WO2002024572A1 - Hybrid single-wall carbon nanotube - Google Patents

Hybrid single-wall carbon nanotube Download PDF

Info

Publication number
WO2002024572A1
WO2002024572A1 PCT/JP2001/008194 JP0108194W WO0224572A1 WO 2002024572 A1 WO2002024572 A1 WO 2002024572A1 JP 0108194 W JP0108194 W JP 0108194W WO 0224572 A1 WO0224572 A1 WO 0224572A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
swnt
walled carbon
hybrid single
encapsulated
Prior art date
Application number
PCT/JP2001/008194
Other languages
French (fr)
Japanese (ja)
Inventor
Sumio Iijima
Shunji Bandow
Kazutomo Suenaga
Kaori Hirahara
Toshiya Okazaki
Hisanori Shinohara
Original Assignee
Japan Science And Technology Corporation
Japan As Represented By Director General Of Nagoya University
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, Japan As Represented By Director General Of Nagoya University, Nec Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2002024572A1 publication Critical patent/WO2002024572A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Definitions

  • the invention of this application relates to a hybrid single-walled carbon nanotube. More specifically, the invention of this application is a new hybrid single-walled carbon nanotube that has the potential to be used in a wide range of fields such as information and communication and the chemical industry, because various substances can be included in the space inside the cylinder It is about. Background art
  • Carbon nanotubes are attracting attention as next-generation high-performance materials in a wide range of fields, including the energy field, information and communications, aerospace, biological and medical fields.
  • This carbon nanotube has a so-called single-walled carbon nanotube (SWNT), which has a single layer of graphitic sheet that forms the tube, and a multi-layered carbon, in which a large number of graphitic sheet cylinders are nested.
  • SWNT single-walled carbon nanotube
  • MWNT nanotube
  • SWNT is mainly used because of its simpler structure and its unique properties. I have.
  • the invention of this application has been made in view of the above circumstances, and can include various substances in the space inside the cylinder, and is used in a wide range of fields such as information and communication and the chemical industry.
  • the goal is to provide new hybrid single-walled carbon nanotubes with potential. Disclosure of the invention
  • the invention of this application provides a hybrid single-walled carbon nanotube characterized in that a foreign substance is included in a cylindrical space of the single-walled carbon nanotube.
  • the invention of this application is the same as the first invention, except that the foreign substances included are metals, organic molecules, organometallic compounds, magnetic substances, semiconductors, superconductors, complexes, gases, and inorganic solids.
  • Hybrid single-walled carbon nanotubes which are characterized in that they are at least one compound or two or more types of compounds.Hybrid single-walled, characterized in that the contained foreign substance is a metal-encapsulated fullerene.
  • the present invention also provides a carbon nanotube, and fourthly, a hybrid single-walled carbon nanotube characterized in that the contained foreign substance is a toxic gas.
  • FIG. 2 (a) is a diagram illustrating an HRT EM image of a bundle SWNT composed of several hundred SWNTs
  • FIG. 2 (b) is a diagram illustrating an electron diffraction pattern of the bundle SWNT
  • (C) illustrates a diagram obtained by Fourier-transforming the HRT EM image (a).
  • FIG. 3 (a), the number bundles (G d @C 82) n @ S WN T electron energy of - N (4 d) the absorption edge of the G d of spectra obtained by loss spectroscopy ( ⁇ 1 4 5 e V) and the K (Is) absorption edge ( ⁇ 285 e V) of carbon, (b) is the M (3 d) absorption edge of Gd obtained from the same sample as (a).
  • the hybrid single-walled carbon nanotube provided by the invention of the present application is characterized in that a foreign substance is included in a cavity in a cylinder of SWNT.
  • any one or more of metals, organic molecules, organometallic compounds, magnetic substances, semiconductors, superconductors, complexes, gases, inorganic solid compounds, and the like can be selected.
  • metals such as lead, tin, copper, indium, mercury, and alkali
  • metals and transition metals and their compounds as organic molecules, aromatic compounds such as naphthalene, anthracene, phenanthrene, pyrene, and perylene; organic molecular semiconductors; and organic dye molecules such as cyanine dyes and beta-carotene.
  • carbon clusters such as fullerenes and super-fullerenes, metal-encapsulated fullerenes in which these include metal atoms, and organometallic compounds represented by Fevacene, etc. can be used.
  • Elements such as samarium, gadolinium, lanthanum, iron, cobalt, nickel, and mixtures thereof are used as the magnetic material, and silicon, germanium, gallium arsenide, zinc selenide, zinc sulfide, etc. are used as semiconductors.
  • Elements such as lead, tin, and gallium can be used as the superconductor, and organometallic complex / inorganic metal complex, hydrogen, boron, nitrogen, oxygen, and the like can be used.
  • gas examples include gases such as carbon oxide, nitric oxide, inert gas and toxic gas, silane, disilane, germane, dichlorosilane, arsine, phosphine, hydrogen selenide, hydrogen sulfide, triethylgallium, dimethylzinc, It is also possible to use hydrides, chlorides, fluorides, alkoxy compounds, alkyl compounds and gaseous substances composed of a combination of the desired elements such as hexafluorotungsten.
  • gases such as carbon oxide, nitric oxide, inert gas and toxic gas
  • silane disilane, germane, dichlorosilane, arsine, phosphine
  • hydrogen selenide hydrogen sulfide
  • triethylgallium dimethylzinc
  • metal-encapsulated fullerenes are C 6 . Unlike molecules, it is a semiconductor with a narrow band gap, and it is known that the band gap takes various values depending on the number of contained metal atoms. If such metal-encapsulated fullerenes can be encapsulated in SWNTs, it will provide a more interesting composite material.
  • the hybrid single-walled carbon nanotube of the invention of this application has a structure in which the above-described foreign substances are arranged in a cavity in a cylinder of SWNT like beans in a sheath. Since these foreign substances are relatively stably arranged in the SWNT, they are stable even if they were unstable in the air in the past. There is a high possibility that they can be stored or used, and there is a possibility that harmful things will be stored or used without harm.
  • the G d @C 82 and S WN T is the starting material closely sealed put into a glass ampoule, and held at 500 ° C 24 h, as the reaction product of the invention of this application (G d @ C 82) n @ S WNT was obtained.
  • FIGS. 1 (a) and 1 (b) show HRTEM images of (G d @ C 82 ) n @SWNT.
  • FIG. 1C illustrates a structural model of (G d @ C 82 ) n @S WNT.
  • the G d atom in the fullerene cage included in SWNT was located off center of the fullerene cage C82 molecule. The fact that the metal atoms contained in the fullerene cage appear at certain positions confirms that the fullerene cage contained in SWNT does not rotate at room temperature.
  • G d @ C 82 molecules in SWN T from that are arranged at a distance between certain molecules chain G d, which is included in the SWN T @C 82 one-dimensional It can be regarded as a crystal.
  • the measured interatomic distance (a) was 1.10 ⁇ 0.03 nm.
  • the interatomic distance of a three-dimensional molecular crystal assumed to have C 2 V-type molecular symmetry (for example, when Sc-encapsulated fullerene Sc @ C 82 is 1.124 nm ), Or slightly smaller.
  • C 6 in SWNT can be regarded as a one-dimensional crystal.
  • C 7. Were ⁇ 0.97 nm and ⁇ 1.02 nm, respectively.
  • Fig. 3 (b) shows the M (3d) absorption edge of Gd obtained from the same sample as above.
  • the position of the M (3d) peak of a lanthanoid metal can be used to identify the valence state, and the amount of charge transfer can be known from the result.
  • Figure 4 (b) the highest peak position (G d @ C 82) n @ M 5 Contact and M 4 absorption edge of SWNT were respectively 1 1 84 e V and 1 2 1 4 e V.
  • G d atom which is contained in (G d @ C 82) n @ S WNT the trivalent state Proven to be.
  • G d 3 + @ ⁇ 82 3 _ bulk G d atom that is contained in the crystal is the same spin state as G d atom G d 2 0 3 (8 S 7/2) is already confirmed ing. From these, the valence state of the G d atom which is contained in G d @C 82 does not change before and after being included in the SWNT, for example, (G d 3 + @C 8 2 3 _) n @ It can be seen that the state is SWNT.
  • a new hybrid single-walled carbon nanotube that has the potential to be used in a wide range of fields such as information and communication and the chemical industry, because various substances can be included in the space inside the cylinder Is provided.

Abstract

A novel hybrid single-wall carbon nanotube capable of encapsulating various substances in clearances in cylinders and having the possibility of finding its applications in extensive fields such as information telecommunications and chemical industries. The hybrid single-wall carbon nanotube comprises foreign substances encapsulated in clearances in the cylinders of a single-wall carbon nanotube.

Description

明 細 書 ハイプリッド単層カーボンナノチューブ 技術分野  Description Hybrid Single-Walled Carbon Nanotube Technical Field
この出願の発明は、 ハイプリッド単層カーボンナノチューブに関する ものである。 さらに詳しくは、 この出願の発明は、 円筒内空隙に様々な 物質を内包することができ、 情報通信ならびに化学工業等の広い分野で 使用される可能性を秘めた新しいハイプリッド単層カーボンナノチュー ブに関するものである。 背景技術  The invention of this application relates to a hybrid single-walled carbon nanotube. More specifically, the invention of this application is a new hybrid single-walled carbon nanotube that has the potential to be used in a wide range of fields such as information and communication and the chemical industry, because various substances can be included in the space inside the cylinder It is about. Background art
カーボンナノチューブは、 エネルギー分野を始め、 情報通信、 航空 - 宇宙、 生体 ·医療等の幅広い分野で、 次世代の高機能材料として注目さ れている物質である。 このカーボンナノチューブには、 チューブを形成 するグラフアイトシ一卜が一層である、 いわゆる単層カーボンナノチュ ープ (SWN T) と、 グラフアイ卜シートの円筒が多数入れ子状に重な つた多層カーボンナノチューブ (MWN T) とがある。 これらカーボン ナノチューブの持つ電子放出機能、 水素吸蔵機能、 磁気機能等を効率良 く応用するための研究および開発においては、 構造がより単純でその特 異な性質から、 主に S WN Tが用いられている。 そして近年では、 SW N Tを様々に加工することで、 化学的または物理的に修飾された新しい ナノ複合材料を創製することなどが議論されている。  Carbon nanotubes are attracting attention as next-generation high-performance materials in a wide range of fields, including the energy field, information and communications, aerospace, biological and medical fields. This carbon nanotube has a so-called single-walled carbon nanotube (SWNT), which has a single layer of graphitic sheet that forms the tube, and a multi-layered carbon, in which a large number of graphitic sheet cylinders are nested. There is a nanotube (MWNT). In research and development to efficiently apply the electron emission function, hydrogen storage function, magnetic function, etc. of these carbon nanotubes, SWNT is mainly used because of its simpler structure and its unique properties. I have. In recent years, there has been debate about creating new chemically or physically modified nanocomposites by processing SWNTs in various ways.
具体的には、 SWN T自体の電気的、 機械的特徴を全く違ったものに 改変できる可能性から、 SWN Tの円筒内空隙に様々な原子や分子等を 導入することが議論され、 その研究が進められている。 そして、 SWN 丁の円筒内空隙に C 6。分子が内包された C 6。@ S W N T (記号 @は一 般に内包を意味する) が既に発見されている。 また、 この出願の発明者 らによって異物質を内包した多層カーボンナノチューブとその製法につ いては提案 (特願平 4一 3 4 1 7 4 7 ) されている。 Specifically, the possibility of changing the electrical and mechanical characteristics of SWN T itself to completely different ones was discussed, and the introduction of various atoms, molecules, etc. into the cavity inside the cylinder of SWN T was discussed. Is being promoted. And SWN C 6 in the space inside the cylinder C 6 encapsulating the molecule. @ SWNT (the symbol @ generally means inclusion) has already been discovered. In addition, the inventors of the present application have proposed a multi-walled carbon nanotube containing a foreign substance and a method for producing the same (Japanese Patent Application No. 4-314147).
しかしながら、 S W N Tを基本とし、 その円筒内空隙に様々な物質を 内包させた新材料およびその製造技術については未だ知られていないの が現状である。  However, at present, no new material based on SWNT and containing various substances in the voids in the cylinder and its manufacturing technology are known.
そこで、 この出願の発明は、 以上の通りの事情に鑑みてなされたもの であり、 円筒内空隙に様々な物質を内包することができ、 情報通信なら びに化学工業等の広い分野で使用される可能性を秘めた新しいハイプリ ッド単層カーボンナノチューブを提供することを課題としている。 発明の開示  Therefore, the invention of this application has been made in view of the above circumstances, and can include various substances in the space inside the cylinder, and is used in a wide range of fields such as information and communication and the chemical industry. The goal is to provide new hybrid single-walled carbon nanotubes with potential. Disclosure of the invention
そこで、 この出願の発明は、 上記の課題を解決するものとして、 以下 の通りの発明を提供する。  Thus, the invention of this application provides the following inventions to solve the above problems.
すなわち、 まず第 1 には、 この出願の発明は、 単層カーボンナノチュ ーブの円筒内空隙に異物質が内包されてなることを特徴とするハイプリ ッド単層カーボンナノチューブを提供する。  That is, first of all, the invention of this application provides a hybrid single-walled carbon nanotube characterized in that a foreign substance is included in a cylindrical space of the single-walled carbon nanotube.
そして第 2には、 この出願の発明は、 上記第 1の発明について、 内包 される異物質が、 金属、 有機分子、 有機金属化合物、 磁性体、 半導体、 超伝導体、 錯体、 気体、 無機固体化合物のいずれか 1種または 2種以上 であることを特徴とするのハイプリッド単層カーボンナノチューブを、 第 3には、 内包される異物質が、 金属内包フラーレンであることを特徴 とするハイブリッド単層カーボンナノチューブを、 第 4には、 内包され る異物質が、 有毒ガスであることを特徴とするハイブリッド単層カーボ ンナノチューブなどもその態様として提供する。 図面の簡単な説明 Second, the invention of this application is the same as the first invention, except that the foreign substances included are metals, organic molecules, organometallic compounds, magnetic substances, semiconductors, superconductors, complexes, gases, and inorganic solids. Hybrid single-walled carbon nanotubes, which are characterized in that they are at least one compound or two or more types of compounds.Hybrid single-walled, characterized in that the contained foreign substance is a metal-encapsulated fullerene. Fourth, the present invention also provides a carbon nanotube, and fourthly, a hybrid single-walled carbon nanotube characterized in that the contained foreign substance is a toxic gas. BRIEF DESCRIPTION OF THE FIGURES
図 1の、 ( a) は単離された (G d @ C 82) n@ S WN Tの、 (b) は束状の (G d @C82) n@ S WN Tの H R T E M像を例示した図であ リ、 (c) は、 金属内包フラーレンを内包した SWN Tである (G d@ C82) n@ SWN Tの構造式を例示した概略図である。 In Figure 1, (a) was isolated in (G d @ C 82) n @ S WN T, (b) is exemplified HRTEM image of (G d @C 82) n @ S WN T of bundle the Figure der Li, (c) is a schematic diagram illustrating a structure of a SWN T containing therein the metal-encapsulated fullerene (G d @ C 82) n @ SWN T.
図 2の (a) は、 数百の SWN Tからなる束状 SWN Tの H R T EM 像を例示した図であり、 (b) は、 束状の SWNTの電子回折パターン を例示した図であり、 (c) は、 H R T EM像 (a) をフーリエ変換し た図を例示している。  FIG. 2 (a) is a diagram illustrating an HRT EM image of a bundle SWNT composed of several hundred SWNTs, and FIG. 2 (b) is a diagram illustrating an electron diffraction pattern of the bundle SWNT, (C) illustrates a diagram obtained by Fourier-transforming the HRT EM image (a).
図 3の (a) は、 数束の (G d @C82) n@ S WN Tを電子エネルギ —損失分光法により得たスペクトルの G dの N (4 d ) 吸収端 (〜 1 4 5 e V) とカーボンの K ( I s) 吸収端 (〜2 8 5 e V) を例示した、 (b) は、 (a) と同じ試料から得られた G dの M (3 d) 吸収端を示 した図である。 発明を実施するための最良の形態 Figure. 3 (a), the number bundles (G d @C 82) n @ S WN T electron energy of - N (4 d) the absorption edge of the G d of spectra obtained by loss spectroscopy (~ 1 4 5 e V) and the K (Is) absorption edge (~ 285 e V) of carbon, (b) is the M (3 d) absorption edge of Gd obtained from the same sample as (a). FIG. BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は、 上記の通りの特徴を持つものであるが、 以下にそ の実施の形態について説明する。  The invention of this application has the features described above, and the embodiment will be described below.
まず、 この出願の発明が提供するハイブリッド単層カーボンナノチュ —ブは、 S WN Tの円筒内空隙に異物質を内包させてなることを特徴と している。  First, the hybrid single-walled carbon nanotube provided by the invention of the present application is characterized in that a foreign substance is included in a cavity in a cylinder of SWNT.
内包される物質としては、 金属、 有機分子、 有機金属化合物、 磁性体 、 半導体、 超伝導体、 錯体、 気体、 無機固体化合物等のうちのいずれか Ί種または 2種以上を選択する事ができる。  As the substance to be included, any one or more of metals, organic molecules, organometallic compounds, magnetic substances, semiconductors, superconductors, complexes, gases, inorganic solid compounds, and the like can be selected. .
たとえば、 金属としては、 鉛, 錫, 銅, インジウム, 水銀, アルカリ 金属, 遷移金属等の各種金属およびその化合物を、 有機分子としてはナ フタレン, アントラセン, フエナン卜レン, ピレン, ペリレン等の芳香 族化合物や有機分子半導体及びシァニン色素, ベータカロチン等の有機 色素分子等を、 また、 フラーレン, スーパ—フラーレン等の炭素クラス ターやそれらが金属原子を内包した金属内包フラーレン、 さらにはフエ 口セン等に代表される有機金属化合物等を用いる事ができる。 また、 磁 性体としてはサマリウム, ガドリニウム, ランタン, 鉄, コバルト, 二 ッケル等の元素及びその混合物等を、 半導体としてはシリコン, ゲルマ 二ゥ厶, 砒化ガリウム, セレン化亜鉛, 硫化亜鉛等を、 超伝導体として は鉛, 錫, ガリウム等の元素を、 そして、 有機金属錯体ゃ無機金属錯体 、 水素, ホウ素, 窒素, 酸素等を用いることができる。 また気体として は酸化炭素, 一酸化窒素, 不活性ガスあるいは有毒ガス等の気体や、 シ ラン, ジシラン, ゲルマン, ジクロルシラン, アルシン, フォスフィン , セレン化水素, 硫化水素, 卜リエチルガリウム, ジメチル亜鉛, へキ サフルォロタングステンなど, 所望する元素の水素化物, 塩化物, 弗化 物, アルコキシ化合物, アルキル化合物並びにその組み合わせからなる ガス状物質等も用いる事ができる。 For example, metals such as lead, tin, copper, indium, mercury, and alkali Various metals such as metals and transition metals and their compounds, as organic molecules, aromatic compounds such as naphthalene, anthracene, phenanthrene, pyrene, and perylene; organic molecular semiconductors; and organic dye molecules such as cyanine dyes and beta-carotene. Further, carbon clusters such as fullerenes and super-fullerenes, metal-encapsulated fullerenes in which these include metal atoms, and organometallic compounds represented by Fevacene, etc. can be used. Elements such as samarium, gadolinium, lanthanum, iron, cobalt, nickel, and mixtures thereof are used as the magnetic material, and silicon, germanium, gallium arsenide, zinc selenide, zinc sulfide, etc. are used as semiconductors. Elements such as lead, tin, and gallium can be used as the superconductor, and organometallic complex / inorganic metal complex, hydrogen, boron, nitrogen, oxygen, and the like can be used. Examples of the gas include gases such as carbon oxide, nitric oxide, inert gas and toxic gas, silane, disilane, germane, dichlorosilane, arsine, phosphine, hydrogen selenide, hydrogen sulfide, triethylgallium, dimethylzinc, It is also possible to use hydrides, chlorides, fluorides, alkoxy compounds, alkyl compounds and gaseous substances composed of a combination of the desired elements such as hexafluorotungsten.
以上の物質のうち、 金属内包フラーレンは、 C 6。分子とは異なって 狭いバンドギャップを有する半導体であり、 そのバンドギャップは内包 する金属原子の数によって様々な値をとることが知られている。 このよ うな金属内包フラーレンを S W N Tに内包させることができれば、 複合 材料としてより興味深いものが提供されることになる。 Of the above substances, metal-encapsulated fullerenes are C 6 . Unlike molecules, it is a semiconductor with a narrow band gap, and it is known that the band gap takes various values depending on the number of contained metal atoms. If such metal-encapsulated fullerenes can be encapsulated in SWNTs, it will provide a more interesting composite material.
この出願の発明のハイプリッド単層カーボンナノチューブは、 S W N Tの円筒内空隙に、 以上のような異物質がさやの中の豆のような状態で 配置する構造となっている。 この異物質は、 S W N T内に比較的安定に 配置していることから、 従来空気中では不安定であったものでも安定に 保存あるいは利用できる可能性が高く、 有害なものを無害にして保存あ るいは利用できる可能性もある。 The hybrid single-walled carbon nanotube of the invention of this application has a structure in which the above-described foreign substances are arranged in a cavity in a cylinder of SWNT like beans in a sheath. Since these foreign substances are relatively stably arranged in the SWNT, they are stable even if they were unstable in the air in the past. There is a high possibility that they can be stored or used, and there is a possibility that harmful things will be stored or used without harm.
そこで以下に実施例を示し、 この発明の実施の形態についてさらに詳 しく説明する。 実施例  Therefore, examples will be shown below, and the embodiments of the present invention will be described in more detail. Example
(実施例 1 )  (Example 1)
出発物質である G d @C82と S WN Tをガラスアンプルに入れて密 封し、 500°Cで 24時間保持し、 反応生成物としてこの出願の発明の (G d @ C 82) n@ S WN Tを得た。 The G d @C 82 and S WN T is the starting material closely sealed put into a glass ampoule, and held at 500 ° C 24 h, as the reaction product of the invention of this application (G d @ C 82) n @ S WNT was obtained.
得られた (G d@C82) n@SWN Tを試料とし、 電子エネルギー損 失分光計を備えた高分解能透過型電子顕微鏡 (H R T EM) により観察 を行った。 試料は、 超音波にかけてへキサン中に分散させ、 その懸濁液 を電子顕微鏡のマイクログリッドに滴下して、 1 20 k Vの設定で像観 察を、 1 1 7 k Vの設定で分光測定を行なった。 Using the obtained (G d @ C 82 ) n @SWNT as a sample, observation was performed with a high-resolution transmission electron microscope (HRT EM) equipped with an electron energy loss spectrometer. The sample is ultrasonically dispersed in hexane, and the suspension is dropped on a microgrid of an electron microscope.Image observation is performed at a setting of 120 kV and spectroscopic measurement is performed at a setting of 117 kV. Was performed.
<A> 図 1 (a) (b) に、 (G d@C82) n@SWN Tの H R T E M像を例示した。 また、 図 1 (c) には、 (G d@C82) n@ S WN T の構造モデルを例示した。 <A> FIGS. 1 (a) and 1 (b) show HRTEM images of (G d @ C 82 ) n @SWNT. FIG. 1C illustrates a structural model of (G d @ C 82 ) n @S WNT.
図 1 (a) より、 S W A N T s内には G d @ C 82が鎖状に一列に並 んでいることがわかった。 鎖状に連なった金属内包フラーレンをさらに 内包した状態の SWNTの直径は、 1 . 4〜 1 . 5 nmであった。 また、 図 1 (a) に見られるように、 ほとんどの C82分子殻の内側 に暗い部分が見られた。 この暗部は、 フラーレンケージ内に何も内包し ていない C 6。分子の場合には観察されないことから、 C 82分子に内包 された G d原子に相当するといえる。 このことから、 G d @C82分子 が分解あるいは反応することなく、 そのまま S WN Tに内包されている ことがわかった。 1 from (a), is in SWANT s was found that G d @ C 82 is Nde parallel in a row in a chain. The SWNTs with the metal-encapsulated fullerenes in a chain further included therein had a diameter of 1.4 to 1.5 nm. Also, as shown in Fig. 1 (a), a dark area was found inside most of the C82 molecular shell. This dark area is C 6, which has nothing in the fullerene cage. Since it is not observed in the case of a molecule, it can be said that it corresponds to the Gd atom included in the C82 molecule. Therefore, without G d @C 82 molecules decompose or react, it is directly included in the S WN T I understand.
S WN Tに内包されたフラーレンケージ内の G d原子は、 フラーレン ケージである C82分子の中心からずれた場所に位置していた。 そして 、 フラーレンケージに内包される金属原子が一定位置に見えるというこ とから、 SWN Tに内包されたフラーレンケージが室温では回転してい ないということも確認された。 The G d atom in the fullerene cage included in SWNT was located off center of the fullerene cage C82 molecule. The fact that the metal atoms contained in the fullerene cage appear at certain positions confirms that the fullerene cage contained in SWNT does not rotate at room temperature.
図 1 (b) に示したように、 束状の S WN Tも多く得られ、 そのチュ ーブ同士の中心間距離 (図 1 (c) 中の dに相当) の平均は 1. 64 η m以下であった。  As shown in Fig. 1 (b), many bundled SWNTs were also obtained, and the average distance between the centers of the tubes (corresponding to d in Fig. 1 (c)) was 1.64 η. m or less.
< B> 図 2 (a) に、 数百の SWN Tからなる束状の (G d @C82 ) n@ S WN Tの H R T E M像を示した。 円筒内空隙が空の S W N Tの 束も存在したが、 ほとんど全ての束状の SWN Tが円筒内空隙いっぱい に G d @C82を内包していることが確認された。 これらは、 たとえば 図 2 (b) に例示した、 束状の SWN Tの電子回折パターンによっても 証明された。 In <B> FIG. 2 (a), the exhibited hundreds bundled consisting SWN T of (G d @C 82) n @ S WN T HRTEM images. Although cylindrical inner void is present also a bunch of empty SWNT, almost all bundled SWN T it was confirmed that the enclosing G d @C 82 full cylindrical inner void. These were also proved, for example, by the electron diffraction pattern of a bundle of SWNTs as illustrated in Fig. 2 (b).
また、 図 2 (b) の電子回折像からは、 ナノチューブ束の軸に対して 垂直に縞模様をつくる鋭い線が観察できるが、 これは隣接する G d@C 82分子同士の分子間距離に一致し、 G d @C82分子同士の分子間距離 がそれぞれの S WN T束で均一であることが確認された。 このことは、 図 2 (c) に示したように、 H R T E M像をフーリエ変換して解析する ことによつても確認された。 双方のパターンに見られるリングは、 ダラ ファイト (1 00) 面からの反射 (〜0. 2 1 4 n m) に対応している 。 束状 SWNTの軸に対して垂直に並んだ点は、 六方最密充填している SWNTの中心間距離 (d) に対応している。 Also, from the electron diffraction image in Fig. 2 (b), a sharp line that forms a striped pattern perpendicular to the nanotube bundle axis can be observed, which is due to the intermolecular distance between adjacent Gd @ C82 molecules. match, intermolecular distance G d @C 82 molecules to each other is confirmed to be uniform in each of the S WN T bundle. This was confirmed by Fourier transforming and analyzing the HRTEM image as shown in Fig. 2 (c). The rings seen in both patterns correspond to reflections (~ 0.214 nm) from the Daraphyte (100) plane. The points aligned perpendicular to the axis of the bundled SWNT correspond to the center-to-center distance (d) of the hexagonal closest packed SWNT.
SWN T内の G d @ C 82分子は一定の分子間距離をおいて配置して いることから、 SWN Tに内包されている鎖状の G d @C82は一次元 結晶とみなすことができる。 その原子間距離 (a) を測定すると、 1 . 1 0 ± 0. 0 3 n mであった。 シンクロ卜ロン X線回折分析の結果から C 2 V型分子対称性を持つとされる三次元分子結晶の原子間距離 (たと えば、 S c内包フラーレン S c @ C82のとき 1 . 1 24 n m) とほぼ 一致するか、 やや小さいことが確認された。 なお、 同様に一次元結晶と みなすことができる S WN T中の C 6。や C7。については、 それぞれ〜 0. 9 7 n mと、 〜1 . 02 n mであった。 G d @ C 82 molecules in SWN T from that are arranged at a distance between certain molecules chain G d, which is included in the SWN T @C 82 one-dimensional It can be regarded as a crystal. The measured interatomic distance (a) was 1.10 ± 0.03 nm. From the results of synchrotron X-ray diffraction analysis, the interatomic distance of a three-dimensional molecular crystal assumed to have C 2 V-type molecular symmetry (for example, when Sc-encapsulated fullerene Sc @ C 82 is 1.124 nm ), Or slightly smaller. Note that C 6 in SWNT can be regarded as a one-dimensional crystal. And C 7. Were ~ 0.97 nm and ~ 1.02 nm, respectively.
<C> S WN T束の中心に位置する S WN Tにも、 周辺に位置する S WN Tと同様に G d @ C82が導入されていることが確認された。 この ことは他の全ての内包物質についても確認された。 束の外側の SWN T から中心側の SWN Tへ内包物質が拡散していくことは考えにくいこと から、 内包物質の導入は、 おそらくキャップのとれた SWNT端部で起 こるものと考えられる。 <C> It was confirmed that Gd @ C82 was also introduced into the SWNT located at the center of the SWNT bundle, as was the SWNT located at the periphery. This was confirmed for all other inclusions. Since it is unlikely that the encapsulated material will diffuse from the SWNT outside the bundle to the central SWNT, the inclusion is likely to occur at the capped end of the SWNT.
<D> 数束の (G d @C82) n@ SWN Tを電子エネルギー損失分光 法により分析した結果を図 3 (a) に示した。 図 3 (a) には、 G dの N (4 d) 吸収端 (〜 1 4 5 e V) とカーボンの K ( 1 s ) 吸収端 (〜 28 5 e V) が確認された。 カーボンの (I s) 吸収端は、 フラーレ ンと S WN Tの両方のカーボンに起因するため、 2 99 e V付近にシャ —プな 7T *結合のピークとび *結合のブロードなピークを示した。 Shows the results of <D> Number bundles of the (G d @C 82) n @ SWN T analyzed by electron energy loss spectroscopy in Figure 3 (a). In Fig. 3 (a), the N (4d) absorption edge of Gd (~ 145 eV) and the K (1 s) absorption edge of carbon (~ 285 eV) were confirmed. Since the (I s) absorption edge of carbon is due to both fullerene and SWNT carbon, it exhibited a sharp 7T * bond peak and a broad * bond peak around 299 eV. .
この N (4 d) と K ( 1 s ) の 2つの吸収端を適当な散乱断面図を用 いて平均化したところ、 〇 と〇の原子比 (G d/C) がおよそ 0. 0 02 5 (± 0. 0004 7 ) であることがわかった。 この値は、 上記の 観察結果からわかったように、 直径 1 . 4 n mの SWN Tに原子間距離 1 . 1 n mで G d @ C 82が配置している (G d @ C82) n@ S WN T について得た計算値である 0. 003 7ととても近い値である。 そして このことから、 この観察で用いた (G d @C82) n@ SWNT束におけ る G d @C82の充填率はほぼ 68 %であることが推定された。 When the two absorption edges of N (4 d) and K (1 s) were averaged using an appropriate scattering cross section, the atomic ratio (G d / C) between 〇 and 〇 was approximately 0.0 (± 0.0004 7). As can be seen from the above observations, this value is due to the fact that Gd @ C82 is arranged at an interatomic distance of 1.1 nm in SWNT with a diameter of 1.4 nm (Gd @ C82 ) n @ This value is very close to the calculated value obtained for SWNT, 0.00037. And from this, the (G d @C 82 ) n @ SWNT bundle used in this observation The filling factor of G d @C 82 was estimated to be approximately 68%.
図 3 (b) に、 上記と同じ試料から得られた G dの M (3 d) 吸収端 を示した。 一般に、 価電子状態の同定にランタノイド系金属の M (3 d ) ピーク位置を利用することができ、 その結果から電荷の移動量を知る ことができる。 図 4 ( b ) から、 (G d@C82) n@ SWNTの M5お よび M4吸収端で最も高いピーク位置は、 それぞれ 1 1 84 e Vと 1 2 1 4 e Vであった。 これらのピーク位置は、 参考スペクトルである G d 203のピーク位置と完全に一致することから、 (G d @ C82) n@ S WNTに内包された G d原子は 3価の状態であることが証明された。 一 方で、 G d 3 + @〇82 3 _バルク結晶に内包された G d原子が G d 203の G d原子と同じスピン状態 (8 S 7/2) であることは既に確認されてい る。 これらのことから、 G d @C82に内包された G d原子の原子価状 態は、 SWNTに内包される前後で変化せず、 たとえば (G d 3 + @C8 2 3_) n@SWNTの状態であることがわかる。 Fig. 3 (b) shows the M (3d) absorption edge of Gd obtained from the same sample as above. In general, the position of the M (3d) peak of a lanthanoid metal can be used to identify the valence state, and the amount of charge transfer can be known from the result. Figure 4 (b), the highest peak position (G d @ C 82) n @ M 5 Contact and M 4 absorption edge of SWNT were respectively 1 1 84 e V and 1 2 1 4 e V. These peak positions, since exactly match the peak positions of the G d 2 0 3 is a reference spectrum, G d atom which is contained in (G d @ C 82) n @ S WNT the trivalent state Proven to be. In one hand, it G d 3 + @ 〇 82 3 _ bulk G d atom that is contained in the crystal is the same spin state as G d atom G d 2 0 3 (8 S 7/2) is already confirmed ing. From these, the valence state of the G d atom which is contained in G d @C 82 does not change before and after being included in the SWNT, for example, (G d 3 + @C 8 2 3 _) n @ It can be seen that the state is SWNT.
< E> 現在になっても (G d @C82) n@ SWN T内の C82フラー レンゲージの原子価状態は明らかにされてはいないが、 上記の結果から は、 G d原子からフラーレンケージもしくは SWN Tへの電荷移動の可 能性が示唆された。 また、 T EM観察において、 たとえば (C60) n@ SWN Tや (C70) n@ S WN T等のように金属を内包していないフラ —レンを内包した SWN丁よりも、 (G d@C82) n@SWNTの方が 電子線照射により壊れやすいことがわかった。 これらは、 金属内包フラ 一レンを内包するナノチューブの化学的特性についての重要な発見であ る。 <E> be present since (G d @C 82) n @ valence state of C 82 Fuller Rengeji in SWN T is not disclosed, but the above results, the fullerene cage from G d atom Alternatively, the possibility of charge transfer to SWNT was suggested. In TEM observation, (G d) is larger than ( N d) than SWN with metal-free fullerene, such as (C 60 ) n @ SWN T or (C 70 ) n @ SWNT. @C 82 ) n @SWNT was found to be more easily broken by electron beam irradiation. These are important findings about the chemical properties of nanotubes containing metal-encapsulated fullerenes.
(実施例 2)  (Example 2)
内包される異物質として、 Sm@C82, S c 2@C84, L a2@C8。 , S c 3N@C68等の金属内包フラーレンや、 C7。, C76, C8。, C 8 2 , C 8 4等の中空フラーレン、 フエ口セン等の各種の物質を用いた場 合でも、 同様にこれらの異物質を内包したハイプリッドカーボンナノチ ユーブが得られることが確認された。 Sm @ C 82 , Sc 2 @C 84 , and La 2 @C 8 as foreign substances included. , S c 3 N @ C 68, etc. and the metal-containing fullerene, C 7. , C 76 , C 8 . , C 8 2, C 8 4 hollow fullerene like, even if using a variety of materials such as Hue spout, hype lid carbon Nanochi Yubu containing therein these impurities could be obtained confirmed similarly.
もちろん、 この発明は以上の例に限定されるものではなく、 細部につ いては様々な態様が可能であることは言うまでもない。 産業上の利用分野  Of course, the present invention is not limited to the above-described example, and it goes without saying that various aspects are possible in detail. Industrial applications
以上詳しく説明した通り、 この発明によって、 円筒内空隙に様々な物 質を内包することができ、 情報通信ならびに化学工業等の広い分野で使 用される可能性を秘めた新しいハイプリッド単層カーボンナノチューブ が提供される。  As described in detail above, according to the present invention, a new hybrid single-walled carbon nanotube that has the potential to be used in a wide range of fields such as information and communication and the chemical industry, because various substances can be included in the space inside the cylinder Is provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 単層カーボンナノチューブの円筒内空隙に異物質が内包されてな ることを特徴とするハイプリッド単層カーボンナノチューブ。 1. A hybrid single-walled carbon nanotube characterized in that a foreign substance is included in a cavity in the cylinder of the single-walled carbon nanotube.
2 . 内包される異物質が、 炭素クラスター、 金属、 有機分子、 有機金 属化合物、 磁性体、 半導体、 超伝導体、 錯体、 気体、 無機固体化合物の いずれか 1種または 2種以上であることを特徵とする請求項 1記載のハ イブリッド単層力一ボンナノチューブ。 2. Encapsulated foreign substances must be one or more of carbon clusters, metals, organic molecules, organic metal compounds, magnetic materials, semiconductors, superconductors, complexes, gases, and inorganic solid compounds. 2. The hybrid single-walled carbon nanotube according to claim 1, which is characterized in that:
3 . 内包される異物質が、 金属内包フラーレンであることを特徴とす る請求項 1 または 2記載のハイプリッド単層カーボンナノチューブ。  3. The hybrid single-walled carbon nanotube according to claim 1, wherein the encapsulated foreign substance is a metal-encapsulated fullerene.
4 . 内包される異物質が、 有毒ガスであることを特徴とする請求項 1 または 2記載のハイプリッド単層カーボンナノチューブ。  4. The hybrid single-walled carbon nanotube according to claim 1, wherein the foreign substance contained is a toxic gas.
PCT/JP2001/008194 2000-09-20 2001-09-20 Hybrid single-wall carbon nanotube WO2002024572A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000286108A JP2002097009A (en) 2000-09-20 2000-09-20 Hybrid monolayed carbon nanotube
JP2000-286108 2000-09-20

Publications (1)

Publication Number Publication Date
WO2002024572A1 true WO2002024572A1 (en) 2002-03-28

Family

ID=18770077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008194 WO2002024572A1 (en) 2000-09-20 2001-09-20 Hybrid single-wall carbon nanotube

Country Status (2)

Country Link
JP (1) JP2002097009A (en)
WO (1) WO2002024572A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544463B1 (en) 1999-07-26 2003-04-08 The Trustees Of The University Of Pennsylvania Hybrid materials and methods for producing the same
CN1326770C (en) * 2005-07-14 2007-07-18 上海交通大学 Carbon nanometer tube with surface connected with magnetic nanometer particle and its preparation method
US8119021B2 (en) 2005-04-06 2012-02-21 Drexel University Functional nanoparticle filled carbon nanotubes and methods of their production

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550367B2 (en) * 2001-02-27 2004-08-04 独立行政法人 科学技術振興機構 Method for producing hybrid carbon nanotube
JP3829789B2 (en) 2002-10-22 2006-10-04 トヨタ自動車株式会社 Multi-tube carbon nanotube manufacturing method
JP4774665B2 (en) * 2003-02-05 2011-09-14 ソニー株式会社 Manufacturing method of semiconductor device
JP4130385B2 (en) * 2003-07-23 2008-08-06 独立行政法人科学技術振興機構 Method for producing single-walled carbon nanotube containing guest molecule
JP2005332991A (en) * 2004-05-20 2005-12-02 Univ Nagoya Carbon nanotube light emitting element
KR100726965B1 (en) 2005-09-26 2007-06-14 한국과학기술연구원 Hybrid filler, high dielectric polymer composite using the same and manufacturing method thereof
JP2007084393A (en) * 2005-09-26 2007-04-05 National Institute Of Advanced Industrial & Technology Carotenoid including structure
JP5046156B2 (en) * 2007-06-01 2012-10-10 Jx日鉱日石エネルギー株式会社 Lithium ion storage body and lithium ion storage method
CN111051307B (en) 2017-06-13 2024-01-05 耶达研究及发展有限公司 Self-supporting membranes and hybrid materials based on small molecules

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5346683A (en) * 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
JPH07172807A (en) * 1993-12-21 1995-07-11 Nec Corp Working method of carbon nanotube
US5457343A (en) * 1992-12-22 1995-10-10 Nec Corporation Carbon nanotubule enclosing a foreign material
US5641466A (en) * 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2616699B2 (en) * 1993-06-03 1997-06-04 日本電気株式会社 Purification method of carbon nanotube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457343A (en) * 1992-12-22 1995-10-10 Nec Corporation Carbon nanotubule enclosing a foreign material
US5346683A (en) * 1993-03-26 1994-09-13 Gas Research Institute Uncapped and thinned carbon nanotubes and process
US5641466A (en) * 1993-06-03 1997-06-24 Nec Corporation Method of purifying carbon nanotubes
JPH07172807A (en) * 1993-12-21 1995-07-11 Nec Corp Working method of carbon nanotube

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BRIAN W. SMITH ET AL.: "Encapsulated C60 in carbon nanotubes", NATURE, vol. 396, 1998, pages 323 - 324, XP002907428 *
BRIAN W. SMITH ET AL.: "Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis", CHEMICAL PHYSICS LETTERS, vol. 321, no. 1-2, 21 April 2000 (2000-04-21), pages 169 - 174, XP002907427 *
H. KATAURA ET AL.: "Optical properties of fullerene peapods", DAI 19KAI FULLERENE SOUGOU SYMPOSIUM KOUEN YOUSHISHUU, FULLERENE KENKYUU-KAI, 27 July 2000 (2000-07-27), pages 12, XP002907429 *
JEREMY SLOAN ET AL.: "The opening and filling of single walled carbon nanotubes(SWTs)", CHEM. COMMUN., vol. 3, 1998, pages 347 - 348, XP002907430 *
K. HIRAHARA ET AL.: "One-dimensional metalllofullerene crystal generated inside single-walled carbon nanotubes", PHYSICAL REVIEW LETTERS, vol. 85, no. 25, pages 5384 - 5387, XP002907431 *
SUMIO IIJIMA ET AL.: "Future aspect of some material science of SWNTs containing fullerene", DAI 19KAI FULLERENE SOUGOU SYMPOSIUM KOUEN YOUSHISHUU, FULLERENE KENKYUU-KAI, 27 July 2000 (2000-07-27), pages 14, XP002907425 *
TOSHIYA OKAZAKI ET AL.: "High yield synthesis of fullerene encapsulated single-wall carbon nanotube by vapor phase reaction", DAI 19KAI FULLERENE SOUGOU SYMPOSIUM KOUEN YOUSHISHUU, FULLERENE KENKYUU-KAI, 27 July 2000 (2000-07-27), pages 13, XP002907426 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6544463B1 (en) 1999-07-26 2003-04-08 The Trustees Of The University Of Pennsylvania Hybrid materials and methods for producing the same
US6863857B2 (en) 1999-07-26 2005-03-08 The Trustees Of The University Of Pennsylvania Hybrid materials and methods for producing the same
US7332222B2 (en) 1999-07-26 2008-02-19 The Trustees Of The University Of Pennsylvania Hybrid materials and methods for producing the same
US8119021B2 (en) 2005-04-06 2012-02-21 Drexel University Functional nanoparticle filled carbon nanotubes and methods of their production
CN1326770C (en) * 2005-07-14 2007-07-18 上海交通大学 Carbon nanometer tube with surface connected with magnetic nanometer particle and its preparation method

Also Published As

Publication number Publication date
JP2002097009A (en) 2002-04-02

Similar Documents

Publication Publication Date Title
Arenal et al. Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory
US7112315B2 (en) Molecular nanowires from single walled carbon nanotubes
Nagata et al. Isolation of single-wired transition-metal monochalcogenides by carbon nanotubes
Cumings et al. Mass-production of boron nitride double-wall nanotubes and nanococoons
Eletskii Sorption properties of carbon nanostructures
Zhi et al. Boron nitride nanotubes
Kiang et al. Carbon nanotubes with single-layer walls
Kitaura et al. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes
Enouz et al. C− BN patterned single-walled nanotubes synthesized by laser vaporization
JP2546114B2 (en) Foreign substance-encapsulated carbon nanotubes and method for producing the same
Knupfer Electronic properties of carbon nanostructures
Hirahara et al. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes
Monthioux et al. Introduction to carbon nanotubes
Zhi et al. Solid‐state pyrolyses of metal phthalocyanines: A simple approach towards nitrogen‐doped CNTs and metal/carbon nanocables
Castrucci et al. Silicon nanotubes: Synthesis and characterization
Costa et al. Encapsulation of Re x O y clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal
WO2002024572A1 (en) Hybrid single-wall carbon nanotube
Zubair et al. Charged iodide in chains behind the highly efficient iodine doping in carbon nanotubes
Kitaura et al. Carbon‐nanotube‐based hybrid materials: nanopeapods
Guan et al. Direct imaging of the alkali metal site in K-doped fullerene peapods
Oku et al. Atomic structures, electronic states and hydrogen storage of boron nitride nanocage clusters, nanotubes and nanohorns
Tonkikh et al. Optical properties and charge transfer effects in single-walled carbon nanotubes filled with functionalized adamantane molecules
Norman et al. Synthesis of ultrathin rhenium disulfide nanoribbons using nano test tubes
Li et al. Structures and electronic, optical properties of hydrogen nanowires encapsulated in single-walled boron nitride nanotubes
Torrens et al. C-nanostructures cluster models in organic solvents: Fullerenes, tubes, buds and graphenes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase