WO2002048541A2 - Ultrasonic unitized fuel injector with ceramic valve body - Google Patents

Ultrasonic unitized fuel injector with ceramic valve body Download PDF

Info

Publication number
WO2002048541A2
WO2002048541A2 PCT/US2001/046988 US0146988W WO0248541A2 WO 2002048541 A2 WO2002048541 A2 WO 2002048541A2 US 0146988 W US0146988 W US 0146988W WO 0248541 A2 WO0248541 A2 WO 0248541A2
Authority
WO
WIPO (PCT)
Prior art keywords
injector
valve body
fuel
needle
cavity
Prior art date
Application number
PCT/US2001/046988
Other languages
French (fr)
Other versions
WO2002048541A3 (en
Inventor
Lee Kirby Jameson
Bernard Cohen
Lamar Heath Gipson
Original Assignee
Kimberly-Clark Worldwide, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly-Clark Worldwide, Inc. filed Critical Kimberly-Clark Worldwide, Inc.
Priority to DE60131446T priority Critical patent/DE60131446T2/en
Priority to EP01985515A priority patent/EP1342007B1/en
Priority to MXPA03004489A priority patent/MXPA03004489A/en
Priority to AU2002235162A priority patent/AU2002235162A1/en
Priority to CA002428143A priority patent/CA2428143A1/en
Priority to DE20122813U priority patent/DE20122813U1/en
Priority to JP2002550232A priority patent/JP2004521218A/en
Priority to KR1020037007712A priority patent/KR100756144B1/en
Publication of WO2002048541A2 publication Critical patent/WO2002048541A2/en
Publication of WO2002048541A3 publication Critical patent/WO2002048541A3/en
Priority to NO20032404A priority patent/NO20032404D0/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • F02M57/022Injectors structurally combined with fuel-injection pumps characterised by the pump drive
    • F02M57/023Injectors structurally combined with fuel-injection pumps characterised by the pump drive mechanical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/041Injectors peculiar thereto having vibrating means for atomizing the fuel, e.g. with sonic or ultrasonic vibrations

Definitions

  • the present invention relates to an apparatus for injecting fuel into a combustion chamber and in particular to a unitized fuel injector for engines that use overhead cams to actuate the injectors.
  • Diesel engines for locomotives use unitized fuel injectors that are actuated by overhead cams.
  • One such typical conventional unitized injector is schematically represented in Fig. 1 and is generally designated by the numeral 10.
  • This unitized injector 10 includes a steel valve body 11 that is disposed in an injector nut 29.
  • the steel valve body 11 houses a needle valve that can be biased in the valve's closed position to prevent the injector from injecting fuel into one of the engine's combustion chambers, which is generally designated by the numeral 20.
  • the needle valve includes a conically shaped valve seat 12 that is defined in the hollowed interior of the valve body 11 and can be mated with and against a conically shaped tip 13 at one end of a needle 14.
  • the hollowed interior of the valve body 11 further defines a fuel pathway 15 connecting to a fuel reservoir 16 and a discharge plenum 17, which is disposed downstream of the needle valve.
  • Each of several exit channels 18 typically is connected to the discharge plenum 17 by an entrance orifice 19 and to the combustion chamber 20 by an exit orifice 21 at each opposite end of each exit channel 18.
  • the needle valve controls whether fuel is permitted to flow from the storage reservoir 16 into the discharge plenum 17 and through the exit channels 18 into the combustion chamber 20.
  • a fuel pump 23 is disposed above the spring-biased end of the needle 14 and in axial alignment with the needle 14.
  • Another spring 24 biases a cam follower 25 that is disposed above and in axial alignment with each of the fuel pump 23 and the spring-biased end of the needle 14.
  • the cam follower 25 engages the plunger 26 that produces the pump's pumping action that forces pressurized fuel into the valve body 11 of the injector.
  • An overhead cam 27 cyclically actuates the cam follower 25 to overcome the biasing force of spring 24 and press down on the plunger 26, which accordingly actuates the fuel pump 23.
  • the fuel that is pumped into the valve body 11 via actuation of the pump 23 hydraulically lifts the conically shaped tip 13 of the needle 14 away from contact with the valve seat 12 and so opens the needle valve and forces a charge of fuel out of the exit orifices 21 of the injector 10 and into the combustion chamber 20 that is served by the injector.
  • the injector's exit orifices can become fouled and thereby adversely affect the amount of fuel that is able to enter the combustion chamber.
  • improving the fuel efficiency of these engines is desirable as is reducing unwanted emissions from the combustion process performed by such engines.
  • the standard unitized injector actuated by overhead cams is retrofitted by replacing the steel valve body with a valve body that is composed of ceramic material that is transparent to magnetic fields oscillating at ultrasonic frequencies.
  • the ceramic material is harder and more wear resistant than the steel at the pressures involved.
  • the retrofitting of the valve body also includes replacing the steel needle with a needle that has an elongated portion that is composed of magnetostrictive material that is capable of responding mechanically to magnetic fields oscillating at ultrasonic frequencies.
  • the portion of the ceramic valve body surrounding the magnetostrictive portion of the retrofitted needle is itself surrounded by a wire coil that is capable of inducing in the region occupied by the magnetostrictive portion of the needle a magnetic field that is oscillating at ultrasonic frequencies and thus causes the magnetostrictive portion to vibrate at ultrasonic frequencies.
  • This vibration causes the tip of the needle, which is disposed in the liquid fuel near the entrance to the discharge plenum and the channels leading to the injector's exit orifices, to vibrate at ultrasonic frequencies and therefore subjects the fuel to these ultrasonic vibrations.
  • the ultrasonic stimulation of the fuel as it leaves the exit orifices permits the injector to achieve the desired performance while operating at lower pressures and using larger exit orifices than the conventional solutions that are aimed at increasing the velocity of the fuel exiting the injector.
  • a control for actuation of the ultrasonically oscillating signal.
  • the control is configured so that the actuation of the ultrasonically oscillating signal that is provided to the coil only occurs when the overhead cams are actuating the injector so as to allow fuel to flow through the injector and into the combustion chamber from the injector's exit orifices.
  • the control operates so that the ultrasonic vibration of the fuel only occurs when fuel is flowing through the injector and into the combustion chamber from the injector's exit orifices.
  • This control can include a sensor such as a pressure transducer that is disposed on the cam follower and includes a piezoelectric transducer that detects the pressure change indicating actuation of the follower by the cam.
  • injectors can be made in accordance with the present invention as original equipment rather than as retrofits.
  • Fig. 1A is a cross-sectional view of a conventional unitized fuel injector actuated by overhead cams.
  • Fig. 1 B is an expanded cross-sectional view of a portion of the steel valve body of the conventional unitized fuel injector of Fig. 1A.
  • Fig. 2 is a diagrammatic representation of a partial perspective view with portions shown in phantom (dashed line) of a presently preferred embodiment of the apparatus of the present invention.
  • Fig. 3 is a partial perspective view of a presently preferred embodiment of the ceramic valve body of the apparatus of the present invention with portions cut away and portions shown in cross-section and environmental structures shown in phantom (chain dashed line).
  • Fig. 4 is a cross-sectional view of the ceramic valve body shown in Fig. 3.
  • Fig. 5 is an expanded perspective view of one portion of a presently preferred embodiment of the valve body of the apparatus of the present invention with portions cut away and portions shown in cross-section and environmental components shown schematically.
  • liquid refers to an amorphous (noncrystalline) from of matter intermediate between gases and solids, in which the molecules are much more highly concentrated than in gases, but much less concentrated than in solids.
  • a liquid may have a single component or may be made of multiple components. The components may be other liquids, solid and/or gases.
  • a characteristic of liquids is their ability to flow as a result of an applied force. Liquids that flow immediately upon application of force and for which the rate of flow is directly proportional to the force applied are generally referred to as Newtonian liquids. Some liquids have abnormal flow response when force is applied and exhibit non- Newtonian flow properties.
  • an internal combustion engine 30 with unitized fuel injectors 31 (only one being shown in Fig. 2) actuated by an overhead cam 27 forms the power plant of an exemplary apparatus, a broken away portion of which is shown generally and designated by the numeral 32.
  • Such apparatus 32 could be almost any device that requires a power plant and would include but not be limited to an on site electric power generator, a land vehicle such as a railroad locomotive for example, an air vehicle such as an airplane, or a marine craft powered by diesel such as an ocean going vessel.
  • the ultrasonic fuel injector apparatus of the present invention is indicated generally in Fig. 2 by the designating numeral 31.
  • Unitized injector 31 differs from the conventional unitized injector 10 described above primarily in the configuration and composition of the valve body 33 and the needle 36 and in the addition of a sensor, a control and an ultrasonic power source, and these differences are described below.
  • the remaining features and operation of the injector 31 of the present invention are the same as for the conventional unitized injector.
  • valve body 33 of injector 31 is shown in Fig. 3 in a perspective view that is partially cut away and in Fig. 4 in a cross-sectional view. External dimensions of the valve body 33 matched those of the conventional valve body 11 for the conventional injector 10 and likewise fit within the injector nut 29.
  • the valve body 33 is composed of ceramic material, which is transparent to magnetic fields changing at ultrasonic frequencies. As embodied herein and shown in Figs. 3 and 4 for example, this valve body 33 can be composed of ceramic material such as partially stabilized zirconia, which is available from Coors Ceramic Company of Golden, Colorado.
  • the valve body 33 is hollowed about most of the length of its central longitudinal axis and configured to receive therein an injector needle 36.
  • a forward portion of the injector needle 36 defines the conically shaped tip 13.
  • the hollowed portion of the valve body defines the same fuel reservoir 16 as in the conventional valve body 11.
  • Reservoir 16 is configured to receive and store an accumulation of pressurized fuel in addition to accommodating the passage therethrough of a portion of the injector needle 36.
  • the hollowed portion of the valve body 33 further defines the same discharge plenum 17 as in the conventional valve body 11.
  • Plenum 17 communicates with the fuel reservoir 16 and is configured for receiving pressurized liquid fuel.
  • the shape of the hollowed portion is generally cylindrically symmetrical to accommodate the external shape of the needle, but varies from the shape of the needle at different portions along the central axis of the valve body to accommodate the fuel reservoir 16 and the discharge plenum 17.
  • the differently shaped hollowed portions that are disposed along the central axis of the valve body 33 generally communicate with one another and interact with the needle 36 in the same manner as these same features would in the conventional valve body 11 of the conventional injector 10.
  • valve body 33 also defines a valve seat 12 that is configured as a truncated conical section that connects at one end to the opening of the discharge plenum 17 and at the opposite end is configured in communication with the fuel reservoir 16.
  • the discharge plenum 17 is connected to the fuel reservoir via the valve seat 12 in the same manner as in the conventional valve body 11.
  • At least one and desirably more than one nozzle exit orifice 21 is defined through the lower extremity of the valve body 34 of the injector 31.
  • Each nozzle exit orifice 21 connects to the discharge plenum 17 via an exit channel 18 defined through the lower extremity of the injector's valve body and an entrance orifice 19 defined through the inner surface that defines the discharge plenum 17.
  • Each channel 18 and its orifices 19, 21 may have a diameter of less than about 0.1 inches (2.54 mm).
  • the channel 18 and its orifices 19, 21 may have a diameter of from about 0.0001 to about 0.1 inch (0.00254 to 2.54 mm).
  • the channel 18 and its orifices 19, 21 may have a diameter of from about 0.001 to about 0.01 inch (0.0254 to 0.254 mm).
  • the beneficial effects from the ultrasonic vibration of the fuel before the fuel leaves the exit orifice 21 of the injector 31 has been found to occur regardless of the size, shape, location and number of channels 18 and the orifices 19, 21 of same.
  • valve body 33 of the injector 31 also defines a fuel pathway 115 that is configured and disposed off-axis within the injector's valve body.
  • the fuel pathway 115 is configured to supply pressurized liquid fuel to the fuel reservoir 16 and is connected to the fuel reservoir 16 and communicates with the discharge plenum 17.
  • one end of the valve body 33 is configured to be mated to the spring cage 28 (shown in dashed line in Fig. 3) that holds the spring 22 that biases the position of the needle 36 as in the conventional injector 10.
  • Design considerations for the valve body 33 included maintaining adequate surface area for sealing and to minimize stress concentrations and prevent high-pressure fuel leakage between mating parts. Sealing of high-pressure fuel is accomplished in this particular injector by mating surfaces between parts which are clamped together by the injector nut 29. The sealing, or contact, surfaces should be sized such that the contact pressure is significantly greater than the peak injection pressure that must be contained.
  • the static pressure within the valve body 33 is also the sealing pressure between the valve body 33 and the mating cage 28.
  • the sealing pressure included a sealing safety factor of 1.62 for an estimated peak injection pressure of 15,000 psi.
  • the dome portion 34 of the valve body 33 constitutes the exterior bearing surface that is received within the injector nut 29, and is the portion of the valve body 33 that is configured to bear the compressive force applied to hold the unitized injector 31 together.
  • An objective of this design of the valve body 33 was to minimize stress concentrations on the lower shoulder portion 35 of the valve body 33 when mating surfaces between parts in this injector 31 are clamped together by the injector nut 29.
  • the compression load was diverted from the shoulder portion 35 to the dome portion 34 by means of an annular metal collar 40 disposed between the dome portion 34 of the valve body 33 and the interior surface of the injector nut 29.
  • the annular collar 40 is configured to receive and absorb part of the compressive load applied to the valve body 33 within the injector nut 29.
  • the annular collar is composed of a metal such as aluminum which is softer than the ceramic material and softer than the metal forming the injector nut 29. In this way the annular collar 40 compensates for the more brittle composition of the ceramic valve body that might otherwise crack in areas such as shoulder portion 35 that otherwise might bear some of this compressive force.
  • annular area between the external surface of the needle 36 and the internal surface 37 that defines the axial bore within the valve body 33.
  • the internal bore 37 of the valve body 33 and the needle 36 disposed therein are selectively fitted to maintain minimal clearances and leakage.
  • a value of 0.0002-inch is a typical maximum clearance between the external diameter of the needle 36 and the diameter of the bore 37 disposed immediately upstream of reservoir 16 in the nozzle 34.
  • the configuration and operation of the needle valve in the injector 31 of the present invention is the same as in the conventional injector 10 described above.
  • the second end of the injector needle 36 defines a tip shaped with a conical surface 13 that is configured to mate with and seal against a portion of the conically shaped valve seat 12 defined in the hollowed portion of the injector's valve body 33.
  • the opposite end of the injector needle 36 is connected so as to be biased into a position that disposes the conical surface 13 of the injector needle 36 into sealing contact with the conical surface of the valve seat 12 so as to prevent the fuel from flowing out of the fuel passageway 115, into the storage reservoir 16, into the discharge plenum 17, through the exit channels 18, out of the nozzle exit orifices 21 and into the combustion chamber 20.
  • a spring 22 provides one example of a means of biasing the conical surface 13 of the injector needle 36 into sealing contact with the conical surface 12 of the valve seat.
  • the actuation of the cam 25 operates to overcome the biasing force of spring 24 and force the conical end of the injector needle and the conically shaped valve seat apart so as to permit the flow of fuel into the discharge plenum and out of the nozzle exit orifices 21 of the fuel injector 31 into the combustion chamber 20 of the engine 30 of the apparatus 32.
  • This is accomplished as in the conventional unitized injectors 10 described above, i.e., by actuation of a pump 23 that forces pressurized fuel to hydraulically lift the needle 36 against the biasing force of the spring 22.
  • magnetostrictive refers to the property of a sample of ferromagnetic material that results in changes in the dimensions of the sample depending on the direction and extent of the magnetization of the sample. Magnetostrictive material that is responsive to magnetic fields changing at ultrasonic frequencies means that a sample of such magnetostrictive material can change its dimensions at ultrasonic frequencies.
  • the injector needle defines at least a first portion 38 that is configured to be disposed in the central axial bore 37 defined within the valve body 33.
  • this first portion 38 of the injector needle 36 is indicated by the stippling and is formed of magnetostrictive material that is responsive to magnetic fields changing at ultrasonic frequencies.
  • the length of the first portion 38 composed of magnetostrictive material can be about one third of the overall length of needle 36.
  • the entire needle 36 can be formed of the magnetostrictive material if desired.
  • a suitable magnetostrictive material is provided by an ETREMA TERFENOL-D® magnetostrictive alloy, which can be bonded to steel to form the needle of the injector.
  • the ETREMA TERFENOL-D® magnetostrictive alloy is available from ETREMA Products, Inc. of Ames, Iowa 50010. Nickel and permalloy are two other suitable magnetostrictive materials.
  • the length of this first portion 38 of the injector needle 36 increases or decreases slightly in the axial direction.
  • the length of this first portion 38 of the injector needle 36 is restored to its unmagnetized length.
  • the time during which the expansion and contraction occur is short enough so that the injector needle 36 can expand and contract at a rate that falls within ultrasonic frequencies, namely, 15 kilohertz to 500 kilohertz.
  • the overall length of needle 36 in the needle's unmagnetized state is the same as the overall length of the conventional needle 14.
  • the axial bore 37 of the injector's valve body 33 is defined by a wall that is composed of material that is transparent to magnetic fields changing at ultrasonic frequencies.
  • this wall that defines the axial bore 37 is composed of ceramic material such as partially stabilized zirconia.
  • the partially stabilized zirconia ceramic material has excellent material properties and satisfies the requirement for an electrically non-conductive material between the winding (described below) and needle 36.
  • Partially stabilized zirconia has relatively high compressive strength and fracture toughness compared to all other available technical ceramics.
  • the inner surface 39 of the cavity within the valve body 33 is disposed so as to coincide with the first portion 38 of the injector needle 36 that is disposed within the axial bore 37 of the valve body 33 of the injector 31.
  • the internally hollowed portion 39 of the valve body 33 defines a cylindrical cavity that is configured to receive therein at least a first portion 38 of the injector needle 36.
  • the length of the inner surface 39 of the cavity comprised a majority of the axial bore 37 of the valve body 33 and had a diameter that was sized 0.001 inch larger than the diameter of axial bore 37 in order to prevent binding of the needle 36 due to potential non-concentricity of the assembly.
  • a means for applying within the cavity of the axial bore of the injector body, a magnetic field that can be changed at ultrasonic frequencies.
  • the magnetic field can change from on to off or from a first magnitude to a second magnitude or the direction of the magnetic field can change.
  • This means for applying a magnetic field changing at ultrasonic frequencies desirably is carried at least in part by the injector's valve body 33.
  • the means for applying within the cavity of the axial bore 37 a magnetic field changing at ultrasonic frequencies can include an electric power source 46 and a wire coil 42 that is wrapped around the outermost surface 43 of the portion of the valve body 33 that surrounds the portion of the valve body's cavity that receives the portion 38 of the needle 36 that is formed of magnetostrictive material.
  • the electrical winding 42 was wound directly around the valve body 33 and potted to prevent shorting of the coil's turns to the injector nut 29.
  • the wire coil 42 can be imbedded in potting material, which is generally represented by the stippled shading that is designated by the numeral 48.
  • electrical grounding of one end of the winding 42 was accomplished through contact with one side of a copper washer 49.
  • the opposite side of washer 49 which could be formed of another conductive material besides copper, desirably features dimples (not shown) that would compress against the interior surface of the injector nut 29 when the valve body 33 is assembled in the metallic injector nut 29 and assure good electrical contact with injector nut 29.
  • a contact ring 44 that is embedded in a channel 41 formed between shoulder 35 and the outermost buildup of potting material 48 as shown in Figs. 3, 4 and 5 for example.
  • Electrically connecting winding 42 to the ultrasonic power source 46 was accomplished through a spring loaded electrical probe 54 that was kept in electrical contact with contact ring 44.
  • the back end of probe 54 is threaded through the injector nut 29, and an electrically insulating sleeve 55 surrounds the section of probe 54 that extends through injector nut 29 and into channel 41 in valve body 33.
  • the probe 54 in turn can be connected to an electrical lead 45 that electrically connects to a source of electric power 46 that can be activated by a control 47 to oscillate at ultrasonic frequencies.
  • a control 47 to oscillate at ultrasonic frequencies.
  • the combination of the needle 36 composed of magnetostrictive material and the coil 42 function as a magnetostrictive transducer that converts the electrical energy provided to the coil 42 into the mechanical energy of the expanding and contracting needle 36.
  • a suitable example of a control 47 for such a magnetostrictive transducer is disclosed in commonly owned U.S. Patent Nos. 5,900,690 and 5,892,315, which are hereby incorporated herein in their entirety by this reference. Note in particular Fig. 5 in Patent Nos. 5,900,690 and 5,892,315 and the explanatory text of same.
  • control 47 ensures that the ultrasonic vibration of the fuel only occurs when the injector 31 is open and injecting fuel into the combustion chamber 20.
  • control 47 can receive a signal from a pressure sensor 51 that is disposed on the cam follower 25 and detects when the cam 27 engages the follower 25.
  • the pressure sensor 51 can include a pressure transducer such as a piezoelectric transducer that generates an electrical signal when subjected to pressure. Accordingly, the pressure sensor 51 sends an electric signal to the control 47, which can include an amplifier to amplify the electrical signal that is received from the sensor 51.
  • Control 47 is configured to then provide this amplified electrical signal to activate the oscillating power source 46 that powers the coil 42 via lead 45 and induces the desired oscillating magnetic field in the magnetostrictive portion 38 of the needle 36.
  • Control 47 also governs the magnitude and frequency of the ultrasonic vibrations through its control of power source 46.
  • Other forms of control can be used to achieve the synchronization of the application of ultrasonic vibrations and the injection of fuel by the injector, as desired.
  • the conically-shaped end 13 of the injector needle 36 is disposed so as to protrude into the discharge plenum 1 .
  • the expansion and contraction of the length of the injector needle 36 caused by the elongation and retraction of the magnetostrictive portion 38 of the injector needle 36 is believed to cause the conically-shaped end 13 of the injector needle 36 to move respectively a small distance into and out of the discharge plenum 17 as would a sort of plunger.
  • This in and out reciprocating motion is believed to cause a commensurate mechanical perturbation of the liquid fuel within the discharge plenum 17 at the same ultrasonic frequency as the changes in the magnetic field in the magnetostrictive portion 38 of the injector needle 36.
  • This ultrasonic perturbation of the fuel that is leaving the injector 31 through the nozzle exit orifices 21 results in improved atomization of the fuel that is injected into the combustion chamber 20.
  • Such improved atomization results in more efficient combustion, which increases power and reduces pollution from the combustion process.
  • the ultrasonic vibration of the fuel before the fuel exits the injector's orifices produces a plume that is an uniform, cone-shaped spray of liquid fuel into the combustion chamber 20 that is served by the injector 31.
  • the minimum distance between the tip 13 of the needle 36 and the entrance orifice 19 of the channels 18 leading to the exit orifices 21 of the injector 31 in a given situation may be determined readily by one having ordinary skill in the art without undue experimentation. In practice, such distance will be in the range of from about 0.002 inches (about 0.05 mm) to about 1.3 inches (about 33 mm), although greater distances can be employed.
  • Such distance determines the extent to which ultrasonic energy is applied to the pressurized liquid other than that which is about to enter the exit orifice. In other words, the greater the distance, the greater the amount of pressurized liquid which is subjected to ultrasonic energy. Consequently, shorter distances generally are desired in order to minimize degradation of the pressurized liquid and other adverse effects which may result from exposure of the liquid to the ultrasonic energy.
  • the vibrating tip 13 that contacts the liquid fuel applies ultrasonic energy to the fuel.
  • the vibrations appear to change the apparent viscosity and flow characteristics of the high viscosity liquid fuels.
  • the vibrations also appear to improve the flow rate and/or improve atomization of the fuel stream as it enters the combustion chamber 20.
  • Application of ultrasonic energy appears to improve (e.g., decrease) the size of liquid fuel droplets and narrow the droplet size distribution of the liquid fuel plume.
  • application of ultrasonic energy appears to increase the velocity of liquid fuel droplets exiting the injector's orifice 21 into the combustion chamber 20.
  • the vibrations also cause breakdown and flushing out of clogging contaminants at the injector's exit orifice 21.
  • the vibrations can also cause emulsification of the liquid fuel with other components (e.g., liquid components) or additives that may be present in the fuel stream.
  • the injector 31 of the present invention may be used to emulsify multi-component liquid fuels as well as liquid fuel additives and contaminants at the point where the liquid fuels are introduced into the internal combustion engine 30.
  • water entrained in certain fuels may be emulsified by the ultrasonic vibrations so that fuel/water mixture may be used in the combustion chamber 20.
  • Mixed fuels and/or fuel blends including components such as, for example, methanol, water, ethanol, diesel, liquid propane gas, bio-diesel or the like can also be emulsified.
  • the present invention can have advantages in multi-fueled engines in that it may be used so as to render compatible the flow rate characteristics (e.g., apparent viscosities) of the different fuels that may be used in the multi-fueled engine.
  • it may be desirable to add water to one or more liquid fuels and emulsify the components immediately before combustion as a way of controlling combustion and/or reducing exhaust emissions.
  • a gas e.g., air, N 2 0, etc.
  • One advantage of the injector 31 of the present invention is that it is self-cleaning. Because of the ultrasonic vibration of the fuel before the fuel exits the injector's orifices 21, the vibrations dislodge any particulates that might otherwise clog the channel 18 and its entrance and exit orifices 19, 21 , respectively. That is, the combination of supplied pressure and forces generated by ultrasonically exciting the needle 36 amidst the pressurized fuel directly before the fuel leaves the nozzle 34 can remove obstructions that might otherwise block the exit orifice 21.
  • the channel 18 and its entrance orifice 19 and exit orifice 21 are thus adapted to be self- cleaning when the injector's needle 36 is excited with ultrasonic energy (without applying ultrasonic energy directly to the channel 18 and its orifices 19, 21) while the exit orifice 21 receives pressurized liquid from the discharge chamber 17 and passes the liquid out of the injector 31.

Abstract

An ultrasonic fuel injector (30) for injecting a pressurized liquid fuel into the combustion chamber of an internal combustion engine that uses an overhead cam (27) for actuating the injector includes a valve body (33) having an injector needle (36) disposed therein forming a needle valve to meter the flow of fuel through the injector. The valve body (33) is formed of ceramic material that is transparent to magnetic fields changing at ultrasonic frequencies. The injector needle (36) includes a magnetostrictive portion disposed in the region of the valve body that is surrounded by a wire coil wound around the outside surface of the ceramic valve body. The wire coil is connected to a source of electric power that oscillates at ultrasonic frequencies. A sensor (51) is configured to signal when the overhead cam is actuating the injector to inject fuel into the combustion chamber of the engine. The sensor is connected to a control (47) that is connected to the power source (46) and is configured to operate same only when the overhead cam (27) is actuating the injector to inject fuel into the combustion chamber of the engine.

Description

TITLE OF THE INVENTION ULTRASONIC UNITIZED FUEL INJECTOR WITH CERAMIC VALVE BODY Related Applications
This application is one of a group of commonly assigned patent applications which include application Serial No. 08/576,543 entitled "An Apparatus and Method for Emulsifying A Pressurized Multi- Component Liquid", Docket No. 12535, in the name of L. K. Jameson et al.; and application Serial No. 08/576,522 entitled "Ultrasonic Liquid Fuel Injection Apparatus and Method", Docket No. 12537, in the name of L. H. Gipson et al. The subject matter of each of these applications is hereby incorporated herein by this reference.
BACKGROUND OF THE INVENTION The present invention relates to an apparatus for injecting fuel into a combustion chamber and in particular to a unitized fuel injector for engines that use overhead cams to actuate the injectors.
Diesel engines for locomotives use unitized fuel injectors that are actuated by overhead cams. One such typical conventional unitized injector is schematically represented in Fig. 1 and is generally designated by the numeral 10. This unitized injector 10 includes a steel valve body 11 that is disposed in an injector nut 29. The steel valve body 11 houses a needle valve that can be biased in the valve's closed position to prevent the injector from injecting fuel into one of the engine's combustion chambers, which is generally designated by the numeral 20.
As shown in Fig. 1B, which depicts an expanded cross-sectional view of a portion of the steel valve body 11 of Fig. 1 , the needle valve includes a conically shaped valve seat 12 that is defined in the hollowed interior of the valve body 11 and can be mated with and against a conically shaped tip 13 at one end of a needle 14. The hollowed interior of the valve body 11 further defines a fuel pathway 15 connecting to a fuel reservoir 16 and a discharge plenum 17, which is disposed downstream of the needle valve. Each of several exit channels 18 typically is connected to the discharge plenum 17 by an entrance orifice 19 and to the combustion chamber 20 by an exit orifice 21 at each opposite end of each exit channel 18. The needle valve controls whether fuel is permitted to flow from the storage reservoir 16 into the discharge plenum 17 and through the exit channels 18 into the combustion chamber 20.
The conically shaped tip 13 at one end of needle 14, which is housed in the hollowed interior of the valve body 11 , is biased into sealing contact with valve seat 12 by a spring 22, which is housed in a cage 28 so as to be disposed to apply its biasing force against the opposite end of the needle 14 as shown in Fig. 1. A fuel pump 23 is disposed above the spring-biased end of the needle 14 and in axial alignment with the needle 14. Another spring 24 biases a cam follower 25 that is disposed above and in axial alignment with each of the fuel pump 23 and the spring-biased end of the needle 14. The cam follower 25 engages the plunger 26 that produces the pump's pumping action that forces pressurized fuel into the valve body 11 of the injector. An overhead cam 27 cyclically actuates the cam follower 25 to overcome the biasing force of spring 24 and press down on the plunger 26, which accordingly actuates the fuel pump 23. The fuel that is pumped into the valve body 11 via actuation of the pump 23 hydraulically lifts the conically shaped tip 13 of the needle 14 away from contact with the valve seat 12 and so opens the needle valve and forces a charge of fuel out of the exit orifices 21 of the injector 10 and into the combustion chamber 20 that is served by the injector.
However, the injector's exit orifices can become fouled and thereby adversely affect the amount of fuel that is able to enter the combustion chamber. Moreover, improving the fuel efficiency of these engines is desirable as is reducing unwanted emissions from the combustion process performed by such engines.
The goal of achieving more efficient combustion, which increases power and reduces pollution from the combustion process, thereby improving the performance of injectors, has largely been sought to be accomplished by decreasing the size of the injector's exit orifices and/or increasing the pressure of the liquid fuel supplied to the exit orifice. Each of these types of solutions aims to increase the velocity of the fuel that exits the orifices of the injector.
However, these solutions introduce problems of their own such as: the need to use exotic metals; lubricity problems; the need to micro inch finish moving parts; the need to contour internal fuel passages; high cost; and direct injection. For example, the reliance on smaller orifices means that the orifices are more easily fouled. The reliance on higher pressures in the range of 1500 bar to 2000 bar means that exotic metals must be used that are strong enough to withstand these pressures without contorting in a manner that changes the characteristics of the injector, if not destroying it altogether. Such exotic metals increase the cost of the injector. The higher pressures also create lubricity problems that cannot be solved by relying on additives in the fuel for lubrication of the injector's moving parts. Other means of lubricity such as applying a micro inch finish on the moving metal parts is required at great expense. Such higher pressures also create wear problems in the internal passages of the injector that must be counteracted by contouring the passages, which requires machining that is costly to perform. These wear problems also erode the exit orifices, and such erosion changes the character of the injector's plume over time and affects performance. Moreover, to achieve the higher pressures, the fuel pump must be localized with the injector for direct injection rather than disposed remotely from the injector.
Using ultrasonic energy to improve atomization of fuel injected into a combustion chamber is known, and advances in this field have been made as is evidenced by commonly owned U.S. Patent Nos. 5,803,106; 5,868,153 and 6,053,424, which are hereby incorporated herein by this reference. These typically involve attaching an ultrasonic transducer on one end of an ultrasonic horn while the opposite end of the horn is immersed in the fuel in the vicinity of the injector's exit orifices and caused to vibrate at ultrasonic frequencies. However, unitized fuel injectors cannot be fitted with such ultrasonic transducers because of the disposition of the fuel pump, cam follower and overhead cam in axial alignment with the needle.
SUMMARY
Objects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In a presently preferred embodiment of the present invention, the standard unitized injector actuated by overhead cams is retrofitted by replacing the steel valve body with a valve body that is composed of ceramic material that is transparent to magnetic fields oscillating at ultrasonic frequencies. The ceramic material is harder and more wear resistant than the steel at the pressures involved.
The retrofitting of the valve body also includes replacing the steel needle with a needle that has an elongated portion that is composed of magnetostrictive material that is capable of responding mechanically to magnetic fields oscillating at ultrasonic frequencies. The portion of the ceramic valve body surrounding the magnetostrictive portion of the retrofitted needle is itself surrounded by a wire coil that is capable of inducing in the region occupied by the magnetostrictive portion of the needle a magnetic field that is oscillating at ultrasonic frequencies and thus causes the magnetostrictive portion to vibrate at ultrasonic frequencies. This vibration causes the tip of the needle, which is disposed in the liquid fuel near the entrance to the discharge plenum and the channels leading to the injector's exit orifices, to vibrate at ultrasonic frequencies and therefore subjects the fuel to these ultrasonic vibrations. The ultrasonic stimulation of the fuel as it leaves the exit orifices permits the injector to achieve the desired performance while operating at lower pressures and using larger exit orifices than the conventional solutions that are aimed at increasing the velocity of the fuel exiting the injector.
In accordance with the present invention, a control is provided for actuation of the ultrasonically oscillating signal. The control is configured so that the actuation of the ultrasonically oscillating signal that is provided to the coil only occurs when the overhead cams are actuating the injector so as to allow fuel to flow through the injector and into the combustion chamber from the injector's exit orifices. Thus, the control operates so that the ultrasonic vibration of the fuel only occurs when fuel is flowing through the injector and into the combustion chamber from the injector's exit orifices. This control can include a sensor such as a pressure transducer that is disposed on the cam follower and includes a piezoelectric transducer that detects the pressure change indicating actuation of the follower by the cam.
Moreover, injectors can be made in accordance with the present invention as original equipment rather than as retrofits.
BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1A is a cross-sectional view of a conventional unitized fuel injector actuated by overhead cams.
Fig. 1 B is an expanded cross-sectional view of a portion of the steel valve body of the conventional unitized fuel injector of Fig. 1A.
Fig. 2 is a diagrammatic representation of a partial perspective view with portions shown in phantom (dashed line) of a presently preferred embodiment of the apparatus of the present invention.
Fig. 3 is a partial perspective view of a presently preferred embodiment of the ceramic valve body of the apparatus of the present invention with portions cut away and portions shown in cross-section and environmental structures shown in phantom (chain dashed line).
Fig. 4 is a cross-sectional view of the ceramic valve body shown in Fig. 3.
Fig. 5 is an expanded perspective view of one portion of a presently preferred embodiment of the valve body of the apparatus of the present invention with portions cut away and portions shown in cross-section and environmental components shown schematically. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Reference now will be made in detail to the presently preferred embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, can be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the appended claims and their equivalents. The same numerals are assigned to the same components throughout the drawings and description.
As used herein, the term "liquid" refers to an amorphous (noncrystalline) from of matter intermediate between gases and solids, in which the molecules are much more highly concentrated than in gases, but much less concentrated than in solids. A liquid may have a single component or may be made of multiple components. The components may be other liquids, solid and/or gases. For example, a characteristic of liquids is their ability to flow as a result of an applied force. Liquids that flow immediately upon application of force and for which the rate of flow is directly proportional to the force applied are generally referred to as Newtonian liquids. Some liquids have abnormal flow response when force is applied and exhibit non- Newtonian flow properties.
In accordance with the present invention, as schematically shown in Fig. 2, not necessarily to scale, an internal combustion engine 30 with unitized fuel injectors 31 (only one being shown in Fig. 2) actuated by an overhead cam 27 forms the power plant of an exemplary apparatus, a broken away portion of which is shown generally and designated by the numeral 32. Such apparatus 32 could be almost any device that requires a power plant and would include but not be limited to an on site electric power generator, a land vehicle such as a railroad locomotive for example, an air vehicle such as an airplane, or a marine craft powered by diesel such as an ocean going vessel.
The ultrasonic fuel injector apparatus of the present invention is indicated generally in Fig. 2 by the designating numeral 31. Unitized injector 31 differs from the conventional unitized injector 10 described above primarily in the configuration and composition of the valve body 33 and the needle 36 and in the addition of a sensor, a control and an ultrasonic power source, and these differences are described below. The remaining features and operation of the injector 31 of the present invention are the same as for the conventional unitized injector.
A presently preferred embodiment of the valve body 33 of injector 31 is shown in Fig. 3 in a perspective view that is partially cut away and in Fig. 4 in a cross-sectional view. External dimensions of the valve body 33 matched those of the conventional valve body 11 for the conventional injector 10 and likewise fit within the injector nut 29. In accordance with the present invention, the valve body 33 is composed of ceramic material, which is transparent to magnetic fields changing at ultrasonic frequencies. As embodied herein and shown in Figs. 3 and 4 for example, this valve body 33 can be composed of ceramic material such as partially stabilized zirconia, which is available from Coors Ceramic Company of Golden, Colorado.
The valve body 33 is hollowed about most of the length of its central longitudinal axis and configured to receive therein an injector needle 36. As in the conventional needle, a forward portion of the injector needle 36 defines the conically shaped tip 13. The hollowed portion of the valve body defines the same fuel reservoir 16 as in the conventional valve body 11. Reservoir 16 is configured to receive and store an accumulation of pressurized fuel in addition to accommodating the passage therethrough of a portion of the injector needle 36. The hollowed portion of the valve body 33 further defines the same discharge plenum 17 as in the conventional valve body 11. Plenum 17 communicates with the fuel reservoir 16 and is configured for receiving pressurized liquid fuel. The shape of the hollowed portion is generally cylindrically symmetrical to accommodate the external shape of the needle, but varies from the shape of the needle at different portions along the central axis of the valve body to accommodate the fuel reservoir 16 and the discharge plenum 17. The differently shaped hollowed portions that are disposed along the central axis of the valve body 33 generally communicate with one another and interact with the needle 36 in the same manner as these same features would in the conventional valve body 11 of the conventional injector 10.
The hollowed portion of the valve body 33 also defines a valve seat 12 that is configured as a truncated conical section that connects at one end to the opening of the discharge plenum 17 and at the opposite end is configured in communication with the fuel reservoir 16. Thus, the discharge plenum 17 is connected to the fuel reservoir via the valve seat 12 in the same manner as in the conventional valve body 11.
In valve body 33, as in the conventional valve body 11 , at least one and desirably more than one nozzle exit orifice 21 is defined through the lower extremity of the valve body 34 of the injector 31. Each nozzle exit orifice 21 connects to the discharge plenum 17 via an exit channel 18 defined through the lower extremity of the injector's valve body and an entrance orifice 19 defined through the inner surface that defines the discharge plenum 17. Each channel 18 and its orifices 19, 21 may have a diameter of less than about 0.1 inches (2.54 mm). For example, the channel 18 and its orifices 19, 21 may have a diameter of from about 0.0001 to about 0.1 inch (0.00254 to 2.54 mm). As a further example, the channel 18 and its orifices 19, 21 may have a diameter of from about 0.001 to about 0.01 inch (0.0254 to 0.254 mm). The beneficial effects from the ultrasonic vibration of the fuel before the fuel leaves the exit orifice 21 of the injector 31 has been found to occur regardless of the size, shape, location and number of channels 18 and the orifices 19, 21 of same.
As shown in Fig. 4, the valve body 33 of the injector 31 also defines a fuel pathway 115 that is configured and disposed off-axis within the injector's valve body. The fuel pathway 115 is configured to supply pressurized liquid fuel to the fuel reservoir 16 and is connected to the fuel reservoir 16 and communicates with the discharge plenum 17.
As shown in Fig. 3, one end of the valve body 33 is configured to be mated to the spring cage 28 (shown in dashed line in Fig. 3) that holds the spring 22 that biases the position of the needle 36 as in the conventional injector 10. Design considerations for the valve body 33 included maintaining adequate surface area for sealing and to minimize stress concentrations and prevent high-pressure fuel leakage between mating parts. Sealing of high-pressure fuel is accomplished in this particular injector by mating surfaces between parts which are clamped together by the injector nut 29. The sealing, or contact, surfaces should be sized such that the contact pressure is significantly greater than the peak injection pressure that must be contained. The static pressure within the valve body 33 is also the sealing pressure between the valve body 33 and the mating cage 28. The sealing pressure included a sealing safety factor of 1.62 for an estimated peak injection pressure of 15,000 psi.
As shown in Figs. 2-4, the dome portion 34 of the valve body 33 constitutes the exterior bearing surface that is received within the injector nut 29, and is the portion of the valve body 33 that is configured to bear the compressive force applied to hold the unitized injector 31 together. An objective of this design of the valve body 33 was to minimize stress concentrations on the lower shoulder portion 35 of the valve body 33 when mating surfaces between parts in this injector 31 are clamped together by the injector nut 29.
In accordance with the present invention, the compression load was diverted from the shoulder portion 35 to the dome portion 34 by means of an annular metal collar 40 disposed between the dome portion 34 of the valve body 33 and the interior surface of the injector nut 29. The annular collar 40 is configured to receive and absorb part of the compressive load applied to the valve body 33 within the injector nut 29. Desirably, the annular collar is composed of a metal such as aluminum which is softer than the ceramic material and softer than the metal forming the injector nut 29. In this way the annular collar 40 compensates for the more brittle composition of the ceramic valve body that might otherwise crack in areas such as shoulder portion 35 that otherwise might bear some of this compressive force.
Another critical location where high pressure fuel leakage is to be avoided is the annular area between the external surface of the needle 36 and the internal surface 37 that defines the axial bore within the valve body 33. The internal bore 37 of the valve body 33 and the needle 36 disposed therein are selectively fitted to maintain minimal clearances and leakage. A value of 0.0002-inch is a typical maximum clearance between the external diameter of the needle 36 and the diameter of the bore 37 disposed immediately upstream of reservoir 16 in the nozzle 34.
The configuration and operation of the needle valve in the injector 31 of the present invention is the same as in the conventional injector 10 described above. As shown in Fig 4. for example, the second end of the injector needle 36 defines a tip shaped with a conical surface 13 that is configured to mate with and seal against a portion of the conically shaped valve seat 12 defined in the hollowed portion of the injector's valve body 33. The opposite end of the injector needle 36 is connected so as to be biased into a position that disposes the conical surface 13 of the injector needle 36 into sealing contact with the conical surface of the valve seat 12 so as to prevent the fuel from flowing out of the fuel passageway 115, into the storage reservoir 16, into the discharge plenum 17, through the exit channels 18, out of the nozzle exit orifices 21 and into the combustion chamber 20. As shown schematically in Fig. 3, as in the conventional injector 11 , a spring 22 provides one example of a means of biasing the conical surface 13 of the injector needle 36 into sealing contact with the conical surface 12 of the valve seat. Thus, when the injector needle 36 is disposed in its biased orientation, fuel cannot flow under the force of gravity alone from the fuel passageway 115 out of the nozzle exit orifices 21 and into the combustion chamber 20 into which the lower extremity of the fuel injector 31 is disposed.
As is conventional and schematically shown in Fig. 2 for example, the actuation of the cam 25 operates to overcome the biasing force of spring 24 and force the conical end of the injector needle and the conically shaped valve seat apart so as to permit the flow of fuel into the discharge plenum and out of the nozzle exit orifices 21 of the fuel injector 31 into the combustion chamber 20 of the engine 30 of the apparatus 32. This is accomplished as in the conventional unitized injectors 10 described above, i.e., by actuation of a pump 23 that forces pressurized fuel to hydraulically lift the needle 36 against the biasing force of the spring 22.
As used herein, the term "magnetostrictive" refers to the property of a sample of ferromagnetic material that results in changes in the dimensions of the sample depending on the direction and extent of the magnetization of the sample. Magnetostrictive material that is responsive to magnetic fields changing at ultrasonic frequencies means that a sample of such magnetostrictive material can change its dimensions at ultrasonic frequencies.
In accordance with the present invention, the injector needle defines at least a first portion 38 that is configured to be disposed in the central axial bore 37 defined within the valve body 33. As shown in Figs. 3 and 4 for example, this first portion 38 of the injector needle 36 is indicated by the stippling and is formed of magnetostrictive material that is responsive to magnetic fields changing at ultrasonic frequencies. The length of the first portion 38 composed of magnetostrictive material can be about one third of the overall length of needle 36. However, the entire needle 36 can be formed of the magnetostrictive material if desired. A suitable magnetostrictive material is provided by an ETREMA TERFENOL-D® magnetostrictive alloy, which can be bonded to steel to form the needle of the injector. The ETREMA TERFENOL-D® magnetostrictive alloy is available from ETREMA Products, Inc. of Ames, Iowa 50010. Nickel and permalloy are two other suitable magnetostrictive materials.
Upon application of a magnetic field that is aligned along the longitudinal axis of the injector needle 36, the length of this first portion 38 of the injector needle 36 increases or decreases slightly in the axial direction. Upon removal of the aforementioned magnetic field, the length of this first portion 38 of the injector needle 36 is restored to its unmagnetized length. Moreover, the time during which the expansion and contraction occur is short enough so that the injector needle 36 can expand and contract at a rate that falls within ultrasonic frequencies, namely, 15 kilohertz to 500 kilohertz. The overall length of needle 36 in the needle's unmagnetized state is the same as the overall length of the conventional needle 14.
In further accordance with the present invention, the axial bore 37 of the injector's valve body 33 is defined by a wall that is composed of material that is transparent to magnetic fields changing at ultrasonic frequencies. As embodied herein and shown in Figs. 3 and 4 for example, this wall that defines the axial bore 37 is composed of ceramic material such as partially stabilized zirconia. The partially stabilized zirconia ceramic material has excellent material properties and satisfies the requirement for an electrically non-conductive material between the winding (described below) and needle 36. Partially stabilized zirconia has relatively high compressive strength and fracture toughness compared to all other available technical ceramics.
The inner surface 39 of the cavity within the valve body 33 is disposed so as to coincide with the first portion 38 of the injector needle 36 that is disposed within the axial bore 37 of the valve body 33 of the injector 31. As shown in Fig. 4 for example, the internally hollowed portion 39 of the valve body 33 defines a cylindrical cavity that is configured to receive therein at least a first portion 38 of the injector needle 36. As shown in Fig. 4 for example, the length of the inner surface 39 of the cavity comprised a majority of the axial bore 37 of the valve body 33 and had a diameter that was sized 0.001 inch larger than the diameter of axial bore 37 in order to prevent binding of the needle 36 due to potential non-concentricity of the assembly.
In yet further accordance with the present invention, a means is provided for applying within the cavity of the axial bore of the injector body, a magnetic field that can be changed at ultrasonic frequencies. The magnetic field can change from on to off or from a first magnitude to a second magnitude or the direction of the magnetic field can change. This means for applying a magnetic field changing at ultrasonic frequencies desirably is carried at least in part by the injector's valve body 33. As embodied herein and shown in Fig. 3 for example, the means for applying within the cavity of the axial bore 37 a magnetic field changing at ultrasonic frequencies can include an electric power source 46 and a wire coil 42 that is wrapped around the outermost surface 43 of the portion of the valve body 33 that surrounds the portion of the valve body's cavity that receives the portion 38 of the needle 36 that is formed of magnetostrictive material.
The electrical winding 42 was wound directly around the valve body 33 and potted to prevent shorting of the coil's turns to the injector nut 29. As shown in Figs. 3 and 4 for example, the wire coil 42 can be imbedded in potting material, which is generally represented by the stippled shading that is designated by the numeral 48. As shown in Figs. 3 and 4 for example, electrical grounding of one end of the winding 42 was accomplished through contact with one side of a copper washer 49. The opposite side of washer 49, which could be formed of another conductive material besides copper, desirably features dimples (not shown) that would compress against the interior surface of the injector nut 29 when the valve body 33 is assembled in the metallic injector nut 29 and assure good electrical contact with injector nut 29.
Electrically connected to the other end of the winding 42 is a contact ring 44 that is embedded in a channel 41 formed between shoulder 35 and the outermost buildup of potting material 48 as shown in Figs. 3, 4 and 5 for example. Electrically connecting winding 42 to the ultrasonic power source 46 was accomplished through a spring loaded electrical probe 54 that was kept in electrical contact with contact ring 44. As shown in Figs. 4 (schematically) and 5 (enlarged, cut-away perspective) for example, the back end of probe 54 is threaded through the injector nut 29, and an electrically insulating sleeve 55 surrounds the section of probe 54 that extends through injector nut 29 and into channel 41 in valve body 33.
As shown schematically in Figs. 2 and 5 for example, the probe 54 in turn can be connected to an electrical lead 45 that electrically connects to a source of electric power 46 that can be activated by a control 47 to oscillate at ultrasonic frequencies. From one perspective, the combination of the needle 36 composed of magnetostrictive material and the coil 42 function as a magnetostrictive transducer that converts the electrical energy provided to the coil 42 into the mechanical energy of the expanding and contracting needle 36. A suitable example of a control 47 for such a magnetostrictive transducer is disclosed in commonly owned U.S. Patent Nos. 5,900,690 and 5,892,315, which are hereby incorporated herein in their entirety by this reference. Note in particular Fig. 5 in Patent Nos. 5,900,690 and 5,892,315 and the explanatory text of same.
In further accordance with the present invention, electrification of the coil 42 at ultrasonic frequencies is governed by the control 47 so that it occurs only when the injector needle 36 is positioned so that fuel flows from the storage reservoir 16 into the discharge plenum 17. In other words, the control 47 ensures that the ultrasonic vibration of the fuel only occurs when the injector 31 is open and injecting fuel into the combustion chamber 20. As schematically shown in Fig. 2, control 47 can receive a signal from a pressure sensor 51 that is disposed on the cam follower 25 and detects when the cam 27 engages the follower 25. When the cam 27 depresses the follower 25, the pump 23 is actuated and pumps fuel into the valve body 33, thereby increasing the pressure in the fuel within the valve body 33 so as to hydraulically open the needle valve and cause fuel to be injected out of the exit orifices 21 of the injector 31. The pressure sensor 51 can include a pressure transducer such as a piezoelectric transducer that generates an electrical signal when subjected to pressure. Accordingly, the pressure sensor 51 sends an electric signal to the control 47, which can include an amplifier to amplify the electrical signal that is received from the sensor 51. Control 47 is configured to then provide this amplified electrical signal to activate the oscillating power source 46 that powers the coil 42 via lead 45 and induces the desired oscillating magnetic field in the magnetostrictive portion 38 of the needle 36. Control 47 also governs the magnitude and frequency of the ultrasonic vibrations through its control of power source 46. Other forms of control can be used to achieve the synchronization of the application of ultrasonic vibrations and the injection of fuel by the injector, as desired.
During the injection of fuel, the conically-shaped end 13 of the injector needle 36 is disposed so as to protrude into the discharge plenum 1 . The expansion and contraction of the length of the injector needle 36 caused by the elongation and retraction of the magnetostrictive portion 38 of the injector needle 36 is believed to cause the conically-shaped end 13 of the injector needle 36 to move respectively a small distance into and out of the discharge plenum 17 as would a sort of plunger. This in and out reciprocating motion is believed to cause a commensurate mechanical perturbation of the liquid fuel within the discharge plenum 17 at the same ultrasonic frequency as the changes in the magnetic field in the magnetostrictive portion 38 of the injector needle 36. This ultrasonic perturbation of the fuel that is leaving the injector 31 through the nozzle exit orifices 21 results in improved atomization of the fuel that is injected into the combustion chamber 20. Such improved atomization results in more efficient combustion, which increases power and reduces pollution from the combustion process. The ultrasonic vibration of the fuel before the fuel exits the injector's orifices produces a plume that is an uniform, cone-shaped spray of liquid fuel into the combustion chamber 20 that is served by the injector 31.
The actual distance between the tip 13 of the needle 36 and the entrance orifice 19 or the exit orifice 21 when the needle valve is opened in the absence of the oscillating magnetic field was not changed from what it was in the conventional valve body 11. In general, the minimum distance between the tip 13 of the needle 36 and the entrance orifice 19 of the channels 18 leading to the exit orifices 21 of the injector 31 in a given situation may be determined readily by one having ordinary skill in the art without undue experimentation. In practice, such distance will be in the range of from about 0.002 inches (about 0.05 mm) to about 1.3 inches (about 33 mm), although greater distances can be employed. Such distance determines the extent to which ultrasonic energy is applied to the pressurized liquid other than that which is about to enter the exit orifice. In other words, the greater the distance, the greater the amount of pressurized liquid which is subjected to ultrasonic energy. Consequently, shorter distances generally are desired in order to minimize degradation of the pressurized liquid and other adverse effects which may result from exposure of the liquid to the ultrasonic energy.
Immediately before the liquid fuel enters the entrance orifice 19, the vibrating tip 13 that contacts the liquid fuel applies ultrasonic energy to the fuel. The vibrations appear to change the apparent viscosity and flow characteristics of the high viscosity liquid fuels. The vibrations also appear to improve the flow rate and/or improve atomization of the fuel stream as it enters the combustion chamber 20. Application of ultrasonic energy appears to improve (e.g., decrease) the size of liquid fuel droplets and narrow the droplet size distribution of the liquid fuel plume. Moreover, application of ultrasonic energy appears to increase the velocity of liquid fuel droplets exiting the injector's orifice 21 into the combustion chamber 20. The vibrations also cause breakdown and flushing out of clogging contaminants at the injector's exit orifice 21. The vibrations can also cause emulsification of the liquid fuel with other components (e.g., liquid components) or additives that may be present in the fuel stream.
The injector 31 of the present invention may be used to emulsify multi-component liquid fuels as well as liquid fuel additives and contaminants at the point where the liquid fuels are introduced into the internal combustion engine 30. For example, water entrained in certain fuels may be emulsified by the ultrasonic vibrations so that fuel/water mixture may be used in the combustion chamber 20. Mixed fuels and/or fuel blends including components such as, for example, methanol, water, ethanol, diesel, liquid propane gas, bio-diesel or the like can also be emulsified. The present invention can have advantages in multi-fueled engines in that it may be used so as to render compatible the flow rate characteristics (e.g., apparent viscosities) of the different fuels that may be used in the multi-fueled engine. Alternatively and/or additionally, it may be desirable to add water to one or more liquid fuels and emulsify the components immediately before combustion as a way of controlling combustion and/or reducing exhaust emissions. It may also be desirable to add a gas (e.g., air, N20, etc.) to one or more liquid fuels and ultrasonically blend or emulsify the components immediately before combustion as a way of controlling combustion and/or reducing exhaust emissions.
One advantage of the injector 31 of the present invention is that it is self-cleaning. Because of the ultrasonic vibration of the fuel before the fuel exits the injector's orifices 21, the vibrations dislodge any particulates that might otherwise clog the channel 18 and its entrance and exit orifices 19, 21 , respectively. That is, the combination of supplied pressure and forces generated by ultrasonically exciting the needle 36 amidst the pressurized fuel directly before the fuel leaves the nozzle 34 can remove obstructions that might otherwise block the exit orifice 21. According to the invention, the channel 18 and its entrance orifice 19 and exit orifice 21 are thus adapted to be self- cleaning when the injector's needle 36 is excited with ultrasonic energy (without applying ultrasonic energy directly to the channel 18 and its orifices 19, 21) while the exit orifice 21 receives pressurized liquid from the discharge chamber 17 and passes the liquid out of the injector 31.
While the specification has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of, and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.

Claims

WHAT IS CLAIMED IS:
1. An ultrasonic, unitized fuel injector apparatus for injection of pressurized liquid fuel into an internal combustion engine that actuates the injector by at least one overhead cam contacting a cam follower, the apparatus comprising: a valve body formed of ceramic material that is transparent to magnetic fields changing at ultrasonic frequencies, said valve body defining: a cavity configured to receive therein at least a first portion of an injector needle, a discharge plenum communicating with said cavity and configured for receiving pressurized liquid fuel and at least a second portion of said injector needle, a fuel pathway communicating with said discharge plenum and configured to supply the pressurized liquid fuel to said discharge plenum, and an exit orifice communicating with said discharge plenum and configured to receive the pressurized liquid fuel from said discharge plenum and pass the liquid fuel out of said valve body; a means for applying within said cavity a magnetic field changing at ultrasonic frequencies, said means being carried at least in part by said valve body; an injector needle having a first portion disposed in said cavity and a second portion disposed in said discharge plenum, said first portion of said injector needle being formed of magnetostrictive material responsive to magnetic fields changing at ultrasonic frequencies; a sensor configured to signal when the injector is injecting pressurized liquid fuel into the internal combustion engine; and a control connected to said sensor and to said means for applying within said cavity a magnetic field changing at ultrasonic frequencies, said control being configured to activate said means for applying within said cavity a magnetic field changing at ultrasonic frequencies when said sensor signals that the injector is injecting fuel into the combustion chamber of the engine.
2. The apparatus of claim 1, further comprising: an injector nut surrounding said valve body, wherein said valve body defines a dome portion configured to be received in said injector nut; and an annular collar disposed between said dome portion of said valve body and said injector nut and configured to bear the compressive load applied to said valve body within said injector nut.
3. The apparatus of claim 2, wherein said means for applying within said cavity a magnetic field changing at ultrasonic frequencies includes an electrically conducting coil disposed around said cavity.
4. The apparatus of claim 2, wherein said annular collar is composed of metal.
5. The apparatus of claim 4, wherein said annular collar is defined by a circular annular member.
6. The apparatus of claim 5, wherein said annular collar is composed of aluminum.
7. The apparatus of claim 6, wherein said means for applying within said cavity a magnetic field changing at ultrasonic frequencies includes an electrically conducting coil disposed around said cavity.
8. The apparatus of claim 3, wherein said valve body includes potting material embedding said electrically conducting coil therein.
9. The apparatus of claim 5, wherein said means for applying within said cavity a magnetic field changing at ultrasonic frequencies includes a power source and an electrically conducting coil disposed around said cavity.
10. The apparatus of claim 4, wherein said means for applying within said cavity a magnetic field changing at ultrasonic frequencies includes an electrically conducting coil disposed around said cavity, and said valve body includes potting material embedding said electrically conducting coil therein.
11. The apparatus of claim 1 , wherein said means for applying within said cavity a magnetic field changing at ultrasonic frequencies is disposed at least in part within said valve body.
12. The apparatus of claim 1 , wherein said sensor includes a piezoelectric transducer that is disposed to detect a predetermined magnitude of pressure from contact by at least one of the cams with a cam follower.
13. The apparatus of claim 1 , wherein said means for applying within said cavity a magnetic field changing at ultrasonic frequencies includes an electrically conducting coil disposed around said cavity.
14. The apparatus of claim 1 , further comprising a plurality of exit orifices, each said exit orifice being configured and disposed to communicate with said discharge plenum and to receive the pressurized liquid fuel from said discharge plenum and pass the liquid fuel out of said valve body.
15. The apparatus of claim 1 , wherein the ultrasonic frequencies range from about 15 kHz to about 500 kHz.
16. The apparatus of claim 1, wherein the ultrasonic frequencies range from about 15 kHz to about 60 kHz.
17. An internal combustion engine, wherein said engine includes the apparatus of claim 1.
18. A vehicle, comprising: the engine of claim 17.
19. An electric generator, comprising: the engine of claim 17.
20. A method of retrofitting an ultrasonic, unitized fuel injector apparatus for injection of pressurized liquid fuel into an internal combustion engine that actuates the injector by at least one overhead cam, this injector including a needle valve that can be biased in the valve's closed position as the valve seat is sealed against one end of the needle while the opposite end of the needle engages an overhead cam that actuates the opening and closing of the needle valve, and thus controls the supply of fuel through the exit orifices of the injector into the combustion chamber that is served by the injector, the method comprising: removing the injector's needle and substituting therefor a needle that has an elongated portion that is composed of magnetostrictive material; forming the injector's valve body of ceramic material that is transparent to magnetic fields oscillating at ultrasonic frequencies; surrounding the exterior of said ceramic valve body by a coil that is capable of inducing a magnetic field changing at a predetermined ultrasonic frequency in the region occupied by the magnetostrictive portion and thus causing the magnetostrictive portion to vibrate at ultrasonic frequencies; and disposing on the injector a sensor that is configured to detect when at least one of the cams is actuating the injector to inject fuel into the combustion chamber of the engine.
21. The method of claim 20, further comprising the steps of: electrically connecting said coil to an ultrasonic power source; electrically connecting said sensor to a control that is electrically connected to said power source and that is configured to activate said power source only when said sensor signals that said one of the cams is actuating the injector to inject fuel into the combustion chamber of the engine.
PCT/US2001/046988 2000-12-11 2001-12-06 Ultrasonic unitized fuel injector with ceramic valve body WO2002048541A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE60131446T DE60131446T2 (en) 2000-12-11 2001-12-06 ULTRASOUND FUEL INJECTION VALVE WITH A CERAMIC BODY
EP01985515A EP1342007B1 (en) 2000-12-11 2001-12-06 Ultrasonic unitized fuel injector with ceramic valve body
MXPA03004489A MXPA03004489A (en) 2000-12-11 2001-12-06 Ultrasonic unitized fuel injector with ceramic valve body.
AU2002235162A AU2002235162A1 (en) 2000-12-11 2001-12-06 Ultrasonic unitized fuel injector with ceramic valve body
CA002428143A CA2428143A1 (en) 2000-12-11 2001-12-06 Ultrasonic unitized fuel injector with ceramic valve body
DE20122813U DE20122813U1 (en) 2000-12-11 2001-12-06 Modular ultrasonic fuel injector with a ceramic valve body
JP2002550232A JP2004521218A (en) 2000-12-11 2001-12-06 Integrated ultrasonic fuel injector with ceramic valve body
KR1020037007712A KR100756144B1 (en) 2000-12-11 2001-12-06 Ultrasonic unitized fuel injector with ceramic valve body
NO20032404A NO20032404D0 (en) 2000-12-11 2003-05-27 Ultrasonic, uniform fuel injector with ceramic valve body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US25473700P 2000-12-11 2000-12-11
US60/254,737 2000-12-11
US09/915,633 US6543700B2 (en) 2000-12-11 2001-07-26 Ultrasonic unitized fuel injector with ceramic valve body
US09/915,633 2001-07-26

Publications (2)

Publication Number Publication Date
WO2002048541A2 true WO2002048541A2 (en) 2002-06-20
WO2002048541A3 WO2002048541A3 (en) 2002-08-22

Family

ID=26944218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/046988 WO2002048541A2 (en) 2000-12-11 2001-12-06 Ultrasonic unitized fuel injector with ceramic valve body

Country Status (11)

Country Link
US (1) US6543700B2 (en)
EP (1) EP1342007B1 (en)
JP (1) JP2004521218A (en)
KR (1) KR100756144B1 (en)
AT (1) ATE378511T1 (en)
AU (1) AU2002235162A1 (en)
CA (1) CA2428143A1 (en)
DE (2) DE20122813U1 (en)
MX (1) MXPA03004489A (en)
NO (1) NO20032404D0 (en)
WO (1) WO2002048541A2 (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6663027B2 (en) * 2000-12-11 2003-12-16 Kimberly-Clark Worldwide, Inc. Unitized injector modified for ultrasonically stimulated operation
DE10127932A1 (en) * 2001-06-08 2002-12-19 Bosch Gmbh Robert Motor vehicle combustion engine fuel injector has an integral pressure sensor in the combustion chamber that supplies pressure information to a valve member so that its behavior is controlled accordingly
US6820598B2 (en) * 2002-03-22 2004-11-23 Chrysalis Technologies Incorporated Capillary fuel injector with metering valve for an internal combustion engine
FR2857418B1 (en) * 2003-07-10 2007-04-06 Renault Sa DEVICE FOR PRETENSION APPLICATION TO A VALVE OF A FUEL INJECTOR AND MEANS FOR BREAKING THE ACOUSTIC IMPEDANCE OF THE INJECTOR
FR2875695B1 (en) * 2004-09-28 2006-12-01 Echosens Sa INSTRUMENT FOR MEASURING THE ELASTICITY OF AN ORGAN OF THE TYPE COMPRISING A MEANS OF CENTERING
US7178554B2 (en) * 2005-05-27 2007-02-20 Kimberly-Clark Worldwide, Inc. Ultrasonically controlled valve
FR2888889B1 (en) * 2005-07-20 2007-08-31 Renault Sas FUEL INJECTION DEVICE FOR INTERNAL COMBUSTION ENGINE
FR2889257B1 (en) * 2005-08-01 2007-11-02 Renault Sas FUEL INJECTION DEVICE AND METHOD FOR CONTROLLING SUCH A DEVICE
US9101949B2 (en) * 2005-08-04 2015-08-11 Eilaz Babaev Ultrasonic atomization and/or seperation system
US20070031611A1 (en) * 2005-08-04 2007-02-08 Babaev Eilaz P Ultrasound medical stent coating method and device
FR2895031B1 (en) * 2005-12-19 2011-06-03 Renault Sas FUEL INJECTOR FOR INTERNAL COMBUSTION ENGINE
US7744015B2 (en) 2006-01-23 2010-06-29 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US7424883B2 (en) * 2006-01-23 2008-09-16 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US7963458B2 (en) * 2006-01-23 2011-06-21 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US7810743B2 (en) * 2006-01-23 2010-10-12 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US8191732B2 (en) 2006-01-23 2012-06-05 Kimberly-Clark Worldwide, Inc. Ultrasonic waveguide pump and method of pumping liquid
US7735751B2 (en) * 2006-01-23 2010-06-15 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid delivery device
US8028930B2 (en) * 2006-01-23 2011-10-04 Kimberly-Clark Worldwide, Inc. Ultrasonic fuel injector
US7819335B2 (en) 2006-01-23 2010-10-26 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
US8074895B2 (en) * 2006-04-12 2011-12-13 Delavan Inc Fuel injection and mixing systems having piezoelectric elements and methods of using the same
JP4677959B2 (en) * 2006-07-21 2011-04-27 トヨタ自動車株式会社 Fuel injection device
US20080142616A1 (en) * 2006-12-15 2008-06-19 Bacoustics Llc Method of Producing a Directed Spray
US7533830B1 (en) 2007-12-28 2009-05-19 Kimberly-Clark Worldwide, Inc. Control system and method for operating an ultrasonic liquid delivery device
US8074625B2 (en) 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US8413634B2 (en) 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US7628137B1 (en) * 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8387599B2 (en) 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US8365700B2 (en) 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
US8635985B2 (en) * 2008-01-07 2014-01-28 Mcalister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8016208B2 (en) 2008-02-08 2011-09-13 Bacoustics, Llc Echoing ultrasound atomization and mixing system
US7950594B2 (en) * 2008-02-11 2011-05-31 Bacoustics, Llc Mechanical and ultrasound atomization and mixing system
US7830070B2 (en) * 2008-02-12 2010-11-09 Bacoustics, Llc Ultrasound atomization system
DE102008000760A1 (en) * 2008-03-19 2009-09-24 Robert Bosch Gmbh Component pairing and device with component pairing
US8267063B2 (en) 2009-08-27 2012-09-18 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
CA2772043C (en) * 2009-08-27 2014-01-07 Mcalister Technologies, Llc Ceramic insulator and methods of use and manufacture thereof
DE102009044464A1 (en) * 2009-11-09 2011-05-12 Walter Westenberger Spray gun spray nozzle for spraying and/or nebulizing e.g. abrasive material, has needle accommodated within housing, where section of needle is aligned such that section produces signal in needle drawn from valve seat
CA2779568C (en) 2009-12-07 2013-05-14 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
AU2010328633B2 (en) * 2009-12-07 2015-04-16 Mcalister Technologies, Llc Method for adjusting the ionisation level within a combusting chamber and system
BR112012020097A2 (en) * 2010-02-13 2018-03-20 Mcalister Tech Llc fuel injector assemblies having acoustic force modifiers and associated methods of use and manufacture.
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
CN102844540A (en) 2010-02-13 2012-12-26 麦卡利斯特技术有限责任公司 Methods and systems for adaptively cooling combustion chambers in engines
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) * 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
US8820275B2 (en) 2011-02-14 2014-09-02 Mcalister Technologies, Llc Torque multiplier engines
CN103890343B (en) 2011-08-12 2015-07-15 麦卡利斯特技术有限责任公司 Systems and methods for improved engine cooling and energy generation
US8919377B2 (en) 2011-08-12 2014-12-30 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
US9169814B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Systems, methods, and devices with enhanced lorentz thrust
US8752524B2 (en) 2012-11-02 2014-06-17 Mcalister Technologies, Llc Fuel injection systems with enhanced thrust
US9169821B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US9194337B2 (en) 2013-03-14 2015-11-24 Advanced Green Innovations, LLC High pressure direct injected gaseous fuel system and retrofit kit incorporating the same
JP6488134B2 (en) * 2015-01-26 2019-03-20 日立オートモティブシステムズ株式会社 Fuel injection valve
CN110270464B (en) * 2019-05-22 2024-02-09 杭州沃凌的机电有限公司 Magnetostrictive ultrasonic valve
CN110000147B (en) * 2019-05-22 2023-12-22 杭州沃凌的机电有限公司 Magnetostrictive ultrasonic cleaning valve
US11486610B2 (en) * 2020-02-12 2022-11-01 Messer Industries Usa, Inc. Injection nozzle and apparatus and methods regarding same
US20240082870A1 (en) * 2022-09-14 2024-03-14 The Boeing Company Ultrasonic injection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892315A (en) 1996-06-26 1999-04-06 Gipson; Lamar Heath Apparatus and method for controlling an ultrasonic transducer

Family Cites Families (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2484012A (en) 1946-07-01 1949-10-11 American Viscose Corp Manufacture of fibers
US2484014A (en) 1947-01-24 1949-10-11 American Viscose Corp Production of artificial fibers
US2745136A (en) 1951-03-14 1956-05-15 Deboutteville Marcel Delamare Apparatus and method for making wool-like artificial fibres
US3016599A (en) 1954-06-01 1962-01-16 Du Pont Microfiber and staple fiber batt
US4288398A (en) 1973-06-22 1981-09-08 Lemelson Jerome H Apparatus and method for controlling the internal structure of matter
US3071809A (en) 1960-05-09 1963-01-08 Western Electric Co Methods of and apparatus for extruding plastic materials
NL120091C (en) 1960-08-05
US3203215A (en) 1961-06-05 1965-08-31 Aeroprojects Inc Ultrasonic extrusion apparatus
US3194855A (en) 1961-10-02 1965-07-13 Aeroprojects Inc Method of vibratorily extruding graphite
US3233012A (en) 1963-04-23 1966-02-01 Jr Albert G Bodine Method and apparatus for forming plastic materials
US3285442A (en) 1964-05-18 1966-11-15 Dow Chemical Co Method for the extrusion of plastics
US3341394A (en) 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3463321A (en) 1967-02-24 1969-08-26 Eastman Kodak Co Ultrasonic in-line filter system
US3542615A (en) 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
CA935598A (en) 1968-06-26 1973-10-16 E. Hardy Paul Elastic fiber
DE1785158C3 (en) 1968-08-17 1979-05-17 Metallgesellschaft Ag, 6000 Frankfurt Round nozzle for pulling off and depositing threads to form a thread fleece
US3978185A (en) 1968-12-23 1976-08-31 Exxon Research And Engineering Company Melt blowing process
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
US3619429A (en) 1969-06-04 1971-11-09 Yawata Welding Electrode Co Method for the uniform extrusion coating of welding flux compositions
DE2048006B2 (en) 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Method and device for producing a wide nonwoven web
DE1950669C3 (en) 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Process for the manufacture of nonwovens
US3704198A (en) 1969-10-09 1972-11-28 Exxon Research Engineering Co Nonwoven polypropylene mats of increased strip tensile strength
US3755527A (en) 1969-10-09 1973-08-28 Exxon Research Engineering Co Process for producing melt blown nonwoven synthetic polymer mat having high tear resistance
US3679132A (en) 1970-01-21 1972-07-25 Cotton Inc Jet stream vibratory atomizing device
US3860173A (en) 1970-02-03 1975-01-14 Naoyasu Sata Non-polluting combustion engine having ultrasonic fuel atomizer in place of carburetor
GB1344635A (en) 1970-05-14 1974-01-23 Plessey Co Ltd Transducers
SE343217B (en) 1970-07-23 1972-03-06 Lkb Medical Ab
US3715104A (en) 1970-11-05 1973-02-06 E Cottell Apparatus for carrying out ultrasonic agitation of liquid dispersions
US3668185A (en) 1971-01-08 1972-06-06 Firestone Tire & Rubber Co Process for preparing thermoplastic polyurethane elastomers
US3749318A (en) 1971-03-01 1973-07-31 E Cottell Combustion method and apparatus burning an intimate emulsion of fuel and water
GB1382828A (en) 1971-04-02 1975-02-05 Plessey Co Ltd Liquidspraying devices having a nozzle subjected to high-frequency vibrations
SU468948A1 (en) 1971-10-12 1975-04-30 Киевский Ордена Тудовог Красного Знаени Институт Инженеров Гражданской Авиации "Device for flooding of liquid fuels
BE793649A (en) 1972-01-04 1973-07-03 Rhone Poulenc Textile DEVICE FOR THE MANUFACTURE OF NONWOVEN CONTINUOUS FILAMENT TABLECLOTH
GB1471916A (en) 1974-03-14 1977-04-27 Plessey Co Ltd Fuel injection arrangements having vibrating fuel injection nozzles
GB1481707A (en) 1974-07-16 1977-08-03 Plessey Co Ltd Fuel injection nozzle arrangement
US3884417A (en) 1972-02-01 1975-05-20 Plessey Handel Investment Ag Nozzles for the injection of liquid fuel into gaseous media
US3819116A (en) 1972-07-26 1974-06-25 Plessey Handel Investment Ag Swirl passage fuel injection devices
GB1432760A (en) 1972-12-19 1976-04-22 Plessey Co Ltd Fuel injection systems for engines
GB1415539A (en) 1972-12-19 1975-11-26 Plessey Co Ltd Liquid injection system
US4038348A (en) 1973-03-26 1977-07-26 Kompanek Harry W Ultrasonic system for improved combustion, emission control and fuel economy on internal combustion engines
US3949127A (en) 1973-05-14 1976-04-06 Kimberly-Clark Corporation Apertured nonwoven webs
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
JPS5326605B2 (en) 1974-07-03 1978-08-03
US4048963A (en) 1974-07-18 1977-09-20 Eric Charles Cottell Combustion method comprising burning an intimate emulsion of fuel and water
US4100319A (en) 1975-07-14 1978-07-11 Kimberly-Clark Corporation Stabilized nonwoven web
GB1552419A (en) 1975-08-20 1979-09-12 Plessey Co Ltd Fuel injection system
US4064605A (en) 1975-08-28 1977-12-27 Toyobo Co., Ltd. Method for producing non-woven webs
US4198461A (en) 1975-09-09 1980-04-15 Hughes Aircraft Company Polymeric fiber masses, fibers therefrom, and processes for producing the same
US4127624A (en) 1975-09-09 1978-11-28 Hughes Aircraft Company Process for producing novel polymeric fibers and fiber masses
GB1555766A (en) 1975-09-19 1979-11-14 Plessley Co Ltd fuel injection systems
GB1556163A (en) 1975-09-19 1979-11-21 Plessey Co Ltd Fuel injection systems
JPS6011224B2 (en) 1975-11-04 1985-03-23 株式会社豊田中央研究所 Ultrasonic fuel injection supply device
GB1568832A (en) 1976-01-14 1980-06-04 Plessey Co Ltd Apparatus for metering fuel for an engine
US4091140A (en) 1976-05-10 1978-05-23 Johnson & Johnson Continuous filament nonwoven fabric and method of manufacturing the same
DE2622117B1 (en) 1976-05-18 1977-09-15 Siemens Ag FLOW METER
CA1073648A (en) 1976-08-02 1980-03-18 Edward R. Hauser Web of blended microfibers and crimped bulking fibers
AU1691276A (en) 1976-08-03 1978-02-23 Plessey Handel Investment Ag A vibratory atomizer
US4159703A (en) 1976-12-10 1979-07-03 The Bendix Corporation Air assisted fuel atomizer
US4218221A (en) 1978-01-30 1980-08-19 Cottell Eric Charles Production of fuels
US4239720A (en) 1978-03-03 1980-12-16 Akzona Incorporated Fiber structures of split multicomponent fibers and process therefor
US4134931A (en) 1978-03-16 1979-01-16 Gulf Oil Corporation Process for treatment of olefin polymer fibrils
IT1121343B (en) * 1978-06-24 1986-04-02 Plessey Handel Investment Ag FUEL INJECTOR
US4372491A (en) 1979-02-26 1983-02-08 Fishgal Semyon I Fuel-feed system
US4355075A (en) 1979-03-27 1982-10-19 Teijin Limited Novel filament-like fibers and bundles thereof, and novel process and apparatus for production thereof
US4529792A (en) 1979-12-17 1985-07-16 Minnesota Mining And Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
DE3008618A1 (en) 1980-03-06 1981-09-10 Robert Bosch Gmbh, 7000 Stuttgart FUEL SUPPLY SYSTEM
US4405297A (en) 1980-05-05 1983-09-20 Kimberly-Clark Corporation Apparatus for forming nonwoven webs
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
GB2077351B (en) 1980-06-06 1984-06-20 Rockwell International Corp Diesel engine with ultrasonic atomization of fuel injected
FR2488655A2 (en) 1980-08-18 1982-02-19 Rockwell International Corp FUEL INJECTOR EQUIPPED WITH A ULTRA-SOUND VIBRATION RETENTION CHECK, IN PARTICULAR FOR A DIESEL ENGINE
DE3124854C2 (en) 1981-06-24 1985-03-14 Reinhard 8057 Eching Mühlbauer High pressure injection system with ultrasonic atomization
US4475515A (en) 1981-09-05 1984-10-09 Lucas Industries Public Limited Company Fuel systems for compression ignition engines
DE3151294C2 (en) 1981-12-24 1986-01-23 Fa. Carl Freudenberg, 6940 Weinheim Spunbonded polypropylene fabric with a low coefficient of fall
US4496101A (en) 1982-06-11 1985-01-29 Eaton Corporation Ultrasonic metering device and housing assembly
FR2530183B1 (en) 1982-07-13 1988-01-22 Legrand Sa VIBRATORY ASSISTANCE DEVICE FOR MOLDING INSTALLATION, PARTICULARLY FOR SYNTHETIC MATERIAL
US4526733A (en) 1982-11-17 1985-07-02 Kimberly-Clark Corporation Meltblown die and method
JPS59162972A (en) 1983-03-07 1984-09-13 Hitachi Ltd Atomizer
JPS60104757A (en) 1983-11-10 1985-06-10 Hitachi Ltd Multi-cylinder fuel atomizer for car
DE3401639A1 (en) 1984-01-19 1985-07-25 Hoechst Ag, 6230 Frankfurt DEVICE FOR PRODUCING A SPINNING FLEECE
DE3578002D1 (en) 1984-03-28 1990-07-05 Hitachi Ltd FUEL FEEDING DEVICE FOR AN INTERNAL COMBUSTION ENGINE.
EP0165407A3 (en) 1984-04-26 1986-06-18 Nippon Enlarging Color Inc. Flow control valve with piero-electric actuator
JPS6198957A (en) 1984-10-19 1986-05-17 Hitachi Ltd Fuel supply device of automobile
US4726523A (en) 1984-12-11 1988-02-23 Toa Nenryo Kogyo Kabushiki Kaisha Ultrasonic injection nozzle
JPS61138558A (en) 1984-12-11 1986-06-26 Toa Nenryo Kogyo Kk Oscillator for ultrasonic wave injection nozzle
JPH0646018B2 (en) 1985-01-23 1994-06-15 株式会社日立製作所 Fuel atomizer
JPS61226555A (en) 1985-03-29 1986-10-08 Hitachi Ltd Fuel injector/feeder associated with atomizer
JPS61259782A (en) 1985-05-13 1986-11-18 Toa Nenryo Kogyo Kk Vibrator for ultrasonic atomization having multistage edge part
JPS61259784A (en) 1985-05-13 1986-11-18 Toa Nenryo Kogyo Kk Vibrator for ultrasonic injection
JPS61259780A (en) 1985-05-13 1986-11-18 Toa Nenryo Kogyo Kk Vibrator for ultrasonic atomization
JPS61259781A (en) 1985-05-13 1986-11-18 Toa Nenryo Kogyo Kk Vibrator for ultrasonic pulverization having curved multistage edge part
US4663220A (en) 1985-07-30 1987-05-05 Kimberly-Clark Corporation Polyolefin-containing extrudable compositions and methods for their formation into elastomeric products including microfibers
JPH065060B2 (en) 1985-12-25 1994-01-19 株式会社日立製作所 Drive circuit for ultrasonic fuel atomizer for internal combustion engine
JPH0620528B2 (en) 1986-02-06 1994-03-23 鐘淵化学工業株式会社 Method of forming uniform droplets
US4644045A (en) 1986-03-14 1987-02-17 Crown Zellerbach Corporation Method of making spunbonded webs from linear low density polyethylene
ZA872710B (en) 1986-04-18 1987-10-05 Wade Oakes Dickinson Ben Iii Hydraulic drilling apparatus and method
JPS636074U (en) 1986-06-27 1988-01-16
DE3713253A1 (en) 1986-07-23 1988-02-04 Bosch Gmbh Robert ULTRASONIC SPRAYER
US4793954A (en) 1987-08-17 1988-12-27 The B. F. Goodrich Company Shear processing thermoplastics in the presence of ultrasonic vibration
DE3912524A1 (en) 1988-04-20 1989-11-02 Deutsche Forsch Luft Raumfahrt Device for periodically producing drops of the smallest dimensions
US4974780A (en) 1988-06-22 1990-12-04 Toa Nenryo Kogyo K.K. Ultrasonic fuel injection nozzle
US5017311A (en) 1988-07-21 1991-05-21 Idemitsu Kosan Co., Ltd. Method for injection molding into a resonating mold
JPH069845B2 (en) 1988-11-24 1994-02-09 出光興産株式会社 Extrusion molding method and apparatus
US4986248A (en) 1989-03-30 1991-01-22 Tonen Corporation Fuel supply system for internal combustion engine using an ultrasonic atomizer
US5160746A (en) 1989-06-07 1992-11-03 Kimberly-Clark Corporation Apparatus for forming a nonwoven web
DE3918663A1 (en) 1989-06-08 1990-12-13 Eberspaecher J FUEL PREHEATING ARRANGEMENT FOR AN ULTRASONIC SPRAYER FOR HEATER
US5179923A (en) 1989-06-30 1993-01-19 Tonen Corporation Fuel supply control method and ultrasonic atomizer
US5032027A (en) 1989-10-19 1991-07-16 Heat Systems Incorporated Ultrasonic fluid processing method
JPH0443854A (en) * 1990-06-08 1992-02-13 Aisan Ind Co Ltd Fuel injection valve
US4995367A (en) 1990-06-29 1991-02-26 Hitachi America, Ltd. System and method of control of internal combustion engine using methane fuel mixture
JPH0486367A (en) 1990-07-30 1992-03-18 Aisin Seiki Co Ltd Fuel injection valve
DE4101303A1 (en) 1991-01-17 1992-07-30 Guenter Poeschl ARRANGEMENT FOR SPRAYING PRESSURE FROM LIQUID FUEL AND METHOD THEREFOR
CA2035702C (en) 1991-02-05 1996-10-01 Mohan Vijay Ultrasonically generated cavitating or interrupted jet
US5226364A (en) 1991-03-27 1993-07-13 Rockwell International Corporation Ultrasonic ink metering for variable input control in lithographic printing
US5112206A (en) 1991-05-16 1992-05-12 Shell Oil Company Apparatus for the resin-impregnation of fibers
US5114633A (en) 1991-05-16 1992-05-19 Shell Oil Company Method for the resin-impregnation of fibers
US5269981A (en) 1991-09-30 1993-12-14 Kimberly-Clark Corporation Process for hydrosonically microaperturing
US5330100A (en) 1992-01-27 1994-07-19 Igor Malinowski Ultrasonic fuel injector
US5382400A (en) 1992-08-21 1995-01-17 Kimberly-Clark Corporation Nonwoven multicomponent polymeric fabric and method for making same
GB2274877A (en) 1993-02-03 1994-08-10 Ford Motor Co Fuel injected i.c. engine.
JP2981536B2 (en) 1993-09-17 1999-11-22 株式会社ペトカ Mesophase pitch-based carbon fiber mill and method for producing the same
US6010592A (en) 1994-06-23 2000-01-04 Kimberly-Clark Corporation Method and apparatus for increasing the flow rate of a liquid through an orifice
US6020277A (en) 1994-06-23 2000-02-01 Kimberly-Clark Corporation Polymeric strands with enhanced tensile strength, nonwoven webs including such strands, and methods for making same
US6380264B1 (en) 1994-06-23 2002-04-30 Kimberly-Clark Corporation Apparatus and method for emulsifying a pressurized multi-component liquid
US5803106A (en) * 1995-12-21 1998-09-08 Kimberly-Clark Worldwide, Inc. Ultrasonic apparatus and method for increasing the flow rate of a liquid through an orifice
CH688813A5 (en) 1994-06-30 1998-04-15 Ixtlan Ag Apparatus for the sterilization and homogenization of fluid substances using ultrasonic vibrations.
ZA969680B (en) 1995-12-21 1997-06-12 Kimberly Clark Co Ultrasonic liquid fuel injection on apparatus and method
US6053424A (en) 1995-12-21 2000-04-25 Kimberly-Clark Worldwide, Inc. Apparatus and method for ultrasonically producing a spray of liquid
US5868153A (en) 1995-12-21 1999-02-09 Kimberly-Clark Worldwide, Inc. Ultrasonic liquid flow control apparatus and method
US5801106A (en) 1996-05-10 1998-09-01 Kimberly-Clark Worldwide, Inc. Polymeric strands with high surface area or altered surface properties
JP3823391B2 (en) * 1996-08-31 2006-09-20 いすゞ自動車株式会社 Engine fuel injector
JPH10213041A (en) 1997-01-31 1998-08-11 Yamaha Motor Co Ltd Liquid injector for internal combustion engine
GB2327982B (en) 1997-08-07 2000-12-06 Lotus Car An internal combustion engine with fuel injection means and a method of delivering gasoline fuel into a combustion chamber of an internal combustion engine
DE19932760A1 (en) * 1999-07-14 2001-01-18 Bosch Gmbh Robert Fuel injector
US6279842B1 (en) * 2000-02-29 2001-08-28 Rodi Power Systems, Inc. Magnetostrictively actuated fuel injector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5892315A (en) 1996-06-26 1999-04-06 Gipson; Lamar Heath Apparatus and method for controlling an ultrasonic transducer
US5900690A (en) 1996-06-26 1999-05-04 Gipson; Lamar Heath Apparatus and method for controlling an ultrasonic transducer

Also Published As

Publication number Publication date
MXPA03004489A (en) 2003-09-05
DE20122813U1 (en) 2008-01-10
NO20032404L (en) 2003-05-27
WO2002048541A3 (en) 2002-08-22
JP2004521218A (en) 2004-07-15
CA2428143A1 (en) 2002-06-20
ATE378511T1 (en) 2007-11-15
KR100756144B1 (en) 2007-09-05
US6543700B2 (en) 2003-04-08
DE60131446D1 (en) 2007-12-27
DE60131446T2 (en) 2008-02-28
EP1342007A2 (en) 2003-09-10
AU2002235162A1 (en) 2002-06-24
US20020070287A1 (en) 2002-06-13
NO20032404D0 (en) 2003-05-27
EP1342007B1 (en) 2007-11-14
KR20030068556A (en) 2003-08-21

Similar Documents

Publication Publication Date Title
US6543700B2 (en) Ultrasonic unitized fuel injector with ceramic valve body
US6880770B2 (en) Method of retrofitting an unitized injector for ultrasonically stimulated operation
EP1984620B1 (en) Ultrasonic fuel injector
EP1977104B1 (en) Ultrasonic fuel injector
EP1977107B1 (en) Ultrasonic fuel injector
US20080210773A1 (en) Fuel Injection Device for Internal Combustion Engine
US7669783B2 (en) Metering valve with a hydraulic transmission element
US6616062B2 (en) High-pressure-proof injector with spherical valve element
US6651911B1 (en) Fuel injection valve for internal combustion engines
SU1746038A1 (en) Diesel engine electrically controlled injector
MX2008009428A (en) Ultrasonic fuel injector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2428143

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001985515

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/004489

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2002550232

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037007712

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037007712

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001985515

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001985515

Country of ref document: EP