WO2002038255A1 - Antistatic membrane module - Google Patents

Antistatic membrane module Download PDF

Info

Publication number
WO2002038255A1
WO2002038255A1 PCT/JP2001/009922 JP0109922W WO0238255A1 WO 2002038255 A1 WO2002038255 A1 WO 2002038255A1 JP 0109922 W JP0109922 W JP 0109922W WO 0238255 A1 WO0238255 A1 WO 0238255A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane module
antistatic
fluororesin
membrane
housing
Prior art date
Application number
PCT/JP2001/009922
Other languages
French (fr)
Japanese (ja)
Inventor
Shinsuke Takegami
Takushi Yokota
Original Assignee
Japan Gore-Tex Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Gore-Tex Inc. filed Critical Japan Gore-Tex Inc.
Priority to AU2002212766A priority Critical patent/AU2002212766A1/en
Publication of WO2002038255A1 publication Critical patent/WO2002038255A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/20Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene

Definitions

  • the present invention relates to a fluororesin membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, and a method for transporting the membrane module.
  • ultrapure water has been found to have the function of removing impurities such as fine particles and metal elements on the surface of silicon wafers by adding a small amount of gas components, such as hydrogen, ozone, carbon dioxide, and chemicals.
  • gas components such as hydrogen, ozone, carbon dioxide, and chemicals.
  • ultrapure water to which a trace amount of ozone is added acts as an oxidizing agent, and decomposes and removes residual organic substances such as surfactants on the surface of the silicon wafer to form a uniform and flat oxide film.
  • it is also used for cleaning glass substrates, cleaning after etching, and cleaning after rubbing.
  • Each of these separation membranes uses a tubular porous polytetrafluoroethylene (porous PTFE) membrane.
  • porous PTFE polytetrafluoroethylene
  • Japanese Patent Application Laid-Open No. 11-179167 discloses a spiral porous PT FE membrane. Some have also been proposed.
  • the ozone gas dissolving module generally uses a porous PTFE membrane as the separation membrane and polyvinylidene fluoride (PVDF) as the housing material.
  • PVDF polyvinylidene fluoride
  • the present inventors have found that the ozone gas dissolving module using PTFE as a housing material tends to charge static electricity more easily than a conventional PVDF housing. If the housing is excessively charged, a discharge phenomenon occurs, It was found that when the discharge amount was large, a pinhole was formed in the separation membrane, and there was a risk that the liquid to be treated leaked to the gas side.
  • JP-A-5-166594 JP-A-7-24898 and the like.
  • Japanese Patent Application Laid-Open No. 5-166594 proposes a method for removing static electricity by bringing a fluorinated resin having a roughened surface into contact with a polar solvent such as alcohol, but an ozone gas dissolving module is used. Since the semiconductor manufacturing process is located in a clean clean room and extremely small amounts of impurities are not allowed, this method cannot be used.
  • Japanese Patent Application Laid-Open No. 7-24898 proposes an antistatic resin tube in which a belt made of a thermoplastic fluororesin mixed with carbon powder is integrally attached to an inner surface of a tube made of a thermoplastic fluororesin.
  • extremely oxidizing gas such as ozone
  • ozone extremely oxidizing gas
  • corrosive liquid it is durable. Not available for gender.
  • ultrapure water is used in various cleaning processes, and a very small amount of impurities is not allowed. Therefore, there is a problem that this method cannot be adopted.
  • the present invention relates to a membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, in which static electricity is unlikely to be charged, and an antistatic membrane module capable of preventing damage to a separation membrane due to a discharge phenomenon.
  • An object of the present invention is to provide a method for transporting the membrane module. Disclosure of the invention
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.
  • a membrane module having a structure in which a fluororesin porous membrane is housed in a fluororesin housing, which has a conductive layer on the entire outer surface or a part of the outer surface of the housing.
  • An antistatic membrane module characterized by being coated with a material is provided.
  • a method for transporting a membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, wherein a polar solvent is stored in a liquid passage to be treated of the membrane module.
  • a method for transporting a membrane module which comprises transporting the membrane module.
  • FIG. 1 is a diagram showing an antistatic membrane module of the present invention.
  • FIG. 2 is an explanatory sectional view of the antistatic membrane module of the present invention.
  • FIG. 3 is an explanatory sectional view showing a section of the antistatic material of the present invention.
  • FIG. 2 is an explanatory sectional view of the antistatic membrane module shown in FIG.
  • a tube bundle 8 in which a plurality of fluororesin porous tubes are bundled is housed inside the fluororesin housing 1.
  • the tube bundle 8 is connected to the housing cap 10 by a tube bundle connection member 9.
  • This membrane module is applied as a gas dissolving module for dissolving gas components in a liquid to be treated or as a degassing module for removing gas components contained in a liquid to be treated.
  • the liquid to be treated is supplied to the antistatic membrane module from the liquid inlet 4 and the tube connecting member 9a Through the inside of the fluororesin porous tube forming the tube bundle 8, and through the tube connecting member 9 b to be discharged from the liquid outlet 5.
  • a supply gas such as ozone gas is introduced from the gas supply port 6 into the chamber 11.
  • the gas introduced into the chamber is discharged from the gas discharge port 7 after coming into contact with the outer surface of the fluororesin porous tube.
  • the supply gas comes into contact with the outer surface of the fluororesin porous tube in the chamber, the supply gas permeates the tube wall of the fluororesin porous tube and enters the untreated liquid flowing through the fluororesin porous tube.
  • the antistatic membrane module shown in Figs.
  • a liquid to be treated in which gas components are dissolved is supplied to the membrane module from the liquid inlet 4 to form a tube bundle 8 Flow through the inside of the fluororesin porous tube to be discharged from the liquid outlet 5.
  • a carrier gas for example, nitrogen gas or air is supplied from the gas supply port 6 and discharged from the gas discharge port 7.
  • the gas component dissolved in the liquid to be processed passes through the tube wall and moves into the carrier gas.
  • the gas component dissolved in the liquid to be treated is reduced to a vacuum chamber.
  • the fluororesin used as the housing material has a carbon-fluorine bond.
  • Resins such as polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene and ethylenically unsaturated monomers (eg, tetrafluoroethylene-hexafluoropropylene copolymer ( FEP), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluoroalkyl butyl ether copolymer (PFA), etc., polychlorinated trifluoroethylene (PCTFE), polyvinylidene fluoride ( PVDF) and polybutyl fluoride (PVF) can be used.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PFA tetra
  • PTFE and a copolymer of PTFE and an ethylenically unsaturated monomer are particularly preferably used because of their excellent ozone resistance.
  • PFA, FEP and the like are preferably used as the ethylenically unsaturated monomer copolymerizable with PTFE.
  • the housing 1 only needs to be able to store the fluororesin porous membrane in an airtight manner, and the shape is not particularly limited. If the chamber 11 for storing the fluororesin porous membrane is made cylindrical, various standardized pipes can be used. This is preferable because the cost can be reduced. For the joining between the housing cap and the chamber, a method such as welding, bonding, or screwing is appropriately used.
  • porous membranes such as PTFE, FEP, ETFE, PFA, PCT FE, PVDF, and PVF can be used.
  • expanded porous PTFE obtained by stretching a molded product of PTFE ( e PTFE) membrane is particularly preferably used because it has a small amount of eluted substances, has excellent chemical resistance, heat resistance, durability against ozone gas, and has high gas permeability.
  • e PTFE expanded porous PTFE obtained by stretching a molded product of PTFE
  • membranes formed into a tube shape or a flat film shape can be used.
  • e PTFE refers to a paste that is obtained by mixing fine powder of PTFE with a molding aid, stretching it after or without removing the molding aid, and firing it if necessary.
  • the fibrils When formed by uniaxial stretching like a tube, the fibrils are oriented in the stretching direction and have a fibrous structure with voids between fibrils.
  • biaxial stretching as in the case of film, the fibrils spread radially and have a spider web-like fibrous structure with many holes defined by nodes and fibrils.
  • the e-PTFE membrane having such a configuration allows gas to pass through pores. However, liquid cannot pass through. Therefore, for example, in the case of a tubular membrane, gas can enter the tube while the liquid is flowing through the ePTFE tube, and can be dissolved in the liquid.
  • tubular ePTFE membrane for example, a tubular membrane proposed in JP-A-4-131443, JP-A-7-213880, and JP-A-11-227087 can be used.
  • the ozone gas dissolving module cuts the tubular ePTFE membrane to an appropriate length, and bundles it into a bundle of many pieces, and ends the honeycomb with a heat-meltable fluororesin such as FEP, PFA, ETFE, etc. It is melt-formed into a shape. Attach both ends of the formed honeycomb shape to a fluororesin housing with connectors to manufacture a tube-type membrane module.
  • a flat membrane proposed in Japanese Patent Application Laid-Open No. 11-179167 can be used as the flat membrane-like ePTFE.
  • the flat membrane is made into a bag shape, and both ends are bonded with the heat-fusible fluororesin to produce a spiral membrane module.
  • Antistatic material 2 is composed of a conductive layer alone, an adhesive layer or an adhesive layer laminated on a conductive layer, a plastic film laminated on a conductive layer surface, and a plastic film laminated on a conductive layer surface.
  • a material that can transfer charged charges to the fluororesin housing such as a material in which an adhesive layer or an adhesive layer is stacked on the conductive layer opposite to the plastic film, can be appropriately used.
  • the conductive layer includes, at least in part, a sheet or foil made of a conductive metal, a sheet into which a conductive powder such as a conductive metal or carbon is kneaded, a conductive plastic sheet, or a conductive fiber.
  • Conductive materials such as woven fabrics, knits, meshes and nets can be used as appropriate, but aluminum foil is inexpensive and has excellent conductivity and durability, and is particularly preferably used.
  • An adhesive or a pressure-sensitive adhesive may be used to fix the conductive layer and the housing.
  • the material and thickness of the adhesive layer or pressure-sensitive adhesive layer What is necessary is just to determine suitably within the range which does not prevent the charged electric charge from flowing into a conductive layer.
  • a sheet into which conductive powder such as conductive metal or garbon is kneaded, or a woven fabric, knitted fabric, mesh, net, etc. containing at least a portion of conductive fibers it is preferable to provide a plastic film layer on the surface of the conductive layer.
  • ozone water or various chemicals may adhere to the housing. If the conductive layer made of aluminum foil or the like that is easily corroded by such chemicals is used in a bare state, the surface corrodes due to the effects of these chemicals. This may be a source of dust.
  • plastic film provided on the surface of the conductive layer a plastic material that can be laminated to the conductive layer by adhesion or fusion can be used as appropriate.
  • Polyolefin such as polyethylene and polypropylene, fluororesin such as PFA and FEP, polyamide, polyester, and the like This film is preferably used because it is heat-fusible and generates less dust.
  • FIG. 3 shows an explanatory cross-sectional view of one embodiment of the antistatic material preferably used in the present invention.
  • 2b indicates a conductive layer
  • 2c indicates an adhesive layer laminated on the back surface (housing side) of the conductive layer
  • 2a indicates a plastic film layer laminated on the surface of the conductive layer.
  • the conductive layer and the plastic film layer may be bonded by a heat fusion method, or may be laminated via an adhesive layer or a pressure-sensitive adhesive layer.
  • the thickness of the pressure-sensitive adhesive layer 2c is from 200 to ; ⁇ , preferably from 50 to 20 ⁇ m.
  • the antistatic material is attached to the entire or part of the outer surface of the fluororesin housing.
  • the antistatic effect is the greatest when mounted on the entire surface of the fluororesin housing, but the cost is high, so it is preferable to mount it on a part of the outer surface of the fluororesin housing.
  • the mounting location in this case is not particularly limited as long as a predetermined antistatic effect can be obtained, but is preferable because an antistatic material can be easily attached to a relatively large area of a part of the chamber.
  • the area ratio of the installed antistatic material to the fluororesin housing surface area is determined as appropriate based on the charge amount of the fluororesin housing, the expected static elimination effect, and the temperature and humidity in the room where the module is grounded.
  • any method may be used as long as the antistatic material is fixed in contact with a part or the whole surface of the fluororesin housing. Such methods include a bonding method, a fusion method, an adhesion method, and a physical method such as a snap ring, a clip, sewing, and the like.
  • the conductive layer be grounded via an earth wire because charges charged in the fluororesin housing can be rapidly eliminated through the earth wire.
  • the membrane module is transported in a state where the polar solvent is stored in the liquid passage to be processed of the membrane module. More specifically, after the quality inspection is completed, the polar module is injected from the liquid inlet or the liquid outlet after the quality inspection, and the liquid inlet and the liquid outlet are plugged while the liquid flow path to be processed is almost filled with the polar solvent. After the membrane module is cleaned, if necessary, the outer surface of the membrane module is packaged and transported.
  • the work from quality inspection to packing is preferably performed in a clean room because it can prevent dust and dirt from adhering to the membrane module surface.
  • the polar solvent is preferably injected at a rate of 20 to 100%, preferably 50 to 100%, based on the volume of the liquid channel to be processed of the membrane module.
  • polar solvent a polar solvent having a dielectric constant of 10 or more is preferably used.
  • polar solvents include alcohols such as methanol, ethanol and isopropanol, water, acetonitrile, acetone, pyridine, dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone. And so on.
  • the fluorine resin porous membrane is charged to the housing. Since the charged electric charge is neutralized by the polar solvent, the charged voltage of the membrane module can be reduced.
  • the membrane module is sealed in a packaging bag made of a conductive film and transported. More specifically, the membrane module is sealed in a packing bag made of conductive film after the quality inspection, after cleaning the outer surface of the membrane module if necessary, and in a cardboard box if necessary. Boxed Transported.
  • the work from quality inspection to packing is preferably performed in a clean room because it can prevent dust and dirt from adhering to the membrane module surface.
  • the conductive film examples include a film obtained by kneading a car pump rack or metal powder into a usual packaging film such as polyethylene, polypropylene, polyvinyl chloride, polyester, or polyamide, or a polyethylene dalicol or polyethylene oxide. Films having an antistatic agent kneaded or coated on the surface and having a surface resistance of 10 12 ⁇ or less are preferably used. Also, a sheet material containing a conductive layer of a metal foil such as an aluminum foil, a woven fabric, a nonwoven fabric, a mesh, a net, or the like in which conductive fibers such as a metal fiber and a carbon fiber are woven can be used.
  • the conductive film is cut into a predetermined shape and then formed into a bag shape by fusion or adhesion.
  • the method of inserting and sealing the membrane module is not particularly limited as long as dust can be prevented from entering the bag.However, it is preferable to use an ultrasonic fusion machine or a heat fusion machine to fuse the opening. preferable. At this time, it is preferable to evacuate the air in the bag and perform vacuum packing, since the membrane module does not move in the bag during transportation, and a frictional charge between the membrane module and the bag can be prevented.
  • the transport method of the present invention is applied to a membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, but is preferably applied to an antistatic membrane module of the present invention.
  • the antistatic membrane module of the present invention has excellent antistatic properties, and the conventional transport method can be applied. However, by adopting the transport method of the present invention, a higher level of control is achieved. Electricity effect can be achieved.
  • a bundle of 60 e-PTFE tubes with an inner diameter of 1.7 mm, an outer diameter of 3.1 mm, and a length of 3 m is bundled and housed in a PTFE housing with a diameter of 140 mm and a length of 300 mm.
  • a resin film module was produced.
  • the method for producing the PTFE tube is according to the method described in Example 1 in JP-A-7-218380.
  • the foil was adhered with an adhesive provided on one side of the foil, and the antistatic membrane module shown in Figs.
  • the coverage of the aluminum adhesive sheet (the ratio to the total surface area of the housing) was 63%.
  • the aluminum pressure-sensitive adhesive sheet has a three-layer structure, in which a pressure-sensitive adhesive layer is laminated on the back surface (adhesion surface with the housing) of the aluminum foil, and a polyester film layer is laminated on the surface.
  • a ground wire was attached to the aluminum adhesive sheet (tab portion) of the antistatic membrane module of Example 1 and grounded.
  • the liquid passage to be treated of the membrane module of Comparative Example 1 was filled with ultrapure water, and plugs were screwed into the liquid inlet and the liquid outlet to plug.
  • the membrane module of Comparative Example 1 was wrapped with an antistatic treatment film (Absostat HA-T, manufactured by Shikoku Kako Co., Ltd., thickness: 100 ⁇ , surface resistance: 109 to 1 9 ⁇ ⁇ ), and the opening was heated while reducing the pressure Sealed.
  • Absostat HA-T manufactured by Shikoku Kako Co., Ltd., thickness: 100 ⁇ , surface resistance: 109 to 1 9 ⁇ ⁇
  • the membrane module of Comparative Example 1 was packaged with a normal polyethylene film without antistatic treatment (Clean film: 100 / zm, manufactured by Towa Kako Co., Ltd.), and heat-sealed while decompressing the opening.
  • Example 1 The surfaces of the samples obtained in the above Examples and Comparative Examples were rubbed 20 times with a cotton nonwoven fabric (B EMCOT 2 OmmX 2 Omm manufactured by Asahi Kasei Corporation) (Examples 1 to 3, Comparative Example 1 is a part of the chamber, and Example 4).
  • Comparative Example 2 a portion of the chamber was rubbed from above the packaging bag, and then the charged voltages on the surface of the chamber and the surface of the tube bundle were measured.
  • Example 4 and Comparative Example 2 the bag was opened after rubbing, and the membrane module was taken out of the bag and measured.
  • the charging voltage is PFM-71 1A Electrostatic, manufactured by Prostat Corporation. It was measured using a quill meter. Table 1 shows the measurement results.

Abstract

An antistatic membrane module comprising a housing made of a fluororesin and a porous fluororesin membrane disposed in the housing, wherein static buildup is less apt to occur and the separation membrane can be prevented from being damaged by electrical discharge. The antistatic membrane module, which comprises a housing made of a fluororesin and a porous fluororesin membrane disposed therein, is characterized in that all or part of the outer surface of the housing is coated with an antistatic material having a conductive layer.

Description

明 細 書  Specification
制電性膜モジュール 技術分野  Antistatic membrane module Technical field
本発明は、 フッ素樹脂多孔質膜をフッ素樹脂製ハゥジングに収納したフッ素榭 脂製膜モジュール及び該膜モジュールの輸送方法に関するものである。 背景技術  The present invention relates to a fluororesin membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, and a method for transporting the membrane module. Background art
近年、 超純水にわずかなガス成分、 例えば、 水素、 オゾン、 炭酸ガス等や薬品 を添加した水が、 シリコンゥ ーハ表面上の微粒子や金属元素等の不純物を除去 する機能があることが見いだされた。 この機能性洗浄水による洗浄は、 従来の高 濃度の薬品を使用する洗浄と同等以上の洗浄効果があることが次第に分かつてき た。 例えば、 微量のォゾンを添加した超純水は酸化剤として働き、 シリコンゥェ ーハ表面の界面活性剤等の残留有機物を分解、 除去し、 均一で平坦な酸化膜を形 成する。 また、 液晶ディスプレイ製造工程においても、 ガラス基板の洗浄、 エツ チング処理後の洗浄、 ラビング処理後の洗浄等にも用いられている。  In recent years, ultrapure water has been found to have the function of removing impurities such as fine particles and metal elements on the surface of silicon wafers by adding a small amount of gas components, such as hydrogen, ozone, carbon dioxide, and chemicals. Was. It has gradually been found that cleaning with this functional cleaning water has a cleaning effect equal to or better than conventional cleaning using high-concentration chemicals. For example, ultrapure water to which a trace amount of ozone is added acts as an oxidizing agent, and decomposes and removes residual organic substances such as surfactants on the surface of the silicon wafer to form a uniform and flat oxide film. In the liquid crystal display manufacturing process, it is also used for cleaning glass substrates, cleaning after etching, and cleaning after rubbing.
し力 し、 オゾン等の気体を超純水等の液体に効率的に、 且つ溶解量を制御して 溶解させることは非常に困難な課題である。 従来、 気体を液体中に溶解する方法 として、 気体を液体中にパブリングする方法、 パブリングさせたのち機械的に混 合する方法等があるが、 気体の溶解効率が悪く、 気体の溶解量の制御も難しい。 また、 この方法では、 液体中に微小な気泡が発生し、 シリコンゥヱーハ等の表面 に付着し、 均一な洗浄が困難である。 しかもバブリング時に溶解しなかった気体 が系外に放出されやすくオゾン等の有害ガスの溶解に不適当である。  However, it is very difficult to efficiently dissolve gas such as ozone in a liquid such as ultrapure water while controlling the amount of dissolution. Conventionally, as a method of dissolving a gas in a liquid, there are a method of publishing a gas in a liquid and a method of mechanically mixing after publishing, but the gas dissolution efficiency is poor and the amount of gas dissolved is controlled. Is also difficult. Also, in this method, fine bubbles are generated in the liquid and adhere to the surface of a silicon wafer or the like, and it is difficult to perform uniform cleaning. In addition, gases that were not dissolved during bubbling are likely to be released out of the system, which is unsuitable for dissolving harmful gases such as ozone.
これに対して、 液体を透過させずに気体を透過させる多孔質膜を用いて、 ォゾ ン等の気体を超純水等の液体に効率よく溶解する方法が、 前記パプリング法に代 わって主流になりつつある。 この方法は、 分離膜の一方の側に気体を流し、 他方 の側に液体を流すことにより、 膜を介して気体が液体に溶解する方式で、 気体の 吸収効率も良く、 液体中の気体の濃度制御も容易である。 また、 液体中に微小な 気泡も発生せず、 基板の均一な洗浄が可能である。 このような気体溶解用多孔質分離膜は、 特開平 7— 213880号、 特開平 1 1一 227087号の各公報等に提案されている。 これらの分離膜は、 いずれも チューブ状の多孔質ポリテトラフルォロエチレン (多孔質 PTFE) 膜を用いた ものであるが、 特開平 11— 179167号公報にはスパイラル状の多孔質 PT FE膜を用いたものも提案されている。 On the other hand, a method in which a gas such as ozone is efficiently dissolved in a liquid such as ultrapure water using a porous membrane that allows gas to permeate without permeating the liquid has replaced the above-described coupling method. It is becoming mainstream. In this method, gas flows into one side of the separation membrane and liquid flows into the other side, so that the gas dissolves in the liquid through the membrane. Concentration control is also easy. In addition, fine bubbles are not generated in the liquid, and uniform cleaning of the substrate is possible. Such porous membranes for dissolving gas have been proposed in Japanese Patent Application Laid-Open Nos. 7-213880, 11-1227087, and the like. Each of these separation membranes uses a tubular porous polytetrafluoroethylene (porous PTFE) membrane. Japanese Patent Application Laid-Open No. 11-179167 discloses a spiral porous PT FE membrane. Some have also been proposed.
オゾンガス溶解用モジュールには、 分離膜として多孔質 PTFE膜を用い、 ハ ウジングの材質にポリフッ化ビニリデン (PVDF) を用いたものが一般的に使 用されている。 その理由は、 オゾンの場合は非常に強い酸化剤であり、 耐オゾン 性の不十分な有機材、 例えば、 塩化ビュル、 ポリプロピレン等は劣化しやすく使 用に耐えられないためである。  The ozone gas dissolving module generally uses a porous PTFE membrane as the separation membrane and polyvinylidene fluoride (PVDF) as the housing material. The reason is that ozone is a very strong oxidizing agent, and organic materials having insufficient ozone resistance, such as butyl chloride and polypropylene, are easily deteriorated and cannot be used.
しかし、 PVDF製ハウジングを用いたオゾンガス溶解モジュールは、 オゾン ガス耐久性が不十分であることが分かってきた。 そのため、 PVDF製ハウジン グに代わり、 耐オゾン性のより優れた、 P T F E材料がハウジング材料として用 いられるようになってきている。  However, it has been found that the ozone gas dissolution module using a PVDF housing has insufficient ozone gas durability. For this reason, PTF E materials with better ozone resistance have been used as housing materials instead of PVDF housings.
しかし、 本発明者らは、 ハウジング材料として PTFEを用いたオゾンガス溶 解モジュールでは、 従来の PVDF製ハウジングと比較して静電気を帯電し易く 、 ハウジングが過度に静電気を帯びると、 放電現象が起こり、 放電量が大きい場 合には分離膜にピンホールが生じて、 被処理液体が気体側へ漏れ出す危険性があ ることを見出した。  However, the present inventors have found that the ozone gas dissolving module using PTFE as a housing material tends to charge static electricity more easily than a conventional PVDF housing.If the housing is excessively charged, a discharge phenomenon occurs, It was found that when the discharge amount was large, a pinhole was formed in the separation membrane, and there was a risk that the liquid to be treated leaked to the gas side.
フッ素樹脂の帯電防止方法に関しては、 特開平 5— 166594号、 特開平 7 -24898号公報等に開示されている。 特開平 5 _ 166594号公報には、 表面を粗面にした含フッ素榭脂をアルコール等の極性溶媒と接触させることによ る静電除去方法が提案されているが、 オゾンガス溶解モジュールが用いられる半 導体製造工程は、 清浄度の高いクリンルーム内にあり、 極めて微量の不純物も許 容されないため、 この方法は採用できないという問題があつた。  A method for preventing static charge of a fluororesin is disclosed in JP-A-5-166594, JP-A-7-24898 and the like. Japanese Patent Application Laid-Open No. 5-166594 proposes a method for removing static electricity by bringing a fluorinated resin having a roughened surface into contact with a polar solvent such as alcohol, but an ozone gas dissolving module is used. Since the semiconductor manufacturing process is located in a clean clean room and extremely small amounts of impurities are not allowed, this method cannot be used.
特開平 7— 24898号公報には、 熱可塑性フッ素樹脂からなるチューブの内 表面に炭素粉末を混入した熱可塑性フッ素樹脂からなる帯状体を一体に添装され た帯電防止用榭脂チューブが提案されているが、 オゾンのような酸化性の極めて 強いガスを使用する場合や、 腐食性の極めて強い液体を処理する場合には、 耐久 性の点で使用できない。 また、 半導体製造工程では、 各種の洗浄工程で超純水が 使われており、 極めて微量の不純物も許容されないため、 この方法は採用できな いという問題があった。 Japanese Patent Application Laid-Open No. 7-24898 proposes an antistatic resin tube in which a belt made of a thermoplastic fluororesin mixed with carbon powder is integrally attached to an inner surface of a tube made of a thermoplastic fluororesin. However, when extremely oxidizing gas such as ozone is used, or when extremely corrosive liquid is processed, it is durable. Not available for gender. Also, in the semiconductor manufacturing process, ultrapure water is used in various cleaning processes, and a very small amount of impurities is not allowed. Therefore, there is a problem that this method cannot be adopted.
本発明は、 フッ素樹脂多孔質膜がフッ素樹脂製ハゥジングに収納された膜モジ ユールにおいて、 静電気が帯電し難く、 放電現象に起因した分離膜の損傷を防ぐ ことができる制電性膜モジュール及ぴ該膜モジュールの輸送方法を提供すること をその課題とする。 発明の開示  The present invention relates to a membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, in which static electricity is unlikely to be charged, and an antistatic membrane module capable of preventing damage to a separation membrane due to a discharge phenomenon. An object of the present invention is to provide a method for transporting the membrane module. Disclosure of the invention
本発明者らは、 前記課題を解決すべく鋭意研究を重ねた結果、 本発明を完成す るに至った。  The present inventors have conducted intensive studies to solve the above problems, and as a result, completed the present invention.
即ち、 本発明によれば、 フッ素樹脂多孔質膜をフッ素樹脂製ハウジングに収納 させた構造の膜モジュールであって、 該ハウジングの外表面の全面又は一部の面 に導電層を有する制電性材料を被覆したことを特徴とする制電性膜モジュールが 提供される。  That is, according to the present invention, there is provided a membrane module having a structure in which a fluororesin porous membrane is housed in a fluororesin housing, which has a conductive layer on the entire outer surface or a part of the outer surface of the housing. An antistatic membrane module characterized by being coated with a material is provided.
また、 本発明によれば、 フッ素樹脂多孔質膜をフッ素樹脂製ハウジングに収納 させた膜モジュールの輸送方法であって、 該膜モジュールの被処理液体流路に、 極性溶媒を溜めた状態で、 該膜モジュールを輸送することを特徴とする膜モジュ ールの輸送方法が提供される。 図面の簡単な説明  Further, according to the present invention, there is provided a method for transporting a membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, wherein a polar solvent is stored in a liquid passage to be treated of the membrane module. There is provided a method for transporting a membrane module, which comprises transporting the membrane module. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の制電性膜モジュールを示す図である。  FIG. 1 is a diagram showing an antistatic membrane module of the present invention.
図 2は本発明の制電性膜モジュールの説明断面図である。  FIG. 2 is an explanatory sectional view of the antistatic membrane module of the present invention.
図 3は本発明の制電性材料の断面を示す説明断面図である。 発明を実施するための最良の形態  FIG. 3 is an explanatory sectional view showing a section of the antistatic material of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の制電性膜モジュールは、 図 1に示すように、 フッ素樹脂製ハウジング 1の外表面の全面又は一部の面に、 制電性材料 2が被覆されている。 制電性材料 の一部には、 アース線を取り付けて接地するためのタブ 3を設けても良い。 図 2は、 図 1に示した制電性膜モジュールの説明断面図を示す。 As shown in FIG. 1, in the antistatic membrane module of the present invention, the entire surface or a part of the outer surface of the fluororesin housing 1 is coated with the antistatic material 2. Some antistatic materials may be provided with tabs 3 for attaching a ground wire and grounding. FIG. 2 is an explanatory sectional view of the antistatic membrane module shown in FIG.
フッ素樹脂製ハウジング 1の内部には、 フッ素樹脂多孔質チューブを複数本束 ねたチューブ束 8が収納されている。 チューブ束 8は、 チューブ束接続部材 9に よりハウジングキャップ 1 0に接続されている。 この膜モジュールは、 被処理液 体中にガス成分を溶解させるためのガス溶解モジュールとして又は被処理液中に 含まれるガス成分を除去するための脱気モジュールとして適用される。  Inside the fluororesin housing 1, a tube bundle 8 in which a plurality of fluororesin porous tubes are bundled is housed. The tube bundle 8 is connected to the housing cap 10 by a tube bundle connection member 9. This membrane module is applied as a gas dissolving module for dissolving gas components in a liquid to be treated or as a degassing module for removing gas components contained in a liquid to be treated.
図 1に示した制電性膜モジュールを用いて被処理液体中にガス成分を溶解させ るには、 被処理液体を、 液体入口 4から制電性膜モジュールに供給し、 チューブ 接続部材 9 aを通ってチューブ束 8を形成するフッ素樹脂多孔質チューブ内部を 流通させ、 チューブ接続部材 9 bを通って液体出口 5から排出させる。  To dissolve gas components in the liquid to be treated using the antistatic membrane module shown in Fig. 1, the liquid to be treated is supplied to the antistatic membrane module from the liquid inlet 4 and the tube connecting member 9a Through the inside of the fluororesin porous tube forming the tube bundle 8, and through the tube connecting member 9 b to be discharged from the liquid outlet 5.
一方、 オゾンガス等の供給ガスは、 ガス供給口 6からチャンバ一 1 1内に導入 する。 このチャンパ一内に導入されたガスは、 フッ素樹脂多孔質チューブの外表 面と接触した後、 ガス排出口 7から排出される。 供給ガスは、 チャンパ一内でフ ッ素樹脂多孔質チューブの外表面と接触した際に、 フッ素樹脂多孔質チューブの 管壁を透過して、 フッ素樹脂多孔質チューブ内を流れる非処理液体中に溶け込む 一方、 図 1及び図 2に示した制電性膜モジュールを脱気モジュールとして適用 するには、 液体入口 4からガス成分が溶存する被処理液体を膜モジュールに供給 し、 チューブ束 8を形成するフッ素樹脂多孔質チューブ内部を流通させ、 液体出 口 5から排出させる。 ガス供給口 6からキャリアーガス、 例えば窒素ガスや空気 等を供給し、 ガス排出口 7から排出させる。  On the other hand, a supply gas such as ozone gas is introduced from the gas supply port 6 into the chamber 11. The gas introduced into the chamber is discharged from the gas discharge port 7 after coming into contact with the outer surface of the fluororesin porous tube. When the supply gas comes into contact with the outer surface of the fluororesin porous tube in the chamber, the supply gas permeates the tube wall of the fluororesin porous tube and enters the untreated liquid flowing through the fluororesin porous tube. On the other hand, in order to apply the antistatic membrane module shown in Figs. 1 and 2 as a degassing module, a liquid to be treated in which gas components are dissolved is supplied to the membrane module from the liquid inlet 4 to form a tube bundle 8 Flow through the inside of the fluororesin porous tube to be discharged from the liquid outlet 5. A carrier gas, for example, nitrogen gas or air is supplied from the gas supply port 6 and discharged from the gas discharge port 7.
前記の操作により、 被処理液体中に溶存するガス成分はチューブ管壁を通過し てキヤリァーガス中に移行する。  By the above operation, the gas component dissolved in the liquid to be processed passes through the tube wall and moves into the carrier gas.
図 1及ぴ図 2に示した制電性膜モジュールを用いて被処理液体中に溶存するガ ス成分を脱気する場合、 ガス供給口 6を閉塞させるとともに、 ガス排出口 7を真 空ポンプに連結し、 チャンバ一 1 1内を真空 (減圧) にする。  When degassing gas components dissolved in the liquid to be treated using the antistatic membrane module shown in Fig. 1 and Fig. 2, the gas supply port 6 is closed and the gas discharge port 7 is vacuum pumped. And make the inside of chamber 1 1 vacuum (reduced pressure).
前記の操作により、 被処理液体中に溶存するガス成分は真空状態のチヤンバー By the above-mentioned operation, the gas component dissolved in the liquid to be treated is reduced to a vacuum chamber.
1 1内に脱気される。 Degassed within 1 1
ハウジング材料として用いられるフッ素樹脂としては、 炭素一フッ素結合を有 する樹脂、 例えば、 ポリテトラフルォロエチレン (PTFE) 、 テトラフルォロ エチレンとエチレン系不飽和単量体との共重合体 (例えば、 テトラフルォロェチ レン—へキサフルォロプロピレン共重合体 (FEP) 、 エチレン一テトラフルォ 口エチレン共重合体 (ETFE) 、 テトラフルォロエチレン一パーフルォロアル キルビュルエーテル共重合体 (PFA) 等) 、 ポリクロ口トリフルォロエチレン (PCTFE) 、 ポリビニリデンフルオライ ド (PVDF) 、 ポリビュルフルォ ライド (PVF) 等、 を用いることができるが、 中でも PTFEと、 PTFEと エチレン系不飽和単量体との共重合体が、 耐オゾン性に優れるため、 特に好まし く用いられる。 この場合、 PTFEと共重合可能なエチレン系不飽和単量体とし ては、 PFA、 FEP等が好ましく用いられる。 The fluororesin used as the housing material has a carbon-fluorine bond. Resins such as polytetrafluoroethylene (PTFE), copolymers of tetrafluoroethylene and ethylenically unsaturated monomers (eg, tetrafluoroethylene-hexafluoropropylene copolymer ( FEP), ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-perfluoroalkyl butyl ether copolymer (PFA), etc., polychlorinated trifluoroethylene (PCTFE), polyvinylidene fluoride ( PVDF) and polybutyl fluoride (PVF) can be used. Among them, PTFE and a copolymer of PTFE and an ethylenically unsaturated monomer are particularly preferably used because of their excellent ozone resistance. . In this case, PFA, FEP and the like are preferably used as the ethylenically unsaturated monomer copolymerizable with PTFE.
ハウジング 1は、 フッ素樹脂多孔質膜を気密に収納できれば良く、 その形状は 特に限定されないが、 フッ素樹脂多孔質膜を収納するチャンバ一 11部分を円筒 状にすれば、 各種規格品のパイプを使用できるためコストが安くなり好ましい。 ハウジングキャップとチャンバ一の接合は、 溶接、 接着、 ネジ止め等の方法が適 宜用いられる。  The housing 1 only needs to be able to store the fluororesin porous membrane in an airtight manner, and the shape is not particularly limited.If the chamber 11 for storing the fluororesin porous membrane is made cylindrical, various standardized pipes can be used. This is preferable because the cost can be reduced. For the joining between the housing cap and the chamber, a method such as welding, bonding, or screwing is appropriately used.
フッ素樹脂多孔質膜としては、 PTFE、 FEP, ETFE, PFA、 PCT FE、 PVDF, PVF等の多孔質膜を用いることができるが、 中でも PTFE の成形物を延伸して得られる延伸多孔質 PTFE (e PTFE) 膜は、 溶出物が 少なく、 耐薬品性、 耐熱性、 オゾンガスに対する耐久性に優れ、 しかも高いガス 透過性を兼ね備えているので、 特に好ましく用いられる。 これらの多孔質膜とし ては、 チューブ状又は平膜状に成形した膜を用いることができる。  As the fluororesin porous membrane, porous membranes such as PTFE, FEP, ETFE, PFA, PCT FE, PVDF, and PVF can be used.In particular, expanded porous PTFE obtained by stretching a molded product of PTFE ( e PTFE) membrane is particularly preferably used because it has a small amount of eluted substances, has excellent chemical resistance, heat resistance, durability against ozone gas, and has high gas permeability. As these porous membranes, membranes formed into a tube shape or a flat film shape can be used.
ここで、 e PTFEとは、 PTFEのファインパウダーを成形助剤と混合する ことにより得られるペーストの成形体から、 成形助剤を除去した後あるいは除去 せずに延伸し、 さらに必要に応じて焼成することにより得られるもので、 チュー ブのように一軸延伸により成形される場合、 フイブリルが延伸方向に配向すると ともに、 フィブリル間が空孔となった繊維質構造となっている。 また、 フィルム のように二軸延伸の場合には、 フィブリルが放射状に広がり、 ノード及びフイブ リルで画された空孔が多数存在するクモの巣状の繊維質構造となっている。 この ような構成を有する e PTFE膜は、 空孔を介して気体が通過することはできる が、 液体は通過できない。 従って、 例えばチューブ状膜の場合、 e PTFEチュ ープ内に液体が流通している間に気体がチューブ内に侵入し、 液体中に溶解する ことができる。 Here, e PTFE refers to a paste that is obtained by mixing fine powder of PTFE with a molding aid, stretching it after or without removing the molding aid, and firing it if necessary. When formed by uniaxial stretching like a tube, the fibrils are oriented in the stretching direction and have a fibrous structure with voids between fibrils. In the case of biaxial stretching, as in the case of film, the fibrils spread radially and have a spider web-like fibrous structure with many holes defined by nodes and fibrils. The e-PTFE membrane having such a configuration allows gas to pass through pores. However, liquid cannot pass through. Therefore, for example, in the case of a tubular membrane, gas can enter the tube while the liquid is flowing through the ePTFE tube, and can be dissolved in the liquid.
チューブ状の e PTFE膜としては、 例えば、 特開平 4一 31443号、 特開 平 7— 213880号、 特開平 11— 227087号各公報に提案されているチ ユープ状膜を用いることができる。 オゾンガス溶解モジュールは、 該チューブ状 の e PTFE膜を適当な長さに切断し、 それを多数本揃えて束にして、 両末端を 熱溶融性フッ素樹脂、 例えば、 FEP、 PFA、 ETFE等でハニカム状に溶融 成形する。 成形したハニカム状の両端部をコネクタでフッ素樹脂製ハウジングに 取り付けてチューブ型膜モジュールを製造する。  As the tubular ePTFE membrane, for example, a tubular membrane proposed in JP-A-4-131443, JP-A-7-213880, and JP-A-11-227087 can be used. The ozone gas dissolving module cuts the tubular ePTFE membrane to an appropriate length, and bundles it into a bundle of many pieces, and ends the honeycomb with a heat-meltable fluororesin such as FEP, PFA, ETFE, etc. It is melt-formed into a shape. Attach both ends of the formed honeycomb shape to a fluororesin housing with connectors to manufacture a tube-type membrane module.
平膜状の e PTFEとしては、 例えば、 特開平 1 1一 179167号公報に提 案されている平膜を用いることができる。 この平膜を袋状にして、 両端部を前記 熱融着性フッ素樹脂で接着して、 スパイラル型膜モジュールを製造する。  As the flat membrane-like ePTFE, for example, a flat membrane proposed in Japanese Patent Application Laid-Open No. 11-179167 can be used. The flat membrane is made into a bag shape, and both ends are bonded with the heat-fusible fluororesin to produce a spiral membrane module.
分離膜モジュールには、 膜の収納方法の違いにより、 チューブ型、 スパイラル 型以外にも、 プリーツ型、 中空糸型、 フラットアンドフレーム型等の種々のモジ ユールが提案されており、 いずれのモジュールにも本発明を適用することができ る。  Various types of separation membrane modules have been proposed, such as pleated, hollow fiber, and flat and frame types, in addition to tube and spiral types, depending on the membrane storage method. The present invention can be applied to any of them.
制電性材料 2は、 導電層単体からなるものの他、 導電層に接着剤層又は粘着材 層を積層したもの、 導電層の表面にプラスチックフィルムを積層したもの、 導電 層の表面にプラスチックフィルムを積層させ、 且つ導電層のプラスチックフィル ムと逆側に接着剤層又は粘着材層を積層したもの等、 フッ素樹脂製ハウジングに 帯電した電荷を移動させることができる材料を適宜用いることができる。  Antistatic material 2 is composed of a conductive layer alone, an adhesive layer or an adhesive layer laminated on a conductive layer, a plastic film laminated on a conductive layer surface, and a plastic film laminated on a conductive layer surface. A material that can transfer charged charges to the fluororesin housing, such as a material in which an adhesive layer or an adhesive layer is stacked on the conductive layer opposite to the plastic film, can be appropriately used.
前記導電層としては、 導電性金属製のシート又は箔の他、 導電性の金属やカー ボン等の導電性粉末を練り込んだシート、 導電性プラスチックシート、 導電性繊 維を少なくとも一部に含んだ織物、 編物、 メッシュ、 ネット等、 導電性を有する 材料を適宜使用することができるが、 アルミ箔が安価で導電性、 耐久性に優れ、 特に好ましく用いられる。  The conductive layer includes, at least in part, a sheet or foil made of a conductive metal, a sheet into which a conductive powder such as a conductive metal or carbon is kneaded, a conductive plastic sheet, or a conductive fiber. Conductive materials such as woven fabrics, knits, meshes and nets can be used as appropriate, but aluminum foil is inexpensive and has excellent conductivity and durability, and is particularly preferably used.
導電層とハウジングとを固着するために接着剤又は粘着剤を用いてもかまわな い。 この場合、 接着層又は粘着剤層の材質と厚みは、 フッ素樹脂製ハウジングに 帯電した電荷が導電層に流れるのを妨げない範囲で適宜決定すればよい。 An adhesive or a pressure-sensitive adhesive may be used to fix the conductive layer and the housing. In this case, the material and thickness of the adhesive layer or pressure-sensitive adhesive layer What is necessary is just to determine suitably within the range which does not prevent the charged electric charge from flowing into a conductive layer.
導電層に金属製のシート又は箔、 導電性の金属やガーボン等の導電性粉末を練 り込んだシート、 導電性繊維を少なくとも一部に含んだ織物、 編物、 メッシュ、 ネット等を用いた場合には、 導電層の表面にプラスチックフィルム層を設けるの が好ましい。 半導体製造工程では、 ハウジングにオゾン水や各種薬液が付着する 場合があり、 このような薬液によって腐食し易いアルミ箔等の導電層をむき出し の状態で使用すると、 これらの薬液の影響により表面が腐食して発麈源となる恐 れがあるためである。  When using a metal sheet or foil for the conductive layer, a sheet into which conductive powder such as conductive metal or garbon is kneaded, or a woven fabric, knitted fabric, mesh, net, etc. containing at least a portion of conductive fibers In this case, it is preferable to provide a plastic film layer on the surface of the conductive layer. In the semiconductor manufacturing process, ozone water or various chemicals may adhere to the housing.If the conductive layer made of aluminum foil or the like that is easily corroded by such chemicals is used in a bare state, the surface corrodes due to the effects of these chemicals. This may be a source of dust.
導電層の表面に設けるプラスチックフィルムとしては、 導電層に接着又は融着 によって積層できるプラスチック材料が適宜使用できるが、 ポリエチレン、 ポリ プロピレン等のポリオレフイン、 P F A、 F E P等のフッ素樹脂、 ポリアミ ド、 ポリエステル等のフイルムが、 熱融着可能で発塵が少ないため好ましく用いられ る。  As the plastic film provided on the surface of the conductive layer, a plastic material that can be laminated to the conductive layer by adhesion or fusion can be used as appropriate.Polyolefin such as polyethylene and polypropylene, fluororesin such as PFA and FEP, polyamide, polyester, and the like This film is preferably used because it is heat-fusible and generates less dust.
本発明で好ましく用いられる制電材料の 1つの実施例について、 その説明断面 図を図 3に示す。 この図において、 2 bは導電層を示し、 2 cは導電層の裏面 ( ハウジング側) に積層した粘着剤層を示し、 2 aは導電層の表面に積層したブラ スチックフィルム層を示す。 導電層とプラスチックフィルム層とは、 熱融着法で 接着してもよいし、 接着剤層や粘着剤層を介して積層させることができる。 粘着 剤層 2 cの厚さは、 2 0 0〜; ί Ο μ πι、 好ましくは 5 0〜2 0 μ mである。  FIG. 3 shows an explanatory cross-sectional view of one embodiment of the antistatic material preferably used in the present invention. In this figure, 2b indicates a conductive layer, 2c indicates an adhesive layer laminated on the back surface (housing side) of the conductive layer, and 2a indicates a plastic film layer laminated on the surface of the conductive layer. The conductive layer and the plastic film layer may be bonded by a heat fusion method, or may be laminated via an adhesive layer or a pressure-sensitive adhesive layer. The thickness of the pressure-sensitive adhesive layer 2c is from 200 to ; μππι, preferably from 50 to 20 μm.
制電性材料は、 フッ素樹脂製ハウジングの外側表面の全面又は一部の面に取り 付けられる。 フッ素樹脂製ハゥジングの全面に取り付けるのが最も制電効果が大 きいが、 コストが高くなるため、 フッ素樹脂製ハウジングの外側表面の一部に取 り付けるのが好ましい。 この場合の取り付け場所は、 所定の制電効果が得られれ ば良く、 特に限定されるものではないが、 チャンバ一部分が比較的広い面積に容 易に制電性材料を取りつけることができるため好ましい。 取り付けられる制電性 材料のフッ素樹脂製ハゥジング表面積に対する面積比は、 フッ素樹脂製ハゥジン グの帯電量と、 期待する除電効果、 モジュールを接地した室内の温湿度等によつ て適宜決定されれば良いが、 好ましくは 1 5 ~ 1 ◦ 0 %であり、 より好ましくは 3 0〜8 0 %である。 1 5 %以下では十分な除電効果が得られない。 制電性材料をフッ素樹脂製ハウジングに取り付ける方法としては、 制電性材料 がフッ素樹脂ハウジングの表面の一部の面又は全面に接触した状態で固定される 方法であれば適宜利用できる。 このような方法には、 接着法、 融着法、 粘着法の 他、 止め輪、 クリップ、 縫製等により物理的方法等が包含される。 The antistatic material is attached to the entire or part of the outer surface of the fluororesin housing. The antistatic effect is the greatest when mounted on the entire surface of the fluororesin housing, but the cost is high, so it is preferable to mount it on a part of the outer surface of the fluororesin housing. The mounting location in this case is not particularly limited as long as a predetermined antistatic effect can be obtained, but is preferable because an antistatic material can be easily attached to a relatively large area of a part of the chamber. The area ratio of the installed antistatic material to the fluororesin housing surface area is determined as appropriate based on the charge amount of the fluororesin housing, the expected static elimination effect, and the temperature and humidity in the room where the module is grounded. Although good, it is preferably 15 to 1%, more preferably 30 to 80%. If it is less than 15%, a sufficient static elimination effect cannot be obtained. As a method of attaching the antistatic material to the fluororesin housing, any method may be used as long as the antistatic material is fixed in contact with a part or the whole surface of the fluororesin housing. Such methods include a bonding method, a fusion method, an adhesion method, and a physical method such as a snap ring, a clip, sewing, and the like.
導電層はアース線を介して接地すると、 フッ素樹脂ハウジングに帯電した電荷 をアース線を介して速やかに除電することができるため好ましい。  It is preferable that the conductive layer be grounded via an earth wire because charges charged in the fluororesin housing can be rapidly eliminated through the earth wire.
次に、 本発明の膜モジュールを輸送する方法について説明する。  Next, a method for transporting the membrane module of the present invention will be described.
本発明の第一の輸送方法では、 膜モジュールは、 膜モジュールの被処理液体流 路に極性溶媒を溜めた状態で輸送される。 さらに詳しく説明すれば、 膜モジユー ルは、 品質検査終了後、 液体入口又は液体出口かち極性溶媒を注入され、 被処理 液体流路が極性溶媒でほぼ満たされた状態で液体入口及び液体出口をブラグ等に より閉じられて、 必要なら膜モジュールの外側表面を洗浄処理された後、 捆包さ れ輸送される。 品質検査から梱包までの作業は、 クリンルーム内で行われるのが 膜モジュール表面への塵挨の付着を防ぐことができるので好ましい。 極性溶媒は 、 膜モジュールの被処理液体流路容積に対して 2 0〜 1 0 0 %、 好ましくは 5 0 〜 1 0 0 %注入されるのが好ましい。  In the first transport method of the present invention, the membrane module is transported in a state where the polar solvent is stored in the liquid passage to be processed of the membrane module. More specifically, after the quality inspection is completed, the polar module is injected from the liquid inlet or the liquid outlet after the quality inspection, and the liquid inlet and the liquid outlet are plugged while the liquid flow path to be processed is almost filled with the polar solvent. After the membrane module is cleaned, if necessary, the outer surface of the membrane module is packaged and transported. The work from quality inspection to packing is preferably performed in a clean room because it can prevent dust and dirt from adhering to the membrane module surface. The polar solvent is preferably injected at a rate of 20 to 100%, preferably 50 to 100%, based on the volume of the liquid channel to be processed of the membrane module.
極性溶媒としては、 誘電率が 1 0以上の極性溶媒が好ましく用いられる。 この ような極性溶媒を例示すれば、 メタノール、 エタノール及びィソプロパノール等 のアルコール、 水、 ァセトニトリル、 アセトン、 ピリジン、 ジメチルホルムァミ ド、 ジメチルァセトアミ ド、 ジメチルスルホキシド、 N—メチルピロ.リ ドン等を 挙げることが出来る。  As the polar solvent, a polar solvent having a dielectric constant of 10 or more is preferably used. Examples of such polar solvents include alcohols such as methanol, ethanol and isopropanol, water, acetonitrile, acetone, pyridine, dimethylformamide, dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone. And so on.
膜モジュ一ルの被処理液体流路に極性溶媒を溜めた状態で、 膜モジュールを輸 送すると、 膜モジュールが摩擦や剥離作用によって帯電した場合にも、 フッ素樹 脂多孔質膜ゃハゥジングに帯電した電荷が極性溶媒によって中和されるため、 膜 モジュールの帯電圧を低くすることができる。  When the membrane module is transported while the polar solvent is stored in the liquid flow path of the membrane module to be treated, even if the membrane module is charged by friction or peeling action, the fluorine resin porous membrane is charged to the housing. Since the charged electric charge is neutralized by the polar solvent, the charged voltage of the membrane module can be reduced.
本発明の第二の輸送方法では、 膜モジュールは導電性フィルムから成る梱包袋 に入れて密封されて輸送される。 さらに詳しく説明すれば、 膜モジュールは、 品 質検査終了後、 必要なら膜モジュールの外側表面を洗浄処理された後、 導電性フ イルムから成る梱包袋に入れて密封され、 必要ならダンボール箱等に箱詰めされ て輸送される。 品質検査から梱包までの作業は、 クリンルーム内で行われるのが 膜モジュール表面への塵挨の付着を防ぐことができるので好ましい。 In the second transportation method of the present invention, the membrane module is sealed in a packaging bag made of a conductive film and transported. More specifically, the membrane module is sealed in a packing bag made of conductive film after the quality inspection, after cleaning the outer surface of the membrane module if necessary, and in a cardboard box if necessary. Boxed Transported. The work from quality inspection to packing is preferably performed in a clean room because it can prevent dust and dirt from adhering to the membrane module surface.
導電性フィルムとしては、 ポリエチレン、 ポリプロピレン、 ポリ塩化ビュル、 ポリエステル、 ポリアミド等の通常の包装用フィルムにカーポンプラック、 金属 粉を練り込んだものや、 ポリエチレンダリコール系、 ポリエチレンォキサイド系 等の帯電防止剤を練り込んだり表面に塗布したもの等で、 表面抵抗が 1 0 12 Ω以 下のフィルムが好ましく用いられる。 また、 アルミ箔等の金属箔ゃ、 金属繊維、 カーボン繊維等の導電繊維を織り込んだ織布、 不織布、 メッシュ、 ネット等を導 電層として含んだシート材料も使用できるが、 この場合には塵挨等を通さない仕 様であることが、 膜モジュール表面への塵挨の付着を防止する意味で好ましい。 導電性フィルムは、 所定の形状にカットされた後、 融着又は接着により袋状に 成形される。 膜モジュールを入れて密封する方法は、 袋内への塵挨の侵入を防げ る方法であれば特に限定されないが、 超音波融着機、 熱融着機等により開口部を 融着するのが好ましい。 この際、 袋内の空気を脱気して真空パックを行えば、 輸 送時に膜モジュールが袋内で移動することがなく、 膜モジュールと袋との摩擦帯 電を防止できるので好ましい。 Examples of the conductive film include a film obtained by kneading a car pump rack or metal powder into a usual packaging film such as polyethylene, polypropylene, polyvinyl chloride, polyester, or polyamide, or a polyethylene dalicol or polyethylene oxide. Films having an antistatic agent kneaded or coated on the surface and having a surface resistance of 10 12 Ω or less are preferably used. Also, a sheet material containing a conductive layer of a metal foil such as an aluminum foil, a woven fabric, a nonwoven fabric, a mesh, a net, or the like in which conductive fibers such as a metal fiber and a carbon fiber are woven can be used. It is preferable to use a specification that does not allow greetings to pass through from the viewpoint of preventing dust from attaching to the surface of the membrane module. The conductive film is cut into a predetermined shape and then formed into a bag shape by fusion or adhesion. The method of inserting and sealing the membrane module is not particularly limited as long as dust can be prevented from entering the bag.However, it is preferable to use an ultrasonic fusion machine or a heat fusion machine to fuse the opening. preferable. At this time, it is preferable to evacuate the air in the bag and perform vacuum packing, since the membrane module does not move in the bag during transportation, and a frictional charge between the membrane module and the bag can be prevented.
本発明の輸送方法は、 フッ素樹脂多孔質膜がフッ素樹脂製ハウジングに収納さ れた膜モジュールに対して適用されるが、 本発明の制電性膜モジュールに対して 適用するのが好ましい。 本発明の制電性膜モジュールは、 モジュール自体が優れ た制電性を有しており、 従来の輸送方法も適用できるが、 本発明の輸送方法を採 用することにより、 より高レベルな制電効果を達成できる。 実施例  The transport method of the present invention is applied to a membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, but is preferably applied to an antistatic membrane module of the present invention. The antistatic membrane module of the present invention has excellent antistatic properties, and the conventional transport method can be applied. However, by adopting the transport method of the present invention, a higher level of control is achieved. Electricity effect can be achieved. Example
次に実施例により本発明をさらに具体的に説明する。  Next, the present invention will be described more specifically with reference to examples.
比較例 1 Comparative Example 1
直径 1 4 0 mm、 長さ 3 0 0 mmの P T F E製ハウジングに、 内径 1 . 7 mm 、 外径 3 . 1 mm, 長さ 3 mの e P T F Eチューブを 6 0本束ねて収納し、 フッ 素樹脂製膜モジュールを作製した。 e P T F Eチューブの製造方法は特開平 7— 2 1 3 8 8 0号公報中の実施例 1に記載された方法による。 実施例 1 A bundle of 60 e-PTFE tubes with an inner diameter of 1.7 mm, an outer diameter of 3.1 mm, and a length of 3 m is bundled and housed in a PTFE housing with a diameter of 140 mm and a length of 300 mm. A resin film module was produced. e The method for producing the PTFE tube is according to the method described in Example 1 in JP-A-7-218380. Example 1
比較例 1の膜モジュールのハウジングチャンバ一部の略中央部に厚さ 70 μπι のタックメディカル社製アルミ粘着シート (Sケシネーマ # 50) を 23. 2 X 45 mmの大きさにカツトして、 アルミ箔の片面に設けられた粘着材により貼 り付け、 図 1、 2に示した制電性膜モジュールを作成した。 該アルミ粘着シート のカバー率 (ハウジングの全表面積に占める割合) は 63%だった。  A 70 μπι-thick aluminum adhesive sheet (S-Kesinema # 50) with a thickness of 70 μπι was cut to a size of 23.2 X 45 mm at approximately the center of a part of the housing chamber of the membrane module of Comparative Example 1, and the aluminum was cut. The foil was adhered with an adhesive provided on one side of the foil, and the antistatic membrane module shown in Figs. The coverage of the aluminum adhesive sheet (the ratio to the total surface area of the housing) was 63%.
前記アルミ粘着シートは 3層構造からなり、 アルミ箔の裏面 (ハウジングとの 接着面) に粘着剤層が積層され、 表面にポリエステルフィルム層が積層されてい る。  The aluminum pressure-sensitive adhesive sheet has a three-layer structure, in which a pressure-sensitive adhesive layer is laminated on the back surface (adhesion surface with the housing) of the aluminum foil, and a polyester film layer is laminated on the surface.
実施例 2 Example 2
実施例 1の制電性膜モジュールのアルミ粘着シート (タブ部分) にアース線を 取り付けて接地した。  A ground wire was attached to the aluminum adhesive sheet (tab portion) of the antistatic membrane module of Example 1 and grounded.
実施例 3 Example 3
比較例 1の膜モジュールの被処理液体流路に超純水を満たし、 液体入口と液体 出口にプラグをねじ込んで栓をした。  The liquid passage to be treated of the membrane module of Comparative Example 1 was filled with ultrapure water, and plugs were screwed into the liquid inlet and the liquid outlet to plug.
実施例 4 Example 4
比較例 1の膜モジュールを帯電防止処理フィルム (四国化工株式会社製 アブ トスタツト HA— T:膜厚 100 μπι、 表面抵抗 109〜1 Ο^Ω) で包装し、 開 口部を減圧しながらヒートシールした。 The membrane module of Comparative Example 1 was wrapped with an antistatic treatment film (Absostat HA-T, manufactured by Shikoku Kako Co., Ltd., thickness: 100 μπι, surface resistance: 109 to 1 9 ^ Ω), and the opening was heated while reducing the pressure Sealed.
比較例 2 Comparative Example 2
比較例 1の膜モジュールを帯電防止処理をしていない通常のポリエチレンフィ ルム (東和化工株式会社製 クリーンフィルム:膜厚 100 /zm) で包装し、 開 口部を減圧しながらヒートシールした。  The membrane module of Comparative Example 1 was packaged with a normal polyethylene film without antistatic treatment (Clean film: 100 / zm, manufactured by Towa Kako Co., Ltd.), and heat-sealed while decompressing the opening.
上記実施例、 比較例で得られたサンプルの表面を綿製不織布 (旭化成社製 B EMCOT 2 OmmX 2 Omm) で 20回摩擦 (実施例 1〜 3、 比較例 1はチ ャンバ一部分、 実施例 4、 比較例 2はチヤンバ一部分を包装袋の上側から摩擦) した後、 チャンバ一表面とチューブ束表面の帯電圧を測定した。 実施例 4、 比較 例 2は、 摩擦後袋を開封し、 膜モジュールを袋から取り出して測定した。 帯電圧 はプロスタツトコーポレーション社製 P FM- 71 1 A エレクトロスタティッ クフィルドメーターを用いて測定した。 その測定結果を表 1に示す。 The surfaces of the samples obtained in the above Examples and Comparative Examples were rubbed 20 times with a cotton nonwoven fabric (B EMCOT 2 OmmX 2 Omm manufactured by Asahi Kasei Corporation) (Examples 1 to 3, Comparative Example 1 is a part of the chamber, and Example 4). In Comparative Example 2, a portion of the chamber was rubbed from above the packaging bag, and then the charged voltages on the surface of the chamber and the surface of the tube bundle were measured. In Example 4 and Comparative Example 2, the bag was opened after rubbing, and the membrane module was taken out of the bag and measured. The charging voltage is PFM-71 1A Electrostatic, manufactured by Prostat Corporation. It was measured using a quill meter. Table 1 shows the measurement results.
Figure imgf000013_0001
本発明によれば、 フッ素樹脂多孔質膜をフッ素樹脂性にハウジングに収納させ た構造の膜モジュールに見られた静電気の放電による多孔質膜の損傷の問題を解 決することができる。
Figure imgf000013_0001
ADVANTAGE OF THE INVENTION According to this invention, the problem of the damage of the porous film by the electrostatic discharge which was seen in the film module of the structure which accommodated the fluororesin porous film in the housing by the fluororesin property can be solved.

Claims

請求の範囲 The scope of the claims
I . フッ素樹脂多孔質膜をフッ素樹脂製ハウジングに収納させた構造の膜モジュ ールであって、 該ハウジングの外表面の全面又は一部の面に導電層を有する制電 性材料を被覆したことを特徴とする制電性膜モジュール。  I. A membrane module having a structure in which a fluororesin porous membrane is housed in a fluororesin housing, wherein the entire outer surface or a part of the outer surface of the housing is coated with an antistatic material having a conductive layer. An antistatic membrane module, characterized in that:
2 . 該制電性材料が接地されている請求の範囲 1に記載の制電性膜モジュール。 2. The antistatic membrane module according to claim 1, wherein the antistatic material is grounded.
3 . 該制電性材料が該導電層の表面にプラスチックフィルムを積層させた材料で ある請求の範囲 1又は 2に記載の制電性膜モジュール。 3. The antistatic membrane module according to claim 1, wherein the antistatic material is a material in which a plastic film is laminated on the surface of the conductive layer.
4 . 該導電層がアルミニウム製フィルムである請求の範囲 1〜 3のいずれかに記 載の制電性膜モジュール。  4. The antistatic membrane module according to any one of claims 1 to 3, wherein the conductive layer is an aluminum film.
5 . 該フッ素樹脂多孔質膜が多孔質ポリテトラフルォロエチレン製チューブであ る請求の範囲 1〜4のいずれかに記載の制電性膜モジュール。  5. The antistatic membrane module according to any one of claims 1 to 4, wherein the fluororesin porous membrane is a porous polytetrafluoroethylene tube.
6 . 該フッ素樹脂製ハゥジングの材質がポリテトラフルォロエチレン又はポリテ トラフルォロエチレンとエチレン系不飽和単量体との共重合体である請求の範囲 1〜 5のいずれかに記載の制電性膜モジュール。  6. The method according to any one of claims 1 to 5, wherein the material of the fluororesin housing is polytetrafluoroethylene or a copolymer of polytetrafluoroethylene and an ethylenically unsaturated monomer. Conductive membrane module.
7 . 該膜モジュールが被処理液体にオゾンガスを溶解させるオゾンガス溶解モジ ユールである請求の範囲 1〜 6のいずれかに記載の制電性膜モジュール。  7. The antistatic membrane module according to any one of claims 1 to 6, wherein the membrane module is an ozone gas dissolving module for dissolving ozone gas in a liquid to be treated.
8 . 該膜モジュールが被処理液体から溶存ガスを除去する脱気モジュールである 請求の範囲 1〜 6のいずれかに記載の制電性膜モジュール。  8. The antistatic membrane module according to any one of claims 1 to 6, wherein the membrane module is a degassing module for removing dissolved gas from a liquid to be treated.
9 . フッ素樹脂多孔質膜をフッ素樹脂製ハウジングに収納させた膜モジュールの 輸送方法であって、 該膜モジュールの被処理液体流路に、 極性溶媒を溜めた状態 で、 該膜モジュールを輸送することを特徴とする膜モジュールの輸送方法。 9. A method for transporting a membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, wherein the membrane module is transported in a state where a polar solvent is stored in a liquid passage to be processed of the membrane module. A method for transporting a membrane module, comprising:
1 0 . フッ素樹脂多孔質膜をフッ素樹脂製ハウジングに収納させた膜モジュール を輸送する方法であって、 該膜モジュールを導電性フィルムから成る梱包袋に入 れた状態で輸送することを特徴とする膜モジュールの輸送方法。 10. A method for transporting a membrane module in which a fluororesin porous membrane is housed in a fluororesin housing, characterized in that the membrane module is transported in a packing bag made of a conductive film. Method of transporting membrane modules.
I I . 該フッ素樹脂多孔質膜が多孔質ポリテトラフルォロエチレン製チューブで ある請求の範囲 9又は 1◦に記載の膜モジュールの輸送方法。  I I. The method for transporting a membrane module according to claim 9 or 1, wherein the fluororesin porous membrane is a porous polytetrafluoroethylene tube.
1 2 . 該フッ素樹脂製ハウジングの材質がポリテトラフルォロエチレン又はポリ テトラフルォロェチレンとエチレン系不飽和単量体との共重合体である請求の範 囲 9〜 1 1のいずれかに記載の膜モジュールの輸送方法。  12. The material according to any one of claims 9 to 11, wherein the material of the fluororesin housing is polytetrafluoroethylene or a copolymer of polytetrafluoroethylene and an ethylenically unsaturated monomer. 3. The method for transporting a membrane module according to item 1.
PCT/JP2001/009922 2000-11-13 2001-11-13 Antistatic membrane module WO2002038255A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002212766A AU2002212766A1 (en) 2000-11-13 2001-11-13 Antistatic membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-345768 2000-11-13
JP2000345768A JP5025041B2 (en) 2000-11-13 2000-11-13 Gas dissolving or degassing antistatic membrane module

Publications (1)

Publication Number Publication Date
WO2002038255A1 true WO2002038255A1 (en) 2002-05-16

Family

ID=18819737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009922 WO2002038255A1 (en) 2000-11-13 2001-11-13 Antistatic membrane module

Country Status (3)

Country Link
JP (1) JP5025041B2 (en)
AU (1) AU2002212766A1 (en)
WO (1) WO2002038255A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240571A (en) * 2009-04-06 2010-10-28 Kuraray Co Ltd Filter unit and gas cleaning system
EP2540327A4 (en) * 2010-02-22 2014-07-16 Asahi Kasei Medical Co Ltd Medical device and hollow fiber membrane medical device
JP2020130270A (en) * 2019-02-14 2020-08-31 Scentee株式会社 Cartridge apparatus and diffuser apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303729A (en) * 1987-06-03 1988-12-12 Showa Alum Corp Aluminum material for molding having ground film for coating
JPH05166594A (en) * 1991-12-11 1993-07-02 Tokuyama Soda Co Ltd Method for eliminating static electricity of flourine-containig resin
JPH05246138A (en) * 1992-03-06 1993-09-24 Ricoh Co Ltd Heat-sensitive recording material
JPH0671147A (en) * 1992-08-25 1994-03-15 Nitto Denko Corp Dual film
JPH06296838A (en) * 1993-04-19 1994-10-25 Asahi Chem Ind Co Ltd Preserving solution for module
JPH06304454A (en) * 1991-08-07 1994-11-01 Nikko Kogyo Kk Hollow fiber membrane module
JPH0780258A (en) * 1993-09-10 1995-03-28 Sumitomo Electric Ind Ltd Hollow fiber module and production thereof
US5888275A (en) * 1996-02-26 1999-03-30 Japan Gore-Tex, Inc. Assembly for deaeration of liquids
JP2000246064A (en) * 1999-02-26 2000-09-12 Sumitomo Electric Ind Ltd Gas dissolution module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523553A (en) * 1990-07-09 1993-02-02 Dainippon Ink & Chem Inc Diaphragm for gas-liquid contact, gas-liquid contact apparatus, and gas-dissolving liquid manufacturing method
JP4351753B2 (en) * 1999-02-05 2009-10-28 三菱レイヨン株式会社 Hollow fiber membrane module

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303729A (en) * 1987-06-03 1988-12-12 Showa Alum Corp Aluminum material for molding having ground film for coating
JPH06304454A (en) * 1991-08-07 1994-11-01 Nikko Kogyo Kk Hollow fiber membrane module
JPH05166594A (en) * 1991-12-11 1993-07-02 Tokuyama Soda Co Ltd Method for eliminating static electricity of flourine-containig resin
JPH05246138A (en) * 1992-03-06 1993-09-24 Ricoh Co Ltd Heat-sensitive recording material
JPH0671147A (en) * 1992-08-25 1994-03-15 Nitto Denko Corp Dual film
JPH06296838A (en) * 1993-04-19 1994-10-25 Asahi Chem Ind Co Ltd Preserving solution for module
JPH0780258A (en) * 1993-09-10 1995-03-28 Sumitomo Electric Ind Ltd Hollow fiber module and production thereof
US5888275A (en) * 1996-02-26 1999-03-30 Japan Gore-Tex, Inc. Assembly for deaeration of liquids
JP2000246064A (en) * 1999-02-26 2000-09-12 Sumitomo Electric Ind Ltd Gas dissolution module

Also Published As

Publication number Publication date
JP5025041B2 (en) 2012-09-12
AU2002212766A1 (en) 2002-05-21
JP2002143649A (en) 2002-05-21

Similar Documents

Publication Publication Date Title
TWI645889B (en) Conductive filter
TWI500447B (en) Composition comprising a multi-layer halogenated polyolefin microporous membrane, a filter comprising it and a method of making the same
US20150041389A1 (en) Fluoropolymer Hollow Fiber Membrane with Fluoro-copolymer and Fluoro -terpolymer bonded end portion(s)
JPH11179167A (en) Spiral type membrane module
TW200906477A (en) Flat film element for filtration and flat film filtrating modules
JPH09225206A (en) Deaerator
JPH05245989A (en) Fluoropolymer composite material tube and manufacture thereof
JP2002253936A (en) Separation membrane tube and separation membrane module
US20170232403A1 (en) Filtration module and filtration apparatus
JP5025041B2 (en) Gas dissolving or degassing antistatic membrane module
JP2004049976A (en) Hollow fiber membrane module
JP4808921B2 (en) MEDICAL DEVICE, ITS MANUFACTURING METHOD, AND MANUFACTURING METHOD OF COATING AGENT COMPRISING COMPOSITION OF POLYMER MATERIAL AND CARBON NANOTUBE
CN212915202U (en) Filter assembly and filter
JP3734585B2 (en) Deaerator
JP2003164736A (en) Method for manufacturing hollow fiber membrane module
JP4636659B2 (en) Substrate cleaning device
JPH1057946A (en) Deaerator
JP3966605B2 (en) Deaerator
JP2001321646A (en) Gas dissolving device
JPH11268132A (en) Fusion method of fluororesin film and deaerator
JPS62250920A (en) Filter element for fluid
WO2000003928A1 (en) Packaging material for molding material and part for semiconductor equipment, method of packaging by using the same and packaged molding material and part for semiconductor equipment
JPH08243306A (en) Deaerator and deaeration
JP2001062262A (en) Spiral type air-liquid contact membrane element and spiral type air-liquid contact membrane module
JP2004066167A (en) Hollow fiber membrane module

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase