WO2002007810A2 - Catheter for target specific drug delivery - Google Patents

Catheter for target specific drug delivery Download PDF

Info

Publication number
WO2002007810A2
WO2002007810A2 PCT/US2001/023434 US0123434W WO0207810A2 WO 2002007810 A2 WO2002007810 A2 WO 2002007810A2 US 0123434 W US0123434 W US 0123434W WO 0207810 A2 WO0207810 A2 WO 0207810A2
Authority
WO
WIPO (PCT)
Prior art keywords
medical catheter
catheter
restrictor
distal end
connector
Prior art date
Application number
PCT/US2001/023434
Other languages
French (fr)
Other versions
WO2002007810A3 (en
Inventor
Dennis D. Elsberry
Chris Christiansen
Mary M. Morris
Douglas O. Hankner
Robert C. Hamlen
Original Assignee
Medtronic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/625,751 external-priority patent/US6945969B1/en
Application filed by Medtronic, Inc. filed Critical Medtronic, Inc.
Priority to EP01954960A priority Critical patent/EP1305074A2/en
Priority to AU2001277171A priority patent/AU2001277171A1/en
Publication of WO2002007810A2 publication Critical patent/WO2002007810A2/en
Publication of WO2002007810A3 publication Critical patent/WO2002007810A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M5/14276Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0043Catheters; Hollow probes characterised by structural features
    • A61M2025/0057Catheters delivering medicament other than through a conventional lumen, e.g. porous walls or hydrogel coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0067Catheters; Hollow probes characterised by the distal end, e.g. tips
    • A61M25/0068Static characteristics of the catheter tip, e.g. shape, atraumatic tip, curved tip or tip structure
    • A61M25/007Side holes, e.g. their profiles or arrangements; Provisions to keep side holes unblocked
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M39/00Tubes, tube connectors, tube couplings, valves, access sites or the like, specially adapted for medical use
    • A61M39/02Access sites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16877Adjusting flow; Devices for setting a flow rate

Definitions

  • This invention relates to medical catheters for target specific drug delivery.
  • U.S. Patent No. 3,640,269 describes a fluid delivery assembly having two flexible fluid-impermeable tubes open at one end and provided with an enlarged flexible permeable bag at the delivery segment.
  • This bag is comprised of a membrane having uniform porosity less than 0.5 microns and having a water permeability of at least 60 mL/minute/cm as a description of fluid permeability. While this design is capable of uniform fluid delivery to tissues adjacent to the permeable bag, a disadvantage of this assembly is its inability to be specifically targeted to a patient site due to the flexible distal bag.
  • a new medical catheter has now been discovered that provides uniform distribution of therapeutic agents to a targeted patient site.
  • the medical catheter of the present invention has a unique structure that permits it to be accurately placed so that it can uniformly distribute therapeutic agents to the targeted patient site.
  • the catheter has at least two distal ends, and a proximal end joined to the two distal ends via a connector, such as a AY@ connector having three legs.
  • a connector such as a AY@ connector having three legs.
  • the two distal ends and the proximal end are each located at a separate ends of the legs of the connector.
  • restrictors are placed in each leg of the connector.
  • a restrictor is a structure that provides a significant pressure drop when fluid flows through that structure.
  • the restrictors of the present invention provide structure to balance the flow for a multiple catheter system.
  • the restrictors can be made of any suitable material, e.g. a powder material such as sintered metal powder.
  • diffusers are placed at the distal ends.
  • a diffuser is a structure that diffuses and delivers a therapeutic agent over a large surface area as opposed to a single point source.
  • the diffusers and restrictors which are in each leg having a distal end, are separated from each other.
  • the diffuser is at the tip of each distal end, and the each restrictor is upstream of the distal end.
  • This construction is particularly useful for delivery of drugs via multiple catheter ends. For example, drug delivery to the two different hemispheres of the brain may be achieved, and the present invention can deliver drugs to each hemisphere substantially equally because of the restrictor(s) upstream of the distal ends, rather than at the distal ends as are the diffusers.
  • the following benefits are obtained by separating the diffuser and the restrictor: (1) increase in design options for the catheter tip; (2) improved reliability of catheter tip that is implanted in the brain tissue; and (3) reduced need to test the restrictor structure for biostability.
  • a restrictor is placed upstream of the Y connector as well, so that there is a restrictor in all three legs of the catheter joined by the Y connector.
  • This construction provides additional benefits. For example, having the restrictor upstream of the Y connector acts as a pre-filter, and thus removes any particulates prior to the Y connector.
  • This pre-filter function reduces particulates to the restrictors downstream of the Y connector, thus reducing the potential for different pressure drops and flow rates through the restrictors downstream of the Y connector, and ultimately the flow rate of the delivered drug through the diffusers at the distal ends.
  • this embodiment eliminates the possibility for insertion of a catheter where only one restrictor is downstream of the Y connector, and one restrictor is upstream of the Y connector.
  • the catheter of the present invention comprises a rigid assembly having a rigid tube for positioning the distal end of the catheter near a targeted patient site or sites, the distal end of the catheter has a rigid porous delivery segment having a porosity less than
  • the catheter of the present invention has a rigid assembly having an open tube having a distal end, the distal end having sintered metal powder, for example, metal microspheres to provide uniform porosity of the delivery segment.
  • the distal end comprises at least one uniform surface made of sintered metal powder.
  • the sintered metal powder can be made of any light-weight, high tensile strength material, e.g., tungsten, titanium or tantalum.
  • the rigid assembly functions as both a diffuser and a restrictor.
  • the sintered metal rigid assembly of this embodiment can be fabricated using a single cavity carbon mold, and a mold insert.
  • the sintered metal rigid assembly can be fabricated using powdered metal and pyrogenic sintering, such as high pressure plus pyrogenic sintering.
  • Sintered metal rigid assemblies can be positioned at the distal ends of separate legs of a catheter for placement at multiple patient targets. The distal ends can each join to a connector (e.g., a AY@ connector) for connection to a single therapy source.
  • the sintered metal rigid assembly of this embodiment functions as both a fluid restrictor and a fluid diffuser.
  • the diffuser and restrictor functions can be combined, as in a membrane tip, or separated, with the restrictor being upstream of the diffuser in each leg of the catheter.
  • a radiopaque material can be used, such as tungsten, titanium or tantalum. These metals are non-magnetic, and therefore are safe within a magnetic imaging environment.
  • An objective of the present invention is to provide for multiple catheter ends for drug delivery arising from a single pump source.
  • the present invention provides a catheter construction that provides desired distribution in a targeted area of the patient, such as giving medications intraparenchymally into tissue. Drug delivery by the present invention can be to an organ, and uniform distribution to that organ may be desired.
  • Another objective of the present invention is to provide a catheter to diffuse a therapeutic agent over a larger surface area than from a single point source. This structure results in a decrease in fluid flux and reduces potential for damaging tissue near the infusion site. In order for equal or near equal bilateral drug delivery to occur, two distal ends are required since fluid delivered from one distal end to a target site at one hemisphere will not deliver fluid to the other hemisphere.
  • the present invention can be used for many drug delivery applications, including but not limited, to intraparenchymal or tissue infusion (such as brain tissue infusion), intrathecal drug delivery and intracerebral ventricular (ICV) drug delivery, or any drug infusion into a fluid filled space or to a tumor.
  • intraparenchymal or tissue infusion such as brain tissue infusion
  • intrathecal drug delivery and intracerebral ventricular (ICV) drug delivery
  • ICV intracerebral ventricular
  • Figure 3A illustrates an embodiment of the catheter of the present invention in combination with device 20.
  • Figure 3B illustrates another embodiment of the catheter of the present invention in combination with device 20.
  • Figure 3C illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having two diffuser and restrictor distal catheter segments.
  • Figure 3D illustrates another embodiment of the present invention in combination with device 20, this embodiment having more than two diffuser and restrictor distal catheter segments.
  • Figure 4A illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having a separate restrictor placed between each diffuser distal catheter segment and connector 50.
  • Figure 4B illustrates another embodiment of the present invention in combination with device 20, this embodiment having multiple connectors 50, and multiple diffuser distal catheter segments with separate restrictors placed between each diffuser distal catheter segment and a corresponding connector 50.
  • Figure 5 A illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having separate restrictors placed between each diffuser distal catheter segment and a corresponding connector 50, and a restrictor 90 placed between proximal end 24 and the first connector 50 downstream of proximal end 24.
  • Figure 5B shows the same structure as Figure 4B, except that in this other embodiment of the present invention, a restrictor 90 is placed between proximal end 24 and the first connector 50 downstream of proximal end 24.
  • Figure 6 is a cross section view of one embodiment of a diffuser of the present invention taken from its distal end, which illustrates openings that are tapered as they extend from the outside diameter of the diffuser to the inside diameter of the diffuser.
  • Figure 7 is the side view of one embodiment of the diffuser of the present invention.
  • catheter 22 has a proximal end 24, and distal ends 26 and 26'. Distal ends 26 and 26' are connected to catheter 22, which splits at a AY@ connector 50. Distal end 26 is positioned in the right anterior cerebral cortex 16, and distal end 26' is positioned in the left anterior cerebral cortex 16'. Proximal end 24 is attached device 20, which can be an implantable infusion pump. While two distal ends are shown, the present invention can have one or more than two distal ends. As further shown in the embodiment depicted in Figure 2, catheter 22 has a catheter portion 10 downstream of device 20 and upstream of connector 50.
  • Catheter portion 10 preferably comprises an .elongated tubular wall 30 defining a central lumen 32.
  • catheter 22 begins at proximal end 24 and terminates at distal end 26.
  • distal end 26 has a catheter tip 34.
  • Proximal end 24 defines an opening 17.
  • Lumen 32 is defined by tubular wall 30.
  • Tubular wall 30 terminates at end 36.
  • catheter tip 34 is attached to tubular wall 30.
  • Catheter tip 34 has a lumen 38 to receive a drug from lumen 32, which can receive a drug pumped from device 20.
  • Tubular portion 30 ends at end 36.
  • the length of the portion of catheter tip 34 that is exposed to patient tissue is represented by a distance Ax@.
  • catheter 22 of the present invention comprises a rigid assembly having a rigid tubular wall 30 for positioning the distal end 26 of the catheter 22 near a targeted patient site, the distal end 26 having a rigid porous portion or drug delivery segment 60 made of a sintered microsphere material having aporosity less than 0.50 microns for achieving homogenous delivery to the targeted patient site.
  • rigid porous drug delivery segment 60 comprises sintered metal microspheres to provide uniform porosity.
  • a drug can be pumped from device 20, through opening 17, through lumen 32, through lumen 38, and through porous drug delivery segment 60 to a targeted patient site.
  • delivery segment 60 can also be referred to as a combination diffuser and restrictor. In other words, delivery segment 60 restricts flow of a fluid containing a therapeutic drug and also diffuses that fluid so that the fluid is distributed to and emitted from the outer surface of delivery segment 60 that is exposed to a targeted patient site.
  • the sintered metal powder of the delivery segment 60 defines multiple pores or porous openings 25.
  • the sintered metal powder is made of any light-weight, high tensile strength material, e.g., tungsten, titanium or tantalum.
  • the sintered rigid metal assemblies can be fabricated using a single cavity carbon mold, and a mold insert. Alternatively, the rigid metal assembly can be pressed into a green part using high pressure and sintered using heat to convert the green part to a fused structure (i.e, without carbon molds). Microspheres can be compressed together in each mold with pyrogenic processing.
  • a radiopaque material can be used, such as tungsten, titanium or tantalum. These metals are non-magnetic, and therefore are safe within a magnetic imaging environment.
  • the desired porosity of the sintered porous tip can be selected upon the diameter of the metal powder spheres used in the mold fabrication process.
  • the maximal dimensional distance between adjacent microspheres i.e., pore size
  • microsphere diameter is directly related to microsphere diameter, and is preferably as follows:
  • the distal end has a porous tip or a closed end, wherein the catheter tip is preferably composed of porous material such as polysulfone hollow fiber, manufactured by Amicon, although polyethylene, polyamides, polypropylene and expanded polytefrafluoroethlyene (ePTFE) are also suitable, and is preferable porous along its entire length to enable indomethacin to flow into the hippocampus, and the preferred pore size is approximately ranged between 0.1-0.2 microns. See Col. 5, line 64 through Col. 6, line 4 of U.S.
  • porous material such as polysulfone hollow fiber, manufactured by Amicon, although polyethylene, polyamides, polypropylene and expanded polytefrafluoroethlyene (ePTFE) are also suitable, and is preferable porous along its entire length to enable indomethacin to flow into the hippocampus, and the preferred pore size is approximately ranged between 0.1-0.2 microns. See Col. 5, line
  • Patent No. 5,846,220 differs from U.S. Patent No. 5,846,220, because, among other things, the present invention has much larger pore sizes, i.e., about 0.3 to 6.2 microns, and the porous material in the present invention is preferably made from sintered metal microspheres.
  • Figure 3B Another embodiment is shown in Figure 3B. This embodiment is similar to Figure 3 A, except that there is a side opemng 29 defined in distal end 26, and delivery segment 60 is positioned at side opening 29. Alternatively, delivery segment 60 can be positioned over or under side opening 29, relative to tubular wall 30. Side opening 29 can be incorporated into other embodiments shown and/or described herein.
  • Figure 3C Another embodiment is shown in Figure 3C.
  • Figure 3C is similar to Figure 3A, except there are two distal ends, 26 and 26', two drug delivery segments 60, and two legs 80 and 80' connected to a connector 50 and corresponding distal ends 26 and 26'.
  • This embodiment can be referred to as a catheter having two diffuser/restrictor catheter segments. This embodiment can be used to deliver a drug to two targeted patient sites.
  • FIG. 3D An alternative embodiment is shown in Figure 3D.
  • This embodiment is the same as that shown in Figure 3C, except that there are more than one connector 50, and more than two distal ends (in this embodiment, two distal ends 26 and two distal ends 26', for a total of four distal ends), more than two delivery segment portions 60, more than one catheter portion 10, and more than two distal tips 34 having lumens 38 to receive a drug from lumens 32. While four distal ends are shown, the present invention can have any number of distal ends as may be desired for drug delivery to targeted patient sites.
  • Connectors 50 are used to connect the proximal end 24 to catheter portions 10 and catheter portions 10 to legs 80 and 80'.
  • This embodiment can be referred to as catheter having multiple diffuser/restrictor catheter segments. This embodiment can be used to deliver a drug to more than two patient sites.
  • FIG. 4A Another embodiment of the present invention is shown in Figure 4A.
  • This embodiment has many of the same elements previously described for other embodiments, and in particular, the embodiment shown in Figure 3C.
  • the embodiment shown in Figure 4 A has a catheter 22 having at least two distal ends 26 and 26', and catheter portion or leg 10 joined to each distal end with a connector 50.
  • restrictors 70 and 70' are placed in each legs 80 and 80', which are downstream of connector 50.
  • Restrictors 70 and 70' can be made of any suitable material, including but not limited to, e.g. sintered metal powder, which is previously described above, or a material that provides a small diameter fluid path or capillary tubes.
  • the drug delivery segment (i.e., diffuser) 60 and restrictors 70 and 71' are separated from each other.
  • the drug delivery segment 60 is at tip 34 of each of the distal ends 26 and 26', and the restrictors 70 and 71' are upstream of distal ends 26 and 26', respectively.
  • This construction is particularly useful for delivery of drugs via multiple (more than one) catheter ends.
  • drug delivery to the two different hemispheres of the brain may be desired, and the present invention can deliver drugs to each hemisphere substantially equally because of the restrictors upstream of the distal ends, rather than at the distal ends as are the diffusers.
  • the following benefits are obtained by separating the diffuser and the restrictor: (1) increase in design options for the catheter tip; (2) improved reliability of catheter tip that is implanted in the brain tissue; and (3) reduced need to test the structure of the restrictor for biocompatibility.
  • FIG. 4B An alternative embodiment is shown in Figure 4B.
  • This embodiment is the same as that shown in Figure 4 A, except that there is more than one connector 50, more than two distal ends (in this embodiment, two distal ends 26, and two distal ends 26' for a total of four distal ends), more than two delivery segment portions 60, more than one catheter portion 10, more than one leg 80, more than one leg 80', and more than two distal tips 34 having a lumen 38 to receive a drug from lumen 32.
  • the connectors 50 are used to connect catheter portions 10 to the proximal end 24. This embodiment can be used to deliver a drug to more than two targeted patient sites.
  • Figure 5 A shows the same structure as Figure 4A, except that in tins other embodiment of the present invention, a restrictor 90 is placed upstream of connector 50 as well, so that there is a restrictor in legs 80, 80' and catheter portion 10 of the catheter 22 joined by connector 50.
  • This construction provides additional benefits. For example, having the restrictor 90 upstream of the connector 50 acts as a pre-filter, and thus removes any particulates prior to connector 50.
  • This pre-filter function reduces particulates to the restrictors 70 and 70' downstream of connector 50, thus reducing the potential for different pressure drops and flow rates through the restrictors 70 and 70' downstream of connector 50, and ultimately the flow rate of the delivered drug through the diffusers or delivery segments 60 at the distal ends.
  • this embodiment eliminates the possibility for incorrect insertion of a catheter where only one restrictor is downstream of connector, and one restrictor is upstream of connector 50, and one leg 80 or 80' not having a restrictor.
  • Figure 5B shows the same structure as Figure 4B, except that in this other embodiment of the present invention, a restrictor 90 is placed between proximal end 24 and the first connector 50 downstream of proximal end 24, to deliver a drug to more than two targeted patient sites.
  • the drug fluid is pushing through many small pores of the drug delivery segment 60, and restrictors 70, 70' and
  • the delivered drug fluid follows a tortuous path.
  • the sum of the resistance to flow through multiple catheter distal ends is preferably equal so that equal flow is through the multiple catheter distal ends is obtained.
  • the diffuser i.e., the drug delivery segment 60 shown in Figures 4 A, 4B, 5 A and 5B, can comprise any suitable structure.
  • the diffuser can comprise material having laser drilled holes having 0.001-0.005 inches diameter, and about 20-100 holes per diffuser.
  • the most distal of forty holes having 0.005 inches in diameter should have 76% of the flow compared to the most proximal hole (total flow 1 microliters/minute).
  • the distal hole should have 99.95% of the flow compared to the proximal hole.
  • porous materials such as sintered metal, sintered polyethylene, or porous PTFE (i.e., Teflon) have diffuser capability.
  • these structures are good diffusers at flow rates of about 1 microliter/minute to about 20 microliters/minute.
  • a permeability constant of less than about 30,000 and a bubble point of less than about 10 psi is preferred.
  • the restrictor creates a pressure drop of about 2-10 psi for a flow rate of about 10 microliters/minute, variation in interstitial pressure (less than 0.5 psi) will not create an imbalance of flow in the two catheter legs for a desired flow rate of about 1-10 microliters/minute.
  • the material for the restrictor must be very tortuous and have a significant length (i.e., thickness).
  • a permeability constant of less than about 5,000 and a bubble point of less than about 10 psi is preferred. Since the restrictor is separated from the diffuser in this embodiment, the dimensions and materials are not limited to those typically considered acceptable for intraparenchymal implant.
  • Acceptable materials for restrictors given the larger lengths possible outside the brain are sintered porous metals, and sintered and/or porous polymers.
  • Methods of manufacture and materials for the restrictors of the present invention include, but are not limited to, thin sheet filter (e.g., polyethersulfone or polypropylene, from Pall Corporation (East Hills, NY)), polycarbonate membrane (from Osnionics, Inc. (Minnetonka, MN)), polyvinylidine fluoride from Millipore Corporation (Bedford, MA)), depth filters from sintered metal (from Mott, Inc. (Farmington,
  • the restrictor is a depth filter since it does not have disadvantages that the other materials may have.
  • Sheet membranes have a disadvantage in that they have very small pores that may be prone to clogging and require a high pressure to pass air through the wet membrane (i.e., bubble point).
  • Orifice-type retrictors have the disadvantage of pressure drop that is extremely sensitive to diameter, thereby making it difficult and expensive to match two retrictors of this type to achieve substantially equal flow.
  • the restrictor should provide a large pressure drop.
  • K permeability constant
  • F flow rate
  • D viscosity for the fluid
  • T thickness of porous path
  • A surface area delta
  • P pressure delta
  • the features provided by this embodiment include: 1. Separate diffuser and restrictor features for bilateral intraparenchymal drug delivery catheter. 2. Use of simple diffusers that have insufficient tortuosity of the porous structure to make acceptable restrictors.
  • the present invention provides for multiple catheter ends for drug delivery. More specifically, the present invention provides for multiple catheter ends, e.g.
  • the present invention also provides a catheter to diffuse a therapeutic agent over a large surface area than from a single point source.
  • the benefits of this structure is that it decreases the fluid flux and reduces the change of damaging patient tissue.
  • two catheters are required. It is usually desirable to have equal flow in both catheters to deliver equal amounts of drug to both brain hemispheres.
  • the present invention can be used for many drug delivery applications, including but not limited to intraparenchymal tissue delivery, intrathecal drug delivery, and infra-cerebral ventricular (ICV) drug delivery.
  • ICV infra-cerebral ventricular

Abstract

A medical catheter (22) comprising a proximal end (24) having an opening for fluid containing a therapeutic drug, a distal end (26), the distal end defining at least one opening, and a porous portion covering the opening defined by the distal end. In one embodiment, the medical catheter comprises a proximal end having an opening for fluid containing a therapeutic drug, at least two distal ends (26, 26'), the proximal end connected to the two distal ends with a connector (50), the distal ends each defining at least one opening, a diffuser covering the opening of each distal end, and a separate restrictor downstream of the connector and upstream of each distal end to provide substantially equal flow through each distal end. An additional restrictor can also be placed upstream of the connector. In another embodiment, a combination diffuser and restrictor covers the opening of each distal end.

Description

CATHETER FOR TARGET SPECIFIC DRUG DELIVERY
FIELD OF INVENTION This invention relates to medical catheters for target specific drug delivery.
BACKGROUND OF THE INVENTION
Medical therapies may require the targeting of the therapy to a targeted patient site to maximize the therapeutic benefit and/or minimizing adverse effects to other organs or tissues outside the targeted patient site. Huss & Reinhardt, U.S. Patent No. 4,968,306 describes an elongated catheter assembly for intravascular delivery of intravenous therapeutic fluids. This assembly has a distal end having multiple pores which is sheathed by an outer proximal segment for variable exposure of delivery surface area by sliding the distal segment from the outer proximal sheath. A disadvantage of this assembly is that it results in a lack of homogeneity of pore placement and pore number for fluid discharge, which indicates a pore size of 2-20 microns.
Delgado, U.S. Patent No. 3,640,269 describes a fluid delivery assembly having two flexible fluid-impermeable tubes open at one end and provided with an enlarged flexible permeable bag at the delivery segment. This bag is comprised of a membrane having uniform porosity less than 0.5 microns and having a water permeability of at least 60 mL/minute/cm as a description of fluid permeability. While this design is capable of uniform fluid delivery to tissues adjacent to the permeable bag, a disadvantage of this assembly is its inability to be specifically targeted to a patient site due to the flexible distal bag.
Thus, there is a need for a device that provides uniform distribution of therapeutic agents to a targeted patient site or multiple targets sites. There is also a need for a device that provides this uniform distribution, yet has sufficient rigidity for accurate placement of the device so that it can deliver therapeutic agents to the targeted patient site or multiple sites.
SUMMARY OF THE INVENTION A new medical catheter has now been discovered that provides uniform distribution of therapeutic agents to a targeted patient site. Moreover, the medical catheter of the present invention has a unique structure that permits it to be accurately placed so that it can uniformly distribute therapeutic agents to the targeted patient site.
In a one embodiment of the present invention, the catheter has at least two distal ends, and a proximal end joined to the two distal ends via a connector, such as a AY@ connector having three legs. Thus, the two distal ends and the proximal end are each located at a separate ends of the legs of the connector. Preferably, restrictors are placed in each leg of the connector. A restrictor is a structure that provides a significant pressure drop when fluid flows through that structure. The restrictors of the present invention provide structure to balance the flow for a multiple catheter system. The restrictors can be made of any suitable material, e.g. a powder material such as sintered metal powder. In this embodiment, diffusers are placed at the distal ends. A diffuser is a structure that diffuses and delivers a therapeutic agent over a large surface area as opposed to a single point source. In this embodiment, the diffusers and restrictors, which are in each leg having a distal end, are separated from each other. Preferably, the diffuser is at the tip of each distal end, and the each restrictor is upstream of the distal end. This construction is particularly useful for delivery of drugs via multiple catheter ends. For example, drug delivery to the two different hemispheres of the brain may be achieved, and the present invention can deliver drugs to each hemisphere substantially equally because of the restrictor(s) upstream of the distal ends, rather than at the distal ends as are the diffusers. In this embodiment of the present invention the following benefits are obtained by separating the diffuser and the restrictor: (1) increase in design options for the catheter tip; (2) improved reliability of catheter tip that is implanted in the brain tissue; and (3) reduced need to test the restrictor structure for biostability.
In another embodiment of the present invention, a restrictor is placed upstream of the Y connector as well, so that there is a restrictor in all three legs of the catheter joined by the Y connector. This construction provides additional benefits. For example, having the restrictor upstream of the Y connector acts as a pre-filter, and thus removes any particulates prior to the Y connector. This pre-filter function reduces particulates to the restrictors downstream of the Y connector, thus reducing the potential for different pressure drops and flow rates through the restrictors downstream of the Y connector, and ultimately the flow rate of the delivered drug through the diffusers at the distal ends. In addition, this embodiment eliminates the possibility for insertion of a catheter where only one restrictor is downstream of the Y connector, and one restrictor is upstream of the Y connector.
In another embodiment, the catheter of the present invention comprises a rigid assembly having a rigid tube for positioning the distal end of the catheter near a targeted patient site or sites, the distal end of the catheter has a rigid porous delivery segment having a porosity less than
0.50 microns for achieving homogenous delivery to the targeted patient site. More specifically, in this embodiment, the catheter of the present invention has a rigid assembly having an open tube having a distal end, the distal end having sintered metal powder, for example, metal microspheres to provide uniform porosity of the delivery segment. In this embodiment, the distal end comprises at least one uniform surface made of sintered metal powder. Preferably, the sintered metal powder can be made of any light-weight, high tensile strength material, e.g., tungsten, titanium or tantalum. In this embodiment, the rigid assembly functions as both a diffuser and a restrictor. The sintered metal rigid assembly of this embodiment can be fabricated using a single cavity carbon mold, and a mold insert. Alternatively, the sintered metal rigid assembly can be fabricated using powdered metal and pyrogenic sintering, such as high pressure plus pyrogenic sintering. Sintered metal rigid assemblies can be positioned at the distal ends of separate legs of a catheter for placement at multiple patient targets. The distal ends can each join to a connector (e.g., a AY@ connector) for connection to a single therapy source. The sintered metal rigid assembly of this embodiment functions as both a fluid restrictor and a fluid diffuser. Thus, the diffuser and restrictor functions can be combined, as in a membrane tip, or separated, with the restrictor being upstream of the diffuser in each leg of the catheter.
When it is desired for the sintered metal powder to be radiopaque, a radiopaque material can be used, such as tungsten, titanium or tantalum. These metals are non-magnetic, and therefore are safe within a magnetic imaging environment. An objective of the present invention is to provide for multiple catheter ends for drug delivery arising from a single pump source. The present invention provides a catheter construction that provides desired distribution in a targeted area of the patient, such as giving medications intraparenchymally into tissue. Drug delivery by the present invention can be to an organ, and uniform distribution to that organ may be desired. It is a further objective of the present invention to provide for multiple catheter ends, at least two, into the brain of patient, and more specifically, into the two different hemispheres of the brain, with each catheter end supplied with therapeutic drugs by the same pump, and with the fluid flow of the therapeutic agent being substantially equal between the two catheter ends. It is usually desirable to have equal amounts of drug delivered to both brain hemispheres.
Another objective of the present invention is to provide a catheter to diffuse a therapeutic agent over a larger surface area than from a single point source. This structure results in a decrease in fluid flux and reduces potential for damaging tissue near the infusion site. In order for equal or near equal bilateral drug delivery to occur, two distal ends are required since fluid delivered from one distal end to a target site at one hemisphere will not deliver fluid to the other hemisphere.
The present invention can be used for many drug delivery applications, including but not limited, to intraparenchymal or tissue infusion (such as brain tissue infusion), intrathecal drug delivery and intracerebral ventricular (ICV) drug delivery, or any drug infusion into a fluid filled space or to a tumor.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates the catheter of the present invention, as implanted in a preferred location of the human body, and for drug delivery to each side of a patient=s brain. Figure 2 is a top view of the catheter of the present invention as implanted and which provides drug delivery to the two hemispheres of a patient=s brain.
Figure 3A illustrates an embodiment of the catheter of the present invention in combination with device 20.
Figure 3B illustrates another embodiment of the catheter of the present invention in combination with device 20.
Figure 3C illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having two diffuser and restrictor distal catheter segments. Figure 3D illustrates another embodiment of the present invention in combination with device 20, this embodiment having more than two diffuser and restrictor distal catheter segments.
Figure 4A illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having a separate restrictor placed between each diffuser distal catheter segment and connector 50.
Figure 4B illustrates another embodiment of the present invention in combination with device 20, this embodiment having multiple connectors 50, and multiple diffuser distal catheter segments with separate restrictors placed between each diffuser distal catheter segment and a corresponding connector 50. Figure 5 A illustrates another embodiment of the catheter of the present invention in combination with device 20, this embodiment having separate restrictors placed between each diffuser distal catheter segment and a corresponding connector 50, and a restrictor 90 placed between proximal end 24 and the first connector 50 downstream of proximal end 24.
Figure 5B shows the same structure as Figure 4B, except that in this other embodiment of the present invention, a restrictor 90 is placed between proximal end 24 and the first connector 50 downstream of proximal end 24.
Figure 6 is a cross section view of one embodiment of a diffuser of the present invention taken from its distal end, which illustrates openings that are tapered as they extend from the outside diameter of the diffuser to the inside diameter of the diffuser. Figure 7 is the side view of one embodiment of the diffuser of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
As shown in Figures 1 and 2, in an embodiment of the present invention, catheter 22 has a proximal end 24, and distal ends 26 and 26'. Distal ends 26 and 26' are connected to catheter 22, which splits at a AY@ connector 50. Distal end 26 is positioned in the right anterior cerebral cortex 16, and distal end 26' is positioned in the left anterior cerebral cortex 16'. Proximal end 24 is attached device 20, which can be an implantable infusion pump. While two distal ends are shown, the present invention can have one or more than two distal ends. As further shown in the embodiment depicted in Figure 2, catheter 22 has a catheter portion 10 downstream of device 20 and upstream of connector 50.
Combined Diffuser/Restrictor As shown in Figure 3 A, where there is only one distal end 26, and there is no connector
50. Catheter portion 10 preferably comprises an .elongated tubular wall 30 defining a central lumen 32. In this embodiment, catheter 22 begins at proximal end 24 and terminates at distal end 26. In this embodiment, distal end 26 has a catheter tip 34. Proximal end 24 defines an opening 17. Lumen 32 is defined by tubular wall 30. Tubular wall 30 terminates at end 36. In this embodiment, catheter tip 34 is attached to tubular wall 30. Catheter tip 34 has a lumen 38 to receive a drug from lumen 32, which can receive a drug pumped from device 20. Tubular portion 30 ends at end 36. Throughout this disclosure, the length of the portion of catheter tip 34 that is exposed to patient tissue is represented by a distance Ax@.
In this embodiment, catheter 22 of the present invention comprises a rigid assembly having a rigid tubular wall 30 for positioning the distal end 26 of the catheter 22 near a targeted patient site, the distal end 26 having a rigid porous portion or drug delivery segment 60 made of a sintered microsphere material having aporosity less than 0.50 microns for achieving homogenous delivery to the targeted patient site. In this embodiment, rigid porous drug delivery segment 60 comprises sintered metal microspheres to provide uniform porosity. Thus, a drug can be pumped from device 20, through opening 17, through lumen 32, through lumen 38, and through porous drug delivery segment 60 to a targeted patient site. In the embodiment shown in Figure 3A, delivery segment 60 can also be referred to as a combination diffuser and restrictor. In other words, delivery segment 60 restricts flow of a fluid containing a therapeutic drug and also diffuses that fluid so that the fluid is distributed to and emitted from the outer surface of delivery segment 60 that is exposed to a targeted patient site.
In this embodiment, the sintered metal powder of the delivery segment 60 defines multiple pores or porous openings 25. Preferably, the sintered metal powder is made of any light-weight, high tensile strength material, e.g., tungsten, titanium or tantalum. The sintered rigid metal assemblies can be fabricated using a single cavity carbon mold, and a mold insert. Alternatively, the rigid metal assembly can be pressed into a green part using high pressure and sintered using heat to convert the green part to a fused structure (i.e, without carbon molds). Microspheres can be compressed together in each mold with pyrogenic processing.
When it is desired for the sintered metal powder to be radiopaque, a radiopaque material can be used, such as tungsten, titanium or tantalum. These metals are non-magnetic, and therefore are safe within a magnetic imaging environment.
The desired porosity of the sintered porous tip can be selected upon the diameter of the metal powder spheres used in the mold fabrication process. In this embodiment, the maximal dimensional distance between adjacent microspheres (i.e., pore size) is directly related to microsphere diameter, and is preferably as follows:
Mircrosphere Diameter Maximal Dimensional Distance (i.e. Pore
Size 40 microns Less than 6.2 microns
30 microns Less than 4.7 microns
20 microns Less than 3.1 microns
10 microns Less than 1.6 microns
5 microns Less than 0.8 microns 3 microns Less than 0.5 microns
2 microns Less than 0.3 microns
In actual practice, the maximal dimensional space is less than ideal since compression during the sintering process reduces dimension. In U.S. Patent No. 5,846,220 (assigned to Medtronic), which is incorporated herein by reference, a therapeutic method for treatment of Alzheimer=s disease is disclosed. In U.S. Patent No. 5,846,220, the distal end has a porous tip or a closed end, wherein the catheter tip is preferably composed of porous material such as polysulfone hollow fiber, manufactured by Amicon, although polyethylene, polyamides, polypropylene and expanded polytefrafluoroethlyene (ePTFE) are also suitable, and is preferable porous along its entire length to enable indomethacin to flow into the hippocampus, and the preferred pore size is approximately ranged between 0.1-0.2 microns. See Col. 5, line 64 through Col. 6, line 4 of U.S.
Patent No. 5,846,220. The present invention differs from U.S. Patent No. 5,846,220, because, among other things, the present invention has much larger pore sizes, i.e., about 0.3 to 6.2 microns, and the porous material in the present invention is preferably made from sintered metal microspheres. Another embodiment is shown in Figure 3B. This embodiment is similar to Figure 3 A, except that there is a side opemng 29 defined in distal end 26, and delivery segment 60 is positioned at side opening 29. Alternatively, delivery segment 60 can be positioned over or under side opening 29, relative to tubular wall 30. Side opening 29 can be incorporated into other embodiments shown and/or described herein.
Another embodiment is shown in Figure 3C. Figure 3C is similar to Figure 3A, except there are two distal ends, 26 and 26', two drug delivery segments 60, and two legs 80 and 80' connected to a connector 50 and corresponding distal ends 26 and 26'. This embodiment can be referred to as a catheter having two diffuser/restrictor catheter segments. This embodiment can be used to deliver a drug to two targeted patient sites.
An alternative embodiment is shown in Figure 3D. This embodiment is the same as that shown in Figure 3C, except that there are more than one connector 50, and more than two distal ends (in this embodiment, two distal ends 26 and two distal ends 26', for a total of four distal ends), more than two delivery segment portions 60, more than one catheter portion 10, and more than two distal tips 34 having lumens 38 to receive a drug from lumens 32. While four distal ends are shown, the present invention can have any number of distal ends as may be desired for drug delivery to targeted patient sites. Connectors 50 are used to connect the proximal end 24 to catheter portions 10 and catheter portions 10 to legs 80 and 80'. This embodiment can be referred to as catheter having multiple diffuser/restrictor catheter segments. This embodiment can be used to deliver a drug to more than two patient sites. Separate Diffuser and Restrictor
Another embodiment of the present invention is shown in Figure 4A. This embodiment has many of the same elements previously described for other embodiments, and in particular, the embodiment shown in Figure 3C. The embodiment shown in Figure 4 A has a catheter 22 having at least two distal ends 26 and 26', and catheter portion or leg 10 joined to each distal end with a connector 50. Further, restrictors 70 and 70' are placed in each legs 80 and 80', which are downstream of connector 50. Restrictors 70 and 70' can be made of any suitable material, including but not limited to, e.g. sintered metal powder, which is previously described above, or a material that provides a small diameter fluid path or capillary tubes. In this embodiment, the drug delivery segment (i.e., diffuser) 60 and restrictors 70 and 71' are separated from each other. The drug delivery segment 60 is at tip 34 of each of the distal ends 26 and 26', and the restrictors 70 and 71' are upstream of distal ends 26 and 26', respectively. This construction is particularly useful for delivery of drugs via multiple (more than one) catheter ends. For example, drug delivery to the two different hemispheres of the brain may be desired, and the present invention can deliver drugs to each hemisphere substantially equally because of the restrictors upstream of the distal ends, rather than at the distal ends as are the diffusers. In this embodiment of the present invention the following benefits are obtained by separating the diffuser and the restrictor: (1) increase in design options for the catheter tip; (2) improved reliability of catheter tip that is implanted in the brain tissue; and (3) reduced need to test the structure of the restrictor for biocompatibility.
An alternative embodiment is shown in Figure 4B. This embodiment is the same as that shown in Figure 4 A, except that there is more than one connector 50, more than two distal ends (in this embodiment, two distal ends 26, and two distal ends 26' for a total of four distal ends), more than two delivery segment portions 60, more than one catheter portion 10, more than one leg 80, more than one leg 80', and more than two distal tips 34 having a lumen 38 to receive a drug from lumen 32. The connectors 50 are used to connect catheter portions 10 to the proximal end 24. This embodiment can be used to deliver a drug to more than two targeted patient sites.
Figure 5 A shows the same structure as Figure 4A, except that in tins other embodiment of the present invention, a restrictor 90 is placed upstream of connector 50 as well, so that there is a restrictor in legs 80, 80' and catheter portion 10 of the catheter 22 joined by connector 50. This construction provides additional benefits. For example, having the restrictor 90 upstream of the connector 50 acts as a pre-filter, and thus removes any particulates prior to connector 50. This pre-filter function reduces particulates to the restrictors 70 and 70' downstream of connector 50, thus reducing the potential for different pressure drops and flow rates through the restrictors 70 and 70' downstream of connector 50, and ultimately the flow rate of the delivered drug through the diffusers or delivery segments 60 at the distal ends. In addition, this embodiment eliminates the possibility for incorrect insertion of a catheter where only one restrictor is downstream of connector, and one restrictor is upstream of connector 50, and one leg 80 or 80' not having a restrictor.
Figure 5B shows the same structure as Figure 4B, except that in this other embodiment of the present invention, a restrictor 90 is placed between proximal end 24 and the first connector 50 downstream of proximal end 24, to deliver a drug to more than two targeted patient sites.
In accordance with the embodiments shown in Figures 4A, 4B, 5 A, and 5B, the drug fluid is pushing through many small pores of the drug delivery segment 60, and restrictors 70, 70' and
90 are of substantially equal flow resistance, and thus the delivered drug fluid follows a tortuous path. In these embodiments, the sum of the resistance to flow through multiple catheter distal ends is preferably equal so that equal flow is through the multiple catheter distal ends is obtained.
The structures described above and shown in Figures 4A, 4B, 5A, and 5B provide substantially equal flow through multiple catheter distal ends. Further discussion about the drug delivery segment (i.e. diffuser) and the fluid restrictor is set forth below.
Fluid Diffuser — Fluid modeling reveals that distribution of fluid flow will occur with multiple small holes in simple silicone or polyurethane catheters. The diffuser, i.e., the drug delivery segment 60 shown in Figures 4 A, 4B, 5 A and 5B, can comprise any suitable structure. For example, the diffuser can comprise material having laser drilled holes having 0.001-0.005 inches diameter, and about 20-100 holes per diffuser. In one embodiment, the most distal of forty holes having 0.005 inches in diameter should have 76% of the flow compared to the most proximal hole (total flow 1 microliters/minute). For holes that are 0.001 inches in diameter, the distal hole should have 99.95% of the flow compared to the proximal hole. In addition, many porous materials such as sintered metal, sintered polyethylene, or porous PTFE (i.e., Teflon) have diffuser capability. Thus, these structures are good diffusers at flow rates of about 1 microliter/minute to about 20 microliters/minute. For the diffuser material, a permeability constant of less than about 30,000 and a bubble point of less than about 10 psi is preferred. Fluid Restrictor - To balance the flow into each hemisphere of the patient=s brain, resistance to fluid flow in each leg of the catheter must be significant compared to the resistance at the tissue interface. If the restrictor creates a pressure drop of about 2-10 psi for a flow rate of about 10 microliters/minute, variation in interstitial pressure (less than 0.5 psi) will not create an imbalance of flow in the two catheter legs for a desired flow rate of about 1-10 microliters/minute. For this pressure drop, the material for the restrictor must be very tortuous and have a significant length (i.e., thickness). For the restrictor material, a permeability constant of less than about 5,000 and a bubble point of less than about 10 psi is preferred. Since the restrictor is separated from the diffuser in this embodiment, the dimensions and materials are not limited to those typically considered acceptable for intraparenchymal implant. Acceptable materials for restrictors given the larger lengths possible outside the brain are sintered porous metals, and sintered and/or porous polymers. Methods of manufacture and materials for the restrictors of the present invention include, but are not limited to, thin sheet filter (e.g., polyethersulfone or polypropylene, from Pall Corporation (East Hills, NY)), polycarbonate membrane (from Osnionics, Inc. (Minnetonka, MN)), polyvinylidine fluoride from Millipore Corporation (Bedford, MA)), depth filters from sintered metal (from Mott, Inc. (Farmington,
CT)), sintered polyethylene (from Porex Surgical (College Park)), sintered glass (from Robu Glasfilter-Gerate GmbH (Hattert, Germany)), orifice sapphire, and/or capillary tubes. Preferably, the restrictor is a depth filter since it does not have disadvantages that the other materials may have. Sheet membranes have a disadvantage in that they have very small pores that may be prone to clogging and require a high pressure to pass air through the wet membrane (i.e., bubble point).
Orifice-type retrictors have the disadvantage of pressure drop that is extremely sensitive to diameter, thereby making it difficult and expensive to match two retrictors of this type to achieve substantially equal flow. The restrictor should provide a large pressure drop. The pressure drop can be expressed by Darcy=s Law. Darcy=s Law is as follows: K = -FDT
A $ delta P
where K= permeability constant F = flow rate D = viscosity for the fluid T = thickness of porous path A = surface area delta P = pressure delta
The conflicting requirements of the large surface area for a diffuser and a large pressure drop for the restrictor can be met by having separate structure for each of these functions.
Separating the restrictors from the diffusers, and placing the restrictors up stream of the diffusers results in the resistance to flow at the distal ends to be insignificant to the overall resistance to flow, and the fluid flow through multiple catheters is substantially equal.
An example is that for a AY@ catheter, if the resistance to flow through a first diffuser has a relative value of 1, and the resistance to flow through a second diffuser has a relative value of 2, then twice as much flow will go through the first diffuser. On the other hand, if restrictors with a relative resistance value of 100 are placed up stream of the first and second diffusers, so that the overall resistance to flow through the first diffuser has a relative value of 101, and the overall resistance to flow through a second diffuser has a relative value of 102, then the flow through the first and second diffusers will be substantially equal. Equal restriction of fluid flow through each leg is the key to substantially equal fluid flow through each leg.
The features provided by this embodiment include: 1. Separate diffuser and restrictor features for bilateral intraparenchymal drug delivery catheter. 2. Use of simple diffusers that have insufficient tortuosity of the porous structure to make acceptable restrictors.
3. Use of multiple small holes (less than 0.005 inches in diameter; created with a laser) as a fluid diffuser. 4. Location of catheter restrictor at proximal end (not distal) of catheter to provide greater device flexibility, i.e., reduce the number of joint, bonds, components for distal catheter segment. 5. Capability to control flow in the brain catheter with changes in catheter design/materials not directly implanted in the brain tissues. Thus, the present invention provides for multiple catheter ends for drug delivery. More specifically, the present invention provides for multiple catheter ends, e.g. at least two, into the brain of patient, and even more specifically, into the two different hemispheres of the brain, with each catheter end supplied with therapeutic drugs by the same pump, and with the fluid flow of the therapeutic agent being substantially equal between the two catheter ends. The present invention also provides a catheter to diffuse a therapeutic agent over a large surface area than from a single point source. The benefits of this structure is that it decreases the fluid flux and reduces the change of damaging patient tissue. In order for equal or near equal bilateral drug delivery to occur, two catheters are required. It is usually desirable to have equal flow in both catheters to deliver equal amounts of drug to both brain hemispheres. The present invention can be used for many drug delivery applications, including but not limited to intraparenchymal tissue delivery, intrathecal drug delivery, and infra-cerebral ventricular (ICV) drug delivery.
Many modifications and variations may be made in the techniques and structures described and illustrated herein without departing from the spirit and scope of the present invention. For example, the present invention can be used to infuse a cytostatic agent into a malignant mass located in a variety of places in the body, or infuse a nerve growth factor into the intrathecal space of the spinal column, or to treat Alzheimer=s disease by infusing indomethacin or other drug into a patient=s hippocampus. Accordingly, the techniques and structures described and illustrated herein should be understood to be illustrative only and not limiting upon the scope of the present invention.

Claims

WE CLAIM:
1. A medical catheter comprising: a proximal end having an opening for fluid containing a therapeutic drug, a distal end, the distal end defining at least one opening, and a porous portion covering the opening defined by the distal end.
2. The medical catheter of claim 1 wherein the opening defined by the distal end is a side opening.
3. The medical catheter of claim 1 wherein the porous portion defines pores ranging in diameter size from about 0.3 to 6.2 microns.
4. The medical catheter of claim 1 wherein the porous portion comprises sintered metal microspheres.
5. The medical catheter of claim 1 wherein the porous portion comprises a radiopaque material.
6. The medical catheter of claim 1 wherein the porous portion comprises tungsten, tantalum, or titanium.
7. The medical catheter of Claim 1 wherein the porous portion restricts and diffuses fluid through the opening defined by the distal end.
8. A medical catheter comprising: a proximal end having an opening for fluid containing a therapeutic drug, at least two distal ends, the proximal end connected to the distal ends with a branched connector, the distal ends each defining at least one opening, a diffuser covering the opening of each distal end, and a restrictor between the branched connector and each distal end to provide substantially equal flow through each distal end.
9. The medical catheter of claim 8 wherein the opening defined by at least one distal end is a side opening.
10. The medical catheter of claim 8 further having a restrictor upstream of the connector.
11. The medical catheter of claim 8 wherein the diffusers define pores ranging in diameter size from about 0.3 to 6.2 microns.
12. The medical catheter of claim 8 wherein at least one diffuser comprises a radiopaque material.
13. The medical catheter of claim 8 wherein the diffusers comprise a sintered metal microsphere portion.
14. The medical catheter of claim 8 wherein the diffusers comprise tungsten, tantalum, or titanium.
15. The medical catheter of claim 8 wherein each restrictor comprises material defining pores ranging in diameter size from about 0.3 to 6.2 microns.
16. The medical catheter of claim 8 wherein each restrictor comprises a radiopaque material.
17. The medical catheter of claim 8 wherein a least one restrictor comprises tungsten, tantalum, or titanium.
18. The medical catheter of claim 10 wherein the restrictor upstream of the connector comprises material defines pores ranging in diameter size from about 0.3 to 6.2 microns.
19. The medical catheter of claim 10 wherein the restrictor upstream of the connector comprises a radiopaque material.
20. The medical catheter of claim 10 wherein the restrictor upstream of the connector comprises tungsten, tantalum, or titanium.
PCT/US2001/023434 2000-07-26 2001-07-26 Catheter for target specific drug delivery WO2002007810A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01954960A EP1305074A2 (en) 2000-07-26 2001-07-26 Catheter for target specific drug delivery
AU2001277171A AU2001277171A1 (en) 2000-07-26 2001-07-26 Catheter for target specific drug delivery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/625,751 2000-07-26
US09/625,751 US6945969B1 (en) 2000-03-31 2000-07-26 Catheter for target specific drug delivery

Publications (2)

Publication Number Publication Date
WO2002007810A2 true WO2002007810A2 (en) 2002-01-31
WO2002007810A3 WO2002007810A3 (en) 2002-06-13

Family

ID=24507432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/023434 WO2002007810A2 (en) 2000-07-26 2001-07-26 Catheter for target specific drug delivery

Country Status (3)

Country Link
EP (1) EP1305074A2 (en)
AU (1) AU2001277171A1 (en)
WO (1) WO2002007810A2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1346745A1 (en) * 2002-03-21 2003-09-24 Ed. Geistlich Söhne Ag Für Chemische Industrie Apparatus for treatment of tumor in the central nervous system (CNS)
WO2004058334A1 (en) 2002-12-23 2004-07-15 Medtronic, Inc. Implantable drug delivery systems and methods
EP1486222A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Orifice device for delivering drugs at low fluid flow rates
EP1486224A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Method for manufacturing an orifice mechanism capable of low fluid flow rates
WO2005020833A2 (en) * 2003-09-02 2005-03-10 Vita Special Purpose Corporation System and kit for delivery of restorative materials
US7211076B2 (en) 2003-06-12 2007-05-01 Cordis Corporation Medical device for fluid delivery having low fluid flow rate
EP1938852A1 (en) 2002-12-23 2008-07-02 Medtronic, Inc. Drug solution density adjustment systems
US7892530B2 (en) 1999-06-04 2011-02-22 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Treatment of tumor metastases and cancer
US7910580B2 (en) 1999-06-04 2011-03-22 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Enhancement of effectiveness of 5-Fluorouracil in treatment of tumor metastases and cancer
US8030301B2 (en) 1999-06-04 2011-10-04 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Treatment of cancers with methylol-containing compounds and at least one electrolyte
US8043281B2 (en) 2002-12-23 2011-10-25 Medtronic, Inc. Catheters incorporating valves and permeable membranes
US8058251B2 (en) 2002-11-26 2011-11-15 Kaemmerer William F Devices, systems and methods for improving memory and/or cognitive function through brain delivery of siRNA
US8109922B2 (en) 2003-06-12 2012-02-07 Cordis Corporation Orifice device having multiple channels and multiple layers for drug delivery
US8246602B2 (en) 2002-12-23 2012-08-21 Medtronic, Inc. Catheters with tracking elements and permeable membranes
US8304390B2 (en) 1997-07-31 2012-11-06 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Method of treatment for preventing or reducing tumor growth in the liver of patient
US8491571B2 (en) 2003-06-12 2013-07-23 Cordis Corporation Orifice device having multiple channels with varying flow rates for drug delivery
US8946151B2 (en) 2003-02-24 2015-02-03 Northern Bristol N.H.S. Trust Frenchay Hospital Method of treating Parkinson's disease in humans by convection-enhanced infusion of glial cell-line derived neurotrophic factor to the putamen
EP2844329A4 (en) * 2012-05-01 2015-12-09 Merit Medical Systems Inc Catheter with distal diffuser
WO2020176243A1 (en) * 2019-02-27 2020-09-03 Avent, Inc. Multi-headed catheter for fluid delivery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994149B2 (en) 2003-02-03 2011-08-09 Medtronic, Inc. Method for treatment of Huntington's disease through intracranial delivery of sirna
US9133517B2 (en) 2005-06-28 2015-09-15 Medtronics, Inc. Methods and sequences to preferentially suppress expression of mutated huntingtin
US9273356B2 (en) 2006-05-24 2016-03-01 Medtronic, Inc. Methods and kits for linking polymorphic sequences to expanded repeat mutations
US9375440B2 (en) 2006-11-03 2016-06-28 Medtronic, Inc. Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469578A (en) * 1965-10-12 1969-09-30 Howard R Bierman Infusion device for ambulatory patients with flow control means
US3817248A (en) * 1972-11-06 1974-06-18 Alza Corp Self powered device for delivering beneficial agent
US4186745A (en) * 1976-07-30 1980-02-05 Kauzlarich James J Porous catheters
EP0564321A2 (en) * 1992-04-01 1993-10-06 B. Braun Celsa Drug injecting device
WO1998015315A1 (en) * 1996-10-07 1998-04-16 Proxima Therapeutics Inc. Inflatable devices for tumor treatment
US6093180A (en) * 1995-04-28 2000-07-25 Medtronic, Inc. Intraparenchymal infusion catheter system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341967A (en) * 1989-07-11 1991-02-22 Olympus Optical Co Ltd Gradual drug releasing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3469578A (en) * 1965-10-12 1969-09-30 Howard R Bierman Infusion device for ambulatory patients with flow control means
US3817248A (en) * 1972-11-06 1974-06-18 Alza Corp Self powered device for delivering beneficial agent
US4186745A (en) * 1976-07-30 1980-02-05 Kauzlarich James J Porous catheters
EP0564321A2 (en) * 1992-04-01 1993-10-06 B. Braun Celsa Drug injecting device
US6093180A (en) * 1995-04-28 2000-07-25 Medtronic, Inc. Intraparenchymal infusion catheter system
WO1998015315A1 (en) * 1996-10-07 1998-04-16 Proxima Therapeutics Inc. Inflatable devices for tumor treatment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 015, no. 177 (C-0829), 7 May 1991 (1991-05-07) & JP 03 041967 A (OLYMPUS OPTICAL CO LTD), 22 February 1991 (1991-02-22) *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8304390B2 (en) 1997-07-31 2012-11-06 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Method of treatment for preventing or reducing tumor growth in the liver of patient
US9012444B2 (en) 1999-06-04 2015-04-21 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Enhancement of effectiveness of 5-fluorouracil in treatment of tumor metastases and cancer
US8030301B2 (en) 1999-06-04 2011-10-04 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Treatment of cancers with methylol-containing compounds and at least one electrolyte
US7910580B2 (en) 1999-06-04 2011-03-22 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Enhancement of effectiveness of 5-Fluorouracil in treatment of tumor metastases and cancer
US7892530B2 (en) 1999-06-04 2011-02-22 Ed. Geistlich Soehne Ag Fuer Chemische Industrie Treatment of tumor metastases and cancer
US7544196B2 (en) 2001-02-20 2009-06-09 Orthovita, Inc. System and kit for delivery of restorative materials
EP1346745A1 (en) * 2002-03-21 2003-09-24 Ed. Geistlich Söhne Ag Für Chemische Industrie Apparatus for treatment of tumor in the central nervous system (CNS)
US8415319B2 (en) 2002-11-26 2013-04-09 Medtronic, Inc. Devices, systems and methods for improving memory and/or cognitive function through brain delivery of siRNA
US8058251B2 (en) 2002-11-26 2011-11-15 Kaemmerer William F Devices, systems and methods for improving memory and/or cognitive function through brain delivery of siRNA
US8246602B2 (en) 2002-12-23 2012-08-21 Medtronic, Inc. Catheters with tracking elements and permeable membranes
US8137334B2 (en) 2002-12-23 2012-03-20 Medtronic, Inc. Reduction of inflammatory mass with spinal catheters
US7662140B2 (en) 2002-12-23 2010-02-16 Medtronic, Inc. Method of delivering drug to brain via spinal cord
WO2004058334A1 (en) 2002-12-23 2004-07-15 Medtronic, Inc. Implantable drug delivery systems and methods
EP1938852A1 (en) 2002-12-23 2008-07-02 Medtronic, Inc. Drug solution density adjustment systems
WO2004058337A1 (en) 2002-12-23 2004-07-15 Medtronic, Inc. Multiple infusion section catheters, systems, and methods
US8216177B2 (en) 2002-12-23 2012-07-10 Medtronic, Inc. Implantable drug delivery systems and methods
US8043281B2 (en) 2002-12-23 2011-10-25 Medtronic, Inc. Catheters incorporating valves and permeable membranes
US8946151B2 (en) 2003-02-24 2015-02-03 Northern Bristol N.H.S. Trust Frenchay Hospital Method of treating Parkinson's disease in humans by convection-enhanced infusion of glial cell-line derived neurotrophic factor to the putamen
US8946152B2 (en) 2003-02-24 2015-02-03 Amgen Inc. Method of treating parkinson's disease in humans by convection-enhanced infusion of glial cell-line derived neurotrophic factor to the putamen
US8491571B2 (en) 2003-06-12 2013-07-23 Cordis Corporation Orifice device having multiple channels with varying flow rates for drug delivery
EP1486224A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Method for manufacturing an orifice mechanism capable of low fluid flow rates
EP1486222A1 (en) * 2003-06-12 2004-12-15 Cordis Corporation Orifice device for delivering drugs at low fluid flow rates
US7108762B2 (en) 2003-06-12 2006-09-19 Cordis Corporation Method for manufacturing an orifice mechanism capable of low fluid flow rates
US8109922B2 (en) 2003-06-12 2012-02-07 Cordis Corporation Orifice device having multiple channels and multiple layers for drug delivery
US7211076B2 (en) 2003-06-12 2007-05-01 Cordis Corporation Medical device for fluid delivery having low fluid flow rate
US7678103B2 (en) 2003-06-12 2010-03-16 Cordis Corporation Orifice device for delivering drugs at low fluid flow rates
WO2005020833A3 (en) * 2003-09-02 2005-07-28 Vita Special Purpose Corp System and kit for delivery of restorative materials
WO2005020833A2 (en) * 2003-09-02 2005-03-10 Vita Special Purpose Corporation System and kit for delivery of restorative materials
EP2844329A4 (en) * 2012-05-01 2015-12-09 Merit Medical Systems Inc Catheter with distal diffuser
WO2020176243A1 (en) * 2019-02-27 2020-09-03 Avent, Inc. Multi-headed catheter for fluid delivery
US11638805B2 (en) 2019-02-27 2023-05-02 Avent, Inc. Multi-headed catheter for fluid delivery

Also Published As

Publication number Publication date
EP1305074A2 (en) 2003-05-02
WO2002007810A3 (en) 2002-06-13
AU2001277171A1 (en) 2002-02-05

Similar Documents

Publication Publication Date Title
US6551290B1 (en) Catheter for target specific drug delivery
US7153292B2 (en) Catheter for target specific drug delivery
EP1305074A2 (en) Catheter for target specific drug delivery
US7069634B1 (en) Method for manufacturing a catheter
US6093180A (en) Intraparenchymal infusion catheter system
US6893429B2 (en) Convection enhanced delivery catheter to treat brain and other tumors
US6056725A (en) Therapeutic method for treatment of alzheimer's disease
US6974448B2 (en) Method for convection enhanced delivery catheter to treat brain and other tumors
US7189222B2 (en) Therapeutic method of treatment of alzheimer's disease
US6368315B1 (en) Composite drug delivery catheter
JP6498670B2 (en) Systems and methods for drug delivery, therapy, and monitoring
US8784360B2 (en) Catheter systems having flow restrictors
EP0536296A4 (en) Method and catheter for intravascular drug delivery
CN112041017A (en) Injection port for therapeutic delivery
WO2003089031A1 (en) Subarachnoid spinal catheter for transporting cerebrospinal fluid
AU1958301A (en) Catheter with stylet lumen
JP2013526960A (en) Tissue injection apparatus and method
AU5545496A (en) Bioretentive filtered infusion catheter
WO2001008725A1 (en) An apparatus for pharmaceutical delivery and the use thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AU CA

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AU CA

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001954960

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001954960

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001954960

Country of ref document: EP