WO2002046289A1 - Flammwidrige wärmeformbeständige polycarbonat-zusammensetzungen - Google Patents

Flammwidrige wärmeformbeständige polycarbonat-zusammensetzungen Download PDF

Info

Publication number
WO2002046289A1
WO2002046289A1 PCT/EP2001/013712 EP0113712W WO0246289A1 WO 2002046289 A1 WO2002046289 A1 WO 2002046289A1 EP 0113712 W EP0113712 W EP 0113712W WO 0246289 A1 WO0246289 A1 WO 0246289A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
compositions according
alkyl
formula
parts
Prior art date
Application number
PCT/EP2001/013712
Other languages
English (en)
French (fr)
Inventor
Thomas Eckel
Andreas Seidel
Dieter Wittmann
Uwe Peucker
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to KR1020037007608A priority Critical patent/KR100794451B1/ko
Priority to DE50113952T priority patent/DE50113952D1/de
Priority to BRPI0116031-1A priority patent/BR0116031B1/pt
Priority to JP2002548017A priority patent/JP3987433B2/ja
Priority to CA002436697A priority patent/CA2436697C/en
Priority to EP01999605A priority patent/EP1363973B1/de
Priority to AU2002216054A priority patent/AU2002216054A1/en
Priority to MXPA03005117A priority patent/MXPA03005117A/es
Publication of WO2002046289A1 publication Critical patent/WO2002046289A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to polycarbonate compositions which are flame-retardant with phosphorus compounds and which have excellent mechanical properties
  • EP-A 0 640 655 describes film compositions made from aromatic polycarbonate, styrene-containing copolymers and graft polymers which can be flame-retarded with monomeric and / or oligomeric phosphorus compounds. Because of the proportion of monomeric phosphorus compounds, the aforementioned disadvantages can occur.
  • EP-A 747 424 describes the use of a combination of phosphate with a molecular weight of approximately 500 to 2,000 and of phosphate with a molecular weight of approximately 2,300 to 11,000 as flame retardants in thermoplastic resins, a number of which is not enumerated by thermoplastic resins
  • the present invention relates to compositions comprising
  • X represents a mono- or polynuclear aromatic radical having 6 to 30 carbon atoms, Rl, R ⁇ , R ⁇ and R ⁇ independently of one another, optionally halogenated Ci-Cg-alkyl, each optionally by halogen and / or substituted Cs-Cg-cycloalkyl, Cö-C20-aryl or C -C ⁇ aralkyl,
  • n depending on one another, 0 or 1, preferably 1,
  • composition contains at least 2 phosphorus compounds of the formula (I) in which X or one or more radicals R 1 , R 2 , R 3 and R 4 are different and the sum of the parts by weight of I, II and optionally further additives is 100.
  • the present invention preferably relates to compositions comprising
  • X represents a mono- or polynuclear aromatic radical having 6 to 30 carbon atoms
  • Rl, R ⁇ , R3 and R ⁇ independently of one another, optionally halogenated Cj-Cg-alkyl, each optionally by halogen and / or
  • n independently of one another 0 or 1, preferably 1,
  • composition contains at least 2 phosphorus compounds of the formula (I) in which X or one or more radicals R 1 , R 2 , R 3 and R 4 are different and the sum of the parts by weight of components A) + B) + C) + D) + E) and, if appropriate, further additives is 100.
  • Aromatic polycarbonates and / or aromatic polyester carbonates according to component A which are suitable according to the invention are known from the literature or can be prepared by processes known from the literature (for the preparation of aromatic polycarbonates see, for example, Schnell, “Chemistry and Physics of Polycarbonates”, Interscience Publishers, 1964, and DE-AS 1 495 626, DE-OS 2 232 877, DE-A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396; for the production of aromatic polyester carbonates, for example DE- A 3 077 934).
  • Aromatic polycarbonates are produced e.g. by implementing
  • Diphenols with carbonic acid halides preferably phosgene and / or with aromatic dicarboxylic acid dihalides, preferably benzenedicarboxylic acid dihalogenides, according to the phase interface method, optionally using chain terminators, for example monophenols and optionally using trifunctional or more than trifunctional ner branches, for example triphenols or tetrenols.
  • Diphenols for the preparation of the aromatic polycarbonates and / or aromatic polyester carbonates are preferably those of the formula (II)
  • a 1 is a single bond, -CC-alkylene, C2-C5-alkylidene, Cs-Cg-cycloalkylene, -O-, -SO-, -CO-, -S-, -SO2-, Cß-C ⁇ - Arylene, which may be condensed with further aromatic rings optionally containing heteroatoms, or a radical of the formula
  • C 1 -C 4 -alkyl preferably C 1 -C 4 -alkyl, in particular methyl, halogen, preferably chlorine and / or bromine, Cö-CiQ-aryl, preferably phenyl, preferably
  • Z carbon and m is an integer from 4 to 7, preferably 4 or 5,
  • Preferred diphenols are hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis- (hydroxyphenyl) -C ⁇ -C5-alkanes, bis- (hydroxyphenyl) -C5-C6-cycloalkanes, bis- (hydroxyphenyl) ethers, bis - (hydroxy ⁇ henyl) sulfoxides, bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones and ⁇ , ⁇ -bis (hydroxyphenyl) diisopropyl benzenes such as their core-brominated and / or core-chlorinated derivatives.
  • diphenols are 4,4'-diphenylphenol, bisphenol-A, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis - (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-dihydroxydiphenyl sulfide, 4,4'-
  • Dihydroxydiphenyl sulfone and their di- and tetrabrominated or chlorinated derivatives such as, for example, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane.
  • 2,2-bis (4-hydroxyphenyl) propane (bisphenol-A) is particularly preferred.
  • the diphenols can be used individually or as any mixtures.
  • the diphenols are known from the literature or can be obtained by processes known from the literature.
  • Suitable chain terminators for the production of the thermoplastic, aromatic polycarbonates are, for example, phenol, p-chlorophenol, p-tert-butylphenol or 2,4,6-tribromophenol, but also long-chain alkylphenols, such as 4- (1,3-tetramethylbutyl) -phenol according to DE-OS 2 842 005 or monoalkylphenol or dialkylphenols with a total of 8 to 20 carbon atoms in the alkyl substituents, such as 3,5-di-tert-butylphenol, p-iso-octylphenol, p-tert-octylphenol, p-dodecylphenol and 2- (3,5- Dimethylheptyl) phenol and 4- (3,5-dimethylheptyl) phenol.
  • the amount of chain terminators to be used is generally between 0.5 mol% and 10 mol%, based on the molar sum of the diphenols used in each case.
  • thermoplastic, aromatic polycarbonates have average weight-average molecular weights (M w , measured, for example, by means of an ultracentrifuge or scattered light measurement) of 10,000 to 200,000, preferably 20,000 to 80,000.
  • thermoplastic, aromatic polycarbonates can be branched in a known manner, preferably by incorporating 0.05 to 2.0 mol%, based on the sum of the diphenols used, of compounds having 3 or more functional groups, for example those having see three or more than three phenolic groups.
  • copolycarbonates Both homopolycarbonates and copolycarbonates are suitable.
  • component A 1 to 25% by weight, preferably 2.5 to 25% by weight (based on the total amount of diphenols to be used), polydiorganosiloxanes with hydroxy-aryloxy end groups can also be used. These are known (see, for example, from US Pat. No. 3,419,634) or can be produced by processes known from the literature.
  • the production of polydiorganosiloxane-containing copolycarbonates is e.g. in DE-OS 3 334 782.
  • preferred polycarbonates are polystyrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-co-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene
  • Aromatic dicarboxylic acid dihalides for the production of aromatic polyester carbonates are preferably the diacid dichlorides of isophthalic acid, tere- phthalic acid, diphenyl ether-4,4'-dicarboxylic acid and naphthalene-2,6-dicarboxylic acid.
  • Mixtures of the diacid dichlorides of isophthalic acid and terephthalic acid in a ratio between 1:20 and 20: 1 are particularly preferred.
  • a carbonic acid halide preferably phosgene, is additionally used as the bifunctional acid derivative.
  • the amount of chain terminators is in each case 0.1 to 10 mol%, based on moles of diphenols in the case of the phenolic chain terminators and on moles of dicarboxylic acid dichlorides in the case of monocarboxylic acid chloride chain terminators.
  • the aromatic polyester carbonates can also contain aromatic hydroxycarboxylic acids.
  • the aromatic polyester carbonates can be linear or branched in a known manner (see also DE-OS 2 940 024 and DE-OS 3 007 934).
  • 3- or polyfunctional carboxylic acid chlorides such as trimesic acid trichloride, cyanuric acid trichloride, 3,3'-4,4'-benzophenonetetracarboxylic acid tetrachloride, 1, 4,5,8-naphthalenetetracarboxylic acid tetrachloride or pyromellitic acid tetrachloride
  • branching agents in amounts of 0.01 to 1.0 mol% (based on the dicarboxylic acid dichlorides used) or 3- or polyfunctional phenols, such as phloro- glucin, 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -hepten-2,4,4-dimethyl-2,4,6-tri- (4-hydroxyphenyl) -heptane, 1, 3,5-tri- (4-hydroxyphenyl) benzene, 1,1,1-tri- (4-hydroxyphenyl) ethane, tri- (4-
  • Phenolic branching agents can be introduced with the diphenols, acid chloride branching agents can be introduced together with the acid dichlorides.
  • thermoplastic, aromatic polyester carbonates can vary as desired.
  • the proportion of carbonate groups is preferably up to 100 mol%, in particular up to 80 mol%, particularly preferably up to 50 mol%, based on the sum of ester groups and carbonate groups.
  • Both the ester and the carbonate content of the aromatic polyester carbonates can be present in the form of blocks or randomly distributed in the polycondensate.
  • the relative solution viscosity ( ⁇ re l) of the aromatic polyester carbonates is in the range 1.18 to 1.4, preferably 1.22 to 1.3 (measured on solutions of 0.5 g polyester carbonate in 100 ml methylene chloride solution at 25 ° C. ).
  • thermoplastic, aromatic polycarbonates and polyester carbonates can be used alone or in any mixture with one another.
  • Component B is
  • Component B according to the invention is graft polymers. These comprise graft copolymers with rubber-elastic properties which can be obtained from at least 2 of the following monomers: chloroprene, 1,3-butadiene, isoprene, styrene,
  • Preferred polymers B are partially crosslinked and have gel contents of more than 20% by weight, preferably more than 40% by weight, in particular more than 60% by weight.
  • Preferred graft polymers B comprise graft polymers from:
  • Bl2 1 to 50 wt .-% acrylonitrile, methacrylonitrile, methyl methacrylate, maleic anhydride, C j -C ⁇ alkyl or. phenyl-N-substituted maleimides or mixtures of these compounds
  • graft polymers B are obtainable by grafting
  • ⁇ 10 to 70 preferably 15 to 50, in particular 20 to 40% by weight, based on graft polymate B, of at least one (meth) acrylic ester or 10 to 70, preferably 15 to 50, in particular 20 to 40% by weight of one Mixtures of 10 to 50, preferably 20 to 35% by weight, based on the mixture, acrylonitrile or (meth) -acrylic acid ester and 50 to 90, preferably 65 to 80% by weight, based on the mixture, styrene, as graft B. 1 on
  • ⁇ 30 to 90 preferably 50 to 85, in particular 60 to 80% by weight, based on graft polymer B, of a butadiene polymer with at least 50% by weight, based on ⁇ , butadiene residues as the graft base B.2.
  • the gel fraction of the graft base ⁇ is generally at least 20% by weight, preferably 40% by weight (measured in toluene), the degree of graft G 0.15 to 0.55 and the average particle diameter d5 Q of the graft polymer B.2 0. 05 to 2 ⁇ m, preferably 0.1 to 0.6 ⁇ m.
  • (Meth) -acrylic acid esters ⁇ are esters of acrylic acid or methacrylic acid with monohydric alcohols with 1 to 18 carbon atoms. Methacrylic acid methyl esters, ethyl esters and propyl esters, n-butyl acrylate, t-butyl acrylate and t-butyl methacrylate are particularly preferred.
  • the graft base ⁇ can contain up to 50% by weight, based on ⁇ , residues of other ethylenically unsaturated monomers such as styrene, acrylonitrile, esters of acrylic or methacrylic acid with 1 to 4 carbon atoms in the alcohol component (such as methyl acrylate, ethyl acrylate) , Methyl methacrylate, ethyl methacrylate), vinyl ester and / or vinyl ether.
  • the preferred graft base ß consists of pure
  • the degree of grafting G denotes the weight ratio of grafted graft monomers to the graft base and is dimensionless.
  • the average particle size d 50 is the diameter above and below which 50% by weight of the particles lie. It can be determined by means of ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymer 250 (1972), 782-796).
  • Particularly preferred polymers B are e.g. also graft polymers
  • the acrylate rubbers ⁇ of the polymers B are preferably polymers of acrylic acid alkyl esters, optionally with up to 40% by weight, based on ⁇ , of other polymerizable, ethylenically unsaturated monomers.
  • the preferred polymerizable acrylic acid esters include C 1 -C 6 -alkyl esters, for example methyl, ethyl, butyl, n-octyl and 2-ethyl-hexyl esters; Haloalkyl esters, preferably halo-Ci-Cg-alkyl esters, such as chloroethyl acrylate, and mixtures of these monomers.
  • Monomers with more than one polymerizable double bond can be copolymerized for crosslinking.
  • Preferred examples of crosslinking monomers are esters of unsaturated monocarboxylic acids with 3 to 8 C atoms and unsaturated monohydric alcohols with 3 to 12 C atoms or saturated polyols with 2 to 4
  • OH groups and 2 to 20 C atoms e.g. Ethylene glycol dimethacrylate, allyl methacrylate; polyunsaturated heterocyclic compounds, e.g. Trivinyl and triallyl cyanurate; polyfunctional vinyl compounds such as di- and trivinylbenzenes; but also triallyl phosphate and diallyl phthalate.
  • Crosslinking monomers are preferably allyl methacrylate, ethylene glycol dimethyl acrylate, diallyl phthalate and heterocyclic compounds which have at least 3 ethylenically unsaturated groups.
  • crosslinking monomers are the cyclic monomers triallyl cyanurate, triallyl isocyanurate, trivinyl cyanurate, triacryloylhexahydro-s-triazine and triallylbenzenes.
  • the amount of crosslinking monomers is preferably 0.02 to 5% by weight, in particular 0.05 to 2% by weight, based on the graft base ⁇ .
  • Preferred “other” polymerizable, ethylenically unsaturated monomers which, in addition to the acrylic acid esters, can optionally be used to prepare the graft base ⁇ , are, for example, acrylonitrile, styrene, ⁇ -methylstyrene, acrylamides, vinyl-Ci-Cg-alkyl ethers, methyl methacrylate, butadiene.
  • Preferred acrylate rubbers as Graft base ⁇ are emulsion polymers which have a gel content of at least 60% by weight.
  • graft bases according to B.2 are silicone rubbers with graft-active sites, as described in DE-A 3 704 657, DE-A 3 704 655, DE-A 3 631 540 and DE-A 3 631 539.
  • the gel content of the graft base B.2 is determined at 25 ° C. in dimethylformamide (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I and II, Georg Thieme-Verlag, Stuttgart 1977).
  • the graft polymers B can be prepared by known processes such as bulk, suspension, emulsion or bulk suspension processes.
  • graft polymers B are understood according to the invention to mean those products which are obtained by polyreaction of the
  • Graft monomers can be obtained on the graft base.
  • the average particle size d5Q is the diameter above and below which 50% by weight of the particles lie. It can be determined by means of ultracentrifuge measurement (W. Scholtan, H. Lange, Kolloid, Z. and Z. Polymer 250 (1972), 782-1796).
  • Component C comprises one or more thermoplastic vinyl (co) polymeric C.I. and / or polyalkylene terephthalates C. 2.
  • Suitable as vinyl (co) polymers Cl are polymers of at least one monomer from the group of the vinyl aromatics, vinyl cyanides (unsaturated nitriles), (meth) acrylic acid (C 1 -C 8 ) alkyl esters, unsaturated carboxylic acids and derivatives (such as anhydrides and imides) unsaturated carboxylic acids.
  • vinyl aromatics vinyl cyanides (unsaturated nitriles)
  • (meth) acrylic acid (C 1 -C 8 ) alkyl esters unsaturated carboxylic acids and derivatives (such as anhydrides and imides) unsaturated carboxylic acids.
  • Cll 50 to 99 preferably 60 to 80 wt .-% vinyl aromatics and / or core-substituted vinyl aromatics such as styrene, ⁇ -methylstyrene, p-methylstyrene, p-chlorostyrene) and / or methacrylic acid (-C-C 8 ) alkyl esters such as Methyl methacrylate, ethyl methacrylate), and
  • Cl2 1 to 50, preferably 20 to 40 wt .-% vinyl cyanides (unsaturated nitriles) such as acrylonitrile and methacrylonitrile and / or (meth) acrylic acid (C] -C 8 ) alkyl esters (such as methyl methacrylate, n-butyl acrylate, t -Butyl acrylate) and or unsaturated carboxylic acids (such as maleic acid) and / or derivatives (such as anhydrides and imides) of unsaturated carboxylic acids (e.g. maleic anhydride and N-phenyl-maleimide).
  • unsaturated carboxylic acids such as maleic acid
  • derivatives such as anhydrides and imides
  • the (co) polymers C.l are resin-like, thermoplastic and rubber-free.
  • copolymer of C.I. 1 styrene and C.I. 2 acrylonitrile is particularly preferred.
  • the (co) polymers according to Cl are known and can be prepared by radical polymerization, in particular by emulsion, suspension, solution or bulk polymerization.
  • the (co) polymers preferably have molecular weights M w (weight average, determined by light scattering or sedimentation) between 15,000 and 200,000.
  • the polyalkylene terephthalates of component C.2 are reaction products made from aromatic dicarboxylic acids or their reactive derivatives, such as dimethyl esters or anhydrides, and aliphatic, cycloaliphatic or araliphatic diols and mixtures of these reaction products.
  • Preferred polyalkylene terephthalates contain at least 80 mol%, preferably at least 90 mol%, based on the dicarboxylic acid component terephthalic acid residues and at least 80 mol%, preferably at least 90 mol%, based on the diol component ethylene glycol and / or butanediol-1, 4 residues.
  • the preferred polyalkylene terephthalates can contain up to 20 mol%, preferably up to 10 mol%, of residues of other aromatic or cycloaliphatic dicarboxylic acids with 8 to 14 C atoms or aliphatic dicarboxylic acids with 4 to 12 C atoms, e.g. Residues of phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, 4,4'-diphenyldicarboxylic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, cyclohexane-diacetic acid.
  • the preferred polyalkylene terephthalates can contain up to 20 mol%, preferably up to 10 mol%, other aliphatic diols with 3 to 12 carbon atoms or cycloaliphatic diols with 6 to 21 Contain carbon atoms, e.g.
  • the polyalkylene terephthalates can be branched by incorporating relatively small amounts of trihydric or tetravalent alcohols or 3- or 4-basic carboxylic acids, for example according to DE-OS 1 900270 and US Pat. No. 3,692,744.
  • preferred branching agents are trimesic acid, trimellitic acid, trimethylolethane and -propane and pentaerythritol.
  • polyalkylene terephthalates which have been produced solely from terephthalic acid and its reactive derivatives (e.g. its dialkyl esters) and ethylene glycol and / or 1,4-butanediol, and mixtures of these polyalkylene terephthalates.
  • Polyalkylene terephthalates contain 1 to 50% by weight, preferably 1 to 30% by weight, polyethylene terephthalate and 50 to 99% by weight, preferably 70 to 99% by weight, polybutylene terephthalate.
  • the polyalkylene terephthalates preferably used generally have an intrinsic viscosity of 0.4 to 1.5 dl / g, preferably 0.5 to 1.2 dl / g, measured in phenol / o-dichlorobenzene (1: 1 parts by weight) at 25 ° C. in the Ubbelohde viscometer.
  • the polyalkylene terephthalates can be prepared by known methods (see e.g.
  • the molding compositions according to the invention contain at least one phosphorus compound of the formula (I-a) as flame retardant
  • X 1 represents a mononuclear or polynuclear aromatic radical having 6 to 30 C atoms
  • X 2 represents a mononuclear or polynuclear aromatic radical having 6 to 30 carbon atoms
  • R *, R2, R3 and R 4 can in turn be independently substituted by halogen and / or alkyl groups, preferably chlorine, bromine and / or C1-C4-alkyl.
  • Particularly preferred aryl radicals are cresyl, phenyl, xylenyl, propylphenyl or butylphenyl and the corresponding brominated and chlorinated derivatives thereof.
  • Xiund X 2 are each preferably different and stand for a single- or multi-core aromatic radical having 6 to 30 C atoms.
  • Preferred residues are derived from diphenols according to formula (II).
  • Preferred diphenols are hydroquinone, resorcinol, 4,4'-dihydroxydiphenyl, bis- (hydroxyphenyl) -C ⁇ -C5-alkanes, bis- (hydroxyphenyl) -C5-C6-cycloalkanes, bis- (hydroxyphenyl) ethers, bis - (Hydroxyphenyl) sulfoxides, bis (hydroxyphenyl) ketones, bis (hydroxyphenyl) sulfones and ⁇ , ⁇ -bis (hydroxyphenyl) diisopropyl benzenes such as their core-brominated and / or core-chlorinated derivatives.
  • diphenols are 4,4'-diphenylphenol, bisphenol-A, 2,4-bis (4-hydroxyphenyl) -2-methylbutane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis - (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 4,4'-dihydroxydiphenyl sulfide, 4,4'-
  • Dihydroxydiphenyl sulfone and their di- and tetrabrominated or chlorinated derivatives such as, for example, 2,2-bis (3-chloro-4-hydroxyphenyl) propane, 2,2-bis (3,5-dichloro-4-hydroxyphenyl) propane or 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane.
  • diphenols are bisphenol A, resorcinol, hydroquinone, dihydroxydiphenyl and dihydroxydiphenyl sulfone.
  • q 0 compounds such as tributyl phosphate, tris (2-chloroethyl) phosphate, tris (2,3-dibromopropyl) phosphate, triphenyl phosphate, tricresyl phosphate, diphenyl cresyl phosphate, diphenyl octyl phosphate, diphenyl 2-ethyl cresyl phosphate, tri (isopropylphenyl) phosphate, halogen-substituted aryl phosphates, methylphosphonic acid dimethyl ester, methylphosphonic acid diphenyl ester, phenylphosphonic acid diethyl ester, triphenylphosphine oxide or tricresylphosphine oxide.
  • the molding compositions according to the invention preferably contain at least one phosphorus compound of the formula (I-c) as flame retardant,
  • R 1 , R 2 , R 3 , R 4 , n and q have the abovementioned meanings.
  • R 5 is independently -C 4 alkyl and / or halogen, k is 0, 1 or 2, preferably 0, Y is methylene or isopropylidene. Y particularly preferably represents an isopropylidene radical.
  • the phosphorus compounds according to component D are generally known compounds of organic chemistry or can be prepared in an analogous manner by known methods (cf., for example, Ullmanns Encyklopadie der Technischen Chemie, vol. 18, pp. 301 ff. 179; Houben-Weyl, methods of Organic Chemistry, vol. 12/1, p. 43; Beistein, vol. 6, p. 177) by using at least 2 different dihydroxy compounds, for example bisphenols, hydroquinone, for the synthesis.
  • the fluorinated polyolefins E are high molecular weight and possess glass transition temperatures above -30 ° C, usually above 100 ° C, fluorine contents, preferably of 65 to 76, preferably from 70 to 76 weight .-%, mean particle diameter d 5 o of 0 , 05 to 1,000, preferably 0.08 to 20 ⁇ m.
  • the fluorinated polyolefins E have a density of 1.2 to 2.3 g / cm.
  • Preferred fluorinated polyolefins E are polytetrafluoroethylene, polyvinylidene fluoride, tetrafluoroethylene (hexafluoropropylene and ethylene / tetrafluoroethylene copolymers.
  • the fluorinated polyolefins are known (cf. "Vinyl and Related Polymers" from Schildknecht, John
  • ⁇ орcerol ⁇ ⁇ о ⁇ оловки can be prepared by known processes, for example by polymerizing tetrafluoroethylene in an aqueous medium with a free radical-forming catalyst, for example sodium, potassium or ammonium peroxydisulfate at pressures of 7 to 71 kg / cm 2 and at temperatures of 0 to 200 ° C, preferably at temperatures of 20 to 100 ° C. (See U.S. Patent 2,393,967 for more details).
  • a free radical-forming catalyst for example sodium, potassium or ammonium peroxydisulfate
  • the density of these materials can be between 1.2 and 2.3 g / cm 3 , the average particle size between 0.5 and 1000 ⁇ m.
  • Fluorinated polyolefins E preferred according to the invention are tetrafluoroethylene polymers with average particle diameters of 0.05 to 20 ⁇ m, preferably 0.08 to 10 ⁇ m, and a density of 1.2 to 1.9 g / cm 3 and are preferably coagulated Mixture of emulsions of tetrafluoroethylene polymers E with emulsions of graft polymers B used.
  • Suitable fluorinated polyolefins E which can be used in powder form are tetrafluoroethylene polymers with average particle diameters of 100 to 1000 ⁇ m and densities of 2.0 g / cm to 2.3 g / cm.
  • an aqueous emulsion (latex) of a graft polymer B is first mixed with a finely divided emulsion of a fluorinated polyolefin E;
  • Suitable emulsions of fluorinated polyolefins usually have solids contents of 30 to 70% by weight, in particular 50 to 60% by weight, preferably 30 to 35% by weight.
  • component B does not include the proportion of the graft polymer for the coagulated mixture of graft polymer and fluorinated polyolefins.
  • the equilibrium ratio of graft polymer B to fluorinated polyolefin E in the emulsion mixture is 95: 5 to 60:40.
  • the emulsion mixture is coagulated in a known manner, for example by spray drying, freeze drying or coagulation by adding inorganic or organic salts, acids, bases or organic, water-miscible solvents, such as alcohols, ketones, preferably at temperatures from 20 to 150 ° C. , especially from 50 to
  • drying can be carried out at 50 to 200 ° C., preferably 70 to 100 ° C.
  • Suitable tetrafluoroethylene polymer emulsions are commercially available products and are, for example, from DuPont as Teflon, such as
  • compositions according to the invention can be at least one of the usual
  • Glass fibers come as inorganic reinforcement materials, if necessary cut or ground, glass beads, glass balls, flake-like reinforcing material, such as kaolin, talc, mica, mica, carbon fibers in question. Cut or ground glass fibers are preferably used as the reinforcing material, preferably with a length of 1 to 10 mm and a diameter of ⁇ 20 ⁇ m in an amount of 1 to 40 parts by weight; the glass fibers are preferably surface-treated.
  • compositions according to the invention can moreover comprise at least one polar compound of at least one of the metals of the 1st to 5th main group or of the 1st to 8th secondary group of the periodic table with at least one element selected from the group of oxygen, sulfur, boron, carbon, phosphorus, Contain nitrogen, hydrogen and silicon as finely divided inorganic powder.
  • An oxide or hydroxide preferably TiO 2 , SiO 2 , SnO 2 , ZnO, boehmite, ZrO 2 , Al 2 O, iron oxides, their mixtures and doped compounds, particularly preferably boehmite or TiO 2 , are preferred as the polar compound.
  • compositions according to the invention can contain one or more further, optionally synergistic flame retardants.
  • additional flame retardants from component D are various phosphorus compounds, organic halogen compounds such as decabromobisphenyl ether,
  • Tetrabromobisphenol inorganic halogen compounds such as ammonium bromide, nitrogen compounds such as melamine, melamine formaldehyde resins, inorganic hydroxide compounds such as Mg, Al hydroxide, inorganic compounds such as antimony oxides, barium metaborate, hydroxoantimonate, zirconium oxide, zirconium hydroxide, molybdenum oxide, ammonium molybdate and zinc borate, ammonium borate, zinc borate, ammonium borate, zinc borate, ammonium borate, zinc borate, and ammonium borate, zinc borate, zinc borate, and ammonium borate, zinc borate, and ammonium borate, zinc borate, and ammonium borate, zinc borate, and ammonium borate, zinc borate, and ammonium borate, zinc borate, and ammonium borate, zinc borate, and ammonium borate, zinc borate, and ammonium borate, zinc borate, and ammonium bo
  • compositions according to the invention containing components A to E and, if appropriate, further known additives such as stabilizers, dyes, pigments elements, lubricants and mold release agents, nucleating agents, nanoparticles as well as antistatic agents and reinforcing materials and flame retardants are produced by mixing the respective components in a known manner and at temperatures of 200 ° C. to 300 ° C. in conventional units such as internal kneaders, extruders and double wave screws melt-compounded and melt-extruded, component E preferably being used in the form of the coagulated mixture already mentioned.
  • the individual constituents can be mixed in a known manner both successively and simultaneously, both at about 20 ° C. (room temperature) and at a higher temperature.
  • compositions of the present invention can be used for the production of moldings of any kind.
  • moldings can be produced by injection molding.
  • moldings that can be produced are: Housing parts of all types, eg. B. for household appliances such as juicers, coffee machines, mixers, for office machines such as monitors, printers, copiers or cover plates for the construction sector and parts for the motor vehicle sector. They are also used in the field of electrical engineering because they have very good electrical properties.
  • compositions according to the invention can be used, for example, for the production of the following moldings or moldings:
  • FR Rail vehicles
  • hubcaps housings for electrical equipment containing small transformers, housings for devices for disseminating and transmitting information, housings and linings for medical purposes, massagers and housings therefor, toy vehicles for children, flat wall elements, housings for safety devices, rear spoilers , heat-insulated transport containers, device for keeping or supplying small animals, molded parts for sanitary and bathing equipment, cover grilles for ventilation openings,
  • Molded parts for garden and equipment houses, housing for garden tools. Further applications are possible
  • telecommunication devices such as telephone devices and faxes, computers, printers, scanners, plotters, monitors, keyboards, typewriters, dictation devices, etc.
  • garden tools garden furniture, lawn mower housings, pipes and housings for garden irrigation, garden houses, leaf vacuums, shredders, shredders, sprayers etc.,
  • sports / play equipment toy vehicles, seats, pedals, sports equipment, bicycles, table tennis, exercise bikes, golf caddies, snow boards, boat parts, camping items, beach chairs etc.,
  • compositions are particularly suitable for the production of molded parts, where particularly high demands are placed on the heat resistance of the plastics used.
  • Another form of processing is the production of shaped bodies by deep drawing from previously produced sheets or foils.
  • Another object of the present invention is therefore the use of the compositions according to the invention for the production of moldings of any kind, preferably those mentioned above, and the moldings from the compositions according to the invention.
  • Component B.2 graft polymer of 84 parts by weight of a copolymer of styrene and acrylonitrile in a ratio of 73:27 to 16 parts by weight of crosslinked polybutadiene rubber, produced by bulk polymerization.
  • Tetrafluoroethylene polymer as a coagulated mixture of a SAN graft polymer emulsion according to the above.
  • the weight ratio of graft polymer B to tetrafluoroethylene polymer E in the mixture is 90% by weight to 10% by weight.
  • the tetrafluoroethylene polymer emulsion has a solids content of 60% by weight, the average particle diameter is between 0.05 and 0.5 ⁇ m.
  • the emulsion of the tetrafluoroethylene polymer (Teflon 30 N from DuPont) is mixed with the emulsion of the SAN graft polymer B and stabilized with 1.8% by weight, based on polymer solids, of phenolic antioxidants.
  • the mixture is coagulated with an aqueous solution of MgSO4 (Epsom salt) and acetic acid at pH 4 to 5, filtered and washed until practically free of electrolytes, then freed from the main amount of water by centrifugation and then at 100 ° C dried to a powder. This powder can then be compounded with the other components in the units described.
  • the components are mixed on a 3-1 kneader.
  • the moldings are produced on an Arburg 270 E injection molding machine at 260 ° C.
  • the notched impact strength a k is determined in accordance with ISO 180/1 A.
  • the fire behavior of the samples was determined according to UL Subj. 94 V measured on rods measuring 127 x 12.7 x 1.6 mm, produced on an injection molding machine at 260 ° C.
  • the UL 94 V test is carried out as follows: Substance samples are shaped into rods measuring 127 x 12.7 x 1.6 mm. The rods are mounted vertically so that the underside of the test specimen is 305 mm above a strip of bandaging material. Each test stick is ignited individually by means of two successive ignition processes of 10 s duration, the burning properties after each ignition process are observed and the sample is then evaluated. A Bunsen burner with a 100 mm (3.8 inch) high blue flame of natural gas with a thermal unit of 3.73 x 10 4 kJ / m 3 (1000 BTU per cubic foot) is used to ignite the sample.
  • the UL 94 V-O classification includes the properties of materials described below that are tested in accordance with the UL 94 V regulation.
  • the molding compounds in this class do not contain any samples that burn longer than 10 s after each exposure to the test flame; they do not show a total flame time of more than 50 s when exposed twice to each sample set; they do not contain any
  • Samples that burn completely up to the retaining clip attached to the top of the sample they have no samples which ignite the cotton wool arranged below the sample by burning drops or particles; they also do not contain any samples that glow more than 30 s after the test flame has been removed.
  • UL 94 classifications refer to samples that are less flame retardant or less self-extinguishing because they emit flaming drops or particles. These classifications are referred to as UL 94 V-1 and V-2. N.B. means "failed" and is the classification of samples that have an afterburn time of> 30 s.
  • MVR is determined according to ISO 1133 A summary of the properties of the molding materials according to the invention is given in Table 1 below:
  • compositions and properties (quantity in% by weight)
  • the molding compositions according to the invention contain a mixture of two structurally different oligophosphates and are distinguished by a favorable combination of properties of high impact strength, high heat resistance, good processing behavior and improved flame resistance.

Abstract

Zusammensetzungen enthaltend I. mindestens (2) Komponenten ausgewählt aus der Gruppe der aromatischen Poly(ester)carbonate, Pfropfpolymerisate von einem oder mehreren Vinyl-monomeren auf eine oder mehrere Pfropfgrundlagen mit einer Glasüber-gangstemperatur <10 °C, thermoplastischem Vinyl(co)polymerisat oder Polyalkylenterephthalat sowie II. 0,5 bis 25 Gew.-Teile einer Mischung von Phosphorverbindungen der allgemeinen Formel (I), mit der Maßgabe, dass die Zusammensetzung mindestens (2) Phosphorverbindungen der Formel (I) enthält, in denen X oder ein oder mehrere Reste R?1, R2, R3 und R4¿ verschieden sind und wobei die Summe der Gewichtsteile aller Komponenten 100 beträgt.

Description

Flammwidrige wärmeformbeständige Polycarbonat-Zusammensetzungen
Die vorliegende Erfindung betrifft mit Phosphorverbindungen flammwidrig ausge- 5 rüstete Polycarbonat-Zusammensetzungen, die ein ausgezeichnetes mechanisches
Eigenschaftsniveau, eine hohe Wärmeformbeständigkeit einen verbesserten Flammschutz und verbessertes Fließverhalten (Nerarbeitungsverhalten) aufweisen.
US-A 5 061 745 beschreibt Formmassen aus aromatischem Polycarbonat, Pfropf- IC) polymerisat und Monophosphat. Diese Mischungen zeigen zwar ein gutes Fließverhalten und einen guten Flammschutz, haben jedoch häufig nicht die geforderte hohe Wärmeformbestständigkeit. Außerdem weisen Monophosphate aufgrund ihrer Flüchtigkeit nicht bestimmte Nerarbeitungsbedingungen zur Wirkungbelagsbildung.
15 In EP-A 0 640 655 werden Foπnmassen aus aromatischem Polycarbonat, styrolhalti- gen Copolymerisaten und Pfropfpolymerisaten beschrieben, die mit monomeren und/oder oligomeren Phosphorverbindungen flammwidrig ausgerüstet werden können. Aufgrund des Anteiles an monomeren Phosphorverbindungen können die vorgenannten Nachteile auftreten.
20
EP-A 747 424 beschreibt die Verwendung einer Kombination von Phosphat mit einem Molekulargewicht von ungefähr 500 bis 2 000 und von Phosphat mit einem Molekulargewicht von ungefähr 2 300 bis 11 000 als Flammschutzmittel in thermoplastischen Harzen, wobei eine Nielzahl von thermoplastischen Harzen aufgezählt
25 wird. Wegen des hohen Molekulargewichtes der Flammschutzmittel sich Abstriche in der Flammschutzsicherung zu erwarten.
In EP-A-0363608 werden flammwidrige Polymermischungen aus aromatischem
Polycarbonat, styrolhaltigem Copolymer oder Pfropfcopolymer sowie einen
30 oligomeren Phosphat als Flammschutzadditive beschrieben, worin häufig die geforderte Eigenschaftskombination aus guten Flammschutz und guten Nerarbeitungsverhalten nicht erreicht wird.
Aufgabe der vorliegenden Erfindung ist daher, Polycarbonat-Zusammensetzungen bereitzustellen, die einen verbesserten Flammschutz ein hohe Wärmeformbeständigkeit und verbessertes Fließverhalten (Nerarbeitungsverhalten) sowie gute mechanische Eigenschaften aufweisen.
Es wurde nun überraschenderweise gefunden, dass durch den Einsatz von Mischun- gen aus Oligophosphaten mit verschiedener Struktur Formmassen/Formkörper erhalten werden, die das gewünschte Eigenschaftsprofil aufweisen.
Gegenstand der vorliegenden Erfindung sind Zusammensetzungen enthaltend
I. mindestens 2 Komponenten ausgewählt aus der Gruppe der aromatischen
Poly(ester)carbonate, Pfropfpolymerisate von einem oder mehreren Ninyl- monomeren auf eine oder mehrere Pfropfgrundlagen mit einer Glasübergangstemperatur <10°C, thermoplastischem Ninyl(co)polymerisat sowie
II. 0,5 bis 25 Gew.-Teile einer Mischung von Phosphorverbindungen der allgemeinen Formel (I)
O
II
R1-(0)n~ -p -(O-X-O-P— )- -«>)„— R I
(9)(9)„ (I), R2 R3 worin
X für einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C- Atomen steht, Rl, R^, R^ und R^ unabhängig voneinander, gegebenenfalls halogeniertes Ci-Cg- Alkyl, jeweils gegebenenfalls durch Halogen und/oder
Figure imgf000004_0001
substituiertes Cs-Cg-Cycloalkyl, Cö-C20-Aryl oder C -C^-Aralkyl,
n imabhängig voneinander 0 oder 1, vorzugsweise 1,
q 0,5 bis 30 bedeuten,
mit der Maßgabe, dass die Zusammensetzung mindestens 2 Phosphorverbindungen der Formel (I) enthält, in denen X oder ein oder mehrere Reste R1, R2, R3 und R4 verschieden sind und wobei die Summe der Gewichtsteile von I, II und gegebenenfalls weiteren Additiven 100 beträgt.
Gegenstand der vorliegenden Erfindung sind vorzugsweise Zusammensetzungen enthaltend
A) 5 bis 95, vorzugsweise 10 bis 90 Gew.-Teile, besonders bevorzugt 20 bis 80 Gew.-Teile aromatisches Polycarbonat und/oder Polyestercarbonat
B) 1 bis 60, vorzugsweise 1 bis 40 Gew.-Teile, besonders bevorzugt 2 bis
30 Gew.-Teile, wenigstens eines Pfropfpolymerisats von
B.l 5 bis 95, vorzugsweise 20 bis 60 Gew.-% einem oder mehreren Ninyl- monomeren auf
B.2 5 bis 95, vorzugsweise 40 bis 80 Gew.-% einem oder mehreren Pfropfgrundlagen mit einer Glasumwandlungstemperatur < 10°C, vorzugsweise 0°C, besonders bevorzugt < -20°C, C) 0 bis 50, vorzugsweise 1 bis 30, besonders bevorzugt 2 bis 25, Gew.-Teile thermoplastisches Ninyl(co)polymerisat und/oder thermoplastisches Polyal- kylenterephthalat
D) 0,5 bis 25 Gew.-Teile, vorzugsweise 1 bis 18 Gew.-Teile, besonders bevorzugt 2 bis 15 Gew.-Teile, Phosphorverbindung der allgemeinen Formel (I)
Figure imgf000005_0001
woπn
X für einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C- Atomen steht,
Rl, R^, R3 und R^ unabhängig voneinander, gegebenenfalls halogeniertes Cj-Cg-Alkyl, jeweils gegebenenfalls durch Halogen und/oder
Cι-C4-Alkyl substituiertes C5-C6-Cycloalkyl, Cö-C20-Aryl oder C7-Ci2-Aralkyl,
n unabhängig voneinander 0 oder 1, vorzugsweise 1,
q 1 bis 30 bedeuten,
E) 0,05 bis 5 Gew.-Teile, vorzugsweise 0,1 bis 1 Gew.-Teil, besonders bevorzugt 0,1 bis 0,5 Gew.-Teile, fluoriertes Polyolefin
mit der Maßgabe, dass die Zusammensetzung mindestens 2 Phosphorverbindungen der Formel (I) enthält, in denen X oder ein oder mehrere Reste R1, R2, R3 und R4 verschieden sind und wobei die Summe der Gewichtsteile der Komponenten A) + B) + C) + D) + E) und gegebenenfalls weiteren Additiven 100 beträgt.
Komponente A
Erfindungsgemäß geeignete aromatische Polycarbonate und/oder aromatische Poly- estercarbonate gemäß Komponente A sind literaturbekannt oder nach literaturbe- kannten Verfahren herstellbar (zur Herstellung aromatischer Polycarbonate siehe bei- spielsweise Schnell, „Chemistry and Physics of Polycarbonates", Interscience Pub- lishers, 1964, sowie die DE-AS 1 495 626, DE-OS 2 232 877, DE-A 2 703 376, DE-A 2 714 544, DE-A 3 000 610, DE-A 3 832 396; zur Herstellung aromatischer Polyestercarbonate z.B. DE-A 3 077 934).
Die Herstellung aromatischer Polycarbonate erfolgt z.B. durch Umsetzung von
Diphenolen mit Kohlensäurehalogeniden, vorzugsweise Phosgen und/oder mit aromatischen Dicarbonsäuredihalogeniden, vorzugsweise Benzoldicarbonsäuredihalo- geniden, nach dem Phasengrenzflächenverfahren, gegebenenfalls unter Verwendung von Kettenabbrechern, beispielsweise Monophenolen und gegebenenfalls unter Ver- wendung von trifunktionellen oder mehr als trifunktionellen Nerzweigern, beispielsweise Triphenolen oder Tetraphenolen.
Diphenole zur Herstellung der aromatischen Polycarbonate und/oder aromatischen Polyestercarbonate sind vorzugsweise solche der Formel (II)
Figure imgf000006_0001
wobei A1 eine Einfachbindung, Cι-C5-Alkylen, C2-C5-Alkyliden, Cs-Cg-Cycloalky- liden, -O-, -SO-, -CO-, -S-, -SO2-, Cß-C^-Arylen, welches mit weiteren gegebenenfalls Heteroatome enthaltenden aromatischen Ringen kondensiert sein kann, oder ein Rest der Formel
Figure imgf000007_0001
oder ein Rest der Formel (IN)
Figure imgf000007_0002
B unabhängig voneinander Cι-C§-Alkyl, vorzugsweise Cι-C4-Alkyl, insbesondere Methyl, Halogen, vorzugsweise Chlor und/oder Brom, Cö-CiQ-Aryl, vorzugsweise Phenyl,
Figure imgf000007_0003
vorzugsweise
Benzyl,
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R6 und R? für jedes Z individuell wählbar, unabhängig voneinander, Wasserstoff oder Ci-Cg-Alkyl, vorzugsweise Wasserstoff, Methyl und/oder Ethyl,
Z Kohlenstoffund m eine ganze Zahl von 4 bis 7, bevorzugt 4 oder 5 bedeuten,
mit der Maßgabe, dass an mindestens einem Atom Z R > und R^ gleichzeitig Alkyl sind.
Bevorzugte Diphenole sind Hydrochinon, Resorcin, 4,4'-Dihydroxydiphenyl, Bis- (hydroxyphenyl)-C \ -C5-alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis-(hy- droxyphenyl)-ether, Bis-(hydroxyρhenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone und α,α- Bis-(hydroxyphenyl)-diisopropyl-benzole wie deren kernbromierte und/oder kernchlorierte Derivate.
Besonders bevorzugte Diphenole sind 4,4'-Diphenylphenol, Bisphenol-A, 2,4- Bis- (4-hydroxyphenyl)-2-methylbutan, 1,1- Bis-(4-hydroxyphenyl)-cyclohexan, 1,1- Bis- (4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'-
Dihydroxydiphenylsulfon sowie deren di- und tetrabromierten oder chlorierten Derivate wie beispielsweise 2,2-Bis-(3-Chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5- dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3,5-dibrom-4-hydroxyphenyl)-pro- pan.
Insbesondere bevorzugt ist 2,2-Bis-(4-hydroxyphenyl)-propan (Bisphenol-A).
Es können die Diphenole einzeln oder als beliebige Mischungen eingesetzt werden.
Die Diphenole sind literaturbekannt oder nach literaturbekannten Verfahren erhältlich.
Für die Herstellung der thermoplastischen, aromatischen Polycarbonate sind geeignete Kettenabbrecher beispielsweise Phenol, p-Chlorphenol, p-tert.-Butylphenol oder 2,4,6-Tribromphenol, aber auch langkettige Alkylphenole, wie 4-(l,3-Tetramethyl- butyl)-phenol gemäß DE-OS 2 842 005 oder Monoalkylphenol bzw. Dialkylphenole mit insgesamt 8 bis 20 C-Atomen in den Alkylsubstituenten, wie 3,5-di-tert.-Butyl- phenol, p-iso-Octylphenol, p-tert.-Octylphenol, p-Dodecylphenol und 2-(3,5-Dime- thylheptyl)-phenol und 4-(3,5-Dimethylheptyl)-phenol. Die Menge an einzusetzenden Kettenabbrechern beträgt im allgemeinen zwischen 0,5 Mol-% und 10 Mol-%, bezogen auf die Molsumme der jeweils eingesetzten Diphenole.
Die thermoplastischen, aromatischen Polycarbonate haben mittlere Gewichtsmittelmolekulargewichte (Mw, gemessen z.B. durch Ultrazentrifuge oder Streulichtmessung) von 10 000 bis 200 000, vorzugsweise 20 000 bis 80 000.
Die thermoplastischen, aromatischen Polycarbonate können in bekannter Weise verzweigt sein, und zwar vorzugsweise durch den Einbau von 0,05 bis 2,0 Mol-%, bezogen auf die Summe der eingesetzten Diphenole, an Verbindungen mit 3 oder mehr funktioneilen Gruppen, beispielsweise solchen mit drei oder mehr als drei phenoli- sehen Gruppen.
Geeignet sind sowohl Homopolycarbonate als auch Copolycarbonate. Zur Herstellung erfindungsgemäßer Copolycarbonate als Komponente A können auch 1 bis 25 Gew.-%, vorzugsweise 2,5 bis 25 Gew.-% (bezogen auf die Gesamtmenge an einzu- setzenden Diphenolen), Polydiorganosiloxane mit Hydroxy-aryloxy-Endgruppen eingesetzt werden. Diese sind bekannt (s. beispielsweise aus US-Patent 3 419 634) bzw. nach literaturbekannten Verfahren herstellbar. Die Herstellung Polydiorganosiloxan- haltiger Copolycarbonate wird z.B. in DE-OS 3 334 782 beschrieben.
Bevorzugte Polycarbonate sind neben den Bisphenol-A-Homopolycarbonaten die
Copolycarbonate von Bisphenol-A mit bis zu 15 Mol-%, bezogen auf die Molsummen an Diphenolen, anderen als bevorzugt bzw. besonders bevorzugt genannten Diphenole, insbesondere an 2,2-Bis(3,5-dibrom-4-hydroxyphenyl)-propan.
Aromatische Dicarbonsäuredihalogenide zur Herstellung von aromatischen Polyestercarbonate sind vorzugsweise die Disäuredichloride der Isophthalsäure, Tere- phthalsäure, Diphenylether-4,4'-dicarbonsäure und der Naphthalin-2,6-dicarbon- säure.
Besonders bevorzugt sind Gemische der Disäuredichloride der Isophthalsäure und der Terephthalsäure im Verhältnis zwischen 1 :20 und 20: 1.
Bei der Herstellung von Polyestercarbonaten wird zusätzlich ein Kohlensäurehaloge- nid, vorzugsweise Phosgen, als biftmktionelles Säurederivat mitverwendet.
Als Kettenabbrecher für die Herstellung der aromatischen Polyestercarbonate kommen außer den bereits genannten Monophenolen noch deren Chlorkohlensäureester sowie die Säurechloride von aromatischen Monocarbonsäuren, die gegebenenfalls durch Cι-C22-Alkylgruppen oder durch Halogenatome substituiert sein können sowie aliphatische C2-C22-Monocarbonsäurechloride in Betracht.
Die Menge an Kettenabbrechern beträgt jeweils 0,1 bis 10 Mol-%, bezogen im Falle der phenolischen Kettenabbrecher auf Mole Diphenole und im Falle von Mono- carbonsäurechlorid-Kettenabbrechern auf Mole Dicarbonsäuredichloride.
Die aromatischen Polyestercarbonate können auch aromatische Hydroxycarbonsäu- ren eingebaut enthalten.
Die aromatischen Polyestercarbonate können sowohl linear als auch in bekannter Weise verzweigt sein (siehe dazu ebenfalls DE-OS 2 940 024 und DE-OS 3 007 934).
Als Verzweigungsmittel können beispielsweise 3- oder mehrfunktionelle Carbonsäurechloride, wie Trimesinsäuretrichlorid, Cyanursäuretrichlorid, 3,3'-4,4'-Benzophe- non-tetracarbonsäuretetrachlorid, 1 ,4,5,8-Naphthalintetracarbonsäuretetrachlorid oder Pyromellithsäuretetrachlorid, in Mengen von 0,01 bis 1,0 Mol-% (bezogen auf eingesetzte Dicarbonsäuredichloride) oder 3- oder mehrfunktionelle Phenole, wie Phloro- glucin, 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-hepten-2,4,4-Dimethyl-2,4,6-tri-(4- hydroxyphenyl)-heptan, 1 ,3,5-Tri-(4-hydroxyphenyl)-benzol, 1,1,1 -Tri-(4-hydroxy- phenyl)-ethan, Tri-(4-hydroxyphenyl)-phenylmethan, 2,2-Bis[4,4-bis(4-hydroxyphe- nyl)-cyclohexyl]-propan, 2,4-Bis-(4-hydroxyphenyl-isopropyl)-phenol, Tetra-(4-hy- droxyphenyl)-methan, 2,6-Bis-(2-hydroxy-5-methyl-benzyl)-4-methyl-phenol, 2-(4-
Hydroxyphenyl)-2-(2,4-dihydroxyphenyl)-propan, Tetra-(4-[4-hydroxyphenyl-iso- propyl]-phenoxy)-methan, 1 ,4-Bis-[4,4'-dihydroxytri-phenyl)-methyl]-benzol, in Mengen von 0,01 bis 1,0 Mol-%, bezogen auf eingesetzte Diphenole, verwendet werden. Phenolische Verzweigungsmittel können mit den Diphenolen vorgelegt, Säurechlorid- Verzweigungsmittel können zusammen mit den Säuredichloriden eingetragen werden.
In den thermoplastischen, aromatischen Polyestercarbonaten kann der Anteil an Car- bonatstruktureinheiten beliebig variieren.
Vorzugsweise beträgt der Anteil an Carbonatgruppen bis zu 100 Mol-%, insbesondere bis zu 80 Mol-%, besonders bevorzugt bis zu 50 Mol-%, bezogen auf die Summe an Estergruppen und Carbonatgruppen.
Sowohl die Ester- als auch der Carbonatanteil der aromatischen Polyestercarbonate kann in Form von Blöcken oder statistisch verteilt im Polykondensat vorliegen.
Die relative Lösungsviskosität (ηrel) der aromatischen Polyestercarbonate liegt im Bereich 1,18 bis 1,4, vorzugsweise 1,22 bis 1,3 (gemessen an Lösungen von 0,5 g Polyestercarbonat in 100 ml Methylenchlorid-Lösung bei 25°C).
Die thermoplastischen, aromatischen Polycarbonate und Polyestercarbonate können allein oder im beliebigen Gemisch untereinander eingesetzt werden. Komponente B
Die erfindungsgemäße Komponente B stellt Pfropfpolymerisate dar. Diese umfassen Pfropfcopolymerisate mit kautschukelastischen Eigenschaften, die aus mindestens 2 der folgenden Monomeren erhältlich sind: Chloropren, Butadien- 1,3, Isopren, Styrol,
Acrylnitril, Ethylen, Propylen, Vinylacetat und (Meth)-Acrylsäureester mit 1 bis 18 C- Atomen in der Alkoholkomponente; also Polymerisate, wie sie z.B. in Methoden der Organischen Chemie" (Houben-Weyl), Bd. 14/1, Georg Thieme- Verlag, Stuttgart 1961, S. 393-406 und in C.B. Bucknall, „Thoughened Plastics", Appl. Science Publishers, London 1977, beschrieben sind. Bevorzugte Polymerisate B sind partiell vernetzt und besitzen Gelgehalte von über 20 Gew.-%, vorzugsweise über 40 Gew.- %, insbesondere über 60 Gew.-%.
Bevorzugte Pfropfpolymerisate B umfassen Pfropfpolymerisate aus:
B.l 5 bis 95, vorzugsweise 30 bis 80 Gew.-%, einer Mischung aus
B.l.l 50 bis 99 Gew.-% Styrol, α-Methylstyrol, halogen- oder methylkernsubstituierten Styrolen, Methylmethacrylat oder Mischungen dieser Verbindungen und
B.l.2 1 bis 50 Gew.-% Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid, Cj-C^alkyl-bzw. phenyl-N-substituierten Maleinimiden oder Mischungen dieser Verbindungen auf
B.2 5 bis 95, vorzugsweise 20 bis 70 Gew.-% Polymerisat auf Dien- und/oder Alkylacrylat-Basis mit einer Glasübergangstemperatur unter -10°C. Bevorzugte Pfropfpolymerisate B sind z.B. mit Styrol und/oder Acrylnitril und/oder (Meth)-Acrylsäurealkylestern gepfropfte Grundlagen B.2 wie Polybutadiene, Poly- isoprene, Butadien/Styrol- oder Butadien Arylnitril-Copolymerisate und Acrylat- kautschuke; d.h. Copolymerisate der in der DE-A 1 694 173 (=US-A 3 564 077) beschriebenen Art; mit Acryl- oder Methacrylsäurealkylestern, Vinylacetat, Acrylnitril, Styrol und/oder Alkylstyrolen gepfropfte Polybutadiene, Butadien/Styrol oder Butadien/ Acrylnitril-Copolymerisate, Polyisobutene oder Polyisoprene, wie sie z.B. in der DE-A 2 348 377 (=US-A 3 919 353) beschrieben sind. Besonders bevorzugte Pfropfgrundlagen sind Polybutadiene, die bis zu 50, vorzugsweise bis zu 30 Gew.-% andere Monomere ausgewählt aus der Gruppe Styrol, Acrylnitril oder Acryl- oder
Methacrylsäure-Cι-C4-alkylester oder Mischungen hieraus enthalten können.
Besonders bevorzugte Polymerisate B sind z.B. ABS-Polymerisate, wie sie z.B. in der DE-A 2 035 390 (=US-A 3 644 574) oder in der DE-A 2 248 242 (=GB-A 1 409 275) beschrieben sind.
Weitere besonders bevorzugte Pfropfpolymerisate B sind erhältlich durch Pfropfreaktion von
α 10 bis 70, vorzugsweise 15 bis 50, insbesondere 20 bis 40 Gew.-%, bezogen auf Pfropfpolymisat B, mindestens eines (Meth)-Acrylsäureesters oder 10 bis 70, vorzugsweise 15 bis 50, insbesondere 20 bis 40 Gew.-% eines Gemisches aus 10 bis 50, vorzugsweise 20 bis 35 Gew.-%, bezogen auf Gemisch, Acrylnitril oder (Meth)-Acrylsäureester und 50 bis 90, vorzugsweise 65 bis 80 Gew.-%, bezogen auf Gemisch, Styrol, als Pfropfauflage B.1 auf
ß 30 bis 90, vorzugsweise 50 bis 85, insbesondere 60 bis 80 Gew.-%, bezogen auf Pfropfpolymerisat B, eines Butadienpolymerisats mit mindestens 50 Gew.-%, bezogen auf ß, Butadienresten als Pfropfgrundlage B.2. Der Gelanteil der Pfropfgrundlage ß beträgt im allgemeinen mindestens 20 Gew.-%, vorzugsweise 40 Gew.-% (in Toluol gemessen), der Pfropfgrad G 0,15 bis 0,55 und der mittlere Teilchendurchmesser d5Q des Pfropfpolymerisats B.2 0,05 bis 2 μm, vorzugsweise 0,1 bis 0,6 μm.
(Meth)-Acrylsäureester α sind Ester der Acrylsäure oder Methacrylsäure mit einwertigen Alkoholen mit 1 bis 18 C- Atomen. Besonders bevorzugt sind Methacrylsäure- methylester, -ethylester und -propylester, n-Butylacrylat, t-Butylacrylat und t-Butyl- methacrylat.
Die Pfropfgrundlage ß kann neben Butadienresten bis zu 50 Gew.-%, bezogen auf ß, Reste anderer ethylenisch ungesättigter Monomeren, wie Styrol, Acrylnitril, Ester der Acryl- oder Methacrylsäure mit 1 bis 4 C-Atomen in der Alkoholkomponente (wie Methylacrylat, Ethylacrylat, Methylmethacrylat, Ethylmethacrylat), Vinylester und/oder Vinylether enthalten. Die bevorzugte Pfropfgrundlage ß besteht aus reinem
Polybutadien.
Der Pfropfgrad G bezeichnet das Gewichtsverhältnis von aufgepfropften Pfropfmo- nomeren zur Pfropfgrundlage und ist dimensionslos.
Die mittlere Teilchengröße d50 ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-796) bestimmt werden.
Besonders bevorzugte Polymerisate B sind z.B. auch Pfropfpolymerisate aus
τ. 20 bis 90 Gew.-%, bezogen auf Komponente B, Acrylatkautschuk mit einer Glasübergangstemperatur <-20°C als Pfropfgrundlage B.2 und δ. 10 bis 80 Gew.-%, bezogen auf Komponente B, mindestens eines polymeri- sierbaren, ethylenisch ungesättigten Monomeren als Pfropfmononiere B.l.
Die Acrylatkautschuke τ der Polymerisate B sind vorzugsweise Polymerisate aus Acrylsäurealkylestem, gegebenenfalls mit bis zu 40 Gew.-%, bezogen auf τ, anderen polymerisierbaren, ethylenisch ungesättigten Monomeren. Zu den bevorzugten poly- merisierbaren Acrylsäureestern gehören Ci-Cg-Alkylester, beispielsweise Methyl-, Ethyl-, Butyl-, n-Octyl- und 2-Ethyl-hexylester; Halogenalkylester, vorzugsweise Halogen-Ci-Cg-alkylester, wie Chlorethylacrylat, sowie Mischungen dieser Mono- meren.
Zur Vernetzung können Monomere mit mehr als einer polymerisierbaren Doppelbindung copolymerisiert werden. Bevorzugte Beispiele für vernetzende Monomere sind Ester ungesättigter Monocarbonsäuren mit 3 bis 8 C-Atomen und ungesättigter ein- wertiger Alkohole mit 3 bis 12 C-Atomen oder gesättigter Polyole mit 2 bis 4
OH-Gruppen und 2 bis 20 C-Atomen, wie z.B. Ethylenglykoldimethacrylat, Allyl- methacrylat; mehrfach ungesättigte heterocyclische Verbindungen, wie z.B. Trivinyl- und Triallylcyanurat; polyfunktionelle Vinylverbindungen, wie Di- und Trivinylben- zole; aber auch Triallylphosphat und Diallylphthalat.
Bevorzugt vernetzende Monomere sind Allylmethacrylat, Ethylenglykoldimethyl- acrylat, Diallylphthalat und heterocyclische Verbindungen, die mindestens 3 ethylenisch ungesättigte Gruppen aufweisen.
Besonders bevorzugte vernetzende Monomere sind die cyclischen Monomere Triallylcyanurat, Triallylisocyanurat, Trivinylcyanurat, Triacryloylhexahydro-s-triazin, Triallylbenzole.
Die Menge der vernetzenden Monomere beträgt vorzugsweise 0,02 bis 5, insbeson- dere 0,05 bis 2 Gew.-%, bezogen auf die Pfropfgrundlage τ. Bei cyclischen vernetzenden Monomeren mit mindestens 3 ethylenisch ungesättigten Gruppen ist es vorteilhaft, die Menge auf unter 1 Gew.-% der Pfropfgrundlage τ zu beschränken.
Bevorzugt „andere" polymerisierbare, ethylenisch ungesättigte Monomere, die neben den Acrylsäureestern gegebenenfalls zur Herstellung der Pfropfgrundlage τ dienen können, sind z.B. Acrylnitril, Styrol, α-Methylstyrol, Acrylamide, Vinyl- Ci-Cg-alkylether, Methylmethacrylat, Butadien. Bevorzugte Acrylatkautschuke als Pfropfgrundlage τ sind Emulsionspolymerisate, die einen Gelgehalt von mindestens 60 Gew.-% aufweisen.
Weitere geeignete Pfropfgrundlagen gemäß B.2 sind Silikonkautschuke mit pfropfaktiven Stellen, wie sie in DE-A 3 704 657, DE-A 3 704 655, DE-A 3 631 540 und DE-A 3 631 539 beschrieben werden.
Der Gelgehalt der Pfropfgrundlage B.2 wird bei 25°C in Dimethylformamid bestimmt (M. Hoffmann, H. Krömer, R. Kuhn, Polymeranalytik I und II, Georg Thieme- Verlag, Stuttgart 1977).
Die Pfropfpolymerisate B können nach bekannten Verfahren wie Masse-, Suspen- sions-, Emulsions- oder Masse-Suspensionsverfahren hergestellt werden.
Da bei der Pfropfreaktion die Pfropfinonomeren bekanntlich nicht unbedingt vollständig auf die Pfropfgrundlage aufgepfropft werden, werden erfindungsgemäß unter Pfropfpolymerisaten B solche Produkte verstanden, die durch Polyreaktion der
Pfropfmonomere auf die Pfropfgrundlage gewonnen werden.
Die mittlere Teilchengröße d5Q ist der Durchmesser, oberhalb und unterhalb dessen jeweils 50 Gew.-% der Teilchen liegen. Er kann mittels Ultrazentrifugenmessung (W. Scholtan, H. Lange, Kolloid, Z. und Z. Polymere 250 (1972), 782-1796) bestimmt werden. Komponente C
Die Komponente C umfasst ein oder mehrere thermoplastische Vinyl (co)polymeri- säte C.l und/oder Polyalkylenterephthalate C.2.
Geeignet sind als Vinyl(co)Polymerisate C.l Polymerisate von mindestens einem Monomeren aus der Gruppe der Vinylaromaten, Vinylcyanide (ungesättigte Nitrile), (Meth)Acrylsäure-(Cι-C8)-Alkylester, ungesättigte Carbonsäuren sowie Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren. Insbesondere geeignet sind
(Co)Polymerisate aus
C.l.l 50 bis 99, vorzugsweise 60 bis 80 Gew.-% Vinylaromaten und/oder kernsubstituierten Vinylaromaten wie beispielsweise Styrol, α-Methylstyrol, p- Methylstyrol, p-Chlorstyrol) und/oder Methacrylsäure-(Cι-C8)-Alkylester wie z.B. Methylmethacrylat, Ethylmethacrylat), und
C.l.2 1 bis 50, vorzugsweise 20 bis 40 Gew.-% Vinylcyanide (ungesättigte Nitrile) wie Acrylnitril und Methacrylnitril und/oder (Meth)Acrylsäure-(C]-C8)- Alkyl ester (wie z.B. Methylmethacrylat, n-Butylacrylat, t-Butylacrylat) und oder ungesättigte Carbonsäuren (wie Maleinsäure) und/oder Derivate (wie Anhydride und Imide) ungesättigter Carbonsäuren (beispielsweise Maleinsäureanhydrid und N-Phenyl-Maleinimid).
Die (Co)Polymerisate C.l sind harzartig, thermoplastisch und kautschukfrei.
Besonders bevorzugt ist das Copolymerisat aus C.l.l Styrol und C.l.2 Acrylnitril.
Die (Co)Polymerisate gemäß C.l sind bekannt und lassen sich durch radikalische Polymerisation, insbesondere durch Emulsions-, Suspensions-, Lösungs- oder Massepolymerisation herstellen. Die (Co)Polymerisate besitzen vorzugsweise Molekular- gewichte Mw (Gewichtsmittel, ermittelt durch Lichtstreuung oder Sedimentation) zwischen 15 000 und 200 000.
Die Polyalkylenterephthalate der Komponente C.2 sind Reaktionsprodukte aus aro- matischen Dicarbonsäuren oder ihren reaktionsfähigen Derivaten, wie Dimethyl- estern oder Anhydriden, und aliphatischen, cycloaliphatischen oder araliphatischen Diolen sowie Mischungen dieser Reaktionsprodukte.
Bevorzugte Polyalkylenterephthalate enthalten mindestens 80 Mol-%, vorzugsweise mindestens 90 Mol-%, bezogen auf die Dicarbonsäurekomponente Terephthalsäure- reste und mindestens 80 Mol-%, vorzugsweise mindestens 90 Mol-%, bezogen auf die Diolkomponente Ethylenglykol- und/oder Butandiol-l,4-Reste.
Die bevorzugten Polyalkylenterephthalate können neben Terephthalsäureresten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol-%, Reste anderer aromatischer oder cycloaliphatischer Dicarbonsäuren mit 8 bis 14 C-Atomen oder aliphatischer Dicarbonsäuren mit 4 bis 12 C-Atomen enthalten, wie z.B. Reste von Phthalsäure, Isophthalsäure, Naphthalin-2,6-dicarbonsäure, 4,4'-Diphenyldicarbonsäure, Bernsteinsäure, Adipinsäure, Sebacinsäure, Azelainsäure, Cyclohexan-diessigsäure.
Die bevorzugten Polyalkylenterephthalate können neben Ethylenglykol- bzw. Butan- diol-l,4-Resten bis zu 20 Mol-%, vorzugsweise bis zu 10 Mol-%, andere aliphatische Diole mit 3 bis 12 C-Atomen oder cycloalipahtische Diole mit 6 bis 21 C-Atomen enthalten, z.B. Reste von Propandiol-1,3, 2-Ethylpropandiol-l,3, Neopentylglykol, Pentandiol-1,5, Hexandiol-1,6, Cyclohexan-dimethanol-1,4, 3-Ethylpentandiol-2,4,
2-Methylpentandiol-2,4, 2,2,4-Trimethylpentandiol-l,3, 2-Ethylhexandiol-l,3, 2,2- Diethylpropandiol-1,3, Hexandiol-2,5, l,4-Di-(ß-hydroxyethoxy)-benzol, 2,2-Bis-(4- hydroxycyclohexyl)-propan, 2,4-Dihydroxy- 1 , 1 ,3,3-tetramethyl-cyclobutan, 2,2-Bis- (4-ß-hydroxyethoxy-phenyl)-propan und 2,2-Bis-(4-hydroxypropoxyphenyl)-propan (DE-OS 2 407 674, 2 407 776, 2 715 932). Die Polyalkylenterephthalate können durch Einbau relativ kleiner Mengen 3- oder 4- wertiger Alkohole oder 3- oder 4-basischer Carbonsäuren, z.B. gemäß DE-OS 1 900270 und US-PS 3 692 744, verzweigt werden. Beispiele bevorzugter Verzweigungsmittel sind Trimesinsäure, Trimellithsäure, Trimethylolethan und -propan und Pentaerythrit.
Besonders bevorzugt sind Polyalkylenterephthalate, die allein aus Terephthalsäure und deren reaktionsfähigen Derivaten (z.B. deren Dialkylestem) und Ethylenglykol und/oder Butandiol-1,4 hergestellt worden sind, und Mischungen dieser Polyalkylen- terephthalate.
Mischungen von Polyalkylenterephthalaten enthalten 1 bis 50 Gew.-%, vorzugsweise 1 bis 30 Gew.-%, Polyethylenterephthalat und 50 bis 99 Gew.-%, vorzugsweise 70 bis 99 Gew.-%, Polybutylenterephthalat.
Die vorzugsweise verwendeten Polyalkylenterephthalate besitzen im allgemeinen eine Grenzviskosität von 0,4 bis 1,5 dl/g, vorzugsweise 0,5 bis 1,2 dl/g, gemessen in Phenol/o-Dichlorbenzol (1:1 Gewichtsteile) bei 25°C im Ubbelohde-Viskosimeter.
Die Polyalkylenterephthalate lassen sich nach bekannten Methoden herstellen (s. z.B.
Kunststoff-Handbuch, Band VIII, S. 695 ff., Carl-Hanser-Verlag, München 1973).
Komponente D
Die erfindungsgemäßen Formmassen enthalten als Flammschutzmittel wenigstens eine Phosphorverbindung der Formel (I-a)
Figure imgf000019_0001
wobei die Reste R , R^, R3 und 1*, n und q die oben angegebene Bedeutung haben,
X1 für einen ein oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen steht,
und wenigstens eine Phosphorverbindung der Formel (I-b)
Figure imgf000020_0001
wobei die Reste R , R^, R und R^, n und q die oben angegebene Bedeutung haben,
und
X2 für einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen steht,
mit der Maßgabe, dass mindestens einer der Reste X1, X2, R1, R2, R3 und R4 in Formel (Ia) und (Ib) verschieden sind.
Die aromatischen Gruppen in der Definition von R*, R2, R3 und R4 können ihrerseits unabhängig voneinander mit Halogen- und/oder Alkylgmppen, vorzugsweise Chlor, Brom und/oder C1-C4- Alkyl substituiert sein. Besonders bevorzugte Aryl- Reste sind Kresyl, Phenyl, Xylenyl, Propylphenyl oder Butylphenyl sowie die entsprechenden bromierten und chlorierten Derivate davon. q steht für Werte von 0,5 bis 30, vorzugsweise für einen durchschnittlichen Wert von 1 bis 30, besonders bevorzugt 1 bis 20, insbesondere 1 bis 10. Bei Gemischen von Phosphorverbindungen kann q die obengenannten durchschnittlichen Werte annehmen. In diesem Gemisch können Monophosphorverbindungen und/oder oligomere und/oder polymere Phosphorverbindungen enthalten sein. Im Falle von q = 0 beschreibt die Formel (I) Monophosphorverbindungen.
Xiund X2 sind jeweils bevorzugt verschieden und stehen für einen ein- oder mehrkemigen aromatischen Rest mit 6 bis 30 C-Atomen. Bevorzugte Reste leiten sich von Diphenolen gemäß Formel (II) ab.
Bevorzugte Diphenole sind Hydrochinon, Resorcin, 4,4'-Dihydroxydiphenyl, Bis- (hydroxyphenyl)-C \ -C5-alkane, Bis-(hydroxyphenyl)-C5-C6-cycloalkane, Bis-(hy- droxyphenyl)-ether, Bis-(hydroxyphenyl)-sulfoxide, Bis-(hydroxyphenyl)-ketone, Bis-(hydroxyphenyl)-sulfone und α,α- Bis-(hydroxyphenyl)-diisopropyl-benzole wie deren kernbromierte und/oder kernchlorierte Derivate.
Besonders bevorzugte Diphenole sind 4,4'-Diphenylphenol, Bisphenol-A, 2,4- Bis- (4-hydroxyphenyl)-2-methylbutan, 1,1- Bis-(4-hydroxyphenyl)-cyclohexan, 1,1- Bis- (4-hydroxyphenyl)-3,3,5-trimethylcyclohexan, 4,4'-Dihydroxydiphenylsulfid, 4,4'-
Dihydroxydiphenylsulfon sowie deren di- und tetrabromierten oder chlorierten Derivate wie beispielsweise 2,2-Bis-(3-Chlor-4-hydroxyphenyl)-propan, 2,2-Bis-(3,5- dichlor-4-hydroxyphenyl)-propan oder 2,2-Bis-(3 ,5-dibrom-4-hydroxyphenyl)-pro- pan.
Besonders bevorzugte Diphenole sind Bisphenol A, Resorcin, Hydrochinon, Dihy- droxydiphenyl und Dihydroxydiphenylsulfon.
Mischungen aus Phosphorverbindungen der Formel (I), vorzugsweise mono- und oder oligomeren Phosphaten der Formel (I), mit durchschnittlichen q- Werten von 1 bis 20, insbesondere 1 bis 10 werden als Komponente D besonders bevorzugt eingesetzt.
Als Monophosphorverbindungen, d.h. q = 0 kommen Verbindungen in Frage wie Tributylphosphat, Tris-(2-chlorethyl)-phosphat, Tris-(2,3-dibrompropyl)-phosphat, Triphenylphosphat, Trikresylphosphat, Diphenylkresylphosphat, Diphenyloctylphos- phat, Diphenyl-2-ethylkresylphosphat, Tri-(isopropylphenyl)-phosphat, halogensubstituierte Arylphosphate, Methylphosphonsäuredimethylester, Methylphosphonsäure- diphenylester, Phenylphosphonsäurediethylester, Triphenylphosphinoxid oder Trikresylphosphinoxid.
Vorzugsweise enthalten die erfindungsgemäßen Formmassen als Flammschutzmittel mindestens eine Phosphorverbindung gemäß Formel (I-c),
Figure imgf000022_0001
in denen R1, R2, R3, R4, n und q die o.g. Bedeutungen haben. R5 steht unabhängig für Cι-C4-Alkyl und/oder Halogen, k steht für 0, 1 oder 2, bevorzugt für 0, Y für Methylen oder Isopropyliden. Besonders bevorzugt stellt Y einen Isopropyliden-Rest dar.
Die Phosphorverbindungen gemäß Komponente D sind allgemein bekannte Verbindungen der organischen Chemie bzw. lassen sich nach bekannten Methoden in analoger Weise herstellen (vgl. z.B. Ullmanns Encyklopädie der Technischen Chemie, Bd. 18, S. 301 ff. 179; Houben-Weyl, Methoden der Organischen chemie, Bd. 12/1, S. 43; Beistein, Bd. 6, S. 177), indem zum Aufbau wenigstens 2 verschiedene Dihy- droxyverbindungen, z.B. Bisphenole, Hydrochinon, eingesetzt werden. Komponente E
Die fluorierten Polyolefine E sind hochmolekular und besitzen Glasübergangstemperaturen von über -30°C, in der Regel von über 100°C, Fluorgehalte, vorzugsweise von 65 bis 76, insbesondere von 70 bis 76 Gew.-%, mittlere Teilchendurchmesser d5o von 0,05 bis 1 000, vorzugsweise 0,08 bis 20 μm. Im allgemeinen haben die fluorierten Polyolefine E eine Dichte von 1,2 bis 2,3 g/cm . Bevorzugte fluorierte Polyolefine E sind Polytetrafluorethylen, Polyvinylidenfluorid, Tetrafluorethylen (Hexafluorpropylen- und Ethylen/Tetrafluorethylen-Copolymerisate. Die fluorierten Polyolefine sind bekannt (vgl. "Vinyl and Related Polymers" von Schildknecht, John
Wiley & Sons, Inc., New York, 1962, Seite 484-494; "Fluorpolymers" von Wall, Wiley-Interscience, John Wiley & Sons, Inc., New York, Band 13, 1970, Seite 623- 654; "Modem Plastics Encyclopedia", 1970-1971, Band 47, Nr. 10 A, Oktober 1970, Mc Graw-Hill, Inc., New York, Seite 134 und 774; "Modem Plastica Encyclopedia", 1975-1976, Oktober 1975, Band 52, Nr. 10 A, Mc Graw-Hill, Inc., New York, Seite
27, 28 und 472 und US-PS 3 671 487, 3 723 373 und 3 838 092).
Sie können nach bekannten Verfahren hergestellt werden, so beispielsweise durch Polymerisation von Tetrafluorethylen in wässrigem Medium mit einem freie Radi- kale bildenden Katalysator, beispielseise Natrium-, Kalium- oder Ammoniumperoxi- disulfat bei Drücken von 7 bis 71 kg/cm2 und bei Temperaturen von 0 bis 200°C, vorzugsweise bei Temperaturen von 20 bis 100°C. (Nähere Einzelheiten s. z. B. US- Patent 2 393 967). Je nach Einsatzform kann die Dichte dieser Materialien zwischen 1,2 und 2,3 g/cm3, die mittlere Teilchengröße zwischen 0,5 und 1 000 μm liegen.
Erfindungsgemäß bevorzugte fluorierte Polyolefine E sind Tetrafluorethylenpolyme- risate mit mittleren Teilchendurchmesser von 0,05 bis 20 μm, vorzugsweise 0,08 bis 10 μm, und eine Dichte von 1,2 bis 1,9 g/cm3 und werden vorzugsweise in Form einer koagulierten Mischung von Emulsionen der Tetrafluorethylenpolymerisate E mit Emulsionen der Pfropfpolymerisate B eingesetzt. Geeignete, in Pulverform einsetzbare fluorierte Polyolefine E sind Tetrafluorethylen- polymerisate mit mittleren Teilchendurchmesser von 100 bis 1 000 μm und Dichten von 2,0 g/cm bis 2,3 g/cm .
Zur Herstellung einer koagulierten Mischung aus B und E wird zuerst eine wässrige Emulsion (Latex) eines Pfropfpolymerisates B mit einer feinteiligen Emulsion eines fluorierten Polyolefins E vermischt; geeignete Emulsionen von fluorierten Polyole- finen besitzen üblicherweise Feststoffgehalte von 30 bis 70 Gew-.%, insbesondere von 50 bis 60 Gew.-%, vorzugsweise von 30 bis 35 Gew.-%.
Die Mengenangabe bei der Beschreibung der Komponente B schließt den Anteil des Pfropfpolymerisats für die koagulierte Mischung aus Pfropfpolymerisat und fluoriertem Polyolefinen nicht ein.
In der Emulsionsmischung liegt das Gleichgewichtsverhältnis Pfropfpolymerisat B zum fluorierten Polyolefin E bei 95:5 bis 60:40. Die Emulsionsmischung wird in bekannter Weise koaguliert, beispielsweise durch Sprühtrocknen, Gefriertrocknung oder Koagulation mittels Zusatz von anorganischen oder organischen Salzen, Säuren, Basen oder organischen, mit Wasser mischbaren Lösemitteln, wie Alkoholen, Keto- nen, vorzugsweise bei Temperaturen von 20 bis 150°C, insbesondere von 50 bis
100°C. Falls erforderlich, kann bei 50 bis 200°C, bevorzugt 70 bis 100°C, getrocknet werden.
Geeignete Tetrafluorethylenpolymerisat-Emulsionen sind handelsübliche Produkte und werden beispielsweise von der Firma DuPont als Teflon, wie beispielsweise
Teflon 30 N angeboten.
Die erfindungsgemäßen Zusammensetzungen können wenigstens eines der üblichen
Additive, wie Gleit- und Entformungsmittel, Nukleiermittel, Antistatika, Stabilisa- toren sowie Farbstoffe, Pigmente und/oder Verstärkungsmaterialien enthalten. Als anorganische Verstärkungsmaterialien kommen Glasfasern, ggf. geschnitten oder gemahlen, Glasperlen, Glaskugeln, blättchenförmiges Verstärkungsmaterial, wie Kaolin, Talk, Glimmer, Mika, Kohlefasem in Frage. Vorzugsweise werden als Verstärkungsmaterial geschnittene oder gemahlene Glasfasern, vorzugsweise mit einer Länge von 1 bis 10 mm und einem Durchmesser von <20μm in einer Menge von 1 bis 40 Gew.-Teilen eingesetzt; vorzugsweise sind die Glasfasern oberflächenbehandelt.
Die erfindungsgemäßen Zusammensetzungen können darüber hinaus wenigstens eine polare Verbindung wenigstens eines der Metalle der 1. bis 5. Hauptgmppe oder der 1. bis 8. Nebengrappe des Periodensystems mit mindestens einem Element ausgewählt aus der Gruppe von Sauerstoff, Schwefel, Bor, Kohlenstoff, Phosphor, Stickstoff, Wasserstoff und Silizium als feinstverteiltes anorganisches Pulver enthalten. Vorzugsweise werden als polare Verbindung ein Oxid oder Hydroxid, vorzugsweise TiO2, SiO2, SnO2, ZnO, Böhmit, ZrO2, Al2O , Eisenoxide, deren Mischungen und dotierte Verbindungen, besonders bevorzugt Böhmit oder TiO2.
Die erfmdungsgemäßen Zusammensetzungen können ein oder mehrere weitere, gegebenenfalls synergistisch wirkenden Flammschutzmittel enthalten. Beispielhaft werden als weitere Flammschutzmittel von Komponente D verschiedene Phosphor- Verbindungen, organische Halogenverbindungen wie Decabrombisphenylether,
Tetrabrombisphenol, anorganische Halogenverbindungen wie Ammoniumbromid, Stickstoffverbindungen, wie Melamin, Melaminformaldehyd-Harze, anorganische Hydroxidverbindungen wie Mg-, Al-Hydroxid, anorganische Verbindungen, wie Antimonoxide, Bariummetaborat, Hydroxoantimonat, Zirkonoxid, Zirkonhydroxid, Molybdenoxid, Ammoniummolybdat, Zinkborat, Ammoniumborat und Zinnoxid sowie Siloxanverbindungen genannt. Diese Flammschutzmittel werden im allgemeinen in einer Menge bis zu 20 Gew.-% (bezogen auf die Gesamt-Formmasse) zugesetzt.
Die erfindungsgemäßen Zusammensetzungen enthaltend die Komponenten A bis E und gegebenenfalls weitere bekannte Zusätzen wie Stabilisatoren, Farbstoffe, Pig- mente, Gleit- und Entformungsmittel, Nukleiermittel, Nanopartikel sowie Antistatika und Verstärkungsmaterialien und Flammschutzmittel, werden hergestellt, indem man die jeweiligen Bestandteile in bekannter Weise vermischt und bei Temperaturen von 200°C bis 300°C in üblichen Aggregaten wie Innenknetern, Extrudern und Doppel- wellenschnecken schmelzcompoundiert und schmelzextrudiert, wobei die Komponente E vorzugsweise in Form der bereits erwähnten koagulierten Mischung eingesetzt wird.
Die Vermischung der einzelnen Bestandteile kann in bekannter Weise sowohl suk- zessive als auch simultan erfolgen, und zwar sowohl bei etwa 20°C (Raumtemperatur) als auch bei höherer Temperatur.
Die Zusammensetzungen der vorliegenden Erfindung können zur Herstellung von Formkörpern jeder Art verwendet werden. Insbesondere können Formkörper durch Spritzguss hergestellt werden. Beispiele für herstellbare Formkörper sind: Gehäuseteile jeder Art, z. B. für Haushaltsgeräte wie Saftpressen, Kaffeemaschinen, Mixer, für Büromaschinen wie Monitore, Drucker, Kopierer oder Abdeckplatten für den Bausektor und Teile für den Kfz-Sektor. Sie werden außerdem auf dem Gebiet der Elektrotechnik eingesetzt, weil sie sehr gute elektrische Eigenschaften haben.
Weiterhin können die erfindungsgemäßen Zusammensetzungen beispielsweise zur Herstellung von folgenden Formkörpern bzw. Formteilen verwendet werden:
Innenausbauteile für Schienenfahrzeuge (FR), Radkappen, Gehäuse von Klein- transformatoren enthaltenden Elektrogeräten, Gehäuse für Geräte zur Informationsverbreitung und -Übermittlung, Gehäuse und Verkleidungen für medizinische Zwecke, Massagegeräte und Gehäuse dafür, Spielfahrzeuge für Kinder, flächige Wandelemente, Gehäuse für Sicherheitseinrichtungen, Heckspoiler, wärmeisolierte Transportbehältnisse, Vorrichtung zur Haltung oder Versorgung von Kleintieren, Formteile für Sanitär- und Badeausrüstungen, Abdeckgitter für Lüfteröffnungen,
Formteile für Garten- und Gerätehäusen, Gehäuse für Gartengeräte. Weitere Anwendungen sind möglich
als Dateitechnikgeräte: Telekommunikationsgeräte wie Telefongeräte und Telefaxe, Computer, Drucker, Scanner, Plotter, Monitor, Tastatur, Schreibmaschine, Diktiergeräte, usw.,
als Elektrogeräte: Netzteile, Ladegeräte, Kleintransformatoren für Computer und Unterhaltungselektronik, Niederspannungstransformatoren, usw.,
als Gartengeräte: Gartenmöbel, Rasenmähergehäuse, Rohre und Gehäuse für Gartenbewässerung, Gartenhäuser, Laubsauger, Schredder, Hächsler, Spritzgeräte usw.,
im Möbelbereich: Arbeitsplatten, Möbellaminate, Rolladenelemente, Büromöbel, Tische, Stühle, Sessel, Schränke, Regale, Türelemente, Fensterelemente, Bettkästen usw.,
als Sport-/Spielgeräte: Spielfahrzeuge, Sitzflächen, Pedale, Sportgeräte, Fahrräder, Tischtennisplatte, Heimtrainer, Golf-Caddys, Snow boards, Bootsaussenteile, Campingartikel, Strandkörbe usw.,
im Bausektor innen/außen: Hausverkleidung, Profilleiste, Rohre, Kabel, Rolladenelemente, Briefkästen, Lampengehäuse, Dachziegel, Fliesen, Trennwände, Kabelkanäle, Fußbodenleiste, Steckdosen usw.
im Bereich der Kfz/Schienenfahrzeuge: Wand-, Decken- Verkleidungen, Sitzschalen, Sitze, Bänke, Tische, Gepäckablagen, Radkappen, Heckspoiler, Kotflügel, Heckklappen, Motorhauben, Seitenteile usw. Besonders geeignet sind die Zusammensetzungen zur Herstellung von Formteilen, wo besonders hohe Ansprüche an die Wärmeformbeständigkeit der eingesetzten Kunststoffe gestellt werden.
Eine weitere Form der Verarbeitung ist die Herstellung von Formkörpem durch Tiefziehen aus vorher hergestellten Platten oder Folien.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen Zusammensetzungen zur Herstellung von Formkörpem jeg- licher Art, vorzugsweise der oben genannten, sowie die Formkörper aus den erfindungsgemäßen Zusammensetzungen.
Beispiele
Komponente A.1
Lineares Polycarbonat auf Basis Bisphenol A mit einer relativen Lösungsviskosität von 1,272, gemessen in CH2CI2 als Lösungsmittel bei 25°C und einer Konzentration von 0,5 g/100 ml.
Komponente B.l
Pfropfpolymerisat von 40 Gew. -Teilen eines Copolymerisats aus Styrol und Acryl- nitril im Verhältnis von 73:27 auf 60 Gew.-Teile teilchenförmigen vernetzten Poly- butadienkautschuk (mittlerer Teilchendurchmesser d5Q - 0,34 μm), hergestellt durch Emulsionspolymerisation.
Komponente B.2 Pfropfpolymerisat von 84 Gew.-Teilen eines Copolymerisats aus Styrol und Acrylnitril im Verhältnis von 73:27 auf 16 Gew.-Teile vernetzten Polybutadienkautschuk, hergestellt durch Massepolymerisation.
Komponente D.l
Figure imgf000029_0001
Reofos BAPP der Fa. Great Lakes Chem.
Komponente D.2 m-Phenylen-bis(di-phenyl-phosphat), Fyrolflex® RDP der Firma Akzo. Komponente E.l
Tetrafluorethylenpolymerisat als koagulierte Mischung aus einer SAN-Pfropfpoly- merisat-Emulsion gemäß o.g. Komponente B in Wasser und einer Tetrafluorethylen- polymerisat-Emulsion in Wasser. Das Gewichtsverhältnis Pfropfpolymerisat B zum Tetrafluorethylenpolymerisat E in der Mischung ist 90 Gew.-% zu 10 Gew.-%. Die Tetrafluorethylenpolyermisat-Emulsion besitzt einen Feststoffgehalt von 60 Gew.-%, der mittlere Teilchendurchmesser liegt zwischen 0,05 und 0,5 μm. Die SAN-Pfropf- poly erisat-Emulsion besitzt einen Feststoffgehalt von 34 Gew.-% und einen mittleren Latexteilchendurchmesser von dso = 0,28 μm.
Die Emulsion des Tetrafluorethylenpolymerisats (Teflon 30 N der Fa. DuPont) wird mit der Emulsion des SAN-Pfropfpolymerisats B vermischt und mit 1,8 Gew.-%, bezogen auf Polymerfeststoff, phenolischer Antioxidantien stabilisiert. Bei 85 bis 95°C wird die Mischung mit einer wässrigen Lösung von MgSθ4 (Bittersalz) und Essig- säure bei pH 4 bis 5 koaguliert, filtriert und bis zur praktischen Elektrolytfreiheit gewaschen, anschließend durch Zentrifugation von der Hauptmenge Wasser befreit und danach bei 100°C zu einem Pulver getrocknet. Dieses Pulver kann dann mit den weiteren Komponenten in den beschriebenen Aggregaten compoundiert werden.
Herstellung und Prüfung der erfindungsgemäßen Formmassen
Das Mischen der Komponenten erfolgt auf einem 3-1-Innenkneter. Die Formkörper werden auf einer Spritzgießmaschine Typ Arburg 270 E bei 260°C hergestellt.
Die Bestimmung der Kerbschlagzähigkeit ak wird gemäß ISO 180/1 A durchgeführt.
Das Brandverhalten der Proben wurde nach UL-Subj. 94 V an Stäben der Abmessung 127 x 12,7 x 1,6 mm gemessen, hergestellt auf einer Spritzgussmaschine bei 260°C.
Der UL 94 V-Test wird wie folgt duchgeführt: Substanzproben werden zu Stäben der Abmessungen 127 x 12,7 x 1,6 mm geformt. Die Stäbe werden vertikal so montiert, dass die Unterseite des Probekörpers sich 305 mm über einen Streifen Verbandstoff befindet. Jeder Probestab wird einzeln mittels zweier aufeinanderfolgender Zündvorgänge von 10 s Dauer entzündet, die Brenneigenschaften nach jedem Zündvorgang werden beobachtet und danach die Probe bewertet. Zum Entzünden der Probe wird ein Bunsenbrenner mit einer 100 mm (3,8 inch) hohen blauen Flamme von Erdgas mit einer Wärmeeinheit von 3,73 x 104 kJ/m3 (1000 BTU per cubic foot) benutzt.
Die UL 94 V-O-Klassifizierung umfasst die nachstehend beschriebenen Eigenschaften von Materialien, die gemäß der UL 94 V-Vorschrift geprüft werden. Die Formmassen in dieser Klasse enthalten keine Proben, die länger als 10 s nach jeder Einwirkung der Testflamme brennen; sie zeigen keine Gesamtflammzeit von mehr als 50 s bei der zweimaligen Flammeinwirkung auf jeden Probesatz; sie enthalten keine
Proben, die vollständig bis hinauf zu der am oberen Ende der Probe befestigten Halteklammer abbrennen; sie weisen keine Proben auf, die die unterhalb der Probe angeordnete Watte durch brennende Tropfen oder Teilchen entzünden; sie enthalten auch keine Proben, die länger als 30 s nach Entfernen der Testflamme glimmen.
Andere UL 94-Klassifizierungen bezeichnen Proben, die weniger flammwidrig oder weniger selbstverlöschend sind, weil sie flammende Tropfen oder Teilchen abgeben. Diese Klassifiziemngen werden mit UL 94 V-1 und V-2 bezeichnet. N.B. heißt „nicht bestanden" und ist die Klassifizierung von Proben, die eine Nachbrennzeit von > 30 s aufweisen.
Schmelzviskosität wird bestimmt nach DIN 54 811
MVR wird bestimmt nach ISO 1133 Eine Zusammenstellung der Eigenschaften der erfindungsgemäßen Formmasen ist in der nachfolgenden Tabelle 1 gegeben:
Tabelle 1
Zusammensetzungen und Eigenschaften (Mengenangabe in Gew.-%)
l(Vgl.) 2(Vgl.) 3 4 5
AI 67,50 69,20 68,40 67,90 68,8
Bl 13,10 13,50 13,30 13,25 13,40
B2 1,50 1,60 1,50 1,50 1,55
Dl 13,00 - 5,95 9,75 3,25
D2 - 10,80 5,95 2,70 8,10
El 4,50 4,50 4,50 4,50 4,50
Entformungsmittel 0,40 0,40 0,40 0,40 0,40
Phosphor-Gehalt 1,16 1,16 1,16 1,16 1,16 ak [kJ/m2] 45 45 45 45 45
ISO 180 1A
Vicat B 120 [°C] 98 97 99 99 98
Gesamtnachbrennzeit [sec]
(UL 94 V)
3,2 mm 19 12 8 9 7
1,6 mm 68 49 24 29 24
Schmelzviskositätsfakten bei 260°C, 1000 s-1 [Pas] 166 161 150 158 148
MVR (240/5) [cm3/10 min] 22,6 23,2 24,7 24,1 26,4 Die erfindungsgemäßen Formmassen enthalten eine Mischung aus zwei strukturell unterschiedlichen Oligophosphaten und zeichnen sich durch eine günstige Eigen- chaftskombination aus hoher Kerbschlagzähigkeit, hoher Wärmeformbeständigkeit, gutem Verarbeitungsverhalten und verbesserter Flammwidrigkeit aus.

Claims

Patentansprfiche
1. Zusammensetzungen enthaltend
I. mindestens 2 Komponenten ausgewählt aus der Gruppe der aromatischen Poly(ester)carbonate, Pfropfpolymerisate von einem oder mehreren Vinylmonomeren auf eine oder mehrere Pfropfgrundlagen mit einer Glasübergangstemperatur <10°C, thermoplastischem Vinyl- (co)polymerisat oder Polyalkylenterephthalat sowie
II. 0,5 bis 25 Gew.-Teile einer Mischung von Phosphorverbindungen der allgemeinen Formel (I)
Figure imgf000034_0001
worin
X für einen ein- oder mehrkemigen aromatischen Rest mit 6 bis 30 C-Atomen steht,
R , R^, R3 und R4 unabhängig voneinander, gegebenenfalls halo- geniertes Cj-Cg-Alkyl, jeweils gegebenenfalls durch Halogen und/oder
Figure imgf000034_0002
substituiertes C5-CD"-Cycloalkyl, Cg- C20-Aryl oder C -C^-Aralkyl,
n unabhängig voneinander 0 oder 1, vorzugsweise 1,
q 0,5 bis 30 bedeuten, mit der Maßgabe, dass die Zusammensetzung mindestens 2 Phosphorverbindungen der Formel (I) enthält, in denen X oder ein oder mehrere Reste R1, R2, R3 und R4 verschieden sind und wobei die Summe der Gewichtsteile aller Komponenten 100 beträgt.
Zusammensetzungen gemäß Ansprach 1 enthaltend wenigstens eine Phosphorverbindung der Formel (I-a)
Figure imgf000035_0001
wobei die Reste Rl, R^, R und R^, n und q die in Anspruch 1 angegebene Bedeutung haben,
X1 für einen ein oder mehrkemigen aromatischen Rest mit 6 bis 30 C- Atomen steht,
und wenigstens eine Phosphorverbindung der Formel (I-b)
Figure imgf000035_0002
wobei die Reste R , R^, R3 und R^, n, q und z die in Anspruch 1 angegebene Bedeutung haben,
und X2 für einen ein- oder mehrkemigen aromatischen Rest mit 6 bis 30 C- Atomen steht,
mit der Maßgabe, dass X1 oder X2 oder ein oder mehrere R1, R2, R3 und R4 jeweils verschieden sind.
Zusammensetzungen gemäß Ansprach 1 oder 2, wobei X1 und X2 sich von Diphenolen der Formel (II) ableiten:
Figure imgf000036_0001
wobei
A1 eine Einfachbindung, -Cs-Alkylen, C2-C5-Alkyliden, C5-C6- Cycloalkyliden, -O-, -SO-, -CO-, -S-, -SO2-, Cg-C^-Arylen, welches mit weiteren gegebenenfalls Heteroatome enthaltenden aromatischen Ringen kondensiert sein kann, oder ein Rest der Formel
Figure imgf000036_0002
oder ein Rest der Formel (IV)
Figure imgf000037_0001
B unabhängig voneinander Ci-Cg-Alkyl, Cg-Cio-Aryl, C7-C12- Aralkyl,
x jeweils unabhängig voneinander 0, 1 oder 2,
p 1 oder 0 sind, und
R6 und E für jedes Z individuell wählbar, unabhängig voneinander, Wasserstoff oder C1 -C6- Alkyl
Z Kohlenstoff und
m eine ganze Zahl von 4 bis 7 bedeuten,
mit der Maßgabe, dass an mindestens einem Atom Z
R6 und R ' gleichzeitig Alkyl sind.
4. Zusammensetzungen gemäß der Ansprüche 1 bis 3, worin X, X1 und X2 sich ableiten von Bisphenol A, Resorcin, Hydrochinon, Dihydroxydiphenyl oder Dihydrodiphenylsulfon.
5. Zusammensetzungen gemäß der Ansprüche 1 bis 3, enthaltend mindestens eine Phosphorverbindung gemäß Formel (I-c),
Figure imgf000038_0001
in der R1, R2, R3, R4, n und q die in Anspruch 1 angegebenen Bedeutungen haben, Y einen Isopropyliden-Rest, R5 unabhängig C1-C4- Alkyl vmd/oder Halogen, k 0, 1 oder 2 bedeuten.
Zusammensetzungen gemäß der Ansprüche 1 bis 5 enthaltend Pfropfcopoly- merisate basierend auf mindestens 2 Monomeren ausgewählt aus der Gruppe von Chloropren, Butadien- 1,3, Isopren, Styrol, Acrylnitril, Ethylen, Propylen, Ninylacetat und (Meth)-Acrylsäureester mit 1 bis 18 C-Atomen in der Alkoholkomponente.
Zusammensetzungen gemäß der Ansprüche 1 bis 6 enthaltend Pfropfpolymerisate basierend auf
B.l 5 bis 95, vorzugsweise 30 bis 80 Gew.-%, einer Mischung aus
B.l.l 50 bis 99 Gew.-% Styrol, α-Methylstyrol, halogen- oder methylkernsubstituierten Styrolen, Methylmethacrylat oder Mischungen dieser Verbindungen und
B.l.2 1 bis 50 Gew.-% Acrylnitril, Methacrylnitril, Methylmethacrylat, Maleinsäureanhydrid, Cj^-alkyl-bzw. Ν- Phenyl-substituierten Maleinimiden oder Mischungen dieser Verbindungen und B.2 5 bis 95, vorzugsweise 20 bis 70 Gew.-% Polymerisat auf Dienoder Alkylacrylat-Basis oder Mischungen hieraus mit einer Glasübergangstemperatur unter -10°C.
8. Zusammensetzungen gemäß Ansprach 7, wobei B.2 ausgewählt ist aus Poly- butadienen, Polyisoprenen oder Butadien Styrol- oder Butadien/ Acrylnitril- Copolymerisaten oder Acrylatkautschuken oder Mischungen hieraus.
9. Zusammensetzungen gemäß Ansprüche 1 bis 8 enthaltend als Vinyl(co)Poly- merisate Polymerisate von mindestens einem Monomeren aus der Gruppe der
Vinylaromaten, Vinylcyanide, (Meth)Acrylsäure-(Cι-C8)-Alkylester, ungesättigten Carbonsäuren sowie Derivate ungesättigter Carbonsäuren.
10. Zusammensetzungen gemäß Ansprüche 1 bis 9 enthaltend Antidripping- Mittel.
11. Zusammensetzungen enthaltend
A) 5 bis 95 Gew.-Teile aromatisches Polycarbonat und/oder Polyester- carbonat
B) 1 bis 60 Gew.-Teile, wenigstens eines Pfropfpolymerisats von
B.l 5 bis 95 Gew.-% eines oder mehrerer Vinylmonomeren auf
B.2 5 bis 95 Gew.-% einer oder mehrerer Pfropfgrundlagen mit einer Glasumwandlungstemperatur < 10°C.
C) 0 bis 50 Gew.-Teile thermoplastisches Vinyl(co)polymerisat und/oder thermoplastisches Poly alkyl enterephthalat D) 0,5 bis 25 Gew.-Teile Phosphorverbindung der allgemeinen Formel (I)
Figure imgf000040_0001
woπn
X für einen ein- oder mehrkernigen aromatischen Rest mit 6 bis 30 C-Atomen steht,
R , R2, R3 und R^ unabhängig voneinander, gegebenenfalls haloge- niertes Cj-Cg-Alkyl, jeweils gegebenenfalls durch Halogen und/oder Ci-C-pAlkyl substituiertes C5-Cö-Cycloalkyl, C5- C20-Aryl oder Cγ-C^-Aralkyl,
n unabhängig voneinander 0 oder 1, vorzugsweise 1,
q 1 bis 30 bedeuten,
E) 0,05 bis 5 Gew.-Teile Antidripping Mittel,
mit der Maßgabe, dass die Zusammensetzung mindestens 2 Phosphorverbindungen der Formel (I) enthält, in denen X oder ein oder mehrere Reste R1, R2, R3 und R4 verschieden sind und wobei die Summe der Gewichtsteile aller Komponenten 100 beträgt.
12. Verwendung der Zusammensetzungen gemäß der Ansprüche 1 bis 11 zur Herstellung von Formteilen, Folien oder Platten.
3. Formteile, Folien oder Platten erhältlich aus Zusammensetzungen gemäß der Ansprüche 1 bis 11.
PCT/EP2001/013712 2000-12-08 2001-11-26 Flammwidrige wärmeformbeständige polycarbonat-zusammensetzungen WO2002046289A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020037007608A KR100794451B1 (ko) 2000-12-08 2001-11-26 난연성이고 내열성인 폴리카르보네이트 조성물
DE50113952T DE50113952D1 (de) 2000-12-08 2001-11-26 Flammwidrige wärmeformbeständige polycarbonat-zusammensetzungen
BRPI0116031-1A BR0116031B1 (pt) 2000-12-08 2001-11-26 composições de policarbonato resistentes ao fogo e ao calor, seu uso, bem como partes moldadas, pelìculas ou láminas assim obtidas.
JP2002548017A JP3987433B2 (ja) 2000-12-08 2001-11-26 加熱歪み抵抗を有する難燃性ポリカーボネート組成物
CA002436697A CA2436697C (en) 2000-12-08 2001-11-26 Flameproof polycarbonate compositions resistant to thermal deformation
EP01999605A EP1363973B1 (de) 2000-12-08 2001-11-26 Flammwidrige wärmeformbeständige polycarbonat-zusammensetzungen
AU2002216054A AU2002216054A1 (en) 2000-12-08 2001-11-26 Flameproof polycarbonate compositions resistant to thermal deformation
MXPA03005117A MXPA03005117A (es) 2000-12-08 2001-11-26 Composiciones de policarbonato ignifugas, resistentes a deformacion por calor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10061078.1 2000-12-08
DE10061078A DE10061078A1 (de) 2000-12-08 2000-12-08 Flammwidrige wärmeformbeständige Polycarbonat-Zusammensetzungen

Publications (1)

Publication Number Publication Date
WO2002046289A1 true WO2002046289A1 (de) 2002-06-13

Family

ID=7666294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/013712 WO2002046289A1 (de) 2000-12-08 2001-11-26 Flammwidrige wärmeformbeständige polycarbonat-zusammensetzungen

Country Status (16)

Country Link
US (1) US6713544B2 (de)
EP (1) EP1363973B1 (de)
JP (1) JP3987433B2 (de)
KR (1) KR100794451B1 (de)
CN (1) CN1268677C (de)
AR (1) AR031643A1 (de)
AT (1) ATE394450T1 (de)
AU (1) AU2002216054A1 (de)
BR (1) BR0116031B1 (de)
CA (1) CA2436697C (de)
DE (2) DE10061078A1 (de)
ES (1) ES2302765T3 (de)
MX (1) MXPA03005117A (de)
RU (1) RU2003120518A (de)
TW (1) TWI248458B (de)
WO (1) WO2002046289A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123824A2 (en) 2004-06-11 2005-12-29 3-Form, Inc. Fire-resistant architectural resin materials

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10036057A1 (de) * 2000-07-25 2002-02-07 Bayer Ag Flammwidrige Polycarbonat-Zusammensetzungen
DE10234419A1 (de) * 2002-07-29 2004-02-12 Bayer Ag Flammwidrige Formmassen
KR100650910B1 (ko) * 2004-10-13 2006-11-27 제일모직주식회사 난연성 열가소성 수지 조성물
FR2924121A1 (fr) * 2007-11-27 2009-05-29 Total France Sa Composition bitumineuse elastique reticulee de maniere thermoreversible
TWI421299B (zh) * 2010-07-23 2014-01-01 Entire Technology Co Ltd 阻燃複合材料
KR101437140B1 (ko) 2011-09-21 2014-09-02 제일모직주식회사 폴리카보네이트 및 그 제조방법
EP2848640A1 (de) * 2013-09-13 2015-03-18 LANXESS Deutschland GmbH Phosphorsäureester-Zubereitungen mit verringerter Hygroskopie
CN104962059B (zh) * 2015-06-18 2016-11-02 金发科技股份有限公司 一种聚碳酸酯组合物及其制备方法
WO2018149831A1 (de) * 2017-02-14 2018-08-23 Covestro Deutschland Ag Verfahren zur herstellung eines gegenstands mittels eines additiven fertigungsverfahrens unter einsatz eines polycarbonat-aufbaumaterials mit verbesserter fliessfähigkeit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011977A1 (en) * 1994-10-13 1996-04-25 Akzo Nobel N.V. Polycarbonate-containing polymers flame retarded with oligomeric phosphate esters
DE19734663A1 (de) * 1997-08-11 1999-02-18 Bayer Ag Flammwidrige wärmeformbeständige Polycarbonat-ABS-Formmassen
EP0936244A2 (de) * 1998-02-13 1999-08-18 General Electric Company Flammhemmende Polycarbonatabmischung
DE19914139A1 (de) * 1999-03-27 2000-09-28 Bayer Ag Flammwidrige, schlagzähmodifizierte Polycarbonat-Formmassen
US6127465A (en) * 1997-09-04 2000-10-03 Idemitsu Petrochemical Co., Ltd. Polycarbonate resin composition
WO2000058402A1 (fr) * 1999-03-26 2000-10-05 Asahi Kasei Kabushiki Kaisha Composition de resine retardatrice de flamme a base de polycarbonate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819081A1 (de) 1988-06-04 1989-12-07 Bayer Ag Flammwidrige, schlagzaehe polycarbonat-formmassen
US5204394A (en) 1988-09-22 1993-04-20 General Electric Company Polymer mixture having aromatic polycarbonate, styrene I containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom
USRE36188E (en) 1989-09-20 1999-04-06 General Electric Company Polymer mixture having aromatic polycarbonate styrene I containing copolymer and/or graft polymer and a flame-retardant, articles formed therefrom
DE4328656A1 (de) 1993-08-26 1995-03-02 Bayer Ag Flammwidrige, spannungsrißbeständige Polycarbonat-ABS-Formmassen
TW360681B (en) 1995-06-07 1999-06-11 Gen Electric Phosphate flame retardant polymers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996011977A1 (en) * 1994-10-13 1996-04-25 Akzo Nobel N.V. Polycarbonate-containing polymers flame retarded with oligomeric phosphate esters
DE19734663A1 (de) * 1997-08-11 1999-02-18 Bayer Ag Flammwidrige wärmeformbeständige Polycarbonat-ABS-Formmassen
US6127465A (en) * 1997-09-04 2000-10-03 Idemitsu Petrochemical Co., Ltd. Polycarbonate resin composition
EP0936244A2 (de) * 1998-02-13 1999-08-18 General Electric Company Flammhemmende Polycarbonatabmischung
WO2000058402A1 (fr) * 1999-03-26 2000-10-05 Asahi Kasei Kabushiki Kaisha Composition de resine retardatrice de flamme a base de polycarbonate
DE19914139A1 (de) * 1999-03-27 2000-09-28 Bayer Ag Flammwidrige, schlagzähmodifizierte Polycarbonat-Formmassen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123824A2 (en) 2004-06-11 2005-12-29 3-Form, Inc. Fire-resistant architectural resin materials
EP1763557A4 (de) * 2004-06-11 2010-12-01 Hunter Douglas Ind Bv Flammwidrige bauharzmaterialien

Also Published As

Publication number Publication date
CA2436697A1 (en) 2002-06-13
KR100794451B1 (ko) 2008-01-16
RU2003120518A (ru) 2004-12-27
JP3987433B2 (ja) 2007-10-10
AU2002216054A1 (en) 2002-06-18
CA2436697C (en) 2009-09-22
KR20030063406A (ko) 2003-07-28
JP2004515589A (ja) 2004-05-27
DE10061078A1 (de) 2002-06-13
CN1268677C (zh) 2006-08-09
BR0116031A (pt) 2003-10-07
ATE394450T1 (de) 2008-05-15
TWI248458B (en) 2006-02-01
ES2302765T3 (es) 2008-08-01
US20020128359A1 (en) 2002-09-12
EP1363973B1 (de) 2008-05-07
US6713544B2 (en) 2004-03-30
MXPA03005117A (es) 2004-12-06
BR0116031B1 (pt) 2011-04-05
EP1363973A1 (de) 2003-11-26
AR031643A1 (es) 2003-09-24
DE50113952D1 (de) 2008-06-19
CN1479764A (zh) 2004-03-03

Similar Documents

Publication Publication Date Title
EP1095099B1 (de) Flammwidrige polycarbonat-abs-formmassen
EP1095100B1 (de) Flammwidrige polycarbonat/abs-formmassen
EP1341841B1 (de) Flammwidrige polycarbonat-blends
EP1003808B1 (de) Flammwidrige wärmeformbeständige polycarbonat-abs-formmassen
WO2000031173A2 (de) Flammwidrige polycarbonat-abs-formmassen
WO2000058394A1 (de) Flammwidrige, schlagzähmodifizierte polycarbonat-formmassen
WO2000000542A1 (de) Flammwidrige polycarbonat-abs-formmassen
WO2002008329A1 (de) Flammwidrige polycarbonat-zusammensetzungen
EP1214380B1 (de) Flammwidrige polycarbonat-blends
WO2004015001A1 (de) Flammwidrige mit pfropfpolymerisat modifizierte polycarbonat-formmassen
WO1999036468A1 (de) Polycarbonat-abs-formmassen
WO2003027165A1 (de) Schlagzähmodifizierte polycarbonat-zusammensetzung
EP1363973B1 (de) Flammwidrige wärmeformbeständige polycarbonat-zusammensetzungen
EP1169385B1 (de) Flammwidrige mit pfropfpolymerisat modifizierte polycarbonat-formmassen
EP1151035B1 (de) Flammwidrige wärmeformbeständige polycarbonat-abs-formmassen
EP1228137B1 (de) Flammwidrige polycarbonat-formmassen
EP1220877B1 (de) Flammwidrige polycarbonat-blends
EP1151032A1 (de) Verwendung von aluminiumverbindungen zur verbesserung der antistatischen eigenschaften

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001999605

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 798/DELNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020037007608

Country of ref document: KR

Ref document number: 2436697

Country of ref document: CA

Ref document number: 2002548017

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018202349

Country of ref document: CN

Ref document number: PA/a/2003/005117

Country of ref document: MX

ENP Entry into the national phase

Ref country code: RU

Ref document number: RU A

WWP Wipo information: published in national office

Ref document number: 1020037007608

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001999605

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001999605

Country of ref document: EP