component as Irganoxl 425 at 0.02 mol%. Table 8 shows the IV and Tm of the obtained PEs.
(比較例 8— 1)  (Comparative Example 8-1)
重縮合触媒として、 塩基性酢酸アルミニウム (ヒドロキシァノレミニゥムジァセ テート; ALDRICH製) の約 10 g/1エチレンダリコー _レスラリーをポリエステ ル中の酸成分に対してアルミニウム原子とレて 0. 035mo 1 %と I r g a n 0 x 1425 (チ^ ·スペシャルティーケミカルズ據) の 10 gZlエチレン グリコール?額夜を酸成分に対して I r g a no x l 425として 0, 02m o l %を加えた以外は実施例 8— 1と同様の操作を行つた。 得られた P E Tの I Vと 丁111を表8に示す!3 As a polycondensation catalyst, about 10 g of a basic aluminum acetate (hydroxylaminodimethyl acetate, manufactured by ALDRICH) / resin slurry of ethylene darico-resin is converted to aluminum atom with respect to the acid component in the polyester. 035mo 1% and Irgan 0x1425 (based on specialty chemicals) 10 gZl Ethylene glycol? Except for adding 0,02mol% of acid component to Irga no xl 425 as Irgano xl 425 Example 8—Operation similar to 1 was performed. Table 8 shows the obtained IV and 111 of PET !
(実施例 8 3)  (Example 8 3)
(塩基性酢酸アルミニゥムのエチレングリコール溶液の調製例)  (Example of preparation of basic aluminum acetate in ethylene glycol solution)
約 1 Z 16モル量のホゥ酸で安定化された塩基性酢酸アルミニゥム 1 gに対し て 10m 1の割合で脱イオン水を加え数時間常温で撹拌した。 その後、 約 70°C で約 12時間撹拌してクリア一な水溶液を得た。 該水溶液に対して容量比で 20 倍量のエチレングリコールを加え、 室温で数時間撹拌した。 その後、 該溶液を約 100°Cで数時間撹拌しながら系から水を留去してエチレンダリコ^ ~ル溶液を得 た。  Deionized water was added at a ratio of 10 ml to 1 g of basic aluminum acetate stabilized with about 1 Z 16 mol of folic acid, and the mixture was stirred at room temperature for several hours. Thereafter, the mixture was stirred at about 70 ° C for about 12 hours to obtain a clear aqueous solution. Ethylene glycol was added at a volume ratio of 20 times the volume of the aqueous solution, followed by stirring at room temperature for several hours. Thereafter, water was distilled off from the system while stirring the solution at about 100 ° C. for several hours to obtain an ethylene glycol solution.
(ポリエステノレ重合例) 高純度テレフタル酸とその 2倍モル量のェチレングリコールから常法に従つて 製造したビス ( 2—ヒ ドロキシェチル) テレフタレート及ぴォリゴマーの混合物 に対し、 重縮合触媒として上記塩基性酢酸アルミニゥムのエチレングリコール溶 液をポリエステル中の酸成分に対してアルミニウム原子として 0. 014mo 1 %と I r g a no x l 425 (チパ ·スペシャルティーケミカルズ社製) の 10 1エチレングリコール溶液を酸成分に対して I r g ano x l 425として 0. 0 lmo 1 %を加えて、 窒素雰囲気下、 常圧にて 245°Cで 10分間撹拌し た。 次いで 45分間を要して 275 °Cまで昇温しつつ反応系の圧力を徐々に下げ て 66. 5 P a (0. 5To r r ) としてさらに 275°C、 66. 5P aで 12 0分間重縮合反応を行った。 1 が0. 38 d 1 /gの PETが得られた。 (実施例 8— 4) (Polyestenol polymerization example) A mixture of bis (2-hydroxyxethyl) terephthalate and polyolomer produced from high-purity terephthalic acid and twice the molar amount of ethylene glycol according to a conventional method is used as a polycondensation catalyst for ethylene glycol of the above basic aluminum acetate. The solution was 0.014 mol 1% aluminum atom with respect to the acid component in the polyester and 101 mg solution of Irga no xl 425 (manufactured by Chipa Specialty Chemicals) in ethylene glycol with respect to the acid component. As 425, 0.0 lmo 1% was added, and the mixture was stirred at 245 ° C for 10 minutes under a nitrogen atmosphere at normal pressure. Then, the temperature of the reaction system was gradually lowered while raising the temperature to 275 ° C over 45 minutes to obtain 66.5 Pa (0.5 To rr), and the pressure was further increased at 275 ° C and 66.5 Pa for 120 minutes. A condensation reaction was performed. PET of 1 was 0.38 d 1 / g. (Example 8-4)
(塩基性酢酸アルミニゥムの水 Zェチレングリコール混合溶液の調製例) 塩基性酢酸アルミニウム (ヒドロキシアルミニウムジアセテート ; ALDRICH製 ) 1 gに対して 5 Omlの割合で脱イオン水を加え 12時間常温で撹拌した。 そ の後、 約 70°Cで 6時間撹拌してクリァ一な水溶液を得た。 この水溶液 1に対し て 3倍量 (容量比) のエチレングリコールを添加して、 室温で 6時間撹拌して触 媒溶液を得た。 ,  (Preparation example of mixed solution of basic aluminum acetate in water and Z-ethylene glycol) Basic aluminum acetate (hydroxyaluminum diacetate; manufactured by ALDRICH) Deionized water is added at a ratio of 5 Oml to 1 g and stirred at room temperature for 12 hours. did. Thereafter, the mixture was stirred at about 70 ° C. for 6 hours to obtain a clear aqueous solution. To this aqueous solution 1, 3 times (volume ratio) of ethylene glycol was added, and stirred at room temperature for 6 hours to obtain a catalyst solution. ,
(ポリエステルの重合例)  (Polymerization example of polyester)
撹拌機付きの熱媒循環式 2リッターステンレス製オートクレープに高純度テレ フタル酸とその 2倍モル量のエチレングリコールを仕込み、 トリェチルァミンを 酸成分に対して 0.3mol%加え、 0.25MPa の加圧下 250 にて水を系外に留去しな がらエステル化反応を 115分間行いエステノレ化率力95%以上のビス (2-ヒドロキ シェチル) テレフタレート (BHET) およびオリゴマーの混合物 (以下、 BHET混合 物という) を得た。 この BHET混合物に対して、 重縮合触媒として上記塩基性酢酸 アルミ -ゥムの水ノエチレングリコール混合溶液をポリエステル中の酸成分に対 してアルミニウム原子として 0. 014mo l%と I r g a n o x l 425 (チ バ ·スペシャルティーケミカルズ社製) の 100 g Z 1エチレングリコール溶液 を酸成分に対して I r g a n o X 1425として 0. 0 lmo 1%を加えて、 窒素雰囲気下常圧にて 250 °Cで 15分間撹拌した。 次いで 60分間を要して 275 °Cま で昇温しつつ反応系の圧力を徐々に下げて 66.5Pa (0.5Torr ) としてさらに 275 °C、 66.5Paで重縮合反応を行つた。 I Vが 0. 61 dl/gの PETを得るのに要し た重縮合時間は 132分であり、 本触媒は実用的な触媒活性を有するものであつ た。 得られた: P E Tの物性を表 9に示す。 Heat medium circulation type 2-liter stainless steel autoclave equipped with a stirrer is charged with high-purity terephthalic acid and twice the amount of ethylene glycol, and triethylamine is added at 0.3 mol% to the acid component. The esterification reaction was performed for 115 minutes while distilling water out of the system at, and a mixture of bis (2-hydroxyethyl) terephthalate (BHET) and oligomer (hereinafter referred to as BHET mixture) with an esterification rate of 95% or more I got As a polycondensation catalyst, the above BHET mixture was mixed with a mixed solution of the above basic aluminum acetate-water in water and ethylene glycol in an amount of 0.014 mol% as an aluminum atom to the acid component in the polyester and Irganoxl 425 (T). (B Specialty Chemicals Co., Ltd.) in 100 g Z1 ethylene glycol solution is added to the acid component as Irgano X 1425 at 0.0 lmo 1%, and under nitrogen atmosphere at normal pressure and 250 ° C for 15 minutes Stirred. Then take 60 minutes to reach 275 ° C. The pressure of the reaction system was gradually lowered while the temperature was raised to 66.5 Pa (0.5 Torr), and a polycondensation reaction was further performed at 275 ° C. and 66.5 Pa. The polycondensation time required to obtain a PET with an IV of 0.61 dl / g was 132 minutes, and the catalyst had practical catalytic activity. Obtained: Table 9 shows the physical properties of PET.
(実施例 8 - 5)  (Example 8-5)
(塩基性酢酸アルミニゥムのエチレングリコール? 夜の調製例)  (Example of preparation of basic aluminum acetate in ethylene glycol? Night)
上述の塩基性酢酸アルミニゥムの水 Zェチレングリコール混合溶液を 90〜 1 The above basic aluminum acetate mixed solution of water and ethylene glycol is mixed with 90 ~ 1.
10°Cで数時間撹拌しながら系から水を留去した。 その結果、 約 6. 5 g/l濃 度のェチレングリコール溶液を得た。 Water was distilled off from the system while stirring at 10 ° C for several hours. As a result, an ethylene glycol solution having a concentration of about 6.5 g / l was obtained.
(ポリエステル重合例)  (Example of polyester polymerization)
重縮合触媒として上記塩基性酢酸アルミニウムのエチレンダリコール溶液をポ リエステル中の酸成分に対してアルミニウム原子として 0. 014mo 1 %と I r g a no x 1425 (チバ ·スペシャルティーケミカルズ社製) の 100 g / 1エチレンダリコール^¾を酸成分に対して I r g a n o x 1425として 0. 0 lmo 1 %を加えたこと以外は実施例 8— 4と同様にしてポリエステルを 重合した。 重合時間は、 133分、 得られた PETの I Vは 0. 6 Odl/gであつ た。 その他の物性を表 9に示す。  As a polycondensation catalyst, the above-mentioned ethylene dalicol solution of basic aluminum acetate was used in an amount of 0.014mo 1% as an aluminum atom with respect to the acid component in the polyester and 100 g of Irgano x 1425 (manufactured by Ciba Specialty Chemicals). The polyester was polymerized in the same manner as in Example 8-4, except that 1/1 ethylene dalicol ^ ¾ was added to the acid component as Irganox 1425 at 0.01mo 1%. The polymerization time was 133 minutes, and the IV of the obtained PET was 0.6 Odl / g. Table 9 shows other physical properties.
(実施例 8— 6)  (Example 8-6)
(塩基性酢酸アルミニウムのエチレングリコール溶液の調製例)  (Preparation example of basic aluminum acetate in ethylene glycol solution)
塩基性酢酸アルミニウム (CHsCOOAl (0H) 2 · 1/3H3B03; ALDRICH製) をェチレ ングリコール中で約 70°Cで 5時間撹拌し、 約 5g/l濃度のエチレンダリコール溶 液を得た。 Basic aluminum acetate (CHsCOOAl (0H) 2 · 1 / 3H 3 B0 3; manufactured by ALDRICH) was stirred for 5 hours at about 70 ° C in Echire glycol, to give the ethylene da recall solvent solution of about 5 g / l concentration Was.
(ポリエステル重合例)  (Example of polyester polymerization)
高純度テレフタル酸とエチレングリコールから常法に従って製造したビス (2 ーヒドロキシェチル) テレフタレート及びオリゴマーの混合物に対し、 重縮合触 媒として上記塩基性酢酸アルミニウムの 5g/lエチレングリコール溶液をポリエス テル中の酸成分に対してアルミニウム原子として 0. 014mo l%と I r g a n o X 1425 (チバ ·スペシャルティーケミカノレズ社製) の 10 g Z 1ェチ レングリコール溶液を酸成分に対して I r g a n o x 1425として 0. 01 mo 1%を加えて、 窒素雰囲気下、 常圧にて 245°Cで 10分間撹拌した。 次い で 50分間を要して 275 °Cまで昇温しつつ反応系の圧力を徐々に下げて 13. 3 P a (0. IT o r r) としてさらに 275°C、 13. 3 P aで重縮合反応を 行った。 90分間重縮合反応を行い I V0. 65.dl/gの PETを得た。 得られた ?£丁の入¥は2当量ダトン、 Tmは 256°C、 値は68. 9、 a値は一 2. 3、 b値は 4. 2であった。 To a mixture of bis (2-hydroxyethyl) terephthalate and an oligomer prepared from high-purity terephthalic acid and ethylene glycol according to a conventional method, a 5 g / l ethylene glycol solution of the above basic aluminum acetate as a polycondensation catalyst in a polyester. 0.104 mol% as an aluminum atom with respect to the acid component and 10 g of Zr-ethylene glycol solution of Irgano X 1425 (manufactured by Ciba Specialty Chemicals) as Irganox 1425 with respect to the acid component 0. 01 mo 1% was added, and the mixture was stirred at 245 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. Next, it took 50 minutes to gradually raise the temperature of the reaction system to 275 ° C and gradually reduce the pressure of the reaction system to 13.3 Pa (0.IT orr). A condensation reaction was performed. A polycondensation reaction was performed for 90 minutes to obtain PET of IV.65.dl / g. The amount of the obtained 丁 was 2 equivalents, the Tm was 256 ° C, the value was 68.9, the a value was 1.3, and the b value was 4.2.
(実施例 8 - 7)  (Examples 8-7)
(乳酸アルミニゥムのエチレングリコール溶液の調製例)  (Preparation example of ethylene glycol solution of aluminum lactate)
乳酸アルミニウムの約 67 gZ 1の水溶液を常温で調製した。 その後、 ェチレ ングリコールを加え、 約 100°Cで加熱することで水を留去し、 約 29g/l のェ チレングリコール溶液を得た。  An aqueous solution of about 67 gZ1 of aluminum lactate was prepared at room temperature. Thereafter, ethylene glycol was added, and water was distilled off by heating at about 100 ° C. to obtain an ethylene glycol solution of about 29 g / l.
(ポリエステル重合例)  (Example of polyester polymerization)
重縮合触媒として上記乳酸アルミニゥムのエチレングリコール溶液をポリエス テル中の酸成分に対してァノレミニゥム原子として 0. 014mo 1 %と I r g a n o x 1425 (チパ ·スペシャルティーケミカルズ社製) の 100 g/ 1ェ チレンダリコール溶液を酸成分に対して I r g a n o x l 425として 0. 01 mo 1 °/0を加えた と以外は実施例 8— 4と同様にしてポリエステルを重合した 。 重合時間は、 124分、 得られた PETの I Vは 0. 60dl/gであった。 その 他の物性を表 9に示す。 As a polycondensation catalyst, the above ethylene glycol solution of aluminum lactate was used as 0.014 mol 1% as an anolemmin atom with respect to the acid component in the polyester and 100 g / l of Irganox 1425 (manufactured by Chipa Specialty Chemicals). The polyester was polymerized in the same manner as in Example 8-4, except that 0.01 mo 1 ° / 0 was added as Irganoxl 425 to the acid component of the recall solution. The polymerization time was 124 minutes, and the IV of the obtained PET was 0.60 dl / g. Table 9 shows other physical properties.
(比較例 8— 2)  (Comparative Example 8-2)
重縮^ ^虫媒として、 乳酸アルミニウムの約 5 g/ 1エチレングリコールスラリ 一をポリエステル中の酸成分に対してアルミニウム原子として 0. 014mo 1 %と I r g a no x 1425 (チバ ·スぺシヤノレティーケミカ/レズネ ±¾) の 1 00 g/1エチレングリコール溶液を酸成分に対して I r g a n o x l 425と して 0. 01 mo 1 %を加えたこと以外は実施例 8— 4と同様にしてポリエステ ルを重合した。 重合時間は 168分、 得られた P E Tの I Vは 0. 61 dl/gであ り、 触媒活性に劣るものであった。  As an insect medium, about 5 g of aluminum lactate / 1 ethylene glycol slurry is 0.014mo 1% as aluminum atom with respect to the acid component in the polyester, and Irga no x 1425 (Ciba Polyester was prepared in the same manner as in Example 8-4, except that a 100 g / 1 ethylene glycol solution of tea chemical / resin ± ¾) was added to the acid component as Irganoxl 425, with 0.01 mo 1% added. Was polymerized. The polymerization time was 168 minutes, and the IV of the obtained PET was 0.61 dl / g, which was inferior to the catalytic activity.
(評価結果)  (Evaluation results)
本発明の実施例およぴ比較例から、 カルボン酸アルミニゥム塩を溶解した溶液 を触媒として用いた: ^はいずれも重合活性に優れ、 得られるポリエステルの品 質にも優れるのに対して、 溶解せずに触媒として用いた ^^は重合活性に劣る結 果、となる。 . . — From the examples and comparative examples of the present invention, a solution in which aluminum carboxylate is dissolved Was used as a catalyst: ^ is excellent in polymerization activity and the quality of the obtained polyester is excellent, whereas ^^ used as a catalyst without dissolving results in poor polymerization activity. .. —
δ菌 . δ bacteria.
 One
養 i.  Education i.
s卜  s
Figure imgf000110_0001
Condition
Figure imgf000110_0001
0 8 - [産業上の利用分野] 0 8- [Industrial applications]
本発明のポリエステルは、 例えば、 衣料用繊維、 カーテン、 カーペット、 ふと んわた等に代表されるインテリア '寝装用繊維、 タイヤコード、 ロープ等に代表 される産業資材用繊維、 各種織物、 各種編物、 短繊維不織布、 長繊維不織布等の 繊維、 包装用フィルム、 工業用フィルム、 光学用フィルム、 磁気テ プ用フィル ム、 写真用フィルム、 街ラミネート用フィルム、 コンテンサ用フィルム、 熱収縮 フイノレム、 ガスパリアフィルム、 白色フィルム、 易カツトフイノレム等のフィルム 、 非而 ί熱延伸ボトル、 耐熱延伸ボトル、 ダイレクトブローボトル、 ガスバリアポ トル、 耐圧ボトル、 耐熱圧ボトル等の中空成形体、 A— P E Tや C— P E T等の シート、 ガラス繊維強化ポリエステル、 エラストマ一等に代表されるエンジニア リングプラスチックなどの各種成形物、 および塗料や接着剤などへの応用が可能 である。  The polyester of the present invention includes, for example, interior fabrics represented by clothing fibers, curtains, carpets, futons, etc., textiles for industrial materials represented by bedding fibers, tire cords, ropes, etc., various fabrics, various knits, Fibers such as short-fiber nonwoven fabric and long-fiber nonwoven fabric, packaging films, industrial films, optical films, magnetic tape films, photographic films, street laminating films, contensor films, heat-shrink finolems, gasparia films , White films, films such as easy cut-finolene, non-metallic heat drawn bottles, heat-resistant drawn bottles, hollow molded articles such as direct blow bottles, gas barrier bottles, pressure-resistant bottles, heat-resistant bottles, etc., sheets such as A-PET and C-PET , Glass fiber reinforced polyester, elastomer Various molded products such as A ring plastics, and paints and adhesives can be applied to such.

Claims

請 求 の 範 囲 1 , アルカリ金属およびそれらの化合物ならびにアルカリ土類金属およびそれ らの化合物からなる群より選ばれる少なくとも一種と、 アルミニウムおよびその 化合物からなる群より選ばれる少なくとも一種を含有し、 かつそれらを下記 (1 ) および (2) 式を満足する量含有することを特徴とするポリエステル。 Claim 1 1. It contains at least one selected from the group consisting of alkali metals and their compounds and alkaline earth metals and their compounds, and at least one selected from the group consisting of aluminum and its compounds, and Polyesters characterized by containing them in amounts satisfying the following formulas (1) and (2).
( 1 ) 《Μ》 < 0. 05  (1) 《Μ》 <0.05
(2) 〈く Μ》 Ζ《Α 1》≤ 20  (2) 〈く Μ》 Ζ 《Α 1》 ≤20
(《Μ》 はポリエステル中の酸成分に対するアル力リ金属原子とアル力リ土類金 属原子の合計のモル%を示し、 《Α 1》はポリエステル中の酸成分に対するアル ミニゥム原子のモル%を示す。 )  (<< Μ >> indicates the mole% of the total of the alkali metal atoms and the alkaline earth metal atoms with respect to the acid component in the polyester, and << Α 1 >> indicates the mole% of the aluminum atoms with respect to the acid component in the polyester. Is shown.)
2. アルミニウムおよびその化合物の含有量が下記 (3) 式を満足することを 特徴とする請求項 1記載のポリエステル。  2. The polyester according to claim 1, wherein the content of aluminum and its compound satisfies the following formula (3).
(3) 0. 001≤《Α1》≤0. 05  (3) 0.001≤ << ≤1 >> ≤0.05
(《Α1》 はポリエステル中の酸成分に対するアルミニウム原子のモル%を示す  (<< Α1 >> indicates mol% of aluminum atom to acid component in polyester
3. アル力リ金 原子とアル力リ土類金属原子を合計で 25 p p m以下の量含 有することを特徴とする請求項 1または 2のいずれかに記載のポリエステル。3. The polyester according to claim 1, wherein the polyester contains a total of 25 atomic% or less of an alkaline metal atom and an alkaline earth metal atom.
4. アル力リ土類金属が含有されていないことを特徴とする請求項 1〜 3のい ずれかに記載のポリエステル。 4. The polyester according to any one of claims 1 to 3, wherein the polyester does not contain an alkaline earth metal.
5. リン化合物を含有することを特徴とする請求項 1〜4のいずれかに記載の ポリエステノレ。  5. The polyesternole according to any one of claims 1 to 4, comprising a phosphorus compound.
6. アルカリ金属およびそれらのィ匕合物ならぴにアルカリ土類金属およびそれ らの化合物からなる群より選ばれる少なくとも一種と、 アルミニウムおよびその 化合物からなる群より選ばれる少なくとも一種、 ならびにリン化合物からなる群 より選ばれる少なくとも一種を含有し、 力つそれらを下記 (4) 〜 (6) 式を満 足する量含有することを特徴とするポリエステル。  6. At least one selected from the group consisting of alkaline earth metals and their compounds, and at least one selected from the group consisting of aluminum and its compounds; A polyester characterized by containing at least one selected from the group consisting of: and an amount that satisfies the following formulas (4) to (6).
(4) 0. 1≤ [M] ≤ 150  (4) 0.1 ≤ [M] ≤ 150
(5) CM] / [A 1 ] ≤ 40 (6) [P] / [A 1 ] ≥0. 01 (5) CM] / [A 1] ≤ 40 (6) [P] / [A 1] ≥0.01
(式 .(4) 〜 (6) 中、 [M] はポリエステル中に含まれるアルカリ金属原子と アルカリ土類金属原子の合計量 (p pm) を示し、 [A1] および [P] はポリ エステル中に含まれるアルミニウム原子とリン原子の量 (ppm) をそれぞれ示 す。 )  (In the formulas (4) to (6), [M] indicates the total amount (ppm) of the alkali metal atoms and alkaline earth metal atoms contained in the polyester, and [A1] and [P] are the polyesters. The amounts (ppm) of aluminum atoms and phosphorus atoms contained in each are indicated.)
7. アルミニウムおよびその化合物の含有量が下記 (7) 式を満足することを 特徴とする請求項 6記載のポリエステル。  7. The polyester according to claim 6, wherein the content of aluminum and its compound satisfies the following formula (7).
(7) 0. 5≤ [A 1 ] ≤ 500  (7) 0.5 ≤ [A 1] ≤ 500
(式 (7) 中、 [A1] はポリエステル中に含まれるアルミユウム原子の量 (p pm) を示す。 )  (In the formula (7), [A1] indicates the amount (p pm) of aluminum atoms contained in the polyester.)
8. リン化合物の含有量が下記 (8) 式を満足することを特徴とする請求項 6 または 7に記載のポリエステル。  8. The polyester according to claim 6, wherein the content of the phosphorus compound satisfies the following formula (8).
(8) 1≤ [P] ≤ 1000  (8) 1≤ [P] ≤ 1000
(式 (8) 中、 .[P] はポリエステル中に含まれるリン原子の量 (p pm) を示 す。 )  (In the formula (8),. [P] indicates the amount (ppm) of phosphorus atoms contained in the polyester.)
9. リチウム、 ナトリゥム、 カリゥム、 ベリリゥム、 マグネシウム、 カルシゥ ムおよびそれらのくヒ合物からなる群より選ばれる少なくとも一種と、 アルミ-ゥ ムおよびその化合物からなる群より選ばれる少なくとも一種、 ならびにリン化合 物からなる群より選ばれる少なくとも一種を含有し、 かつリチウム、 ナトリウム 、 カリウム、 ベリリウム、 マグネシウム、 カルシウムおよびそれらの化合物の含 有量の合計がポリマー 10 β g当たり金属原子換算で 7. 0モル以下であること を特徴とするポリエステル。 9. At least one selected from the group consisting of lithium, sodium, potassium, beryllium, magnesium, calcium, and their arsenic, and at least one selected from the group consisting of aluminum and its compounds, and phosphorus compounds Containing at least one selected from the group consisting of compounds, and having a total content of lithium, sodium, potassium, beryllium, magnesium, calcium, and their compounds of 7.0 mol or less in terms of metal atoms per 10 βg of polymer. A polyester, characterized in that:
10. アルミニウムおよびそのィ匕合物の含有量がアルミニウム原子換算で 0. 5〜500 p であることを特徴とする請求項 9に記載のポリエステル。 10. The polyester according to claim 9, wherein the content of aluminum and its conjugate is 0.5 to 500 p in terms of aluminum atom.
1 1. リン化合物の含有量がリン原子換算で l〜1000p p mであることを 特徴とする請求項 9または 10に記載のポリエステル。 11. The polyester according to claim 9, wherein the content of the phosphorus compound is 1 to 1000 ppm in terms of phosphorus atom.
12. アルミニウムおよびそのィ匕合物からなる群より選ばれる少なくとも一種 、 およびリン化合物からなる群より選ばれる少なくとも一種ならびにフエノール 系化合物からなる群より選ばれる少なくとも一種を含有するポリエステルであつ て、 かつポリエステル中に含まれるリン原子の量 [P] (p pm) とアルミユウ ム原子の量 [Al] (p pm) の比が 0. 01〜50の範囲にあることを特徴と するポリエステノレ。 12. A polyester containing at least one selected from the group consisting of aluminum and its conjugates, at least one selected from the group consisting of phosphorus compounds, and at least one selected from the group consisting of phenolic compounds. And a ratio of the amount of phosphorus atoms [P] (p pm) to the amount of aluminum atoms [Al] (p pm) contained in the polyester is in the range of 0.01 to 50. Nore.
13. アルミニウムおよびその化合物の含有量がアルミニウム原子換算で 0. 5〜500 p pmであることを特徴とする請求項 12に記載のポリエステル。 13. The polyester according to claim 12, wherein the content of aluminum and its compound is 0.5 to 500 ppm in terms of aluminum atoms.
14. リン化合物からなる群より選ばれる少なくとも一種ならびにフエノール 系ィ匕合物からなる群より選ばれる少なくとも一種を含有するポリエステルであつ て、 かつポリエステル中に含まれる金属原子の総量がポリエステルに対して 10 0 p pm以下であることを特徴とするポリエステノレ。 14. A polyester containing at least one selected from the group consisting of phosphorus compounds and at least one selected from the group consisting of phenolic conjugates, and wherein the total amount of metal atoms contained in the polyester is relative to the polyester Polyesternole characterized by being at most 100 ppm.
15. リン化合物の含有量がリン原子換算で l 1000p p mであることを 特徴とする請求項 12〜14のいずれかに記載のポリエステル。  15. The polyester according to any one of claims 12 to 14, wherein the content of the phosphorus compound is l 1000 ppm in terms of a phosphorus atom.
16. ポリエステル中に含まれるリン化合物とフエノール系ィ匕合物が互いに結 合したィ匕合物であることを特徴とする請求項 12〜15のいずれかに記載のポリ エステノレ。  16. The polyester according to any one of claims 12 to 15, wherein the phosphorus compound contained in the polyester and the phenol-based conjugate are bonded to each other.
17. アルミニウムおよびその化合物からなる群より選ばれる少なくとも一種 とリン化合物からなる群より選ばれる少なくとも一種を含有するポリエステルで あって、 ポリエス ル中に含まれるリン原子の量 (p pm) のアルミニウム原子 の量 (p pm) に対する比が 0. 5〜20の範囲にあることを特徴とするポリェ ステノレ。  17. A polyester containing at least one member selected from the group consisting of aluminum and its compounds and at least one member selected from the group consisting of phosphorus compounds, wherein the amount of phosphorus atoms contained in the polyester (ppm) is equal to the number of aluminum atoms. The ratio to the amount (ppm) of the polystyrene is in the range of 0.5 to 20.
18. ポリエステル中に含まれるアルミニウム原子の含有量が 1 p pm〜l 0 0 pmの範囲にあることを特徴とする請求項 17に記載のポリエステル。 18. The polyester according to claim 17, wherein the content of aluminum atoms contained in the polyester is in the range of 1 ppm to 100 pm.
19. ポリエステル中に含まれるリン原子の含有量が 5 p pm〜200 p pm の範囲にあることを特徴とする請求項 17または 18に記載のポリエステル。19. The polyester according to claim 17 or 18, wherein the content of the phosphorus atom contained in the polyester is in the range of 5 ppm to 200 ppm.
20. 請求項 1〜 19のいずれかに記載の金属および Zまたは化合物を触媒と して用いて製造された当該請求項に記載のポリエステル。 20. The polyester according to claim 1 produced using the metal and Z or compound according to any of claims 1 to 19 as a catalyst.
21. 請求項 1〜 19のいずれかに記載の金属および/または化合物を触媒と して用いることを特徴とする当該請求項に記載のポリエステルの製造方法。  21. A method for producing a polyester according to claim, wherein the metal and / or compound according to any one of claims 1 to 19 is used as a catalyst.
22. ポリエステルを製造する際に、 アルミニウムおよびその化合物からなる 群より選ばれる少なくとも一種とリン化合物からなる群より選ばれる少なくとも 一種を添加し、 かつ添加したリン原子とアルミニウム原子のモル比が 0. 5〜2 0の範囲にあることを特徴とするポリエステルの製造方法。 22. In producing polyester, at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds A method for producing a polyester, wherein one kind is added and a molar ratio of the added phosphorus atom and aluminum atom is in a range of 0.5 to 20.
23. アルミニウム原子の添加量が、 ポリエステルを構成する酸成分に対して 0. 00 1mo l %〜0. 1 mo 1 %の範囲にあることを特徴とする請求項 22 に記載のポリエステルの製造方法。 23. The method for producing a polyester according to claim 22, wherein the addition amount of the aluminum atom is in the range of 0.001 mol% to 0.1 mol% based on the acid component constituting the polyester. .
24. リン原子の添加量が、 ポリエステルを構成する酸成分に対して 0. 00 5 mo 1 %〜0. 2m o 1 %の範囲にあることを特徴とする請求項 22または 2 3に記載のポリエステルの製造方法。  24. The method according to claim 22 or 23, wherein the amount of the phosphorus atom added is in the range of 0.0005mo1% to 0.2mo1% based on the acid component constituting the polyester. Polyester manufacturing method.
25. 請求項 22〜 24の V、ずれかに記載の方法によつて製造されたポリエス テノレ。  25. Polyester made according to the method of any of claims 22 to 24, V.
26. アルミニウムおよびその化合物からなる群より選ばれる少なくとも一種 とリン化合物からなる群より選ばれる少なくとも一種とからなるポリエステル重 合触媒であって、 リン原子とァノレミ-ゥム原子のモル比が 0. 5〜 20の範囲に あることを特徴とするポリエステル重合角虫媒。  26. A polyester polymerization catalyst comprising at least one selected from the group consisting of aluminum and its compounds and at least one selected from the group consisting of phosphorus compounds, wherein the molar ratio of phosphorus atoms to anolemmium atoms is 0. A polyester polymerized hornworm medium, which is in the range of 5 to 20.
27. 請求項 26に記載の触媒を用いて製造されたポリエステル。  27. A polyester produced using the catalyst of claim 26.
28. ポリエステルを製造する際に、 請求項 26に記載の触媒を用いることを 特徴とするポリエ テルの製造方法。  28. A method for producing a polyester, comprising using the catalyst according to claim 26 when producing the polyester.
29. ポリエステル重合触媒であって、 この触媒を用いて重合したポリエチレ ンテレフタレート (PET) の熱安定性パラメータ (TS) が下記 (9) 式を満 たすことを特徴とするポリエステル重^虫媒。  29. A polyester polymerization catalyst comprising a polyester polymerization catalyst, wherein the thermal stability parameter (TS) of polyethylene terephthalate (PET) polymerized using the catalyst satisfies the following equation (9). .
(9) TS< 0. 20  (9) TS <0.20
(上記式中、 T Sは固有粘度 ( [ I V] i ) が 0. 64〜0. 66 d 1 / gの P E T 1 gをガラス試験管に入れ 1 30°Cで 1 2時間真空乾燥した後、 非流通窒素雰 囲気下で 300°Cにて 2時間溶融状態に維持した後の固有粘度 ( [IV] f ) か ら、 次式により計算される数値である。 ' (In the above formula, TS is a PET having an intrinsic viscosity ([IV] i) of 0.64-0.66 d 1 / g in a glass test tube, and dried under vacuum at 130 ° C for 12 hours. It is a value calculated from the intrinsic viscosity ([IV] f ) after maintaining the molten state at 300 ° C for 2 hours under a non-flowing nitrogen atmosphere by the following formula.
TS = 0. 245 ( [I V] f - 47 — [I V] 1.47 ) TS = 0. 245 ([IV] f - 47 -. [IV] 1 47)
30. 前記触媒の構成成分として、 リン化合物からなる群より選ばれる少なく とも 1種を含むことを特徴とする請求項 29に記載のポリエステル重^^媒。 30. The polyester solvent according to claim 29, comprising at least one selected from the group consisting of phosphorus compounds as a component of the catalyst.
3 1. 金属または金属化合物とリン化合物とからなるポリエステル重^虫媒で あって、 活性パラメータ (AP) が下記 (1 0) 式を満足するポリエステル重合 触媒。 3 1. Polyester heavy metal consisting of metal or metal compound and phosphorus compound A polyester polymerization catalyst having an activity parameter (AP) satisfying the following expression (10).
(1 0) AP (m i n) < APX (m i n)  (1 0) AP (min) <APX (min)
(上記式 (1 0) 中、 A Pは所定量の触媒を用いて 2 7 5°C、 0. l T o r rの 減圧度で固有粘度が 0. 6 5 d 1 /gのポリエチレンテレフタレート. (PET) を重合するのに要する時間 (m i n) を示す。 A PXは上記触媒のうち金属また は金属化合物のみを上記と同じ量だけ用いて上記と同じ条件で P E Tを重合する のに要する時間 (m i n) を示す。 )  (In the above formula (10), AP is a polyethylene terephthalate having an intrinsic viscosity of 0.65 d 1 / g at a temperature of 275 ° C and a reduced pressure of 0.1 l Torr using a predetermined amount of catalyst. A PX indicates the time (min) required to polymerize PET under the same conditions as above using only the same amount of metal or metal compound among the above catalysts. ).
3 2. さらに、 前記触媒を用いて重合したポリエチレンテレフタレート (PE T) の熱安定性パラメータ (TS) が下記 (9) 式を満たすことを特徴とする請 求項 3 1に記載のポリエステル重^虫媒。  32. The polyester polymer according to claim 31, wherein the thermal stability parameter (TS) of polyethylene terephthalate (PET) polymerized using the catalyst satisfies the following expression (9). Insect medium.
(9) TS< 0. 20  (9) TS <0.20
3 3. さらに、 前記触媒を用いて重合したポリエチレンテレフタレート (PE T) の熱酸ィヒ安定性パラメータ (TO S) が下記式 (1 1) を満たすことを特徴 とする請求項 2 9〜 3 2のいずれかに記载のポリエステル重 虫媒。  3. The thermal acid stability parameter (TOS) of polyethylene terephthalate (PET) polymerized using the catalyst further satisfies the following formula (11). Polyester heavy vehicle described in any of 2 above.
(1 1) TO S< 0. 1 0  (1 1) TO S <0.10
(上記式 (1 1) 中、 TOSは溶融重合した I Vが 0. 64〜0. 6 6 d 1 /g の P E Tレジンチップを冷凍粉砕して 2 0メッシュ以下の粉末として 1 3 0°Cで 1 2時間真空乾燥したもの 0. 3 gをガラス試験管に入れ 70°Cで 1 2時間真空 乾燥した後、 シリカゲルで乾燥した空気下で 2 3 0°C、 1 5分間加熱した後の I Vから、 下記計算式を用いて求められる。  (In the above formula (11), TOS is a PET resin chip with a melt-polymerized IV of 0.64-0.66 d 1 / g. 0.3 g was dried in a vacuum for 12 hours, placed in a glass test tube, vacuum-dried at 70 ° C for 12 hours, and then heated under silica gel-dried air at 230 ° C for 15 minutes. From the following formula.
TOS = 0. 24 5 ( [ I V] ί 1· 47 _ [ I V] 1 · 47 ) TOS = 0.245 ([IV] ί 1 · 47 _ [IV] 1 · 47 )
[ I V] i および [ I V] flはそれぞれ加熱試験前と加熱試験後の I V (d \ / g) を指す。 ) [IV] i and [IV] fl refer to the IV (d \ / g) before and after the heating test, respectively. )
34. さらに、 活性パラメータ (AP) が下記式 (1 2) を満たすことを特徴 とする請求項 2 9〜 3 3のいずれかに記載のポリエステル重合触媒。  34. The polyester polymerization catalyst according to any one of claims 29 to 33, wherein the activity parameter (AP) satisfies the following formula (12).
(1 2) AP (m i n) < 2T (m i n)  (1 2) AP (min) <2T (min)
(上記式 (1 2) '中、 APは所定量の触媒を用いて 2 7 5°C、 0. l T o r rの 減圧度で固有粘度が 0. 6 5 d 1 /gのポリエチレンテレフタレートを重合する のに要する時間 (m i n) を示し、 Tは三酸ィ匕アンチモンを触媒として生成ポリ エチレンテレフタレート中の酸成分に対してアンチモン原子として 0 . 0 5 m o 1 %となるように添加した場合の A Pである。 ) (In the above formula (1 2) ', AP polymerizes polyethylene terephthalate with an intrinsic viscosity of 0.65 d 1 / g at a temperature of 275 ° C and a pressure of 0.1 l Torr using a predetermined amount of catalyst. Do Is the time (min) required for the reaction, and T is the AP when the antimony atom is added to the acid component in the poly (ethylene terephthalate) by using antimony trioxide as a catalyst so that the antimony atom becomes 0.05 mol%. It is. )
3 5 . 前記触媒の構成成分として、 アルミニウムおよびその化合物からなる群 より選ばれる少なくとも 1種を含むことを特徴とする請求項 2 9〜3 4のいずれ かに記載のポリエステル重合触媒。  35. The polyester polymerization catalyst according to any one of claims 29 to 34, wherein the catalyst comprises at least one selected from the group consisting of aluminum and a compound thereof as a component of the catalyst.
3 6 . 水および/または有機溶媒に、 カルボン酸アルミニウム塩からなる群よ り選ばれる少なくとも 1種を溶解した溶液からなるポリエステル重合触媒。 36. A polyester polymerization catalyst comprising a solution in which at least one selected from the group consisting of aluminum carboxylate is dissolved in water and / or an organic solvent.
3 7 . カルボン酸アルミニウム塩が酢酸のアルミニウム塩の構造を有する化合 物からなる群より選ばれる少なくとも 1種であることを特徴とする請求項 3 6記 載のポリエステル重合触媒。 37. The polyester polymerization catalyst according to claim 36, wherein the aluminum carboxylate is at least one selected from the group consisting of compounds having the structure of an aluminum salt of acetic acid.
3 8 . リン化合物からなる群より選ばれる少なくとも 1種をさらに含むことを 特徴とする請求項 3 6又は 3 7に記載のポリエステル重合触媒。  38. The polyester polymerization catalyst according to claim 36, further comprising at least one selected from the group consisting of phosphorus compounds.
3 9 . カルボン酸アルミニウム塩からなる群より選ばれる少なくとも 1種を予 め水に溶解した溶液を用いることを特徴とする請求項 3 6〜3 8のいずれかに記 載のポリエステノレ重合触媒の製造方法。  39. The catalyst for polymerization of polyesterol polymerization according to any one of claims 36 to 38, wherein a solution in which at least one selected from the group consisting of aluminum carboxylate is dissolved in water is used. Production method.
4 0 . ポリエステルを製造する際に、 請求項 2 9〜 3 8のいずれかに記載のポ リエステル重合触媒を用いることを特徴とするポリエステルの製造方法。  40. A method for producing a polyester, comprising using the polyester polymerization catalyst according to any one of claims 29 to 38 when producing the polyester.
4 1 . 請求項 2 9〜 3 8のいずれかに記載のポリエステル重合触媒を用いて製 造されたポリエステル。  41. A polyester produced using the polyester polymerization catalyst according to any one of claims 29 to 38.
PCT/JP2002/000266 2001-01-18 2002-01-17 Polymerization catalyst for polyester, polyester, and process for producing the same WO2002057335A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020037009477A KR100872634B1 (en) 2001-01-18 2002-01-17 Polymerization catalyst for polyester, polyester, and process for producing the same

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2001010474 2001-01-18
JP2001-10474 2001-01-18
JP2001043118 2001-02-20
JP2001-43118 2001-02-20
JP2001-43106 2001-02-20
JP2001043106 2001-02-20
JP2001-44629 2001-02-21
JP2001044629 2001-02-21
JP2001-47101 2001-02-22
JP2001047101 2001-02-22
JP2001063902 2001-03-07
JP2001-63902 2001-03-07
JP2001104985 2001-04-03
JP2001-104985 2001-04-03
JP2001-282044 2001-09-17
JP2001282044A JP2003082083A (en) 2001-09-17 2001-09-17 Polyester polymerization catalyst and method for producing the same
JP2001-302938 2001-09-28
JP2001-302937 2001-09-28
JP2001302938 2001-09-28
JP2001302937 2001-09-28

Publications (1)

Publication Number Publication Date
WO2002057335A1 true WO2002057335A1 (en) 2002-07-25

Family

ID=27580546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000266 WO2002057335A1 (en) 2001-01-18 2002-01-17 Polymerization catalyst for polyester, polyester, and process for producing the same

Country Status (4)

Country Link
KR (2) KR100872634B1 (en)
CN (2) CN101412805B (en)
TW (1) TWI309246B (en)
WO (1) WO2002057335A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153811B2 (en) 2002-11-26 2006-12-26 Teck Cominco Metals Ltd Multi-component catalyst system for the polycondensation manufacture of polyesters
WO2006137145A1 (en) * 2005-06-24 2006-12-28 Toyo Boseki Kabushiki Kaisha Process for producing polyester, polyester produced using said process, and polyester molded product
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
WO2021125137A1 (en) * 2019-12-18 2021-06-24 東洋紡株式会社 Polyester resin and method for producing polyester resin
WO2022054670A1 (en) * 2020-09-11 2022-03-17 東洋紡株式会社 Polyester resin composition, method for manufacturing same, and polyester film using same
WO2022059511A1 (en) * 2020-09-17 2022-03-24 東洋紡株式会社 Polyester resin, blow-molded object therefrom, and production methods therefor
CN115536823A (en) * 2022-09-28 2022-12-30 南京工业大学 Catalyst for preparing polyester by ring-opening polymerization and method for preparing polyester by using catalyst

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102079811A (en) * 2009-11-30 2011-06-01 东丽纤维研究所(中国)有限公司 Constant pressure cation dyeable copolyester and application thereof
CN102295828B (en) * 2010-06-24 2014-11-26 东丽纤维研究所(中国)有限公司 Low-temperature tingible polyester and application thereof
CN102344561B (en) * 2010-08-03 2015-03-25 中国石油化工股份有限公司 Environment friendly polyester polycondensation catalyst and method for preparing polyester by using the same
GB2568526A (en) * 2017-11-20 2019-05-22 Rebio Tech Oy Composition
CN109181196A (en) * 2018-07-30 2019-01-11 安徽联科水基材料科技有限公司 A kind of HIPS composite and preparation method thereof of high glaze composite flame-proof
KR20220161363A (en) * 2020-03-26 2022-12-06 도요보 가부시키가이샤 Method for producing polyester resins and blow molded products made of polyester resins
EP4161980A1 (en) 2020-06-05 2023-04-12 Koch Technology Solutions UK Limited A method for manufacturing an oligomeric polyethylene terephthalate (pet) substrate
CN117545804A (en) * 2021-06-23 2024-02-09 东洋纺株式会社 Method for producing polyester resin composition, method for recycling recycled polyester resin, and polyester resin composition
CN115772257B (en) * 2021-09-08 2024-03-26 中国石油化工股份有限公司 Modifier for high-heat-resistance polyester, preparation method of modifier, preparation method of polyester by using modifier and obtained polyester
WO2024043423A1 (en) * 2022-08-26 2024-02-29 코오롱인더스트리 주식회사 Recycled pet film manufactured using recycled chips

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302854A (en) * 1999-04-20 2000-10-31 Toyobo Co Ltd Catalyst for polyester polymerization, polyester manufactured by using same and manufacture of polyester

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0713131B2 (en) * 1986-04-05 1995-02-15 三井石油化学工業株式会社 Aromatic polyester
GB9725419D0 (en) * 1997-12-02 1998-01-28 Tioxide Specialties Ltd Esterification catalysts

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000302854A (en) * 1999-04-20 2000-10-31 Toyobo Co Ltd Catalyst for polyester polymerization, polyester manufactured by using same and manufacture of polyester

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153811B2 (en) 2002-11-26 2006-12-26 Teck Cominco Metals Ltd Multi-component catalyst system for the polycondensation manufacture of polyesters
US8557950B2 (en) 2005-06-16 2013-10-15 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
US8987408B2 (en) 2005-06-16 2015-03-24 Grupo Petrotemex, S.A. De C.V. High intrinsic viscosity melt phase polyester polymers with acceptable acetaldehyde generation rates
WO2006137145A1 (en) * 2005-06-24 2006-12-28 Toyo Boseki Kabushiki Kaisha Process for producing polyester, polyester produced using said process, and polyester molded product
US7868126B2 (en) 2005-06-24 2011-01-11 Toyo Boseki Kabushiki Kaisha Process for producing polyester, polyester produced using said process, and polyester molded product
WO2021125137A1 (en) * 2019-12-18 2021-06-24 東洋紡株式会社 Polyester resin and method for producing polyester resin
EP4079783A4 (en) * 2019-12-18 2023-12-27 Toyobo Co., Ltd. Polyester resin and method for producing polyester resin
WO2022054670A1 (en) * 2020-09-11 2022-03-17 東洋紡株式会社 Polyester resin composition, method for manufacturing same, and polyester film using same
WO2022059511A1 (en) * 2020-09-17 2022-03-24 東洋紡株式会社 Polyester resin, blow-molded object therefrom, and production methods therefor
CN115536823A (en) * 2022-09-28 2022-12-30 南京工业大学 Catalyst for preparing polyester by ring-opening polymerization and method for preparing polyester by using catalyst
CN115536823B (en) * 2022-09-28 2023-10-31 南京工业大学 Catalyst for preparing polyester by ring-opening polymerization and method for preparing polyester by using catalyst

Also Published As

Publication number Publication date
CN100480300C (en) 2009-04-22
KR20080021165A (en) 2008-03-06
CN101412805A (en) 2009-04-22
TWI309246B (en) 2009-05-01
TW200526706A (en) 2005-08-16
KR100872634B1 (en) 2008-12-09
CN101412805B (en) 2011-10-19
KR20030094236A (en) 2003-12-11
KR100905831B1 (en) 2009-07-02
CN1486336A (en) 2004-03-31

Similar Documents

Publication Publication Date Title
WO2002057335A1 (en) Polymerization catalyst for polyester, polyester, and process for producing the same
JP4415239B2 (en) Polyester and method for producing the same
JP4275893B2 (en) Polyester and method for producing the same
JP2003171455A (en) Polyester polymerization catalyst, polyester produced by using the same and method for producing polyester
JP2003171454A (en) Polyester and method for producing the same
JP5044870B2 (en) Method for producing polyester film and polyester film
JP2002249569A (en) Polyester, blow molded product and sheet substance
JP2002363274A (en) Polyester and method for manufacturing the same
JP3460709B2 (en) Polyester polymerization catalyst, polyester produced using the same, and method for producing polyester
JP2002327052A (en) Polyester and method for producing the same
JP2002322249A (en) Polyester polymerization catalyst and polyester produced by using the same and method for producing polyester
JP2002249650A (en) Polyester composition, hollow molding and sheet material
JP2002241479A (en) Polyester polymerization catalyst, polyester produced using it and process for producing polyester
JP2002241482A (en) Polyethylene naphthalate and production method of polyethylene naphthalate
JP2002249568A (en) Polyester, blow molded product and sheet substance
JP2002322255A (en) Method for producing polyester
JP4930665B2 (en) Polyester polymerization catalyst and polyester production method (orthoester)
JP2002249567A (en) Copolyester, blow molded product and sheet substance
JP2002242057A (en) Net made of high-strength polyester fiber
JP2002249561A (en) Batch type polymerization method for polyethylene terephtalate
JP2002227037A (en) Spun-dyed polyester yarn
JP2002322250A (en) Polyester and method for producing polyester
JP2002322253A (en) Polyester polymerization catalyst and polyester produced by using the same and method for producing polyester
JP2001081163A (en) Polybutylene terephthalate and production thereof
JP2002242062A (en) Three-dimensional network structure by using polyester resin

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020037009477

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 02803810X

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020037009477

Country of ref document: KR

122 Ep: pct application non-entry in european phase