WO2002056023A1 - Optical sensor and sensor array - Google Patents

Optical sensor and sensor array Download PDF

Info

Publication number
WO2002056023A1
WO2002056023A1 PCT/EP2002/000337 EP0200337W WO02056023A1 WO 2002056023 A1 WO2002056023 A1 WO 2002056023A1 EP 0200337 W EP0200337 W EP 0200337W WO 02056023 A1 WO02056023 A1 WO 02056023A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
optical sensor
indicator
parameter
reference material
Prior art date
Application number
PCT/EP2002/000337
Other languages
German (de)
French (fr)
Inventor
Ingo Klimant
Marco Jean Pierre Leiner
Original Assignee
Presens Precision Sensing Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Presens Precision Sensing Gmbh filed Critical Presens Precision Sensing Gmbh
Publication of WO2002056023A1 publication Critical patent/WO2002056023A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6434Optrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N2021/7769Measurement method of reaction-produced change in sensor
    • G01N2021/7786Fluorescence

Definitions

  • the invention relates to an internally referenced optical sensor for determining at least one parameter in a sample with an indicator material having a short decay time which responds to the parameter and a reference material which does not respond to the parameter has a long decay time for detecting a measurement signal indicating the parameter to be determined on the basis of the jointly recorded Luminescence responses from indicator and reference material.
  • the optical sensor uses a measuring principle which determines the optical, in particular fluorometric, determination of various chemical, physical and biological parameters with the aid of e.g. B. time-resolved and phase modulation techniques.
  • B the sum of the luminescence signals of the indicator material with a short decay time and the reference material with a long decay time (at least a few hundred nanoseconds) is measured. While the long-lasting luminescence is not influenced by the analyte that determines the parameter, the intensity of the indicator material co-immobilized with it changes quickly, depending on the analyte concentration.
  • phase shift between the luminescence responses of the indicator and reference material determined by phase modulation techniques is only dependent on the ratio of the intensity components of the two materials, the intensity of the luminescence response of the indicator material is directly reflected in this.
  • An internal referencing of the signal intensity of the luminescent substances is thus obtained, so that in principle one single excitation light source and one single photodetector are sufficient.
  • the phase shift depends exclusively on the concentration of the parameter to be determined, while fluctuations in the optoelectronic system, losses in light guides, which connect the sensor with the excitation light source and the photodetector connect, and the optical properties of the sample, do not affect the signal.
  • the light used to excite indicator and reference material could adversely affect substances in the sample, so that the measuring accuracy of the sensor decreases, e.g. B. by the fact that the substances to be measured are themselves changed by the light or the substances themselves are excited to undesired luminescence.
  • This is of particular importance when measuring body fluids, e.g. B. blood, especially the so-called "critical care analytes", such as pH, 0 2, CO 2 , sodium, potassium, calcium, chloride, lithium, magnesium and the like, or culture media.
  • the object of the invention is therefore to increase the measurement accuracy in an optical sensor of the type mentioned.
  • the indicator material and the reference material are immobilized on a common carrier and that the side of the indicator material and the reference material facing the sample is covered by a layer that allows contact between the indicator material and the sample, but for that for Excitation of the indicator and reference material light is essentially impermeable.
  • This layer prevents the excitation light from reaching the sample itself and the sample itself from sending light back to the detector. This increases the measuring accuracy of the sensor and thus of the entire measuring system.
  • the layer is preferably a pigmented polymer layer, for example by means of carbon black or metal oxide, e.g. B. iron oxide or titanium dioxide.
  • the layer can be a hydrogel layer permeable to substances colored in the sample, in particular an ion permeable hydrogel layer, e.g. B. hydrophilic polyurethane and / or poly-hydroxyethyl methacrylate (HEMA) and / or carbon black.
  • an ion permeable hydrogel layer e.g. B. hydrophilic polyurethane and / or poly-hydroxyethyl methacrylate (HEMA) and / or carbon black.
  • gases such as C0 2 , 0 2
  • a gaseous substance which is permeable under normal conditions and optionally ion-permeable cover layer e.g. B. made of silicone or Teflon.
  • the layer for these substances is chosen to be impermeable.
  • the layer covering the indicator and reference material can be overlaid by an enzyme layer specific for the analyte to be measured, such as glucose oxidase for measuring glucose or lactate oxidase Lactate measurement.
  • At least one second optical sensor e.g. B. of the type mentioned above.
  • the second optical sensor can also be a so-called decay time sensor that responds to the second parameter and whose indicator material has a decay time that varies depending on the second parameter and / or a sensor whose luminescence intensity changes depending changes from the second parameter.
  • the covering layer can cover all sensors of the sensor field or at least two sensors thereof together.
  • a preferred combination is, for example, that first internally referenced sensors for measuring the pH and the CO 2 partial pressure and second sensors designed as a decay time sensor for measuring oxygen and possibly temperature are combined to form a sensor field.
  • the indicator material of the second sensor can be selected such that its decay time is in the range of the decay time of the reference material of the first sensor, these two materials preferably being identical.
  • phase detection system can then be used to evaluate the signals from the internally referenced sensors and also the Use cooldown sensors on the base of the same phosphorescent dye.
  • the measured phase shift as a measurement parameter dependent on the respective analyte, describes in the case of the internally referenced sensors the intensity ratio between the indicator luminescence or fluorescence dependent on the respective analyte concentration and the constant luminescence or phosphorescence of the reference material, as described above.
  • the measured phase shift correlates with the decay time of the phosphorescent dye of the reference material now functioning as an indicator and also depends on the concentration of the analyte to be measured by this decay time sensor. This makes it possible to produce a field or array of internally referenced sensors and decay time sensors, all of which can be read using the identical measuring system.
  • the sensors of the sensor field can be combined on a common carrier.
  • the carrier can be a film, a cassette through which the sample flows, or a planar or fiber-like light guide.
  • the invention further relates to a method for determining a parameter of a sample by means of an optical sensor or sensor field of the type discussed above.
  • the time or phase behavior or the temporal change in intensity of the luminescence responses of the indicator material with a short decay time and the reference material with a long decay time is used to form a reference variable for determining the parameter.
  • a ratio of the two luminescence intensity components of the indicator material with a short decay time and the reference material with a long decay time can also be used as a reference variable, which ratio is independent of the overall intensity of the luminescence signal.
  • the Reference quantity is determined with the aid of a time-resolved measurement, the reference quantity representing a ratio between the luminescence intensity during the excitation pulse and the luminescence intensity after the light source has been switched off.
  • the luminophores of the sensors of the sensor field are preferably excited jointly by a single source, and their luminescence responses can be detected by the plurality of detectors assigned to the respective sensors, or the luminophores of the sensors are excited by a plurality of respectively assigned light sources and by a single detector recorded together.
  • the internally referenced sensor which is attached individually or as an array or array of several such sensors on a common carrier, is a sensor of the sensor types described in DE 197 33 341 .9 or DE 1 98 29 657 or sensors for Detection of pH, chloride or other ions, CO 2 or 0 2 and the like, as are used in particular in the medical field.
  • the layer containing the indicator and reference material is designated by 1 in the figure and the support on which the sensor layer is attached is designated by 3.
  • This carrier 3 is connected to a light source and a photodetector of a fluorometric measuring device via a light guide, not shown.
  • the light guides can be planar light guides or fiber optics. The measurement can also be carried out with conventional optics without a light guide.
  • the opaque layer is designated 5 in the figure.
  • the opaque layer 5 has the task of protecting the sample from interaction with the excitation light. This will falsify the measurement signal, such as z. B. by excited in the sample Background fluorescence can occur, excluded.
  • the cover layer 5 may be a blackened polymer layer, e.g. B. with soot.
  • a polyurethane hydrogel or poly-hydroxyethyl methacrylate (HEMA) is proposed for the cover layer 5. If C0 2 or 0 2 or another gas is to be measured, silicone or Teflon is suggested for the cover layer. If the temperature is to be measured, polyacrylonitryl, silicone or hydrogel is suggested for the covering layer.
  • the sensor or one of the sensors of an array can also be designed as an enzyme optode, for example for measuring glucose or lactate.
  • the cover layer 5 is an enzyme layer 7, z.
  • the signals of the internally referenced luminescence sensors of the type mentioned at the outset can be read out using identical measuring systems, such as those optical sensors in which the change in the decay time is the measurement parameter. These measuring systems are based on phase modulation techniques.
  • the identical phosphorescent dyes that are used in the internally referencing sensors as long-life reference luminophores and are covered here by the cover layer 5 can also be used as a luminescence indicator in decay time sensors.
  • An example of this is the rhutenium-tris-4,7-diphenyl-1, 0-phenanthroline complex.
  • this dye Built into a matrix made of polyacrylonitryl, this dye is for all potential chemical components of a sample not accessible and therefore forms an ideal reference standard for the internally referenced sensors. In this environment, its luminescence declining time is only influenced by the temperature of the sample and thus represents an ideal internally referenced decay time temperature sensor.
  • the dye is incorporated in a hydrophobic, highly gas-permeable polymer, its decay time depends on the gas partial pressure of the sample.
  • a material is thus an internally referenced gas sensor, for example an oxygen sensor.
  • An identical phase detection system can be used to trigger the signals, both from internally referenced sensors and decay time sensors based on the identical phosphorescent dyes.
  • the internally referenced and decay sensors complement each other in an ideal way. It can be used to produce an array of internally referenced sensors and decay time sensors, all of which can be read using the identical measuring system.
  • the following table shows a selection of sensors that can be combined in such an array. All of these sensors are excited with a sinusoidally modulated light-emitting diode, the modulation frequency always remaining the same, e.g. B. is 45 kHz.
  • the preferred array for diagnostic blood analysis consists of all the sensors listed in the following table, with the exception of temperature and glucose.
  • a preferred array for biotechnology and cell cultivation consists of sensors for the parameters pH, pC0 2 , p0 2 and temperature.
  • arrow 9 shows the excitation light coming from the light source through a light guide and arrow 1 1 shows the light of the luminescence responses from indicator and reference material, which is passed through this or another light guide to the photodetector.
  • the sensors can be arranged next to one another separately from one another on the carrier 3 or they can also be mixed.
  • sample used here includes compounds, surfaces, solutions, environmentally relevant liquids (waste water, rain water, drinking water, river water, sea water), industrial liquids and biological liquids (e.g. blood, blood plasma, blood serum, urine, cerebroscopic liquid), Emulsions, suspensions, mixtures, cell cultures, fermentation cultures, cells, tissues, secretions and / or derivatives or extracts thereof.
  • analyte also used herein refers to elements, ions, compounds or salts, dissociation products, polymers, aggregates or derivatives thereof.
  • pH optodes with fluorescein derivatives as indicators For the internally referenced sensors, e.g. B. in question: pH optodes with fluorescein derivatives as indicators; - pH optodes with covalently bound hydroxipyrene-trisolonic acid as an indicator;
  • Bromide and iodide Anion sensors for measuring chloride, bromide or nitrate based on potential-sensitive dyes (such as rhodamines or styryl fluorophores);
  • Cation sensors for measuring potassium or sodium based on potential sensitive dyes
  • Metabolite sensors such as glucose, lactate, urea, creatinine based on fluorogenic receptors based on boric acid derivatives.
  • enzymatic sensors for detecting glucose or lactate based on fluorescez pH optodes as converter layer 7 enzymatic sensors for detecting glucose or lactate based on fluorescez pH optodes as converter layer 7; - Enzymatic sensors for detecting urea or creatinine on the basis of a fluorescence ammonium, pH or ammonium optode; a microbial sensor for measuring the biological oxygen demand with a fluorescent pH sensor as a converter; - enzymatic sensors for the determination of glucose or others
  • Substrates based on the measurement of the intrinsic fluorescence of the enzymes or co-enzymes involved (such as in NADH).
  • affinity-based biosensors come e.g. B. in question: - immunosensors with surface immobilized antigens or
  • Biosensors for identifying and quantifying oligonucleotides or DNA strands with embedded dyes are: the detection of gases, electrolytes and metabolites in
  • Body fluids such as blood, serum, plasma or urine; - two-dimensional mapping of chemical parameters (e.g. transcutaneous applications); diagnostic determination of antibodies, antigens and oligo-nucleotides in body fluids; fiber optic detection in tissues or entire organs of humans or animals;
  • Food analysis (genetic testing); - environmental analysis (fluorometric determination of humic acids,
  • Chlorophyll or polycyclic aromatic hydrocarbons are Chlorophyll or polycyclic aromatic hydrocarbons

Abstract

The invention relates to an optical sensor for determining at least one parameter in a sample. The optical sensor comprises an indicator material (in 1) responding to the parameter and having a short decay time and, a reference material (in 1) not responding to the parameter and having a long decay time. The optical sensor detects the measuring signal indicating the parameter to be detected on the basis of the luminescence responses of the indicator and the reference material that are commonly detected. The indicator and the reference material are immobilized on a common support (3). The layer facing the sample of the indicator material and of the reference material is covered by a layer (5) that allows contact between the indicator material and the sample but is substantially impermeable to the light used for exciting the indicator and the reference material. The layer prevents the sample from being influenced by the excitation light, thereby improving the measuring sensitivity of the sensor.

Description

Optischer Sensor und SensorfeldOptical sensor and sensor field
Beschreibungdescription
Die Erfindung betrifft einen intern referenzierten optischen Sensor zur Bestimmung zumindest eines Parameters in einer Probe mit einem auf den Parameter ansprechenden Indikatormaterial kurzer Abklingzeit und einem auf den Parameter nicht ansprechenden Referenzmaterial langer Abklingzeit zur Erfassung eines den zu bestimmenden Parameter anzeigenden Meßsignals auf der Basis der gemeinsam erfaßten Lumineszenzantworten von Indikator- und Referenzmaterial.The invention relates to an internally referenced optical sensor for determining at least one parameter in a sample with an indicator material having a short decay time which responds to the parameter and a reference material which does not respond to the parameter has a long decay time for detecting a measurement signal indicating the parameter to be determined on the basis of the jointly recorded Luminescence responses from indicator and reference material.
Der optische Senor benutzt ein Meßprinzip, welches die optische, insbesondere fluorometrische, Bestimmung verschiedener chemischer, physikalischer und biologischer Parameter mit Hilfe von z. B. zeitaufgelösten und Phasenmodulationstechniken ermöglicht. Hierbei wird z. B. die Summe aus den Lumineszenzsignalen des Indikatormaterials kurzer Abklingzeit und des Referenzmaterials langer Abklingzeit (mindestens einige hundert Nanosekunden) gemessen. Während die langlebige Lumineszenz vom den Parameter bestimmenden Analyten nicht beeinflusst wird, verändert sich die Intensität des hiermit coimmobilisierten Indikatormaterials kurzer Abklingzeit in Abhängigkeit von der jeweiligen Analytkonzentration. Da die durch Phasenmodulationstechniken ermittelte Phasenverschiebung zwischen den Lumineszenzantworten von Indikator- und Referenzmaterial nur vom Verhältnis der Intensitätsanteile der beiden Materialien abhängig ist, spiegelt sich darin direkt die Intensität der Lumineszenzantwort des Indikatormaterials wider. Man erhält somit eine interne Referenzierung der Signalintensität der Leuchtstoffe, so dass man im Prinzip mit einer einzigen Erregungslichtquelle und einem einzigen Photodetektor auskommt. Unter der Voraussetzung, dass die Verteilung von Indikator- und Referenzmaterial beim Herstellungsprozess konstant gehalten wird, ist die Phasenverschiebung ausschließlich von der Konzentration des zu bestimmenden Parameters abhängig, während Schwankungen im optoelektronischen System, Verlusten in Lichtleitern, welche den Sensor mit der Erregungslichtquelle und dem Photodetektor verbinden, und den optischen Eigenschaften der Probe, das Signal nicht beeinflussen.The optical sensor uses a measuring principle which determines the optical, in particular fluorometric, determination of various chemical, physical and biological parameters with the aid of e.g. B. time-resolved and phase modulation techniques. Here, for. B. the sum of the luminescence signals of the indicator material with a short decay time and the reference material with a long decay time (at least a few hundred nanoseconds) is measured. While the long-lasting luminescence is not influenced by the analyte that determines the parameter, the intensity of the indicator material co-immobilized with it changes quickly, depending on the analyte concentration. Since the phase shift between the luminescence responses of the indicator and reference material determined by phase modulation techniques is only dependent on the ratio of the intensity components of the two materials, the intensity of the luminescence response of the indicator material is directly reflected in this. An internal referencing of the signal intensity of the luminescent substances is thus obtained, so that in principle one single excitation light source and one single photodetector are sufficient. Provided that the distribution of indicator and reference material is kept constant during the manufacturing process, the phase shift depends exclusively on the concentration of the parameter to be determined, while fluctuations in the optoelectronic system, losses in light guides, which connect the sensor with the excitation light source and the photodetector connect, and the optical properties of the sample, do not affect the signal.
Details dieses Meßprinzips und Ausführungsbeispiele sind in der DE 1 97 33 341 .9, der hierauf aufbauenden DE 1 98 29 657.6 sowie der korrespondierenden PCT/EP/98/04779 beschrieben und gezeigt, deren vollständiger Offenbarungsinhalt unter Bezugnahme hierin aufgenommen wird.Details of this measurement principle and exemplary embodiments are described and shown in DE 1 97 33 341 .9, the DE 1 98 29 657.6 based thereon and the corresponding PCT / EP / 98/04779, the complete contents of which are incorporated herein by reference.
Das zum Erregen von Indikator- und Referenzmaterial benutzte Licht könnte jedoch Substanzen in der Probe nachteilig beeinflussen, so dass die Meßgenauigkeit des Sensors abnimmt, z. B. dadurch, dass die zu messenden Substanzen selbst durch das Licht verändert werden oder die Substanzen selbst zu unerwünschter Lumineszenz angeregt werden. Von besonderer Wichtigkeit ist dies bei der Messung von Körperflüssigkeiten, z. B. Blut, insbesondere der sog."critical care analytes", wie etwa pH, 02, CO2, Natrium, Kalium, Calcium, Chlorid, Lithium, Magnesium und dgl., oder Kulturmedien.However, the light used to excite indicator and reference material could adversely affect substances in the sample, so that the measuring accuracy of the sensor decreases, e.g. B. by the fact that the substances to be measured are themselves changed by the light or the substances themselves are excited to undesired luminescence. This is of particular importance when measuring body fluids, e.g. B. blood, especially the so-called "critical care analytes", such as pH, 0 2, CO 2 , sodium, potassium, calcium, chloride, lithium, magnesium and the like, or culture media.
Aufgabe der Erfindung ist es daher, bei einem optischen Sensor der eingangs genannten Art die Meßgenauigkeit zu erhöhen.The object of the invention is therefore to increase the measurement accuracy in an optical sensor of the type mentioned.
Zur Lösung der Aufgabe wird vorgeschlagen, dass das Indikatormaterial und das Referenzmaterial auf einem gemeinsamen Träger immobilisiert sind und dass die zur Probe weisende Seite des Indikatormaterials und des Referenzmaterials von einer Schicht abgedeckt ist, die einen Kontakt zwischen dem Indikatormaterial und der Probe erlaubt, jedoch für das zur Erregung des Indikator- und Referenzmaterial verwendete Licht im wesentlichen undurchlässig ist.To achieve the object, it is proposed that the indicator material and the reference material are immobilized on a common carrier and that the side of the indicator material and the reference material facing the sample is covered by a layer that allows contact between the indicator material and the sample, but for that for Excitation of the indicator and reference material light is essentially impermeable.
Diese Schicht verhindert, dass das Erregungslicht zur Probe selbst gelangt, und dass die Probe selbst Licht an den Detektor zurückschickt. Dies erhöht die Meßgenauigkeit des Sensors und damit des gesamten Meßsystems.This layer prevents the excitation light from reaching the sample itself and the sample itself from sending light back to the detector. This increases the measuring accuracy of the sensor and thus of the entire measuring system.
Bevorzugt handelt es sich bei der Schicht um eine pigmentierte Polymerschicht, etwa mittels Ruß oder Metalloxid, z. B. Eisenoxid- oder Titandioxid.The layer is preferably a pigmented polymer layer, for example by means of carbon black or metal oxide, e.g. B. iron oxide or titanium dioxide.
Wenn der Sensor zur Messung des pH oder von Chlorid oder anderen Ionen ausgelegt ist, kann es sich bei der Schicht um eine für in der Probe gefärbte Substanzen permeable, insbesondere ionenpermeable Hydrogelschicht handeln, z. B. hydrophiles Polyurethan oder/und Poly- Hydroxyethylmethacrylat(HEMA) oder/und Ruß. Zur Messung von Gasen, wie etwa C02, 02, wird bevorzugt eine unter Normalbedingungen gasförmige Substanzen permeable und gegebenenfalls ionenpermeable Abeckschicht, z. B. aus Silikon oder Teflon verwendet. Falls der Sensor zur Messung der Temperatur in einer Probe verwendet werden soll, in der sich Substanzen befinden, auf die das Indikatormaterial ansprechen würde, wird die Schicht für diese Substanzen undurchlässig gewählt.If the sensor is designed to measure the pH or of chloride or other ions, the layer can be a hydrogel layer permeable to substances colored in the sample, in particular an ion permeable hydrogel layer, e.g. B. hydrophilic polyurethane and / or poly-hydroxyethyl methacrylate (HEMA) and / or carbon black. For the measurement of gases, such as C0 2 , 0 2 , a gaseous substance which is permeable under normal conditions and optionally ion-permeable cover layer, e.g. B. made of silicone or Teflon. If the sensor is to be used to measure the temperature in a sample in which there are substances to which the indicator material would respond, the layer for these substances is chosen to be impermeable.
Falls der Sensor als Enzymoptode zur Erfassung eines enzymatisch zu bestimmenden Analyten verwendet werden soll, kann die das Indikator- und Referenzmaterial abdeckende Schicht von einer für den messenden Analyten spezifischen Enzymschicht überlagert sein, wie etwa Glukose- Oxidase zur Messung von Glukose oder Lactat-Oxidase zur Messung von Lactat.If the sensor is to be used as an enzyme optode for detecting an analyte to be determined enzymatically, the layer covering the indicator and reference material can be overlaid by an enzyme layer specific for the analyte to be measured, such as glucose oxidase for measuring glucose or lactate oxidase Lactate measurement.
Bei der oben erwähnten Sensoranordnung der DE 1 97 33 341 .9 und der DE 1 98 29 657.6 bzw. PCT/EP98/04779 wird nur ein einziger intern referenzierter Sensor beschrieben, mit dem dann nur ein einziger Parameter in einer Probe gemessen werden kann.In the above-mentioned sensor arrangement of DE 1 97 33 341 .9 and DE 1 98 29 657.6 or PCT / EP98 / 04779, only one is used internally referenced sensor described, with which only a single parameter can then be measured in a sample.
In vielen Fällen ist es aber erwünscht, in einem einzigen Meßvorgang mehrere unterschiedliche Parameter gleichzeitig zu messen, wie z. B. in Körperflüssigkeiten in medizinischen Anwendungen.In many cases, however, it is desirable to measure several different parameters simultaneously in a single measurement process, such as. B. in body fluids in medical applications.
Sollen mehrere verschiedene Parameter gleichzeitig gemessen werden können, kann unter Bildung eines Sensorfelds an dem Träger zusätzlich zumindest ein auf einen zweiten Parameter ansprechender zweiter optischer Sensor, z. B. der eingangs genannten Art, angebracht sein. Bei dem zweiten optischen Sensor kann es sich auch um einen sog. Abklingzeit-Sensor handeln, der auf den zweiten Parameter anspricht und dessen Indikatormaterial eine sich in Abhängigkeit von dem zweiten Parameter veränderliche Abklingzeit aufweist oder/und um einen Sensor, dessen Lumineszenzintensität sich in Abhängigkeit vom zweiten Parameter ändert. In beiden Fällen kann die Abdeckschicht sämtliche Sensoren des Sensorfelds oder zumindest zwei Sensoren davon gemeinsam abdecken.If several different parameters are to be measured at the same time, at least one second optical sensor, e.g. B. of the type mentioned above. The second optical sensor can also be a so-called decay time sensor that responds to the second parameter and whose indicator material has a decay time that varies depending on the second parameter and / or a sensor whose luminescence intensity changes depending changes from the second parameter. In both cases, the covering layer can cover all sensors of the sensor field or at least two sensors thereof together.
Eine bevorzugte Kombination besteht zum Beispiel darin, dass erste intern referenzierte Sensoren zur Messung des pH und des C02-Partialdrucks und zweite, als Abklingzeitsensor ausgeführte Sensoren zur Messung von Sauerstoff und gegebenenfalls Temperatur zu einem Sensorfeld kombiniert sind.A preferred combination is, for example, that first internally referenced sensors for measuring the pH and the CO 2 partial pressure and second sensors designed as a decay time sensor for measuring oxygen and possibly temperature are combined to form a sensor field.
Das Indikatormaterial des zweiten Sensors kann so gewählt sein, dass dessen Abklingzeit im Bereich der Abklingzeit des Referenzmaterials des ersten Sensors liegt, wobei bevorzugt diese beiden Materialien identisch sind.The indicator material of the second sensor can be selected such that its decay time is in the range of the decay time of the reference material of the first sensor, these two materials preferably being identical.
Man kann dann ein identisches Phasendetektionssystem zum Auswerten der Signale der intern referenzierten Sensoren sowie auch der A b k l i n g z e i t s e n s o r e n a u f d e r B a s i s d e s i d e n t i s c h e n Phosphoreszenzfarbstoffs verwenden. Die gemessene Phasenverschiebung, als von jeweiligen Analyten abhängiger Meßparameter, beschreibt im Falle der intern referenzierten Sensoren das Intensitätsverhältnis zwischen der von der jeweiligen Analytkonzentration abhängigen Indikatorlumineszenz bzw. -fluoreszenz und der konstanten Lumineszenz bzw. Phosphoreszenz des Referenzmaterials, wie oben beschrieben.An identical phase detection system can then be used to evaluate the signals from the internally referenced sensors and also the Use cooldown sensors on the base of the same phosphorescent dye. The measured phase shift, as a measurement parameter dependent on the respective analyte, describes in the case of the internally referenced sensors the intensity ratio between the indicator luminescence or fluorescence dependent on the respective analyte concentration and the constant luminescence or phosphorescence of the reference material, as described above.
Im Falle der Abklingzeitsensoren korreliert die gemessene Phasenverschiebung mit der Abklingzeit des jetzt als Indikator fungierenden Phosphoreszenzfarbstoffs des Referenzmaterials und hängt ebenfalls von der Konzentration des von diesem Abklingzeitsensor zu messenden Analyten ab. Hierdurch ist es möglich, ein Feld oder Array von intern referenzierten Sensoren und Abklingzeitsensoren herzustellen, die alle mit dem identischen Meßsystem ausgelesen werden können.In the case of the decay time sensors, the measured phase shift correlates with the decay time of the phosphorescent dye of the reference material now functioning as an indicator and also depends on the concentration of the analyte to be measured by this decay time sensor. This makes it possible to produce a field or array of internally referenced sensors and decay time sensors, all of which can be read using the identical measuring system.
Die Sensoren des Sensorfelds können auf einem gemeinsamen Träger kombiniert sein. Der Träger kann eine Folie, eine von der Probe zu durchströmende Kassette oder auch ein planer oder faserartiger Lichtleiter sein.The sensors of the sensor field can be combined on a common carrier. The carrier can be a film, a cassette through which the sample flows, or a planar or fiber-like light guide.
Die Erfindung betrifft ferner ein Verfahren zur Bestimmung eines Parameters einer Probe mittels eines optischen Sensors bzw. Sensorfelds der oben diskutierten Bauart. Hierbei wird das Zeit- oder Phasenverhalten oder die zeitliche Intensitätsänderung der Lumineszenzantworten des Indikatormaterials kurzer Abklingzeit und des Referenzmaterials langer Abklingzeit zur Bildung einer Referenzgröße für die Bestimmung des Parameters verwendet. Als Referenzgröße kann auch ein Verhältnis der beiden Lumineszenzintensitätsanteile des Indikatormaterials kurzer Abklingzeit und des Referenzmaterials langer Abklingzeit verwendet werden, welches unabhängig von der Gesamtintensität des Lumineszenzsignals ist. Es besteht auch die Möglichkeit, dass die Referenzgröße mit Hilfe einer zeitaufgelösten Messung ermittelt wird, wobei die Referenzgröße ein Verhältnis zwischen der Lumineszenzintensität während des Anregungsimpulses und der Lumineszenzintensität nach dem Ausschalten der Lichtquelle darstellt.The invention further relates to a method for determining a parameter of a sample by means of an optical sensor or sensor field of the type discussed above. Here, the time or phase behavior or the temporal change in intensity of the luminescence responses of the indicator material with a short decay time and the reference material with a long decay time is used to form a reference variable for determining the parameter. A ratio of the two luminescence intensity components of the indicator material with a short decay time and the reference material with a long decay time can also be used as a reference variable, which ratio is independent of the overall intensity of the luminescence signal. There is also a possibility that the Reference quantity is determined with the aid of a time-resolved measurement, the reference quantity representing a ratio between the luminescence intensity during the excitation pulse and the luminescence intensity after the light source has been switched off.
Bevorzugt werden die Luminophore der Sensoren des Sensorfelds durch eine einzige Lic htq uelle gemeinsam erregt, u nd d eren Lumineszenzantworten können von den jeweiligen Sensoren zugeordneten mehreren Detektoren erfaßt werden oder aber die Luminophore der Sensoren werden von mehreren jeweils zugeordneten Lichtquellen erregt und von einem einzigen Detektor gemeinsam erfasst.The luminophores of the sensors of the sensor field are preferably excited jointly by a single source, and their luminescence responses can be detected by the plurality of detectors assigned to the respective sensors, or the luminophores of the sensors are excited by a plurality of respectively assigned light sources and by a single detector recorded together.
Die Erfindung wird nun anhand von Ausführungsbeispielen anhand der beigefügten Figur erläutert.The invention will now be explained using exemplary embodiments with reference to the accompanying figure.
Bei dem intern referenzierten Sensor, der einzeln oder als Array bzw. Feld mehrerer solcher Sensoren auf gemeinsamen Träger angebracht ist, handelt es sich um Sensoren der in der DE 197 33 341 .9 bzw DE 1 98 29 657 beschriebenen Sensortypen bzw. um Sensoren zum Nachweis von pH, Chlorid oder anderen Ionen, CO2 oder 02 und dgl., wie sie insbesondere im medizinischen Gebiet Anwendung finden. Die das Indikator- und Referenzmaterial enthaltende Schicht ist in der Figur mit 1 bezeichnet und der Träger, auf dem die Sensorschicht befestigt ist, ist mit 3 bezeichnet. Dieser Träger 3 ist über einen nicht gezeigten Lichtleiter mit einer Lichtquelle und einem Fotodetektor eines fluorometrischen Meßgeräts verbunden. Bei den Lichtleitern kann es sich um planare Lichtleiter oder um Faseroptik handeln. Die Messung kann auch mit konventioneller Optik ohne Lichtleiter erfolgen. Die lichtundurchlässige Schicht ist in der Figur mit 5 bezeichnet. Die lichtundurchlässige Schicht 5 hat die Aufgabe, die Probe vor Wechselwirkung mit dem Anregungslicht zu schützen. Damit werden Verfälschungen des Meßsignals, wie sie z. B. durch in der Probe angeregte Untergrundfluoreszenz entstehen können, ausgeschlossen. Die Abdeckschicht 5 kann eine geschwärzte Polymerschicht sein, z. B. mit Ruß.The internally referenced sensor, which is attached individually or as an array or array of several such sensors on a common carrier, is a sensor of the sensor types described in DE 197 33 341 .9 or DE 1 98 29 657 or sensors for Detection of pH, chloride or other ions, CO 2 or 0 2 and the like, as are used in particular in the medical field. The layer containing the indicator and reference material is designated by 1 in the figure and the support on which the sensor layer is attached is designated by 3. This carrier 3 is connected to a light source and a photodetector of a fluorometric measuring device via a light guide, not shown. The light guides can be planar light guides or fiber optics. The measurement can also be carried out with conventional optics without a light guide. The opaque layer is designated 5 in the figure. The opaque layer 5 has the task of protecting the sample from interaction with the excitation light. This will falsify the measurement signal, such as z. B. by excited in the sample Background fluorescence can occur, excluded. The cover layer 5 may be a blackened polymer layer, e.g. B. with soot.
Soll der Sensor zur Messung des pH oder Chlorid oder anderen Ionen verwendet werden, wird für die Abdeckschicht 5 ein Polyurethanhydrogel oder Poly-Hydroxyethylmethacrylat (HEMA) vorgeschlagen. Soll C02 oder 02 oder ein anderes Gas gemessen werden, wird für die Abdeckschicht Silikon oder Teflon vorgeschlagen. Soll die Temperatur gemessen werden, wird für die Abdeckschicht Polyacrylnitryl, Silikon oder Hydrogel vorgeschlagen.If the sensor is used to measure the pH or chloride or other ions, a polyurethane hydrogel or poly-hydroxyethyl methacrylate (HEMA) is proposed for the cover layer 5. If C0 2 or 0 2 or another gas is to be measured, silicone or Teflon is suggested for the cover layer. If the temperature is to be measured, polyacrylonitryl, silicone or hydrogel is suggested for the covering layer.
Der Sensor oder einer der Sensoren eines Array kann auch als Enzymoptode ausgeführt sein, etwa zur Messung von Glukose oder Lactat. In diesem Fall ist dann die Abdeckschicht 5 von einer Enzymschicht 7, z. B. Glukose-Oxidase oder Lactat-Oxidase, überlagert, die dann die notwendigen Signale an das eigentliche Sensormaterial 1 weitergibt. In der Figur ist diese Enzymschicht gestrichelt dargestellt.The sensor or one of the sensors of an array can also be designed as an enzyme optode, for example for measuring glucose or lactate. In this case, the cover layer 5 is an enzyme layer 7, z. B. glucose oxidase or lactate oxidase, superimposed, which then passes on the necessary signals to the actual sensor material 1. This enzyme layer is shown in dashed lines in the figure.
Die Signale der intern referenzierten Lumineszenzsensoren der eingangs genannten Art lassen sich mit identischen Meßsystemen auslesen, wie solche optische Sensoren, bei denen die Änderung der Abklingzeit der Meßparameter ist. Diese Meßsysteme basieren jeweils auf Phasenmodulationstechniken.The signals of the internally referenced luminescence sensors of the type mentioned at the outset can be read out using identical measuring systems, such as those optical sensors in which the change in the decay time is the measurement parameter. These measuring systems are based on phase modulation techniques.
Die identischen Phosphoreszenzfarbstoffe, die in den intern referenzierenden Sensoren als langlebige Referenzluminophoren benutzt werden und hier von der Abdeckschicht 5 abgedeckt sind, können gleichzeitig auch als Lumineszenzindikator in Abklingzeitsensoren verwendet werden. Ein Beispiel hierfür ist der Rhutenium-tris-4,7-diphenyl- 1 , 1 0-phenanthrolin-Komplex. Eingebaut in eine Matrix aus Polyacrylnitryl ist dieser Farbstoff für alle potentiellen chemischen Bestandteile einer Probe nicht zugänglich und bildet somit einen idealen Referenzstandard für die intern referenzierten Sensoren. In dieser Umgebung wird seine Lumineszenzabklinzeit nur von der Temperatur der Probe beeinflusst und stellt damit eine idealen intern referenzierten Abklingzeit-Temperatursensor dar. Wird der Farbstoff hingegen in einem hydrophoben, gut gasdurchlässigen Polymer eingebaut, hängt seine Abklingzeit vom jeweiligen Gaspartialdruck der Probe ab. Damit ist ein solches Material ein intern referenzierter Gassensor, beispielsweise ein Sauerstoffsensor. Ein identisches Phasendetektionssystem kann zum Auslösen der Signale, sowohl von intern referenzierten Sensoren als auch Abklingzeitsensoren auf der Basis der identischen Phosphoreszenzfarbstoffe, benutzt werden. Die gemessene Phasenverschiebung als vom Analyten abhängiger Meßparameter, gemessen beispielsweise bei einer Modulationsfrequenzvon 45 kHz, beschreibt im Falle der intern referenzierten Sensoren das Intensitätsverhältnis zwischen der von der jeweiligen Analytkonzentration abhängigen Indikatorfluoreszenz und der konstanten Phosphoreszenz des Referenzmaterials gemäß folgender Gleichung: cotφ = Aflu*cotΦflu + Aflu/Aref*sinΦp-0 The identical phosphorescent dyes that are used in the internally referencing sensors as long-life reference luminophores and are covered here by the cover layer 5 can also be used as a luminescence indicator in decay time sensors. An example of this is the rhutenium-tris-4,7-diphenyl-1, 0-phenanthroline complex. Built into a matrix made of polyacrylonitryl, this dye is for all potential chemical components of a sample not accessible and therefore forms an ideal reference standard for the internally referenced sensors. In this environment, its luminescence declining time is only influenced by the temperature of the sample and thus represents an ideal internally referenced decay time temperature sensor. On the other hand, if the dye is incorporated in a hydrophobic, highly gas-permeable polymer, its decay time depends on the gas partial pressure of the sample. Such a material is thus an internally referenced gas sensor, for example an oxygen sensor. An identical phase detection system can be used to trigger the signals, both from internally referenced sensors and decay time sensors based on the identical phosphorescent dyes. The measured phase shift as a measurement parameter dependent on the analyte, measured for example at a modulation frequency of 45 kHz, describes in the case of the internally referenced sensors the intensity ratio between the indicator fluorescence dependent on the respective analyte concentration and the constant phosphorescence of the reference material according to the following equation: cotφ = A flu * cotΦ flu + A flu / A ref * sinΦ p - 0
Im Falle der Abklingzeitsensoren korreliert die gemessene Phasenverschiebung mit der Abklingzeit des jetzt als Indikator fungierenden Phosphereszenzfarbstoffs und hängt ebenfalls von der Konzentration des zu messenden Analyten ab, gemäß folgender Gleichung: tanφ = 2*π *fmod*rIn the case of the decay time sensors, the measured phase shift correlates with the decay time of the phosphorescent dye now acting as an indicator and also depends on the concentration of the analyte to be measured, according to the following equation: tanφ = 2 * π * f mod * r
Hierdurch ergänzen sich die intern referenzierten und Abklingsensoren auf ideale Weise miteinander. Es lässt sich damit ein Array von intern referenzierten Sensoren und Abklingzeitsensoren herstellen, die alle mit dem identischen Meßsystem ausgelesen werden können.In this way, the internally referenced and decay sensors complement each other in an ideal way. It can be used to produce an array of internally referenced sensors and decay time sensors, all of which can be read using the identical measuring system.
Die folgende Tabelle stellt eine Auswahl von Sensoren dar, die in einem solchen Array miteinander kombiniert werden können. Alle diese Sensoren werden mit einer sinusförmig modulierten Leuchtdiode angeregt, wobei die Modulationsfrequenz immer gleich bleibt, z. B. 45 kHz beträgt.The following table shows a selection of sensors that can be combined in such an array. All of these sensors are excited with a sinusoidally modulated light-emitting diode, the modulation frequency always remaining the same, e.g. B. is 45 kHz.
Das bevorzugte Array für diagnostische Blutanalysen besteht aus allen in der folgenden Tabelle aufgeführten Sensoren, mit Ausnahme von Temperatur und Glukose.The preferred array for diagnostic blood analysis consists of all the sensors listed in the following table, with the exception of temperature and glucose.
Ein für Biotechnologie und Zellzucht bevorzugtes Array besteht aus Sensoren für die Parameter pH, pC02, p02 und Temperatur.A preferred array for biotechnology and cell cultivation consists of sensors for the parameters pH, pC0 2 , p0 2 and temperature.
Figure imgf000011_0001
Figure imgf000011_0001
'intern referenzierter Sensor der eingangs genannten Art '' internally referenced sensor of the type mentioned at the beginning
In der Figur ist mit dem Pfeil 9 das von der Lichtquelle durch einen Lichtleiter kommende Anregungslicht dargestellt und mit dem Pfeil 1 1 das Licht der Lumineszenzantworten von Indikator- und Referenzmaterial, welche durch diesen oder einen anderen Lichtleiter zum Photodetektor geleitet wird. Im Falle mehrerer Sensoren können die Sensoren nebeneinander voneinander getrennt auf dem Träger 3 angeordnet sein oder sie können auch vermischt vorliegen. Der hierin benutzte Begriff "Probe" beinhaltet Verbindungen, Oberflächen, Lösungen, umweltrelevante Flüssigkeiten (Abwässer, Regenwasser, Trinkwasser, Flusswasser, Meerwasser), Industrieflüssigkeiten und biologische Flüssigkeiten (z. B. Blut, Blutplasma, Blutserum, Urin, Cerebro- spinalflüssigkeit), Emulsionen, Suspensionen, Gemische, Zellkulturen, Fermentationskulturen, Zellen, Gewebe, Sekrete und/oder Derivate oder Extrakte davon.In the figure, arrow 9 shows the excitation light coming from the light source through a light guide and arrow 1 1 shows the light of the luminescence responses from indicator and reference material, which is passed through this or another light guide to the photodetector. In the case of several sensors, the sensors can be arranged next to one another separately from one another on the carrier 3 or they can also be mixed. The term "sample" used here includes compounds, surfaces, solutions, environmentally relevant liquids (waste water, rain water, drinking water, river water, sea water), industrial liquids and biological liquids (e.g. blood, blood plasma, blood serum, urine, cerebroscopic liquid), Emulsions, suspensions, mixtures, cell cultures, fermentation cultures, cells, tissues, secretions and / or derivatives or extracts thereof.
Der hierin auch benutzte Begriff "Analyt" betrifft Elemente, Ionen, Verbindungen oder Salze, Dissoziationsprodukte, Polymere, Aggregate oder Derivate davon.The term "analyte" also used herein refers to elements, ions, compounds or salts, dissociation products, polymers, aggregates or derivatives thereof.
Für die intern referenzierten Sensoren kommen z. B. in Frage: pH-Optoden mit Fluoreszeinderivaten als Indikator; - pH-Optoden mit covalent gebundenen Hydroxipyren-trisolfonsäure als Indikator;For the internally referenced sensors, e.g. B. in question: pH optodes with fluorescein derivatives as indicators; - pH optodes with covalently bound hydroxipyrene-trisolonic acid as an indicator;
Kohlendioxid-, Schwefelwasserstoff- und Ammoniumsensoren auf der Basis von Fluoreszinderivaten oder Rhodaminfarbstoffen alsCarbon dioxide, hydrogen sulfide and ammonium sensors based on fluorescent derivatives or rhodamine dyes as
Indikator; - o ptische Schwermetallsensoren auf der Basis vo nIndicator; - Optical heavy metal sensors based on
Fluoreszenzlöschung; optische ionen-sensititive Sensoren zum Bestimmung von Calcium oder Magnesium mit PET-Indikatoren, wie etwa Calciumgrün,Fluorescence quenching; optical ion-sensitive sensors for the determination of calcium or magnesium with PET indicators, such as calcium green,
Calciumkarmesin- oder Furarot; - Kationen-Sensoren zur Bestimmung von Natrium, Kalium, Lithium,Calcium crimson or fur red; - Cation sensors for determining sodium, potassium, lithium,
Magnesium, Kalzium z. B. auf der Basis von PET-Naphtalimid-Magnesium, calcium z. B. based on PET naphthalimide
Indikatoren oder auch Zink, Blei, Barium, Cadmium, Quecksilber,Indicators or also zinc, lead, barium, cadmium, mercury,
Lanthan;lanthanum;
Anionen-Sensoren auf der Basis von Fluoreszenzlöschung von Acrydin- und Bisacridin-Fluorophoren zum Erfassen von Chlorid,Anion sensors based on fluorescence quenching of acrydin and bisacridine fluorophores for the detection of chloride,
Bromid und Jodid; Anionen-Sensoren zur Messung von Chlorid, Bromid oder Nitrat auf der Basis von potential-empfindlichen Farbstoffen (wie etwa Rhodamine oder Styryl-Fluorophore);Bromide and iodide; Anion sensors for measuring chloride, bromide or nitrate based on potential-sensitive dyes (such as rhodamines or styryl fluorophores);
Kationen-Sensoren zur Messung von Kalium oder Natrium auf der Basis von potential-empfindlichen Farbstoffen;Cation sensors for measuring potassium or sodium based on potential sensitive dyes;
Sensoren mit fluorogenen Reaktanten zur Messung von Aminen, Aldehyden oder Alkoholen;Sensors with fluorogenic reactants for measuring amines, aldehydes or alcohols;
Sensoren für Metabolite, wie Glukose, Laktat, Harnstoff, Kreatinin auf der Basis von fluorogenen Rezeptoren, beruhend auf Borsäurederivaten.Metabolite sensors such as glucose, lactate, urea, creatinine based on fluorogenic receptors based on boric acid derivatives.
Als Biosensoren für verschiedene Metabolite kommen z. B. in Frage: enzymatische Sensoren zum Erfassen von Glukose oder Lactat auf der Basis von Fluoreszez-pH-optoden als Wandlerschicht 7; - enzymatische Sensoren zum Erfassen von Harnstoff oder Kreatinin auf der Basis einer Fluoreszenz-Ammonium-, pH oder Ammoniumoptode; einen mikrobiellen Sensor zur Messung des biologischen Sauerstoffbedarfs mit einem fluoreszenten pH-Sensor als Wandler; - enzymatische Sensoren zur Bestimmung von Glukose oder anderenAs biosensors for various metabolites such. B. in question: enzymatic sensors for detecting glucose or lactate based on fluorescez pH optodes as converter layer 7; - Enzymatic sensors for detecting urea or creatinine on the basis of a fluorescence ammonium, pH or ammonium optode; a microbial sensor for measuring the biological oxygen demand with a fluorescent pH sensor as a converter; - enzymatic sensors for the determination of glucose or others
Substraten auf der Basis der Messung der intrinsischen Fluoreszenz der Enzyme oder involvierten co-Enzyme (wie etwa in NADH).Substrates based on the measurement of the intrinsic fluorescence of the enzymes or co-enzymes involved (such as in NADH).
Als Biosensoren auf Affinitätsbasis kommen z. B. in Frage: - Immunosensoren mit oberflächenimmobilisierten Antigenen oderAs affinity-based biosensors come e.g. B. in question: - immunosensors with surface immobilized antigens or
Antikörpern und kompetitiver Bindung von fluorophor-markierten Antikörpern;Antibodies and competitive binding of fluorophore-labeled antibodies;
Biosensoren zum Identifizieren und Quantifizieren von Oligo- Nukleotiden oder DNA-Strängen auf der Basis von kompetitiver Bindung von fluorophor-markierten Oligo-Nukleotiden;Biosensors for the identification and quantification of oligonucleotides or DNA strands based on competitive binding of fluorophore-labeled oligo nucleotides;
Biosensoren zum Identifizieren und Quantifizieren von Oligo- Nukleotiden oder DNA-Strängen mit eingelagerten Farbstoffen. Typische Gebiete für die Anwendung der erfindungsgemäßen Sensoren und Sensorfelder sind: die Erfassung von Gasen, Elektrolyten und Metaboliten inBiosensors for identifying and quantifying oligonucleotides or DNA strands with embedded dyes. Typical areas for the application of the sensors and sensor fields according to the invention are: the detection of gases, electrolytes and metabolites in
Körperflüssigkeiten, wie etwa Blut, Serum, Plasma oder Urin,; - zweidimensionale Abbildung chemischer Parameter (z. B. transcutane Anwendungen); diagnostische Bestimmung von Antikörpern, Antigenen und Oligo- Nukleotiden in Körperflüssigkeiten; faseroptische Erfassung in Geweben oder gesamten Organen von Mensch oder Tier;Body fluids such as blood, serum, plasma or urine; - two-dimensional mapping of chemical parameters (e.g. transcutaneous applications); diagnostic determination of antibodies, antigens and oligo-nucleotides in body fluids; fiber optic detection in tissues or entire organs of humans or animals;
Immunoassays in durchsatzstarken Screening-Anwendungen;Immunoassays in high throughput screening applications;
Online-Nahrungsmittelanalyse (Bestimmung von Frische oderOnline food analysis (determination of freshness or
Aufbewahrungsbedingungen);Storage conditions);
Nahrungsmittelanalyse (genetische Tests); - Umweltanalytik (fluorometrische Bestimmung von Huminsäuren,Food analysis (genetic testing); - environmental analysis (fluorometric determination of humic acids,
Chlorophyll oder polyzyklischen aromatischen KohlenwassestoffenChlorophyll or polycyclic aromatic hydrocarbons
(PAH) );(PAH));
Kalibrationsfreie Erfassungssysteme zur Steuerung vonCalibration-free acquisition systems for controlling
Kulturierungsbedingungen in Bioreaktoren und Wachstumskammern; - Mikroplates mit integrierten optischen chemischen Sensoren;Culture conditions in bioreactors and growth chambers; - microplates with integrated optical chemical sensors;
Immunosensoren zum Erfassen von mikrobiologischerImmunosensors for the detection of microbiological
Kontamination. Contamination.

Claims

Ansprüche Expectations
1 . Optischer Sensor, zur Bestimmung zumindest eines Parameters in einer Probe, mit einem auf den Parameter ansprechenden1 . Optical sensor, for determining at least one parameter in a sample, with one that responds to the parameter
Indikatormaterial (in 1 ) kurzer Abklingzeit und einem auf den Parameter nicht ansprechenden Referenzmaterial (in 1 ) langer Abklingzeit zur Erfassung eines den zu bestimmenden Parameter anzeigenden Meßsignals auf der Basis der gemeinsam erfaßten Lumineszenzenantworten des Indikator- und Referenzmaterials, dadurch gekennzeichnet, dass das Indikatormaterial und das Referenzmaterial auf einem gemeinsamen Träger (3) immobilisiert sind und dass die zur Probe weisende Seite des Indikatormaterials und des Referenzmaterials von einer Schicht (5) abgedeckt ist, die einen Kontakt zwischen demIndicator material (in 1) with a short decay time and a reference material that does not respond to the parameter (in 1) with a long decay time for detecting a measurement signal that indicates the parameter to be determined on the basis of the luminescence responses of the indicator and reference material that are recorded together, characterized in that the indicator material and the reference material is immobilized on a common carrier (3) and that the side of the indicator material and the reference material facing the sample is covered by a layer (5) which ensures contact between the
Indikatormaterial und der Probe erlaubt, jedoch für das zur Erregung des Indikator- und Referenzmaterials verwendete Licht im wesentlichen undurchlässig ist.Indicator material and the sample are allowed, but are essentially opaque to the light used to excite the indicator and reference material.
2. Optischer Sensor nach Anspruch 1 , dadurch gekennzeichnet, dass er zur Messung von Parametern aus biologischen Flüssigkeiten, insbesondere Körperflüssigkeiten, wie etwa Blut, oder Kulturmedien ausgelegt ist, insbesondere zumindest ein Parameter von pH, 02, C02, Natrium, Kalium, Caicium, Chlorid, Lithium, Magnesium oder eine Kombination davon.2. Optical sensor according to claim 1, characterized in that it is designed for measuring parameters from biological fluids, in particular body fluids, such as blood, or culture media, in particular at least one parameter of pH, 0 2 , C0 2 , sodium, potassium, Caicium, chloride, lithium, magnesium or a combination thereof.
3. Optischer Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die das Indikator- und Referenzmaterial abdeckende Schicht (5) für die zu messende, den Parameter bestimmende Substanz in der Probe durchlässig ist. 3. Optical sensor according to claim 1 or 2, characterized in that the layer covering the indicator and reference material (5) is permeable to the substance to be measured, which determines the parameter, in the sample.
4. Optischer Sensor nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass die das Indikator- und Referenzmaterial abdeckende Schicht (5) geschwärzt ist.4. Optical sensor according to claim 1, 2 or 3, characterized in that the layer covering the indicator and reference material (5) is blackened.
5. Optische Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die das Indikator- und Referenzmaterial abdeckende Schicht (5) eine Polymerschicht ist, in die Pigmente, insbesondere Ruß oder Metalloxid, z. B. Eisenoxid oder Titandioxid, eingebettet sind.5. Optical sensor according to one of the preceding claims, characterized in that the layer covering the indicator and reference material (5) is a polymer layer into which pigments, in particular carbon black or metal oxide, for. B. iron oxide or titanium dioxide are embedded.
6. Optischer Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die das Indikator- und Referenzmaterial abdeckende Schicht (5) zur Messung des pH oder von Chlorid oder anderen Ionen eine für in der Probe gelöste Substanzen permeable, insbesondere ionenpermeable Hydrogelschicht ist, die z. B. hydrophiles Polyurethan oder/und Poly-Hydroxyethylmethacrylat oder/und Ruß enthält, oder zur Messung von Gasen, wie C02, 02, eine für unter6. Optical sensor according to one of the preceding claims, characterized in that the layer covering the indicator and reference material (5) for measuring the pH or of chloride or other ions is a permeable, in particular ion-permeable, hydrogel layer for substances dissolved in the sample z. B. contains hydrophilic polyurethane and / or poly-hydroxyethyl methacrylate and / or carbon black, or for measuring gases such as C0 2 , 0 2 , one for under
Normalbedingungen gasförmige Substanzen permeable und gegebenenfalls ionenimpermeable Schicht, z. B. eine Silikon- oder Teflonschicht ist.Normal conditions gaseous substances permeable and optionally ion impermeable layer, e.g. B. is a silicone or Teflon layer.
7. Optischer Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die das Indikator- und Referenzmaterial abdeckende Schicht (5) unter Bildung einer Enzymoptode von einer für die zu messende Substanz spezifischen Enzymschicht (7) überlagert ist, z. B. Glukose- Oxidase zur Messung von Glukose oder Lactat-Oxidase zur Messung von Lactat. 7. Optical sensor according to one of the preceding claims, characterized in that the layer covering the indicator and reference material (5) is overlaid with the formation of an enzyme optode from an enzyme layer (7) specific for the substance to be measured, e.g. B. glucose oxidase for measuring glucose or lactate oxidase for measuring lactate.
8. Optischer Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Träger (3) ein zumindest teilweise transparenter Träger ist.8. Optical sensor according to one of the preceding claims, characterized in that the carrier (3) is an at least partially transparent carrier.
9. Optischer Sensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unter Bildung eines Sensorfelds an dem Träger (3) zumindest ein auf einen zweiten Parameter ansprechender zweiter optischer Sensor (in 1 ) angebracht ist, wobei der zweite optischer Sensor (in 1 ) nach dem Oberbegriff von Anspruch 1 ausgeführt sein kann.9. Optical sensor according to one of the preceding claims, characterized in that, with formation of a sensor field on the carrier (3), at least one second optical sensor (in FIG. 1) responsive to a second parameter is attached, the second optical sensor (in FIG. 1) can be carried out according to the preamble of claim 1.
1 0. Optischer Sensor nach Anspruch 9, dadurch gekennzeichnet, dass von der Abdeckschicht (5) zumindest zwei der Sensoren gemeinsam abgedeckt sind.1 0. Optical sensor according to claim 9, characterized in that the cover layer (5) covers at least two of the sensors together.
1 1 . Optisches Sensorfeld zur Bestimmung einer Mehrzahl von Parametern in einer Probe, mit zumindest einem ersten Sensor (in 1 ), der ein auf einen ersten Parameter ansprechendes Indikatormaterial kurzer Abklingzeit und ein zugeordnetes, auf den Parameter nicht ansprechendes Referenzmaterial langer Abklingzeit zur Erfassung eines den zu bestimmenden Parameter anzeigenden Meßsignals auf der Basis der gemeinsam erfassten Lumineszenzantworten des Indikator- und Referenzmaterials aufweist, und mit zumindest einem auf einen zweiten Parameter ansprechenden zweiten optischen Sensor (in 1 ). 1 1. Optical sensor field for determining a plurality of parameters in a sample, with at least one first sensor (in FIG. 1) which has an indicator material with a short decay time which responds to a first parameter and an associated reference material with a long decay time which does not respond to the parameter for detecting a parameter to be determined Has parameter-indicating measurement signal on the basis of the jointly recorded luminescence responses of the indicator and reference material, and with at least one second optical sensor responsive to a second parameter (in FIG. 1).
1 2. Optisches Sensorfeld nach Anspruch 1 1 , dadurch gekennzeichnet, dass das Indikatormaterial des zweiten Sensors eine sich in Abhängigkeit von dem zweiten Parameter veränderliche Abklingzeit oder/und eine sich in Abhängigkeit von dem zweiten Parameter veränderliche Lumineszenzuntensität aufweist.1 2. Optical sensor field according to claim 1 1, characterized in that the indicator material of the second sensor has a decay time which is variable as a function of the second parameter and / or a luminescence intensity which is variable as a function of the second parameter.
1 3. Optisches Sensorfeld nach Anspruch 1 1 oder 1 2, dadurch gekennzeichnet, dass der zweite Sensor (in 1 ) ein auf den zweiten Parameter ansprechendes Indikatormaterial kurzer Abklingzeit und ein zugeordnetes, auf den Parameter nicht ansprechendes Referenzmaterial langer Abklingzeit zur Erfassung eines den zu bestimmenden Parameter anzeigenden Meßsignals auf der Basis der gemeinsam erfassten Lumineszenzantworten des Indikator- und1 3. Optical sensor field according to claim 1 1 or 1 2, characterized in that the second sensor (in 1) an indicator material responding to the second parameter short decay time and an associated reference material not responding to the parameter long decay time for detecting a to determining parameter indicating measurement signal on the basis of the luminescence responses of the indicator and
Referenzmaterials aufweist.Has reference material.
14. Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 1 3, dadurch gekennzeichnet, dass der erste Sensor, und im Falle von Anspruch 1 3 gegebenenfalls auch der zweite Sensor, nach einem der Ansprüche 1 bis 8 ausgeführt ist.14. Optical sensor field according to one of claims 1 1 to 1 3, characterized in that the first sensor, and in the case of claim 1 3, optionally also the second sensor, is designed according to one of claims 1 to 8.
1 5. Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 1 4, dadurch gekennzeichnet, dass das Indikatormaterial des zweiten optischen Sensors ein Lumineszenzfarbstoff, bevorzugt aus der Gruppe der lumineszierenden Übergangsmetallkomplexe mit Ru, Re, Os, Rh, Ir oder Pt als Zentralatom und σ-Diiminliganden ausgewählt ist. 1 5. Optical sensor field according to one of claims 1 1 to 1 4, characterized in that the indicator material of the second optical sensor is a luminescent dye, preferably from the group of luminescent transition metal complexes with Ru, Re, Os, Rh, Ir or Pt as the central atom and σ-diimine ligand is selected.
1 6. Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 1 5, dadurch gekennzeichnet, dass im Falle eines Abklingzeitsensors die Abklingzeit oder/und die spektralen Eigenschaften des Indikatormaterials des zweiten Sensors im Bereich der Abklingzeiten bzw. der spektralen Eigenschaften des1 6. Optical sensor field according to one of claims 1 1 to 1 5, characterized in that in the case of a decay time sensor, the decay time and / or the spectral properties of the indicator material of the second sensor in the range of the decay times or the spectral properties of the
Referenzmaterials des ersten Sensors liegt bzw. liegen.Reference material of the first sensor lies or lie.
1 7. Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 1 6, dadurch gekennzeichnet, dass der erste Sensor auf pH oder C02 oder Chlorid bzw. Salinität anspricht.1 7. Optical sensor field according to one of claims 1 1 to 1 6, characterized in that the first sensor responds to pH or C0 2 or chloride or salinity.
1 8. Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 1 7, dadurch gekennzeichnet, dass der zweite optische Sensor ein Abklingzeitsensor zur Messung der Temperatur ist.1 8. Optical sensor field according to one of claims 1 1 to 1 7, characterized in that the second optical sensor is a decay time sensor for measuring the temperature.
1 9. Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 1 8, dadurch gekennzeichnet, dass der zweite optische Sensor ein Abklingzeitsensor zur Messung eines Gases, bevorzugt 02 ist.1 9. Optical sensor field according to one of claims 1 1 to 1 8, characterized in that the second optical sensor is a decay time sensor for measuring a gas, preferably 0 2 .
20. Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 1 9, dadurch gekennzeichnet, dass es zur Messung von Parametern aus biologischen Flüssigkeiten, insbesondere Körperflüssigkeiten, wie etwa Blut, oder Kulturmedien ausgelegt ist, insbesondere zumindest ein Parameter von pH, 02, C02, Natrium, Kalium, Caicium, Chlorid, Lithium, Magnesium oder eine Kombination davon. 20. Optical sensor field according to one of claims 1 1 to 1 9, characterized in that it is designed for measuring parameters from biological liquids, in particular body fluids, such as blood, or culture media, in particular at least one parameter of pH, 0 2 , C0 2 , sodium, potassium, calcium, chloride, lithium, magnesium or a combination thereof.
21 . Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 20, dadurch gekennzeichnet, dass der erste Sensor einen pH-Sensor und einen C02-Sensor umfasst, und dass der zweite Sensor einen 02-Abklingzeitsensor und gegebenenfalls einen Temperatur-Abklingzeitsensor umfasst.21. Optical sensor field according to one of claims 1 1 to 20, characterized in that the first sensor comprises a pH sensor and a C0 2 sensor, and that the second sensor comprises a 0 2 decay time sensor and optionally a temperature decay time sensor.
22. Optisches Sensorfeld nach einem der Ansprüche 1 1 bis 21 , dadurch gekennzeichnet, dass die Sensoren des Sensorfeldes auf einem gemeinsamen Träger (3) angeordnet sind.22. Optical sensor field according to one of claims 1 1 to 21, characterized in that the sensors of the sensor field are arranged on a common carrier (3).
23. Verfahren zur Bestimmung zumindest eines Parameters einer Probe, dadurch gekennzeichnet, dass ein optischer Sensor bzw. ein Sensorfeld nach einem der vorhergehenden Ansprüche verwendet wird.23. A method for determining at least one parameter of a sample, characterized in that an optical sensor or a sensor field according to one of the preceding claims is used.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die Indikator- und Referenzmaterialien des Sensors oder der Sensoren durch eine einzige Lichtquelle gemeinsam erregt werden.24. The method according to claim 23, characterized in that the indicator and reference materials of the sensor or sensors are excited together by a single light source.
25. Verfahren nach Anspruch 23 oder 24, dadurch gekennzeichnet, dass zur Messung nur eine einzige Lichtquelle, jedoch mehrere den jeweiligen Sensoren zugeordnete Detektoren verwendet werden.25. The method according to claim 23 or 24, characterized in that only a single light source, but several detectors assigned to the respective sensors are used for the measurement.
26. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die Lumineszenzantwo rten der Indikator- u nd Referenzmaterialien des Sensors oder der Sensoren durch einen einzigen Detektor gemeinsam erfaßt werden. 26. The method according to claim 23, characterized in that the luminescence responses of the indicator and reference materials of the sensor or sensors are detected together by a single detector.
27. Verfahren nach Anspruch 23 oder 26, dadurch gekennzeichnet, dass zur Messung den jeweiligen Sensoren zugeordnete Lichtquellen, jedoch nur ein einziger Detektor verwendet werden.27. The method according to claim 23 or 26, characterized in that light sources assigned to the respective sensors, but only a single detector, are used for the measurement.
28. Verfahren nach Anspruch 24 und 26, dadurch gekennzeichnet, dass die mehreren Sensoren des Sensorfelds voneinander getrennt angeordnet sind und dass die Lichtquelle und der Detektor relativ zu dem Sensorfeld zwischen den einzelnen Sensoren bewegt werden.28. The method according to claim 24 and 26, characterized in that the plurality of sensors of the sensor field are arranged separately from one another and that the light source and the detector are moved relative to the sensor field between the individual sensors.
29. Verfahren nach einem der Ansprüche 23 bis 28, dadurch gekennzeichnet, dass das Anregungslicht für den Sensor oder die Sensoren mit einer einzigen konstanten Frequenz moduliert wird, z. B. 45 KHz. 29. The method according to any one of claims 23 to 28, characterized in that the excitation light for the sensor or sensors is modulated with a single constant frequency, for. B. 45 KHz.
PCT/EP2002/000337 2001-01-15 2002-01-15 Optical sensor and sensor array WO2002056023A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10101576.3A DE10101576B4 (en) 2001-01-15 2001-01-15 Optical sensor and sensor field
DE10101576.3 2001-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/770,237 Continuation US8537145B2 (en) 2001-08-02 2004-02-02 System for automatically locating visibility zones

Publications (1)

Publication Number Publication Date
WO2002056023A1 true WO2002056023A1 (en) 2002-07-18

Family

ID=7670608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/000337 WO2002056023A1 (en) 2001-01-15 2002-01-15 Optical sensor and sensor array

Country Status (2)

Country Link
DE (1) DE10101576B4 (en)
WO (1) WO2002056023A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008974A1 (en) * 2001-07-18 2003-01-30 Micronas Gmbh Biosensor and method for detecting analytes by means of time-resolved luminescence
WO2004077035A1 (en) * 2003-02-28 2004-09-10 Gas Sensors Solutions Limited Optical co2 and combined 02/co2 sensors
WO2005015181A1 (en) * 2003-07-31 2005-02-17 Genpharmtox Biotech Ag Method and kit for determining the metabolic stability of test substances
DE102006001642A1 (en) * 2006-01-11 2007-07-12 Sartorius Ag Oxygen sensor and measuring method
WO2010006950A1 (en) * 2008-07-15 2010-01-21 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Method for optical determination of a measurement parameter of a measurement medium
DE202009017118U1 (en) 2009-01-07 2010-03-25 Sartorius Stedim Biotech Gmbh Optical sensor and device with it
DE102009022545B3 (en) 2009-05-25 2010-12-16 Multivac Sepp Haggenmüller Gmbh & Co. Kg Packaging machine with gas concentration measuring device
DE202010014424U1 (en) 2009-12-01 2011-01-20 Sartorius Stedim Biotech Gmbh Sensor protection device
WO2011015270A1 (en) 2009-08-05 2011-02-10 Sartorius Stedim Biotech Gmbh Optical sensor having a coating soluble in the medium to be measured, device therefor, and method for the production thereof
DE202010006207U1 (en) 2009-06-19 2011-07-25 Sartorius Stedim Biotech Gmbh A sensor device comprising an optical sensor, a container and a compartmentalizing means
EP2408931A2 (en) * 2009-03-20 2012-01-25 Roche Diagnostics GmbH Test element for determining a body fluid and measurement method
CN102375066A (en) * 2011-09-20 2012-03-14 天津希恩思生化科技有限公司 Creatinine content detecting reagent and kit, and manufacturing and using methods of kit
DE102010061182A1 (en) 2010-12-13 2012-06-14 Presens Precision Sensing Gmbh Sensor arrangement, method and measuring system for detecting the distribution of at least one variable of an object
DE102011120844A1 (en) 2011-12-13 2013-06-13 Bayerisches Zentrum für Angewandte Energieforschung e.V. Device for non-contact determination of gas content in hermetic sealed system of gas-filled multi-disc glazing, has detector for measuring fluorescence intensity of fluorescence dye provided in space between panes of multi-disc glazing
DE102011120845A1 (en) 2011-12-13 2013-06-13 Bayerisches Zentrum für Angewandte Energieforschung e.V. Device for contactless determination of e.g. oxygen content in multi-pane system during production of e.g. vacuum insulation panel, has luminescent substances provided in gas-filled or low pressurized component or composite element
WO2013128329A1 (en) 2012-03-01 2013-09-06 Koninklijke Philips N.V. Sensor for determining concentration of gas
DE102012111686A1 (en) * 2012-11-30 2014-06-05 Hamilton Bonaduz Ag Chemically stable sensor
US8759112B2 (en) 2004-10-25 2014-06-24 Roche Diagnostics Operations, Inc. Multifunctional reference system for analyte determinations by fluorescence
WO2014195451A1 (en) * 2013-06-06 2014-12-11 Koninklijke Philips N.V. Use of a barrier contact medium for chemo-chemo-optical sensors in transcutaneous applications
WO2014195438A1 (en) * 2013-06-06 2014-12-11 Koninklijke Philips N.V. Conditioning of chemo-optical sensors for transcutaneous application
WO2015104184A1 (en) 2014-01-07 2015-07-16 Koninklijke Philips N.V. Reducing non-reversible cross sensitivity for volatile acids or bases in chemo-optical sensor spots
US9778187B2 (en) 2013-06-06 2017-10-03 Koninklijke Philips N.V. Correction for osmotic pressure variations in chemo-optical sensor spots
US10105065B2 (en) 2011-10-31 2018-10-23 Sentec Ag Device for application of a sensor to a measurement site, a sensor head, a kit of an application device and sensor and use of an application device for optical measurement of physiological parameters
DE102017118504A1 (en) * 2017-08-14 2019-02-14 Endress+Hauser Conducta Gmbh+Co. Kg Protection device for an optochemical sensor and corresponding optochemical sensor
JP2019505000A (en) * 2016-02-08 2019-02-21 プレセンス プレシジョン センシング ゲーエムベーハー Optical sensor device
EP2949742B1 (en) 2014-05-29 2019-03-13 Yokogawa Electric Corporation Cell culture bag and method for manufacturing cell culture bag
DE102019113951A1 (en) * 2019-05-24 2020-11-26 Sentronic GmbH - Gesellschaft für optische Meßsysteme Functional layer carrier and sensor system comprising such a functional layer carrier
DE102020134517A1 (en) 2020-12-21 2022-06-23 Endress+Hauser Conducta Gmbh+Co. Kg Optical sensor element, optical pH sensor and method for monitoring the function of an optical pH sensor
WO2023124511A1 (en) * 2021-12-27 2023-07-06 Tcl科技集团股份有限公司 Attenuation rate testing and screening methods for light-emitting device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006025470B4 (en) * 2006-05-30 2018-08-02 Airbus Defence and Space GmbH Fluorescence sensor for the detection of gas compositions
DE102007063440B4 (en) 2007-12-21 2011-02-17 Thomas Grimm Screening system for the implementation and direct analysis of biological, biochemical and chemical synthesis and reaction reactions
DE102012104688A1 (en) 2012-05-30 2013-12-05 Hamilton Bonaduz Ag Optical sensor element
WO2019008461A1 (en) 2017-07-06 2019-01-10 Presens Precision Sensing Gmbh Apparatus and method for obtaining at least 2d analyte information and detection element designed therefor
DE102018200615A1 (en) * 2018-01-16 2019-07-18 Osram Gmbh Method for detecting a gas and gas detection system
DE102021102505A1 (en) 2020-12-21 2022-06-23 Endress+Hauser Conducta Gmbh+Co. Kg Optochemical sensor and method for measuring luminescent analytes in a measuring medium
EP4341683A1 (en) 2022-06-13 2024-03-27 Aquila Biolabs GmbH Method and device for monitoring the contents of mixed reactors
DE102022002116B4 (en) 2022-06-13 2024-01-25 aquila biolabs GmbH Method and device for monitoring the contents of mixed reactors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114676A (en) * 1988-08-04 1992-05-19 Avl Ag Optical sensor for determining at least one parameter in a liquid or gaseous sample
US5462879A (en) * 1993-10-14 1995-10-31 Minnesota Mining And Manufacturing Company Method of sensing with emission quenching sensors
US5577137A (en) * 1995-02-22 1996-11-19 American Research Corporation Of Virginia Optical chemical sensor and method using same employing a multiplicity of fluorophores contained in the free volume of a polymeric optical waveguide or in pores of a ceramic waveguide
US5618732A (en) * 1992-07-31 1997-04-08 Behringwerke Ag Method of calibration with photoactivatable chemiluminescent matrices
DE19829657A1 (en) * 1997-08-01 1999-02-04 Ingo Klimant Method and device for referencing fluorescence intensity signals
EP0907074A2 (en) * 1997-10-03 1999-04-07 AVL Medical Instruments Optical chemical sensor

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612866A (en) * 1969-07-08 1971-10-12 Brian Stevens Instrument for determining oxygen quantities by measuring oxygen quenching of fluorescent radiation
CA1095819A (en) * 1977-01-14 1981-02-17 Eastman Kodak Company Element for analysis of liquids
CA1261717A (en) * 1982-12-23 1989-09-26 John R. Bacon Method and apparatus for oxygen determination
AT381172B (en) * 1983-08-26 1986-09-10 Avl Verbrennungskraft Messtech METHOD FOR DETERMINING THE ION STRENGTH OF AN ELECTROLYTE SOLUTION AND MEASURING DEVICE FOR IMPLEMENTING THE METHOD
AT383684B (en) * 1984-09-17 1987-08-10 Avl Verbrennungskraft Messtech ARRANGEMENT FOR FLUORESCENT OPTICAL MEASUREMENT OF SUBSTANCE CONCENTRATIONS IN A SAMPLE
US4900933A (en) * 1986-09-08 1990-02-13 C. R. Bard, Inc. Excitation and detection apparatus for remote sensor connected by optical fiber
US4849340A (en) * 1987-04-03 1989-07-18 Cardiovascular Diagnostics, Inc. Reaction system element and method for performing prothrombin time assay
US5330718A (en) * 1989-08-16 1994-07-19 Puritan-Bennett Corporation Sensor element and method for making the same
US5102625A (en) * 1990-02-16 1992-04-07 Boc Health Care, Inc. Apparatus for monitoring a chemical concentration
US5175016A (en) * 1990-03-20 1992-12-29 Minnesota Mining And Manufacturing Company Method for making gas sensing element
US5094958A (en) * 1990-08-30 1992-03-10 Fiberchem Inc. Method of self-compensating a fiber optic chemical sensor
US5462880A (en) * 1993-09-13 1995-10-31 Optical Sensors Incorporated Ratiometric fluorescence method to measure oxygen
US5628310A (en) * 1995-05-19 1997-05-13 Joseph R. Lakowicz Method and apparatus to perform trans-cutaneous analyte monitoring
DE19548922A1 (en) * 1995-12-27 1997-07-03 Max Planck Gesellschaft Optical temperature sensors and optrodes with optical temperature compensation
WO1999060383A1 (en) * 1998-05-15 1999-11-25 Fluorrx, Inc. Improved phase angle and modulation of fluorescent assay
ES2306525T3 (en) * 1998-08-26 2008-11-01 Sensors For Medicine And Science, Inc. OPTICAL-BASED DETECTION DEVICES.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114676A (en) * 1988-08-04 1992-05-19 Avl Ag Optical sensor for determining at least one parameter in a liquid or gaseous sample
US5618732A (en) * 1992-07-31 1997-04-08 Behringwerke Ag Method of calibration with photoactivatable chemiluminescent matrices
US5462879A (en) * 1993-10-14 1995-10-31 Minnesota Mining And Manufacturing Company Method of sensing with emission quenching sensors
US5577137A (en) * 1995-02-22 1996-11-19 American Research Corporation Of Virginia Optical chemical sensor and method using same employing a multiplicity of fluorophores contained in the free volume of a polymeric optical waveguide or in pores of a ceramic waveguide
DE19829657A1 (en) * 1997-08-01 1999-02-04 Ingo Klimant Method and device for referencing fluorescence intensity signals
EP0907074A2 (en) * 1997-10-03 1999-04-07 AVL Medical Instruments Optical chemical sensor

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003008974A1 (en) * 2001-07-18 2003-01-30 Micronas Gmbh Biosensor and method for detecting analytes by means of time-resolved luminescence
WO2004077035A1 (en) * 2003-02-28 2004-09-10 Gas Sensors Solutions Limited Optical co2 and combined 02/co2 sensors
WO2005015181A1 (en) * 2003-07-31 2005-02-17 Genpharmtox Biotech Ag Method and kit for determining the metabolic stability of test substances
US8759112B2 (en) 2004-10-25 2014-06-24 Roche Diagnostics Operations, Inc. Multifunctional reference system for analyte determinations by fluorescence
DE102006001642A1 (en) * 2006-01-11 2007-07-12 Sartorius Ag Oxygen sensor and measuring method
DE102006001642B4 (en) * 2006-01-11 2008-02-21 Sartorius Biotech Gmbh Oxygen sensor and measuring method
US8580199B2 (en) 2006-01-11 2013-11-12 Sartorius Stedim Biotech Gmbh Oxygen sensor and measuring method
US8625100B2 (en) 2008-07-15 2014-01-07 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method for the optical determining of a measured variable of a medium
CN102099670A (en) * 2008-07-15 2011-06-15 恩德莱斯和豪瑟尔测量及调节技术分析仪表两合公司 Method for optical determination of a measurement parameter of a measurement medium
WO2010006950A1 (en) * 2008-07-15 2010-01-21 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Method for optical determination of a measurement parameter of a measurement medium
US8779388B2 (en) 2009-01-07 2014-07-15 Sartorius Stedim Biotech Gmbh Optical sensor and device therewith, and method for the production thereof
DE102009003971A1 (en) 2009-01-07 2010-07-08 Sartorius Stedim Biotech Gmbh Optical sensor and device therewith and method for their production
DE202009017118U1 (en) 2009-01-07 2010-03-25 Sartorius Stedim Biotech Gmbh Optical sensor and device with it
EP2636751A3 (en) * 2009-03-20 2013-12-18 Roche Diagniostics GmbH Method for determining a body fluid
EP2408931A2 (en) * 2009-03-20 2012-01-25 Roche Diagnostics GmbH Test element for determining a body fluid and measurement method
DE102009022545B3 (en) 2009-05-25 2010-12-16 Multivac Sepp Haggenmüller Gmbh & Co. Kg Packaging machine with gas concentration measuring device
DE102009022545C5 (en) 2009-05-25 2022-01-20 Multivac Sepp Haggenmüller Se & Co. Kg Packaging machine with gas concentration measuring device
DE202010006207U1 (en) 2009-06-19 2011-07-25 Sartorius Stedim Biotech Gmbh A sensor device comprising an optical sensor, a container and a compartmentalizing means
US8859949B2 (en) 2009-06-19 2014-10-14 Sartorius Stedim Biotech Gmbh Sensor device, comprising an optical sensor, a container and a compartmentalization means
DE102009050448A1 (en) 2009-06-19 2011-12-08 Sartorius Stedim Biotech Gmbh A sensor device comprising an optical sensor, a container and a compartmentalizing means
US8530860B2 (en) 2009-08-05 2013-09-10 Sartorius Stedim Biotech Gmbh Optical sensor comprising a layer soluble in the medium to be measured and device comprising it, and process for their production
WO2011015270A1 (en) 2009-08-05 2011-02-10 Sartorius Stedim Biotech Gmbh Optical sensor having a coating soluble in the medium to be measured, device therefor, and method for the production thereof
DE102009036217A1 (en) 2009-08-05 2011-02-10 Sartorius Stedim Biotech Gmbh Optical sensor with respect to the medium to be measured soluble layer and device so and method for their preparation
DE202010014424U1 (en) 2009-12-01 2011-01-20 Sartorius Stedim Biotech Gmbh Sensor protection device
DE102009056417A1 (en) 2009-12-01 2011-06-09 Sartorius Stedim Biotech Gmbh Sensor protection device
US8809765B2 (en) 2009-12-01 2014-08-19 Sartorius Stedim Biotech Gmbh Sensor protector
DE102010061182B4 (en) * 2010-12-13 2013-02-07 Presens Precision Sensing Gmbh Sensor arrangement, method and measuring system for detecting the distribution of at least one variable of an object
US9759660B2 (en) 2010-12-13 2017-09-12 PreSens—Precision Sensing GmbH Sensor assembly, method, and measuring system for capturing the distribution of at least one variable of an object
DE102010061182A1 (en) 2010-12-13 2012-06-14 Presens Precision Sensing Gmbh Sensor arrangement, method and measuring system for detecting the distribution of at least one variable of an object
CN102375066A (en) * 2011-09-20 2012-03-14 天津希恩思生化科技有限公司 Creatinine content detecting reagent and kit, and manufacturing and using methods of kit
CN102375066B (en) * 2011-09-20 2013-10-16 天津希恩思生化科技有限公司 Creatinine content detecting reagent and kit, and manufacturing and using methods of kit
US10105065B2 (en) 2011-10-31 2018-10-23 Sentec Ag Device for application of a sensor to a measurement site, a sensor head, a kit of an application device and sensor and use of an application device for optical measurement of physiological parameters
DE102011120844A1 (en) 2011-12-13 2013-06-13 Bayerisches Zentrum für Angewandte Energieforschung e.V. Device for non-contact determination of gas content in hermetic sealed system of gas-filled multi-disc glazing, has detector for measuring fluorescence intensity of fluorescence dye provided in space between panes of multi-disc glazing
DE102011120845A1 (en) 2011-12-13 2013-06-13 Bayerisches Zentrum für Angewandte Energieforschung e.V. Device for contactless determination of e.g. oxygen content in multi-pane system during production of e.g. vacuum insulation panel, has luminescent substances provided in gas-filled or low pressurized component or composite element
US9636058B2 (en) 2012-03-01 2017-05-02 Koninklijke Philips N.V. Sensor for determining concentration of gas
WO2013128329A1 (en) 2012-03-01 2013-09-06 Koninklijke Philips N.V. Sensor for determining concentration of gas
US10161871B2 (en) 2012-11-30 2018-12-25 Hamilton Bonaduz Ag Chemically stable sensing unit with protector element
DE102012111686A1 (en) * 2012-11-30 2014-06-05 Hamilton Bonaduz Ag Chemically stable sensor
CN105392425A (en) * 2013-06-06 2016-03-09 皇家飞利浦有限公司 Use of a barrier contact medium for chemo-chemo-optical sensors in transcutaneous applications
WO2014195451A1 (en) * 2013-06-06 2014-12-11 Koninklijke Philips N.V. Use of a barrier contact medium for chemo-chemo-optical sensors in transcutaneous applications
US9778187B2 (en) 2013-06-06 2017-10-03 Koninklijke Philips N.V. Correction for osmotic pressure variations in chemo-optical sensor spots
CN105555192A (en) * 2013-06-06 2016-05-04 皇家飞利浦有限公司 Conditioning of chemo-optical sensors for transcutaneous application
WO2014195438A1 (en) * 2013-06-06 2014-12-11 Koninklijke Philips N.V. Conditioning of chemo-optical sensors for transcutaneous application
RU2695258C2 (en) * 2013-06-06 2019-07-22 Конинклейке Филипс Н.В. Use of barrier contact medium for chemo-chemo-optical sensors in percutaneous applications
US10251587B2 (en) 2013-06-06 2019-04-09 Koninklijke Philips N.V. Conditioning of chemo-optical sensors for transcutaneous application
US10238321B2 (en) 2013-06-06 2019-03-26 Koninklike Philips N.V. Use of a barrier contact medium for chemo-chemo-optical sensors in transcutaneous applications
US10201299B2 (en) 2014-01-07 2019-02-12 Koninklijke Philips N.V. Reducing non-reversible cross sensitivity for volatile acids or bases in chemo-optical sensor spots
WO2015104184A1 (en) 2014-01-07 2015-07-16 Koninklijke Philips N.V. Reducing non-reversible cross sensitivity for volatile acids or bases in chemo-optical sensor spots
EP2949742B1 (en) 2014-05-29 2019-03-13 Yokogawa Electric Corporation Cell culture bag and method for manufacturing cell culture bag
EP2949742B2 (en) 2014-05-29 2022-03-30 Yokogawa Electric Corporation Cell culture bag and method for manufacturing cell culture bag
JP2019505000A (en) * 2016-02-08 2019-02-21 プレセンス プレシジョン センシング ゲーエムベーハー Optical sensor device
DE102017118504A1 (en) * 2017-08-14 2019-02-14 Endress+Hauser Conducta Gmbh+Co. Kg Protection device for an optochemical sensor and corresponding optochemical sensor
DE102019113951A1 (en) * 2019-05-24 2020-11-26 Sentronic GmbH - Gesellschaft für optische Meßsysteme Functional layer carrier and sensor system comprising such a functional layer carrier
DE102020134517A1 (en) 2020-12-21 2022-06-23 Endress+Hauser Conducta Gmbh+Co. Kg Optical sensor element, optical pH sensor and method for monitoring the function of an optical pH sensor
US20220196561A1 (en) * 2020-12-21 2022-06-23 Endress+Hauser Conducta Gmbh+Co. Kg Optical sensor element, optical ph sensor and method for monitoring the function of an optical ph sensor
WO2023124511A1 (en) * 2021-12-27 2023-07-06 Tcl科技集团股份有限公司 Attenuation rate testing and screening methods for light-emitting device

Also Published As

Publication number Publication date
DE10101576B4 (en) 2016-02-18
DE10101576A1 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
DE10101576B4 (en) Optical sensor and sensor field
DE69913103T2 (en) OPTICAL SENSOR AND FUNCTIONAL METHOD
DE60315043T2 (en) IDENTIFICATION OF BIOLOGICAL MOLECULES BY DIFFERENTIAL DISTRIBUTION OF ENZYME SUBSTRATES AND PRODUCTS
EP1936362B1 (en) Test element with referencing
EP0516610B1 (en) Equipment for the determination of the flux of matter
DE60034315T2 (en) CHEMICAL AND BIOCHEMICAL DETECTION METHOD AND DEVICE
EP1239049A2 (en) Hydrogen peroxide determination using oxidases and lanthanoide-ligand complexes
Saccomano et al. A review of chemosensors and biosensors for monitoring biofilm dynamics
WO1990013663A1 (en) Process for determining biological activities in a sample and a device for implementing it
Walters et al. Fiber-optic biosensor for ethanol, based on an internal enzyme concept
CN108956994B (en) Method and apparatus for measuring physiological properties of biological samples
EP1346223A2 (en) Reagent for luminescence optical determination of an analyte
EP1397672A1 (en) Oxygen sensors disposed on a microtiter plate
Schäferling et al. Time-resolved luminescence imaging of hydrogen peroxide using sensor membranes in a microwell format
EP1531331B1 (en) Method for the determination of glycosylated haemoglobin by means of an extraction layer
DE102005006237A1 (en) Method for the determination of germs
DE10023423A1 (en) Direct detection of substances such as biopolymer analytes in bodily fluid, comprises the formation of a marked analyte-receptor complex for identification during flow through microchannel
EP0606327B1 (en) SENSOR MEMBRANE FOR DISPLAYING THE pH-VALUE OF A SAMPLE, METHOD OF MANUFACTURING THE MEMBRANE, AND ITS USE
DE112016006236T5 (en) Perform one or more analyzes on a thin layer of biological fluid using optically feedback chemical sensors
DE10152994A1 (en) Method for the simultaneous optical determination of pH and dissolved oxygen
EP2636751A2 (en) Method for determining a body fluid
DE60215235T2 (en) Flow rate control in a biological test arrangement
EP1487963B1 (en) Device and method for detecting cellular processes by means of luminescence measurements
DE102020134517A1 (en) Optical sensor element, optical pH sensor and method for monitoring the function of an optical pH sensor
EP1561096A1 (en) Sensor for determining analysed substances and method for determining enzymatic activities

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP