WO2002047732A2 - Method of making demineralized bone particles - Google Patents

Method of making demineralized bone particles Download PDF

Info

Publication number
WO2002047732A2
WO2002047732A2 PCT/US2001/048384 US0148384W WO0247732A2 WO 2002047732 A2 WO2002047732 A2 WO 2002047732A2 US 0148384 W US0148384 W US 0148384W WO 0247732 A2 WO0247732 A2 WO 0247732A2
Authority
WO
WIPO (PCT)
Prior art keywords
bone
demineralized
median
particles
demineralized bone
Prior art date
Application number
PCT/US2001/048384
Other languages
French (fr)
Other versions
WO2002047732A3 (en
Inventor
John Morris
Lawrence A. Shimp
Kenneth C. Petersen
Albert Manrique
David Kaes
Nelson L. Scarborough
Michael Dowd
Original Assignee
Osteotech, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osteotech, Inc. filed Critical Osteotech, Inc.
Priority to EP01991103A priority Critical patent/EP1347793A2/en
Priority to US10/433,588 priority patent/US7323193B2/en
Priority to CA002431030A priority patent/CA2431030A1/en
Priority to KR10-2003-7007988A priority patent/KR20030074660A/en
Priority to AU2002230852A priority patent/AU2002230852A1/en
Priority to JP2002549301A priority patent/JP2004515318A/en
Publication of WO2002047732A2 publication Critical patent/WO2002047732A2/en
Publication of WO2002047732A3 publication Critical patent/WO2002047732A3/en
Priority to US11/951,084 priority patent/US7939108B2/en
Priority to US13/010,084 priority patent/US8529962B2/en
Priority to US14/021,179 priority patent/US8753689B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3847Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3608Bone, e.g. demineralised bone matrix [DBM], bone powder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/365Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3683Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment
    • A61L27/3691Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix subjected to a specific treatment prior to implantation, e.g. decellularising, demineralising, grinding, cellular disruption/non-collagenous protein removal, anti-calcification, crosslinking, supercritical fluid extraction, enzyme treatment characterised by physical conditions of the treatment, e.g. applying a compressive force to the composition, pressure cycles, ultrasonic/sonication or microwave treatment, lyophilisation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/40Preparation and treatment of biological tissue for implantation, e.g. decellularisation, cross-linking

Definitions

  • This invention relates to a method of making demineralized bone particles useful in, or as, implants having a variety of orthopedic applications. More particularly, this invention relates to a method of making particles from demineralized bone that results in a greater yield of demineralized bone particles than that provided by prior art methods of producing such particles.
  • the manufacture of demineralized bone particles and compositions, materials and devices containing demineralized bone particles and their use in the repair of bone defects and for other orthopedic applications are known.
  • the microstructure of cortical bone consists of bundles, or fibers, of mineralized collagen that are oriented parallel to the long axis of the known methods for making demineralized bone particles involve subdividing sections of whole, i.e., mineralized, bone, e.g., by such mechanical operations as shredding, milling, shaving, machining, etc., to provide particles which are then demineralized, e.g., by treatment with acid.
  • the resulting demineralized bone particles exliibit osteoinductive properties that make them useful as, or in, implants intended for use in bone repair and other orthopedic applications.
  • demineralized bone particles One drawback of known methods of making demineralized bone particles is that only a portion of the bone stock, e.g., 45 - 65 % by weight, will yield demineralized bone particles.
  • a portion of the bone stock e.g., 45 - 65 % by weight
  • demineralized bone particles Because of the mechanical limitations of the bone milling machinery, e.g., the need to grip the bone stock in the jaws of the machine, only donor bone of a fairly substantial size, e.g., intact cortical shafts, can be used as to the source of the demineralized bone particles.
  • demineralized bone particles which comprises demineralizing whole bone and thereafter subdividing the demineralized bone into demineralized bone particles.
  • the yield of demineralized bone particles obtained by the method of this invention is significantly greater, e.g., from about 5 to about 20 wt.% greater, than that obtained by first subdividing the whole bone into mineralized bone particles and only thereafter demineralizing the mineralized bone particles to provide demineralized bone particles.
  • particles as utilized herein is intended to include relatively small bone pieces such as fibers, bundles of loosely connected fibers, threads, narrow strips, thin sheets, chips, shards, powders, etc., that possess regular, irregular or random geometries and which may, or may not be, completely separated from each other.
  • whole bone refers to bone that contains its full naturally occurring mineral content and includes anatomically complete bones and sections thereof.
  • demineralized refers to bone containing less than about
  • osteogenesis as used herein shall be understood to refer to the ability of a material or substance to induce new bone formation via the participation of living cells from within the substance and "osteogenesis” as the mechanism or result.
  • osteoinductive as used herein shall be understood to refer to the ability of a material or substance to recruit cells from the host which have osteogenic potential and the ability to form ectopic bone and "osteoinduction” as the mechanism or result.
  • osteoconductive as used herein shall be understood to refer to the ability of a material or substance or material to provide surfaces that are receptive to the growth of new host bone and "osteoconduction” as the mechanism or result.
  • the whole bone suitable for making the demineralized bone particles of this invention can be donor bone from any source.
  • autogenic, allogenic or xenogenic bone can be used with autogenic and allogenic bone being preferred.
  • An especially useful source of xenogenic tissue can be porcine, equine, or bovine.
  • the bone can be cortical, cancellous or corticocancellous.
  • the preferred bone is cortical allogenic bone, e.g., femur, tibia, fibula, radius, ulna, etc..
  • the bone utilized as the starting, or stock, material will range in size from relatively small pieces of bone to bone of such dimensions as to be recognizable as to its anatomical origin.
  • the pieces or sections of whole bone stock can range from about 1 to about 400 mm, and preferably from about 5 to about 100 mm, in median length, from about 0.5 to about 20 mm, and preferably from about 2 to about 10 mm, in median thickness and from about 1 to about 20 mm, and preferably from about 2 to about 10 mm, in median width.
  • the bone is obtained from the donor, it is processed, e.g., cleaned, disinfected, defatted, etc., using methods well known in the art.
  • the entire bone can then be demineralized or, if desired, the bone can just be sectioned before demineralization.
  • the entire bone or one or more of its sections is then subjected to demineralization in order to reduce the inorganic content to a low level, e.g., to contain less than about 10% by weight, preferably less than about 5 % by weight and more preferably less than about 1 % by weight, residual calcium.
  • Demineralization of the bone can be accomplished in accordance with known and conventional procedures.
  • Demineralization procedures remove the inorganic mineral component of bone by employing acid solutions. Such procedures are well known in the art, see for example, Reddi et al., Proceeding of the National Academy of Sciences of the United States of America 69, pp.1601-1605 (1972), incorporated herein by reference.
  • the strength of the acid solution, the shape and size of the bone and the duration of the demineralization procedure will determine the extent of demineralization. Generally speaking larger bone portions as compared to small particles will require more lengthy and vigorous demineralization.
  • Guidance for specific parameters for the demineralization of different size bone can be found in U.S. Patent No.
  • a useful defatting/disinfectant solution is an aqueous solution of ethanol, the ethanol being a good solvent for lipids and the water being a good hydrophilic carrier to enable the solution to penetrate more deeply into the bone particles.
  • the aqueous ethanol solution also disinfects the bone by killing vegetative microorganisms and viruses.
  • At least about 10 to about 40 weight percent by weight of water i.e., about 60 to about 90 weight percent of defatting agent such as alcohol
  • a useful concentration range of the defatting solution is from about 60 to 85 weight percent alcohol or about 70 weight percent alcohol.
  • An alternative or supplemental defatting solution is made from a surfactant such as Triton X- 100 at a concentration of 0.1 % to 10% in water.
  • the demineralized bone is rinsed with sterile water for injection to remove residual amounts of acid and thereby raise the pH.
  • the bone is subdivided into demineralized bone particles of desired configuration and size.
  • Useful for the subdivision of the demineralized bone are machines or instruments known to the arts of , e. shredding, milling, pressing, shaving, machining, extruding and/or cutting, of hard or brittle materials such as wood, plastics, soft metals, ceramics and the like. Particularly preferred are mills, including impact mills, grating mills, shearing mills and cutting mills. Many of the preferred instruments for the subdivision of the demineralized bone will fragment the demineralized bone, by cutting or separating the demineralized material in direction parallel to the underlying collagen fibers
  • Particularly preferred types of equipment or machine useful for shredding, cutting hard or brittle materials such as wood, plastics, soft metals that can be used to subdivide the demineralized bone include impact mills, grating mills, shearing mills and cutting mills. Many preferred cutting and milling instruments and or machine will fragment the demineralized bone, by cutting or separating the demineralized material in direction parallel or nearly parallel to the underlying collagen fibers. Mills, presses and extruders are particularly useful in this regards.
  • An impact mill has blunt rotors or swinging hammers that move at high speed and subdivide the demineralized bone stock by impacting upon the bone shattering it into fragmentary particles.
  • the bone tends to shatter along the lines of the natural collagen bundles constituting the microstructure of the bone.
  • Similar mills with sharp cutting rotors tend to chop the bone into somewhat symmetric particles as opposed to the fibrous particles obtained with an impact mill.
  • Impact speed is a factor that influences the result. Too low a speed may cause the bone to plastically deform rather than shatter into particles as required. This and similar factors involved in the operation of a particular type or model of impact mill to provide demineralized bone fibers can be optimized employing routine experimentation.
  • a shearing mill subdivides demineralized bone stock by tearing the bone apart.
  • the tearing action tends to preferentially break the bone apart at its weakest point.
  • the junctions between demineralized collagen bundles represent weak points and the result is the production of fiber type particles.
  • the spindle element of a lathe can be adapted to carry a rotary grinding wheel whose circumferential surface is studded with projecting cutting elements. As the bone stock is pressed against the rotating wheel, the cutting elements produce fiber-type particles. In this type of particle-forming operation, the resulting fibrous particles are not separated along the lines of natural collagen bundles.
  • Still other apparatus useful in milling bone particles according to the invention includes mills available from IKA® Works (Wilmington, NC) such as the model A 10 IKA-Analytical Mill or the model M 20 IKA-Universal Mill. Such mills have cooling connections and are suitable for the grinding of hard and brittle substances with a maximum grain size of 6 - 7 mm. It has been determined that a stainless steel star-shaped cutter provides particles of a useful size.
  • Other milling machines useful in the practice of the invention herein include drum cutter bone mills such as those available from Tracer Designs, Inc. (Santa Paula, CA), e.g., its bone mill model BM1000.
  • a particularly effective method for subdividing demineralized bone stock is to subject the bone to pressing.
  • the simplest pressing technique is to apply pressure to the unconstrained demineralized bone. Examples include pressing the bone using a mortar and pestle, applying a rolling/pressing motion such as is generated by a rolling pin, or pressing the bone pieces between flat or curved plates. These flattening pressures cause the bone fibers to separate.
  • pressing demineralized bone in accordance with the present invention provides intact natural bone collagen fibers, (not composite fibers made from joined short fiber sections) that can be as long as the fibers in the demineralized bone stock from which they were obtained.
  • Another pressing technique involves mechanically pressing demineralized bone which is constrained within a sealed chamber having a hole (or a small number of holes) in its floor or bottom plate.
  • the separated fibers extrude through the holes with the hole diameter limiting the maximum diameter of the extruded fibers.
  • this constrained technique results in fibers that are largely intact (as far as length is concerned) but separated bone collagen bundles.
  • the demineralized bone is first pressed into an initially separated mass of fibers while in the unconstrained condition and thereafter these fibers are constrained within the sealed chamber where pressing is continued.
  • pressing of demineralized bone to provide demineralized bone particles can be carried out at from about 1,000 to about 40,000psi, and preferably at from about 5,000 to about 20,000psi.
  • a mass of bone particles in which at least about 80 weight percent, preferably at least about 90 weight percent and most preferably at least about 95 weight percent, of the particles possess a median length of from about 2 to about 300 mm or greater, preferably a median length of from about 5 to about 50 mm, a median thickness of from about 0.5 to about 15 mm, preferably a median thickness of from about 1 to about 5 mm, a median width of from about 2 to about 35 mm, preferably a median width of from about 2 to about 20 mm and a median length to thickness ratio and/or a median length to width ratio of from about 2 to 200, preferably from about 10 to about 100.
  • the mass of bone particles can be graded or sorted into different sizes, e.g., by screening, and or any less desirable size(s) of bone particles that may be present can be reduced or eliminated.
  • the demineralized bone particles can be utilized as is or stored under aseptic conditions, advantageously in a lyophilized or frozen state, for use at a later time.
  • the demineralized bone particles of this invention find use as, or in implants, for a variety of orthopedic procedures where they participate in the bone healing/repair process through one or more mechanisms such as osteogenesis, osteoinduction and osteoconduction.
  • the demineralized bone particles can be used as is, or formed into a variety of product types such as a gel, putty, or sheet.
  • the demineralized bone particles can optionally be admixed with one or more substances such as adhesives, fillers, plasticizers, flexibilizing agents, biostatic/biocidal agents, surface active agents, binding and bonding agents, and the like, prior to, during, or after shaping the particles into a desired configuration.
  • Suitable adhesives, binding agents and bonding agents include acrylic resins, cellulosics, bioresorbable polymers such as polyesters, polycarbonates, polyarylates and polyfomarates. Specifically, tyrsine, polycarbonates, tyrosine polyarylates, polyglycolides, polylactides, glycolide-lactide copolymer, etc.
  • Suitable fillers include bone powder, demineralized bone powder, hydroxyapatite, etc.
  • Suitable plasticizers and flexibilizing agents include liquid polyhydroxy compounds such as glycerol, monacetin, diacetin, etc.
  • Suitable biostatic/biocidal agents include antibiotics, providone, sugars, etc.
  • Suitable surface-active agents include the biocompatible nonionic, cationic, anionic and amphoteric surfactants.
  • the demineralized bone particles can be modified in one or more ways, e.g., their protein content can be augmented or modified as described in U.S. Patent Nos. 4,743,259 and 4,902,296, the contents of which are incorporated by reference herein.
  • Any of a variety of medically and/or surgically useful substances can be incorporated in or associated with the bone particles either before, during or after their formation.
  • one or more of such substances can be introduced into the demineralized bone particles, e.g., by soaking or immersing the bone particles in a solution or dispersion of the desired substance(s).
  • Medically/surgically useful substances which can be readily combined with the demineralized bone particles of this invention include, e.g., collagen, insoluble collagen derivatives, etc., and soluble solids and/or liquids dissolved therein, e.g., antiviricides, particularly those effective against HIV and hepatitis; antimicrobials and or antibiotics such as erythromycin, bacitracin, neomycin, penicillin, polymyxin B, tetracyclines, viomycin, chloromycetin and streptomycins, cefazolin, ampicillin, azactam, tobramycin, clindamycin and gentamicin, etc.; biocidal/biostatic sugars such as dextrose, glucose, etc.; amino acids, peptides, vitamins, inorganic elements, co-factors for protein synthesis; hormones; endocrine tissue or tissue fragments; synthesizers; enzymes such as collagenase, peptidases, oxidases
  • EXAMPLE 1 A right diaphysis (99g) of human donor origin was divided lengthwise into four sections. The total weight of all the sections was 94 g. The bone sections were placed in a 2-liter container along with 1410 ml of a 0.6 N HC1 solution. After approximately 6 hours the solution was removed and replaced with another 1410-ml portion of the acid solution. The bone sections and second aliquot of acid solution were subjected to mild vortexing with a magnetic stirrer for two days. The bone sections were demineralized until they were completely translucent without any visible mineralized areas indicating substantially complete demineralization. The demineralized bone sections were then rinsed with water until the pH of the rinse water was above 4.0.
  • the demineralized bone sections were then soaked in 70% ethanol for 1 hour.
  • the demineralized bone sections were cut with scissors to fit into a model M 20 IKA-Universal Mill and processed in the mill for about 30 seconds to produce demineralized bone particles in the form of fibers (yield 17.98g, 1 lOcc).
  • the fibers were then frozen and lyophilized for about 12-15 hours.
  • COMPARATIVE EXAMPLE 119 g of mineralized human donor bone was milled in the milling machine described in U.S. Patent No. 5,607,269 to provide a quantity of mineralized bone particles in the form of fibers.
  • the mineralized fibers were then subjected to a demineralization process described as follows. Allogenic cortical bone is placed in a reactor. A 0.6 N solution of HCl at 15 ml per gram of bone is introduced into the reactor, the demineralization reaction proceeding for 1 to 2 hours. Following drainage of the HCl, the bone is covered with 0.6 N HCl /20 ppm-2000 ppm nonionic surfactant solution for 24 to 48 hours.
  • 0.6 N HCl at 15 ml per gram of bone is introduced into the reactor, the demineralization reaction proceeding for another 40 to 50 minutes resulting in substantially complete demineralization of the starting cortical bone.
  • the demineralized bone is rinsed three times with water for injection at 15 ml per gram bone weight with the water for injection being replaced at 15-minute intervals.
  • the demineralized bone is covered with alcohol and allowed to soak for at least 30 minutes. The alcohol is then drained and the bone is rinsed with water for injection. The demineralized bone is then subdivided in the bone milling apparatus of U.S. Patent No.
  • This material was then ["fluffed up”] and pressed again employing similar pressures as before.
  • the pressing operation was again repeated yielding a mass of coarse bundles of fibers that were not completely separated from each other.
  • the yield of fibers was about 50 wt.% based on the volume of the [starting demineralized bone sections] and many of the fibers possessed lengths that were nearly as great as the natural fibers of the bone stock.
  • the fibers ranged in length from 10-15mm, with some fibers in the range of from 20-25mm, and possessed diameters of about 2mm. Material that was not in fiber form remained in bundled fiber clumps.
  • the fibers were further subdivided in an impact mill for [30 seconds] resulting in a reduction of the diameters of many of the fibers and fiber bundles without, however, significantly reducing their length.
  • the fibers continued to fall within the aforesaid range of length but their diameters were now within the range of from about 0.5 to about 2mm.
  • EXAMPLE 3 Demineralized fibula cross sections, about 25 mm in length, were placed in a series of 29mm diameter press cells possessing single orifices in their bottoms having diameters of 1, 2 and 3mm, respectively. Under pressures of from 5,000- 10,000psi, the demineralized bone sections subdivided into fibers which extruded through the orifices. Yields of demineralized fiber were on the order of nearly 100 wt.% in almost every case; little or no bone remained in the cells.
  • EXAMPLE 4 A cell pressing procedure similar to that of Example 4 was carried out on demineralized bone sections of from 4 to 8mm in length in a 29mm diameter press cell having a single orifice of 0.75mm diameter.
  • the bone sections subdivided into fibers that ranged in length from 25 to 50% of the length of the bone sections from which they were obtained. Yield of fiber was about 50wt.%.
  • the fibers ranged in length from about l-5mm and possessed a diameter of about 0.5mm.
  • Example 7 The pressing operations described in Example 5 were substantially repeated but were preceded by a preliminary pressing carried out in a Carver press at 15,000psi.
  • the resulting demineralized bone fibers possessed smaller diameters, and consequently, greater length to diameter ratios, than the fibers obtained in Example 6.
  • Substantially fully demineralized whole fibula shafts were subdivided into fibrous particles employing a Tracer (rotary grater) mill. Fiber length was about 5mm, diameter was about 0.5mm and fiber yield was about 70 wt.%.
  • Example 8 was repeated but with fibula sections of 4-8mm in length. Fiber length was about 3-5mm, diameter was about 0.5mm and fiber yield was about 50 wt.%.
  • EXAMPLE 9 A model M5A Fitzpatrick Mill was employed to subdivide substantially fully demineralized bovine bone chips of 4- 10mm into fibrous particles having a length of about l-2mm and a diameter of about 0.2-0.7mm in a yield of about 70 wt. %.
  • Example 9 was repeated but employing a model M 20 IKA-Universal Mill to subdivide the demineralized bovine bone chips.
  • the fibers in the fiber-fraction produced by the mill had a length of about l-2mm, a diameter of about 0.5-lmm and the fiber yield was about 10%.
  • Example 9 was repeated but employing a Megatron homogenizer (Glen Mills Inc., Maywood, NJ).
  • the resulting fibers produced in a yield of about 70 wt.%, possessed a length of about l-3mm and a diameter of about 0.2-0.5mm.

Abstract

Demineralized bone particles are obtained by demineralizing whole bone and thereafter subdividing the demineralized bone to provide the demineralized bone particles.

Description

METHOD OF MAKING DEMINERALIZED BONE PARTICLES
BACKGROUND OF THE INVENTION
This invention relates to a method of making demineralized bone particles useful in, or as, implants having a variety of orthopedic applications. More particularly, this invention relates to a method of making particles from demineralized bone that results in a greater yield of demineralized bone particles than that provided by prior art methods of producing such particles.
The manufacture of demineralized bone particles and compositions, materials and devices containing demineralized bone particles and their use in the repair of bone defects and for other orthopedic applications are known. The microstructure of cortical bone consists of bundles, or fibers, of mineralized collagen that are oriented parallel to the long axis of the known methods for making demineralized bone particles involve subdividing sections of whole, i.e., mineralized, bone, e.g., by such mechanical operations as shredding, milling, shaving, machining, etc., to provide particles which are then demineralized, e.g., by treatment with acid. The resulting demineralized bone particles exliibit osteoinductive properties that make them useful as, or in, implants intended for use in bone repair and other orthopedic applications. One drawback of known methods of making demineralized bone particles is that only a portion of the bone stock, e.g., 45 - 65 % by weight, will yield demineralized bone particles. In addition, because of the mechanical limitations of the bone milling machinery, e.g., the need to grip the bone stock in the jaws of the machine, only donor bone of a fairly substantial size, e.g., intact cortical shafts, can be used as to the source of the demineralized bone particles.
The limited amount of demineralized bone particles that is obtained by the prior art methods is of concern due to the limited availability of donor bone. At this time, regulations do not permit the pooling of donor bone material. Since the quantity of demineralized bone particles that can be obtained is limited both by the availability of donor bone and the size of the bone, there is a need for a method of making demineralized bone particles that is not subject to the constraints imposed by these limiting factors. SUMMARY OF THE INVENTION
It is an object of the invention to provide a method of making demineralized bone particles which makes optimum use of donor bone.
It is a further object of the invention to provide a method of making demineralized bone particles that results in a greater yield of particles for a given quantity of whole bone compared to that provided by prior art methods.
It is yet another object of the invention to provide demineralized bone particles in the form of fibers or fibrous bundles of bone collagen by application of mechanical pressure to demineralized bone stock.
Further objects of the invention will be apparent to those skilled in the art in view of the above objects and the foregoing specification.
In keeping with these and related objects of the invention, there is provided a method of making demineralized bone particles which comprises demineralizing whole bone and thereafter subdividing the demineralized bone into demineralized bone particles.
In general, the yield of demineralized bone particles obtained by the method of this invention is significantly greater, e.g., from about 5 to about 20 wt.% greater, than that obtained by first subdividing the whole bone into mineralized bone particles and only thereafter demineralizing the mineralized bone particles to provide demineralized bone particles.
The term "particles" as utilized herein is intended to include relatively small bone pieces such as fibers, bundles of loosely connected fibers, threads, narrow strips, thin sheets, chips, shards, powders, etc., that possess regular, irregular or random geometries and which may, or may not be, completely separated from each other.
The expression "whole bone" as utilized herein refers to bone that contains its full naturally occurring mineral content and includes anatomically complete bones and sections thereof. The term "demineralized" as used herein refers to bone containing less than about
95 % of its original mineral context. The expression "fully demineralized" as used herein refers to bone containing less than about 5 % of its original mineral context..
The terms "osteogenic" as used herein shall be understood to refer to the ability of a material or substance to induce new bone formation via the participation of living cells from within the substance and "osteogenesis" as the mechanism or result.
The terms "osteoinductive" as used herein shall be understood to refer to the ability of a material or substance to recruit cells from the host which have osteogenic potential and the ability to form ectopic bone and "osteoinduction" as the mechanism or result.
The terms "osteoconductive" as used herein shall be understood to refer to the ability of a material or substance or material to provide surfaces that are receptive to the growth of new host bone and "osteoconduction" as the mechanism or result.
The terms "autogenic", "allogenic" and "xenogenic" are used herein relative to the ultimate recipient of the bone tissue. DETAILED DESCRIPTION OF THE INVENTION
The whole bone suitable for making the demineralized bone particles of this invention can be donor bone from any source. Thus, autogenic, allogenic or xenogenic bone can be used with autogenic and allogenic bone being preferred. An especially useful source of xenogenic tissue can be porcine, equine, or bovine. The bone can be cortical, cancellous or corticocancellous. The preferred bone is cortical allogenic bone, e.g., femur, tibia, fibula, radius, ulna, etc..
The method of this invention is applicable to whole bone in a variety of sizes. Therefore, the bone utilized as the starting, or stock, material will range in size from relatively small pieces of bone to bone of such dimensions as to be recognizable as to its anatomical origin. In general, the pieces or sections of whole bone stock can range from about 1 to about 400 mm, and preferably from about 5 to about 100 mm, in median length, from about 0.5 to about 20 mm, and preferably from about 2 to about 10 mm, in median thickness and from about 1 to about 20 mm, and preferably from about 2 to about 10 mm, in median width.
After the bone is obtained from the donor, it is processed, e.g., cleaned, disinfected, defatted, etc., using methods well known in the art. The entire bone can then be demineralized or, if desired, the bone can just be sectioned before demineralization. The entire bone or one or more of its sections is then subjected to demineralization in order to reduce the inorganic content to a low level, e.g., to contain less than about 10% by weight, preferably less than about 5 % by weight and more preferably less than about 1 % by weight, residual calcium.
Demineralization of the bone can be accomplished in accordance with known and conventional procedures. Demineralization procedures remove the inorganic mineral component of bone by employing acid solutions. Such procedures are well known in the art, see for example, Reddi et al., Proceeding of the National Academy of Sciences of the United States of America 69, pp.1601-1605 (1972), incorporated herein by reference. The strength of the acid solution, the shape and size of the bone and the duration of the demineralization procedure will determine the extent of demineralization. Generally speaking larger bone portions as compared to small particles will require more lengthy and vigorous demineralization. Guidance for specific parameters for the demineralization of different size bone can be found in U.S. Patent No. 5,846,484, Harakas, Clinical Orthopaedics and Related Research, pp 239-251(1983) and Lewandrowski et al., Journal of Biomedical Materials Research, 31, pp. 365-372 (1996), each of which is incorporated by reference herein.
In a demineralization procedure useful in the practice of the invention herein, the bone is subjected to a defatting/disinfecting step that is followed by an acid demineralization step. A useful defatting/disinfectant solution is an aqueous solution of ethanol, the ethanol being a good solvent for lipids and the water being a good hydrophilic carrier to enable the solution to penetrate more deeply into the bone particles. The aqueous ethanol solution also disinfects the bone by killing vegetative microorganisms and viruses. Ordinarily at least about 10 to about 40 weight percent by weight of water (i.e., about 60 to about 90 weight percent of defatting agent such as alcohol) should be present in the defatting/disinfecting solution to produce optimal lipid removal and disinfection within the shortest period of time. A useful concentration range of the defatting solution is from about 60 to 85 weight percent alcohol or about 70 weight percent alcohol. An alternative or supplemental defatting solution is made from a surfactant such as Triton X- 100 at a concentration of 0.1 % to 10% in water. Following defatting, the bone is immersed in acid over time to effect demineralization. Acids which can be employed in this step include inorganic acids such as hydrochloric acid and organic acids such as peracetic acid. After acid treatment, the demineralized bone is rinsed with sterile water for injection to remove residual amounts of acid and thereby raise the pH. Following demineralization, the bone is subdivided into demineralized bone particles of desired configuration and size. Useful for the subdivision of the demineralized bone are machines or instruments known to the arts of , e. shredding, milling, pressing, shaving, machining, extruding and/or cutting, of hard or brittle materials such as wood, plastics, soft metals, ceramics and the like. Particularly preferred are mills, including impact mills, grating mills, shearing mills and cutting mills. Many of the preferred instruments for the subdivision of the demineralized bone will fragment the demineralized bone, by cutting or separating the demineralized material in direction parallel to the underlying collagen fibers
Particularly preferred types of equipment or machine useful for shredding, cutting hard or brittle materials such as wood, plastics, soft metals that can be used to subdivide the demineralized bone include impact mills, grating mills, shearing mills and cutting mills. Many preferred cutting and milling instruments and or machine will fragment the demineralized bone, by cutting or separating the demineralized material in direction parallel or nearly parallel to the underlying collagen fibers. Mills, presses and extruders are particularly useful in this regards.
An impact mill has blunt rotors or swinging hammers that move at high speed and subdivide the demineralized bone stock by impacting upon the bone shattering it into fragmentary particles. The bone tends to shatter along the lines of the natural collagen bundles constituting the microstructure of the bone. Similar mills with sharp cutting rotors tend to chop the bone into somewhat symmetric particles as opposed to the fibrous particles obtained with an impact mill. Impact speed is a factor that influences the result. Too low a speed may cause the bone to plastically deform rather than shatter into particles as required. This and similar factors involved in the operation of a particular type or model of impact mill to provide demineralized bone fibers can be optimized employing routine experimentation.
A shearing mill subdivides demineralized bone stock by tearing the bone apart. The tearing action tends to preferentially break the bone apart at its weakest point. The junctions between demineralized collagen bundles represent weak points and the result is the production of fiber type particles.
The spindle element of a lathe can be adapted to carry a rotary grinding wheel whose circumferential surface is studded with projecting cutting elements. As the bone stock is pressed against the rotating wheel, the cutting elements produce fiber-type particles. In this type of particle-forming operation, the resulting fibrous particles are not separated along the lines of natural collagen bundles.
Still other apparatus useful in milling bone particles according to the invention includes mills available from IKA® Works (Wilmington, NC) such as the model A 10 IKA-Analytical Mill or the model M 20 IKA-Universal Mill. Such mills have cooling connections and are suitable for the grinding of hard and brittle substances with a maximum grain size of 6 - 7 mm. It has been determined that a stainless steel star-shaped cutter provides particles of a useful size. Other milling machines useful in the practice of the invention herein include drum cutter bone mills such as those available from Tracer Designs, Inc. (Santa Paula, CA), e.g., its bone mill model BM1000.
A particularly effective method for subdividing demineralized bone stock is to subject the bone to pressing. The simplest pressing technique is to apply pressure to the unconstrained demineralized bone. Examples include pressing the bone using a mortar and pestle, applying a rolling/pressing motion such as is generated by a rolling pin, or pressing the bone pieces between flat or curved plates. These flattening pressures cause the bone fibers to separate. Unlike the prior art method for making fibers from mineralized bone, pressing demineralized bone in accordance with the present invention provides intact natural bone collagen fibers, (not composite fibers made from joined short fiber sections) that can be as long as the fibers in the demineralized bone stock from which they were obtained. Another pressing technique involves mechanically pressing demineralized bone which is constrained within a sealed chamber having a hole (or a small number of holes) in its floor or bottom plate. The separated fibers extrude through the holes with the hole diameter limiting the maximum diameter of the extruded fibers. As with the unconstrained pressing method, this constrained technique results in fibers that are largely intact (as far as length is concerned) but separated bone collagen bundles.
In a combined unconstrained/constrained pressing technique that results in longer fibers by minimizing fiber breakage, the demineralized bone is first pressed into an initially separated mass of fibers while in the unconstrained condition and thereafter these fibers are constrained within the sealed chamber where pressing is continued. In general, pressing of demineralized bone to provide demineralized bone particles can be carried out at from about 1,000 to about 40,000psi, and preferably at from about 5,000 to about 20,000psi.
Depending on the procedure employed for producing the demineralized bone particles, one can obtain a mass of bone particles in which at least about 80 weight percent, preferably at least about 90 weight percent and most preferably at least about 95 weight percent, of the particles possess a median length of from about 2 to about 300 mm or greater, preferably a median length of from about 5 to about 50 mm, a median thickness of from about 0.5 to about 15 mm, preferably a median thickness of from about 1 to about 5 mm, a median width of from about 2 to about 35 mm, preferably a median width of from about 2 to about 20 mm and a median length to thickness ratio and/or a median length to width ratio of from about 2 to 200, preferably from about 10 to about 100. If desired, the mass of bone particles can be graded or sorted into different sizes, e.g., by screening, and or any less desirable size(s) of bone particles that may be present can be reduced or eliminated.
At this time, depending upon their intended final usage, the demineralized bone particles can be utilized as is or stored under aseptic conditions, advantageously in a lyophilized or frozen state, for use at a later time.
The demineralized bone particles of this invention find use as, or in implants, for a variety of orthopedic procedures where they participate in the bone healing/repair process through one or more mechanisms such as osteogenesis, osteoinduction and osteoconduction. The demineralized bone particles can be used as is, or formed into a variety of product types such as a gel, putty, or sheet. The demineralized bone particles can optionally be admixed with one or more substances such as adhesives, fillers, plasticizers, flexibilizing agents, biostatic/biocidal agents, surface active agents, binding and bonding agents, and the like, prior to, during, or after shaping the particles into a desired configuration. Suitable adhesives, binding agents and bonding agents include acrylic resins, cellulosics, bioresorbable polymers such as polyesters, polycarbonates, polyarylates and polyfomarates. Specifically, tyrsine, polycarbonates, tyrosine polyarylates, polyglycolides, polylactides, glycolide-lactide copolymer, etc. Suitable fillers include bone powder, demineralized bone powder, hydroxyapatite, etc. Suitable plasticizers and flexibilizing agents include liquid polyhydroxy compounds such as glycerol, monacetin, diacetin, etc. Suitable biostatic/biocidal agents include antibiotics, providone, sugars, etc. Suitable surface-active agents include the biocompatible nonionic, cationic, anionic and amphoteric surfactants.
If desired, the demineralized bone particles can be modified in one or more ways, e.g., their protein content can be augmented or modified as described in U.S. Patent Nos. 4,743,259 and 4,902,296, the contents of which are incorporated by reference herein. Any of a variety of medically and/or surgically useful substances can be incorporated in or associated with the bone particles either before, during or after their formation. Thus, e.g., one or more of such substances can be introduced into the demineralized bone particles, e.g., by soaking or immersing the bone particles in a solution or dispersion of the desired substance(s). Medically/surgically useful substances which can be readily combined with the demineralized bone particles of this invention include, e.g., collagen, insoluble collagen derivatives, etc., and soluble solids and/or liquids dissolved therein, e.g., antiviricides, particularly those effective against HIV and hepatitis; antimicrobials and or antibiotics such as erythromycin, bacitracin, neomycin, penicillin, polymyxin B, tetracyclines, viomycin, chloromycetin and streptomycins, cefazolin, ampicillin, azactam, tobramycin, clindamycin and gentamicin, etc.; biocidal/biostatic sugars such as dextrose, glucose, etc.; amino acids, peptides, vitamins, inorganic elements, co-factors for protein synthesis; hormones; endocrine tissue or tissue fragments; synthesizers; enzymes such as collagenase, peptidases, oxidases, etc.; polymer cell scaffolds with fragments; synthesizers; enzymes such as collagenase, peptidases, oxidases, etc.; polymer cell scaffolds with parenchymal cells; angiogenic drugs and polymeric carriers containing such drugs; collagen lattices; antigenic agents; cytosketetal agents; cartilage fragments, living cells such as chondrocytes, bone marrow cells, mesenchymal stem cells, natural extracts, tissue transplants, bone, demineralized bone powder, autogenous tissues such blood, serum, soft tissue, bone marrow, etc.; bioadhesives, bone morphogenic proteins (BMPs), transforming growth factor (TGF-beta), insulin-like growth factors (IGF-1) (IGF-2); platelet derived growth factors (PDGF); growth hormones such as somatotropin; bone digestors; antitumor agents; immuno-suppressants; permeation enchancers, e.g., fatty acid esters such as laureate, myristate and stearate monoesters of polyethylene glycol, enamine derivatives, alpha-keto aldehydes, etc.; and, nucleic acids. The amounts of such optionally added substances can vary widely with optimum levels being readily determined in a specific case by routine experimentation.
The method of this invention will be better understood by way of example. As is the case throughout this application, all parts are by weight unless otherwise specified. The examples are provided as a means for explaining the invention herein and are not intended to limit the invention in any way.
EXAMPLE 1 A right diaphysis (99g) of human donor origin was divided lengthwise into four sections. The total weight of all the sections was 94 g. The bone sections were placed in a 2-liter container along with 1410 ml of a 0.6 N HC1 solution. After approximately 6 hours the solution was removed and replaced with another 1410-ml portion of the acid solution. The bone sections and second aliquot of acid solution were subjected to mild vortexing with a magnetic stirrer for two days. The bone sections were demineralized until they were completely translucent without any visible mineralized areas indicating substantially complete demineralization. The demineralized bone sections were then rinsed with water until the pH of the rinse water was above 4.0. The demineralized bone sections were then soaked in 70% ethanol for 1 hour. The demineralized bone sections were cut with scissors to fit into a model M 20 IKA-Universal Mill and processed in the mill for about 30 seconds to produce demineralized bone particles in the form of fibers (yield 17.98g, 1 lOcc). The fibers were then frozen and lyophilized for about 12-15 hours.
COMPARATIVE EXAMPLE 119 g of mineralized human donor bone was milled in the milling machine described in U.S. Patent No. 5,607,269 to provide a quantity of mineralized bone particles in the form of fibers. The mineralized fibers were then subjected to a demineralization process described as follows. Allogenic cortical bone is placed in a reactor. A 0.6 N solution of HCl at 15 ml per gram of bone is introduced into the reactor, the demineralization reaction proceeding for 1 to 2 hours. Following drainage of the HCl, the bone is covered with 0.6 N HCl /20 ppm-2000 ppm nonionic surfactant solution for 24 to 48 hours. Following drainage of the HCl / surfactant solution, 0.6 N HCl at 15 ml per gram of bone is introduced into the reactor, the demineralization reaction proceeding for another 40 to 50 minutes resulting in substantially complete demineralization of the starting cortical bone. Following drainage through a sieve, the demineralized bone is rinsed three times with water for injection at 15 ml per gram bone weight with the water for injection being replaced at 15-minute intervals. Following drainage of the water for injection, the demineralized bone is covered with alcohol and allowed to soak for at least 30 minutes. The alcohol is then drained and the bone is rinsed with water for injection. The demineralized bone is then subdivided in the bone milling apparatus of U.S. Patent No. 5,607,269 to yield a mass of demineralized bone particles of fibrous configuration. The demineralized bone elements are then drained and transferred to a lyophilization tray and frozen at -70°C for at least 6 hours. The demineralized bone particles are then lyophilized following standard procedures for 24 to 48 hours. After drying, the demineralized bone particles are sorted for size. The yield of substantially fully demineralized bone particles made following this procedure, as measured before drying, was yield 15.27g, 75cc.
The following table compares the yields between the method of Example 2 illustrating the present invention and the prior art method illustrated in the Comparative Example:
Figure imgf000014_0001
As these data show, the method of this invention in which demineralization of the whole bone precedes its subdivision into demineralized bone particles (Example 1) yielded almost 50 wt.% more useful product than that resulting from the prior art method in which demineralization is conducted only after the whole bone has been subdivided into mineralized bone particles (Comparative Example). EXAMPLE 2 Substantially fully demineralized fibula cross sections of about 25mm in length were initially pressed between two flat plates of a Carver press[?] at pressures ranging from 5,000 up to about 20,000psi. This first pressing operation flattened the bone sections and began to separate their collagen bundles into fibers. This material was then ["fluffed up"] and pressed again employing similar pressures as before. The pressing operation was again repeated yielding a mass of coarse bundles of fibers that were not completely separated from each other. The yield of fibers was about 50 wt.% based on the volume of the [starting demineralized bone sections] and many of the fibers possessed lengths that were nearly as great as the natural fibers of the bone stock. The fibers ranged in length from 10-15mm, with some fibers in the range of from 20-25mm, and possessed diameters of about 2mm. Material that was not in fiber form remained in bundled fiber clumps.
The fibers were further subdivided in an impact mill for [30 seconds] resulting in a reduction of the diameters of many of the fibers and fiber bundles without, however, significantly reducing their length. Thus, the fibers continued to fall within the aforesaid range of length but their diameters were now within the range of from about 0.5 to about 2mm.
EXAMPLE 3 Demineralized fibula cross sections, about 25 mm in length, were placed in a series of 29mm diameter press cells possessing single orifices in their bottoms having diameters of 1, 2 and 3mm, respectively. Under pressures of from 5,000- 10,000psi, the demineralized bone sections subdivided into fibers which extruded through the orifices. Yields of demineralized fiber were on the order of nearly 100 wt.% in almost every case; little or no bone remained in the cells. EXAMPLE 4 A cell pressing procedure similar to that of Example 4 was carried out on demineralized bone sections of from 4 to 8mm in length in a 29mm diameter press cell having a single orifice of 0.75mm diameter. At a press load of 5,000 to 10,000psi, the bone sections subdivided into fibers that ranged in length from 25 to 50% of the length of the bone sections from which they were obtained. Yield of fiber was about 50wt.%. The fibers ranged in length from about l-5mm and possessed a diameter of about 0.5mm.
EXAMPLE 5 Substantially fully demineralized fibula cross sections of about 25mm in length were pressed in the press cells described in Example 4. At pressures ranging from 5,000 to 10,000psi, the bone sections subdivided into fibers having the dimensions set forth in the following table:
Figure imgf000016_0001
EXAMPLE 6
The pressing operations described in Example 5 were substantially repeated but were preceded by a preliminary pressing carried out in a Carver press at 15,000psi. The resulting demineralized bone fibers possessed smaller diameters, and consequently, greater length to diameter ratios, than the fibers obtained in Example 6. EXAMPLE 7
Substantially fully demineralized whole fibula shafts were subdivided into fibrous particles employing a Tracer (rotary grater) mill. Fiber length was about 5mm, diameter was about 0.5mm and fiber yield was about 70 wt.%.
EXAMPLE 8 Example 8 was repeated but with fibula sections of 4-8mm in length. Fiber length was about 3-5mm, diameter was about 0.5mm and fiber yield was about 50 wt.%.
EXAMPLE 9 A model M5A Fitzpatrick Mill was employed to subdivide substantially fully demineralized bovine bone chips of 4- 10mm into fibrous particles having a length of about l-2mm and a diameter of about 0.2-0.7mm in a yield of about 70 wt. %. EXAMPLE 10
Example 9 was repeated but employing a model M 20 IKA-Universal Mill to subdivide the demineralized bovine bone chips. The fibers in the fiber-fraction produced by the mill had a length of about l-2mm, a diameter of about 0.5-lmm and the fiber yield was about 10%. EXAMPLE 11
Example 9 was repeated but employing a Megatron homogenizer (Glen Mills Inc., Maywood, NJ). The resulting fibers, produced in a yield of about 70 wt.%, possessed a length of about l-3mm and a diameter of about 0.2-0.5mm.

Claims

WHAT IS CLAIMED IS:
1. A method of making demineralized bone particles which comprises demineralizing whole bone and thereafter subdividing the demineralized bone into demineralized bone particles.
2. The method of Claim 1 wherein the yield of demineralized bone particles is greater than that obtained by subdividing the whole bone into mineralized bone particles and thereafter demineralizing the mineralized bone particles to provide demineralized bone particles.
3. The method of Claim 1 in which the whole bone is autogenic, allogenic or xenogenic cortical, cancellous or corticoncancellous bone.
4. The method of Claim 1 wherein the whole bone is demineralized to contain less than about 10% by weight residual calcium.
5. The method of Claim 1 wherein the whole bone is demineralized to contain less than about 5% by weight residual calcium.
6. The method of Claim 1 wherein the whole bone is demineralized to contain less than about 1 % by weight residual calcium.
7. The method of Claim 1 wherein subdividing of the demineralized bone is carried out by milling.
8. The method of Claim 7 wherein milling is carried out in an impact mill, a grating mill or a cutting mill.
9. The method of Claim 1 wherein subdividing of the demineralized bone is carried out by applying mechanical pressure to the demineralized bone.
10. The method of Claim 9 wherein the bone is subjected to pressing while unconstrained.
11. The method of Claim 9 wherein the bone is subjected to pressing while constrained.
12. The method of Claim 9 carried out under a pressure of from about 1 ,000 to about 40,000psi.
13. The method of Claim 9 carried out under a pressure of from about 5,000 to about 20,000psi.
14. The method of Claim 10 wherein the product of pressing is subjected to an additional pressing while constrained.
15. The method of Claim 9 wherein the product of pressing is subj ected to an additional subdividing operation.
16. The method of Claim 1 wherein the whole bone ranges from about 1 to about 400 mm in median length, from about 0.5 to about 20 mm in median thickness and from about 2 to about 10 mm in median width.
17. The method of Claim 1 wherein the whole bone ranges from about 5 to about 100 mm in median length, from about 2 to about 10 mm in median thickness and from about 2 mm to about 10 mm in median width.
18. The method of Claim 1 wherein the demineralized bone particles are of elongated configuration.
I 19. The method of Claim 18 wherein the demineralized bone particles possess a median length of from about 2 to about 300 mm, a median thickness and/or a median width of from about 0.5mm to about 15mm, a median width of from about 2 to about 35 mm and a median length to thickness ratio and/or a median length to width ratio of from about 2 to about 200.
20. The method of Claim 18 wherein the demineralized bone particles possess a median length of from about 5 to about 50 mm, a median thickness of from about 1 to about 5 mm, a median width of from about 2 to about 20 mm and/or a median length to thickness ratio and/or a median length to width ratio of from about 10 to about 100.
21. Demineralized bone fibers produced by the process of Claim 9.
22. Substantially intact natural bone collagen fibers.
23. The bone collagen fibers of Claim 22 having a length substantially equivalent to the length of the fibers as they were present in the demineralized bone from which the fibers were obtained.
24. The demineralized bone fibers of Claim 21 containing at least one added medically/surgically useful substance.
25. The bone collagen fibers of Claim 22 containing at least one added medically/surgically useful substance
PCT/US2001/048384 2000-12-14 2001-12-14 Method of making demineralized bone particles WO2002047732A2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP01991103A EP1347793A2 (en) 2000-12-14 2001-12-14 Method of making demineralized bone particles
US10/433,588 US7323193B2 (en) 2001-12-14 2001-12-14 Method of making demineralized bone particles
CA002431030A CA2431030A1 (en) 2000-12-14 2001-12-14 Method of making demineralized bone particles
KR10-2003-7007988A KR20030074660A (en) 2000-12-14 2001-12-14 Method of making demineralized bone particles
AU2002230852A AU2002230852A1 (en) 2000-12-14 2001-12-14 Method of making demineralized bone particles
JP2002549301A JP2004515318A (en) 2000-12-14 2001-12-14 Method for producing demineralized bone particles
US11/951,084 US7939108B2 (en) 2000-12-14 2007-12-05 Method of making demineralized bone particles
US13/010,084 US8529962B2 (en) 2000-12-14 2011-01-20 Method of making demineralized bone particles
US14/021,179 US8753689B2 (en) 2001-12-14 2013-09-09 Method of making demineralized bone particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25565200P 2000-12-14 2000-12-14
US60/255,652 2000-12-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10433588 A-371-Of-International 2001-12-14
US11/951,084 Continuation US7939108B2 (en) 2000-12-14 2007-12-05 Method of making demineralized bone particles

Publications (2)

Publication Number Publication Date
WO2002047732A2 true WO2002047732A2 (en) 2002-06-20
WO2002047732A3 WO2002047732A3 (en) 2002-12-27

Family

ID=22969297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/048384 WO2002047732A2 (en) 2000-12-14 2001-12-14 Method of making demineralized bone particles

Country Status (6)

Country Link
EP (1) EP1347793A2 (en)
JP (1) JP2004515318A (en)
KR (1) KR20030074660A (en)
AU (1) AU2002230852A1 (en)
CA (1) CA2431030A1 (en)
WO (1) WO2002047732A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103998070A (en) * 2011-09-29 2014-08-20 Cg生物技术有限公司 Manufacturing method for fibrous demineralized bone matrix
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
US9610383B2 (en) 2010-10-27 2017-04-04 Cosmobiomedicare Co., Ltd. Method for producing a bone transplant material, and bone transplant material produced by same
AU2015215864B2 (en) * 2009-08-03 2017-04-13 Osteotech, Inc. Bone matrix compositions and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101398406B1 (en) * 2011-09-29 2014-05-28 (주)시지바이오 Bone-repair composition
US20170319626A1 (en) * 2016-05-09 2017-11-09 Warsaw Orthopedic, Inc. Osteoinductive fibrous bone chips
KR102581755B1 (en) 2021-09-06 2023-09-22 주식회사 써지덴트 Bone graft material manufacturing apparatus and manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053049A (en) * 1985-05-29 1991-10-01 Baxter International Flexible prostheses of predetermined shapes and process for making same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290558A (en) * 1989-09-21 1994-03-01 Osteotech, Inc. Flowable demineralized bone powder composition and its use in bone repair
JPH0497747A (en) * 1990-08-17 1992-03-30 Osteotech Inc Artificial bone for transplanting application
US5507813A (en) * 1993-12-09 1996-04-16 Osteotech, Inc. Shaped materials derived from elongate bone particles
US5607269A (en) * 1995-11-21 1997-03-04 Osteotech, Inc. Bone milling apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5053049A (en) * 1985-05-29 1991-10-01 Baxter International Flexible prostheses of predetermined shapes and process for making same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028859B2 (en) 2006-07-07 2015-05-12 Advanced Cardiovascular Systems, Inc. Phase-separated block copolymer coatings for implantable medical devices
AU2015215864B2 (en) * 2009-08-03 2017-04-13 Osteotech, Inc. Bone matrix compositions and methods
US9610383B2 (en) 2010-10-27 2017-04-04 Cosmobiomedicare Co., Ltd. Method for producing a bone transplant material, and bone transplant material produced by same
CN103998070A (en) * 2011-09-29 2014-08-20 Cg生物技术有限公司 Manufacturing method for fibrous demineralized bone matrix
EP2762175A4 (en) * 2011-09-29 2015-06-03 Cg Bio Co Ltd Manufacturing method for fibrous demineralized bone matrix

Also Published As

Publication number Publication date
AU2002230852A1 (en) 2002-06-24
JP2004515318A (en) 2004-05-27
KR20030074660A (en) 2003-09-19
CA2431030A1 (en) 2002-06-20
WO2002047732A3 (en) 2002-12-27
EP1347793A2 (en) 2003-10-01

Similar Documents

Publication Publication Date Title
US8753689B2 (en) Method of making demineralized bone particles
US9999520B2 (en) Osteoimplant and method of making same
EP2461841B1 (en) Bone matrix compositions and methods
US5507813A (en) Shaped materials derived from elongate bone particles
KR100754814B1 (en) Load-bearing osteoimplant, method for its manufacture and method of repairing bone using same
EP1301222B1 (en) Osteoimplant and method of making same
US9849215B2 (en) Implantable compositions and methods for preparing the same
KR20030027934A (en) Osteogenic Implants derived from Bone
AU2001275999A1 (en) Osteoimplant and method of making same
EP1347793A2 (en) Method of making demineralized bone particles
AU2015215864B2 (en) Bone matrix compositions and methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10433588

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2431030

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2001991103

Country of ref document: EP

Ref document number: 2002549301

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037007988

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 526842

Country of ref document: NZ

Ref document number: 2002230852

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020037007988

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001991103

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001991103

Country of ref document: EP