WO2002043951A2 - Nonwoven fabric laminate with meltblown web having a gradient fiber size structure - Google Patents

Nonwoven fabric laminate with meltblown web having a gradient fiber size structure Download PDF

Info

Publication number
WO2002043951A2
WO2002043951A2 PCT/US2001/044657 US0144657W WO0243951A2 WO 2002043951 A2 WO2002043951 A2 WO 2002043951A2 US 0144657 W US0144657 W US 0144657W WO 0243951 A2 WO0243951 A2 WO 0243951A2
Authority
WO
WIPO (PCT)
Prior art keywords
layer
meltblown
nonwoven fabric
fabric laminate
meltblown fibers
Prior art date
Application number
PCT/US2001/044657
Other languages
French (fr)
Other versions
WO2002043951A3 (en
Inventor
Irwin J. Singer
Bryan David Haynes
Original Assignee
Kimberly-Clark Worldwide Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly-Clark Worldwide Inc filed Critical Kimberly-Clark Worldwide Inc
Priority to MXPA03004486A priority Critical patent/MXPA03004486A/en
Priority to EP01998442A priority patent/EP1345761A2/en
Priority to AU2002219923A priority patent/AU2002219923A1/en
Publication of WO2002043951A2 publication Critical patent/WO2002043951A2/en
Publication of WO2002043951A3 publication Critical patent/WO2002043951A3/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B46/00Surgical drapes
    • A61B46/40Drape material, e.g. laminates; Manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/14Multilayered parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/559Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving the fibres being within layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/08Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of fibres or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/04Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • B32B2323/10Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2331/00Polyvinylesters
    • B32B2331/04Polymers of vinyl acetate, e.g. PVA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2333/00Polymers of unsaturated acids or derivatives thereof
    • B32B2333/04Polymers of esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2371/00Polyethers, e.g. PEEK, i.e. polyether-etherketone; PEK, i.e. polyetherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2375/00Polyureas; Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2377/00Polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2437/00Clothing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/659Including an additional nonwoven fabric
    • Y10T442/66Additional nonwoven fabric is a spun-bonded fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/68Melt-blown nonwoven fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric

Definitions

  • Nonwoven fabric laminates are useful for a wide variety of applications. Such nonwoven fabric laminates are useful for wipers, towels, industrial garments, medical garments, medical drapes and similar articles. Disposable fabric laminates are used in hospital operating rooms for drapes, gowns, towels, footcovers, sterile wraps and the like. These surgical fabric laminates are generally spunbondmeltblown/spunbond (SMS) laminates having nonwoven outer layers of spunbond polypropylene and an inner layer of meltblown polypropylene. The outer spunbond layers provide strength and durability to the SMS laminate. The inner meltblown layer inhibits the flow or strikethrough of fluids through the SMS laminate yet allows for breathability.
  • SMS spunbondmeltblown/spunbond
  • meltblown layer for use in the SMS laminate which provides an "open” structure with high breathability and a “closed” structure with desired barrier properties, high opacity and/or better coverage.
  • each nonwoven layer is a spunbond nonwoven layer of substantially continuous fibers.
  • the meltblown web includes at least one layer of coarse meltblown fibers and may include at least one layer of fine meltblown fibers, which form the gradient fiber size structure across a thickness of the meltblown layer.
  • the SMS fabric laminate of this invention has good strength, flexibility and drape and may be formed into various articles or garments such as surgical gowns, surgical drapes and the like.
  • the barrier properties of the SMS fabric laminate make it particularly suitable for medical applications, such as surgical gowns, but the SMS fabric laminate is also useful for any other application where barrier properties are desirable.
  • the nonwoven spunbond layers are produced using conventional spuribonding processes and have substantially continuous thermoplastic spunbond fibers, hi accordance with one embodiment of this invention, the meltblown web has at least two layers of meltblown fibers, with at least one of the layers of meltblown fibers having a plurality of coarse meltblown fibers, which provide the desired breathability to the meltblown web.
  • the meltblown web may also include at least one layer of fine meltblown fibers, which provide the desired barrier properties to the meltblown web.
  • meltblown fibers for the layers of the meltblown web include monocomponent fibers, for example polypropylene fibers.
  • the present invention can be carried out using any thermoplastic polymer resin that can be meltblown to form a meltblown web.
  • the layers of the meltblown web may include bicomponent fibers.
  • the meltblown web according to one embodiment of this invention may be formed by bonding at least two independently formed meltblown layers together.
  • the meltblown layers are bonded surface-to-surface using conventional bonding means.
  • the meltblown web is then bonded between the two nonwoven spunbond layers to produce the SMS fabric laminate.
  • the gradient fiber size structure and other physical properties of the meltblown web can be adjusted by manipulation of the various process parameters of the meltblowing process.
  • the following parameters may be adjusted and/or varied in order to change the physical properties or characteristics of the resulting meltblown web: polymer meltflow rate; polymer melt temperature (°F); forming height (inches); primary air pressure (psi); and vacuum under forming belt or underwire vacuum (inches of water).
  • the meltblown web layers may be formed in-line with the SMS fabric laminate.
  • the SMS fabric laminate is produced using a forming apparatus having at least three stations, a spunbonding station, a meltblowing station, and a second spunbonding station.
  • a plurality of meltblowing stations are utilized to form a meltblown web having at least two layers of meltblown fibers, for example at least one layer of coarse meltblown fibers and at least one layer of fine meltblown fibers, which form a gradient fiber size structure.
  • a meltblown web including at least two layers is deposited directly on the first nonwoven spunbond layer during the in-line process.
  • a second nonwoven spunbond layer is subsequently deposited directly on an opposite side of the meltblown web to produce the SMS fabric laminate.
  • meltblown web for use in a SMS fabric laminate having a gradient fiber size structure across a thickness thereof.
  • SMS fabric laminate having high breathability and desired barrier properties, including high opacity and coverage.
  • Figs. 1 shows a Scanning Electronmicrograph (SEM) image of a cross-section of a SMS fabric laminate having a meltblown web of coarse and fine fibers, in accordance with one embodiment of this invention
  • Fig. 2 is a schematic view of a forming apparatus used to produce a meltblown layer, in accordance with one embodiment of this invention.
  • Fig. 3 is a schematic view of a forming apparatus used to produce a SMS fabric laminate having a meltblown web with a gradient fiber size structure, according to one embodiment of this invention.
  • coarse meltblown fibers refers to meltblown fibers produced by a meltblowing process having an average diameter of at least about 5.0 microns, desirably about 5.0 microns to about 30 microns.
  • a coarse fiber meltblown web has an "open" web structure.
  • fine meltblown fibers refers to meltblown fibers produced by a meltblowing process having an average diameter less than about 5.0 microns, desirably about 0.1 micron to about 4.0 microns.
  • a fine fiber meltblown web has a "closed” web structure.
  • meltblown fibers means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity gas (e.g., air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers.
  • high velocity gas e.g., air
  • the term "monocomponent fiber” refers to a fiber formed from one or more extruders using only one polymer. This is not meant to exclude fibers formed from one polymer to which small amounts of additives have been added for color, anti-static properties, lubrication, hydrophilicity, etc. These additives, e.g., titanium dioxide for color, are generally present in an amount less than 5 weight percent and more typically about 2 weight percent.
  • nonwoven fabric or web means a web having a structure of individual fibers or threads which are interlaid, but not in a regular or identifiable manner as in a knitted fabric.
  • Nonwoven fabrics or webs have been-formed from many processes such as, for example, meltblowing processes, spunbonding processes, air laying processes, and bonded carded web processes.
  • the basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters are usually expressed in microns. (Note that to convert from osy to gsm, multiply osy by 33.91.)
  • the terms include nonwoven fabrics or webs having multiple layers.
  • polymer includes, but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and modifications thereof. Further, unless otherwise specifically limited, the term “polymer” shall include all possible geometrical configurations of the material. These configurations include, but are not limited to isotactic, syndiotactic and atactic symmetries.
  • spunbond fibers refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine capillaries of a spinnerette having a circular or other configuration, with the diameter of the extruded filaments then being rapidly reduced as by, for example, in U.S. Patent 4,340,563 to Appel et al., and U.S. Patent 3,692,618 to Dorschner et al., U.S. Patent 3,802,817 to Matsuki et al.,
  • Spunbond fibers are quenched and generally not tacky when they are deposited onto a collecting surface. Spunbond fibers are generally continuous and often have average diameters larger than about 7 microns, more particularly, between about 10 and 30 microns.
  • a SMS fabric laminate 10 in accordance with one embodiment of this invention, includes a first spunbond nonwoven layer 12, a second spunbond nonwoven layer 14 and a meltblown web 16 disposed between the first spunbond nonwoven layer 12 and the second spunbond nonwoven layer 14.
  • the meltblown web 16 has at least one layer of coarse meltblown fibers 18 and may have at least one layer of fine meltblown fibers 20, which form a gradient fiber size structure across a thickness of the meltblown web 16.
  • the meltblown web 16 may be disposed between suitable nonwoven layers which are not spunbond nonwoven layers.
  • the gradient fiber size structure is formed having adjacent layers of meltblown fibers with a mean fiber diameter difference of at least 4.0 microns.
  • a layer of fine meltblown fibers 20 having a mean fiber diameter of about 2.0 microns is bonded to a layer of course meltblown fibers 18 having a mean fiber diameter of about 14.5 microns to form the meltblown web 16.
  • the overall basis weight of the SMS fabric laminate 10 is about 16 grams per square meter (gsm) to about 275 gsm, more desirably about 33 gsm to about 136 gsm, still more desirably about 33 gsm to about 68 gsm.
  • the SMS fabric laminate 10 of this invention has good strength, flexibility and drape and may be formed into various articles or garments such as surgical gowns, surgical drapes and the like.
  • the barrier properties of the SMS fabric laminate 10 make it particularly suitable for medical applications, such as surgical gowns, but the SMS fabric laminate 10 is also useful for any other application where barrier properties are desirable.
  • the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 may be produced using spunbonding processes well known to those having ordinary skill in the art and have substantially continuous thermoplastic spunbond fibers.
  • the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 each has a basis weight of about 10 grams per square meter (gsm) to about 100 gsm, more desirably about 12 gsm to about 24 gsm. It is also desirable that the spunbond fibers have an average diameter of about 10 microns to about 30 microns, more desirably about 15 microns to about 25 microns.
  • thermoplastic polymers may be used to construct the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 including, but not limited to polyamides, polyesters, polyolefins, copolymers of ethylene and propylene, copolymers of ethylene or propylene with a C 4 -C 20 alpha-olefin, terpolymers of ethylene with propylene and a C 4 -C 20 alpha-olefin, ethylene vinyl acetate copolymers, propylene vinyl acetate copolymers, styrene-poly(ethylene-alpha-olefin) elastomers, polyurethanes, A-B block copolymers where A is formed of poly(vinyl arene) moieties such as polystyrene and B is an elastomeric midblock such as a conjugated diene or lower alkene, polyethers, polyether esters, polyacrylates, ethylene alkyl acrylates
  • the meltblown web 16 has a basis weight of about 5 gsm to about 34 gsm, more desirably about 9 gsm to about 15 gsm.
  • the meltblown web 16 includes at least two layers of meltblown fibers 17 and 19, as shown in Fig. 1. At least one of the layers of meltblown fibers 17, 19 has a plurality of coarse meltblown fibers 18.
  • the coarse meltblown fibers 18 have an average diameter of at least about 5.0 microns, desirably about 5.0 microns to about 30 microns.
  • the coarse meltblown fibers 18 provide an "open" web structure, which provides the desired breathability to the meltblown web 16.
  • the meltblown web 16 may also have at least one layer of fine meltblown fibers 20, as shown in Fig. 1.
  • the fine meltblown fibers 20 have an average diameter less than about 5.0 microns, desirably about 0.1 micron to about 4.0 microns.
  • the fine meltblown fibers 20 provide a "closed" web structure, which provides the desired barrier properties, including high opacity and coverage, to the meltblown web 16.
  • the meltblown web 16 may be constructed of the same or similar thermoplastic polymers used to construct the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14, as discussed above.
  • Particularly desirable meltblown fibers for the layers of the meltblown web 16 include monocomponent fibers, for example polypropylene fibers.
  • the present invention can be carried out using any thermoplastic polymer resin that can be meltblown to form a meltblown web.
  • the meltblown web 16 may be formed by bonding at least two meltblown layers of meltblown fibers together.
  • the meltblown layers are bonded surface-to-surface using conventional bonding means, including, but not limited to thermal bonding, ultrasonic bonding and adhesive bonding, h this embodiment, the meltblown layers are independently formed using a forming apparatus 30, as shown in Fig. 2, and subsequently bonded together.
  • the meltblown web 16 may also be formed with the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 as a continuous in-line process, as discussed below.
  • the forming apparatus 30 includes a meltblown station 32 having a die 33 which is used to form meltblown fibers, for example coarse meltblown fibers 18 and fine meltblown fibers 20 (not shown). The distance between the die 33 and a forming belt 34 is designated as the "forming height.”
  • a thermoplastic polymer resin for example a polypropylene resin, is heated to a melting temperature of the thermoplastic polymer resin to form a polymer melt.
  • a high pressure fluid usually air
  • air attenuates and spreads a stream of the polymer melt to form the coarse meltblown fibers 18.
  • the pressure at which the air exits the die 33 is designated the "primary air pressure.”
  • the coarse meltblown fibers 18 are randomly deposited on the moving forming belt 34 to form a coarse fiber meltblown layer 19, as shown in Fig. 2.
  • a vacuum unit 36 positioned under the forming belt 34, draws the coarse meltblown fibers 18 towards the forming belt 34 during the formation of the coarse fiber meltblown layer 19.
  • the vacuum unit 36 has at least two, more desirably three independently controllable vacuum units, as shown in Fig. 2.
  • the independently controllable vacuum units are placed along a length of the forming belt 34 to allow different vacuum settings as the coarse fiber meltblown layer 19 moves along the forming belt 34.
  • a fine fiber meltblown web may be formed using the same or similar forming apparatus 30.
  • meltblown layers are layered together or bonded together using conventional bonding techniques, for example thermal bonding and ultrasonic bonding, to form the meltblown web 16.
  • the meltblown web 16 is then bonded between the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 to produce the SMS fabric laminate 10, in accordance with one embodiment of this invention.
  • the gradient fiber size structure and other physical properties of the meltblown web 16 can be adjusted by manipulation of the various process parameters of the meltblowing process.
  • the following parameters may be adjusted and/or varied in order to change the physical properties or characteristics of the resulting meltblown web 16: type of polymer; polymer melt temperature (°F); forming height (inches); primary air pressure (psi); and vacuum under forming belt or underwire vacuum (inches of water).
  • the meltblown web 16 may be formed in-line with the SMS fabric laminate.
  • the SMS fabric laminate 10 is produced using a forming apparatus 40, as shown in Fig. 3.
  • the forming apparatus 40 has at least three stations, a spunbonding station 42, a meltblowing station 44, and a second spunbonding station 47. Desirably, a plurality of meltblowing stations, for example meltblowing station 44, a second meltblowing station 45, and a third meltblowing station 46, are utilized to form a meltblown web 16 having a gradient fiber size structure formed by a plurality of layers of meltblown fibers.
  • the spunbond station 42 produces continuous spunbond fibers 11 which are deposited on a forming belt 50 to produce the first nonwoven spunbond layer 12.
  • the spunbond station 42 and spunbond station 47 are conventional extruders with spinnerets which form the first spunbond nonwoven layer 12 and the second spunbond nonwoven layer
  • the meltblowing station 44 includes a die 48 which is used to form meltblown fibers, for example coarse meltblown fibers 18.
  • a thermoplastic polymer resin for example a polypropylene resin
  • a high pressure fluid usually air, attenuates and spreads a stream of the polymer melt to form the coarse meltblown fibers 18.
  • the coarse meltblown fibers 18 are randomly deposited on the first nonwoven spunbond layer 12 moving on the forming belt 50 to form a layer 21 of coarse meltblown fibers 18.
  • the second meltblowing station 45 includes a die 49 which is used to form meltblown fibers, for example fine meltblown fibers 20.
  • a thermoplastic polymer resin for example a polypropylene resin
  • a high pressure fluid usually air, attenuates and spreads a stream of the polymer melt to form the fine meltblown fibers 20.
  • the fine meltblown fibers 20 are randomly deposited on the layer 21 of coarse meltblown fibers 18 moving on the forming belt 50.
  • the fine meltblown fibers 20 form a layer 23.
  • the third meltblowing station 46 is aligned along the forming belt 50 to deposit meltblown fibers, for example course meltblown fibers 18, on the layer 23 to form a layer 25 of coarse meltblown fibers 18.
  • the layers 21, 23 and 25 of meltblown fibers deposited on the first nonwoven spunbond layer 12 produce the meltblown web 16 with the gradient fiber size structure.
  • Each meltblowing station 44, 45, 46 can be used to produce course meltblown fibers 18 or fine meltblown fibers 20, as desired.
  • the spunbond station 47 produces continuous spunbond fibers 13 which are deposited on the meltblown web 16 to produce the second nonwoven spunbond layer 14.
  • the resulting SMS fabric laminate 10 is then fed through bonding rolls 52 and 54.
  • the bonding rolls 52 and 54 are heated to a softening temperature of a polymer used to form at least one of the layers of the SMS fabric laminate 10. As the SMS fabric laminate 10 passes between the heated bonding rolls 52 and 54, the layers are compressed and thermally bonded together. Other conventional bonding means may be used to bond the layers of the SMS fabric laminate 10.
  • EXAMPLE 1 Six meltblown layers were produced using the forming apparatus shown in Fig. 2, including one fine fiber meltblown layer (designated MB Roll 01) and five coarse fiber meltblown layers (designated consecutively MB Roll 02-06).
  • the process parameters including the type of polymer, polymer melt temperature, forming height, primary air pressure, and/or underwire vacuum, were varied in accordance with Table 1. Desirably, the forming vacuum control is maintained at 100% output to ensure full process capacity.
  • MB Roll 01-05 layers were produced using a medium melt flow rate polypropylene resin supplied under the trade name Montell ® PF-015.
  • MB Roll 06 layer was produced using a low melt flow rate (400 MFR) polypropylene resin, without peroxide, supplied by the Exxon Chemical Company under the trade name Exxon ® 3505.
  • the count-based mean diameter is the average fiber diameter based on all fiber diameter measurements taken. For each test sample, 300 to 500 fiber diameter measurements were taken.
  • volume-based mean diameter is also an average fiber diameter based on all fiber diameter measurements taken. However, the volume-based mean diameter is based on the volume of the fibers measured. The volume is calculated for each test sample and is based on a cylindrical model using the following equation:
  • V ⁇ A 2 /2P; where A is the cross-sectional area of the test sample and P is the perimeter of the test sample. Fibers with a larger volume will carry a heavier weighting toward the overall average. For each test sample, 300 to 500 measurements were taken.
  • Anisotropy describes the orientation of the fibers. It is a dimensionless measurement and is defined by the following equation:
  • Anisotropy horizontal area/vertical intercept. It is a field measurement and is therefore measured once for each image. A value of less than 1.0 indicates a machine direction fiber orientation while a value of greater than 1.0 indicates a cross-machine direction fiber orientation. A value of 1.0 represents random fiber orientation.
  • Selected meltblown layers from Example 1 were layered together to form five meltblown webs, as shown in Table 3.
  • a MB Roll 01 layer was layered or positioned between two MB Roll 03 layers to form one meltblown web sample.
  • the five meltblown webs were tested for basis weight, air permeability, cup crush load, cup crush energy and opacity using standard testing procedures as outlined below. Results of these tests are displayed in Table 3.
  • Basis Weight The basis weight of a nonwoven fabric is determined by measuring the mass of a nonwoven fabric sample, and dividing it by the area covered by the sample. The basis weight was reported in grams per square meter (gsm).
  • Air Permeability This test determines the airflow rate through a sample for a set area size and pressure. The higher the airflow rate per a given area and pressure, the more open the fabric is, thus allowing more fluid to pass through the fabric. Air permeability is determined using a pressure of 125 Pa (0.5 inch water column) and is reported in cubic feet per minute per square foot. The air permeability data reported herein can be obtained using a TEXTEST FX 3300 air permeability tester. Cup Crush
  • the softness of a nonwoven fabric may be measured according to the "cup crush” test.
  • the cup crush test evaluates fabric stiffness by measuring the peak load or "cup crush" required for a 4.5 cm diameter hemispherically shaped foot to crush a 25 cm by 25 cm piece of fabric shaped into an approximately 6.5 cm diameter by 6.5 cm tall inverted cup while the cup shaped fabric is surrounded by an approximately 6.5 cm diameter cylinder to maintain a uniform deformation of the cup shaped fabric. An average of 10 readings is used. The foot and the cup are aligned to avoid contact between the cup walls and the foot which could affect the readings. The peak load is measured while the foot is descending at a rate of 40.6 crn/minute and is measured in grams.
  • cup crush energy is the energy from the start of the test to the peak load point, i.e. the area under the curve formed by the load in grams on one axis and the distance the foot travels in millimeters on the other. Cup crush energy is therefore reported in g-mrn. Lower cup crush values indicate a softer fabric.
  • a suitable device for measuring cup crush is a Sintech Tensile Tester and 500g load cell using TESTWORKS Software all of which are available from Sintech, Inc. of Research Triangle Park, NC.
  • Opacity This test determines the percent opacity of a sample. The higher the opacity, the more closed the fabric is, thus providing better barrier properties, coverage and visual aesthetics.
  • the opacity data reported herein can be obtained using a HunterLab Color Difference Meter, Model DP 9000. The sample is placed on a specimen port and a percent opacity of the sample is determined. The test is based on a percentage of light which passes through the sample. For example, when no light passes through the sample, the sample will have 100% opacity. Conversely, 0% opacity corresponds to a transparent sample.

Abstract

A nonwoven fabric laminate having a meltblown layer positioned between two spunbond nonwoven layers. The meltblown layer having a gradient fiber size structure across a thickness thereof with at least one layer of coarse meltblown fibers. In one embodiment, the gradient fiber size structure has at least two layers of meltblown fibers, for example at least one layer of fine meltblown fibers and at least one layer of coarse meltblown fibers, having a mean fiber diameter difference of at least 4.0 microns

Description

NONWOVEN FABRIC LAMINATE WITH MELTBLOWN WEB HAVING A GRADIENT FIBER SIZE STRUCTURE
BACKGROUND OF THE INVENTION Nonwoven fabric laminates are useful for a wide variety of applications. Such nonwoven fabric laminates are useful for wipers, towels, industrial garments, medical garments, medical drapes and similar articles. Disposable fabric laminates are used in hospital operating rooms for drapes, gowns, towels, footcovers, sterile wraps and the like. These surgical fabric laminates are generally spunbondmeltblown/spunbond (SMS) laminates having nonwoven outer layers of spunbond polypropylene and an inner layer of meltblown polypropylene. The outer spunbond layers provide strength and durability to the SMS laminate. The inner meltblown layer inhibits the flow or strikethrough of fluids through the SMS laminate yet allows for breathability.
However, there remains a need for a meltblown layer for use in the SMS laminate which provides an "open" structure with high breathability and a "closed" structure with desired barrier properties, high opacity and/or better coverage.
SUMMARY OF THE INVENTION hi response to the discussed difficulties and problems encountered in the prior art, a fabric laminate having a meltblown web with a gradient fiber size structure disposed between two nonwoven layers, has been discovered. Desirably, each nonwoven layer is a spunbond nonwoven layer of substantially continuous fibers. The meltblown web includes at least one layer of coarse meltblown fibers and may include at least one layer of fine meltblown fibers, which form the gradient fiber size structure across a thickness of the meltblown layer. The SMS fabric laminate of this invention has good strength, flexibility and drape and may be formed into various articles or garments such as surgical gowns, surgical drapes and the like. The barrier properties of the SMS fabric laminate make it particularly suitable for medical applications, such as surgical gowns, but the SMS fabric laminate is also useful for any other application where barrier properties are desirable. The nonwoven spunbond layers are produced using conventional spuribonding processes and have substantially continuous thermoplastic spunbond fibers, hi accordance with one embodiment of this invention, the meltblown web has at least two layers of meltblown fibers, with at least one of the layers of meltblown fibers having a plurality of coarse meltblown fibers, which provide the desired breathability to the meltblown web. The meltblown web may also include at least one layer of fine meltblown fibers, which provide the desired barrier properties to the meltblown web.
Particularly desirable meltblown fibers for the layers of the meltblown web include monocomponent fibers, for example polypropylene fibers. In addition to polypropylene fibers, the present invention can be carried out using any thermoplastic polymer resin that can be meltblown to form a meltblown web. h one embodiment of this invention, the layers of the meltblown web may include bicomponent fibers.
The meltblown web according to one embodiment of this invention may be formed by bonding at least two independently formed meltblown layers together. The meltblown layers are bonded surface-to-surface using conventional bonding means. The meltblown web is then bonded between the two nonwoven spunbond layers to produce the SMS fabric laminate.
The gradient fiber size structure and other physical properties of the meltblown web can be adjusted by manipulation of the various process parameters of the meltblowing process. The following parameters may be adjusted and/or varied in order to change the physical properties or characteristics of the resulting meltblown web: polymer meltflow rate; polymer melt temperature (°F); forming height (inches); primary air pressure (psi); and vacuum under forming belt or underwire vacuum (inches of water).
Alternatively, the meltblown web layers may be formed in-line with the SMS fabric laminate. In this embodiment, the SMS fabric laminate is produced using a forming apparatus having at least three stations, a spunbonding station, a meltblowing station, and a second spunbonding station. Desirably, a plurality of meltblowing stations are utilized to form a meltblown web having at least two layers of meltblown fibers, for example at least one layer of coarse meltblown fibers and at least one layer of fine meltblown fibers, which form a gradient fiber size structure. A meltblown web including at least two layers is deposited directly on the first nonwoven spunbond layer during the in-line process. A second nonwoven spunbond layer is subsequently deposited directly on an opposite side of the meltblown web to produce the SMS fabric laminate.
With the foregoing in mind, it is a feature and advantage of the invention to provide a meltblown web for use in a SMS fabric laminate having a gradient fiber size structure across a thickness thereof.
It is also a feature and advantage of the invention to provide a SMS fabric laminate having high breathability and desired barrier properties, including high opacity and coverage. BRIEF DESCRIPTION OF THE DRAWINGS
Figs. 1 shows a Scanning Electronmicrograph (SEM) image of a cross-section of a SMS fabric laminate having a meltblown web of coarse and fine fibers, in accordance with one embodiment of this invention;
Fig. 2 is a schematic view of a forming apparatus used to produce a meltblown layer, in accordance with one embodiment of this invention; and
Fig. 3 is a schematic view of a forming apparatus used to produce a SMS fabric laminate having a meltblown web with a gradient fiber size structure, according to one embodiment of this invention.
DEFINITIONS As used herein, the term "coarse meltblown fibers" refers to meltblown fibers produced by a meltblowing process having an average diameter of at least about 5.0 microns, desirably about 5.0 microns to about 30 microns. A coarse fiber meltblown web has an "open" web structure.
As used herein, the term "fine meltblown fibers" refers to meltblown fibers produced by a meltblowing process having an average diameter less than about 5.0 microns, desirably about 0.1 micron to about 4.0 microns. A fine fiber meltblown web has a "closed" web structure.
The term "layer" when used in the singular refers to a layer of a multilayer web or fabric structure. The term "meltblown fibers" means fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity gas (e.g., air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. Such a process is disclosed for example, in U.S. Patent 3,849,241 to Butin and in U.S. Patent 6,001,303 to Haynes, et al. Meltblown fibers are microfibers which may be continuous or discontinuous and are generally self bonding when deposited onto a collecting surface.
The term "monocomponent fiber" refers to a fiber formed from one or more extruders using only one polymer. This is not meant to exclude fibers formed from one polymer to which small amounts of additives have been added for color, anti-static properties, lubrication, hydrophilicity, etc. These additives, e.g., titanium dioxide for color, are generally present in an amount less than 5 weight percent and more typically about 2 weight percent.
The term "nonwoven fabric or web" means a web having a structure of individual fibers or threads which are interlaid, but not in a regular or identifiable manner as in a knitted fabric. Nonwoven fabrics or webs have been-formed from many processes such as, for example, meltblowing processes, spunbonding processes, air laying processes, and bonded carded web processes. The basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters are usually expressed in microns. (Note that to convert from osy to gsm, multiply osy by 33.91.) The terms include nonwoven fabrics or webs having multiple layers. The term "polymer" includes, but is not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and modifications thereof. Further, unless otherwise specifically limited, the term "polymer" shall include all possible geometrical configurations of the material. These configurations include, but are not limited to isotactic, syndiotactic and atactic symmetries. The term "spunbond fibers" refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine capillaries of a spinnerette having a circular or other configuration, with the diameter of the extruded filaments then being rapidly reduced as by, for example, in U.S. Patent 4,340,563 to Appel et al., and U.S. Patent 3,692,618 to Dorschner et al., U.S. Patent 3,802,817 to Matsuki et al.,
U.S. Patents 3,338,992 and 3,341,394 to Kinney, U.S. Patent 3,502,763 to Hartman, U.S. Patent 3,502,538 to Petersen, and U.S. Patent 3,542,615 to Dobo et al., each of which is incorporated herein in its entirety by reference. Spunbond fibers are quenched and generally not tacky when they are deposited onto a collecting surface. Spunbond fibers are generally continuous and often have average diameters larger than about 7 microns, more particularly, between about 10 and 30 microns.
These terms may be defined with additional language in the remaining portions of the specification.
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
As shown in Fig. 1, a SMS fabric laminate 10, in accordance with one embodiment of this invention, includes a first spunbond nonwoven layer 12, a second spunbond nonwoven layer 14 and a meltblown web 16 disposed between the first spunbond nonwoven layer 12 and the second spunbond nonwoven layer 14. hi accordance with one embodiment of this invention, the meltblown web 16 has at least one layer of coarse meltblown fibers 18 and may have at least one layer of fine meltblown fibers 20, which form a gradient fiber size structure across a thickness of the meltblown web 16. Although reference is made throughout this specification and in the claims to a SMS fabric laminate, it is apparent to one skilled in the art that the meltblown web 16 may be disposed between suitable nonwoven layers which are not spunbond nonwoven layers.
Desirably, the gradient fiber size structure is formed having adjacent layers of meltblown fibers with a mean fiber diameter difference of at least 4.0 microns. For example, a layer of fine meltblown fibers 20 having a mean fiber diameter of about 2.0 microns is bonded to a layer of course meltblown fibers 18 having a mean fiber diameter of about 14.5 microns to form the meltblown web 16. Desirably, the overall basis weight of the SMS fabric laminate 10 is about 16 grams per square meter (gsm) to about 275 gsm, more desirably about 33 gsm to about 136 gsm, still more desirably about 33 gsm to about 68 gsm.
The SMS fabric laminate 10 of this invention has good strength, flexibility and drape and may be formed into various articles or garments such as surgical gowns, surgical drapes and the like. The barrier properties of the SMS fabric laminate 10 make it particularly suitable for medical applications, such as surgical gowns, but the SMS fabric laminate 10 is also useful for any other application where barrier properties are desirable.
The first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 may be produced using spunbonding processes well known to those having ordinary skill in the art and have substantially continuous thermoplastic spunbond fibers. Desirably, the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 each has a basis weight of about 10 grams per square meter (gsm) to about 100 gsm, more desirably about 12 gsm to about 24 gsm. It is also desirable that the spunbond fibers have an average diameter of about 10 microns to about 30 microns, more desirably about 15 microns to about 25 microns.
A wide variety of thermoplastic polymers may be used to construct the the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 including, but not limited to polyamides, polyesters, polyolefins, copolymers of ethylene and propylene, copolymers of ethylene or propylene with a C4-C20 alpha-olefin, terpolymers of ethylene with propylene and a C4-C20 alpha-olefin, ethylene vinyl acetate copolymers, propylene vinyl acetate copolymers, styrene-poly(ethylene-alpha-olefin) elastomers, polyurethanes, A-B block copolymers where A is formed of poly(vinyl arene) moieties such as polystyrene and B is an elastomeric midblock such as a conjugated diene or lower alkene, polyethers, polyether esters, polyacrylates, ethylene alkyl acrylates, polyisobutylene, polybutadiene, isobutylene-isoprene copolymers, and combinations of any of the foregoing. Polyolefins are desirable. Polyethylene and polypropylene homopolymers and copolymers are most desirable.
Desirably, the meltblown web 16 has a basis weight of about 5 gsm to about 34 gsm, more desirably about 9 gsm to about 15 gsm. hi accordance with one embodiment of this invention, the meltblown web 16 includes at least two layers of meltblown fibers 17 and 19, as shown in Fig. 1. At least one of the layers of meltblown fibers 17, 19 has a plurality of coarse meltblown fibers 18. The coarse meltblown fibers 18 have an average diameter of at least about 5.0 microns, desirably about 5.0 microns to about 30 microns. The coarse meltblown fibers 18 provide an "open" web structure, which provides the desired breathability to the meltblown web 16.
The meltblown web 16 may also have at least one layer of fine meltblown fibers 20, as shown in Fig. 1. The fine meltblown fibers 20 have an average diameter less than about 5.0 microns, desirably about 0.1 micron to about 4.0 microns. The fine meltblown fibers 20 provide a "closed" web structure, which provides the desired barrier properties, including high opacity and coverage, to the meltblown web 16.
The meltblown web 16 may be constructed of the same or similar thermoplastic polymers used to construct the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14, as discussed above. Particularly desirable meltblown fibers for the layers of the meltblown web 16 include monocomponent fibers, for example polypropylene fibers. In addition to polypropylene fibers, the present invention can be carried out using any thermoplastic polymer resin that can be meltblown to form a meltblown web.
The meltblown web 16 according to one embodiment of this invention may be formed by bonding at least two meltblown layers of meltblown fibers together. The meltblown layers are bonded surface-to-surface using conventional bonding means, including, but not limited to thermal bonding, ultrasonic bonding and adhesive bonding, h this embodiment, the meltblown layers are independently formed using a forming apparatus 30, as shown in Fig. 2, and subsequently bonded together.
The meltblown web 16 may also be formed with the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 as a continuous in-line process, as discussed below. The forming apparatus 30 includes a meltblown station 32 having a die 33 which is used to form meltblown fibers, for example coarse meltblown fibers 18 and fine meltblown fibers 20 (not shown). The distance between the die 33 and a forming belt 34 is designated as the "forming height." Within the meltblown station 32, a thermoplastic polymer resin, for example a polypropylene resin, is heated to a melting temperature of the thermoplastic polymer resin to form a polymer melt. As the polymer melt exits the die 33, a high pressure fluid, usually air, attenuates and spreads a stream of the polymer melt to form the coarse meltblown fibers 18. The pressure at which the air exits the die 33 is designated the "primary air pressure." The coarse meltblown fibers 18 are randomly deposited on the moving forming belt 34 to form a coarse fiber meltblown layer 19, as shown in Fig. 2.
As the coarse meltblown fibers 18 are deposited on the forming belt 34, a vacuum unit 36, positioned under the forming belt 34, draws the coarse meltblown fibers 18 towards the forming belt 34 during the formation of the coarse fiber meltblown layer 19. Desirably, the vacuum unit 36 has at least two, more desirably three independently controllable vacuum units, as shown in Fig. 2. The independently controllable vacuum units are placed along a length of the forming belt 34 to allow different vacuum settings as the coarse fiber meltblown layer 19 moves along the forming belt 34. A fine fiber meltblown web may be formed using the same or similar forming apparatus 30.
Independently formed meltblown layers are layered together or bonded together using conventional bonding techniques, for example thermal bonding and ultrasonic bonding, to form the meltblown web 16. The meltblown web 16 is then bonded between the first nonwoven spunbond layer 12 and the second nonwoven spunbond layer 14 to produce the SMS fabric laminate 10, in accordance with one embodiment of this invention.
The gradient fiber size structure and other physical properties of the meltblown web 16 can be adjusted by manipulation of the various process parameters of the meltblowing process. The following parameters may be adjusted and/or varied in order to change the physical properties or characteristics of the resulting meltblown web 16: type of polymer; polymer melt temperature (°F); forming height (inches); primary air pressure (psi); and vacuum under forming belt or underwire vacuum (inches of water). As an alternative to bonding independently formed meltblown layers to form the meltblown web 16, the meltblown web 16 may be formed in-line with the SMS fabric laminate. In accordance with one embodiment of this invention, the SMS fabric laminate 10 is produced using a forming apparatus 40, as shown in Fig. 3. The forming apparatus 40 has at least three stations, a spunbonding station 42, a meltblowing station 44, and a second spunbonding station 47. Desirably, a plurality of meltblowing stations, for example meltblowing station 44, a second meltblowing station 45, and a third meltblowing station 46, are utilized to form a meltblown web 16 having a gradient fiber size structure formed by a plurality of layers of meltblown fibers.
The spunbond station 42 produces continuous spunbond fibers 11 which are deposited on a forming belt 50 to produce the first nonwoven spunbond layer 12. The spunbond station 42 and spunbond station 47 are conventional extruders with spinnerets which form the first spunbond nonwoven layer 12 and the second spunbond nonwoven layer
14, respectively, by methods well known to those having ordinary skill in the art.
The meltblowing station 44 includes a die 48 which is used to form meltblown fibers, for example coarse meltblown fibers 18. Within the meltblowing station 44, a thermoplastic polymer resin, for example a polypropylene resin, is heated to a melting temperature of the thermoplastic polymer resin to form a polymer melt. As the polymer melt exits the die 48, a high pressure fluid, usually air, attenuates and spreads a stream of the polymer melt to form the coarse meltblown fibers 18. The coarse meltblown fibers 18 are randomly deposited on the first nonwoven spunbond layer 12 moving on the forming belt 50 to form a layer 21 of coarse meltblown fibers 18.
The second meltblowing station 45 includes a die 49 which is used to form meltblown fibers, for example fine meltblown fibers 20. Within the second meltblowing station 45, a thermoplastic polymer resin, for example a polypropylene resin, is heated to a melting temperature of the thermoplastic polymer resin to form a polymer melt. As the polymer melt exits the die 49, a high pressure fluid, usually air, attenuates and spreads a stream of the polymer melt to form the fine meltblown fibers 20. The fine meltblown fibers 20 are randomly deposited on the layer 21 of coarse meltblown fibers 18 moving on the forming belt 50. The fine meltblown fibers 20 form a layer 23. In accordance with one embodiment of this invention, the third meltblowing station 46 is aligned along the forming belt 50 to deposit meltblown fibers, for example course meltblown fibers 18, on the layer 23 to form a layer 25 of coarse meltblown fibers 18. The layers 21, 23 and 25 of meltblown fibers deposited on the first nonwoven spunbond layer 12 produce the meltblown web 16 with the gradient fiber size structure. Each meltblowing station 44, 45, 46, can be used to produce course meltblown fibers 18 or fine meltblown fibers 20, as desired.
After the meltblown web 16 is formed on the first nonwoven spunbond layer 12, the spunbond station 47 produces continuous spunbond fibers 13 which are deposited on the meltblown web 16 to produce the second nonwoven spunbond layer 14. The resulting SMS fabric laminate 10 is then fed through bonding rolls 52 and 54. The bonding rolls 52 and 54 are heated to a softening temperature of a polymer used to form at least one of the layers of the SMS fabric laminate 10. As the SMS fabric laminate 10 passes between the heated bonding rolls 52 and 54, the layers are compressed and thermally bonded together. Other conventional bonding means may be used to bond the layers of the SMS fabric laminate 10.
EXAMPLE 1 Six meltblown layers were produced using the forming apparatus shown in Fig. 2, including one fine fiber meltblown layer (designated MB Roll 01) and five coarse fiber meltblown layers (designated consecutively MB Roll 02-06). The process parameters, including the type of polymer, polymer melt temperature, forming height, primary air pressure, and/or underwire vacuum, were varied in accordance with Table 1. Desirably, the forming vacuum control is maintained at 100% output to ensure full process capacity. MB Roll 01-05 layers were produced using a medium melt flow rate polypropylene resin supplied under the trade name Montell®PF-015. MB Roll 06 layer was produced using a low melt flow rate (400 MFR) polypropylene resin, without peroxide, supplied by the Exxon Chemical Company under the trade name Exxon® 3505.
TABLE 1
Figure imgf000013_0001
The fine fiber meltblown layer (MB Roll 01) and three coarse fiber meltblown layers (MB Roll 03, 05, and 06), produced using the forming apparatus shown in Fig. 2, were tested using an Image Analysis of Meltblown Fiber Diameter test. Each meltblown layer was tested for Count-Based Mean Diameter, Volume-Based Mean Diameter, and Anisotropy. Results of this test are displayed in Table 2. Two test samples, designated "A" and "B," were conducted for each meltblown layer.
Test Procedures Count-Based Mean Diameter The count-based mean diameter is the average fiber diameter based on all fiber diameter measurements taken. For each test sample, 300 to 500 fiber diameter measurements were taken.
Volume-Based Mean Diameter The volume-based mean diameter is also an average fiber diameter based on all fiber diameter measurements taken. However, the volume-based mean diameter is based on the volume of the fibers measured. The volume is calculated for each test sample and is based on a cylindrical model using the following equation:
V=πA2/2P; where A is the cross-sectional area of the test sample and P is the perimeter of the test sample. Fibers with a larger volume will carry a heavier weighting toward the overall average. For each test sample, 300 to 500 measurements were taken.
Anisotropy The Anisotropy describes the orientation of the fibers. It is a dimensionless measurement and is defined by the following equation:
Anisotropy = horizontal area/vertical intercept. It is a field measurement and is therefore measured once for each image. A value of less than 1.0 indicates a machine direction fiber orientation while a value of greater than 1.0 indicates a cross-machine direction fiber orientation. A value of 1.0 represents random fiber orientation.
TABLE 2
Count-Based Diameter Volume-Based Diameter
Figure imgf000014_0001
EXAMPLE 2
Selected meltblown layers from Example 1 were layered together to form five meltblown webs, as shown in Table 3. For example, a MB Roll 01 layer was layered or positioned between two MB Roll 03 layers to form one meltblown web sample. The five meltblown webs were tested for basis weight, air permeability, cup crush load, cup crush energy and opacity using standard testing procedures as outlined below. Results of these tests are displayed in Table 3.
Test Procedures Basis Weight The basis weight of a nonwoven fabric is determined by measuring the mass of a nonwoven fabric sample, and dividing it by the area covered by the sample. The basis weight was reported in grams per square meter (gsm).
Air Permeability This test determines the airflow rate through a sample for a set area size and pressure. The higher the airflow rate per a given area and pressure, the more open the fabric is, thus allowing more fluid to pass through the fabric. Air permeability is determined using a pressure of 125 Pa (0.5 inch water column) and is reported in cubic feet per minute per square foot. The air permeability data reported herein can be obtained using a TEXTEST FX 3300 air permeability tester. Cup Crush
The softness of a nonwoven fabric may be measured according to the "cup crush" test. The cup crush test evaluates fabric stiffness by measuring the peak load or "cup crush" required for a 4.5 cm diameter hemispherically shaped foot to crush a 25 cm by 25 cm piece of fabric shaped into an approximately 6.5 cm diameter by 6.5 cm tall inverted cup while the cup shaped fabric is surrounded by an approximately 6.5 cm diameter cylinder to maintain a uniform deformation of the cup shaped fabric. An average of 10 readings is used. The foot and the cup are aligned to avoid contact between the cup walls and the foot which could affect the readings. The peak load is measured while the foot is descending at a rate of 40.6 crn/minute and is measured in grams. The cup crush test also yields a value for the total energy required to crush a sample (the "cup crush energy") which is the energy from the start of the test to the peak load point, i.e. the area under the curve formed by the load in grams on one axis and the distance the foot travels in millimeters on the other. Cup crush energy is therefore reported in g-mrn. Lower cup crush values indicate a softer fabric. A suitable device for measuring cup crush is a Sintech Tensile Tester and 500g load cell using TESTWORKS Software all of which are available from Sintech, Inc. of Research Triangle Park, NC.
Opacity This test determines the percent opacity of a sample. The higher the opacity, the more closed the fabric is, thus providing better barrier properties, coverage and visual aesthetics. The opacity data reported herein can be obtained using a HunterLab Color Difference Meter, Model DP 9000. The sample is placed on a specimen port and a percent opacity of the sample is determined. The test is based on a percentage of light which passes through the sample. For example, when no light passes through the sample, the sample will have 100% opacity. Conversely, 0% opacity corresponds to a transparent sample.
TABLE 3
Figure imgf000016_0001
While the invention has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing, may readily conceive of alterations to, variations of and equivalents to these embodiments. Accordingly, the scope of the present invention should be assessed as that of the appended claims and any equivalents thereto.

Claims

WHAT IS CLAIMED IS:
1. A nonwoven fabric laminate, comprising: a first nonwoven layer; a second nonwoven layer; and a meltblown web positioned between the first nonwoven layer and the second nonwoven layer, the meltblown web having a gradient fiber size structure wherein adjacent layers of the meltblown web have a mean diameter difference of at least 4.0 microns.
2. The nonwoven fabric laminate of claim 1 , wherein the meltblown web comprises at least one layer of fine meltblown fibers.
3. The nonwoven fabric laminate of claim 2, wherein the fine meltblown fibers have an average diameter less than about 5.0 microns.
4. The nonwoven fabric laminate of claim 2, wherein the fine meltblown fibers have an average diameter of 0.1 micron to about 4.0 microns.
5. The nonwoven fabric laminate of claim 1 , wherein the meltblown web comprises at least one layer of coarse meltblown fibers.
6. The nonwoven fabric laminate of claim 5, wherein the coarse meltblown fibers have an average diameter at least about 5.0 microns.
7. The nonwoven fabric laminate of claim 5, wherein the coarse meltblown fibers have an average diameter of about 6.0 microns to about 15 microns.
8. The nonwoven fabric laminate of claim 1 , wherein the gradient fiber size structure comprises at least one layer of fine meltblown fibers bonded to at least one layer of coarse meltblown fibers.
9. The nonwoven fabric laminate of claim 8, wherein the meltblown web has an air permeability of about 176 cfm to about 227 cfm.
10. The nonwoven fabric laminate of claim 8, wherein the meltblown web has an opacity of about 39% to about 51%.
11. The nonwoven fabric laminate of claim 1 , wherein the gradient fiber size structure comprises a layer of fine meltblown fibers positioned between a first layer of coarse meltblown fibers and a second layer of coarse meltblown fibers.
12. The nonwoven fabric laminate of claim 11, wherein the meltblown web has an air permeability of about 176 cfm to about 212 cfm.
13. The nonwoven fabric laminate of claim 11 , wherein the meltblown web has an opacity of about 42% to about 51%.
14. The nonwoven fabric laminate of claim 1, wherein the meltblown web has a basis weight of about 5 gsm to about 34 gsm.
15. The nonwoven fabric laminate of claim 1 , wherein the meltblown web has a basis weight of about 9 gsm to about 15 gsm.
16. The nonwoven fabric laminate of claim 1 , wherein the first nonwoven layer and the second nonwoven layer each comprise a spunbond nonwoven layer.
17. A nonwoven fabric laminate, comprising: a first spunbond layer; a meltblown web having a first side bonded to a first side of the first spunbond layer, the meltblown web comprising at least one layer of coarse meltblown fibers having a first mean fiber diameter and at least one layer of fine meltblown fibers having a second mean fiber diameter wherein a difference between the first mean fiber diameter and the second mean fiber diameter is at least 4.0 microns; a second spunbond layer having a first side bonded to a second side of the meltblown web.
18. The nonwoven fabric laminate of claim 17, wherein the meltblown web further comprises a third layer of meltblown fibers.
19. A nonwoven fabric laminate, comprising: a meltblown web having at least one layer of coarse meltblown fibers and at least one layer of fine meltblown fibers, the coarse meltblown fibers having an average diameter of at least about 5 microns and the fine meltblown fibers having an average diameter of less than about 5 microns, the at least one layer of coarse meltblown fibers and the at least one layer of fine meltblown fibers provide a gradient fiber size structure.
20. The nonwoven fabric laminate of claim 19, wherein the layer of course meltblown fibers has a mean fiber diameter at least 4.0 microns greater than a mean fiber diameter of the layer of fine meltblown fibers.
21. A medical gown comprising the laminate of Claim 19.
22. A medical drape comprising the laminate of Claim 19.
23. A garment comprising the laminate of Claim 19.
24. A sterilization wrap comprising the laminate of Claim 19.
25. A towel comprising the laminate of Claim 19.
26. A foot cover comprising the laminate of Claim 19.
PCT/US2001/044657 2000-11-28 2001-11-28 Nonwoven fabric laminate with meltblown web having a gradient fiber size structure WO2002043951A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MXPA03004486A MXPA03004486A (en) 2000-11-28 2001-11-28 Nonwoven fabric laminate with meltblown web having a gradient fiber size structure.
EP01998442A EP1345761A2 (en) 2000-11-28 2001-11-28 Nonwoven fabric laminate with meltblown web having a gradient fiber size structure
AU2002219923A AU2002219923A1 (en) 2000-11-28 2001-11-28 Nonwoven fabric laminate with meltblown web having a gradient fiber size structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/724,622 2000-11-28
US09/724,622 US6936554B1 (en) 2000-11-28 2000-11-28 Nonwoven fabric laminate with meltblown web having a gradient fiber size structure

Publications (2)

Publication Number Publication Date
WO2002043951A2 true WO2002043951A2 (en) 2002-06-06
WO2002043951A3 WO2002043951A3 (en) 2002-11-07

Family

ID=24911165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/044657 WO2002043951A2 (en) 2000-11-28 2001-11-28 Nonwoven fabric laminate with meltblown web having a gradient fiber size structure

Country Status (5)

Country Link
US (1) US6936554B1 (en)
EP (1) EP1345761A2 (en)
AU (1) AU2002219923A1 (en)
MX (1) MXPA03004486A (en)
WO (1) WO2002043951A2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331297A1 (en) * 2001-12-20 2003-07-30 AAF-McQuay Inc. Series arrangement for forming layered fibrous mat of differing fibers and controlled surfaces
EP1728543A2 (en) * 2005-04-19 2006-12-06 Filter Specialists Incorporated Howard W. Morgan Filtration element having a variable density sidewall
US7210914B2 (en) * 2001-12-20 2007-05-01 Aaf-Mcquay Inc. Series apparatus for forming layered fibrous mat of differing fibers and controlled surfaces
EP1945445A1 (en) * 2005-10-19 2008-07-23 3M Innovative Properties Company Multilayer articles having acoustical absorbance properties and methods of making and using the same
US7687416B2 (en) 2000-08-09 2010-03-30 Aaf-Mcquay Inc. Arrangement for forming a layered fibrous mat of varied porosity
EP2320060A1 (en) * 2008-07-10 2011-05-11 Nifco INC. Fuel filter
US8658548B2 (en) 2002-09-17 2014-02-25 E I Du Pont De Nemours And Company Extremely high liquid barrier fabrics
CN112357656A (en) * 2020-10-24 2021-02-12 芜湖西格玛自动化装备有限公司 Anti-jamming mask machine conveying system
EP3814135A4 (en) * 2018-05-17 2022-03-09 Pfnonwovens, Llc Multilayered nonwoven fabrics and method of making the same

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7344769B1 (en) * 2000-07-24 2008-03-18 High Voltage Graphics, Inc. Flocked transfer and article of manufacture including the flocked transfer
US7521386B2 (en) * 2004-02-07 2009-04-21 Milliken & Company Moldable heat shield
BRPI0520889B1 (en) 2004-11-05 2020-11-03 Donaldson Company, Inc. method of filtering a liquid stream and method of filtering a heated fluid
US8021457B2 (en) 2004-11-05 2011-09-20 Donaldson Company, Inc. Filter media and structure
US8057567B2 (en) 2004-11-05 2011-11-15 Donaldson Company, Inc. Filter medium and breather filter structure
EP1846136A2 (en) 2005-02-04 2007-10-24 Donaldson Company, Inc. Aerosol separator
ATE442893T1 (en) 2005-02-22 2009-10-15 Donaldson Co Inc AEROSOL SEPARATOR
US7696112B2 (en) 2005-05-17 2010-04-13 Milliken & Company Non-woven material with barrier skin
US7428803B2 (en) * 2005-05-17 2008-09-30 Milliken & Company Ceiling panel system with non-woven panels having barrier skins
US7605097B2 (en) 2006-05-26 2009-10-20 Milliken & Company Fiber-containing composite and method for making the same
US7651964B2 (en) * 2005-08-17 2010-01-26 Milliken & Company Fiber-containing composite and method for making the same
US8129298B2 (en) * 2006-05-31 2012-03-06 Mitsui Chemicals, Inc. Nonwoven laminates and process for producing the same
CN101432478B (en) * 2006-05-31 2012-01-04 三井化学株式会社 Non-woven fabric laminate and method for production thereof
US20080017038A1 (en) * 2006-07-21 2008-01-24 3M Innovative Properties Company High efficiency hvac filter
US7825050B2 (en) * 2006-12-22 2010-11-02 Milliken & Company VOC-absorbing nonwoven composites
MX2009009046A (en) 2007-02-22 2009-10-14 Donaldson Co Inc Filter element and method.
EP2125149A2 (en) 2007-02-23 2009-12-02 Donaldson Company, Inc. Formed filter element
US20090053959A1 (en) * 2007-08-21 2009-02-26 Sudhin Datta Soft and Elastic Nonwoven Polypropylene Compositions
US8986432B2 (en) 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
EP2227308A2 (en) * 2007-11-09 2010-09-15 Hollingsworth & Vose Company Meltblown filter medium
US10161063B2 (en) * 2008-09-30 2018-12-25 Exxonmobil Chemical Patents Inc. Polyolefin-based elastic meltblown fabrics
US20100112881A1 (en) * 2008-11-03 2010-05-06 Pradip Bahukudumbi Composite material and method for manufacturing composite material
US8267681B2 (en) 2009-01-28 2012-09-18 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
CN102471968B (en) * 2010-07-13 2012-12-19 三井化学株式会社 Nonwoven fabric laminate for expansion molding
US10155186B2 (en) 2010-12-17 2018-12-18 Hollingsworth & Vose Company Fine fiber filter media and processes
US20120152821A1 (en) 2010-12-17 2012-06-21 Hollingsworth & Vose Company Fine fiber filter media and processes
US9303339B2 (en) 2011-01-28 2016-04-05 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
WO2012103280A1 (en) 2011-01-28 2012-08-02 Donaldson Company, Inc. Method and apparatus for forming a fibrous media
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
US9963825B2 (en) 2013-08-23 2018-05-08 Jack Fabbricante Apparatus and method for forming a continuous web of fibers
US9226502B2 (en) 2014-03-31 2016-01-05 Kimberly-Clark Worldwide, Inc. Fibrous web comprising a cationic polymer for capturing microorganisms
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US10729507B2 (en) 2017-01-12 2020-08-04 Warsaw Orthopedic, Inc. Surgical draping system and method for using same
CN108893868A (en) * 2018-09-25 2018-11-27 大连瑞源非织造布有限公司 A kind of coarse meltblown non-woven fabrics and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714647A (en) * 1986-05-02 1987-12-22 Kimberly-Clark Corporation Melt-blown material with depth fiber size gradient
EP0399495A1 (en) * 1989-05-26 1990-11-28 Kimberly-Clark Corporation Nonwoven wiper and process of making same
US5492751A (en) * 1993-05-20 1996-02-20 Kimberly-Clark Corporation Disposable garment with improved containments means
US5679042A (en) * 1996-04-25 1997-10-21 Kimberly-Clark Worldwide, Inc. Nonwoven fabric having a pore size gradient and method of making same
US5811178A (en) * 1995-08-02 1998-09-22 Kimberly-Clark Worldwide, Inc. High bulk nonwoven sorbent with fiber density gradient
WO2000037723A2 (en) * 1998-12-19 2000-06-29 Kimberly-Clark Worldwide, Inc. Fine multicomponent fiber webs and laminates thereof
WO2001000917A1 (en) * 1999-06-29 2001-01-04 Kimberly-Clark Worldwide, Inc. Durable multilayer nonwoven materials

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3338992A (en) 1959-12-15 1967-08-29 Du Pont Process for forming non-woven filamentary structures from fiber-forming synthetic organic polymers
US3502763A (en) 1962-02-03 1970-03-24 Freudenberg Carl Kg Process of producing non-woven fabric fleece
US3502538A (en) 1964-08-17 1970-03-24 Du Pont Bonded nonwoven sheets with a defined distribution of bond strengths
US3458387A (en) 1966-06-14 1969-07-29 Monsanto Co Flexible non-woven sheet material and method of making the same
US3341394A (en) 1966-12-21 1967-09-12 Du Pont Sheets of randomly distributed continuous filaments
US3542615A (en) 1967-06-16 1970-11-24 Monsanto Co Process for producing a nylon non-woven fabric
US3849241A (en) 1968-12-23 1974-11-19 Exxon Research Engineering Co Non-woven mats by melt blowing
DE2048006B2 (en) 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Method and device for producing a wide nonwoven web
DE1950669C3 (en) 1969-10-08 1982-05-13 Metallgesellschaft Ag, 6000 Frankfurt Process for the manufacture of nonwovens
US4196245A (en) 1978-06-16 1980-04-01 Buckeye Cellulos Corporation Composite nonwoven fabric comprising adjacent microfine fibers in layers
US4340563A (en) 1980-05-05 1982-07-20 Kimberly-Clark Corporation Method for forming nonwoven webs
US4756786A (en) 1984-03-09 1988-07-12 Chicopee Process for preparing a microfine fiber laminate
US5073436A (en) 1989-09-25 1991-12-17 Amoco Corporation Multi-layer composite nonwoven fabrics
US5464688A (en) 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
US5213881A (en) 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5258220A (en) 1991-09-30 1993-11-02 Minnesota Mining And Manufacturing Company Wipe materials based on multi-layer blown microfibers
US5415925A (en) 1992-06-10 1995-05-16 Fiberweb North America, Inc. Gamma structure composite nonwoven fabric comprising at least two nonwoven webs adhesively bonded by a lightweight adhesive web
US5454848A (en) 1993-05-19 1995-10-03 Schuller International, Inc. Method of making air filtration media by inter-mixing coarse and fine glass fibers
CA2124389C (en) 1993-11-16 2005-08-23 Richard D. Pike Nonwoven filter media
US5554435A (en) 1994-01-31 1996-09-10 Hercules Incorporated Textile structures, and their preparation
CA2138195A1 (en) 1994-06-08 1995-12-09 James P. Brown Nonwoven fabric laminate
DE69528076T2 (en) 1994-10-31 2003-04-30 Kimberly Clark Co HIGH DENSITY FIBERGLASS FILTER MEDIA
US5660910A (en) 1995-03-31 1997-08-26 Akzo Nobel N.V. Increased tear strength nonwoven fabric and process for its manufacture
US5804512A (en) 1995-06-07 1998-09-08 Bba Nonwovens Simpsonville, Inc. Nonwoven laminate fabrics and processes of making same
US5616408A (en) 1995-12-22 1997-04-01 Fiberweb North America, Inc. Meltblown polyethylene fabrics and processes of making same
US5817584A (en) 1995-12-22 1998-10-06 Kimberly-Clark Worldwide, Inc. High efficiency breathing mask fabrics
US5885909A (en) 1996-06-07 1999-03-23 E. I. Du Pont De Nemours And Company Low or sub-denier nonwoven fibrous structures
US6001303A (en) 1997-12-19 1999-12-14 Kimberly-Clark Worldwide, Inc. Process of making fibers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714647A (en) * 1986-05-02 1987-12-22 Kimberly-Clark Corporation Melt-blown material with depth fiber size gradient
EP0399495A1 (en) * 1989-05-26 1990-11-28 Kimberly-Clark Corporation Nonwoven wiper and process of making same
US5492751A (en) * 1993-05-20 1996-02-20 Kimberly-Clark Corporation Disposable garment with improved containments means
US5811178A (en) * 1995-08-02 1998-09-22 Kimberly-Clark Worldwide, Inc. High bulk nonwoven sorbent with fiber density gradient
US5679042A (en) * 1996-04-25 1997-10-21 Kimberly-Clark Worldwide, Inc. Nonwoven fabric having a pore size gradient and method of making same
WO2000037723A2 (en) * 1998-12-19 2000-06-29 Kimberly-Clark Worldwide, Inc. Fine multicomponent fiber webs and laminates thereof
WO2001000917A1 (en) * 1999-06-29 2001-01-04 Kimberly-Clark Worldwide, Inc. Durable multilayer nonwoven materials

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7687416B2 (en) 2000-08-09 2010-03-30 Aaf-Mcquay Inc. Arrangement for forming a layered fibrous mat of varied porosity
EP1331297A1 (en) * 2001-12-20 2003-07-30 AAF-McQuay Inc. Series arrangement for forming layered fibrous mat of differing fibers and controlled surfaces
US7210914B2 (en) * 2001-12-20 2007-05-01 Aaf-Mcquay Inc. Series apparatus for forming layered fibrous mat of differing fibers and controlled surfaces
US8658548B2 (en) 2002-09-17 2014-02-25 E I Du Pont De Nemours And Company Extremely high liquid barrier fabrics
EP1728543A2 (en) * 2005-04-19 2006-12-06 Filter Specialists Incorporated Howard W. Morgan Filtration element having a variable density sidewall
EP1728543A3 (en) * 2005-04-19 2007-10-10 Filter Specialists Incorporated Howard W. Morgan Filtration element having a variable density sidewall
EP1945445A4 (en) * 2005-10-19 2012-05-30 3M Innovative Properties Co Multilayer articles having acoustical absorbance properties and methods of making and using the same
EP1945445A1 (en) * 2005-10-19 2008-07-23 3M Innovative Properties Company Multilayer articles having acoustical absorbance properties and methods of making and using the same
EP2320060A4 (en) * 2008-07-10 2012-01-18 Nifco Inc Fuel filter
US8173013B2 (en) 2008-07-10 2012-05-08 Nifco Inc. Fuel filter
EP2320060A1 (en) * 2008-07-10 2011-05-11 Nifco INC. Fuel filter
EP3814135A4 (en) * 2018-05-17 2022-03-09 Pfnonwovens, Llc Multilayered nonwoven fabrics and method of making the same
US11541629B2 (en) 2018-05-17 2023-01-03 Pfnonwovens Llc Multilayered nonwoven fabrics and method of making the same
CN112357656A (en) * 2020-10-24 2021-02-12 芜湖西格玛自动化装备有限公司 Anti-jamming mask machine conveying system

Also Published As

Publication number Publication date
EP1345761A2 (en) 2003-09-24
WO2002043951A3 (en) 2002-11-07
MXPA03004486A (en) 2003-09-04
AU2002219923A1 (en) 2002-06-11
US6936554B1 (en) 2005-08-30

Similar Documents

Publication Publication Date Title
US6936554B1 (en) Nonwoven fabric laminate with meltblown web having a gradient fiber size structure
US6723669B1 (en) Fine multicomponent fiber webs and laminates thereof
JP5418947B2 (en) Polyethylene soft nonwoven fabric
US6352948B1 (en) Fine fiber composite web laminates
KR100309231B1 (en) Multicomponent polymeric strands and but nonwovens and articles, including butene polymers
US5482765A (en) Nonwoven fabric laminate with enhanced barrier properties
KR100580983B1 (en) Fine Multicomponent Fiber Webs and Laminates Thereof
DK2677074T3 (en) SPIN-BOND NON-WOVEN FABRICS
US20070026753A1 (en) Differential basis weight nonwoven webs
JP5599755B2 (en) Breathable laminate and method for producing the same
JPH07300754A (en) Polyethylene melt blown fabric with barrier property
US11717777B2 (en) Nonwoven fabric
US20050095943A1 (en) Cross machine direction extensible nonwoven webs
CN107847355A (en) Low fibre shedding is imaged hydroentangled nonwoven composite
US20040102123A1 (en) High strength uniformity nonwoven laminate and process therefor
AU2002310381A1 (en) Helically crimped, shaped, single polymer fibers and articles made therefrom
CN103038414A (en) Surface-treated non-woven fabrics
JPH10251960A (en) Laminated non-woven fabric
JP5567836B2 (en) Eccentric hollow composite long fiber, long fiber nonwoven fabric comprising the same, and use thereof
JP6557440B1 (en) Spunbond nonwoven fabric, production method of spunbond nonwoven fabric, emboss roll
JPWO2020085502A1 (en) Non-woven fabric laminates, stretchable non-woven fabric laminates, textile products, absorbent articles and sanitary masks
CA3160314A1 (en) Nonwoven fabric having high thermal resistance and barrier properties
JPWO2020170311A1 (en) Manufacturing method of spunbonded non-woven fabric and spunbonded non-woven fabric
TWI836156B (en) Nonwoven fabric, method of forming nonwoven fabric, package, and method of sterilizing package
JP7461460B2 (en) Nonwoven fabric laminate, covering sheet and absorbent article

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001998442

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/004486

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2001998442

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP