WO2002047739A2 - Protective coating for stent - Google Patents

Protective coating for stent Download PDF

Info

Publication number
WO2002047739A2
WO2002047739A2 PCT/US2001/048706 US0148706W WO0247739A2 WO 2002047739 A2 WO2002047739 A2 WO 2002047739A2 US 0148706 W US0148706 W US 0148706W WO 0247739 A2 WO0247739 A2 WO 0247739A2
Authority
WO
WIPO (PCT)
Prior art keywords
stent
coating
radial elements
expandable member
delivery system
Prior art date
Application number
PCT/US2001/048706
Other languages
French (fr)
Other versions
WO2002047739A3 (en
Inventor
Thomas A. Steinke
Original Assignee
Md3, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Md3, Inc. filed Critical Md3, Inc.
Priority to AU2002230927A priority Critical patent/AU2002230927A1/en
Publication of WO2002047739A2 publication Critical patent/WO2002047739A2/en
Publication of WO2002047739A3 publication Critical patent/WO2002047739A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings

Definitions

  • This invention relates to a class of expandable medical implants known as "stents" which are used to maintain support of a body lumen. More specifically, the invention discloses the use of a polymeric coating in conjunction with a stent delivery system.
  • stents An important use of stents is found in situations where part of the vessel wall or stenotic plaque blocks or occludes blood flow in the vessel. Often, a balloon catheter is utilized in a percutaneous transluminal coronary angioplasty
  • PTCA PTCA
  • the dilation of the occlusion can cause fissuring of atherosclerotic plaque and damage to the endothelium and underlying smooth muscle cell layer, potentially leading to immediate problems from flap formation or perforations in the vessel wall, as well as long-term problems with restenosis of the dilated vessel.
  • implantation of stents can provide support for the body vessel, prevent re-closure of the vessel or provide patch repair for a perforated vessel. Further, the stent may overcome the tendency of diseased vessel walls to collapse, thereby maintaining a more normal flow of blood through that vessel.
  • a stent usually consists of a tubular structure that expands radially to be implanted into the tissue surrounding a body vessel.
  • the stent is delivered to the site of implantation by means of a stent delivery system, which usually includes a catheter that supports the stent in a radially collapsed state for transport to the implantation site.
  • Stents can be deployed in a body lumen by means appropriate to their design.
  • One such method would be to fit the collapsed stent over an inflatable element of a balloon catheter and expand the balloon to force the stent into contact with the body lumen.
  • the problem material in the vessel is compressed in a direction generally perpendicular to the wall of the vessel which, consequently, dilates the vessel to facilitate blood flow therethrough.
  • Radial expansion of the coronary artery occurs in several different dimensions and is related to the nature of the plaque.
  • Soft, fatty plaque deposits are flattened by the balloon and hardened deposits are cracked and split to enlarge the lumen.
  • the stent may be mounted onto a catheter that holds the stent as it is delivered through the body lumen and then releases the stent and allows it to self-expand into contact with the body lumen. This deployment is effected after the stent has been introduced percutaneously, transported transluminally and positioned at a desired location by means of the catheter.
  • a stent delivery system which can, among other things, protect the stent during handling of the stent prior to insertion, can prevent movement of the stent on the delivery catheter during insertion of the stent into a body vessel, and can be removed to allow the stent to be implanted at the deployment site.
  • a protective coating is disclosed for a stent, which protects the stent from damage during handling of the stent prior to insertion and during insertion of the stent into a body lumen.
  • the coating prevents movement of the stent on a delivery catheter during handling and insertion.
  • the coating also provides a lubricious surface that aids in endoluminal navigation.
  • the coating consists of a dissolvable or degradable polymer.
  • the coating can also be loaded with therapeutic compounds that can be delivered when the stent assembly is delivered to its desired location.
  • Fig. 1 is a perspective view of a representative stent.
  • Fig. 2 is a perspective view of a typical balloon-mounted stent assembly system used for stent delivery.
  • Fig. 3 is a plan view of a variation of the stent showing the linkage of adjacent modules, each comprising alternating one-rib and two-rib radial elements, wherein the one-rib radial elements further comprise a frame element adapted to facilitate linkage of adjacent modules in the circumferential axis.
  • Fig.4 is a perspective view of a stent with a polymeric coating.
  • U.S. Patent No. 5,445,646 to Euteneuer which is incorporated in its entirety herein by reference thereto, discloses a delivery system for implantation of a self-expanding stent in a vessel where the stent is held in a reduced delivery configuration for insertion and transport through a body lumen to a predetermined site for deployment.
  • sleeves are used to hold the stent in its reduced delivery configuration.
  • the stent may be held in the delivery configuration by means of a tubular sleeve made of water-soluble material, a plurality of bands made of water-soluble material, swelling band(s), or other degradable material.
  • U.S. Patent No. 5,989,280 to Euteneuer which is incorporated in its entirety herein by reference thereto, discloses a stent delivery device where the stent is held in a reduced delivery configuration for insertion and transport through a body lumen to a predetermined site for deployment of a stent, self-expanding stent, stent graft or the like.
  • the use of sleeves which can either hold a self-expanding stent in the delivery configuration or form a watertight chamber for an enclosed holding means are disclosed.
  • Balloon expandable stents may also be delivered within a sleeve.
  • the use of sleeves increases the overall diameter of the stent device.
  • U.S. Pat. No. 5,830, 217 to Ryan which is incorporated in its entirety herein by reference thereto, discloses a soluble capsule, fairing, or adherent material for a stent catheter or other device to be inserted into the human body.
  • the distal end of the catheter, including the stent or at least some portion of the stent is coated with a bioabsorbable and quickly dissolvable material.
  • This material encapsulates the catheter deployed device, providing a smooth surface for the device during passage through the vasculature.
  • the preferred bioabsorbable material is a pol ⁇ saccharide; however, other polymers including proteins, lipids, and synthetic compositions such as biocompatible polymers are also disclosed.
  • the material can be used with self-deploying stents. It can also be mixed with other compounds which provide pain killers, anti-coagulants, and anti-thrombus agents.
  • U.S. Patent No. 5,637,113 to Tartaglia which is incorporated in its entirety herein by reference thereto, discloses an expandable stent structural member and a planar sheet of polymeric material disposed on the outside of the expandable stent structural member.
  • the polymeric material is preferably bioabsorbable, and is preferably loaded or coated or laminated with a therapeutic agent or drug to reduce or prevent restenosis and thrombosis in the vessel being treated.
  • the polymer film can be attached to the existing stent structural member in an unexpanded state by adhesive, by heat sealing, or mechanically.
  • the polymer material can be attached to the stent structural member at one or more points and wrapped in a coil around the stent in an unexpanded state.
  • the polymer material can also be attached to an existing stent structural member by an interference fit by tightly wrapping the material around the stent structural member in an unexpanded state and attaching the polymer film to itself to form a sleeve around the stent structural member.
  • the stent structural member and polymeric film wrapping are provided with an additional coating of lubricious material, which facilitates insertion of the stent through the vasculature by providing a low friction surface over the stent.
  • Tartaglia does not teach the use of a polymeric material which can be used to prevent movement of the stent on the catheter during handling and insertion.
  • a typical stent 2 used for implantation in a body lumen has a tubular structure with a distal end 4 and a proximal end 6.
  • the illustrated stent is depicted with a sinusoidal support structure, but the invention can also be used with other forms of stent support structures, including the expandable stents disclosed in U.S. Pat. Nos. 6,033,436 and 6,224,626 issued to Steinke.
  • the stent 2 can be radially expanded from an initial, compressed state to an expanded, deployed state.
  • the compressed stent 3 is mounted onto a balloon 8, which is in turn mounted on a catheter 10.
  • a guidewire 12 typically extends from the distal end 4 of the catheter 10 running proximally through the catheter 10 to the exit point just proximal 6 of the balloon 8.
  • the stent 3 expands into a deployed state at the site of implantation.
  • a radially expanding stent comprising a tubular member with a clear through-lumen.
  • the tubular member has proximal and distal ends and a longitudinal length defined therebetween, and a circumference, and a diameter which is adjustable between at least a first collapsed diameter and at least a second expanded diameter.
  • the longitudinal length remains substantially unchanged when the tubular member is adjusted between the first collapsed diameter and the second collapsed diameter.
  • the tubular member includes at least one module comprising a series of sliding and locking radial elements, wherein each radial element defines a portion of the circumference of the tubular member and wherein no radial element overlaps with itself in either the first collapsed diameter or the second expanded diameter.
  • each radial element may comprise at least one elongated rib disposed between first and second end portions.
  • the radial elements that comprise a module alternate between radial elements having an odd number of elongated ribs and radial elements having an even number of elongated ribs.
  • the radial elements alternate between radial elements having one elongated rib and radial elements having two elongated ribs.
  • the stent also includes at least one articulating mechanism comprising a tab and at least one stop.
  • the articulating mechanism permits one-way sliding of the radial elements from the first collapsed diameter to the second expanded diameter, but inhibits radial recoil from the second expanded diameter.
  • the tubular member may comprise at least two modules which are coupled to one another by at least one linkage element.
  • the tubular member may further comprise a frame element that surrounds at least one radial element in each module.
  • such frame elements from adjacent modules may be coupled.
  • the coupling may include a linkage element extending between the frame elements.
  • the frame elements from adjacent modules may be coupled by interlinking of the frame elements.
  • the intermodular coupling may be degradable allowing for the independent modules to adapt to the vessel curvature.
  • any amount of overlap among the radial elements within a module remains constant as the tubular member is adjusted from the first collapsed diameter to the second expanded diameter. This amount of overlap is preferably less than about 15%.
  • the radial recoil of the tubular member in accordance with one preferred embodiment is less than about 5%.
  • the stiffness of the stent is preferably less than about 0.01 Newtons force/millimeter deflection.
  • the tubular member preferably provides a surface area coverage of greater than about 20%.
  • the tubular member is at least partially radiopaque.
  • the radial elements may be made substantially from a material which is work hardened to between about
  • the radial elements in the expandable intraluminal stent are made from a material selected from the group consisting of a polymer, a metal, a ceramic, and combinations thereof. In one mode, the material may be degradable.
  • the material may also include a bioactive agent.
  • the material is preferable adapted to deliver an amount of the bioactive agent which is sufficient to inhibit restenosis at the site of stent deployment.
  • the radial elements are adapted to release the bioactive agent during stent deployment when the tubular member is adjusted from the first collapsed diameter to the second expanded diameter.
  • the bioactive agents are preferably selected from the group consisting of antiplatelet agents, antithrombin agents, antiproliferative agents, and antiinflammatory agents.
  • the tubular member further comprises a sheath, such as for example in a vessel graft.
  • the expandable intraluminal stent comprises at least two modules, wherein the expanded diameters of the first and second modules are different.
  • the articulating mechanisms of the present invention which allow the stent to expand but inhibit stent recoil, may comprise a slot and a tab on one radial element and at least one stop on an adjacent radial element which is slideably engaged in the slot, wherein the tab is adapted to engage the at least one stop.
  • the articulating mechanisms may also include an expansion resistor on the slideably engaged radial element, wherein the expansion resistor resists passing through the slot during expansion until further force is applied, such that the radial elements in the module expand in a substantially uniform manner.
  • the articulating mechanism may include a release, such that actuation of the release permits sliding of the radial elements from the second expanded diameter back to the first collapsed diameter for possible removal of the stent.
  • the stent may comprise a floating coupling element having an articulating mechanism.
  • the expandable intraluminal stent comprises a tubular member with a clear through-lumen and a diameter which is adjustable between at least a first collapsed diameter and at least a second expanded diameter.
  • the tubular member comprises a series of sliding and locking radial elements made from a degradable material, wherein each radial element in the series defines a portion of the circumference of the tubular member and wherein no radial element overlaps itself.
  • This stent also has at least one articulating mechanism that permits one-way sliding of the radial elements from the first collapsed diameter to the second expanded diameter, but inhibits radial recoil from the second expanded diameter.
  • the degradable material may be selected from the group consisting of polyarylates (L-tyrosine-derived), free acid polyarylates, polycarbonates (L-tyrosine-derived), polyester-amides), polypropylene fumarate-co-ethylene glycol) copolymer, polyanhydride esters, polyanhydrides, polyorthoesters, and silk-elastin polymers, calcium phosphate, magnesium alloys or blends thereof.
  • the degradable polymer may further comprise at least one bioactive agent, which is released as the material degrades.
  • the at least one bioactive agent may be selected from the group consisting of antiplatelet agents, antithrombin agents, antiproliferative agents and antiinflammatory agents.
  • the stent material may be fiber-reinforced.
  • the reinforcing material may be a degradable material such as calcium phosphate (e.g., BIOGLASS).
  • the fibers may be fiberglass, graphite, or other non-degradable material.
  • the stmt of the present invention comprises a tubular member having a wall and a clear through-lumen.
  • the tubular member comprising a series of sliding and locking radial elements which do not overlap with themselves.
  • the radial elements further comprise a ratcheting mechanism that permits one-way sliding of the radial elements from a first collapsed diameter to a second expanded diameter.
  • the tubular member in this embodiment has a stiffness of less than about 0.01 Newtons force/millimeter deflection, and the wall of the tubular member has a thickness of less than about .005 inches.
  • the shape of the frame elements can be varied to cause circumferential off-setting of the different radial elements having odd and even-numbers of ribs.
  • the lateral coupling of one pair of radial elements (a one-rib 13 and a two-rib 14 radial element) from one module are connected by the linkage element 18 to another pair of radial elements from an adjacent module.
  • the frame elements 16 are shown in this embodiment surrounding only the one-rib radial elements 13.
  • the frame elements 16 are configured so as to promote nesting (and not overlap) of ribs 17 and frame elements 16, minimize the lateral space between the modules, and facilitate linkage by a circumferentially, rather than longitudinally, oriented linkage element 16, thereby maximizing the circumferential scaffolding and radial support.
  • a stent 5 such as that described with reference to Fig. 3, is covered with a protective coating 19.
  • the material used to form the protective coating 19 can include, but is not limited to, polymeric materials such as polyvinyl pyrrolidone, polyethylene glycol, polyethylene oxide, polyethylene acetate, polyvinyl alcohol, polyvinyl acetate, polyacrylic acid, polypropylene oxide, pol ⁇ methacrylic acid, polyacrylamide, hydrophilic soft segment urethane, gum Arabic, gum tragacanth, latexes, polyanhydrides, ethylene vinyl acetate, polysiloxanes, modified styrene-ethylene/butylene-styrene block polymers, aliphatic polyesters, resorbable polyesters or any combination thereof.
  • polymeric materials such as polyvinyl pyrrolidone, polyethylene glycol, polyethylene oxide, polyethylene acetate, polyvinyl alcohol, polyvinyl acetate, polyacrylic acid, polypropylene oxide, pol ⁇ methacrylic acid, polyacrylamide, hydrophilic soft segment urethane, gum
  • Examples are polypropylene fumarate-coethylene glycol) copolymer (aka fumarate anhydrides), polyanhydride esters, polyanhydrides, polyaspartimic acid, polycaprolactone, polyglycolic acids or copolymers thereof, polyorthesters, polyphosphazenes, tyrosine polyarylates, tyrosine polycarbonates (e.g., poly ⁇ 3-(4-hydroxyphenyl)propionyl tyrosine [ethyl ester] carbonate) a.k.a.poly(desaminotyrosyl tyrosine [ethyl ester] carbonate)) or copolymers such as poly(75%DTE-co-25%DT carbonate)s, polyamids.
  • polypropylene fumarate-coethylene glycol) copolymer aka fumarate anhydrides
  • polyanhydride esters e.g., polyanhydride esters, polyanhydrides, polya
  • More slowly degrading polymers are poly lactic acids or co-polymers thereof (e.g., lactic acid/ethylene glycol copolymers), polyfester amide)s, polydioxanone or poly-p-diaxanone) or PHV/PHB (i.e., polyhydroxybutyrate/polyhydroxyvalerate copolymers).
  • polysaccharides such as sucrose, mannitol, sorbitol, xylitol, fructose, dextrose, glucose, glucosamine, lactose, and combinations thereof.
  • Anionic hydrated polysaccharides may be used such as gellan, curdlan, XM-6, xanthan, and combinations thereof.
  • Seaweed polysaccharides may be used such as agar, algin, carrageenan, furcelleran and combinations thereof.
  • Cellulose derivatives such as alkyl cellulose, hydroxymethyl cellulose and combinations thereof may be used.
  • Lipid-based coatings may also be used.
  • the protective coating is preferably dissolvable or degradable (by hydrolysis which is water altering the chemical linkages or by biodegradation e.g., through the action of biological enzymes altering the chemical linkages) within the body. As a result, it serves to protect the stent during handling and insertion in the body, but it dissolves in blood or degrades to allow the stent to be deployed at the implantation site.
  • the material used for the coating is first dissolved in a solvent, such as 100% ethanol or other alcohols for instance methanol or isopropanol, as well as other solvents including but not limited to water, diethylene glycol, methylene chloride, chloroform, polyethylene glycol, glycerol, dimethyl formamide, tetrahydro-furan, hexafluoro-isopropanol or other Class 2 or 3 solvents regarded as acceptable for pharmaceutical applications and that are compatible with the coating substance, to obtain a solution which is 20% concentration by weight.
  • the solution is then applied to the stent by using techniques known to those skilled in the art, such as the process disclosed in U.S. Pat. No.
  • the protective coating When the protective coating is formed, it protects the stent from damage during handling of the stent prior to insertion.
  • the coating also prevents stent movement on the delivery catheter during insertion.
  • the coating forms a thin layer in and around the stent and the balloon, temporarily bonding the two together. Once wetted, either during stent preparation or after direct exposure to the blood, the very thin coating absorbs water creating a more pliable and/or lubricous surface coating.
  • the coating can also be used to deliver other compounds along with the stent.
  • these compounds include, but are not limited to, anticoagulants (e.g., heparin), antithrombotics, antiplatelets (e.g., abciximab), cytostatic and antiproliferative agents (e.g., rapamycin, taxol, C6-ceramide), or other moieties that bind to the family of intracellular receptors named FKBPs (e.g., RAD), antiinflammatory (e.g., dexamethasone, methyl prednisolone), anti itogens, antimitotoxins, antioxidants (e.g., probucoi), lipid regulating (e.g., pravastatin, pitavastatin), antisense oligonucleotides (e.g., c-myc), gene therapy vehicles, nitric oxide, growth factors and inhibitors, hirudin, hirugen, hirulog, anti-migratory drug (e
  • CoA reductase inhibitor methotrexate, monoclonal antibodies, nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor, seramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine and other PDGF antagonists, alpha-interferon, genetically engineered epithelial cells, tyrosine kinase inhibitor, D-Pro-Phe-Arg chloromethyl ketone (PPACK), D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone (FPRCH2C1), warfarin, and combinations thereof.
  • PPACK D-Pro-Phe-Arg chloromethyl ketone
  • FPRCH2C1 D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone
  • the compounds can be added to the coating using techniques known to those skilled in the art, such as the techniques described in U.S. Pat. Nos. 5,234,457 issued to Andersen, U.S. Pat. No. 5,830,217 issued to Ryan, and U.S. Pat. No. 5.989,280, issued to Euteneuer, all of which are hereby incorporated by reference.
  • the drug delivery release may occur by degradation or biodegradation of the coating, diffusion of the drug out of the coating, or through time-controlled release. It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.

Abstract

The following invention discloses a coating for a stent which protects the stent during handling and insertion of the stent into a body lumen, prevents movement of the stent on the catheter delivery system during insertion, and dissolves or degrades to allow stent deployment.

Description

PROTECTIVE COATING FOR STENT
Background of the Invention Field of the Invention
This invention relates to a class of expandable medical implants known as "stents" which are used to maintain support of a body lumen. More specifically, the invention discloses the use of a polymeric coating in conjunction with a stent delivery system.
Description of the Related Art An important use of stents is found in situations where part of the vessel wall or stenotic plaque blocks or occludes blood flow in the vessel. Often, a balloon catheter is utilized in a percutaneous transluminal coronary angioplasty
(PTCA) procedure to enlarge the occluded portion of the vessel. However, the dilation of the occlusion can cause fissuring of atherosclerotic plaque and damage to the endothelium and underlying smooth muscle cell layer, potentially leading to immediate problems from flap formation or perforations in the vessel wall, as well as long-term problems with restenosis of the dilated vessel.
To address these problems, implantation of stents can provide support for the body vessel, prevent re-closure of the vessel or provide patch repair for a perforated vessel. Further, the stent may overcome the tendency of diseased vessel walls to collapse, thereby maintaining a more normal flow of blood through that vessel.
A stent usually consists of a tubular structure that expands radially to be implanted into the tissue surrounding a body vessel. The stent is delivered to the site of implantation by means of a stent delivery system, which usually includes a catheter that supports the stent in a radially collapsed state for transport to the implantation site.
Stents can be deployed in a body lumen by means appropriate to their design. One such method would be to fit the collapsed stent over an inflatable element of a balloon catheter and expand the balloon to force the stent into contact with the body lumen. As the balloon is inflated, the problem material in the vessel is compressed in a direction generally perpendicular to the wall of the vessel which, consequently, dilates the vessel to facilitate blood flow therethrough.
Radial expansion of the coronary artery occurs in several different dimensions and is related to the nature of the plaque.
Soft, fatty plaque deposits are flattened by the balloon and hardened deposits are cracked and split to enlarge the lumen.
It is desirable to have the stent radially expand in a uniform manner. Alternatively, the stent may be mounted onto a catheter that holds the stent as it is delivered through the body lumen and then releases the stent and allows it to self-expand into contact with the body lumen. This deployment is effected after the stent has been introduced percutaneously, transported transluminally and positioned at a desired location by means of the catheter.
Several difficulties have been encountered in the handling and insertion of stents. First, due to the delicate nature and small size of the stent, there is a potential for damage of the stent during handling by the physician prior to insertion. Another common problem with stent deployment is slippage and early unintentional release of the stent, as discussed in U.S. Pat. No. 5,830,217 issued to Ryan. The stent may pop off the balloon during inflation or may slip backward off the balloon during steering to the intended site of release. In addition, passage of the stent through the hemostasis valve often causes the stent to be damaged or dislodged from the stent delivery device. Displaced stents often require removal of the stent from the body, a process which can result in severe damage to the body vessel and can require invasive surgery to remove the stent.
As a result, there is a need for a stent delivery system which can, among other things, protect the stent during handling of the stent prior to insertion, can prevent movement of the stent on the delivery catheter during insertion of the stent into a body vessel, and can be removed to allow the stent to be implanted at the deployment site.
Summary of the Invention
In one embodiment of the present invention, a protective coating is disclosed for a stent, which protects the stent from damage during handling of the stent prior to insertion and during insertion of the stent into a body lumen.
The coating prevents movement of the stent on a delivery catheter during handling and insertion. The coating also provides a lubricious surface that aids in endoluminal navigation. The coating consists of a dissolvable or degradable polymer.
The coating can also be loaded with therapeutic compounds that can be delivered when the stent assembly is delivered to its desired location.
Brief Description of the Drawings
Fig. 1 is a perspective view of a representative stent.
Fig. 2 is a perspective view of a typical balloon-mounted stent assembly system used for stent delivery. Fig. 3 is a plan view of a variation of the stent showing the linkage of adjacent modules, each comprising alternating one-rib and two-rib radial elements, wherein the one-rib radial elements further comprise a frame element adapted to facilitate linkage of adjacent modules in the circumferential axis.
Fig.4 is a perspective view of a stent with a polymeric coating.
Detailed Description of the Preferred Embodiment The subject matter disclosed in this application is related to that disclosed in co-pending U.S. Patent Application No. 09/283,800 filed on April 1, 1999, now U.S. Patent No. 6,224,626, which is a continuation-in-part of U.S. Patent Application No. 09/024,571 filed on February 17, 1998, now U. S. Patent No. 6,033,436; which are incorporated herein in their entirety by reference thereto. This application is also related to a co-pending U.S. Patent Application No. 09/739,552, entitled "EXPANDABLE STENT WITH SLIDING AND LOCKING RADIAL ELEMENTS" to Steinke et al., filed on December 14, 2000; which is incorporated herein in its entirety by reference thereto.
Several approaches have been proposed for delivering and deploying a stent with a protective sheath or coating. For example, U.S. Patent No. 5,445,646 to Euteneuer, which is incorporated in its entirety herein by reference thereto, discloses a delivery system for implantation of a self-expanding stent in a vessel where the stent is held in a reduced delivery configuration for insertion and transport through a body lumen to a predetermined site for deployment. Several embodiments in which sleeves are used to hold the stent in its reduced delivery configuration are disclosed. The stent may be held in the delivery configuration by means of a tubular sleeve made of water-soluble material, a plurality of bands made of water-soluble material, swelling band(s), or other degradable material.
U.S. Patent No. 5,989,280 to Euteneuer, which is incorporated in its entirety herein by reference thereto, discloses a stent delivery device where the stent is held in a reduced delivery configuration for insertion and transport through a body lumen to a predetermined site for deployment of a stent, self-expanding stent, stent graft or the like. The use of sleeves which can either hold a self-expanding stent in the delivery configuration or form a watertight chamber for an enclosed holding means are disclosed. Balloon expandable stents may also be delivered within a sleeve. Disadvantageously, the use of sleeves increases the overall diameter of the stent device.
U.S. Pat. No. 5,830, 217 to Ryan, which is incorporated in its entirety herein by reference thereto, discloses a soluble capsule, fairing, or adherent material for a stent catheter or other device to be inserted into the human body. The distal end of the catheter, including the stent or at least some portion of the stent, is coated with a bioabsorbable and quickly dissolvable material. This material encapsulates the catheter deployed device, providing a smooth surface for the device during passage through the vasculature. The preferred bioabsorbable material is a polγsaccharide; however, other polymers including proteins, lipids, and synthetic compositions such as biocompatible polymers are also disclosed. The material can be used with self-deploying stents. It can also be mixed with other compounds which provide pain killers, anti-coagulants, and anti-thrombus agents. U.S. Patent No. 5,637,113 to Tartaglia, which is incorporated in its entirety herein by reference thereto, discloses an expandable stent structural member and a planar sheet of polymeric material disposed on the outside of the expandable stent structural member. The polymeric material is preferably bioabsorbable, and is preferably loaded or coated or laminated with a therapeutic agent or drug to reduce or prevent restenosis and thrombosis in the vessel being treated. The polymer film can be attached to the existing stent structural member in an unexpanded state by adhesive, by heat sealing, or mechanically. The polymer material can be attached to the stent structural member at one or more points and wrapped in a coil around the stent in an unexpanded state. The polymer material can also be attached to an existing stent structural member by an interference fit by tightly wrapping the material around the stent structural member in an unexpanded state and attaching the polymer film to itself to form a sleeve around the stent structural member. In one embodiment, the stent structural member and polymeric film wrapping are provided with an additional coating of lubricious material, which facilitates insertion of the stent through the vasculature by providing a low friction surface over the stent. Disadvantageously, Tartaglia does not teach the use of a polymeric material which can be used to prevent movement of the stent on the catheter during handling and insertion.
U.S. Pat. No. 5,234,457 to Andersen, which is incorporated in its entirety herein by reference thereto, describes a stent assembly system comprising a compact mesh in a cylindrical form. A cured dissolvable material impregnates the mesh and contains the mesh in its compact form during placement. The cured material dissolves when the stent is in position in the body thereby to free the mesh and enable its expansion into a final form contacting the tissue surrounding the vessel. Disadvantageously, Andersen does not teach the use of a dissolvable material which can secure the stent on the catheter during handling and insertion into the body.
As depicted in Fig. 1, a typical stent 2 used for implantation in a body lumen has a tubular structure with a distal end 4 and a proximal end 6. The illustrated stent is depicted with a sinusoidal support structure, but the invention can also be used with other forms of stent support structures, including the expandable stents disclosed in U.S. Pat. Nos. 6,033,436 and 6,224,626 issued to Steinke.
The stent 2 can be radially expanded from an initial, compressed state to an expanded, deployed state. In a typical balloon-mounted stent assembly depicted in Fig. 2, the compressed stent 3 is mounted onto a balloon 8, which is in turn mounted on a catheter 10. A guidewire 12 typically extends from the distal end 4 of the catheter 10 running proximally through the catheter 10 to the exit point just proximal 6 of the balloon 8. The stent 3 expands into a deployed state at the site of implantation.
Alternate stent designs may also be utilized such as a radially expanding stent comprising a tubular member with a clear through-lumen. The tubular member has proximal and distal ends and a longitudinal length defined therebetween, and a circumference, and a diameter which is adjustable between at least a first collapsed diameter and at least a second expanded diameter. In a preferred mode, the longitudinal length remains substantially unchanged when the tubular member is adjusted between the first collapsed diameter and the second collapsed diameter. The tubular member includes at least one module comprising a series of sliding and locking radial elements, wherein each radial element defines a portion of the circumference of the tubular member and wherein no radial element overlaps with itself in either the first collapsed diameter or the second expanded diameter.
In one aspect, each radial element may comprise at least one elongated rib disposed between first and second end portions. Preferably, the radial elements that comprise a module alternate between radial elements having an odd number of elongated ribs and radial elements having an even number of elongated ribs. In one preferred mode, the radial elements alternate between radial elements having one elongated rib and radial elements having two elongated ribs.
In one preferred embodiment, the stent also includes at least one articulating mechanism comprising a tab and at least one stop. The articulating mechanism permits one-way sliding of the radial elements from the first collapsed diameter to the second expanded diameter, but inhibits radial recoil from the second expanded diameter.
In variations to the stent, the tubular member may comprise at least two modules which are coupled to one another by at least one linkage element. In one variation, the tubular member may further comprise a frame element that surrounds at least one radial element in each module. In stents in which the tubular member comprises at least two modules, such frame elements from adjacent modules may be coupled. The coupling may include a linkage element extending between the frame elements. In addition or in the alternative, the frame elements from adjacent modules may be coupled by interlinking of the frame elements. In another aspect, the intermodular coupling may be degradable allowing for the independent modules to adapt to the vessel curvature. In another variation to the stent of the present invention, any amount of overlap among the radial elements within a module remains constant as the tubular member is adjusted from the first collapsed diameter to the second expanded diameter. This amount of overlap is preferably less than about 15%.
The radial recoil of the tubular member in accordance with one preferred embodiment is less than about 5%. The stiffness of the stent is preferably less than about 0.01 Newtons force/millimeter deflection. The tubular member preferably provides a surface area coverage of greater than about 20%.
In accordance with another variation of the present stent, the tubular member is at least partially radiopaque. The radial elements may be made substantially from a material which is work hardened to between about
80% and 95%. In one preferred variation, the radial elements in the expandable intraluminal stent are made from a material selected from the group consisting of a polymer, a metal, a ceramic, and combinations thereof. In one mode, the material may be degradable.
In another mode of the invention, the material may also include a bioactive agent. The material is preferable adapted to deliver an amount of the bioactive agent which is sufficient to inhibit restenosis at the site of stent deployment. In one variation, the radial elements are adapted to release the bioactive agent during stent deployment when the tubular member is adjusted from the first collapsed diameter to the second expanded diameter. The bioactive agents are preferably selected from the group consisting of antiplatelet agents, antithrombin agents, antiproliferative agents, and antiinflammatory agents.
In another variation, the tubular member further comprises a sheath, such as for example in a vessel graft. In one aspect, the expandable intraluminal stent comprises at least two modules, wherein the expanded diameters of the first and second modules are different.
The articulating mechanisms of the present invention which allow the stent to expand but inhibit stent recoil, may comprise a slot and a tab on one radial element and at least one stop on an adjacent radial element which is slideably engaged in the slot, wherein the tab is adapted to engage the at least one stop. The articulating mechanisms may also include an expansion resistor on the slideably engaged radial element, wherein the expansion resistor resists passing through the slot during expansion until further force is applied, such that the radial elements in the module expand in a substantially uniform manner. In another variation, the articulating mechanism may include a release, such that actuation of the release permits sliding of the radial elements from the second expanded diameter back to the first collapsed diameter for possible removal of the stent. In another variation, the stent may comprise a floating coupling element having an articulating mechanism. In another variation, the expandable intraluminal stent comprises a tubular member with a clear through-lumen and a diameter which is adjustable between at least a first collapsed diameter and at least a second expanded diameter. The tubular member comprises a series of sliding and locking radial elements made from a degradable material, wherein each radial element in the series defines a portion of the circumference of the tubular member and wherein no radial element overlaps itself. This stent also has at least one articulating mechanism that permits one-way sliding of the radial elements from the first collapsed diameter to the second expanded diameter, but inhibits radial recoil from the second expanded diameter. The degradable material may be selected from the group consisting of polyarylates (L-tyrosine-derived), free acid polyarylates, polycarbonates (L-tyrosine-derived), polyester-amides), polypropylene fumarate-co-ethylene glycol) copolymer, polyanhydride esters, polyanhydrides, polyorthoesters, and silk-elastin polymers, calcium phosphate, magnesium alloys or blends thereof. In a variation to the degradable stent, the degradable polymer may further comprise at least one bioactive agent, which is released as the material degrades. The at least one bioactive agent may be selected from the group consisting of antiplatelet agents, antithrombin agents, antiproliferative agents and antiinflammatory agents.
In another variation, the stent material may be fiber-reinforced. The reinforcing material may be a degradable material such as calcium phosphate (e.g., BIOGLASS). Alternatively, the fibers may be fiberglass, graphite, or other non-degradable material.
In another mode, the stmt of the present invention comprises a tubular member having a wall and a clear through-lumen. The tubular member comprising a series of sliding and locking radial elements which do not overlap with themselves. The radial elements further comprise a ratcheting mechanism that permits one-way sliding of the radial elements from a first collapsed diameter to a second expanded diameter. The tubular member in this embodiment has a stiffness of less than about 0.01 Newtons force/millimeter deflection, and the wall of the tubular member has a thickness of less than about .005 inches.
The shape of the frame elements can be varied to cause circumferential off-setting of the different radial elements having odd and even-numbers of ribs. For example, with reference to Figure 3, the lateral coupling of one pair of radial elements (a one-rib 13 and a two-rib 14 radial element) from one module are connected by the linkage element 18 to another pair of radial elements from an adjacent module. The frame elements 16 are shown in this embodiment surrounding only the one-rib radial elements 13. The frame elements 16 are configured so as to promote nesting (and not overlap) of ribs 17 and frame elements 16, minimize the lateral space between the modules, and facilitate linkage by a circumferentially, rather than longitudinally, oriented linkage element 16, thereby maximizing the circumferential scaffolding and radial support. In one embodiment of the current invention, which is illustrated in Fig. 4, a stent 5, such as that described with reference to Fig. 3, is covered with a protective coating 19. The material used to form the protective coating 19 can include, but is not limited to, polymeric materials such as polyvinyl pyrrolidone, polyethylene glycol, polyethylene oxide, polyethylene acetate, polyvinyl alcohol, polyvinyl acetate, polyacrylic acid, polypropylene oxide, polγmethacrylic acid, polyacrylamide, hydrophilic soft segment urethane, gum Arabic, gum tragacanth, latexes, polyanhydrides, ethylene vinyl acetate, polysiloxanes, modified styrene-ethylene/butylene-styrene block polymers, aliphatic polyesters, resorbable polyesters or any combination thereof. Examples are polypropylene fumarate-coethylene glycol) copolymer (aka fumarate anhydrides), polyanhydride esters, polyanhydrides, polyaspartimic acid, polycaprolactone, polyglycolic acids or copolymers thereof, polyorthesters, polyphosphazenes, tyrosine polyarylates, tyrosine polycarbonates (e.g., poly{3-(4-hydroxyphenyl)propionyl tyrosine [ethyl ester] carbonate) a.k.a.poly(desaminotyrosyl tyrosine [ethyl ester] carbonate)) or copolymers such as poly(75%DTE-co-25%DT carbonate)s, polyamids. More slowly degrading polymers are poly lactic acids or co-polymers thereof (e.g., lactic acid/ethylene glycol copolymers), polyfester amide)s, polydioxanone or poly-p-diaxanone) or PHV/PHB (i.e., polyhydroxybutyrate/polyhydroxyvalerate copolymers).
Other types of materials that are based on natural materials may be used and include polysaccharides such as sucrose, mannitol, sorbitol, xylitol, fructose, dextrose, glucose, glucosamine, lactose, and combinations thereof. Anionic hydrated polysaccharides may be used such as gellan, curdlan, XM-6, xanthan, and combinations thereof.
Seaweed polysaccharides may be used such as agar, algin, carrageenan, furcelleran and combinations thereof. Cellulose derivatives such as alkyl cellulose, hydroxymethyl cellulose and combinations thereof may be used. Alginates, calcium phosphate glass alone or with other resorbable polymers, chitosan (e.g., NOOC or NOOC-G), collagen, fibrin or fibrinogen, hyaluronic acid, hydroxy acids (i.e. lactide, glycolide, hydroxybutyrate), lactone-based polymers, or even silk-elastin polymers.
Other useful materials include pectins, gels, gelatin, soluble starches, mucoid substances, dextrans, dextranes, dextrins and combinations thereof. Lipid-based coatings may also be used.
The protective coating is preferably dissolvable or degradable (by hydrolysis which is water altering the chemical linkages or by biodegradation e.g., through the action of biological enzymes altering the chemical linkages) within the body. As a result, it serves to protect the stent during handling and insertion in the body, but it dissolves in blood or degrades to allow the stent to be deployed at the implantation site.
In one method of preparing the coating, the material used for the coating is first dissolved in a solvent, such as 100% ethanol or other alcohols for instance methanol or isopropanol, as well as other solvents including but not limited to water, diethylene glycol, methylene chloride, chloroform, polyethylene glycol, glycerol, dimethyl formamide, tetrahydro-furan, hexafluoro-isopropanol or other Class 2 or 3 solvents regarded as acceptable for pharmaceutical applications and that are compatible with the coating substance, to obtain a solution which is 20% concentration by weight. The solution is then applied to the stent by using techniques known to those skilled in the art, such as the process disclosed in U.S. Pat. No. 5,234,457, which is hereby incorporated by reference, in which the stent is rotated on a mandrel as the solution is poured over the stent. The stent is then air cured to form the protective coating. The coating may be applied manually with the aid of a calibrated dispenser or through controlled spray- coating or dipping process. Once applied the substance the coating may be cured by allowing the solvent to evaporate and leave the dried coating on the stent. Alternatively the coating might by light cured, depending upon its chemical nature. The thickness of the coating ranges from about 0.001"-0.0015" (about 25.4-38.1 microns thick).
When the protective coating is formed, it protects the stent from damage during handling of the stent prior to insertion. The coating also prevents stent movement on the delivery catheter during insertion. The coating forms a thin layer in and around the stent and the balloon, temporarily bonding the two together. Once wetted, either during stent preparation or after direct exposure to the blood, the very thin coating absorbs water creating a more pliable and/or lubricous surface coating.
The coating can also be used to deliver other compounds along with the stent. These compounds include, but are not limited to, anticoagulants (e.g., heparin), antithrombotics, antiplatelets (e.g., abciximab), cytostatic and antiproliferative agents (e.g., rapamycin, taxol, C6-ceramide), or other moieties that bind to the family of intracellular receptors named FKBPs (e.g., RAD), antiinflammatory (e.g., dexamethasone, methyl prednisolone), anti itogens, antimitotoxins, antioxidants (e.g., probucoi), lipid regulating (e.g., pravastatin, pitavastatin), antisense oligonucleotides (e.g., c-myc), gene therapy vehicles, nitric oxide, growth factors and inhibitors, hirudin, hirugen, hirulog, anti-migratory drug (e.g., batimastat), ace inhibitors (e.g., cilazapril, tranilast), somatostatin analogues (e.g., angiopeptin), other statins (e.g., simvastatin, lovastatin, fluvastatin, lovastatin), vasodilators (e.g., trapidil), tacrolimus vincristine, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, dipyridamole, glycoprotein llb/llla, platelet membrane receptor antibody, recombinant hirudin, thro bin inhibitor, angiopeptin, angiotensin converting enzyme inhibitors (such as Captopril (Squibb), Cilazapril (Hoffman-La Roche) or Lisinopril (Merck)), calcium channel blockers, colchicine, fibroblast growth factor antagonists, fish oil, omega 3-fatty acid, histamine antagonists, HMG-
CoA reductase inhibitor, methotrexate, monoclonal antibodies, nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor, seramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine and other PDGF antagonists, alpha-interferon, genetically engineered epithelial cells, tyrosine kinase inhibitor, D-Pro-Phe-Arg chloromethyl ketone (PPACK), D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone (FPRCH2C1), warfarin, and combinations thereof. The compounds can be added to the coating using techniques known to those skilled in the art, such as the techniques described in U.S. Pat. Nos. 5,234,457 issued to Andersen, U.S. Pat. No. 5,830,217 issued to Ryan, and U.S. Pat. No. 5.989,280, issued to Euteneuer, all of which are hereby incorporated by reference. The drug delivery release may occur by degradation or biodegradation of the coating, diffusion of the drug out of the coating, or through time-controlled release. It will be understood by those of skill in the art that numerous and various modifications can be made without departing from the spirit of the present invention. Therefore, it should be clearly understood that the forms of the present invention are illustrative only and are not intended to limit the scope of the present invention.

Claims

WHAT IS CLAIMED IS:
1. A method for applying a protective coating for a stent delivery system, comprising: selecting a dissolvable or degradable polymer; dissolving said polymer into a solvent to make a solution; applying said solution to the surface of the stent delivery system comprising a stent and an expandable member; allowing said solution to air cure to form a coating around the stent and the expandable member, wherein said stent and said expandable member are bonded together.
2. The method of claim 1 wherein the polymer is dissolvable in blood.
3. The method of claim 1, wherein the solution is manually applied to the stent and the expandable member.
4. The method of claim 1, wherein the solution is applied by controlled spray-coating.
5. The method of claim 1, wherein the solution is applied by a dipping process.
6. The method of claim 1, wherein the thickness of the coating is from about 0.001 inches to 0.0015 inches.
7. The product formed by the process of Claim 1.
8. The method of Claim .1, wherein said polymer is selected from a group consisting of polyvinyl pyrrolidone, polyethylene glycol, polyethylene oxide, polyethylene acetate, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyacrylamide, hydrophilic soft segment urethane, gum Arabic, gum tragacanth, C6-ceramide, or any combination thereof.
9. The method of Claim 1, where said coating further comprises a compound selected from the group consisting of antithrombotics, anticoagulants, antimitogens, antimitotoxins, antisense oligonucleotides, gene therapy vehicles, nitric oxide, growth factors and inhibitors, hirudin, hirugen, hirulog, D-Pro-Phe-Arg chloromethyl ketone (PPACK), D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone (FPRCH2CI), heparin, C6-ceramide and warfarin.
10. A stent delivery system, comprising: an elongated catheter having a proximal and distal end portion and an expandable member disposed along the distal end portion of the elongated catheter, said expandable member being coupled to an expansion actuator; a stent which is adjustable between a first collapsed diameter and at least a second expanded diameter, comprising a tubular member having a length and a diameter, and comprising a series of sliding and locking radial elements, and at least one articulating mechanism which permits one-way sliding of the radial elements from the first collapsed diameter to the second expanded diameter but inhibits radial recoil from the second expanded diameter, wherein said stent is disposed in its collapsed state over the expandable member on the elongated catheter; and a degradable polymeric coating selected from a group consisting of polyvinyl pyrrolidone, polyethylene glycol, polyethylene oxide, polyethylene acetate, polyvinyl alcohol, polyacrylic acid, polymethacrylic acid, polyacrylamide, hydrophilic soft segment urethane, gum Arabic, gum tragacanth, or any combination thereof, wherein said polymeric coating holds said stent on said expandable member.
11. The stent delivery system of Claim 10, where said coating further comprises a compound selected from the group consisting of antithrombotics, anticoagulants, antimitogens, antimitotoxins, antisense oligonucleotides, gene therapy vehicles, nitric oxide, growth factors and inhibitors, hirudin, hirugen, hirulog, D-Pro-Phe-Arg chloromethyl ketone (PPACK), D-phenylalanyl-L-prolyl-L-arginyl chloromethyl ketone (FPRCH2CI), heparin, C6-ceramide and warfarin.
12. The stent delivery system of Claim 10, wherein each radial element comprises at least one elongated rib disposed between first and second end portions.
13. The stent delivery system of Claim 12, wherein the radial elements alternate between radial elements having an odd number of elongated ribs and radial elements having an even number of elongated ribs.
14. The stent delivery system of Claim 13, wherein the radial elements alternate between radial elements having one elongated rib and radial elements having two elongated ribs.
PCT/US2001/048706 2000-12-15 2001-12-14 Protective coating for stent WO2002047739A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002230927A AU2002230927A1 (en) 2000-12-15 2001-12-14 Protective coating for stent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US25599500P 2000-12-15 2000-12-15
US60/255,995 2000-12-15
US10/017,341 US20020103526A1 (en) 2000-12-15 2001-12-13 Protective coating for stent
US10/017,341 2001-12-13

Publications (2)

Publication Number Publication Date
WO2002047739A2 true WO2002047739A2 (en) 2002-06-20
WO2002047739A3 WO2002047739A3 (en) 2002-12-05

Family

ID=26689743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/048706 WO2002047739A2 (en) 2000-12-15 2001-12-14 Protective coating for stent

Country Status (3)

Country Link
US (1) US20020103526A1 (en)
AU (1) AU2002230927A1 (en)
WO (1) WO2002047739A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090809A1 (en) * 2002-04-26 2003-11-06 Medtronic Ave, Inc. Endovascular stent with a preservative coating
WO2004002548A1 (en) * 2002-06-28 2004-01-08 Novartis Ag Use of organic compounds
WO2004009147A1 (en) * 2002-07-18 2004-01-29 Medtronic Ave Inc. Medical devices comprising a protein-tyrosine kinase inhibitor to inhibit restonosis
EP1449546A1 (en) 2003-02-21 2004-08-25 SORIN BIOMEDICA S.p.A. A process for producing stents and corresponding stent
WO2005082283A1 (en) * 2004-02-26 2005-09-09 Boston Scientific Limited Medical devices
US8377111B2 (en) 2003-09-16 2013-02-19 Boston Scientific Scimed, Inc. Medical devices
EP2857049B1 (en) 2002-09-20 2016-11-30 Bayer Intellectual Property GmbH Medical device for delivering drugs

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172897B2 (en) * 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US8029561B1 (en) * 2000-05-12 2011-10-04 Cordis Corporation Drug combination useful for prevention of restenosis
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
DE60124285T3 (en) 2000-09-29 2011-03-17 Cordis Corp., Miami Lakes COATED MEDICAL EQUIPMENT
PL361879A1 (en) * 2001-01-12 2004-10-04 Societe De Conseil De Recherches Et D'applications Scientifiques, S.A.S. Pharmaceutical compositions which inhibit vascular proliferation and method of use thereof
US20030065386A1 (en) * 2001-09-28 2003-04-03 Weadock Kevin Shaun Radially expandable endoprosthesis device with two-stage deployment
IL149828A (en) * 2002-05-23 2007-09-20 Ronnie Levi Medical device having a tubular portion
US20050208101A1 (en) * 2002-07-23 2005-09-22 Viktor Sevastianov Coating composition for an implantable medical device and method for coating such a device
JP4352673B2 (en) * 2002-09-13 2009-10-28 株式会社カネカ Bioluminal embolization device
EP1402849B2 (en) * 2002-09-20 2011-03-16 Abbott Laboratories Vascular Enterprises Limited Stent with rough surface and its manufacturing method
US7125577B2 (en) * 2002-09-27 2006-10-24 Surmodics, Inc Method and apparatus for coating of substrates
USRE40722E1 (en) 2002-09-27 2009-06-09 Surmodics, Inc. Method and apparatus for coating of substrates
US7192484B2 (en) 2002-09-27 2007-03-20 Surmodics, Inc. Advanced coating apparatus and method
US7597903B2 (en) * 2002-12-02 2009-10-06 Shenkar College Of Engineering And Design Method and composition for producing catheters with antibacterial property
US7533514B2 (en) * 2003-04-25 2009-05-19 Boston Scientific Scimed, Inc. Method and apparatus for automated handling of medical devices during manufacture
EP1633410B1 (en) * 2003-06-13 2017-05-17 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Biodegradable stents
DE10361942A1 (en) * 2003-12-24 2005-07-21 Restate Patent Ag Radioopaque marker for medical implants
DE10361940A1 (en) * 2003-12-24 2005-07-28 Restate Patent Ag Degradation control of biodegradable implants by coating
US20050214339A1 (en) * 2004-03-29 2005-09-29 Yiwen Tang Biologically degradable compositions for medical applications
US7958840B2 (en) * 2004-10-27 2011-06-14 Surmodics, Inc. Method and apparatus for coating of substrates
FR2878522B1 (en) * 2004-12-01 2008-04-18 Merck Sante Soc Par Actions Si NEW SPECIFIC INHIBITORS OF CASPAS-10
US20070100321A1 (en) * 2004-12-22 2007-05-03 Leon Rudakov Medical device
DE102005003188A1 (en) * 2005-01-20 2006-07-27 Restate Patent Ag Medical implant made of an amorphous or nanocrystalline alloy
KR100678435B1 (en) 2005-04-13 2007-02-02 주식회사 에스앤지바이오텍 Tube type stent of covering wall of blood vessel
US8778375B2 (en) * 2005-04-29 2014-07-15 Advanced Cardiovascular Systems, Inc. Amorphous poly(D,L-lactide) coating
US8840660B2 (en) 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US20070282434A1 (en) * 2006-05-30 2007-12-06 Yunbing Wang Copolymer-bioceramic composite implantable medical devices
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US20100131045A1 (en) * 2006-07-24 2010-05-27 Existent Inc. Stent designs, materials and processing methods
US8062465B1 (en) * 2006-08-02 2011-11-22 Abbott Cardiovascular Systems Inc. Methods for improved stent retention
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8133553B2 (en) 2007-06-18 2012-03-13 Zimmer, Inc. Process for forming a ceramic layer
US8309521B2 (en) 2007-06-19 2012-11-13 Zimmer, Inc. Spacer with a coating thereon for use with an implant device
US8608049B2 (en) 2007-10-10 2013-12-17 Zimmer, Inc. Method for bonding a tantalum structure to a cobalt-alloy substrate
US9364349B2 (en) 2008-04-24 2016-06-14 Surmodics, Inc. Coating application system with shaped mandrel
US8986728B2 (en) 2008-05-30 2015-03-24 Abbott Cardiovascular Systems Inc. Soluble implantable device comprising polyelectrolyte with hydrophobic counterions
US8202529B2 (en) * 2008-05-30 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable drug delivery devices having alternating hydrophilic and amphiphilic polymer layers
US20090297578A1 (en) * 2008-06-03 2009-12-03 Trollsas Mikael O Biosoluble coating comprising anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders
WO2013119912A1 (en) * 2012-02-10 2013-08-15 The University Of Iowa Research Foundation Vascular prosthetic assemblies
US9308355B2 (en) 2012-06-01 2016-04-12 Surmodies, Inc. Apparatus and methods for coating medical devices
US9827401B2 (en) 2012-06-01 2017-11-28 Surmodics, Inc. Apparatus and methods for coating medical devices
US11090468B2 (en) 2012-10-25 2021-08-17 Surmodics, Inc. Apparatus and methods for coating medical devices
US9283350B2 (en) 2012-12-07 2016-03-15 Surmodics, Inc. Coating apparatus and methods
WO2020112816A1 (en) 2018-11-29 2020-06-04 Surmodics, Inc. Apparatus and methods for coating medical devices
US11819590B2 (en) 2019-05-13 2023-11-21 Surmodics, Inc. Apparatus and methods for coating medical devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234457A (en) * 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5843089A (en) * 1990-12-28 1998-12-01 Boston Scientific Corporation Stent lining
US5989280A (en) * 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620218A (en) * 1963-10-31 1971-11-16 American Cyanamid Co Cylindrical prosthetic devices of polyglycolic acid
US5643314A (en) * 1995-11-13 1997-07-01 Navius Corporation Self-expanding stent
US5876419A (en) * 1976-10-02 1999-03-02 Navius Corporation Stent and method for making a stent
US4553545A (en) * 1981-09-16 1985-11-19 Medinvent S.A. Device for application in blood vessels or other difficultly accessible locations and its use
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US5059211A (en) * 1987-06-25 1991-10-22 Duke University Absorbable vascular stent
US5527337A (en) * 1987-06-25 1996-06-18 Duke University Bioabsorbable stent and method of making the same
US4985760A (en) * 1987-10-09 1991-01-15 Canon Kabushiki Kaisha Color imager having varying filter aperture sizes to compensate for luminance differences between colors
US5266073A (en) * 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5192307A (en) * 1987-12-08 1993-03-09 Wall W Henry Angioplasty stent
CA1322628C (en) * 1988-10-04 1993-10-05 Richard A. Schatz Expandable intraluminal graft
CH678393A5 (en) * 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US5545208A (en) * 1990-02-28 1996-08-13 Medtronic, Inc. Intralumenal drug eluting prosthesis
US6004346A (en) * 1990-02-28 1999-12-21 Medtronic, Inc. Intralumenal drug eluting prosthesis
US5464450A (en) * 1991-10-04 1995-11-07 Scimed Lifesystems Inc. Biodegradable drug delivery vascular stent
WO1993006792A1 (en) * 1991-10-04 1993-04-15 Scimed Life Systems, Inc. Biodegradable drug delivery vascular stent
CA2087132A1 (en) * 1992-01-31 1993-08-01 Michael S. Williams Stent capable of attachment within a body lumen
US5306294A (en) * 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
DE69308568T2 (en) * 1992-08-06 1997-10-02 Cook William Europ PROSTHESIS FOR SUPPORTING A BLOOD VESSEL OR A LUMEN OF A CAVE ORGAN
US5578075B1 (en) * 1992-11-04 2000-02-08 Daynke Res Inc Minimally invasive bioactivated endoprosthesis for vessel repair
US5449382A (en) * 1992-11-04 1995-09-12 Dayton; Michael P. Minimally invasive bioactivated endoprosthesis for vessel repair
US5383926A (en) * 1992-11-23 1995-01-24 Children's Medical Center Corporation Re-expandable endoprosthesis
US5441515A (en) * 1993-04-23 1995-08-15 Advanced Cardiovascular Systems, Inc. Ratcheting stent
KR100316863B1 (en) * 1993-07-23 2002-09-26 쿠크 인코포레이티드 Flexible stent with pattern formed from plate material
US5643312A (en) * 1994-02-25 1997-07-01 Fischell Robert Stent having a multiplicity of closed circular structures
US5556413A (en) * 1994-03-11 1996-09-17 Advanced Cardiovascular Systems, Inc. Coiled stent with locking ends
JPH07259757A (en) * 1994-03-24 1995-10-09 Sanyo Electric Co Ltd Rotary type scroll compressor
US5629077A (en) * 1994-06-27 1997-05-13 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
US5397355A (en) * 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5649977A (en) * 1994-09-22 1997-07-22 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
US5549662A (en) * 1994-11-07 1996-08-27 Scimed Life Systems, Inc. Expandable stent using sliding members
US5549862A (en) * 1995-07-31 1996-08-27 Vail; Donald R. Method for fabricating a one piece coved backsplash
US5735872A (en) * 1995-11-13 1998-04-07 Navius Corporation Stent
US5741293A (en) * 1995-11-28 1998-04-21 Wijay; Bandula Locking stent
US5707387A (en) * 1996-03-25 1998-01-13 Wijay; Bandula Flexible stent
US5830217A (en) * 1996-08-09 1998-11-03 Thomas J. Fogarty Soluble fixation device and method for stent delivery catheters
US6033436A (en) * 1998-02-17 2000-03-07 Md3, Inc. Expandable stent
US6224626B1 (en) * 1998-02-17 2001-05-01 Md3, Inc. Ultra-thin expandable stent
US6623521B2 (en) * 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US6951053B2 (en) * 2002-09-04 2005-10-04 Reva Medical, Inc. Method of manufacturing a prosthesis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843089A (en) * 1990-12-28 1998-12-01 Boston Scientific Corporation Stent lining
US5234457A (en) * 1991-10-09 1993-08-10 Boston Scientific Corporation Impregnated stent
US5989280A (en) * 1993-10-22 1999-11-23 Scimed Lifesystems, Inc Stent delivery apparatus and method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003090809A1 (en) * 2002-04-26 2003-11-06 Medtronic Ave, Inc. Endovascular stent with a preservative coating
WO2004002548A1 (en) * 2002-06-28 2004-01-08 Novartis Ag Use of organic compounds
WO2004009147A1 (en) * 2002-07-18 2004-01-29 Medtronic Ave Inc. Medical devices comprising a protein-tyrosine kinase inhibitor to inhibit restonosis
JP2005538756A (en) * 2002-07-18 2005-12-22 メドトロニック・エイヴイイー・インコーポレーテッド Medical device comprising a protein-tyrosine kinase inhibitor for inhibiting restenosis
EP2857049B1 (en) 2002-09-20 2016-11-30 Bayer Intellectual Property GmbH Medical device for delivering drugs
EP1857127B1 (en) 2002-09-20 2017-11-08 Bayer Intellectual Property GmbH Balloon catheter for drug delivery
EP2857050B1 (en) 2002-09-20 2016-12-28 Bayer Intellectual Property GmbH Medical device for delivering drugs
EP2253339A1 (en) 2003-02-21 2010-11-24 Sorin Biomedica Cardio S.r.l. A process for producing stents and corresponding stent
US8084076B2 (en) 2003-02-21 2011-12-27 Sorin Biomedica Cardio S.R.L. Process for producing stents and corresponding stents
EP1449546A1 (en) 2003-02-21 2004-08-25 SORIN BIOMEDICA S.p.A. A process for producing stents and corresponding stent
US8377111B2 (en) 2003-09-16 2013-02-19 Boston Scientific Scimed, Inc. Medical devices
US8137397B2 (en) 2004-02-26 2012-03-20 Boston Scientific Scimed, Inc. Medical devices
WO2005082283A1 (en) * 2004-02-26 2005-09-09 Boston Scientific Limited Medical devices

Also Published As

Publication number Publication date
US20020103526A1 (en) 2002-08-01
WO2002047739A3 (en) 2002-12-05
AU2002230927A1 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
US20020103526A1 (en) Protective coating for stent
US7022132B2 (en) Stents with temporary retaining bands
US5779732A (en) Method and apparatus for implanting a film with an exandable stent
US5651174A (en) Intravascular radially expandable stent
JP4721704B2 (en) Covered stent with degradable barbs
US5449382A (en) Minimally invasive bioactivated endoprosthesis for vessel repair
US5578075A (en) Minimally invasive bioactivated endoprosthesis for vessel repair
EP1076534B1 (en) Stent with smooth ends
US8551152B2 (en) Drug-eluting stent and delivery system with tapered stent in shoulder region
US20050021128A1 (en) Compliant, porous, rolled stent
JP4971580B2 (en) Stent and method for manufacturing stent
US20070179599A1 (en) Vascular protective device
US20030065386A1 (en) Radially expandable endoprosthesis device with two-stage deployment
JP2005510260A (en) Controlled inflatable stent
JP2005515021A (en) Struts with stent bumpers
US20020065547A1 (en) Expandable stent
JP2008200530A (en) Expandable stent with sliding and locking radial element
JP2005515022A (en) Multilayer stent
EP2061404B1 (en) Multilayer sheet stent
CA2618215A1 (en) Stent with expanding side branch geometry
JP2008541841A (en) Initiation geometry of stent side branch
US20060287708A1 (en) Small vessel expandable stent and method for production of same
JP2010508962A (en) Side branch stent implantation system using main tube restraint side branch approach balloon and side branch stent
EP2227192B1 (en) Implantable vessel support
US20100010618A1 (en) Overlapping Stent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC SENT ON 22-10-2003

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP