WO2002043466A3 - Non-thermionic sputter material transport device, methods of use, and materials produced thereby - Google Patents

Non-thermionic sputter material transport device, methods of use, and materials produced thereby Download PDF

Info

Publication number
WO2002043466A3
WO2002043466A3 PCT/US2001/044525 US0144525W WO0243466A3 WO 2002043466 A3 WO2002043466 A3 WO 2002043466A3 US 0144525 W US0144525 W US 0144525W WO 0243466 A3 WO0243466 A3 WO 0243466A3
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
disposed
transport device
thermionic
methods
Prior art date
Application number
PCT/US2001/044525
Other languages
French (fr)
Other versions
WO2002043466A2 (en
WO2002043466A9 (en
Inventor
Jerome J Cuomo
N Mark Williams
Original Assignee
Univ North Carolina State
Jerome J Cuomo
N Mark Williams
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ North Carolina State, Jerome J Cuomo, N Mark Williams filed Critical Univ North Carolina State
Priority to AU2002235146A priority Critical patent/AU2002235146A1/en
Publication of WO2002043466A2 publication Critical patent/WO2002043466A2/en
Publication of WO2002043466A3 publication Critical patent/WO2002043466A3/en
Publication of WO2002043466A9 publication Critical patent/WO2002043466A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0063Reactive sputtering characterised by means for introducing or removing gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3428Cathode assembly for sputtering apparatus, e.g. Target using liquid targets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/354Introduction of auxiliary energy into the plasma
    • C23C14/355Introduction of auxiliary energy into the plasma using electrons, e.g. triode sputtering
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Abstract

A sputter transport device (100) comprises a sealed chamber (102), a negatively-biased target cathode holder (106) disposed in the chamber, and a substrate holder (130) disposed in the chamber (102) and spaced at a distance from the target cathode (104). A negatively-biased, non-thermionic electron/plasma injector assembly (150) is disposed between the target cathode (104) and the substrate holder (130). The injector assembly (150) fluidly communicates with a gas source and includes a plurality of hollow cathodes. Each hollow cathode includes an orifice communicating with the chamber. The device can be used to produce thin-films and ultra-thick materials in polycrystalline, single-crystal and epitaxial forms, and thus to produce articles and devices that are useful as metallic or insulating coatings, and as bulk semiconductor and opto-electronic materials.
PCT/US2001/044525 2000-11-30 2001-11-29 Non-thermionic sputter material transport device, methods of use, and materials produced thereby WO2002043466A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002235146A AU2002235146A1 (en) 2000-11-30 2001-11-29 Non-thermionic sputter material transport device, methods of use, and materials produced thereby

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25029700P 2000-11-30 2000-11-30
US60/250,297 2000-11-30

Publications (3)

Publication Number Publication Date
WO2002043466A2 WO2002043466A2 (en) 2002-06-06
WO2002043466A3 true WO2002043466A3 (en) 2002-09-12
WO2002043466A9 WO2002043466A9 (en) 2003-11-20

Family

ID=22947173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/044525 WO2002043466A2 (en) 2000-11-30 2001-11-29 Non-thermionic sputter material transport device, methods of use, and materials produced thereby

Country Status (3)

Country Link
US (1) US6787010B2 (en)
AU (1) AU2002235146A1 (en)
WO (1) WO2002043466A2 (en)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3680029B2 (en) * 2001-08-08 2005-08-10 三菱重工業株式会社 Vapor growth method and vapor growth apparatus for metal thin film
US7383524B2 (en) * 2002-01-31 2008-06-03 Cadence Design Systems, Inc Structure for storing a plurality of sub-networks
US7931787B2 (en) * 2002-02-26 2011-04-26 Donald Bennett Hilliard Electron-assisted deposition process and apparatus
US20040137745A1 (en) * 2003-01-10 2004-07-15 International Business Machines Corporation Method and apparatus for removing backside edge polymer
CA2517024C (en) * 2003-02-24 2009-12-01 Waseda University .beta.-ga2o3 single crystal growing method, thin-film single crystal growing method, ga2o3 light-emitting device, and its manufacturing method
WO2004095498A2 (en) * 2003-04-22 2004-11-04 Zond,Inc High-density plasma source using excited atoms
DE102004029466A1 (en) * 2004-06-18 2006-01-05 Leybold Optics Gmbh Medieninjektor
US20070205096A1 (en) * 2006-03-06 2007-09-06 Makoto Nagashima Magnetron based wafer processing
US20070235320A1 (en) * 2006-04-06 2007-10-11 Applied Materials, Inc. Reactive sputtering chamber with gas distribution tubes
WO2007118204A2 (en) * 2006-04-06 2007-10-18 Applied Materials, Inc. Reactive sputtering zinc oxide transparent conductive oxides onto large area substrates
US8454810B2 (en) 2006-07-14 2013-06-04 4D-S Pty Ltd. Dual hexagonal shaped plasma source
US7674662B2 (en) * 2006-07-19 2010-03-09 Applied Materials, Inc. Process for making thin film field effect transistors using zinc oxide
US8308915B2 (en) * 2006-09-14 2012-11-13 4D-S Pty Ltd. Systems and methods for magnetron deposition
JP5272361B2 (en) * 2006-10-20 2013-08-28 豊田合成株式会社 Sputter deposition apparatus and backing plate for sputter deposition apparatus
US7927713B2 (en) * 2007-04-27 2011-04-19 Applied Materials, Inc. Thin film semiconductor material produced through reactive sputtering of zinc target using nitrogen gases
JP5718052B2 (en) 2007-08-02 2015-05-13 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Thin film transistor using thin film semiconductor material
US8980066B2 (en) * 2008-03-14 2015-03-17 Applied Materials, Inc. Thin film metal oxynitride semiconductors
US8143093B2 (en) * 2008-03-20 2012-03-27 Applied Materials, Inc. Process to make metal oxide thin film transistor array with etch stopping layer
US7879698B2 (en) * 2008-03-24 2011-02-01 Applied Materials, Inc. Integrated process system and process sequence for production of thin film transistor arrays using doped or compounded metal oxide semiconductor
JP2009277882A (en) * 2008-05-14 2009-11-26 Showa Denko Kk Method of manufacturing group iii nitride semiconductor light emitting element, group iii nitride semiconductor light emitting element, and lamp
JP2009283785A (en) * 2008-05-23 2009-12-03 Showa Denko Kk Group iii nitride semiconductor laminate structure and manufacturing method thereof
US8263951B2 (en) * 2008-06-13 2012-09-11 Fablab Inc. System and method for fabricating macroscopic objects, and nano-assembled objects obtained therewith
US8258511B2 (en) 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
US8698400B2 (en) * 2009-04-28 2014-04-15 Leybold Optics Gmbh Method for producing a plasma beam and plasma source
TWI386507B (en) * 2009-05-19 2013-02-21 Univ Nat Kaohsiung 1St Univ Sc Magnetron sputtering equipment
JP2013503974A (en) * 2009-09-05 2013-02-04 ジェネラル・プラズマ・インコーポレーテッド Plasma chemical vapor deposition equipment
WO2011037829A2 (en) 2009-09-24 2011-03-31 Applied Materials, Inc. Methods of fabricating metal oxide or metal oxynitride tfts using wet process for source-drain metal etch
US8840763B2 (en) * 2009-09-28 2014-09-23 Applied Materials, Inc. Methods for stable process in a reactive sputtering process using zinc or doped zinc target
EP2566999B1 (en) * 2010-05-04 2018-12-12 Oerlikon Surface Solutions AG, Pfäffikon Arc source and method for spark deposition using ceramic targets
WO2012090420A1 (en) * 2010-12-28 2012-07-05 キヤノンアネルバ株式会社 Carbon film production method and plasma cvd method
US20120258555A1 (en) * 2011-04-11 2012-10-11 Lam Research Corporation Multi-Frequency Hollow Cathode and Systems Implementing the Same
US9111728B2 (en) 2011-04-11 2015-08-18 Lam Research Corporation E-beam enhanced decoupled source for semiconductor processing
US20120255678A1 (en) * 2011-04-11 2012-10-11 Lam Research Corporation Multi-Frequency Hollow Cathode System for Substrate Plasma Processing
US8900402B2 (en) 2011-05-10 2014-12-02 Lam Research Corporation Semiconductor processing system having multiple decoupled plasma sources
US9177756B2 (en) 2011-04-11 2015-11-03 Lam Research Corporation E-beam enhanced decoupled source for semiconductor processing
US8980046B2 (en) 2011-04-11 2015-03-17 Lam Research Corporation Semiconductor processing system with source for decoupled ion and radical control
US8900403B2 (en) 2011-05-10 2014-12-02 Lam Research Corporation Semiconductor processing system having multiple decoupled plasma sources
KR20140057597A (en) * 2011-08-11 2014-05-13 누보선, 인크. Sputtering systems for liquid target materials
RU2558320C1 (en) * 2014-05-21 2015-07-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Surface hardening of titanium alloys in vacuum
CZ2016603A3 (en) * 2016-09-27 2017-10-25 Fyzikální ústav AV ČR, v.v.i. A method of controlling the rate of deposition of thin layers in a vacuum multi-nozzle plasma system and a device for implementing this method
US10043732B1 (en) * 2017-06-05 2018-08-07 United Arab Emirates University Heat sink
US10256067B1 (en) 2018-01-02 2019-04-09 General Electric Company Low voltage drop, cross-field, gas switch and method of operation
US10665402B2 (en) 2018-02-08 2020-05-26 General Electric Company High voltage, cross-field, gas switch and method of operation
US10403466B1 (en) 2018-03-23 2019-09-03 General Electric Company Low sputtering, cross-field, gas switch and method of operation
TWI729757B (en) * 2020-04-06 2021-06-01 國立中央大學 Photovoltaic cell device and manufacturing methods of template thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588490A (en) * 1985-05-22 1986-05-13 International Business Machines Corporation Hollow cathode enhanced magnetron sputter device
JPS63307254A (en) * 1987-06-08 1988-12-14 Matsushita Electric Ind Co Ltd Apparatus for forming thin oxide film
US4824544A (en) * 1987-10-29 1989-04-25 International Business Machines Corporation Large area cathode lift-off sputter deposition device
US5556519A (en) * 1990-03-17 1996-09-17 Teer; Dennis G. Magnetron sputter ion plating
US5876573A (en) * 1995-07-10 1999-03-02 Cvc, Inc. High magnetic flux cathode apparatus and method for high productivity physical-vapor deposition

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3600218A (en) 1968-05-15 1971-08-17 Ibm Method for depositing insulating films of silicon nitride and aluminum nitride
US3609471A (en) 1969-07-22 1971-09-28 Gen Electric Semiconductor device with thermally conductive dielectric barrier
US3716759A (en) 1970-10-12 1973-02-13 Gen Electric Electronic device with thermally conductive dielectric barrier
DE3167761D1 (en) 1980-01-16 1985-01-31 Nat Res Dev Method and apparatus for depositing coatings in a glow discharge
EP0191503A3 (en) 1980-04-10 1986-09-10 Massachusetts Institute Of Technology Method of producing sheets of crystalline material
JPS5816078A (en) 1981-07-17 1983-01-29 Toshiba Corp Plasma etching device
US4407712A (en) 1982-06-01 1983-10-04 The United States Of America As Represented By The Secretary Of The Army Hollow cathode discharge source of metal vapor
US4521286A (en) 1983-03-09 1985-06-04 Unisearch Limited Hollow cathode sputter etcher
US4637853A (en) 1985-07-29 1987-01-20 International Business Machines Corporation Hollow cathode enhanced plasma for high rate reactive ion etching and deposition
US4959136A (en) 1986-09-17 1990-09-25 Eastman Kodak Company Method for making an amorphous aluminum-nitrogen alloy layer
US5573742A (en) 1987-10-29 1996-11-12 Martin Marietta Corporation Method for the preparation of high purity aluminum nitride
US4963239A (en) 1988-01-29 1990-10-16 Hitachi, Ltd. Sputtering process and an apparatus for carrying out the same
US4915805A (en) 1988-11-21 1990-04-10 At&T Bell Laboratories Hollow cathode type magnetron apparatus construction
DE3844064A1 (en) 1988-12-28 1990-07-05 Leybold Ag MAGNETRON PRINCIPLE CATALOG SPRAYING DEVICE WITH A HOLLOW CATODE AND A CYLINDRICAL TARGET
US4985742A (en) 1989-07-07 1991-01-15 University Of Colorado Foundation, Inc. High temperature semiconductor devices having at least one gallium nitride layer
US5234560A (en) 1989-08-14 1993-08-10 Hauzer Holdings Bv Method and device for sputtering of films
US5073245A (en) 1990-07-10 1991-12-17 Hedgcoth Virgle L Slotted cylindrical hollow cathode/magnetron sputtering device
US5290393A (en) 1991-01-31 1994-03-01 Nichia Kagaku Kogyo K.K. Crystal growth method for gallium nitride-based compound semiconductor
US5228963A (en) 1991-07-01 1993-07-20 Himont Incorporated Hollow-cathode magnetron and method of making thin films
US5482611A (en) * 1991-09-30 1996-01-09 Helmer; John C. Physical vapor deposition employing ion extraction from a plasma
US5306662A (en) 1991-11-08 1994-04-26 Nichia Chemical Industries, Ltd. Method of manufacturing P-type compound semiconductor
US5270263A (en) 1991-12-20 1993-12-14 Micron Technology, Inc. Process for depositing aluminum nitride (AlN) using nitrogen plasma sputtering
PL173917B1 (en) 1993-08-10 1998-05-29 Ct Badan Wysokocisnieniowych P Method of obtaining a crystalline lamellar structure
US5393993A (en) 1993-12-13 1995-02-28 Cree Research, Inc. Buffer structure between silicon carbide and gallium nitride and resulting semiconductor devices
US5587014A (en) 1993-12-22 1996-12-24 Sumitomo Chemical Company, Limited Method for manufacturing group III-V compound semiconductor crystals
JPH07202265A (en) 1993-12-27 1995-08-04 Toyoda Gosei Co Ltd Manufacture of group iii nitride semiconductor
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
US6440823B1 (en) 1994-01-27 2002-08-27 Advanced Technology Materials, Inc. Low defect density (Ga, Al, In)N and HVPE process for making same
US5838029A (en) 1994-08-22 1998-11-17 Rohm Co., Ltd. GaN-type light emitting device formed on a silicon substrate
JP3409958B2 (en) 1995-12-15 2003-05-26 株式会社東芝 Semiconductor light emitting device
JP2925004B2 (en) 1996-03-22 1999-07-26 日本電気株式会社 Gallium nitride crystal growth method
JP3879173B2 (en) 1996-03-25 2007-02-07 住友電気工業株式会社 Compound semiconductor vapor deposition method
JP3164016B2 (en) 1996-05-31 2001-05-08 住友電気工業株式会社 Light emitting device and method for manufacturing wafer for light emitting device
US6020602A (en) 1996-09-10 2000-02-01 Kabushiki Kaisha Toshba GaN based optoelectronic device and method for manufacturing the same
US5954874A (en) 1996-10-17 1999-09-21 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride from a melt
US5858086A (en) 1996-10-17 1999-01-12 Hunter; Charles Eric Growth of bulk single crystals of aluminum nitride
US5868837A (en) 1997-01-17 1999-02-09 Cornell Research Foundation, Inc. Low temperature method of preparing GaN single crystals
EP0874405A3 (en) 1997-03-25 2004-09-15 Mitsubishi Cable Industries, Ltd. GaN group crystal base member having low dislocation density, use thereof and manufacturing methods thereof
WO1998047170A1 (en) 1997-04-11 1998-10-22 Nichia Chemical Industries, Ltd. Method of growing nitride semiconductors, nitride semiconductor substrate and nitride semiconductor device
PL186905B1 (en) 1997-06-05 2004-03-31 Cantrum Badan Wysokocisnieniow Method of producing high-resistance volumetric gan crystals
US6270569B1 (en) 1997-06-11 2001-08-07 Hitachi Cable Ltd. Method of fabricating nitride crystal, mixture, liquid phase growth method, nitride crystal, nitride crystal powders, and vapor phase growth method
EP1007771A4 (en) 1997-07-03 2003-03-05 Cbl Technologies Thermal mismatch compensation to produce free standing substrates by epitaxial deposition
US5915194A (en) 1997-07-03 1999-06-22 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Method for growth of crystal surfaces and growth of heteroepitaxial single crystal films thereon
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
JPH11209199A (en) 1998-01-26 1999-08-03 Sumitomo Electric Ind Ltd Synthesis method of gallium nitride single crystal
US6265289B1 (en) 1998-06-10 2001-07-24 North Carolina State University Methods of fabricating gallium nitride semiconductor layers by lateral growth from sidewalls into trenches, and gallium nitride semiconductor structures fabricated thereby
US6218280B1 (en) 1998-06-18 2001-04-17 University Of Florida Method and apparatus for producing group-III nitrides
TW417315B (en) 1998-06-18 2001-01-01 Sumitomo Electric Industries GaN single crystal substrate and its manufacture method of the same
US6045612A (en) 1998-07-07 2000-04-04 Cree, Inc. Growth of bulk single crystals of aluminum nitride
US6252261B1 (en) 1998-09-30 2001-06-26 Nec Corporation GaN crystal film, a group III element nitride semiconductor wafer and a manufacturing process therefor
US6063185A (en) 1998-10-09 2000-05-16 Cree, Inc. Production of bulk single crystals of aluminum nitride, silicon carbide and aluminum nitride: silicon carbide alloy
US6288417B1 (en) 1999-01-07 2001-09-11 Xerox Corporation Light-emitting devices including polycrystalline gan layers and method of forming devices
US6177688B1 (en) 1998-11-24 2001-01-23 North Carolina State University Pendeoepitaxial gallium nitride semiconductor layers on silcon carbide substrates
US6255198B1 (en) 1998-11-24 2001-07-03 North Carolina State University Methods of fabricating gallium nitride microelectronic layers on silicon layers and gallium nitride microelectronic structures formed thereby
US6372041B1 (en) 1999-01-08 2002-04-16 Gan Semiconductor Inc. Method and apparatus for single crystal gallium nitride (GaN) bulk synthesis
US6140669A (en) 1999-02-20 2000-10-31 Ohio University Gallium nitride doped with rare earth ions and method and structure for achieving visible light emission
US6406540B1 (en) 1999-04-27 2002-06-18 The United States Of America As Represented By The Secretary Of The Air Force Process and apparatus for the growth of nitride materials
US6290774B1 (en) 1999-05-07 2001-09-18 Cbl Technology, Inc. Sequential hydride vapor phase epitaxy
DE19929591A1 (en) 1999-06-28 2001-01-04 Max Planck Gesellschaft Process for producing an epitaxial gallium nitride layer on a substrate comprises applying a precursor compound containing gallium carbodiimide on the substrate, and converting into crystalline gallium nitride by pyrolysis
JP4145437B2 (en) 1999-09-28 2008-09-03 住友電気工業株式会社 Single crystal GaN crystal growth method, single crystal GaN substrate manufacturing method, and single crystal GaN substrate
US6398867B1 (en) 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4588490A (en) * 1985-05-22 1986-05-13 International Business Machines Corporation Hollow cathode enhanced magnetron sputter device
JPS63307254A (en) * 1987-06-08 1988-12-14 Matsushita Electric Ind Co Ltd Apparatus for forming thin oxide film
US4824544A (en) * 1987-10-29 1989-04-25 International Business Machines Corporation Large area cathode lift-off sputter deposition device
US5556519A (en) * 1990-03-17 1996-09-17 Teer; Dennis G. Magnetron sputter ion plating
US5876573A (en) * 1995-07-10 1999-03-02 Cvc, Inc. High magnetic flux cathode apparatus and method for high productivity physical-vapor deposition

Also Published As

Publication number Publication date
WO2002043466A2 (en) 2002-06-06
AU2002235146A1 (en) 2002-06-11
US20020108847A1 (en) 2002-08-15
US6787010B2 (en) 2004-09-07
WO2002043466A9 (en) 2003-11-20

Similar Documents

Publication Publication Date Title
WO2002043466A3 (en) Non-thermionic sputter material transport device, methods of use, and materials produced thereby
AU2002219978A1 (en) Method and apparatus for producing miiin columns and miiin materials grown thereon
WO2005103321A3 (en) Ionized physical vapor deposition (ipvd) process
TW200609373A (en) Very low temperature cvd process with independently variable conformality, stress and composition of the cvd layer
GB9616225D0 (en) Method of surface treatment of semiconductor substrates
CA2269862A1 (en) Apparatus and process for controlled atmosphere chemical vapor deposition
EP1187172A3 (en) Sputtering apparatus and film manufacturing method
JPS5713174A (en) Reactive sputtering method
EP0905272A3 (en) Cathodic arc vapor deposition apparatus (annular cathode)
WO2007124879A3 (en) Homogeneous pvd coating device and method
CN107488828B (en) Method for forming thin film and method for forming aluminum nitride thin film
JP2008050654A (en) METHOD FOR FORMING P-TYPE In-Ga-Zn-O FILM
EP0878823A3 (en) Plasma-enhanced chemical vapor deposition apparatus and method M
EP1176625A3 (en) Sputtering apparatus
CN101835921A (en) Sputtering target, method for producing thin film and display device
JPS56133884A (en) Manufacture of photoelectric transducer
JP2013125761A (en) Semiconductor manufacturing device and semiconductor manufacturing method
CN107492478B (en) The film build method of semiconductor equipment and the aluminium nitride film build method of semiconductor equipment
WO1997040485A3 (en) Hollow cathodes for plasma-containing display devices and method of producing same
TW428207B (en) Vacuum container for field emission cathode device
WO2001040534A3 (en) Device and method for coating objects at a high temperature
EP0244874A3 (en) Luminescent material, process for producing it and luminescent semiconductor device using it
Sano et al. TiN coating and ion implantation of materials with three-dimensional topology in metal DC plasma-based ion implantation
JPS5457477A (en) Throw away tip of coated tool steel
JPS5655564A (en) Method of forming hard cladding layer on the surface of member for cutting tool

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

COP Corrected version of pamphlet

Free format text: PAGES 1/17-17/17, DRAWINGS, REPLACED BY NEW PAGES 1/12-12/12; DUE TO LATE TRANSMITTAL BY THE RECEIVING OFFICE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP