WO2002019985A2 - Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure - Google Patents

Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure Download PDF

Info

Publication number
WO2002019985A2
WO2002019985A2 PCT/US2001/027551 US0127551W WO0219985A2 WO 2002019985 A2 WO2002019985 A2 WO 2002019985A2 US 0127551 W US0127551 W US 0127551W WO 0219985 A2 WO0219985 A2 WO 0219985A2
Authority
WO
WIPO (PCT)
Prior art keywords
agent
skin
healing
reservoir
microprotrusions
Prior art date
Application number
PCT/US2001/027551
Other languages
French (fr)
Other versions
WO2002019985A3 (en
Inventor
Weiqi Lin
Michel J. N. Cormier
Peter E. Daddona
Juanita A. Johnson
James A. Matriano
Original Assignee
Alza Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP01968531A priority Critical patent/EP1335711B1/en
Priority to AU8877401A priority patent/AU8877401A/en
Application filed by Alza Corporation filed Critical Alza Corporation
Priority to CA002422200A priority patent/CA2422200A1/en
Priority to IL15481101A priority patent/IL154811A0/en
Priority to NZ524646A priority patent/NZ524646A/en
Priority to MXPA03002122A priority patent/MXPA03002122A/en
Priority to JP2002524470A priority patent/JP5507030B2/en
Priority to DE60129585T priority patent/DE60129585T2/en
Priority to DK01968531T priority patent/DK1335711T3/en
Priority to EEP200300095A priority patent/EE200300095A/en
Priority to KR1020037003472A priority patent/KR100764699B1/en
Priority to AU2001288774A priority patent/AU2001288774B2/en
Priority to BR0113749-2A priority patent/BR0113749A/en
Publication of WO2002019985A2 publication Critical patent/WO2002019985A2/en
Publication of WO2002019985A3 publication Critical patent/WO2002019985A3/en
Priority to NO20031071A priority patent/NO20031071L/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0021Intradermal administration, e.g. through microneedle arrays, needleless injectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/70Web, sheet or filament bases ; Films; Fibres of the matrix type containing drug
    • A61K9/7023Transdermal patches and similar drug-containing composite devices, e.g. cataplasms
    • A61K9/703Transdermal patches and similar drug-containing composite devices, e.g. cataplasms characterised by shape or structure; Details concerning release liner or backing; Refillable patches; User-activated patches
    • A61K9/7084Transdermal patches having a drug layer or reservoir, and one or more separate drug-free skin-adhesive layers, e.g. between drug reservoir and skin, or surrounding the drug reservoir; Liquid-filled reservoir patches

Definitions

  • This invention relates to inhibiting a decrease in the transdermal flux of an agent by inhibiting pathway closure.
  • this invention relates to a method for inhibiting a decrease in the transdermal flux of an agent that is being transdermally delivered or sampled over a prolonged period of time wherein the delivery or sampling involves disrupting at least the stratum corneum layer of the skin to form pathways through which the agent passes by co-delivering or co-sampling the agent with an amount of at least one anti-healing agent wherein the amount of the anti-healing agent is effective in inhibiting a decrease in the agent transdermal flux compared to when the delivery or sampling of the agent is done under substantially identical conditions except in the absence of the anti-healing agent(s).
  • Electrotransport refers generally to the passage of a beneficial agent, e.g., a drug or drug precursor, through a body surface, such as skin, mucous membranes, nails, and the like where the agent is induced or enhanced by the application of an electrical potential.
  • a beneficial agent e.g., a drug or drug precursor
  • the electrotransport of agents through a body surface may be attained in various manners.
  • One widely used electrotransport process, iontophoresis involves the electrically induced transport of charged ions.
  • Electroosmosis another type of electrotransport process, involves the movement of a solvent with the agent through a membrane under the influence of an electric field.
  • Electroporation still another type of electrotransport, involves the passage of an agent through pores formed by applying a high voltage electrical pulse(s) to a membrane. In many instances, more than one of these processes may be occurring simultaneously to a different extent. Accordingly, the term "electrotransport” is given herein its broadest possible interpretation, to include the electrically induced or enhanced transport of at least one charged or uncharged agent, or mixtures thereof, regardless of the specific mechanism or mechanisms by which the agent is actually being transported. Electrotransport delivery generally increases agent flux during transdermal delivery.
  • Another method of increasing the agent flux involves pre- treating the skin with, or co-delivering with the beneficial agent, a skin permeation enhancer.
  • a permeation enhancer substance when applied to a body surface through which the agent is delivered, enhances its flux therethrough such as by increasing the permselectivity and/or permeability of the body surface, creating hydrophilic pathways through the body surface, and/or reducing the degradation of the agent during transport.
  • This methodology is typically used when the drug is delivered transdermally by passive diffusion.
  • These devices use piercing elements of various shapes and sizes to pierce the outermost layer (i.e., the stratum corneum) of the skin.
  • the piercing elements disclosed in these references generally extend perpendicularly from a thin, flat member, such as a pad or sheet.
  • the piercing elements or microprotrusion in some of these devices are extremely small, some having dimensions (i.e., length and width) of only about 25 - 400 ⁇ m and a microprotrusion thickness of only about 5 - 50 ⁇ m. These tiny piercing/cutting elements make correspondingly small microslits/microcuts in the stratum corneum for enhanced transdermal agent delivery therethrough. [0006] It has now been discovered that in the case of human skin, the pathways created by the microslits/microcuts are quickly closed and sealed by the skin's natural healing processes. Although this process is not completely understood at this time, it is believed that it is closely related to wound healing. Wound healing is a complex phenomenon involving many biological processes.
  • This invention is directed to a method for inhibiting a decrease in the transdermal flux of an agent which is being transdermally delivered or sampled over a prolonged period of time where the transdermal flux involves disrupting at least the stratum corneum layer of the skin.
  • this invention is directed to a method for inhibiting a decrease in the transdermal flux of an agent being transdermally delivered or sampled over a prolonged period of time wherein the delivery involves disrupting (e.g., by puncturing) at least the stratum corneum layer of the skin to form a plurality of pathways through which the agent passes which method comprises co-delivering or co-sampling the agent with an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting a decrease in said agent transdermal flux compared to delivering or sampling said agent under substantially identical conditions except in the absence of said anti-healing agent(s).
  • this invention is directed to a method for transdermally delivering an agent over a prolonged period of time which method comprises:
  • step (ii) placing a reservoir in agent transmitting relation with the micro- disruptions formed in step (i) said reservoir comprising the agent and an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting the decrease in said agent transdermal flux compared to delivering said agent under substantially identical conditions except in the absence of said anti- healing agent(s).
  • this invention is directed to a method for transdermally sampling an agent over a prolonged period of time which method comprises: (i) forming a plurality of micro-disruptions through the stratum corneum layer of the skin to form pathways through which the agent passes; and (ii) placing a reservoir in agent transmitting relation with the micro- disruptions formed in step (i) said reservoir comprising an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting the decrease in said agent transdermal flux compared to sampling said agent under substantially identical conditions except in the absence of said anti-healing agent(s).
  • At least the stratum corneum layer of the skin is pierced, cut or otherwise disrupted (e.g., by abrasives or tape stripping) and most preferably at least the stratum corneum layer of the skin is perforated with a skin perforating device having a plurality of microprotrusions which can penetrate the stratum corneum of the skin to form a plurality of pathways through which the agent and the anti-healing agent pass.
  • the anti- healing agent(s) is delivered either before the agent is delivered or sampled; or before and during the transdermal flux of the agent; or during the transdermal flux of the agent; or during and after the transdermal flux of the agent.
  • the anti-healing agent(s) is selected from the group consisting of anticoagulants, anti-inflammatory agents, agents that inhibit cellular migration, and osmotic agents in an amount effective to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals at 20 e C or mixtures thereof.
  • the anticoagulant is selected from the group consisting of heparin having a molecular weight from 3000 to 12,000 daltons, pentosan polysulfate, citric acid, citrate salts, EDTA, and dextrans having a molecular weight from 2000 to 10,000 daltons.
  • the anti-inflammatory agent is selected from the group consisting of hydrocortisone sodium phosphate, betamethasone sodium phosphate, and triamcinolone sodium phosphate.
  • the agent that inhibits the cellular migration is selected from the group consisting of laminin and related peptides.
  • the osmotic agent is a biologically compatible salt such as sodium chloride or a neutral compound such as glucose, or a zwitterionic compound such as glycine having a sufficiently high concentration to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals.
  • a biologically compatible salt such as sodium chloride or a neutral compound such as glucose
  • a zwitterionic compound such as glycine having a sufficiently high concentration to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals.
  • the agent that is transdermally delivered is a macromolecular agent selected from the group consisting of polypeptides, proteins, oligonucleotides, nucleic acids, and polysaccharides.
  • the polypeptides and proteins are selected from the group selected from desmopressin, leutinizing releasing hormone (LHRH) and LHRH analogs (e.g., goserelin, leuprolide, buserelin, triptorelin), PTH, calcitonin, interferon- , interferon- ⁇ , interferon- ⁇ , follicle stimulating hormone (FSH), hGH, insulin, insulinotropin, and erythropoietin.
  • LHRH leutinizing releasing hormone
  • FSH follicle stimulating hormone
  • the oligonucleotide is selected from the group consisting of ISIS 2302, ISIS 15839 and other phosphorothiolated oligonucleotides and other methoxyethylphosphorothiolated oligonucleotides and the polysaccharide is selected from the group consisting of low molecular weight heparin having a molecular weight from 3000 to 12,000 daltons and pentosan polysulfate.
  • the agent that is transdermally sampled is a body analyte.
  • the body analyte is glucose.
  • this invention is directed to a device for transdermally delivering an agent over a prolonged period of time which device comprises: (i) an element having a plurality of skin-piercing microprotrusions for forming a plurality of microcuts through the stratum corneum layer of the skin to form pathways through which the agent passes; and
  • a reservoir comprising an agent and an amount of at least one anti- healing agent wherein said amount of said anti-healing agent is effective in inhibiting the decrease in said agent transdermal flux compared to delivering said agent under substantially identical conditions except in the absence of said anti-healing agent(s).
  • this invention is directed to a device for transdermally sampling an agent over a prolonged period of time, which device comprises:
  • this invention is directed to a kit transdermally delivering or sampling an agent over a prolonged period of time comprising: (i) a device with an array of microprotrusions for forming microcuts through the stratum corneum layer of the skin; and
  • a reservoir comprising an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting a decrease in an agent transdermal flux compared to when the agent is delivered or sampled under substantially identical conditions except in the absence of said anti-healing agent.
  • the anti-healing agent(s) is selected from the group consisting of anticoagulants, anti-inflammatory agents, agents that inhibit cellular migration, and osmotic agents in an amount effective to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals at 20 Q C or mixtures thereof.
  • the anticoagulant is selected from the group consisting of heparin having a molecular weight from 3000 to 12,000 daltons, pentosan polysulfate, citric acid, citrate salts such as sodium citrate, EDTA, and dextrans having molecular weight from 2000 to 10,000 daltons.
  • the anti-inflammatory agent is selected from the group consisting of hydrocortisone sodium phosphate, betamethasone sodium phosphate, and triamcinolone sodium phosphate.
  • the agent that inhibits the cellular migration is selected from the group consisting of laminin and related peptides.
  • the osmotic agent is a biologically compatible salt such as sodium chloride or a neutral compound such as glucose, or a zwitterionic compound such as glycine having a sufficiently high concentration to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals.
  • the agent that is transdermally delivered is a macromolecular agent selected from the group consisting of polypeptides, proteins, oligonucleotides, nucleic acids, and polysaccharides.
  • the polypeptides and proteins are selected from the group selected from desmopressin, leutinizing releasing hormone (LHRH) and LHRH analogs (e.g., goserelin, leuprolide, buserelin, triptorelin), PTH, calcitonin, interferon- ⁇ , interferon- ⁇ , interferon- ⁇ , follicle stimulating hormone (FSH), hGH, insulin, insulinotropin, and erythropoietin.
  • LHRH leutinizing releasing hormone
  • FSH follicle stimulating hormone
  • the oligonucleotide is selected from the group consisting of ISIS 2302, ISIS 15839 and other phosphorothiolated oligonucleotides and other methoxyethylphosphorothiolated oligonucleotides and the polysaccharide is selected from the group consisting of low molecular weight heparin having a molecular weight from 3000 to 12,000 daltons and pentosan polysulfate.
  • the agent that is transdermally sampled is a body analyte.
  • the body analyte is glucose.
  • FIG. 1 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate flux.
  • FIG. 2 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate delivery.
  • FIG. 3 is a graph of the effect of pathway closure inhibitors on o passive transdermal pentosan polysulfate flux.
  • FIG. 4 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate delivery.
  • FIG. 5 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate delivery.
  • FIG. 6 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate delivery.
  • FIG. 7 is a graph of the effect of pathway closure inhibitors on passive transdermal DNA delivery.
  • FIG. 8 is a schematic side view of a device for transdermally o delivering or sampling an agent according to the present invention.
  • transdermal flux means the rate of passage of any agent in and through the skin of an individual or the rate of passage of any analyte out through the skin of an individual.
  • transdermal means the delivery or extraction of an o agent through the skin.
  • pathway means passages formed in the stratum corneum of the skin by disrupting it which allow for enhanced transdemal flux of an agent.
  • stratum corneum of the skin can be disrupted by methods well known in the art such as sanding, tape stripping, creating microcuts, and the like. Other methods are described in US Patents Nos. 6,022,316, 5,885,211 and 5,722,397 the disclosures of which are incorporated herein in their entirety.
  • the passages are formed by disrupting of the skin with a device having a plurality of stratum corneum-piercing microprotrusions thereby creating microcuts in the stratum corneum
  • the term "microprotrusion” as used herein refers to very tiny stratum corneum piercing elements typically having a length of less than 500 micrometers, and preferably less than 250 micrometer, which make a penetration in the stratum corneum.
  • the microprotrusions preferably have a length of at least 50 micrometers.
  • the microprotrusions may be formed in different shapes, such as needles, hollow needles, blades, pins, punches, and combinations thereof.
  • microprotrusion array refers to a plurality of microprotrusions arranged in an array for piercing the stratum corneum.
  • the microprotrusion array may be formed by etching a plurality of blades from a thin sheet and folding each of the blades out of the plane of the sheet to form the configuration shown in FIG. 8.
  • the microprotrusion array may also be formed in other known manners, such as by connecting multiple strips having microprotrusions along an edge of each of the strips.
  • the microprotrusion array may include hollow needles which inject a liquid formulation. Examples of microprotrusion arrays are described in U.S. Patent No.
  • prolonged delivery means a period of delivery that lasts for at least half an hour, preferably between several hours to about 24 hours, more preferably between about 8 and 24 hours.
  • co-delivering means the anti-healing agent(s) is administered transdermally before the agent is delivered; before and during transdermal flux of the agent; during transdermal flux of the agent; and/or during and after transdermal flux of the agent.
  • co-sampling means the anti-healing agent(s) is administered transdermally before the agent is sampled by transdermal flux; before and during transdermal flux of the agent; during transdermal flux of the agent; and/or during and after transdermal flux of the agent.
  • agent refers to an agent, drug, compound, composition of matter or mixture thereof which provides some pharmacological, often beneficial, effect. It is intended in its broadest interpretation as any pharmaceutically-acceptable substance which may be delivered to a living organism to produce a desired, usually beneficial, effect.
  • this includes therapeutic agents in all of the major therapeutic fields including, but not limited to, anti-infectives such as antibiotics and antiviral agents; analgesics such as fentanyl, sufentanil, and buprenorphine, and analgesic combinations; anesthetics; anorexics; antiarthritics; antiasthmatic agents such as terbutaline; anticonvulsants; antidepressants; antidiabetics agents; antidiarrheals; antihistamines; antiinflammatory agents; antimigraine preparations; antimotion sickness preparations such as scopolamine and ondansetron; antinauseants; antineoplastics; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics; antispasmodics including gastrointestinal and urinary; anticholinergics; sympathomimetrics; xanthine derivatives; cardiovascular preparations including calcium channel blockers such as nifedipine; betaagonists such as do
  • the invention is particularly useful in the controlled delivery of peptides, polypeptides, proteins, or other macromolecules difficult to deliver transdermally because of their size.
  • macromolecular substances typically have a molecular weight of at least about 300 Daltons, and more typically, in the range of about 300 to 40,000 Daltons.
  • agent may be incorporated into the agent formulation in the method of this invention, and that the use of the term "agent” in no way excludes the use of two or more such agents or drugs.
  • the agents can be in various forms, such as free bases, acids, charged or uncharged molecules, components of molecular complexes or nonirritating, pharmacologically acceptable salts. Also, simple derivatives of the agents (such as ethers, esters, amides, etc) which are easily hydrolyzed by body pH, enzymes, etc, can be employed. The agents can be in solution, in suspension or a combination of both in the drug reservoir. Alternatively, the agent can be a particulate. [00058] The amount of agent employed in the delivery device will be that amount necessary to deliver a therapeutically effective amount of the agent to achieve the desired result. In practice, this will vary widely depending upon the particular agent, the site of delivery, the severity of the condition, and the desired therapeutic effect.
  • agent refers to body analytes to be sampled.
  • analyte means any chemical or biological material or compound suitable for passage through a biological membrane by the technology taught in this present invention, or by technology previously known in the art, of which an individual might want to know the concentration or activity inside the body.
  • Glucose is a specific example of an analyte because it is a sugar suitable for passage through the skin, and individuals, for example those having diabetes, might want to know their blood glucose levels.
  • Other examples of analytes include, but are not limited to, such compounds as sodium, potassium, bilirubin, urea, ammonia, calcium, lead, iron, lithium, salicylates, alcohol, licit substances, illicit drugs, and the like.
  • therapeutic amount or rate refer to the amount or rate of the agent needed to effect the desired pharmacological, often beneficial, result.
  • passive transdermal delivery is used herein to describe the passage of an agent through a body surface, eg, skin by passive diffusion.
  • passive delivery devices have a drug reservoir which contains a high concentration of a drug. The device is placed in contact with a body surface for an extended period of time, and is allowed to diffuse from the reservoir and into the body of the patient, which has a much lower concentration of drug.
  • the primary driving force for passive drug delivery is the concentration gradient of the drug across the skin. In this type of delivery, the drug reaches the bloodstream by diffusion through the dermal layers of the body.
  • the preferred agents for passive delivery are hydrophobic non-ionic agents, given that the drug must diffuse through the lipid layers of the skin.
  • electrotransport is used herein to describe the passage of a substance, eg, a drug or prodrug, through a body surface or membrane, such as the skin, mucous membranes, or nails, induced at least partially by the application of an electric field across the body surface (eg, skin).
  • a widely used electrotransport process, iontophoresis involves the electrically induced transport of therapeutic agents in the form of charged ions, lonizable therapeutic agents, eg, in the form of a salt which when dissolved forms charged agent ions, are preferred for iontophoretic delivery because the charged agent ions move by electromigration within the applied electric field.
  • Electroosmosis another type of electrotransport process, involves the movement of a liquid, which liquid contains a charged and/or uncharged therapeutic agent dissolved therein, through a biological membrane (e.g., skin) under the influence of an electric field.
  • a biological membrane e.g., skin
  • electroporation Another type of electrotransport, electroporation, involves the formation of transiently-existing pores in a living biological membrane by applying high voltage pulses thereto and delivery of a therapeutic agent therethrough.
  • more than one of these processes may be occurring simultaneously to some extent.
  • electrotransport is used herein in its broadest possible interpretation to include the electrically induced or enhanced transport of at least one agent, which may be charged, ie, in the form of ions, or uncharged, or of mixtures thereof, regardless of the specific mechanisms by which the agent is actually transported.
  • anti-healing agent means an agent which alone or in combination acts to prevent or diminish skin's natural healing processes thereby preventing the closure of the pathways formed by disruptions such as microslits/microcuts in the stratum corneum of the skin.
  • suitable anti-healing agents include, but are not limited to:
  • osmotic agents which include neutral compounds such as glucose, salts such as sodium chloride, and zwitterionic compounds such as amino acids.
  • the formulation (as is or reconstituted from a dry formulation) should have an osmotic pressure greater than about 2000 kPa and more preferably about 3000 kPa at 20° C.
  • Neutral compounds include:
  • organic solvents such as dimethylsulfoxide.
  • acids in the neutral state such as boric acid, and the like.
  • ether alcohols and polymers of ethylene oxide comprising at least one alcohol group and having a molecular weight ranging from 92 to 500.
  • Compounds in this group include ethoxydiglycol, diethylene glycol, dipropylene glycol, triethylene glycol, PEG-4, PEG-6, PEG-8 and PEG-9, and the like;
  • aliphatic alcohols comprising two alcohol groups such as propylene glycol and butane diol, and the like;
  • aliphatic alcohols comprising three alcohol groups such as glycerol, and 1 ,2,6-hexanetriol, and the like;
  • g pentahydric alcohols such as adonitol, xylitol and arabitol, and the like;
  • hexahydric alcohols such as sorbitol, mannitol, galactitol, and the like;
  • aliphatic compounds comprising one ketonic or aldehyde group and at least two alcohol groups.
  • Compounds in this group include deoxyribose, ribulose, xylulose, psicose, sorbose, and the like, (j) cyclic polyols such as inositol, and the like; (k) monosaccharides such as apiose, arabinose, lyxose, ribose, xylose, digitoxose, fucose, quercitol, quinovose, rhamnose, allose, altrose, fructose, galactose, glucose, gulose, hamamelose, idose, mannose, tagatose, and the like; (I) disaccharides such as sucrose, trehalose, primeverose, vicianose, rutinose, scillabiose, cellobiose, gentiobiose, lactose, lactulose, maltose, melibios
  • These salts include: sodium chloride, the salt forms of acetic acid, propionic acid, glycolic acid, pyruvic acid, hydracrylic acid, lactic acid, pivalic acid, beta-hydroxybutyric acid, glyceric acid, sorbic acid, mandelic acid, atrolactic acid, tropic acid, quinic acid, glucuronic acid, gluconic acid, gulonic acid, glucoheptonic acid, benzilic acid, ammonia, monoethanolamine, diethanolamine, aminomethylpropanediol, tromethamine, triethanolamine, galactosamine and glucosamine.
  • These salts include: the salt forms of phosphoric acid, malonic acid, fumaric acid, maleic acid, succinic acid, tartronic acid, oxaloacetic acid, malic acid, alpha-ketoglutaric acid, citramalic acid, and tartaric acid.
  • These salts include: the salt forms of aconitic acid, citric acid and isocitric acid.
  • i is about 1 and the concentration at about 2000 kPa is about 0.8 M; at about 3000 kPa it is about 1.2 M.
  • Zwitterionic coumpounds include: amino acids such as glycine, alanine, proline, threonine and valine, diamino acids such as glycylglycine, buffers such as 4-morpholinepropane sulfonic acid (MOPS), (2- ⁇ [tris(hydroxymethyl) methyl]amino ⁇ -1 -ethane sulfonic acid (TES), 4-(2- hydroxyethyl)-1-piperazineethane sulfonic acid (HEPES), ⁇ -hydroxy-4-(2- hydroxyethyl)-1-piperazinepropane sulfonic acid monohydrate (HEPPSO), tricine, bicine, CHES and CAPS and the like.
  • MOPS 4-morpholinepropane sulfonic acid
  • TES (2- ⁇ [tris(hydroxymethyl) methyl]amino ⁇ -1 -ethane sulfonic acid
  • HPES 4-(2- hydroxyethyl)-1
  • Anticoagulants such as citric acid, citrate salts (e.g. sodium citrate), dextran sulfate sodium, EDTA, pentosan polysulfate, oligonucleotides, aspirin, low molecular weight heparin, and lyapolate sodium.
  • anti-inflammatory agents such as betamethasone 21 -phosphate disodium salt, triamcinolone acetonide 21-disodium phosphate, hydrocortamate hydrochloride, hydrocortisone 21 -phosphate disodium salt, methylprednisolone 21 -phosphate disodium salt, methylprednisolone 21- succinate sodium salt, paramethasone disodium phosphate, prednisolone 21-succinate sodium salt, prednisolone 21- -sulfobenzoate sodium salt, prednisolone 21 -diethylaminoacetate hydrochloride, prednisolone sodium phosphate, prednylidene 21 -diethylaminoacetate hydrochloride, triamcinolone acetonide 21-disodium phosphate; the salt form of NSAIDs such as aspirin and other salicylates, bromfenac, diclofenac, diflun
  • agents that effect cellular migration such as laminin and related peptides and fibronectin related peptides.
  • the range of concentration for anticoagulant agents, anti- inflammatory agents, and agents that inhibit cellular migration is between 0.1 and 10% in the formulation.
  • the major barrier properties of the skin reside with the outermost layer of the skin, i.e., the stratum corneum.
  • the inner division, i.e., the backing layers, of the epidermis generally comprises three layers commonly identified as stratum granulosum, stratum malpighii, and stratum germinativum. There is essentially little or no resistance to transport or to absorption of an agent through these layers.
  • the microprotrusions used to create pathways in the body surface in accordance with the present invention need only penetrate through the stratum corneum in order for the agent to be transdermally delivered or sampled with little or no resistance through the skin.
  • the pathways created by the microslits/microcuts are quickly closed and sealed by the skin's natural healing processes. Accordingly, the enhancement in transdermal agent flux provided by these pathways is completely eliminated within several hours of making the pathways.
  • the present invention inhibits the decrease in the transdermal flux of an agent due to the pathway closure after the pathways have been made.
  • the skin is treated with a microprotusion array device to form small cuts, slits, or holes called pathways in the outermost layer of the body surface to a limited depth.
  • the microprotrusions may be formed in different shapes, such as needles, hollow needles, pins, punches, and combinations thereof.
  • FIG. 8 illustrates a transdermal delivery or sampling patch 10 including a plurality of microprotrusions 12, a reservoir 14, an adhesive backing layer 16, and an impermeable backing layer 18.
  • a reservoir 14 may be provided by a discreet layer on the skin proximal or skin distal side of the base sheet which supports the microprotrusions 12.
  • the reservoir 14 may be provided by coatings on the microprotrusions, and/or the reservoir may be provided by coatings on the other parts of the patch 10.
  • the present invention has been described as including an agent and an anti-healing agent, it should be understood that the agent and the anti-healing agent may be provided in the same reservoir or different reservoirs in the device. [00076]
  • the device of the present invention can be used in connection with agent delivery, agent sampling, or both.
  • the device of the present invention is used in connection with transdermal drug delivery, transdermal analyte sampling, or both.
  • Transdermal delivery devices for use with the present invention include, but are not limited to, passive devices, electrotransport devices, osmotic devices, and pressure-driven devices.
  • Transdermal sampling devices for use with the present invention include, but are not limited to, passive devices, reverse electrotransport devices, negative pressure driven devices, and osmotic devices.
  • the transdermal devices of the present invention may be used in combination with other methods of increasing agent flux, such as skin permeation enhancers.
  • Example 1 Decrease in drug flux has been studied with three model drugs presenting different charge characteristics: pentosan polysulfate (PPS), a highly negatively charged compound, DECAD, a synthetic model decapeptide bearing two positive charges at pH 5.5, and inulin, a neutral polysaccharide. These compounds do not penetrate the skin significantly without the use of penetration enhancers or physical disruption of the skin barrier.
  • PPS pentosan polysulfate
  • DECAD highly negatively charged compound
  • inulin a synthetic model decapeptide bearing two positive charges at pH 5.5
  • inulin a neutral polysaccharide
  • microprotrusion array is then removed from the skin and then some form of agent delivery device or agent reservoir is placed over the pathways in order to effect agent delivery or sampling.
  • Pretreatment was used instead of integrated system because pathway closure appears to occur more rapidly and more reproducibly following pretreatment than when the microprotrusions are left in the skin during drug delivery.
  • concentration of PPS was below the concentration required for anticoagulant effect. All drugs were dissolved in water and solutions were gelled with 2% hydroxyethylcellulose. Concentration of PPS, DECAD and inulin were 0.1 mg/mL, 13 mg/mL and 2.5 mg/mL, respectively. PPS and DECAD were radiolabeled with tritium. Insulin was radiolabeled with 14 C.
  • HGPs hairless guinea pigs
  • the system applied comprised a foam double adhesive ring (diameter 3.8 cm, thickness 0.16 cm) with a 2 cm 2 reservoir in the middle containing a microprotrusion array having an area of 2 cm 2 and comprised of a stainless steel sheet having a thickness of 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90° to the plane of the sheet, the microprotrusions had a length of 545 micrometer, and a microprotrusion density of 72 microprotrusions /cm 2 .
  • the stretching tension was released.
  • the adhesive ring was left adhered on the skin and the microprotrusion array was removed.
  • the drug formulation (350 ⁇ L) was dispensed into the drug compartment and a backing membrane was applied to the adhesive outer surface of the ring to seal the system.
  • a total of six HGPs were treated with the same drug formulation. At 1 hour and 24 hours after application, the systems from 3 HGPs from each group were removed and residual drug washed from the skin.
  • the amount of drug that had penetrated during these time intervals was determined by measuring urinary excretion of radioactivity for two days following removal of the patch and corrected from the percentage excreted following iv injection (previous studies had shown that for 3 H-PPS, 3 H DECAD, and 14 C inulin, percentage excreted over two days following injection were 32%, 65% and 94%, respectively).
  • the results (Table I) show that between 1 hour and 24 hour, flux decreased by at least one order of magnitude for all drugs indicating that pathways formed by piercing of the skin by the microprotrusions had at least partially closed.
  • the system applied comprised a foam double adhesive ring (diameter 3.8 cm, thickness 0.16 cm) with a 2 cm 2 reservoir in the middle containing a microprotrusion array having an area of 2 cm 2 and comprised of a stainless steel sheet having a thickness of 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90° to the plane of the sheet.
  • the microprotrusions had a length of 545 micrometer, and a microprotrusion density of 72 microprotrusions/cm 2 . Following application, the stretching tension was released. The adhesive ring was left adhered on the skin and the microprotrusion array was removed.
  • a formulation (350 ⁇ L) containing the tested compound in water and optionally a gelling agent (hydroxyethylcellulose (HEC) at 2% or silica gel at 50%) was dispensed into the drug reservoir and a backing membrane was applied to the adhesive outer surface of the ring to seal the system.
  • the guinea pig received a second system containing a different formulation on the opposite site. Twenty four hours after application, three systems from each group were removed and residual formulation washed from the skin. The skin was stained with a 1% methylene blue solution. Excess dye was thoroughly removed with 70% isopropyl alcohol pads and a picture of the site was taken.
  • the most effective agents were the polyol 1 ,2,6-hexanetriol, glucuronic acid, the polymer of ethylene oxide diethylene glycol, the pentahydric alcohol adonitol, the hexahydric alcohol sorbitol, the polyol-amine tromethamine, and the monosaccharide glucose.
  • citric acid, EDTA, as well as dextran 5000 were the most effective agents in preventing pathway closure.
  • the antiinflammatory agents betamethasone disodium phosphate as well as ketoprofen sodium salt presented a significant effect.
  • the keratolytic agent salicylic acid also had an effect on pathway closure. Low pH also inhibited pathway closure.
  • Surfactants (anionic, cationic and nonionic), at non-irritating concentrations, had no effect. Inert agents failed to prevent pathway closure. Sites exposed to glycerol and citric acid were also stained with India ink to confirm that the pathways were open for larger sized compounds.
  • Example 3 Pentosan polysulfate (PPS), a highly negatively charged compound, does not penetrate the skin significantly without the use of penetration enhancers or physical disruption of the skin barrier.
  • PPS was delivered by passive diffusion through pathways in the skin created by a microprotrusion array.
  • the concentration of PPS was below the concentration required for inhibition of pathway collapse (see Table II). Therefore, at the concentration used in this experiment, PPS behaved like a drug lacking any activity on pathway closure.
  • the purpose of the experiment was to show that inhibitors of pathway collapse identified in Example 2 also improved drug flux through the skin in vivo.
  • the skin of one flank was manually stretched bilaterally at the time of the application of the system.
  • Microprotrusion array application was performed with an impact applicator.
  • the system applied comprised a foam double adhesive ring (diameter 3.8 cm, thickness 0.16 cm) with a drug containing hydrogel having a skin contact area of 2 cm 2 in the middle containing a microprotrusion array having an area of 2 cm 2 and comprised of a stainless steel sheet having a thickness of 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90° to the plane of the sheet, the microprotrusion had a length of 545 ⁇ m, and a microprotrusion density of 72 microprotrusion/cm 2 . Following application, the stretching tension was released. The adhesive ring was left adhered on the skin and the microprotrusion array was removed.
  • a hydrogel containing 3 H- PPS in water (PPS concentration of 0.1 mg/mL, 2% HEC, 350 ⁇ L) was dispensed into the drug compartment and a plastic cover was applied to the adhesive outer surface of the ring to seal the system. Additional groups of HGPs were treated in the same way, except that the formulation contained 3% citric acid trisodium salt or 50% 1 ,2,6-hexanetriol. At 1 and 24 h after application, 3 systems from each group were removed and residual drug washed from the skin.
  • the amount of drug penetrated during these time intervals was determined by measuring urinary excretion of tritium (previous studies had shown that in HGPs, 32% of the tritium derived from 3 H-PPS injected intravenously is excreted in urine).
  • the results, as shown in FIG.1 show that between 1 hour and 24 hours, flux decreased by about 12 fold, demonstrating pathway closure.
  • Citric acid and 1 ,2,6-hexanetriol inhibited this decrease in flux. Flux in the presence of 1 ,2,6-hexanetriol was decreased by less than 2 fold between 1 and 24 h. Total amount transported was increased about 4 and 7 folds in the presence of citric acid and 1 ,2,6- hexanetriol, respectively, as compared to controls as shown in FIG. 2.
  • the additive used did not modify the 45 min PPS flux, indication that they did not present permeation enhancing properties and that pathways had not significantly closed during this period.
  • citric acid and 1 ,2,6-hexanetriol inhibited significantly the decrease in flux. Flux in the presence of the mixture of citric acid trisodium salt and 1 ,2,6-hexanetriol resulted in a complete inhibition of the decrease in PPS flux observed between 45 min and 24 h. Total amounts of PPS transported are shown in FIG. 4.
  • the effect observed in the presence of 3% citric acid trisodium salt and 50% 1 ,2,6- hexanetriol is greater than additive. This is probably the indication that these two agents are effective on different wound healing mechanisms (citric acid is probably preventing clot formation while 1 ,2,6-hexanetriol is probably preventing another regeneration process such as keratinocyte migration).
  • Example 5 An additional experiment was performed with PPS. Conditions were identical to that described in Example 4. Gluconic acid sodium salt, glucuronic acid sodium salt and glucose were evaluated at 0.6 M concentration with or without 3% citric acid. Similarly to the precedent example, as shown in FIG. 5, results show that between 1 hour and 24 hours, flux decreased dramatically, demonstrating pathways closure. At 24 hours, all compounds and combinations significantly increased PPS flux. Total amounts of PPS transported are shown in FIG. 6. These results support the conclusions presented in Example 4 and demonstrate that lower concentrations of anti-healing agents are still very effective at inhibiting microprotrusion pathway closure.
  • Example 6 [00087] Feasibility studies were conducted in hairless guinea pigs
  • HGPs to determine whether passive intracutaneous delivery of a plasmid DNA vaccine (pCMV-AYW-HBs-Mkan), which encodes for hepatitis B surface antigen [HBsAg]), could be achieved using Macroflux.
  • pCMV-AYW-HBs-Mkan which encodes for hepatitis B surface antigen [HBsAg]
  • Macroflux hepatitis B surface antigen
  • Each configuration has a total surface area of 2 cm 2 and an active total blade surface area of 1 cm 2 .
  • a microprotrusion array of the selected type was adhered to the adhesive foam and covered the bottom of the reservoir (after application, the microprotrusion array is in contact with the skin). Following application, the stretching tension was released and the microprotrusion array was left in situ.
  • a liquid formulation (90 ⁇ L) containing 3.5 mg/mL of the plasmid DNA vaccine in buffer (TRIS 5 mM pH 7.6) was dispensed into the drug reservoir and a backing membrane was applied to the adhesive outer surface of the ring to seal the system. Additional HGPs were treated in the same way, except that the formulation contained either 1 % Tween 80 or 3% citric acid trisodium salt in addition to the plasmid DNA and the Tris buffer.
  • Example 7 [00090] Examples 2-6 demonstrate that drugs of interest can have their flux enhanced by co-delivery of pathway closure inhibitors. In particular, it was shown that compounds presenting anticoagulants properties are effective in preventing pathway collapse. If these compounds can prevent pathway collapse and therefore prolong the delivery of drug molecules, it is obvious that if they are delivered at concentrations high enough to exert locally their anticoagulant activity, they will prolong their own delivery. Delivery experiments with drugs presenting anticoagulant properties have been performed in the HGP with PPS and the phosphorothiolated oligonucleotide ISIS 2302.
  • PPS is a drug used in the management of inflammatory conditions such as interstitial cystitis
  • the phosphorothiolated oligonucleotide ISIS 2302 is an antisense drug to the mRNA coding for the ICAM1 molecule and presenting antiinflammatory properties. Both molecules are highly negatively charged compound and do not penetrate the skin significantly without the use of penetration enhancers or physical disruption of the skin barrier.
  • a total dose of 1.9 ⁇ 0.1 mg was delivered in 4 hours by electrotransport with a current of 100 ⁇ A/cm 2 and a microprotrusion array having an area of 2 cm 2 and comprised of a stainless steel sheet having a thickness of 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90 Q to the plane of the sheet, the microprotrusions had a length of 480 ⁇ m, and a microprotrusion density of 241 microprotrusion/cm 2 .
  • the phosphorothiolated oligonucleotide ISIS 2302 was delivered for 24 hours using a microprotrusion array with an area of 2 cm 2 , microprotrusion lengths of 480 ⁇ m and 241 microprotrusions/cm 2 .
  • the effect of drug concentration, microprotrusion array pretreatment versus integrated treatment and delivery passive versus electrotransport were evaluated. Results, summarized in Table III, demonstrate that this compound can be effectively delivered through the skin for extended periods of time, probably as a result of its anticoagulant properties.
  • Drugs of interest that could be delivered at therapeutic levels using the microprotrusion technology during extended periods of time (i.e. 24 hours) and without the help of adjuvant that prevent pathway collapse include all compounds presenting anticoagulants properties during local delivery and having a molecular weight greater than about 2000. These compounds include pentosan polysulfate, oligonucleotides, low molecular weight heparin, hirudin and hirudin analogs such as hirulog.

Abstract

This invention relates to a method for inhibiting a decrease in the transdermal flux of an agent that is being transdermally delivered or sampled over a prolonged period of time wherein the delivery or sampling involves disrupting at least the stratum corneum layer of the skin to form pathways through which the agent passes. The desired result is achieved by co-delivering or co-sampling the agent with an amount of at least one anti-healing agent wherein the amount of the anti-healing agent is effective in inhibiting a decrease in the agent transdermal flux compared to when the delivery or sampling of the agent is done under substantially identical conditions except in the absence of the anti-healing agent(s).

Description

METHODS FOR INHIBITING DECREASE IN TRANSDERMAL DRUG FLUX BY INHIBITION OF PATHWAY CLOSURE
TECHNICAL FIELD [0001] This invention relates to inhibiting a decrease in the transdermal flux of an agent by inhibiting pathway closure. In particular this invention relates to a method for inhibiting a decrease in the transdermal flux of an agent that is being transdermally delivered or sampled over a prolonged period of time wherein the delivery or sampling involves disrupting at least the stratum corneum layer of the skin to form pathways through which the agent passes by co-delivering or co-sampling the agent with an amount of at least one anti-healing agent wherein the amount of the anti-healing agent is effective in inhibiting a decrease in the agent transdermal flux compared to when the delivery or sampling of the agent is done under substantially identical conditions except in the absence of the anti-healing agent(s).
BACKGROUND ART [0002] Drugs are most conventionally administered either orally or by injection. Unfortunately, many medicaments are completely ineffective or of radically reduced efficacy when orally administered since they either are not absorbed or are adversely affected before entering the blood stream and thus do not possess the desired activity. On the other hand, the direct injection of the medicament into the blood stream, while assuring no modification of the medicament in administration, is a difficult, inconvenient and uncomfortable procedure, sometimes resulting in poor patient compliance. Transdermal drug delivery offers improvements in these areas. However, in many instances, the rate of delivery or flux of many agents via the passive transdermal flux is too limited to be therapeutically effective. [0003] One method of increasing the transdermal flux of agents relies on the application of an electric current across the body surface referred to as "electrotransport." "Electrotransport" refers generally to the passage of a beneficial agent, e.g., a drug or drug precursor, through a body surface, such as skin, mucous membranes, nails, and the like where the agent is induced or enhanced by the application of an electrical potential. The electrotransport of agents through a body surface may be attained in various manners. One widely used electrotransport process, iontophoresis, involves the electrically induced transport of charged ions. Electroosmosis, another type of electrotransport process, involves the movement of a solvent with the agent through a membrane under the influence of an electric field. Electroporation, still another type of electrotransport, involves the passage of an agent through pores formed by applying a high voltage electrical pulse(s) to a membrane. In many instances, more than one of these processes may be occurring simultaneously to a different extent. Accordingly, the term "electrotransport" is given herein its broadest possible interpretation, to include the electrically induced or enhanced transport of at least one charged or uncharged agent, or mixtures thereof, regardless of the specific mechanism or mechanisms by which the agent is actually being transported. Electrotransport delivery generally increases agent flux during transdermal delivery.
[0004] Another method of increasing the agent flux involves pre- treating the skin with, or co-delivering with the beneficial agent, a skin permeation enhancer. A permeation enhancer substance, when applied to a body surface through which the agent is delivered, enhances its flux therethrough such as by increasing the permselectivity and/or permeability of the body surface, creating hydrophilic pathways through the body surface, and/or reducing the degradation of the agent during transport. This methodology is typically used when the drug is delivered transdermally by passive diffusion. [0005] There also have been many attempts to mechanically penetrate or disrupt the skin thereby creating pathways into the skin in order to enhance the transdermal flux. Some of the earliest attempts to enhance transdermal drug flux involved abrading the skin (e.g., with sandpaper) or tape-stripping the skin to disrupt the stratum corneum. More recently, there have been attempts to pierce or cut through the stratum corneum with tiny piercing/cutting elements. See for example, U.S. Patent Nos. 5,879,326 issued to Godshall, et al., 3,814,097 issued to Ganderton, et al., 5,279,544 issued to Gross, et al., 5,250,023 issued to Lee, et al., 3,964,482 issued to Gerstel, et al., Reissue 25,637 issued to Kravitz, et al., and PCT Publication Nos. WO 96/37155, WO 96/37256, WO 96/17648, WO 97/03718, WO 98/11937, WO 98/00193, WO 97/48440, WO 97/48441 , WO 97/48442, WO 98/00193, WO 99/64580, WO 98/28037, WO 98/29298 and WO 98/29365. These devices use piercing elements of various shapes and sizes to pierce the outermost layer (i.e., the stratum corneum) of the skin. The piercing elements disclosed in these references generally extend perpendicularly from a thin, flat member, such as a pad or sheet. The piercing elements or microprotrusion in some of these devices are extremely small, some having dimensions (i.e., length and width) of only about 25 - 400 μm and a microprotrusion thickness of only about 5 - 50 μm. These tiny piercing/cutting elements make correspondingly small microslits/microcuts in the stratum corneum for enhanced transdermal agent delivery therethrough. [0006] It has now been discovered that in the case of human skin, the pathways created by the microslits/microcuts are quickly closed and sealed by the skin's natural healing processes. Although this process is not completely understood at this time, it is believed that it is closely related to wound healing. Wound healing is a complex phenomenon involving many biological processes. The earliest event, taking place within minutes, in the wound healing process is the formation of a fibrin clot. In addition, many pro- inflammation mediators are liberated or generated during the early phase of wound healing. Liberation of these factors triggers keratinocyte migration, leukocyte infiltration, fibroblast proliferation which result in protein degradation, protein synthesis and tissue remodeling. In the end, reformation of the skin barrier is achieved. In some instances, the enhancement in transdermal agent flux provided by these pathways is completely eliminated within several hours of making the pathways. Thus, there is a need for a method which can prevent, or at least delay the skin's natural healing processes in order to allow transdermal flux of agents, through microcuts/microslits over longer periods of time (e.g., longer than about one hour) when the delivery methodology utilizes micropiercing elements. [0007] The present invention fulfills this and related needs. DISCLOSURE OF THE INVENTION [0008] This invention is directed to a method for inhibiting a decrease in the transdermal flux of an agent which is being transdermally delivered or sampled over a prolonged period of time where the transdermal flux involves disrupting at least the stratum corneum layer of the skin. Specifically, it has been discovered that by co-delivering or co-sampling the agent in the presence of an anti-healing agent the closure of the pathways in the skin formed as a result of disrupting the stratum corneum layer of the skin can be inhibited, thereby inhibiting a decrease in the transdermal flux of the agent. [0009] Accordingly, in a first aspect, this invention is directed to a method for inhibiting a decrease in the transdermal flux of an agent being transdermally delivered or sampled over a prolonged period of time wherein the delivery involves disrupting (e.g., by puncturing) at least the stratum corneum layer of the skin to form a plurality of pathways through which the agent passes which method comprises co-delivering or co-sampling the agent with an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting a decrease in said agent transdermal flux compared to delivering or sampling said agent under substantially identical conditions except in the absence of said anti-healing agent(s).
[00010] In a second aspect, this invention is directed to a method for transdermally delivering an agent over a prolonged period of time which method comprises:
(i) forming a plurality of micro-disruptions through the stratum corneum layer of the skin to form pathways through which the agent passes; and
(ii) placing a reservoir in agent transmitting relation with the micro- disruptions formed in step (i) said reservoir comprising the agent and an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting the decrease in said agent transdermal flux compared to delivering said agent under substantially identical conditions except in the absence of said anti- healing agent(s). [00011] In a third aspect, this invention is directed to a method for transdermally sampling an agent over a prolonged period of time which method comprises: (i) forming a plurality of micro-disruptions through the stratum corneum layer of the skin to form pathways through which the agent passes; and (ii) placing a reservoir in agent transmitting relation with the micro- disruptions formed in step (i) said reservoir comprising an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting the decrease in said agent transdermal flux compared to sampling said agent under substantially identical conditions except in the absence of said anti-healing agent(s). [00012] In the above methods, at least the stratum corneum layer of the skin is pierced, cut or otherwise disrupted (e.g., by abrasives or tape stripping) and most preferably at least the stratum corneum layer of the skin is perforated with a skin perforating device having a plurality of microprotrusions which can penetrate the stratum corneum of the skin to form a plurality of pathways through which the agent and the anti-healing agent pass. The anti- healing agent(s) is delivered either before the agent is delivered or sampled; or before and during the transdermal flux of the agent; or during the transdermal flux of the agent; or during and after the transdermal flux of the agent.
[00013] In the above methods, preferably, the anti-healing agent(s) is selected from the group consisting of anticoagulants, anti-inflammatory agents, agents that inhibit cellular migration, and osmotic agents in an amount effective to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals at 20 eC or mixtures thereof. [00014] Preferably, the anticoagulant is selected from the group consisting of heparin having a molecular weight from 3000 to 12,000 daltons, pentosan polysulfate, citric acid, citrate salts, EDTA, and dextrans having a molecular weight from 2000 to 10,000 daltons. [00015] Preferably the anti-inflammatory agent is selected from the group consisting of hydrocortisone sodium phosphate, betamethasone sodium phosphate, and triamcinolone sodium phosphate. [00016] Preferably, the agent that inhibits the cellular migration is selected from the group consisting of laminin and related peptides.
[00017] Preferably, the osmotic agent is a biologically compatible salt such as sodium chloride or a neutral compound such as glucose, or a zwitterionic compound such as glycine having a sufficiently high concentration to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals.
[00018] Preferably, the agent that is transdermally delivered is a macromolecular agent selected from the group consisting of polypeptides, proteins, oligonucleotides, nucleic acids, and polysaccharides. [00019] Preferably, the polypeptides and proteins are selected from the group selected from desmopressin, leutinizing releasing hormone (LHRH) and LHRH analogs (e.g., goserelin, leuprolide, buserelin, triptorelin), PTH, calcitonin, interferon- , interferon-β, interferon-γ, follicle stimulating hormone (FSH), hGH, insulin, insulinotropin, and erythropoietin. [00020] Preferably, the oligonucleotide is selected from the group consisting of ISIS 2302, ISIS 15839 and other phosphorothiolated oligonucleotides and other methoxyethylphosphorothiolated oligonucleotides and the polysaccharide is selected from the group consisting of low molecular weight heparin having a molecular weight from 3000 to 12,000 daltons and pentosan polysulfate. [00021] Preferably, the agent that is transdermally sampled is a body analyte. Preferably, the body analyte is glucose.
[00022] Preferably, the agent and the anti-healing agent(s) are delivered transdermally by passive diffusion and/or electrotransport. [00023] In a fourth aspect, this invention is directed to a device for transdermally delivering an agent over a prolonged period of time which device comprises: (i) an element having a plurality of skin-piercing microprotrusions for forming a plurality of microcuts through the stratum corneum layer of the skin to form pathways through which the agent passes; and
(ii) a reservoir comprising an agent and an amount of at least one anti- healing agent wherein said amount of said anti-healing agent is effective in inhibiting the decrease in said agent transdermal flux compared to delivering said agent under substantially identical conditions except in the absence of said anti-healing agent(s).
[00024] In a fifth aspect, this invention is directed to a device for transdermally sampling an agent over a prolonged period of time, which device comprises:
(i) an element having a plurality of skin piercing microprotusions for forming a plurality of microcuts through the stratum corneum layer of the skin to form pathways through which the agent passes; and (ii) a reservoir comprising an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting a decrease in agent transdermal flux compared to sampling the agent under substantially identical conditions except in the absence of said anti-healing agent(s). [00025] In a sixth aspect, this invention is directed to a kit transdermally delivering or sampling an agent over a prolonged period of time comprising: (i) a device with an array of microprotrusions for forming microcuts through the stratum corneum layer of the skin; and
(ii) a reservoir comprising an amount of at least one anti-healing agent wherein said amount of said anti-healing agent is effective in inhibiting a decrease in an agent transdermal flux compared to when the agent is delivered or sampled under substantially identical conditions except in the absence of said anti-healing agent.
[00026] Preferably, the anti-healing agent(s) is selected from the group consisting of anticoagulants, anti-inflammatory agents, agents that inhibit cellular migration, and osmotic agents in an amount effective to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals at 20 QC or mixtures thereof. [00027] Preferably, the anticoagulant is selected from the group consisting of heparin having a molecular weight from 3000 to 12,000 daltons, pentosan polysulfate, citric acid, citrate salts such as sodium citrate, EDTA, and dextrans having molecular weight from 2000 to 10,000 daltons. [00028] Preferably the anti-inflammatory agent is selected from the group consisting of hydrocortisone sodium phosphate, betamethasone sodium phosphate, and triamcinolone sodium phosphate. [00029] Preferably, the agent that inhibits the cellular migration is selected from the group consisting of laminin and related peptides. [00030] Preferably, the osmotic agent is a biologically compatible salt such as sodium chloride or a neutral compound such as glucose, or a zwitterionic compound such as glycine having a sufficiently high concentration to generate, in solution, an osmotic pressure greater than about 2000 kilopascals, preferably greater than about 3000 kilopascals. [00031] Preferably, the agent that is transdermally delivered is a macromolecular agent selected from the group consisting of polypeptides, proteins, oligonucleotides, nucleic acids, and polysaccharides. [00032] Preferably, the polypeptides and proteins are selected from the group selected from desmopressin, leutinizing releasing hormone (LHRH) and LHRH analogs (e.g., goserelin, leuprolide, buserelin, triptorelin), PTH, calcitonin, interferon-α, interferon-β, interferon-γ, follicle stimulating hormone (FSH), hGH, insulin, insulinotropin, and erythropoietin. [00033] Preferably, the oligonucleotide is selected from the group consisting of ISIS 2302, ISIS 15839 and other phosphorothiolated oligonucleotides and other methoxyethylphosphorothiolated oligonucleotides and the polysaccharide is selected from the group consisting of low molecular weight heparin having a molecular weight from 3000 to 12,000 daltons and pentosan polysulfate. [00034] Preferably, the agent that is transdermally sampled is a body analyte. Preferably, the body analyte is glucose. BRIEF DESCRIPTION OF THE DRAWINGS
[00035] The invention will now be described in greater detail with reference to the accompanying drawings, wherein; 5 [00036] FIG. 1 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate flux.
[00037] FIG. 2 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate delivery.
[00038] FIG. 3 is a graph of the effect of pathway closure inhibitors on o passive transdermal pentosan polysulfate flux.
[00039] FIG. 4 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate delivery.
[00040] FIG. 5 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate delivery. s [00041] FIG. 6 is a graph of the effect of pathway closure inhibitors on passive transdermal pentosan polysulfate delivery.
[00042] FIG. 7 is a graph of the effect of pathway closure inhibitors on passive transdermal DNA delivery.
[00043] FIG. 8 is a schematic side view of a device for transdermally o delivering or sampling an agent according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION [00044] Definitions:
[00045] Unless stated otherwise the following terms used in this 5 application have the following meanings.
[00046] The term "transdermal flux" means the rate of passage of any agent in and through the skin of an individual or the rate of passage of any analyte out through the skin of an individual. [00047] The term "transdermal" means the delivery or extraction of an o agent through the skin.
[00048] The term "pathway" means passages formed in the stratum corneum of the skin by disrupting it which allow for enhanced transdemal flux of an agent. The stratum corneum of the skin can be disrupted by methods well known in the art such as sanding, tape stripping, creating microcuts, and the like. Other methods are described in US Patents Nos. 6,022,316, 5,885,211 and 5,722,397 the disclosures of which are incorporated herein in their entirety. Preferably the passages are formed by disrupting of the skin with a device having a plurality of stratum corneum-piercing microprotrusions thereby creating microcuts in the stratum corneum [00049] The term "microprotrusion" as used herein refers to very tiny stratum corneum piercing elements typically having a length of less than 500 micrometers, and preferably less than 250 micrometer, which make a penetration in the stratum corneum. In order to penetrate the stratum corneum, the microprotrusions preferably have a length of at least 50 micrometers. The microprotrusions may be formed in different shapes, such as needles, hollow needles, blades, pins, punches, and combinations thereof. [00050] The term "microprotrusion array" as used herein refers to a plurality of microprotrusions arranged in an array for piercing the stratum corneum. The microprotrusion array may be formed by etching a plurality of blades from a thin sheet and folding each of the blades out of the plane of the sheet to form the configuration shown in FIG. 8. The microprotrusion array may also be formed in other known manners, such as by connecting multiple strips having microprotrusions along an edge of each of the strips. The microprotrusion array may include hollow needles which inject a liquid formulation. Examples of microprotrusion arrays are described in U.S. Patent No. 5,879,326 issued to Godshall, et al., 3,814,097 issued to Ganderton, et al., 5,279,544 issued to Gross, et al., 5,250,023 issued to Lee, et al., 3,964,482 issued to Gerstel, et al., Reissue 25,637 issued to Kravitz, et al., and PCT Publication Nos. WO 96/37155, WO 96/37256, WO 96/17648, WO 97/03718, WO 98/11937, WO 98/00193, WO 97/48440, WO 97/48441 , WO 97/48442, WO 98/00193, WO 99/64580, WO 98/28037, WO 98/29298, and WO 98/29365, all of which are incorporated herein by reference in their entirety.
[00051] The term "prolonged delivery" as used herein means a period of delivery that lasts for at least half an hour, preferably between several hours to about 24 hours, more preferably between about 8 and 24 hours. [00052] The term "co-delivering" as used herein means the anti-healing agent(s) is administered transdermally before the agent is delivered; before and during transdermal flux of the agent; during transdermal flux of the agent; and/or during and after transdermal flux of the agent. [00053] The term "co-sampling" as used herein means the anti-healing agent(s) is administered transdermally before the agent is sampled by transdermal flux; before and during transdermal flux of the agent; during transdermal flux of the agent; and/or during and after transdermal flux of the agent. [00054] For the purposes for transdermal delivery, the term "agent" as used herein refers to an agent, drug, compound, composition of matter or mixture thereof which provides some pharmacological, often beneficial, effect. It is intended in its broadest interpretation as any pharmaceutically-acceptable substance which may be delivered to a living organism to produce a desired, usually beneficial, effect. In general, this includes therapeutic agents in all of the major therapeutic fields including, but not limited to, anti-infectives such as antibiotics and antiviral agents; analgesics such as fentanyl, sufentanil, and buprenorphine, and analgesic combinations; anesthetics; anorexics; antiarthritics; antiasthmatic agents such as terbutaline; anticonvulsants; antidepressants; antidiabetics agents; antidiarrheals; antihistamines; antiinflammatory agents; antimigraine preparations; antimotion sickness preparations such as scopolamine and ondansetron; antinauseants; antineoplastics; antiparkinsonism drugs; antipruritics; antipsychotics; antipyretics; antispasmodics including gastrointestinal and urinary; anticholinergics; sympathomimetrics; xanthine derivatives; cardiovascular preparations including calcium channel blockers such as nifedipine; betaagonists such as dobutamine and ritodrine; beta blockers; antiarrythmics; antihypertensives such as atenolol; ACE inhibitors such as ranitidine; diuretics; vasodilators including general, coronary, peripheral and cerebral; central nervous systems stimulants; cough and cold preparations; decongestants; diagnostics; hormones such as parathyroid hormones; hypnotics; immunosuppressives; muscle relaxants; parasympatholytics; parasympathomimetrics; prostaglandins; proteins; peptides; psychostimulants; vaccines, sedatives and tranquilizers. [00055] The invention is particularly useful in the controlled delivery of peptides, polypeptides, proteins, or other macromolecules difficult to deliver transdermally because of their size. These macromolecular substances typically have a molecular weight of at least about 300 Daltons, and more typically, in the range of about 300 to 40,000 Daltons. Examples of polypeptides and proteins which may be delivered in accordance with the present invention include, without limitation, LHRH, LHRH analogs (such as goserelin, leuprolide, buserelin, triptorelin, gonadorelin, napharelin and leuprolide), GHRH, GHRF, insulin, insulinotropin, calcitonin, octreotide, endorphin, TRH, NT-36 (chemical name: N-[[(s)-4-oxo-2-azetidinyl]- carbonyl]-L-histidyl- L-prolinamide), liprecin, pituitary hormones (eg, HGH, HMG, HCG, desmopressin acetate, etc), follicle luteoids, -ANF, growth factor such as releasing factor (GFRF), β-MSH, GH, somatostatin, bradykinin, somatotropin, platelet-derived growth factor, asparaginase, bleomycin sulfate, chymopapain, cholecystokinin, chorionic gonadotropin, corticotropin (ACTH), erythropoietin, epoprostenol (platelet aggregation inhibitor), glucagon, hirudin and hirudin analogs such as hirulog, hyaluronidase, interleukin-2, menotropins (urofollitropin (FSH) and LH), oxytocin, streptokinase, tissue plasminogen activator, urokinase, vasopressin, desmopressin, ACTH analogs, ANP, ANP clearance inhibitors, angiotensin II antagonists, antidiuretic hormone agonists, antidiuretic hormone antagonists, bradykinin antagonists, CD4, ceredase, CSI's, enkephalins, FAB fragments, IgE peptide suppressors, IGF-1 , neurotrophic factors, colony stimulating factors, parathyroid hormone and agonists, parathyroid hormone antagonists, prostaglandin antagonists, pentigetide, protein C, protein S, renin inhibitors, thymosin alpha-1 , thrombolytics, TNF, PTH, heparin having a molecular weight from 3000 to 12,000 daltons, vaccines, vasopressin antagonist analogs, interferon-α, -β, and -γ, alpha-1 antitrypsin (recombinant), and TGF-beta.
[00056] It is to be understood that more than one agent may be incorporated into the agent formulation in the method of this invention, and that the use of the term "agent" in no way excludes the use of two or more such agents or drugs.
[00057] The agents can be in various forms, such as free bases, acids, charged or uncharged molecules, components of molecular complexes or nonirritating, pharmacologically acceptable salts. Also, simple derivatives of the agents (such as ethers, esters, amides, etc) which are easily hydrolyzed by body pH, enzymes, etc, can be employed. The agents can be in solution, in suspension or a combination of both in the drug reservoir. Alternatively, the agent can be a particulate. [00058] The amount of agent employed in the delivery device will be that amount necessary to deliver a therapeutically effective amount of the agent to achieve the desired result. In practice, this will vary widely depending upon the particular agent, the site of delivery, the severity of the condition, and the desired therapeutic effect. Thus, it is not practical to define a particular range for the therapeutically effective amount of agent incorporated into the method. [00059] For the purposes for transdermal sampling, the term "agent" as used herein refers to body analytes to be sampled. The term "analyte" as used herein means any chemical or biological material or compound suitable for passage through a biological membrane by the technology taught in this present invention, or by technology previously known in the art, of which an individual might want to know the concentration or activity inside the body. Glucose is a specific example of an analyte because it is a sugar suitable for passage through the skin, and individuals, for example those having diabetes, might want to know their blood glucose levels. Other examples of analytes include, but are not limited to, such compounds as sodium, potassium, bilirubin, urea, ammonia, calcium, lead, iron, lithium, salicylates, alcohol, licit substances, illicit drugs, and the like.
[00060] The term "therapeutic" amount or rate refer to the amount or rate of the agent needed to effect the desired pharmacological, often beneficial, result.
[00061] The term "passive" transdermal delivery, is used herein to describe the passage of an agent through a body surface, eg, skin by passive diffusion. Typically, passive delivery devices have a drug reservoir which contains a high concentration of a drug. The device is placed in contact with a body surface for an extended period of time, and is allowed to diffuse from the reservoir and into the body of the patient, which has a much lower concentration of drug. The primary driving force for passive drug delivery is the concentration gradient of the drug across the skin. In this type of delivery, the drug reaches the bloodstream by diffusion through the dermal layers of the body. The preferred agents for passive delivery are hydrophobic non-ionic agents, given that the drug must diffuse through the lipid layers of the skin. [00062] The term "electrotransport" is used herein to describe the passage of a substance, eg, a drug or prodrug, through a body surface or membrane, such as the skin, mucous membranes, or nails, induced at least partially by the application of an electric field across the body surface (eg, skin). A widely used electrotransport process, iontophoresis, involves the electrically induced transport of therapeutic agents in the form of charged ions, lonizable therapeutic agents, eg, in the form of a salt which when dissolved forms charged agent ions, are preferred for iontophoretic delivery because the charged agent ions move by electromigration within the applied electric field. Electroosmosis, another type of electrotransport process, involves the movement of a liquid, which liquid contains a charged and/or uncharged therapeutic agent dissolved therein, through a biological membrane (e.g., skin) under the influence of an electric field. Another type of electrotransport, electroporation, involves the formation of transiently-existing pores in a living biological membrane by applying high voltage pulses thereto and delivery of a therapeutic agent therethrough. However, in any given electrotransport process, more than one of these processes may be occurring simultaneously to some extent. Accordingly, the term "electrotransport" is used herein in its broadest possible interpretation to include the electrically induced or enhanced transport of at least one agent, which may be charged, ie, in the form of ions, or uncharged, or of mixtures thereof, regardless of the specific mechanisms by which the agent is actually transported.
[00063] The term "anti-healing agent" means an agent which alone or in combination acts to prevent or diminish skin's natural healing processes thereby preventing the closure of the pathways formed by disruptions such as microslits/microcuts in the stratum corneum of the skin. Examples of suitable anti-healing agents include, but are not limited to:
(1) osmotic agents which include neutral compounds such as glucose, salts such as sodium chloride, and zwitterionic compounds such as amino acids.
The formulation (as is or reconstituted from a dry formulation) should have an osmotic pressure greater than about 2000 kPa and more preferably about 3000 kPa at 20° C. The osmotic pressure being calculated from the relationship: π= iMRT where i is the van't Hoff factor, M is the molarity of the solute, R is the universal gas constant (8.314 J K"1 mol"1) and T the temperature in degrees
Kelvin.
[00064] For neutral compounds, i is 1 and the concentration at 2000 kPa is 0.8 M; and at about 3000 kPa it is 1.2 M. Neutral compounds include:
(a) organic solvents such as dimethylsulfoxide.
(b) acids in the neutral state such as boric acid, and the like.
(c) ether alcohols and polymers of ethylene oxide comprising at least one alcohol group and having a molecular weight ranging from 92 to 500. Compounds in this group include ethoxydiglycol, diethylene glycol, dipropylene glycol, triethylene glycol, PEG-4, PEG-6, PEG-8 and PEG-9, and the like;
(d) aliphatic alcohols comprising two alcohol groups such as propylene glycol and butane diol, and the like; (e) aliphatic alcohols comprising three alcohol groups such as glycerol, and 1 ,2,6-hexanetriol, and the like;
(f) tetrahydric alcohols such as erythritol and threitol, and the like;
(g) pentahydric alcohols such as adonitol, xylitol and arabitol, and the like; (h) hexahydric alcohols such as sorbitol, mannitol, galactitol, and the like; (i) aliphatic compounds comprising one ketonic or aldehyde group and at least two alcohol groups. Compounds in this group include deoxyribose, ribulose, xylulose, psicose, sorbose, and the like, (j) cyclic polyols such as inositol, and the like; (k) monosaccharides such as apiose, arabinose, lyxose, ribose, xylose, digitoxose, fucose, quercitol, quinovose, rhamnose, allose, altrose, fructose, galactose, glucose, gulose, hamamelose, idose, mannose, tagatose, and the like; (I) disaccharides such as sucrose, trehalose, primeverose, vicianose, rutinose, scillabiose, cellobiose, gentiobiose, lactose, lactulose, maltose, melibiose, sophorose, and turanose, and the like.
[00065] For salts with i = 2, the concentration of the salt at about 2000 kPa is about 0.4 M; at about 3000 kPa it is about 0.6 M. These salts include: sodium chloride, the salt forms of acetic acid, propionic acid, glycolic acid, pyruvic acid, hydracrylic acid, lactic acid, pivalic acid, beta-hydroxybutyric acid, glyceric acid, sorbic acid, mandelic acid, atrolactic acid, tropic acid, quinic acid, glucuronic acid, gluconic acid, gulonic acid, glucoheptonic acid, benzilic acid, ammonia, monoethanolamine, diethanolamine, aminomethylpropanediol, tromethamine, triethanolamine, galactosamine and glucosamine.
[00066] For salts with i = 3, the concentration of the salt at about 2000 kPa is about 0.3 M; at about 3000 kPa it is about 0.4 M. These salts include: the salt forms of phosphoric acid, malonic acid, fumaric acid, maleic acid, succinic acid, tartronic acid, oxaloacetic acid, malic acid, alpha-ketoglutaric acid, citramalic acid, and tartaric acid.
[00067] For salts with i = 4, the concentration of the salt at about 2000 kPa is about 0.2 M; at about 3000 kPa it is about 0.3 M. These salts include: the salt forms of aconitic acid, citric acid and isocitric acid. [00068] For zwitterionic compounds, i is about 1 and the concentration at about 2000 kPa is about 0.8 M; at about 3000 kPa it is about 1.2 M. [00069] Zwitterionic coumpounds include: amino acids such as glycine, alanine, proline, threonine and valine, diamino acids such as glycylglycine, buffers such as 4-morpholinepropane sulfonic acid (MOPS), (2-{[tris(hydroxymethyl) methyl]amino}-1 -ethane sulfonic acid (TES), 4-(2- hydroxyethyl)-1-piperazineethane sulfonic acid (HEPES), β-hydroxy-4-(2- hydroxyethyl)-1-piperazinepropane sulfonic acid monohydrate (HEPPSO), tricine, bicine, CHES and CAPS and the like. (2) Anticoagulants such as citric acid, citrate salts (e.g. sodium citrate), dextran sulfate sodium, EDTA, pentosan polysulfate, oligonucleotides, aspirin, low molecular weight heparin, and lyapolate sodium.
(3) anti-inflammatory agents such as betamethasone 21 -phosphate disodium salt, triamcinolone acetonide 21-disodium phosphate, hydrocortamate hydrochloride, hydrocortisone 21 -phosphate disodium salt, methylprednisolone 21 -phosphate disodium salt, methylprednisolone 21- succinate sodium salt, paramethasone disodium phosphate, prednisolone 21-succinate sodium salt, prednisolone 21- -sulfobenzoate sodium salt, prednisolone 21 -diethylaminoacetate hydrochloride, prednisolone sodium phosphate, prednylidene 21 -diethylaminoacetate hydrochloride, triamcinolone acetonide 21-disodium phosphate; the salt form of NSAIDs such as aspirin and other salicylates, bromfenac, diclofenac, diflunisal, etodolac, fenoprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamate, mefenamic acid, naproxen, oxaprozin, piroxicam, sulindac, tolmetin; and antiinflammatory peptides such as antiflammin 1 and antiflammin 2; and
(4) agents that effect cellular migration such as laminin and related peptides and fibronectin related peptides.
[00070] The range of concentration for anticoagulant agents, anti- inflammatory agents, and agents that inhibit cellular migration is between 0.1 and 10% in the formulation.
MODES FOR CARRYING OUT THE INVENTION [00071] The major barrier properties of the skin, such as resistance to diffusion of drugs, reside with the outermost layer of the skin, i.e., the stratum corneum. The inner division, i.e., the backing layers, of the epidermis generally comprises three layers commonly identified as stratum granulosum, stratum malpighii, and stratum germinativum. There is essentially little or no resistance to transport or to absorption of an agent through these layers. Therefore, in order to enhance transdermal flux, the microprotrusions used to create pathways in the body surface in accordance with the present invention need only penetrate through the stratum corneum in order for the agent to be transdermally delivered or sampled with little or no resistance through the skin.
[00072] There have been many attempts to mechanically penetrate or disrupt the skin thereby creating pathways into the skin in order to enhance the transdermal flux.
[00073] However, the pathways created by the microslits/microcuts are quickly closed and sealed by the skin's natural healing processes. Accordingly, the enhancement in transdermal agent flux provided by these pathways is completely eliminated within several hours of making the pathways. The present invention inhibits the decrease in the transdermal flux of an agent due to the pathway closure after the pathways have been made. [00074] In one of its embodiments, the skin is treated with a microprotusion array device to form small cuts, slits, or holes called pathways in the outermost layer of the body surface to a limited depth. The microprotrusions may be formed in different shapes, such as needles, hollow needles, pins, punches, and combinations thereof. An agent delivery or sampling reservoir is placed in contact with the pretreated region of the body surface to deliver or sample the agent. The agent delivery or sampling reservoir contains an anti-healing agent(s) which is co-delivered with the agent. This anti-healing agent prevents or at least inhibits the pathways from closing and hence inhibits the decrease in the transdermal flux of the agent to be delivered or sampled. Alternatively, the anti-healing agent reservoir and the agent delivery or sampling reservoir may be different reservoirs. [00075] FIG. 8 illustrates a transdermal delivery or sampling patch 10 including a plurality of microprotrusions 12, a reservoir 14, an adhesive backing layer 16, and an impermeable backing layer 18. Although the reservoir 14 has been illustrated on a skin distal side of the microprotrusions 12, it should be understood that the reservoir may also be located in other positions. For example, a reservoir 14 may be provided by a discreet layer on the skin proximal or skin distal side of the base sheet which supports the microprotrusions 12. The reservoir 14 may be provided by coatings on the microprotrusions, and/or the reservoir may be provided by coatings on the other parts of the patch 10. Although the present invention has been described as including an agent and an anti-healing agent, it should be understood that the agent and the anti-healing agent may be provided in the same reservoir or different reservoirs in the device. [00076] The device of the present invention can be used in connection with agent delivery, agent sampling, or both. In particular, the device of the present invention is used in connection with transdermal drug delivery, transdermal analyte sampling, or both. Transdermal delivery devices for use with the present invention include, but are not limited to, passive devices, electrotransport devices, osmotic devices, and pressure-driven devices. Transdermal sampling devices for use with the present invention include, but are not limited to, passive devices, reverse electrotransport devices, negative pressure driven devices, and osmotic devices. The transdermal devices of the present invention may be used in combination with other methods of increasing agent flux, such as skin permeation enhancers.
EXAMPLES [00077] The following preparations and examples are given to enable those skilled in the art to more clearly understand and practice the present invention. They should not be considered as limiting the scope of the invention but merely as being illustrative and representative thereof.
Example 1 [00078] Decrease in drug flux has been studied with three model drugs presenting different charge characteristics: pentosan polysulfate (PPS), a highly negatively charged compound, DECAD, a synthetic model decapeptide bearing two positive charges at pH 5.5, and inulin, a neutral polysaccharide. These compounds do not penetrate the skin significantly without the use of penetration enhancers or physical disruption of the skin barrier. [00079] In this experiment, PPS, DECAD, and inulin were delivered by passive diffusion through pathways in the skin created by pretreatment with a microprotrusion array. Pretreatment involves placing a microprotrusion array onto the skin with sufficient force to create a plurality of microslits/microcuts through the stratum corneum of the skin. The microprotrusion array is then removed from the skin and then some form of agent delivery device or agent reservoir is placed over the pathways in order to effect agent delivery or sampling. Pretreatment was used instead of integrated system because pathway closure appears to occur more rapidly and more reproducibly following pretreatment than when the microprotrusions are left in the skin during drug delivery. The concentration of PPS was below the concentration required for anticoagulant effect. All drugs were dissolved in water and solutions were gelled with 2% hydroxyethylcellulose. Concentration of PPS, DECAD and inulin were 0.1 mg/mL, 13 mg/mL and 2.5 mg/mL, respectively. PPS and DECAD were radiolabeled with tritium. Insulin was radiolabeled with 14C.
[00080] In hairless guinea pigs (HGPs), the skin of one flank was manually stretched bilaterally at the time of application of the system. Microprotrusion array application was performed with an impact applicator. The system applied comprised a foam double adhesive ring (diameter 3.8 cm, thickness 0.16 cm) with a 2 cm2 reservoir in the middle containing a microprotrusion array having an area of 2 cm2 and comprised of a stainless steel sheet having a thickness of 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90° to the plane of the sheet, the microprotrusions had a length of 545 micrometer, and a microprotrusion density of 72 microprotrusions /cm2. Following application, the stretching tension was released. The adhesive ring was left adhered on the skin and the microprotrusion array was removed. The drug formulation (350 μL) was dispensed into the drug compartment and a backing membrane was applied to the adhesive outer surface of the ring to seal the system. A total of six HGPs were treated with the same drug formulation. At 1 hour and 24 hours after application, the systems from 3 HGPs from each group were removed and residual drug washed from the skin. The amount of drug that had penetrated during these time intervals was determined by measuring urinary excretion of radioactivity for two days following removal of the patch and corrected from the percentage excreted following iv injection (previous studies had shown that for 3H-PPS, 3H DECAD, and 14C inulin, percentage excreted over two days following injection were 32%, 65% and 94%, respectively). The results (Table I) show that between 1 hour and 24 hour, flux decreased by at least one order of magnitude for all drugs indicating that pathways formed by piercing of the skin by the microprotrusions had at least partially closed.
Table I
Flux of model drugs following Microprotrusion array pretreatment
Drug Flux (μg/(cm2 h)) 1 h 24 h
PPS 0.05 mg/mL 0.177 + 0.039 0.015 + 0.002
DECAD 12 mg/mL 1.77 + 0.39 0.097 + 0.035
Inulin 2.5 mg/mL 13.9 + 1.6 0.489 ± 0.123
Example 2
[00081] Inhibition of pathway collapse by chemical agents was studied following pretreatment of the skin with a microprotrusion array and application of a formulation containing the agent for 24 h. Quantitation was performed by evaluation of dye impregnation of the pathways. [00082] In HGPs, the skin of one flank was manually stretched bilaterally at the time of application. Application of the microprotrusion array was performed with an impact applicator. The system applied comprised a foam double adhesive ring (diameter 3.8 cm, thickness 0.16 cm) with a 2 cm2 reservoir in the middle containing a microprotrusion array having an area of 2 cm2 and comprised of a stainless steel sheet having a thickness of 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90° to the plane of the sheet. The microprotrusions had a length of 545 micrometer, and a microprotrusion density of 72 microprotrusions/cm2. Following application, the stretching tension was released. The adhesive ring was left adhered on the skin and the microprotrusion array was removed. A formulation (350 μL) containing the tested compound in water and optionally a gelling agent (hydroxyethylcellulose (HEC) at 2% or silica gel at 50%) was dispensed into the drug reservoir and a backing membrane was applied to the adhesive outer surface of the ring to seal the system. The guinea pig received a second system containing a different formulation on the opposite site. Twenty four hours after application, three systems from each group were removed and residual formulation washed from the skin. The skin was stained with a 1% methylene blue solution. Excess dye was thoroughly removed with 70% isopropyl alcohol pads and a picture of the site was taken. Pictures were scored on a 0 to 5 scale, 5 being the dye uptake obtained immediately following microprotrusion array application and 0 being the dye uptake obtained after 24 h contact with a control formulation. A score of 0.5 or greater was considered significant. Various osmotic agents, anticoagulants, antiinflammatory agents, gelling agents as well as gels of different pH and various additives were tested (Table II). Among the osmotic agents, the most effective agents were the polyol 1 ,2,6-hexanetriol, glucuronic acid, the polymer of ethylene oxide diethylene glycol, the pentahydric alcohol adonitol, the hexahydric alcohol sorbitol, the polyol-amine tromethamine, and the monosaccharide glucose. Among the anticoagulants, citric acid, EDTA, as well as dextran 5000 were the most effective agents in preventing pathway closure. The antiinflammatory agents betamethasone disodium phosphate as well as ketoprofen sodium salt presented a significant effect. The keratolytic agent salicylic acid also had an effect on pathway closure. Low pH also inhibited pathway closure. Surfactants (anionic, cationic and nonionic), at non-irritating concentrations, had no effect. Inert agents failed to prevent pathway closure. Sites exposed to glycerol and citric acid were also stained with India ink to confirm that the pathways were open for larger sized compounds.
Table II
Inhibition of Pathway Closure by Chemicals as evaluated with methylene blue following Microprotrusion array Pretreatment
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Example 3 [00083] Pentosan polysulfate (PPS), a highly negatively charged compound, does not penetrate the skin significantly without the use of penetration enhancers or physical disruption of the skin barrier. In this experiment, PPS was delivered by passive diffusion through pathways in the skin created by a microprotrusion array. The concentration of PPS was below the concentration required for inhibition of pathway collapse (see Table II). Therefore, at the concentration used in this experiment, PPS behaved like a drug lacking any activity on pathway closure. The purpose of the experiment was to show that inhibitors of pathway collapse identified in Example 2 also improved drug flux through the skin in vivo. [00084] In all guinea pigs, the skin of one flank was manually stretched bilaterally at the time of the application of the system. Microprotrusion array application was performed with an impact applicator. The system applied comprised a foam double adhesive ring (diameter 3.8 cm, thickness 0.16 cm) with a drug containing hydrogel having a skin contact area of 2 cm2 in the middle containing a microprotrusion array having an area of 2 cm2 and comprised of a stainless steel sheet having a thickness of 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90° to the plane of the sheet, the microprotrusion had a length of 545 μm, and a microprotrusion density of 72 microprotrusion/cm2. Following application, the stretching tension was released. The adhesive ring was left adhered on the skin and the microprotrusion array was removed. A hydrogel containing 3H- PPS in water (PPS concentration of 0.1 mg/mL, 2% HEC, 350 μL) was dispensed into the drug compartment and a plastic cover was applied to the adhesive outer surface of the ring to seal the system. Additional groups of HGPs were treated in the same way, except that the formulation contained 3% citric acid trisodium salt or 50% 1 ,2,6-hexanetriol. At 1 and 24 h after application, 3 systems from each group were removed and residual drug washed from the skin. The amount of drug penetrated during these time intervals was determined by measuring urinary excretion of tritium (previous studies had shown that in HGPs, 32% of the tritium derived from 3H-PPS injected intravenously is excreted in urine). The results, as shown in FIG.1 , show that between 1 hour and 24 hours, flux decreased by about 12 fold, demonstrating pathway closure. Citric acid and 1 ,2,6-hexanetriol inhibited this decrease in flux. Flux in the presence of 1 ,2,6-hexanetriol was decreased by less than 2 fold between 1 and 24 h. Total amount transported was increased about 4 and 7 folds in the presence of citric acid and 1 ,2,6- hexanetriol, respectively, as compared to controls as shown in FIG. 2.
Example 4
[00085] A second experiment was performed with PPS. Conditions were identical to that described in Example 3 except that the microprotrusion array had shorter blades, length 194 micrometer, and higher microprotrusion density (190 microprotrusion/cm2). PPS concentration was 0.16 mg/mL and was still below the concentration required for inhibition of pathway collapse. Evaluation was performed at 45 min instead of 1 h. In addition, additional groups of animals received a formulation containing the mixture of 3% citric acid trisodium salt and 50% 1 ,2,6-hexanetriol. Similarly to the precedent example, results shown in FIG. 3 show that between 0.75 and 24 h, flux decreased dramatically, demonstrating pathways shutdown. The additive used did not modify the 45 min PPS flux, indication that they did not present permeation enhancing properties and that pathways had not significantly closed during this period. At 24 hours, citric acid and 1 ,2,6-hexanetriol inhibited significantly the decrease in flux. Flux in the presence of the mixture of citric acid trisodium salt and 1 ,2,6-hexanetriol resulted in a complete inhibition of the decrease in PPS flux observed between 45 min and 24 h. Total amounts of PPS transported are shown in FIG. 4. The effect observed in the presence of 3% citric acid trisodium salt and 50% 1 ,2,6- hexanetriol is greater than additive. This is probably the indication that these two agents are effective on different wound healing mechanisms (citric acid is probably preventing clot formation while 1 ,2,6-hexanetriol is probably preventing another regeneration process such as keratinocyte migration).
Example 5 [00086] An additional experiment was performed with PPS. Conditions were identical to that described in Example 4. Gluconic acid sodium salt, glucuronic acid sodium salt and glucose were evaluated at 0.6 M concentration with or without 3% citric acid. Similarly to the precedent example, as shown in FIG. 5, results show that between 1 hour and 24 hours, flux decreased dramatically, demonstrating pathways closure. At 24 hours, all compounds and combinations significantly increased PPS flux. Total amounts of PPS transported are shown in FIG. 6. These results support the conclusions presented in Example 4 and demonstrate that lower concentrations of anti-healing agents are still very effective at inhibiting microprotrusion pathway closure. Example 6 [00087] Feasibility studies were conducted in hairless guinea pigs
(HGPs) to determine whether passive intracutaneous delivery of a plasmid DNA vaccine (pCMV-AYW-HBs-Mkan), which encodes for hepatitis B surface antigen [HBsAg]), could be achieved using Macroflux. In all guinea pigs, the skin of one flank was manually stretched bilateraly at the time of the application of the system. Application of the microprotrusion array was performed with an impact applicator. The system applied comprised a foam double adhesive ring (diameter 2.5 cm, thickness 0.08 cm) with a 1 cm2 reservoir in the middle.
[00088] One of two configurations of microprotrusion arrays were used.
Specifications of the two arrays are given in the table below. Each configuration has a total surface area of 2 cm2 and an active total blade surface area of 1 cm2.
microprotrusion
Type , protrusions/cm2 length
8-1 A 545 μm 72
21-10A2 430 μm 190
[00089] A microprotrusion array of the selected type was adhered to the adhesive foam and covered the bottom of the reservoir (after application, the microprotrusion array is in contact with the skin). Following application, the stretching tension was released and the microprotrusion array was left in situ. A liquid formulation (90 μL) containing 3.5 mg/mL of the plasmid DNA vaccine in buffer (TRIS 5 mM pH 7.6) was dispensed into the drug reservoir and a backing membrane was applied to the adhesive outer surface of the ring to seal the system. Additional HGPs were treated in the same way, except that the formulation contained either 1 % Tween 80 or 3% citric acid trisodium salt in addition to the plasmid DNA and the Tris buffer. At 1 hour after application, two systems from each group were removed and residual formulation washed from the skin. The amount of drug penetrated at that time was determined in a 6 mm diameter full thickness skin biopsy taken at the skin site. The biopsy was dissolved in a digestion buffer (sodium dodecyl sulfate/proteinase K) and relevant DNA content was evaluated by polymerase chain (PCR) reaction followed by electrophoresis of the PCR product. A positive control group was included which consisted of 10 μg plasmid DNA injected intradermally. Negative controls consisted of the plasmid DNA applied on the skin without the use of a microprotrusion array. The results demonstrated that plasmid DNA can be successfully delivered using microprotrusion array devices under passive delivery (FIG. 7). No plasmid DNA could be detected in skin when the plasmid DNA was applied without use of the microprotrusion array (negative controls). Comparison between groups showed that the most efficient formulation contained citric acid trisodium salt. At one hour, a more than 10 fold increase in plasmid DNA delivered was observed in the presence of citric acid trisodium salt as compared to the control formulation. There was no significant enhancement of plasmid DNA delivered in the formulations containing Tween 80. With citric acid, use of the 21-10A microprotrusion array resulted in an increase in the amount of plasmid DNA delivered, of 2.5 fold as compared to the 8-1 A microprotrusion array, which is consistent with greater number of protrusions in the 21-10A array.
Example 7 [00090] Examples 2-6 demonstrate that drugs of interest can have their flux enhanced by co-delivery of pathway closure inhibitors. In particular, it was shown that compounds presenting anticoagulants properties are effective in preventing pathway collapse. If these compounds can prevent pathway collapse and therefore prolong the delivery of drug molecules, it is obvious that if they are delivered at concentrations high enough to exert locally their anticoagulant activity, they will prolong their own delivery. Delivery experiments with drugs presenting anticoagulant properties have been performed in the HGP with PPS and the phosphorothiolated oligonucleotide ISIS 2302. PPS is a drug used in the management of inflammatory conditions such as interstitial cystitis, and the phosphorothiolated oligonucleotide ISIS 2302 is an antisense drug to the mRNA coding for the ICAM1 molecule and presenting antiinflammatory properties. Both molecules are highly negatively charged compound and do not penetrate the skin significantly without the use of penetration enhancers or physical disruption of the skin barrier.
[00091] With PPS at a concentration of 300 mg/mL, a total dose of 6.5 ± 1.1 mg was delivered in 24 hours in the HGP from a 2 cm2 passive pretreatment system identical to that described in Example 3 (application was performed manually, using a microprotrusion array having an area of 2 cm2 and comprised of a stainless steel sheet having a thickness if 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90° to the plane of the sheet, the microprotrusion had a length of 430 μm, and a microprotrusion density of 190 microprotrusions/cm2). The dose excreted in urine (2 mg) was found to be more than 85% intact. This contrasts with oral administration of PPS where a 300 mg daily dose presents a bioavailability of 1 to 3% (3 to 9 mg absorbed). In addition, following oral delivery, less than 5% of the dose absorbed was found intact in urine, indicating that transdermal administration of PPS using the microprotrusion array effectively bypasses the liver. [00092] Additional experiments were performed with PPS in order to test alternative modes of delivery. With PPS at a concentration of 50 mg/mL, a total dose of 1.9 ± 0.1 mg was delivered in 4 hours by electrotransport with a current of 100 μA/cm2 and a microprotrusion array having an area of 2 cm2 and comprised of a stainless steel sheet having a thickness of 0.025 mm, trapezoidally shaped blades bent at an angle of approximately 90Q to the plane of the sheet, the microprotrusions had a length of 480 μm, and a microprotrusion density of 241 microprotrusion/cm2. By comparison, with the same microprotrusion array and the same PPS concentration, total dose from a transdermal microprotrusion array with integrated drug reservoir and a pretreatment with a microprotrusion array and subsequent application of a drug reservoir was 2.2 ± 0.2 mg and 1.4 ± 0.2 mg, respectively. Collectively, these results demonstrate that PPS can be effectively delivered through the skin for extended periods of time probably as a result of its anticoagulant properties.
[00093] The phosphorothiolated oligonucleotide ISIS 2302 was delivered for 24 hours using a microprotrusion array with an area of 2 cm2, microprotrusion lengths of 480 μm and 241 microprotrusions/cm2. The effect of drug concentration, microprotrusion array pretreatment versus integrated treatment and delivery passive versus electrotransport were evaluated. Results, summarized in Table III, demonstrate that this compound can be effectively delivered through the skin for extended periods of time, probably as a result of its anticoagulant properties.
Table III Transdermal Delivery of ISIS 2302
Total dose delivered (mg)
Microprotrusion Pretreatment Integrated Treatment
Drug Passive Electrotransport Passive Electrotransport cone.
(mg/mL)
5 0.17 ± 0.02 0.47 ± 0.05 0.20 ± 0.04 0.35 ± 0.05
50 2.6 ± 0.7 6.4 ± 0.5 7.4 ± 1.5 8.3 ± 1.4
200 10.0 ± 1.9 15.6 ± 3.8 14.0 ± 3.2 15.2 + 1.8
[00094] Drugs of interest that could be delivered at therapeutic levels using the microprotrusion technology during extended periods of time (i.e. 24 hours) and without the help of adjuvant that prevent pathway collapse include all compounds presenting anticoagulants properties during local delivery and having a molecular weight greater than about 2000. These compounds include pentosan polysulfate, oligonucleotides, low molecular weight heparin, hirudin and hirudin analogs such as hirulog.
It will be appreciated by those of ordinary skill in the art that the invention can be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive. The scope of the invention as indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalence thereof are intended to be embraced therein.

Claims

What is claimed is:
1. A method for inhibiting a decrease in transdermal flux of a first agent comprising the steps of: forming disruptions in at least the stratum corneum layer of the skin to form a plurality of pathways; and causing the first agent and at least one anti-healing agent to be fluxed through said pathways, wherein the amount of said anti-healing agent that is fluxed through said pathways is effective in inhibiting the decrease in the transdermal flux of said first agent compared to the flux of said first agent under substantially identical conditions except in the absence of said at least one anti-healing agent.
2. The method of Claim 1 , wherein the disruptions of the skin are microslits caused by one or more stratum corneum-piercing microprotrusions.
3. The method of Claim 1 , wherein the anti-healing agent is selected from the group consisting of anticoagulants, anti-inflammatory agents, agents that inhibit cellular migration, and osmotic agents and mixtures thereof.
4. The method of Claim 3, wherein said anticoagulant is selected from the group consisting of heparin having a molecular weight from 3000 to 12,000 daltons, pentosan polysulfate, citric acid, citrate salts, EDTA, and dextrans having molecular weight from 2000 to 10,000 daltons, aspirin and lyapolate sodium.
5. The method of Claim 3, wherein said anti-inflammatory agent is selected from the group consisting of hydrocortisone sodium phosphate, betamethasone sodium phosphate, and triamcinolone sodium phosphate.
6. The method of Claim 3, wherein the agent that inhibits cellular migration is laminin.
7. The method of Claim 3, wherein said osmotic agent is a biologically compatible salt of an osmotic agent.
8. The method of Claim 3, wherein said osmotic agent, in solution, generates an osmotic pressure greater than about 2000 kilopascals at 20°C.
9. The method of Claim 1 , wherein the first agent is a therapeutic agent that is delivered transdermally into the skin.
10. The method of Claim 9, wherein the agent comprises a macromolecular agent.
11. The method of Claim 10, wherein the macromolecular agent is selected from the group consisting of polypeptides, proteins, oligonucleotides, nucleic acids and polysaccharides.
12. The method of Claim 9, wherein the disruptions are one or more microslits through the stratum corneum layer of the skin which form pathways; and further including the step of placing a reservoir in agent transmitting relation with the microslits, said reservoir comprising the first agent and the anti-healing agent .
13. The method of Claim 1 , wherein the first agent is a body analyte that is transdermally sampled.
14. The method of Claim 13, wherein the body analyte is glucose.
15. The method of Claim 13, wherein the disruptions are one or more microslits through the stratum corneum layer of the skin which form pathways; and further including the step of placing a reservoir in agent transmitting relation with the microslits, said reservoir comprising the first agent.
16. The method of Claim 1 , wherein the anti-healing agent is delivered: (a) before any transdermal flux of the first agent;
(b) before and during transdermal flux of the first agent;
(c) during transdermal flux of the first agent; or
(d) during and after transdermal flux of the first agent.
17. The method of Claim 2, wherein the microprotrusions have a length of less than 0.5 mm.
18. The method of Claim 15, wherein the microprotrusions and the reservoir are part of a single sampling device.
19. The method of Claim 1 , wherein the first agent is selected from the group consisting of heparin having a molecular weight from 3000 to 12,000 daltons, pentosan polysulfate, citric acid, citrate salts, EDTA, and dextrans having molecular weight from 2000 to 10,000 daltons.
20. The method of Claim 19, wherein the first agent identical to at least one of said anti-healing agents.
21. The method of claim 3 wherein said osmotic agent is a neutral compound.
22. The method of claim 2 wherein the first agent and the anti-healing agent are dry-coated on one or more of said microprotrusions.
23. The method of claim 2, wherein the first agent is a therapeutic agent coated on said microprotrusions, wherein said first agent is delivered transdermally into the skin.
24. The method of claim 23 further including the step of placing a separate reservoir in agent transmitting relation with the skin; said reservoir comprising the anti-healing agent.
25. A device for causing the transdermal flux of an agent comprising: a first element capable of forming disruptions in at least the stratum corneum of the skin in order to form pathways therethrough; and at least one reservoir comprising a first agent and at least one anti- healing agent, said at least one reservoir is capable of being placed in agent transmitting relationship with the skin and said pathways, wherein the amount of said at least one anti-healing agent is effective in inhibiting a decrease in agent transdermal flux when compared to the transdermal flux of said first agent under substantially identical conditions except in the absence of said at least one anti-healing agent.
26. The device of claim 25, wherein said first element comprises one or more stratum corneum-piercing microprotrusions which are capable of forming microslits in the skin
27. The device of claim 25, wherein the anti-healing agent is selected from the group consisting of anticoagulants, anti-inflammatory agents, agents that inhibit cellular migration, and osmotic agents and mixtures thereof.
28. The device of claim 27, wherein said anticoagulant is selected from the group consisting of heparin having a molecular weight from 3000 to 12,000 daltons, pentosan polysulfate, citric acid, citrate salts, EDTA, and dextrans having molecular weight from 2000 to 10,000 daltons, aspirin and lyapolate sodium.
29. The device of claim 27, wherein said anti-inflammatory agent is selected from the group consisting of hydrocortisone sodium phosphate, betamethasone sodium phosphate, and triamcinolone sodium phosphate.
30. The device of Claim 27, wherein the agent that inhibits cellular migration is laminin.
31. The device of Claim 27, wherein said osmotic agent is a biologically compatible salt of an osmotic agent.
32. The device of Claim 27, wherein said osmotic agent, in solution, generates an osmotic pressure greater than about 2000 kilopascals at 20°C.
33. The device of Claim 25, wherein the first agent is a therapeutic agent and said device delivers the first agent transdermally into the skin.
34. The device of Claim 33, wherein the agent comprises a macromolecular agent.
35. The device of Claim 34, wherein the macromolecular agent is selected from the group consisting of polypeptides, proteins, oligonucleotides, nucleic acids and polysaccharides.
36. The device of claim 33, wherein said first element comprises one or more stratum corneum-piercing microprotrusions which are capable of disrupting the skin by the formation of microslits in the skin.
37. The device of Claim 25, wherein the first agent is a body analyte that is transdermally sampled.
38. The device of Claim 37, wherein the body analyte is glucose.
39. The device of claim 37, wherein said first element comprises one or more stratum corneum-piercing microprotrusions which are capable of disrupting the skin by the formation of microslits in the skin.
40. The device Claim 25, wherein the anti-healing agent is delivered:
(a) before any transdermal flux of the first agent;
(b) before and during transdermal flux of the first agent;
(c) during transdermal flux of the first agent; or (d) during and after transdermal flux of the first agent.
41. The device of claim 26, wherein the microprotrusions have a length of less than 0.5 mm.
42. The device of Claim 39, wherein the microprotrusions and the reservoir are an integral element.
43. The device of Claim 25, wherein the first agent is selected from the group consisting of heparin having a molecular weight from 3000 to 12,000 daltons, pentosan polysulfate, citric acid, citrate salts, EDTA, and dextrans having molecular weight from 2000 to 10,000 daltons.
44. The device of Claim 43, wherein the first agent identical to the anti- healing agent.
45. The device of claim 27 wherein said osmotic agent is a neutral compound.
46. The device of claim 26 wherein the first agent and the anti-healing agent are dry-coated on one or more of said microprotrusions.
47. The device of claim 26, wherein the first agent is a therapeutic agent coated on said microprotrusions, wherein said device is capable of delivery said first agent is transdermally into the skin.
48. The device of claim 47 further including the step of placing a separate reservoir in agent transmitting relation with the skin; said reservoir comprising the anti-healing agent.
49. A kit for the application of a device for causing the transdermal flux of an agent comprising: the device of claim 1 and an applicator for placing said first element of said device onto the skin in order to form said disruptions.
PCT/US2001/027551 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure WO2002019985A2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
DK01968531T DK1335711T3 (en) 2000-09-08 2001-09-06 Transdermal device
DE60129585T DE60129585T2 (en) 2000-09-08 2001-09-06 TRANSDERMALE DEVICE
CA002422200A CA2422200A1 (en) 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
AU8877401A AU8877401A (en) 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
NZ524646A NZ524646A (en) 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
MXPA03002122A MXPA03002122A (en) 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure.
EEP200300095A EE200300095A (en) 2000-09-08 2001-09-06 Methods of Inhibiting Decrease in Drug Transdermal Transportation by Inhibiting Canal Closure
EP01968531A EP1335711B1 (en) 2000-09-08 2001-09-06 Transdermal device
IL15481101A IL154811A0 (en) 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
JP2002524470A JP5507030B2 (en) 2000-09-08 2001-09-06 Methods for suppressing reduction in transdermal drug flow by inhibiting pathway closure
KR1020037003472A KR100764699B1 (en) 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
AU2001288774A AU2001288774B2 (en) 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
BR0113749-2A BR0113749A (en) 2000-09-08 2001-09-06 Methods to inhibit decrease in transdermal drug flow by inhibiting pathway closure
NO20031071A NO20031071L (en) 2000-09-08 2003-03-07 Method of Inhibiting Decrease in Transdermal Drug Flow Through Inhibition by Closing the Reaction Pathway

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US23116000P 2000-09-08 2000-09-08
US60/231,160 2000-09-08

Publications (2)

Publication Number Publication Date
WO2002019985A2 true WO2002019985A2 (en) 2002-03-14
WO2002019985A3 WO2002019985A3 (en) 2002-09-06

Family

ID=22867983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/027551 WO2002019985A2 (en) 2000-09-08 2001-09-06 Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure

Country Status (24)

Country Link
US (1) US7438926B2 (en)
EP (1) EP1335711B1 (en)
JP (2) JP5507030B2 (en)
KR (1) KR100764699B1 (en)
CN (1) CN100421653C (en)
AT (1) ATE367805T1 (en)
AU (2) AU2001288774B2 (en)
BR (1) BR0113749A (en)
CA (1) CA2422200A1 (en)
CZ (1) CZ2003687A3 (en)
DE (1) DE60129585T2 (en)
DK (1) DK1335711T3 (en)
EE (1) EE200300095A (en)
ES (1) ES2290166T3 (en)
IL (1) IL154811A0 (en)
MA (1) MA25958A1 (en)
MX (1) MXPA03002122A (en)
NO (1) NO20031071L (en)
NZ (1) NZ524646A (en)
PL (1) PL365603A1 (en)
PT (1) PT1335711E (en)
RU (1) RU2272618C2 (en)
WO (1) WO2002019985A2 (en)
ZA (1) ZA200302700B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006020841A2 (en) * 2004-08-11 2006-02-23 Alza Corporation Apparatus and method for transdermal delivery of natriuretic peptides
EP1682012A2 (en) * 2003-11-13 2006-07-26 ALZA Corporation Composition and apparatus for transdermal delivery
EP1734993A2 (en) 2004-04-01 2006-12-27 Alza Corporation Apparatus and method for transdermal delivery of influenza vaccine
JP2007527392A (en) * 2003-06-30 2007-09-27 アルザ・コーポレーシヨン Formulations for coated microprojections containing non-volatile counterions
EP2818159A1 (en) * 2013-06-25 2014-12-31 LTS LOHMANN Therapie-Systeme AG Device having transdermal therapeutic system, positioning and penetration aid
US9987361B1 (en) * 2014-12-29 2018-06-05 Noven Pharmaceuticals, Inc. Compositions and method for sustained drug delivery by active transdermal technology
WO2019092257A1 (en) 2017-11-10 2019-05-16 Lts Lohmann Therapie-Systeme Ag Microneedle system for applying a hepatitis vaccine

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2422200A1 (en) * 2000-09-08 2002-03-14 Alza Corporation Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
EP2085109A3 (en) * 2000-10-26 2009-09-02 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
US6908453B2 (en) * 2002-01-15 2005-06-21 3M Innovative Properties Company Microneedle devices and methods of manufacture
PE20050288A1 (en) * 2003-07-02 2005-04-29 Alza Corp METHOD AND IMMUNIZATION PATCH BY MICROPROJECTION DISPOSAL
AU2004268616B2 (en) 2003-08-25 2010-10-07 3M Innovative Properties Company Delivery of immune response modifier compounds
CN101415443A (en) * 2003-10-23 2009-04-22 阿尔扎公司 Compositions of stabilized DNA for coating microprojctions
AU2004285484A1 (en) * 2003-10-24 2005-05-12 Alza Corporation Pretreatment method and system for enhancing transdermal drug delivery
CN101120101A (en) * 2004-04-13 2008-02-06 阿尔扎公司 Apparatus and method for transdermal delivery of multiple vaccines
BRPI0509901A (en) * 2004-04-13 2007-08-07 Alza Corp apparatus and method for transdermal delivery of fentanyl-based agents
WO2006055799A1 (en) * 2004-11-18 2006-05-26 3M Innovative Properties Company Masking method for coating a microneedle array
US8057842B2 (en) 2004-11-18 2011-11-15 3M Innovative Properties Company Method of contact coating a microneedle array
CA2587387C (en) 2004-11-18 2013-06-25 3M Innovative Properties Company Method of contact coating a microneedle array
CN101160117A (en) * 2005-02-16 2008-04-09 阿尔扎公司 Apparatus and method for transdermal delivery of epoetin-based agents
US20060253078A1 (en) * 2005-04-25 2006-11-09 Wu Jeffrey M Method of treating skin disorders with stratum corneum piercing device
US20070270738A1 (en) * 2005-04-25 2007-11-22 Wu Jeffrey M Method of treating ACNE with stratum corneum piercing patch
EP1904158B1 (en) 2005-06-24 2013-07-24 3M Innovative Properties Company Collapsible patch with microneedle array
US20070078414A1 (en) * 2005-08-05 2007-04-05 Mcallister Devin V Methods and devices for delivering agents across biological barriers
US8900180B2 (en) * 2005-11-18 2014-12-02 3M Innovative Properties Company Coatable compositions, coatings derived therefrom and microarrays having such coatings
EP2018835B1 (en) * 2007-07-09 2014-03-05 Augustinus Bader Agent-eluting plaster
US8617487B2 (en) 2009-03-25 2013-12-31 Venture Lending & Leasing Vi, Inc. Saliva sample collection systems
JPWO2011010456A1 (en) * 2009-07-24 2012-12-27 株式会社ネクスト21 NSAIDs-containing external preparation and method for producing the external preparation
US20190231925A1 (en) * 2018-01-31 2019-08-01 Changchun Ja Biotech. Co., Ltd. Heparin sodium supported hydrogel sustained-release paster

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017648A1 (en) * 1994-12-09 1996-06-13 Novartis Ag Transdermal system
WO1997048440A1 (en) * 1996-06-18 1997-12-24 Alza Corporation Device for enhancing transdermal agent delivery or sampling
WO2000074763A2 (en) * 1999-06-04 2000-12-14 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
WO2001041864A1 (en) * 1999-12-10 2001-06-14 Alza Corporation Skin treatment apparatus for sustained transdermal drug delivery

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE25637E (en) 1964-09-08 Means for vaccinating
US3964482A (en) 1971-05-17 1976-06-22 Alza Corporation Drug delivery device
BE795384A (en) 1972-02-14 1973-08-13 Ici Ltd DRESSINGS
EP0429842B1 (en) 1989-10-27 1996-08-28 Korea Research Institute Of Chemical Technology Device for the transdermal administration of protein or peptide drug
US5279544A (en) 1990-12-13 1994-01-18 Sil Medics Ltd. Transdermal or interdermal drug delivery devices
IL109037A (en) * 1993-03-19 1999-01-26 Cellegy Pharma Inc Compositions for inducing phase separation of epithelial lipid bilayers and preparation of said compositions
US5885211A (en) 1993-11-15 1999-03-23 Spectrix, Inc. Microporation of human skin for monitoring the concentration of an analyte
US5458140A (en) 1993-11-15 1995-10-17 Non-Invasive Monitoring Company (Nimco) Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers
WO1996037256A1 (en) 1995-05-22 1996-11-28 Silicon Microdevices, Inc. Micromechanical patch for enhancing the delivery of compounds through the skin
AU5740496A (en) 1995-05-22 1996-12-11 General Hospital Corporation, The Micromechanical device and method for enhancing delivery of compounds through the skin
DE19525607A1 (en) 1995-07-14 1997-01-16 Boehringer Ingelheim Kg Transcorneal drug delivery system
US5902603A (en) * 1995-09-14 1999-05-11 Cygnus, Inc. Polyurethane hydrogel drug reservoirs for use in transdermal drug delivery systems, and associated methods of manufacture and use
DE19541260A1 (en) * 1995-11-06 1997-05-07 Lohmann Therapie Syst Lts Therapeutic preparation for transdermal application of active ingredients through the skin
DE69722414T2 (en) 1996-07-03 2004-05-19 Altea Therapeutics Corp. MULTIPLE MECHANICAL MICROPERFORATION OF SKIN OR MUCOSA
ATE231015T1 (en) 1996-09-17 2003-02-15 Deka Products Lp SYSTEM FOR DELIVERY OF MEDICATION THROUGH TRANSPORT
KR100453132B1 (en) 1996-12-20 2004-10-15 앨자 코포레이션 Device and method for enhancing transdermal agent flux
DE19654391A1 (en) 1996-12-27 1998-07-02 Basf Ag Catalyst for the selective production of propylene from propane
DK1314400T3 (en) * 1996-12-31 2007-10-15 Altea Therapeutics Corp Microporation of tissues for delivery of bioactive agents
US6918901B1 (en) * 1997-12-10 2005-07-19 Felix Theeuwes Device and method for enhancing transdermal agent flux
WO1999029364A1 (en) * 1997-12-11 1999-06-17 Alza Corporation Device for enhancing transdermal agent flux
WO1999029365A1 (en) * 1997-12-11 1999-06-17 Alza Corporation Device for enhancing transdermal agent flux
WO1999029298A2 (en) * 1997-12-11 1999-06-17 Alza Corporation Device for enhancing transdermal agent flux
US6022316A (en) 1998-03-06 2000-02-08 Spectrx, Inc. Apparatus and method for electroporation of microporated tissue for enhancing flux rates for monitoring and delivery applications
AU767122B2 (en) 1998-06-10 2003-10-30 Georgia Tech Research Corporation Microneedle devices and methods of manufacture and use thereof
AU771818B2 (en) * 1999-05-17 2004-04-01 Stephen T Flock Remote and local controlled delivery of pharmaceutical compounds using electromagnetic energy
DE60024312T2 (en) * 1999-12-10 2006-08-17 Alza Corp., Mountain View Transdermal drug delivery of macromolecular agents and device therefor
CA2422200A1 (en) * 2000-09-08 2002-03-14 Alza Corporation Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
EP2085109A3 (en) * 2000-10-26 2009-09-02 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
CA2516547A1 (en) * 2002-09-30 2004-04-15 Alza Corporation Drug delivery device having coated microprojections incorporating vasoconstrictors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017648A1 (en) * 1994-12-09 1996-06-13 Novartis Ag Transdermal system
WO1997048440A1 (en) * 1996-06-18 1997-12-24 Alza Corporation Device for enhancing transdermal agent delivery or sampling
WO2000074763A2 (en) * 1999-06-04 2000-12-14 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
WO2001041864A1 (en) * 1999-12-10 2001-06-14 Alza Corporation Skin treatment apparatus for sustained transdermal drug delivery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007527392A (en) * 2003-06-30 2007-09-27 アルザ・コーポレーシヨン Formulations for coated microprojections containing non-volatile counterions
US8920817B2 (en) 2003-06-30 2014-12-30 Alza Corporation Formulations for coated microprojections containing non-volatile counterions
EP1682012A4 (en) * 2003-11-13 2008-09-24 Alza Corp Composition and apparatus for transdermal delivery
JP2007511508A (en) * 2003-11-13 2007-05-10 アルザ・コーポレーシヨン Compositions and devices for transdermal delivery
EP1682012A2 (en) * 2003-11-13 2006-07-26 ALZA Corporation Composition and apparatus for transdermal delivery
EP1734993A2 (en) 2004-04-01 2006-12-27 Alza Corporation Apparatus and method for transdermal delivery of influenza vaccine
EP1734993A4 (en) * 2004-04-01 2009-10-21 Alza Corp Apparatus and method for transdermal delivery of influenza vaccine
WO2006020841A3 (en) * 2004-08-11 2007-08-16 Alza Corp Apparatus and method for transdermal delivery of natriuretic peptides
WO2006020841A2 (en) * 2004-08-11 2006-02-23 Alza Corporation Apparatus and method for transdermal delivery of natriuretic peptides
EP2818159A1 (en) * 2013-06-25 2014-12-31 LTS LOHMANN Therapie-Systeme AG Device having transdermal therapeutic system, positioning and penetration aid
WO2014207033A1 (en) * 2013-06-25 2014-12-31 Lts Lohmann Therapie-Systeme Ag Device with transdermal therapeutic system and positioning and penetration aid
US9987361B1 (en) * 2014-12-29 2018-06-05 Noven Pharmaceuticals, Inc. Compositions and method for sustained drug delivery by active transdermal technology
WO2019092257A1 (en) 2017-11-10 2019-05-16 Lts Lohmann Therapie-Systeme Ag Microneedle system for applying a hepatitis vaccine
DE102017126501A1 (en) 2017-11-10 2019-05-16 Lts Lohmann Therapie-Systeme Ag Micro needle system for the application of a hepatitis vaccine

Also Published As

Publication number Publication date
IL154811A0 (en) 2003-10-31
EP1335711B1 (en) 2007-07-25
PT1335711E (en) 2007-09-05
NZ524646A (en) 2004-10-29
CZ2003687A3 (en) 2004-01-14
DK1335711T3 (en) 2007-11-26
AU8877401A (en) 2002-03-22
CN100421653C (en) 2008-10-01
JP2004508319A (en) 2004-03-18
JP2013256500A (en) 2013-12-26
CA2422200A1 (en) 2002-03-14
EE200300095A (en) 2005-02-15
ES2290166T3 (en) 2008-02-16
US7438926B2 (en) 2008-10-21
EP1335711A2 (en) 2003-08-20
PL365603A1 (en) 2005-01-10
ATE367805T1 (en) 2007-08-15
CN1473037A (en) 2004-02-04
AU2001288774B2 (en) 2006-06-29
KR100764699B1 (en) 2007-10-08
WO2002019985A3 (en) 2002-09-06
NO20031071L (en) 2003-05-06
US20020102292A1 (en) 2002-08-01
MA25958A1 (en) 2003-12-31
RU2272618C2 (en) 2006-03-27
DE60129585D1 (en) 2007-09-06
NO20031071D0 (en) 2003-03-07
JP5507030B2 (en) 2014-05-28
MXPA03002122A (en) 2004-09-10
DE60129585T2 (en) 2008-04-17
ZA200302700B (en) 2004-08-13
BR0113749A (en) 2004-06-22
KR20030074595A (en) 2003-09-19

Similar Documents

Publication Publication Date Title
US7438926B2 (en) Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
AU2001288774A1 (en) Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
US20050089554A1 (en) Apparatus and method for enhancing transdermal drug delivery
US7579013B2 (en) Formulations for coated microprojections containing non-volatile counterions
US20050106226A1 (en) Pretreatment method and system for enhancing transdermal drug delivery
US20050123507A1 (en) Formulations for coated microprojections having controlled solubility
EP1737434A2 (en) Apparatus and method for transdermal delivery of fentanyl-based agents
MXPA06004531A (en) Apparatus and method for enhancing transdermal drug delivery
MXPA06004476A (en) Pretreatment method and system for enhancing transdermal drug delivery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 154811

Country of ref document: IL

Ref document number: PV2003-687

Country of ref document: CZ

Ref document number: 2001288774

Country of ref document: AU

Ref document number: 2422200

Country of ref document: CA

Ref document number: 289/KOLNP/2003

Country of ref document: IN

Ref document number: 1200300231

Country of ref document: VN

WWE Wipo information: entry into national phase

Ref document number: 1020037003472

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/002122

Country of ref document: MX

Ref document number: 524646

Country of ref document: NZ

Ref document number: 2002524470

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2001968531

Country of ref document: EP

Ref document number: 2003/02700

Country of ref document: ZA

Ref document number: 200302700

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2003109743

Country of ref document: RU

Kind code of ref document: A

Ref country code: RU

Ref document number: RU A

WWE Wipo information: entry into national phase

Ref document number: 018185835

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001968531

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037003472

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2003-687

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 524646

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 524646

Country of ref document: NZ

WWG Wipo information: grant in national office

Ref document number: 2001968531

Country of ref document: EP